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Preface
It is sometimes hard for me to believe that the first edition of this book was only
330 pages and 13 chapters long! The book has grown and been adapted to keep up with
the fast pace of change in derivatives markets.  

Like earlier editions, the book serves several markets. It is appropriate for graduate
courses in business, economics, financial mathematics, and financial engineering. It can
be used on advanced undergraduate courses when students have good quantitative
skills. Also, many practitioners who are involved in derivatives markets find the book
useful. I am delighted that half the purchasers of the book are analysts, traders, and
other professionals in derivatives and risk management.

One of the key decisions that must be made by an author who is writing in the area of
derivatives concerns the use of mathematics. If the level of mathematical sophistication
is too high, the material is likely to be inaccessible to many students and practitioners. If
it is too low, some important issues will inevitably be treated, in a rather superficial way.
I have tried to be particularly careful about the way I use both mathematics and
notation in the book. Nonessential mathematical material has been either eliminated
or included in end-of-chapter appendices and in the technical notes on my website.
Concepts that are likely to be new to many readers have been explained carefully, and
many numerical examples have been included. .

Options, Futures, and Other Derivatives can be used for a first course in derivatives or
for a more advanced course. There are many different ways it can be used in the
classroom. Instructors teaching a first course in derivatives are likely to want to spend
most classroom time on the first half of the book. Instructors teaching a more advanced
course will find that many different combinations of chapters in the second half of the
book can be used. I find that the material in Chapter 35 works well at the end of either
an introductory or an advanced course. 3

What’s New?
Material has been updated and improved throughout the book. The changes in the
eighth edition include the following:

1. There is a new chapter (Chapter 8) devoted to securitization and the credit crisis.
The events in financial markets since the seventh edition was published make
these topics particularly relevant.

2. There is more discussion (Chapter 33) of the way commodity prices are modeled
and how commodity derivatives are valued. Energy derivatives and other
commodity derivatives have become progressively more important inrecent
years.
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3; The chapter on hedging using futures (Chapter 3) has been simplified and an
appendix explaining the capital asset pricing model has been included. This was
suggested by a number of instructors.

4. Material on central clearing, liquidity risk, and overnight indexed swaps has been
included. Following the credit crisis, these are features of derivatives markets that

. all students need to understand.
5. An appendix to Chapter 12 shows that the Black—Scholes—Merton formula can

be derived as the limiting case of a binomial tree. Some instructors like to
introduce the Black—Scholes—Merton result this way.

6. The material on value at risk is developed using an example involving real data
taken from the credit crisis. Spreadsheets for the example are on my website. This
change makes the material more interesting for readers and allows richer
assignment questions to be used by instructors.

7. New material has been added on topics such as principal-protected notes, gap
options, cliquet options, and jump processes, reflecting their importance in
derivatives markets.

8. More material has been added on applications of the Vasicek and CIR models.
This material provides a way in which readers can improve their understanding of
key concepts. It is particularly important for actuarial students and fund managers.

9. There are a number of enhancements to the DerivaGem software. The software
now covers credit derivatives. A version of the software is provided that can be used
with Open Office by Mac and Linux users. In response to many requests from
users, the code is provided for the DerivaGem functions. The software is now much

~ easier to install and a “Getting Started” section is included on page 812.
A 10. TheTest Bank available to adopting instructors has been improved.

11. New end-of-chapter problems have been added.

Software
DerivaGem version 2.01 is included with this book. It consists of two Excel applica-
tions: the Options Calculator and the Applications Builder. The Options Calculator
consists of easy-to-use software for valuing a wide range of options. The Applications
Builder consists of a number of Excel functions from which users can build their own
applications. A number of sample applications are included to enable students to
explore the properties of options and numerical procedures more easily. The Applica-
tions Builder also allows more interesting assignments to be designed.

The latest version of the software allows credit derivatives to be valued. A version of the
software’s functions that is compatible with Open Ofiice for Mac and Linux users is now
provided, and users can now access the code for the functions underlying DerivaGem.

The description of the software starting on page 812 includes a “Getting Started”
section. Updates to the software can be downloaded from my website:

www.rotrnan.utoronto.ca/~hu11.
Slides  
Several hundred PowerPoint M slides can be downloaded from Pearson’s Instructor
Resource Center (www.pearsong1oba1editions.com/hull). Instructors who adopt the
text may adapt the slides to meet their own needs.
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Test Bank
The Test Bank has been improved and provides a wealth of multiple-choice and short-
calculation questions that can be used by instructors for testing. Itcan be downloaded
from the Instructor Resource Center at WWW.p€al'SOI1gIOba1€d_lt1OIlS.COII1/111111.

Solutions Manual
End-of-chapter problems are divided into two groups: “Questions and Problems” and
“Further Questions”. Solutions to the Questions and Problems are in Options, Futures,
and Other Derivatives 8e: Solutions Manual, which is published by Pearson and can be
purchased by students.

Instructors Manual
The Instructors Manual contains solutions to both “Practice Questions” and “Further
Questions”, notes on the teaching of each chapter, test bank questions, notes on course
organization, and some relevant Excel worksheets. It is available for download from the
Instructor Resource Center at WWW.pearsoI1g1oba_leditions.com/hull.

Technical Notes
Technical Notes are used to elaborate on points made in the text. They are referred to in the
text and can be downloaded from www.rotman.utoronto.ca/~hu1l/TechnicalNotes.
By not including the Technical Notes in the book, I am able to streamline the presentation
of material so that it is more student-friendly.

Acknowledgments  
Many people have played a part in the development of successive editions of this book.
Indeed, the list of people who have provided me with feedback on the book is now so
long that it is not possible to mention everyone. I have benefited from the advice of
many academics who have taught from the book and from the comments of many
derivatives practitioners. I would like to thank the students on my courses at the
University of Toronto who have made many suggestions on how the material can be
improved. Eddie Mizzi from The Geometric Press did an excellent job editing the final
manuscript and handling page composition. Emilio Barone from Luiss Guido Carli
University in Rome provided many detailed comments.  1
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new ways used to explain old ideas, are as much Alan’s as mine. Alan has done most of
the development work on the DerivaGem software.
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hu1l©rotrnan.utoronto.ca

John Hull
1 Joseph L. Rotman School of Management

University of Toronto





T... P T E R Introduction

In the last 30 years, derivatives have become increasingly important in finance. Futures
and options are actively traded on many exchanges throughout the world. Many
different types of forward contracts, swaps, options, and other derivatives are entered
into by financial institutions, fund managers, and corporate treasurers in the over-the-
counter market. Derivatives are added to bond issues, used in executive compensation
plans, embedded in capital investment opportunities, used to transfer risks in mortgages
from the original lenders to investors, and so on. We have now reached the stage where
those who work in finance, and many who work outside finance, need to understand
how derivatives work, how they are used, and how they are priced.

Whether you love derivatives or hate them, you cannot ignore them! The derivatives
market is huge——-much bigger than the stock market when measured in terms of
underlying assets. The value of the assets underlying outstanding derivatives trans-
actions is several times the world gross domestic product. As we shall see in this chapter,
derivatives can be used for hedging or speculation or arbitrage. They play a key role in
transferring a wide range of risks in the economy from one entity to another.

A derivative can be defined as a financial instrument whose value depends on (or
derives from) the values of other, more basic, underlying variables. Very often the
variables underlying derivatives are the prices of traded assets. A stock option, for
example, is a derivative whose value is dependent on the price of a stock. However,
derivatives can be dependent on almost any variable, from the price of hogs to the
amount of snow falling at a certain ski resort.

Since the first edition of this book was published in 1988 there have been many
developments in derivatives markets. There is now active trading in credit derivatives,
electricity derivatives, weather derivatives, and insurance derivatives. Many new types
of interest rate, foreign exchange, and equity derivative products have been created.
There have been many new ideas in risk management and risk measurement. Capital
investment appraisal now often involves the evaluation of what are known as real
options. The book has kept up with all these developments.

Derivatives markets have come under a great deal of criticism because of their role
in the credit crisis that started in 2007. Derivative products were created from
portfolios of risky mortgages in the United States using a procedure known as
securitization. Many of the products that were created became worthless when house
prices declined. Financial institutions, and investors throughout the world, lost a huge

 1



CHAPTER 1

amount of money and the world was plunged into the worst recession it had
experienced for many generations. Chapter 8, new to this edition, explains how
securitization works and why such big losses occurred. As a result of the credit crisis,
derivatives markets are now more heavily regulated than they used to be. For example,
banks are required to keep more capital for the risks they are taking and to pay more
attention to liquidity.

In this opening chapter, we take a first look at forward, futures, and options
markets and provide an overview of how they are used by hedgers, speculators, and
arbitrageurs. Later chapters will give more details and elaborate on many of the points
made here.

EXCHANGE-TRADED MARKETS

A derivatives exchange is a market where individuals trade standardized contracts that
have been defined by the exchange. Derivatives exchanges have existed for a long time.
The Chicago Board of Trade (CBOT) was established in 1848 to bring farmers and
merchants together. Initially its main task was to standardize the quantities and
qualities of the grains that were traded. Within a few years, the first futures-type
contract was developed. It was known as a to-arrive contract. Speculators soon became
interested in the contract and found trading the contract to be an attractive alternative
to trading the grain itself. A rival futures exchange, the Chicago Mercantile Exchange
(CME), was established in 1919. Now futures exchanges exist all over the world. (See
table at the end of the book.) CME and CBOT have merged to form the CME Group
(www.cmegroup.com), which also includes the New York Mercantile Exchange.

The Chicago Board Options Exchange (CBOE, www.cboe.com) started trading call
option contracts on 16 stocks in 1973. Options had traded prior to 1973, but the CBOE
succeeded in creating an orderly market with well-defined contracts. Put option
contracts started trading on the exchange in 1977. The CBOE now trades options on
over 2,500 stocks and many different stock indices. Like futures, options have proved to
be very popular contracts. Many other exchanges throughout the world now trade
options. (See table at the end of the book.) The underlying assets include foreign
currencies and futures contracts as well as stocks and stock indices.

Electronic Markets
Traditionally derivatives exchanges have used what is known as the open outcry system.
This involves traders physically meeting on the floor of the exchange, shouting, and
using a complicated set of hand signals to indicate the trades they would like to carry
out. Exchanges are increasingly replacing the open outcry system by electronic trading.
This involves traders entering their desired trades at a keyboard and a computer being
used to match buyers and sellers. The open outcry system has its advocates, but, as time
passes, it is becoming less and less used.

Electronic trading has led to a growth in algorithmic trading (also known as black-
box trading, automated trading, high-frequency trading, or robo trading). This
involves the use of computer programs to initiate trades, often without human
intervention.
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On September 15, 2008, Lehman Brothers filed for Chapterjllbankruptcy protec-
tion. This wasthe largest bankruptcy filing in US history aiidits ramificati6ns._were-
felt throughout derivatives markets. Almost until the end, it see‘med1as7thoiig‘h there
was a good chance that Lehman would survive. A number of companies‘(e.g;_,,,the
Korean Development Bank,‘  Barclays, Bank in ‘they.’UK,:_.and_I_Bank tifi.Ai'n;eii_ca)
expressed interest I in ibuyingiiti but none of these qwas 1 able f'ti51 siege -a~ tleal.-1, 1l'\/Iany
people thought that Lehman was “too bigto fail” and that the.US government. would
hav¢.,to.bai1 it out if nolpurchaser couldbe fo.und;;This._proved not to fbethéj case.

- How"did this happen? It was a combination of high leverage, risky investments, and
liquidity problems. Commercial b__anks that take deposits are_"subject to regulations
the "(amount of -capital they jmust keep. -Lehman was an investment bank and

.subjec_t to these-‘regulations. By‘2007, its leverage ratio had increased to 31:1, which
@-means that al 3-4% decline in the value of its assets would wipeiteut itseapital. Dick
Fuld, Lehmanls Chairman and Chief Executive -Ofiicer,:eiicouIraged1»an
deal-making,"risk-takingculture. He is reported to have told his’executives:_ “Every day

a battle. You have to killthe enemy.” The Chief. Risk Officer at _Lehma_n was
competent, but did not have "much influence and was;even¢emQvea.rr¢m the._ex_ecutive

gconmiittee in 2007.‘ T-he -ris_ks1.,tak_enI by Lehman"ineluded:f:‘lerge ,_‘pQsilionJsq‘1.:i_n the
tinstruments created from siibprirne mortgages, which iii_'Cli_iipterj
Lehman funded much ofits operations with short-term dIebt.ifW_hen there_wasia,l’pss of 0
confidence in the company, ‘lenders refused to roll over this funding, forcing it into
b=!\11l§wi>t¢y- I 6 . .-  . . I  . ‘ 1 ~ »  

, Lehinan was very active in the over—the.-counter derivatives m31fl1<;‘e;ts.-(It had'hundreds
of thousands of- transactions‘outstanding with about 8,000
,Lehnia_nfs e_ounterp_artie's _were ;o'f_ten. required .to post _collatc1'a_1.'fa'iid itliisreollateiraighad

1; ,

1 in many c_afses_-been_ used by. Lehman for various purposesrlt @asy_§to see {tlfiat (sorting
out who owes what to whom" in this type of sitiiaitioniis 'a nightI_nare!_ '0 ‘ ‘-1 I‘

. . . \ - ~ .

OVER-THE-COUNTER MARKETS .

Not all trading of derivatives is done on exchanges. The over-the-counter market is an
important alternative to exchanges and, measured in terms of the total volume of
trading, has become much larger than the exchange-traded market. It is a telephone-
and computer-linked network of dealers. Trades are done over the phone and are
usually between two financial institutions or between a financial institution and one of
its clients (typically a corporate treasurer or fund manager). Financial institutions often
act as market makers for the more commonly traded instruments. This means that they
are always prepared to quote both a bid price (a price at which they are prepared to
buy) and an offer price (a price at which they are prepared to sell).

Telephone conversations in the over-the-counter market are usually taped. If there is
a dispute about what was agreed, the tapes are replayed to resolve the issue. Trades in
the over-the-counter market are typically much larger than trades in the exchange-
traded market. A key advantage of the over-the-counter market is that the terms of a
contract do not have to be those specified by an exchange. Market participants are free
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to negotiate any mutually attractive deal. A disadvantage is that there is usually some
credit risk in an over-the-counter trade (i.e., there is a small risk that the contract will
not be honored). As we shall see in the next chapter, exchanges have organized
themselves to eliminate virtually all credit risk.

Lehman Brothers was a very active trader of over-the-counter derivatives. As discussed
in Business Snapshot 1.1, its bankruptcy in 2008 provided a dramatic test for the market.

Market Size
Both the over-the-counter and the exchange-traded market for derivatives are huge.
Although the statistics that are collected for the two markets are not exactly comparable,
it is clear that the over-the-counter market is much larger than the exchange-traded
market. The Bank for International Settlements (www.bis.org) started collecting statis-
tics on the markets in 1998. Figure 1.1 compares (a) the estimated total principal
amounts underlying transactions that were outstanding in the over-the counter markets
between June 1998 and December 2009 and (b) the estimated total value of the assets
underlying exchange-traded contracts during the same period. Using these measures, we
see that, by December 2009, the over-the-counter market had grown to $614.7trillion
and the exchange-traded market had grown to $73.1 trillion.

In interpreting these numbers, we should bear in mind that the principal underlying
an over-the-counter transaction is not the same as its value. An example of an over-the-
counter contract is an agreement to buy 100 million US dollars with British pounds at a
predetermined exchange rate, in 1 year. The total principal amount underlying this
transaction is $100 million. However, the value of the contract might be only $1 million.
The Bank for International Settlements estimates the gross market value of all over-the-
counter contracts outstanding in December 2009 to be about $21.6 tril1ion.1
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Figure 1.1 Size of over-the-counter and exchange-traded derivatives markets.
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' A contract that is worth $1 million to one side and -—$1 million to the other side would be counted as
having a gross market value of $1 million.
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FORWARD CONTRACTS

A relatively simple derivative is a forward contract. It is an agreement to buy or sell an
asset at a certain future time for a certain price. It can be contrasted with a spot
contract, which is an agreement to buy or sell an asset today. A forward contract is
traded in the over-the-counter market——usually between two financial institutions or
between a financial institution and one of its clients.

One of the parties to a forward contract assumes a long position and agrees to buy
the underlying asset on a certain specified future date for a certain specified price. The
other party assumes a short position and agrees to sell the asset on the same date for
the same price.

Forward contracts on foreign exchange are very popular. Most large banks employ
both spot and forward foreign-exchange traders. Spot traders are trading a foreign
currency for almost immediate delivery. Forward traders are trading for delivery at a
future time. Table 1.1 provides the quotes on the exchange rate between the British
pound (GBP) and the US dollar (USD) that might be made by a large international
bank on May 24, 2010. The quote is for the number of USD per GBP. The first row
indicates that the bank is prepared to buy GBP (also known as sterling) in the spot
market (i.e., for virtually immediate delivery) at the rate of $1.4407 per GBP and sell
sterling in the spot market at $1.4411 per GBP. The second, third, and fourth rows
indicate that the bank is prepared to buy sterling in 1, 3, and 6 months at $l.4408,
$14410, and $1.44l6 per GBP, respectively, and to sell sterling in"'1, 3, and 6 months at
$1.4413, $1.4415, and $1.4422 per GBP, respectively. ,

Forward contracts can be used to hedge foreign currency risk. Suppose that, on
May 24, 2010, the treasurer of a US corporation knows that the corporation will pay
£1 million in 6 months (i.e., on November 24, 2010) and wants to hedge against
exchange rate moves. Using the quotes in Table 1.1, the treasurer can agree to buy
£1 million 6 months forward at an exchange rate of 1.4422. The corporation then has a
long forward contract on GBP. It has agreed that on November 24, 2010, it will buy
£1 million from the bank for $l.4422 million. The bank has a short forward contract on
GBP. It has agreed that on November 24, 2010, it will sell £1 million for $1.4422 million.
Both sides have made a binding commitment.

Payoffs from Forward Contracts  
Consider the position of the corporation in the trade we have just described. What are
the possible outcomes? The forward contract obligates the corporation to buy £1 million
---------~--¢~~ ->_ - ~ - - . -' _ - \ \ ,. » - - ..-.c,...-W --. \ ._. _ . , - - j, - . _ » . . .31. 1. 1- »..1 .. .. .- 1 1 - - . ~_, - . . -~ - .- - - - - - - .--

Table 1.1 Spot and forward quotes for the USD/GBP exchange
rate, May 24, 2010 (GBP : British pound; USD : US dollar;
quote is number of USD per GBP).

Spot
1-month forward
3-month forward
6-month forward

Bid
1.4407
1.4408
1.4410
1.4416

Ofler
1.4411
1.4413
1.4415
1 .4422
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Figure 1.2 Payoffs from forward contracts: (a) long position, (b) short position.
Delivery price : K; price of asset at contract maturity : ST.

A Paygff A P21y0ff

O > 0 >
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for $1,442,200. If the spot exchange rate rose to, say, 1.5000, at the end of the 6 months,
the forward contract would be worth $57,800 (= $1,500,000—$1,442,200) to the
corporation. It would enable £1 million to be purchased at an exchange rate of
1.4422 rather than 1.5000. Similarly, if the spot exchange rate fell to 1.3500 at the
end of the 6 months, the forward contract would have a negative value to the
corporation of $92,200 because it would lead to the corporation paying $92,200 more
than the market price for the sterling.

In general, the payoff from a long position in a forward contract on one unit of an
asset is I

sT - K  
where K is the delivery price and ST is the spot price of the asset at maturity of the
contract. This is because the holder of the contract is obligated to buy an asset worth ST
for K. Similarly, the payoff from a short position in a forward contract on one unit of
an asset is

K — ST.

These payoffs can be positive or negative. They are illustrated in Figure 1.2. Because it
costs nothing to enter into a forward contract, the payoff from the contract is also the
trader’s total gain or loss from the contract.

In the example just considered, K : 1.4422 and the corporation has a long contract.
When ST : 1.5000, the payoff is $0.0578 per £1; when ST : 1.3500, it is —$0.0922 per £1.

Forward Prices and Spot Prices
We shall be discussing in some detail the relationship between spot and forward prices
in Chapter 5. For a quick preview of why the two are related, consider a stock that pays
no dividend and is worth $60. You can borrow or lend money for 1 year at 5%. What
should the 1-year forward price of the stock be?
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The answer is $60 grossed up at 5% for 1 year, or $63. If the forward price is more
than this, say $67, you could borrow $60, buy one share of the stock, and sell it forward
for $67. After paying off the loan, you would net a profit of $4 in 1 year. If the forward
price is less than $63, say $58, an investor owning the stock as part of a portfolio would
sell the stock for $60 and enter into a forward contract to buy it back for $58 in 1 year.
The proceeds of investment would be invested at 5% to earn $3. The investor would end
up $5 better off than if the stock were kept in the portfolio for the year.

FUTURES CONTRACTS

Like a forward contract, a futures contract is an agreement between two parties to buy or
sell an asset at a certain time in the future for a certain price. Unlike forward contracts,
futures contracts are normally traded on an exchange. To make trading possible, the
exchange specifies certain standardized features of the contract. As the two parties to the
contract do not necessarily know each other, the exchange also provides a mechanism
that gives the two parties a guarantee that the contract will be honored.

The largest exchanges on which futures contracts are traded are the Chicago Board of
Trade (CBOT) and the Chicago Mercantile Exchange (CME), which have now merged
to form the CME Group. On these and other exchanges throughout the world, a very
wide range of commodities and financial assets form the underlying assets in the various
contracts. The commodities include pork bellies, live cattle, sugar, wool, lumber,
copper, aluminum, gold, and tin. The financial assets include stock indices, currencies,
and Treasury bonds. Futures prices are regularly reported in the financial press. Suppose
that, on September 1, the December futures price of gold is quoted as $1,080. This is the
price, exclusive of commissions, at which traders can agree to buy or sell gold for
December delivery. It is determined in the same way as other prices (i.e., by the laws of
supply and demand). If more traders want to go long than to go short, the price goes up;
if the reverse is true, then the price goes down. I

Further details on issues such as margin requirements, daily settlement procedures,
delivery procedures, bid—offer spreads, and the role of the exchange clearing house are
given in Chapter 2. .

O PT I O N S

Options are traded both on exchanges and in the over-the-counter market. There are
two types of option. A call option gives the holder the right to buy the underlying asset
by a certain date for a certain price. A put option gives the holder the right to sell the
underlying asset by a certain date for a certain price. The price in the contract is known
as the exercise price or strike price; the date in the contract is known as the expiration
date or maturity. American options can be exercised at any time up to the expiration date.
European options can be exercised only on the expiration date itself.2 Most of the options
that are traded on exchanges are American. In the exchange-traded equity option
market, one contract is usually an agreement to buy or sell 100 shares. European

2 Note that the terms American and European do not refer to the location of the option or the exchange.
Some options trading on North American exchanges are European.
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options are generally easier to analyze than American options, and some of the
properties of an American option are frequently deduced from those of its European
counterpart.

It should be emphasized that an option gives the holder the right to do something.
The holder does not have to exercise this right. This is what distinguishes options from
forwards and futures, where the holder is obligated to buy or sell the underlying asset.
Whereas it costs nothing to enter into a forward or futures contract, there is a cost to
acquiring an option.

The largest exchange in the world for trading stock options is the Chicago Board
Options Exchange (CBOE; www.cboe.com). Table 1.2 gives the bid and offer quotes for
some of the call options trading on Google (ticker symbol: GOOG) on June 15, 2010.
Table 1.3 does the same for put options trading on Google on that date. The quotes are
taken from the CBOE website. The Google stock price at the time of the quotes was bid
497.02, offer 497.25. The bid—offer spread on an option is usually greater than that on
the underlying stock and depends on the volume of trading. The option strike prices are
$460, $480, $500, $520, $540, and $560. The maturities are July 2010, September 2010,
and December 2010. The July options expire on July 17, 2010, the September options
on September 18, 2010, and the December options on December 18, 2010.

The tables illustrate a number of properties of options. The price of a call option
decreases as the strike price increases, while the price of a put option increases as the
strike price increases. Both types of option tend to become more valuable as their time to
maturity increases. These properties of options will be discussed further in Chapter 10.

Suppose an investor instructs a broker to buy one December call option contract on
Google with a strike price of $520. The broker will relay these instructions to a trader at
the CBOE and the deal will be done. The (offer) price is $32.00, as indicated in Table 1.2.
This is the price for an option to buy one share. In the United States, an option contract
is a contract to buy or sell 100 shares. Therefore, the investor must arrange for $3,200 to
be remitted to the exchange through the broker. The exchange will then arrange for this
amount to be passed on to the party on the other side of the transaction.

In our example, the investor has obtained at a cost of $3,200 the right tobuy 100
Google shares for $520 each. If the price of Google does not rise above $520 by
December 18, 2010, the option is not exercised and the investor loses $3,200.3 But if
r........,..........,.,...........................'...............w,.............._._........-..................,............._...,,.,:.‘......,,........_........,.....,_,..,._..._,.,..:..,_,. ..\.__........._'..,,.,,,.,. .A“. . __ ,.. _ . , ,__', , ,__, . __, ._,_ , , _ _ _____ , _. __ _,__|_ _,,_ . ‘ __ . _- _ ,._’J__— ...’. , In,‘

Table 1.2 Prices of call options on Google, June 15, 2010; stock price: bid $497.07;
offer $497.25 (Source: CBOE). '

Strike price
($) Bid Ofler Bid OfleI’

July 2010 September 2010 December 2010
Bid Ofler

460 43.30
480 28.60
500 17.00
520 9.00
540 4.20
560 i 1.75

3

44.00
29.00
17.40
9.30
4.40
2.10

51.90
39.70
28.30
19.10
12.70
7.40

The calculations here ignore commissions paid by the investor

53.9‘
40.41
29.31
19.91
13.01
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64.80
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41.30
32.00
24.00
17.70
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Table 1.3 Prices of put options on Google, June 15, 2010; stock price: bid $497.07
offer $497.25 (Source: CBOE).

__ ‘.

Strike price July 2010 September 2010 December 2010
1 rs) Bid Ofler Bid Ofler Bid Ofler

460 6.30
480 11.30
500 19.50
520 31.60
540 46.30
560 64.30

6.60
11.70
20.00
33.90
47.20
66.70

15.70
22.20
30.90
41.80
54.90
70.00

16.20
22.70
32.60
43.60
56.10
71.30

26.00
33.30
42.20
52.80
64.90
78.60

27.30
35.00
43.00
54.50
66.20
80.00
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Google does well and the option is exercised when the bid price for the stock is $600,
the investor is able to buy 100 shares at $520 and immediately sell them for $600 for a
profit of $8,000, or $4,800 when the initial cost of the options is taken into account.4

An alternative trade for the investor would be to sell one September put option
contract with a strike price of $480. This would lead to an immediate cash inflow of
100 >< 22.20 = $2,220. If the Google stock price stays above $480, the option is not
exercised and the investor makes a profit of this amount. However, if stock price falls and
the option is exercised when the stock price is $420, then there is a loss. The investor must

_.-‘.

buy 100 shares at $480 when they are worth only $420. This leads to a loss of $6,000, or
$3,780 when the initial amount received for the option contract is taken into account.

The stock options trading on the CBOE are American. If we assume for simplicity
that they are European, so that they can be exercised only at maturity, the investor’s
profit as a function of the final stock price for the two trades we have considered is
shown in Figure 1.3. 8

Further details about the operation of options markets and how prices such as those
in Tables 1.2 and 1.3 are determined by traders are given in later chapters. At this stage
we note that there are four types of participants in options markets:

1. Buyers of calls A c
2. Sellers of calls
3. Buyers of puts
4. Sellers of puts.

Buyers are referred to as having long positions; sellers are referred to as having short
positions. Selling an option is also known as writing the option.

TYPES OF TRADERS

Derivatives markets have been outstandingly successful. The main reason is that they
have attracted many different types of traders and have a great deal of liquidity. When
 -iii

4 The calculations here ignore the effect of discounting. Theoretically, the $8,000 should be discounted from
the time of exercise to June 15, 2010, when calculating the profit.
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Figure 1 .3 Net profit per share from (a) purchasing a contract consisting of 100 Google
December call options with a strike price of $520 and (b) selling a contract consisting of
100 Google September put options with a strike price of $480.
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an investor wants to take one side of a contract, there is usually no problem in finding
someone who is prepared to take the other side.

Three broad categories of traders can be identified: hedgers, speculators, and
arbitrageurs. Hedgers use derivatives to reduce the risk that they face from potential
future movements in a market variable. Speculators use them to bet on the future
direction of a market variable. Arbitrageurs take offsetting positions in two or more
instruments to lock in a profit. As described in Business Snapshot 1.2, hedge funds have
become big users of derivatives for all three purposes. I

I In the next few sections, we will consider the activities of each type of trader in more
detail.

HEDGERS ,

In this section we illustrate how hedgers can reduce their risks with forward contracts
and options.  

Hedging Using Forward Contracts
Suppose that it is May 24, 2010, and ImportCo, a company based in the United States,
knows that it will have to pay £10 million on August 24, 2010, for goods it has
purchased from a British supplier. The USD—GBP exchange rate quotes made by a
financial institution are shown in Table 1.1. ImportCo could hedge its foreign exchange
risk by buying pounds (GBP) from the financial institution in the 3-month forward
market at 1.4415. This would have the effect of fixing the price to be paid to the British
exporter at $14,415,000. -

Consider next another US company, which we will refer to as ExportCo, that is
exporting goods to the United Kingdom and, on May 24, 2010, knows that it will receive
£30 million 3 months later. ExportCo can hedge its foreign exchange risk by selling
£30 million in the 3-month forward market at an exchange rate of 1.4410. This would
have the effect of locking in the US dollars to be realized for the sterling at $43,230,000.

Note that a company mightdo better if it chooses not to hedge than if it chooses to
hedge. Alternatively, it might do worse. Consider I1nportCo. If the exchange rate is

V.
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Business Snapshot 1.2 Hedge Funds

Hedge funds have become major users of derivatives for hedging, speculation, and
arbitrage. They are similar to mutual funds in that they invest funds on behalf of
clients. However, they accept funds only from financially sophisticated individuals
and do not publicly offer their securities. Mutual funds are subject to regulations
requiring that the shares be redeemable at any time, that investment policies be
disclosed, that the use of leverage be limited, that no short positions be taken, and
so on. Hedge funds are relatively free of these regulations. This gives them a great deal

20f freedom to develop sophisticated, unconventional, and proprietary investments
strategies. The fees charged by hedge fund managers are dependent on the fund’s
performance and are relatively high——typically 1 to 2% of the amount invested plus
20% of the profits. Hedge funds have grown in popularity, with about $1 trillion being
invested in them throughout the world. “Funds of funds” have been set up to invest in a
portfolio of hedge funds. L p _

l The investment strategy followed by a hedge fund manager often involves using
| derivatives to set up a speculative or arbitrage position. Once the strategy has been
I defined, the hedge fund manager must:

- 1. Evaluate the risks to which the fund is exposed
I 2. Decide which risks are acceptable and which will be hedged .

3. Devise strategies (usually involving derivatives) to hedge the unacceptable risks.
I Here are some examples of the labels used for hedge funds, together with the trading
I strategies followed: W

' L0ng/Short Equities: Purchase securities considered to be undervalued and short those
l considered to be overvalued in such a way that the exposure to the overall direction of

the market is small. - I .
l Convertible Arbitrage: Take a long position in a convertible bond combined with an
I actively managed short position in the underlying equity. I
,1 Distressed S€CuI‘iii€SI Buy securities issued by companies in or close to bankruptcy.
Emerging Markets: Invest in debt and equity of companies in developing or emerging
countries andinthe debt of the countries themselves. '
Global Macro: Carry out trades that reflect anticipated global macroeconomic trends.

.2; Merger Arbitrage: Trade after a merger or acquisition is announced so that a profit is
made if the announced deal takes place.

1.3000 on August 24 and the company has not hedged, the £10 million that it has to pay
will cost $13,000,000, which is less than $14,415,000. On the -other hand, if the exchange
rate is 1.5000, the £10 million will cost $15,000,000~—and the company will wish that it
had hedged! The position of ExportCo if it does not hedge is the reverse. If the exchange
rate in August proves to be less than 1.4410, the company will wish that it had hedged; if
the rate is greater than 1.4410, it will be pleased that it has not done so.

This example illustrates a key aspect of hedging. The purpose of hedging is to reduce
risk. There is no guarantee that the outcome with hedging will be better than the
outcome without hedging.
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Hedging Using Options
Options can also be used for hedging. Consider an investor who in May of a particular
year owns 1,000 Microsoft shares. The share price is $28 per share. The investor is
concerned about a possible share price decline in the next 2 months and wants
protection. The investor could buy ten July put option contracts on Microsoft on the
Chicago Board Options Exchange with a strike price of $27.50. This would give the
investor the right to sell a total of 1,000 shares for a price of $27.50. If the quoted
option price is $1, then each option contract would cost 100 >< $1 = $100 and the total
cost of the hedging strategy would be 10 >< $100 = $1,000.

The strategy costs $1,000 but guarantees that the shares can be sold for at least $27.50
per share during the life of the option. If the market price of Microsoft falls below $27.50,
the options will be exercised, so that $27,500 is realized for the entire holding. When the
cost of the options is taken into account, the amount realized is $26,500. If the market
price stays above $27.50, the options are not exercised and expire worthless. However, in
this case the value of the holding is always above $27,500 (or above $26,500 when the cost
of the options is taken into account). Figure 1.4 shows the net value of the portfolio (after
taking the cost of the options into account) as a function of Microsoft’s stock price in
2 months. The dotted line shows the value of the portfolio assuming no hedging.

A Comparison
There is a fundamental difference between the use of forward contracts and options
for hedging. Forward contracts are designed to neutralize risk by fixing the price that
the hedger will pay or receive for the underlying asset. Option contracts, by contrast,
provide insurance. They offer a way for investors to protect themselves against adverse
price movements in the future while still allowing them to benefit from favorable price
movements. Unlike forwards, options involve the payment of an up-front fee.
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Figure 1.4 Value of Microsoft holding in 2 months with and without hedging.
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SPECULATORS

We now move on to consider how futures and options markets can be used by
speculators. Whereas hedgers want to avoid exposure to adverse movements in the price
of an asset, speculators wish to take a position in the market. Either they are betting that
the price of the asset will go up or they are betting that it will go down.

Speculation Using Futures  
Consider a US speculator who in February thinks that the British pound will strengthen
relative to the US dollar over the next 2 months and is prepared to back that hunch to
the tune of £250,000. One thing the speculator can do is purchase £250,000 in the spot
market in the hope that the sterling can be sold later at a higher price. (The sterling once
purchased would be kept in an interest-bearing account.) Another possibility is to take
a long position in four CME April futures contracts on sterling. (Each futures contract
is for the purchase of £62,500.) Table 1.4 summarizes the two alternatives on the
assumption that the current exchange rate is 1.4470 dollars per pound and the April
futures price is 1.4410 dollars per pound. If the exchange rate turns out to be 1.5000
dollars per pound in April, the futures contract alternative enables the speculator to
realize a profit of (1.5000 — 1.4410) >< 250,000 = $14,750. The spot market alternative
leads to 250,000 units of an asset being purchased for $1.4470 in February and sold for
$1.5000 in April, so that a profit of (1.5000 — 1.4470) >< 250,000.: $13,250 is made. If
the exchange rate falls to 1.4000 dollars per pound, the futures contract gives rise to a
(1.4410 — 1.4000) >< 250,000 = $10,250 loss, whereas the spot market alternative gives
rise to a loss of (1.4470 — 1.4000) x 250,000 = $11,750. The spot market alternative
appears to give rise to slightly worse outcomes for both scenarios. But this is because
the calculations do not reflect the interest that is earned or paid.

What then is the difference between the two alternatives? The first alternative; of
buying sterling requires an up-front investment of $361,750 (= 250,000 x1.4470).
In contrast, the second alternative requires only a small amount of cash to be
deposited by the speculator in what is termed a “margin account”. (The operation
of margin accounts is explained in Chapter 2.) In Table 1.4, the initial margin
requirement is assumed to be $5,000 per contract, or $20,000 in total. The futures
market allows the speculator to obtain leverage. With a relatively small initial outlay,
the investor is able to take a large speculative position.
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Table 1.4 Speculation using spot and futures contracts. One futures contract
is on £62,500. Initial margin on four futures contracts = $20,000.

Possible trades

Buy £250,000 Buy 4 futures contracts
Spot price :: 1.4470 Futures price = 1.4410

Investment . $361,750 $20,000
Profit if April spot : 1.5000 $13,250 $14,750
Profit if April spot : 1.4000 —$l1,750 —$10,250
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Speculation Using Options
Options can also be used for speculation. Suppose that it is October and a speculator
considers that a stock is likely to increase in value over the next 2 months. The stock
price is currently $20, and a 2-month call option with a $22.50 strike price is currently
selling for $1. Table 1.5 illustrates two possible alternatives, assuming that the spec-
ulator is willing to invest $2,000. One alternative is to purchase 100 shares; the other
involves the purchase of 2,000 call options (i.e., 20 call option contracts). Suppose that
the speculator’s hunchis correct and the price of the stock rises to $27 by December.
The first alternative of buying the stock yields a profit of

100 >< ($27 - $20) = $700
However, the second alternative is far more profitable. A call option on the stock with a
strike price of $22.50 gives a payoff of $4.50, because it enables something worth $27 to
be bought for $22.50. The total payoff from the 2,000 options that are purchased under
the second alternative is

2,000 >< $4.50 = $9,000

Subtracting the original cost of the options yields a net profit of

$9,000 — $2,000 = $7,000

The options strategy is, therefore, 10 times more profitable than directly buying the stock.
Options also give rise to a greater potential loss. Suppose the stock price falls to $15

by December. The first alternative of buying stock yields a loss of

 100><($20-$15)=$500
Because the call options expire without being exercised, the options strategy would lead
to a loss of $2,000—the original amount paid for the options. Figure 1.5 shows the profit
or loss from the two strategies as a function of the stock price in 2 months.

Options like futures provide a form of leverage. For a given investment, the use of
options magnifies the financial consequences. Good outcomes become very good, while
bad outcomes result in the whole initial investment being lost.

A Comparison
Futures and options are similar instruments for speculators in that they both provide a
way in which a type of leverage can be obtained. However, there is an important
difference between the two. When a speculator uses futures, the potential loss as well as
._ ~ -~ - ‘ V .2 ...--‘_ - -,- .' . ,.- , _ - - 1 _ --h .. - - -- V '_; -- v -.- .. ‘ ._ .~ .~,.-W.“-1
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Table 1.5 Comparison of profits from two alternative strategies
for using $2,000 to speculate on a stock worth $20 in October.

December stock price

Investor ’s strategy $15 $27

Buy 100 shares —$500 $700
Buy 2,000 call options —$2,000 $7,000
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Figure 1.5 Profit or loss from two alternative strategies for speculating on a stock
currently worth $20.
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6000 ~-

4000 — - - - Buy shares
—— Buy options

2000 —
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the potential gain is very large. When options are used, no matter how bad things get,
the speculator’s loss is limited to the amount paid for the options.

ARBITRAGEURS  
Arbitrageurs are a third important group of participants in futures, forward, and
options markets. Arbitrage involves locking in a riskless profit by simultaneously
entering into transactions in two or more markets. In later chapters we will seehow
arbitrage is sometimes possible when the futures price of an asset gets out of line with
its spot price. We will also examine how arbitrage can be used in options markets. This
section illustrates the concept of arbitrage with a very simple example.  

Let us consider a stock that is traded on both the New York Stock Exchange
(www.nyse.com) and the London Stock Exchange (www.stockex.co.uk). Suppose
that the stock price is $140 in New York and £100 in London at a time when the
exchange rate is $1.4300 per pound. An arbitrageur could simultaneously buy
100 shares of the stock in New York and sell them in London to obtain a risk-free
profit of

100 >< [($1.43 >< 100) — $140]

or $300 in the absence of transactions costs. Transactions costs would probably
eliminate the profit for a small investor. However, a large investment bank faces very
low transactions costs in both the stock market and the foreign exchange market. It
would find the arbitrage opportunity very attractive and would try to take as much
advantage of it as possible.

Arbitrage opportunities such as the one just described cannot last for long. As
arbitrageurs buy the stock in New York, the forces of supply and demand will cause
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the dollar price to rise. Similarly, as they sell the stock in London, the sterling price will
be driven down. Very quickly the two prices will become equivalent at the current
exchange rate. Indeed, the existence of profit-hungry arbitrageurs makes it unlikely that
a major disparity between the sterling price and the dollar price could ever exist in the
first place. Generalizing from this example, we can say that the very existence of
arbitrageurs means that in practice only very small arbitrage opportunities are observed
in the prices that are quoted in most financial markets. In this book most of the
arguments concerning futures prices, forward prices, and the values of option contracts
will be based on the assumption that no arbitrage opportunities exist.

DANGERS

Derivatives are very versatile instruments. As we have seen, they can be used for
hedging, for speculation, and for arbitrage. It is this very versatility that can cause
problems. Sometimes traders who have a mandate to hedge risks or follow an
arbitrage strategy become (consciously or unconsciously) speculators. The results
can be disastrous. One example of this is provided by the activities of Jereme Kerviel
at Societe General (see Business Snapshot 1.3).

To avoid the sort of problems Societe General encountered, it is very important for
both financial and nonfinancial corporations to set up controls to ensure that deriva-
tives are being used for their intended purpose. Risk limits should be set and the
activities of traders should be monitored daily to ensure that these risk limits are
adhered to.  

Unfortunately, even when traders follow the risk limits that have been specified, big
mistakes can happen. Some of the activities of traders in the derivatives market during
the period leading up to the start of the credit crisis in July 2007 proved to be much
riskier than they were thought to be by the financial institutions they worked for. As
will be discussed in Chapter 8, house prices in the United States had been rising fast.
Most people thought that the increases would continue—or, at worst, that house prices
would simply level off. Very few were prepared for the steep decline that actually
happened. Furthermore, very few were prepared for the high correlation between
mortgage default rates in different parts of the country. Some risk managers did express
reservations about the exposures of the companies for which they worked to the US real
estate market. But, when times are good (or appear to be good), there is an unfortunate
tendency to ignore risk managers and this is what happened at many financial
institutions during the 2006—2007 period. The key lesson from the credit crisis is that
financial institutions should always be dispassionately asking “What can go wrong?”,
and they should follow that up with the question “If it does go wrong, how much will
we lose?”

SUMMARY

One of the exciting developments in finance over the last 30 years has been the growth
of derivatives markets. In many situations, both hedgers and speculators find it more
attractive to trade a derivative on an asset than to trade the asset itself. Some derivatives
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Business Snapshot 1.3 SocGen’s big loss in 2008

Derivatives are very versatile instruments. They can be used forhedging, speculation, I
and arbitrage. One of the risks faced by a company that trades derivatives is that an 1
employee who has a mandate to hedge or to look for arbitrage opportunities may
become a speculator. I

J_er6me Kerviel joined Societe General (SocGen) in 2000 to work in the compliance
area. In 2005, he was promoted and became a junior trader in the bank’s Delta One
products team. He traded equity indices such as the German. DAX index, the French
CAC 40, and the Euro Stoxx 50. His job was to look for arbitrage opportunities.
These might arise if a futures contract on an equity index was trading for a different
price on two different exchanges. They might also arise if equity index futures prices
were not consistent with the prices of the shares constituting the index, (This type of
arbitrage is discussed in Chapter 5.)  

Kerviel used his knowledge of the bank’s proceduresto speculate while giving the
appearance of arbitraging. He took big positions in equity indices and created
fictitious trades to make it appear that he was hedged. In reality, he had large bets
on the direction in which theindices would move. The size of his unhedged position
grew over time to tens of billions of euros. . . I

s In January 2008, his unauthorized trading was uncovered by SocGen. Over a three-
day period, the bank unwound his position for a loss of 4.9-billio_n: euros. This was at
thetime, the biggest loss created by fraudulent activity in the history of finance. (Later
in the year, a much bigger loss from Bernard Madotf’s Ponzi scheme came to light.)

Rogue trader losses were not unknown at banks prior to 2008. For example, in the
s 1990s, Nick Leeson, who worked at Barings Bank, had a mandate similar to that of
.Jer6me Kerviel. His job was to arbitrage between Nikkei -225 futures quotes in
.Singapore_ and Osaka. Instead he found away to make big bets, on the direction of
the Nikkei 225 using futures and options, losing $1 billion and destroying the 20,0-year
old bank in the process. In 2002, it was found that John Rusnakat Allied Irish Bank
had lost $700 million fromunauthorized foreign exchange trading. The lessons from
these losses are that it is important to define unambiguous risk“ limits for traders and
then to monitor what they do very carefully to make sure that the limits are adhered to.

are traded on exchanges; others are traded by financial institutions, fund managers, and
corporations in the over-the-counter market, or added to new issues of debt and equity
securities. Much of this book is concerned with the valuation of derivatives. The aim is
to present a unifying framework within which all derivatives——not just options or
futures—can be valued.

In this chapter we have taken a first look at forward, futures, and options contracts.
A forward or futures contract involves an obligation to buy or sell an asset at a certain
time in the future for a certain price. There are two types of options: calls and puts.
A call option gives the holder the right to buy an asset by a certain date for a certain
price. A put option gives the holder the right to sell an asset by a certain date for a
certain price. Forwards, futures, and options trade on a wide range of diflerent under-
lying assets.

Derivatives have been very successful innovations in capital markets. Three main
types of traders can be identified: hedgers, speculators, and arbitrageurs. Hedgers are in
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the position where they face risk associated with the price of an asset. They use
derivatives to reduce or eliminate this risk. Speculators wish to bet on future movements
in the price of an asset. They use derivatives to get extra leverage. Arbitrageurs are in
business to take advantage of a discrepancy between prices in two different markets. If,
for example, they see the futures price of an asset getting out of line with the cash price,
they will take offsetting positions in the two markets to lock in a profit.
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Practice Questions (Answers in Solutions Manual)

What is the difference between a long forward position and a short forward position?
Explain carefully the difference between hedging, speculation, and arbitrage.
What is the difference between entering into a long forward contract when the forward
price is $50 and taking a long position in a call option with a strike price of $50?
Explain carefully the difference between selling a call option and buying a put option.
An investor enters into a short forward contract to sell 100,000 British pounds for US
dollars at an exchange rate of 1.4000 US dollars per pound. How muchdoes the
investor gain or lose if the exchange rate at the end of the contract is (a) 1.3900 and
(b) 1.4200? 1
A trader enters into a short cotton futures contract when the futures price is 50 cents per
pound. The contract is for the delivery of 50,000 pounds. How much does the trader
gain or lose if the cotton price at the end of the contract is (a) 48.20 cents per pound
and (b) 51.30 cents per pound?
Suppose that you write a put contract with a strike price of $40 and an expiration date
in 3 months. The current stock price is $41 and the contract is on 100 shares. What have
you committed yourself to? How much could you gain or lose?
What is the difference between the over-the-counter market and the exchange-traded
market? What are the bid and offer quotes of a market maker in the over-the-counter
market?
You would like to speculate on a rise in the price of a certain stock. The current stock
price is $29 and a 3-month call with a strike price of $30 costs $2.90. You have $5,800 to
invest. Identify two alternative investment strategies, one in the stock and the other in
an option on the stock. What are the potential gains and losses from each?
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1.10. Suppose that you own 5,000 shares worth $25 each. How can put options be used to
provide you with insurance against a decline in the value of your holding over the next
4 months?

1.11. When first issued, a stock provides funds for a company. Is the same true of a stock
option? Discuss.

1.12. Explain why a futures contract can be used for either speculation or hedging.
1.13. Suppose that a March call option to buy a share for $50 costs $2.50 and is held until

March. Under what circumstances will the holder of the option make a profit? Under what
circumstances will the option be exercised? Draw a diagram illustrating how the profit
from a long position in the option depends on the stock price at maturity of the option.

1.14. Suppose that a June put option to sell a share for $60 costs $4 and is held until June.
Under what circumstances will the seller of the option (i.e., the party with the short
position) make a profit? Under what circumstances will the option be exercised? Draw a
diagram illustrating how the profit from a short position in the option depends on the
stock price at maturity of the option.

1.15. It is May and a trader writes a September call option with a strike price of $20. The stock
price is $18 and the option price is $2. Describe the trader’s cash flows if the option is held
until September and the stock price is $25 at that time.

1.16. A trader writes a December put option with a strike price of $30. The price of the option
is $4. Under what circumstances does the trader make a gain?

1.17. A company knows that it is due to receive a certain amount of a foreign currency in
4 months. What type of option contract is appropriate for hedging?

1.18. A US company expects to have to pay 1 million Canadian dollars in 6 months. Explain
how the exchange rate risk can be hedged using (a) a forward contract and (b) an option.

1.19. A trader enters into a short forward contract on 100 million yen. The forward exchange
rate is $0.0080 per yen. How much does the trader gain or lose if the exchange rate at the
end of the contract is (a) $0.0074 per yen and (b) $0.0091 per yen?

1.20. The Chicago Board of Trade offers a futures contract on long-term Treasury bonds.
Characterize the traders likely to use this contract.

1.21. “Options and futures are zero-sum games.” What do you think is meant by this?
1.22. Describe the profit from the following portfolio: a long forward contract on an asset and a

long European put option on the asset with the same maturity as the forward contract and
a strike price that is equal to the forward price of the asset at the time the portfolio is set up.

1.23. In the 1980s, Bankers Trust developed index currency option notes (ICONS). These are
bonds in which the amount received by the holder at maturity varies with a foreign
exchange rate. One example was its trade with the Long Term Credit Bank of Japan. The
ICON specified that if the yen—US dollar exchange rate, ST, is greater than 169 yen per
dollar at maturity (in 1995), the holder of the bond receives $1,000. If it is less than 169 yen
per dollar, the amount received by the holder of the bond is

1
1,000 — max[0, 1,000 — 1)]. ST

When the exchange rate is below 84.5, nothing is received by the holder at maturity. Show
that this ICON is a combination of a regular bond and two options.
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On July 1, 2011, a company enters into a forward contract to buy 10 million Japanese yen
on January 1, 2012. On September 1, 2011, it enters into a forward contract to sell
10 million Japanese yen on January 1, 2012. Describe the payoff from this strategy.
Suppose that USD/sterling spot and forward exchange rates are as follows:

Spot 1.4580
90-day forward 1.4556
180-day forward 1.4518

What opportunities are open to an arbitrageur in the following situations? '
(a) A 180-day European call option to buy £1 for $1.42 costs 2 cents.
(b) A 90-day European put option to sell £1 for $1.49 costs 2 cents.

Further Questions

1.26

1.27

1.28

1.29

1.30

1.31

1.32

Trader A enters into a forward contract to buy gold for $1,000 an ounce in one year.
Trader B buys a call option to buy gold for $1,000 an ounce in one year. The cost of the
option is $100 an ounce. What is the diflerence between the positions of the traders? Show
the profit per ounce as a function of the price of gold in one year for the two traders.
In March, a US investor instructs a broker to sell one July put option contract on a stock.
The stock price is $42 and the strike price is $40. The option price is $3. Explain what the
investor has agreed to. Under what circumstances will the trade prove to be profitable?
What are the risks?
A US company knows it will have to pay 3 million euros in three months. The current
exchange rate is 1.4500 dollars per euro. Discuss how forward and options contracts can
be used by the company to hedge its exposure.
A stock price is $29. An investor buys one call option contract on the stock with a strike
price of $30 and sells a call option contract on the stock with a strike price of $32.50. The
market prices of the options are $2.75 and $1.50, respectively. The options have the same
maturity date. Describe the investor’s position.
The price of gold is currently $1,000 per ounce. The forward price for delivery in 1 year is
$1,200. An arbitrageur can borrow money at 10% per annum. What should the arbi-
trageur do? Assume that the cost of storing gold is zero and that gold provides no income.
The current price of a stock is $94, and 3-month European call options with a strike price
of $95 currently sell for $4.70. An investor who feels that the price of the stock will
increase is trying to decide between buying 100 shares and buying 2,000 call options
(: 20 contracts). Both strategies involve an investment of $9,400. What advice would you
give? How high does the stock price have to rise for the option strategy to be more
profitable? I
On July 15, 2010, an investor owns 100 Google shares. As indicated in Table 1.3, the
share price is about $497 and a December put option with a strike price of $460 costs
$27.30. The investor is comparing two alternatives to limit downside risk. The first
involves buying one December put option contract with a strike price of $460. The
second involves instructing a broker to sell the 100 shares as soon as Google’s price
reaches $460. Discuss the advantages and disadvantages of the two strategies.
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1.33. A bond issued by Standard Oil some time ago worked as follows. The holder received no
interest. At the bond’s maturity the company promised to pay $1,000 plus an additional
amount based on the price of oil at that time. The additional amount was equal to the
product of 170 and the excess (if any) of the price of a barrel of oil at maturity over $25.
The maximum additional amount paid was $2,550 (which corresponds to a price of $40
per barrel). Show that the bond is a combination of a regular bond, a long position in call
options on oil with a strike price of $25, and a short position in call options on oil with a
strike price of $40.

1.34. Suppose that in the situation of Table 1.1 a corporate treasurer said: “I will have
£1 million to sell in 6 months. If the exchange rate is less than 1.41, I want you to give
me 1.41. If it is greater than 1.47, I will accept 1.47. If the exchange rate is between 1.41
and 1.47, I will sell the sterling for the exchange rate.” How could you use options to
satisfy the treasurer?

1.35. Describe how foreign currency options can be used for hedging in the situation considered
in Section 1.7 so that (a) ImportCo is guaranteed that its exchange rate will be less than
1.4600, and (b) ExportCo is guaranteed that its exchange rate will be at least 1.4200. Use
DerivaGem to calculate the cost of setting up the hedge in each case assuming that the
exchange rate volatility is 12%, interest rates in the United States are 5%, and interest
rates in Britain are 5.7%. Assume that the current exchange rate is the average of the bid
and offer in Table 1.1.

1.36. A trader buys a European call option and sells a European put option. The options have
the same underlying asset, strike price, and maturity. Describe “the trader’s position.
Under what circumstances does the price of the call equal the price of the put?



,_-.'£'-It

ab‘--T ‘.1 ‘k~!

..']=;3TL PW’ '-
A ., <..-_&§_;7‘.h-

1-:

C F:
15;“

.' .

..~14};2-. 1.\__;'":_} '15~ -" 1'11
,u

 R Mechanics of
Futures Markets

2.1

22

In Chapter 1 we explained that both futures and forward contracts are agreements to
buy or sell an asset at a future time for a certain price. Futures contracts are traded on
an organized exchange, and the contract terms are standardized by that exchange. By
contrast, forward contracts are private agreements between two financial institutions or
between a financial institution and one of its clients.

This chapter covers the details of how futures markets work. We examine issues such as
the specification of contracts, the operation of mar gin accounts, the organization of
exchanges, the regulation ofmarkets, the way in which quotes are made, and the treatment
of futures transactions for accounting and tax purposes. We compare futures contracts
with forward contracts and explain the difference between the payofls realized from them.

BACKGROUND
As we saw in Chapter 1, futures contracts are now traded actively all over the world.
The Chicago Board of Trade, the Chicago Mercantile Exchange, and the New York
Mercantile Exchange have merged to form the CME Group (www.cmegroup.com).
Other large exchanges include NYSE Euronext (www.euronext.com), Eurex
(Www.eurexcha11ge.com), BM&F BOVESPA (www.bmfbovespa.com.br), and the
Tokyo International Financial Futures Exchange (www.tfx.co.jp). A table at the end
of this book provides a more complete list of exchanges.

We examine how a futures contract comes into existence by considering the corn
futures contract traded by the CME Group. On March 5 a trader in New York might
call a broker with instructions to buy 5,000 bushels of corn for delivery in July of the
same year. The broker would immediately issue instructions to a trader to buy (i.e., take
a long position in) one July corn contract. (Each corn contract on CBOT is for the
delivery of exactly 5,000 bushels.) At about the same time, another trader in Kansas
might instruct a broker to sell 5,000 bushels of corn for July delivery. This broker would
then issue instructions to sell (i.e., take a short position in) one corn contract. A price
would be determined and the deal would be done. Under the traditional open outcry
system, floor traders representing each party would physically meet to determine the
price. With electronic trading,a computer would match the traders.
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Business Snapshot 2.1 The Unanticipated Delivery of a Futures Contract

This story (which may well be apocryphal) was told to the author of this book by a
senior executive of a financial institution. It concerns a new employee of the financial
institution who had not previously worked in the financial sector. One of the clients
of the financial institution regularly entered into a long futures contract on live cattle
for hedgingpurposes and issued instructions to close out the position on the last day
of trading. (Live cattle futures contracts are traded by the CME Group and €?tC-lli
contract is on 40,000 pounds of cattle.) The new employee was given responsibility?

-if for handling the account. s l
_ When the time came to close out a contract the employee noted that the client was

long one contract and instructed a trader at the exchange to buy (not sell) one
contract. The result of this mistake was that the financial institution ended up with a
long position in two live cattle futures contracts. By the time the mistake was spotted
trading in the contract had ceased. , ' I

Thefinancial institution (not the client) wast responsible for the mistake. As a
result, it started to look into the details of the delivery arrangements for live cattle
futures contracts——-something it had never done before. Under the terms of the
contract, cattle could be delivered by the party with the short position to a number
of different locations in the United States during the delivery month. Becauseiitwas
long, the financial institution could do nothing but wait for at party with a short
position to issue a notice of intention to deliver to the exchangeand for the exchange
to assign that notice to the financial institution. .

It eventually received a notice from the exchange and found that it would receive
live cattle at a location 2,000 miles away the following Tuesday. The new employee
was sent to the location to handle things. It turned out that the location had a cattle
auction every Tuesday. The party with the short position that was making delivery
bought cattle at the auction and then immediately delivered them. Unfortunately the
cattle could not be resold until the next cattle auction the following Tuesday. The
employee was therefore faced with the problem of making arrangements for thecattle

. to be housed and fed for a week. This was a greatstart to a first job in thefinancial
sector! s ' ' ‘

The trader in New York who agreed to buy has a long futures position in one
contract; the trader in Kansas who agreed to sell has a short futures position in one
contract. The price agreed to is the current futures price for July corn, say 300 cents
per bushel. This price, like any other price, is determined by the laws of supply and
demand. If, at a particular time, more traders wish to sell rather than buy July corn,
the price will go down. New buyers then enter the market so that a balance between
buyers and sellers is maintained. If more traders wish to "buy rather than sell July
corn, the price goes up. New sellers then enter the market and a balance between
buyers and sellers is maintained.

Closing Out Positions
The vast majority of futures contracts do not lead to delivery. The reason is that most
traders choose to close out their positions prior to the delivery period specified in the
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contract. Closing out a position means entering into the opposite trade to the original
one. For example, the New York investor who bought a July corn futures contract on
March 5 can close out the position by selling (i.e., shorting) one July corn futures
contract on, say, April 20. The Kansas investor who sold (i.e., shorted) a July contract
on March 5 can close out the position by buying one July contract on, say, May 25. In
each case, the investor’s total gain or loss is determined by the change in the futures
price between March 5 and the day when the contract is closed out.

Delivery is so unusual that traders sometimes forget how the delivery process works
(see Business Snapshot.2.l). Nevertheless we will spend part of this chapter reviewing
the delivery arrangements in futures contracts. This is because it is the possibility of
final delivery that ties the futures price to the spot price.1

SPECIFICATION OF A FUTURES CONTRACT

When developing a new contract, the exchange must specify in some detail the exact
nature of the agreement between the two parties. In particular, it must specify the asset,
the contract size (exactly how much of the asset will be delivered under one contract),
where delivery will be made, and when delivery will be made.

Sometimes alternatives are specified for the grade of the asset that will be delivered or
for the delivery locations. As a general rule, it is the party with the short position (the
party that has agreed to sell the asset) that chooses what will happen when alternatives
are specified by the exchange. When the party with the short position is ready to
deliver, it files a notice of intention to deliver with the exchange. This notice indicates
selections it has made with respect to the grade of asset that will be delivered and the
delivery location.

The Asset I
When the asset is a commodity, there may be quite a variation in the quality of what is
available in the marketplace. When the asset is specified, it is therefore important that the
exchange stipulate the grade or grades of the commodity that are acceptable. The
IntercontinentalExchange (ICE) has specified the asset in its orange juice futures
contract as frozen concentrates that are US Grade A with Brix value of not less than
62.5 degrees.

For some commodities a range of grades can be delivered, but the price received
depends on the grade chosen. For example, in the CME Group’s corn futures contract,
the standard grade is “No. 2 Yellow,” but substitutions are allowed with the price being
adjusted in a way established by the exchange. No. 1 Yellow is deliverable for 1.5 cents
per bushel more than No. 2 Yellow. No. 3 Yellow is deliverable for 1.5 cents per bushel
less than No. 2 Yellow. 5

The financial assets in futures contracts are generally well defined and unambiguous.
For example, there is no need to specify the grade of a Japanese yen. However, there are
some interesting features of the Treasury bond and Treasury note futures contracts
traded on the Chicago Board of Trade. The underlying asset in the Treasury bond
contract is any long-term US Treasury bond that has a maturity of greater than 15 years

1 As mentioned in Chapter 1, the spot price is the price for almost immediate delivery.
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and is not callable within 15 years. In the Treasury note futures contract, the underlying
asset is any long-term Treasury note with a maturity of no less than 6.5 years and no
more than 10 years from the date of delivery. In both cases, the exchange has a formula
for adjusting the price received according to the coupon and maturity date of the bond
delivered. This is discussed in Chapter 6.

The Contract Size
The contract size specifies the amount of the asset that has to be delivered under one
contract. This is an important decision for the exchange. If the contract size is too large,
many investors who wish to hedge relatively small exposures or who wish to take
relatively small speculative positions will be unable to use the exchange. On the other
hand, if the contract size is too small, trading may be expensive as there is a cost
associated with each contract traded. s

The correct size for a contract clearly depends on the likely user. Whereas the value of
what is delivered under a futures contract on an agricultural product might be $10,000
to $20,000, it is much higher for some financial futures. For example, under the
Treasury bond futures contract traded by the CME Group, instruments with a face
value of $100,000 are delivered. S

In some cases exchanges have introduced “mini” contracts to attract smaller inves-
tors. For example, the CME Group’s Mini Nasdaq 100 contract is on 20 times the
Nasdaq 100 index, whereas the regular contract is on 100 times the index. (We will cover
futures on indices more fully in Chapter 3.)

Delivery Arrangements
The place where delivery will be made must be specified by the exchange. This is
particularly important for commodities that involve significant transportation costs. In
the case of the ICE frozen concentrate orange juice contract, delivery is to exchange-
licensed warehouses in Florida, New Jersey, or Delaware. t

' When alternative delivery locations are specified, the price received by the party with
the short position is sometimes adjusted according to the location chosen by that party.
The price tends to be higher for delivery locations that are relatively far from the main
sources of the commodity.

Delivery Months
A futures contract is referred to by its delivery month. The exchange must specify the
precise period during the month when delivery can be made. For many futures
contracts, the delivery period is the whole month.

The delivery months vary from contract to contract and are chosen by the exchange
to meet the needs of market participants. For example, corn futures traded by the CME
Group have delivery months of March, May, July, September, and December. At any
given time, contracts trade for the closest delivery month and a number of subsequent
delivery months. The exchange specifies when trading in a particular month’s contract
will begin. The exchange also specifies the last day on which trading can take place for a
given contract. Trading generally ceases a few days before the last day on which delivery
can be made.
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Price Quotes ,
The exchange defines how prices will be quoted. For example, in the US, crude oil
futures prices are quoted in dollars and cents. Treasury bond and Treasury note futures
prices are quoted in dollars and thirty-seconds of a dollar.

Price Limits and Position Limits
For most contracts, daily price movement limits are specified by the exchange. If in a
day the price moves down from the previous day’s close by an amount equal to the
daily price limit, the contract is said to be limit down. If it moves up by the limit, it is
said to be limit up. A limit move is a move in either direction equal to the daily price
limit. Normally, trading ceases for the day once the contract is limit up or limit down.
However, in some instances the exchange has the authority to step in and change the
limits.

The purpose of daily price limits is to prevent large price movements from
occurring because of speculative excesses. However, limits can become an artificial
barrier to trading when the price of the underlying commodity is advancing or
declining rapidly. Whether price limits are, on balance, good for futures markets is
controversial.

Position limits are the maximum number of contracts that a speculator may hold.
The purpose of these limits is to prevent speculators from exercising undue influence on
the market.

CONVERGENCE OF FUTURES PRICE TO SPOT PRICE

As the delivery period for a futures contract is approached, the futures price converges
to the spot price of the underlying asset. When the delivery period is reached, the
futures price equals——or is very close to—the spot price.

To see why this is so, we first suppose that the futures price is above the spot price
during the delivery period. Traders then have a clear arbitrage opportunity:

1. Sell (i.e., short) a futures contract
2. Buy the asset
3. Make delivery.

These steps are certain to lead to a profit equal to the amount by which the futures price
exceeds the spot price. As traders exploit this arbitrage opportunity, the futures price
will fall. Suppose next that the futures price is below the spot price during the delivery
period. Companies interested in acquiring the asset will find it attractive to enter into a
long futures contract and then wait for delivery to be made. As they do so, the futures
price will tend to rise.

The result is that the futures price is very close to the spot price during the delivery
period. Figure 2.1 illustrates the convergence of the futures price to the spot price. In
Figure 2.1(a).the futures price is above the spot price prior to the delivery period. In
Figure 2.1(b) the futures price is below the spot price prior to the delivery period.
The circumstances under which these two patterns are observed are discussed in
Chapter 5.
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Figure 2.1 Relationship between futures price and spot price as the delivery period is
approached: (a) Futures price above spot price; (b) futures price below spot price.
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THE OPERATION OF MARGINS

If two investors get in touch with each other directly and agree to trade an asset in the
future for a certain price, there are obvious risks. One of the investors may regret the
deal and try to back out. Alternatively, the investor simply may not have the financial
resources to honor the agreement. One of the key roles of the exchange is to organize
trading so that contract defaults are avoided. This is where margins come in.

Daily Settlement  
To illustrate how margins work, we consider an investor who contacts his or her broker
to buy two December gold futures contracts on the COMEX division of the New York
Mercantile Exchange (NYMEX), which is part of the CME Group. We suppose that
the current futures price is $1,250 per ounce. Because the contract size is 100 ounces, the
investor has contracted to buy a total of 200 ounces at this price. The broker will require
the investor to deposit funds in a margin account. The amount that must be deposited at
the time the contract is entered into is known as the initial margin. We suppose this is
$6,000 per contract, or $12,000 in total. At the end of each trading day, the margin
account is adjusted to reflect the investor’s gain or loss. This practice is referred to as
daily settlement or marking to market.

Suppose, for example, that by the end of the first day the futures price has dropped by
$9 from $1,250 to $1,241. The investor has a loss of $1,800 (= 200 >< $9), because the
200 ounces of December gold, which the investor contracted to buy at $1,250, can now be
sold for only $1,241. The balance in the margin account would therefore be reduced by
$1,800 to $10,200. Similarly, if the price of December gold rose to $1,259 by the end of
the first day, the balance in the margin account would be increased by $1 ,800 to $13,800.
A trade is first settled at the close of the day on which it takes place. It is then settled at the
close of trading on each subsequent day.
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Note that daily settlement is not merely an arrangement between broker and client.
When there is a decrease in the futures price so that the margin account of an investor
with a long position is reduced by $1,800, the investor’s broker has to pay the exchange
$1,800 and the exchange passes the money on to the broker of an investor with a short
position. Similarly, when there is an increase in the futures price, brokers for parties
with short positions pay money to the exchange and brokers for parties with long
positions receive money from the exchange. Later we will examine in more detail the
mechanism by which this happens. g

The investor is entitled to withdraw any balance in the margin account in excess of the
initial margin. To ensure that the balance in the margin account never becomes negative
a maintenance margin, which is somewhat lower than the initial margin, is set. If the
balance in the margin account falls below the maintenance margin, the investor receives
a margin call and is expected to top up the margin account to the initial margin level by
the end of the next day. The extra funds deposited are known as a variation margin. If
the investor does not provide the variation margin, the broker closes out the position. In
the case of the investor considered» earlier, closing out the position would involve
neutralizing the existing contract by selling 200 ounces of gold for delivery in December.

Table 2.1 illustrates the operation of the margin account for one possible sequence of
futures prices in the case of the investor considered earlier. The maintenance margin is
assumed to be $4,500 per contract, or $9,000 in total. On Day 7, the balance in the
margin account falls $1,020 below the maintenance margin level. This drop triggers a
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Table 2.1 Operation of margins for a long position in two gold futures contracts.
The initial margin is $6,000 per contract, or $12,000 in total; the maintenance
margin is $4,500 per contract, or $9,000 in total. The contract is entered into on
Day 1 at $1,250 and closed out on Day 16 at $1226.90.

Trade Settlement Daily Cumulative Margin account (Margin
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margin call from the broker for an additional $4,020 to bring the account balance up to
the initial margin level of $12,000. It is assumed that the investor provides this margin by
the close of trading on Day 8. On Day 11, the balance in the margin account again falls
below the maintenance margin level, and a margin call for $3,780 is sent out. The investor
provides this margin by the close of trading on Day 12. On Day 16, the investor decides to
close out the position by selling two contracts. The futures price on that day is $1,226.90,
and the investor has a cumulative loss of $4,620. Note that the investor has excess margin
on Days 8, 13, 14, and 15. It is assumed that the excess is not withdrawn.

Further Details
Most brokers pay investors interest on the balance in a margin account. The balance in the
account does not, therefore, represent a true cost, provided that the interest rate is
competitive with what could be earned elsewhere. To satisfy the initial margin require-
ments, but not subsequent margin calls, an investor can usually deposit securities with the
broker. Treasury bills are usually accepted in lieu ofcash at about 90% of their face value.
Shares are also sometimes accepted in lieu ofcash, but at about 50% of their market value.

Whereas a forward contract is settled at the end of its life, a futures contract is, as we
have seen, settled daily. At the end of each day, the investor’s gain (loss) is added to
(subtracted from) the margin account, bringing the value of the contract back to zero.
A futures contract is in effect closed out and rewritten at a new price each day.

Minimum levels for initial and maintenance margins are set by the exchange.
Individual brokers may require greater margins from their clients than those specified
by the exchange. However, they cannot require lower margins than those specified by
the exchange. Margin levels are determined by the variability of the price of the
underlying asset. The higher this variability, the higher the margin levels. The mainten-
ance margin is usually about 75% of the initial margin.

Margin requirements may depend on the objectives of the trader. A bona fide hedger,
such as a company that produces the commodity on which the futures contract is
written, is often subject to lower margin requirements than a speculator. The reason is
that there is deemed to be less risk of default. Day trades and spread transactions often
give rise to lower margin requirements than do hedge transactions. In a day trade the
trader announces to the broker an intent to close out the position in the same day. In a
spread transaction the trader simultaneously buys (i.e., takes a long position in) a
contract on an asset for one maturity month and sells (i.e., takes a short position in)
a contract on the same asset for another maturity month.

Note that margin requirements are the same on short futures positions as they are on
long futures positions. It is just as easy to take a short futures position as it is to take a
long one. The spot market does not have this symmetry. Taking a long position in the
spot market involves buying the asset for immediate delivery and presents no problems.
Taking a short position involves selling an asset that you do not own. This is a more
complex transaction that may or may not be possible in a particular market. It is
discussed further in Chapter 5.

The Clearing House and Clearing Margins
A clearing house acts as an intermediary in futures transactions. It guarantees the
performance of the parties to each transaction. The clearing house has a number of
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members, who must post funds with the clearing house. Brokers who are not members
themselves must channel their business through a member. The main task of the
clearing house is to keep track of all thc transactions that take place during a day, so
that it can calculate the net position of each of its members.

Just as an investor is required to maintain a margin account with a broker, the broker
is required to maintain a margin account with a clearing house member and the clearing
house member is required to maintain a margin account with the clearing house. The
latter is known as a clearing margin. The margin accounts for clearing house members
are adjusted for gains and losses at the end of each trading day in the same way as are
the margin accounts of investors. However, in the case of the clearing house member,
there is an original margin, but no maintenance margin. Every day the account balance
for each contract must be maintained at an amount equal to the original margin times
the number of contracts outstanding. Thus, depending on transactions during the day
and price movements, the clearing house member may have to add funds to its margin
account at the end of the day or it may find it can remove funds from the account at this
time. Brokers who are not clearing house members must maintain a margin account
with a clearing house member.

In determining clearing margins, the exchange clearing house calculates the number of
contracts outstanding on either a gross or a net basis. When the gross basis is used, the
number of contracts equals the sum of the long and short positions. When the net basis is
used, these are offset against each other. Suppose a clearing house member has two
clients: one with a long position in 20 contracts, the other with a short position in
15 contracts. Gross margining would calculate the clearing margin on the basis of
35 contracts; net margining would calculate the clearing margin on the basis of 5 con-
tracts. Most exchanges currently use net margining.

Credit Risk
The whole purpose of the margining system is to ensure that funds are available to pay
traders when they make a profit. Overall the system has been very successful. Traders
entering into contracts at major exchanges have always had their contracts honored.
Futures markets were tested on October 19, 1987, when the S&P 500 index declined by
over 20% and traders with long positions in S&P 500 futures found they had negative
margin balances. Traders who did not meet margin calls were closed out but still owed
their brokers money. Some did not pay and as a result some brokers went bankrupt
because, without their clients’ money, they were unable to meet margin calls on
contracts they entered into on behalf of their clients. However, the clearing houses
had sufficient funds to ensure that everyone who had a short futures position on the
S&P 500 got paid ofl.

OTC MARKETS

Credit risk has traditionally been a feature of the over-the-counter markets. There is
always a chance that the party on the other side of an over-the-counter trade will
default. It is interesting that, in an attempt to reduce credit risk, the over-the-counter
market has adopted, or has been compelled to adopt, some of the procedures used by
exchanges.
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Business Snapshot 2.2 Long-Term Capital Management’s Big Loss

Long-Term Capital Management (LTCM), a hedge fund formed in the mid-1990s,
always collateralized its transactions. The hedge fund’s investment strategy was .
known as convergence arbitrage. A very simple example of what it might do is the
following. It would find two-bonds, X and Y, issued, by the same companythat
promisedthe same payoffs, with X being less liquid (i.e., less actively traded) than Y.
The market always places -ea value on liquidity. As a result the price of X would "be less
than the price of Y. LTCM would buy X, short Y, and wait, expecting the prices of
the two bonds to converge at some future time. 0 : c " '

1 .When interest rates increased, the company expected both bonds to move down in
price by about the same amount, so that the collateral it paid on bond X would be
about the same as the collateral itreceived on bond Y. Similarly, when interest rates
decreased, LTCM expected both bonds to move up in price by about the same
amount, so that the collateral it received on bond X would be about the same as the
collateral it paid on bond Y. Ittherefore expected that there would be no significant
outflow of funds as a result of its collateralization agreements. I

In August 1998, Russia defaulted on its debt and this led to what is termed a
“flight to quality” in capital markets. One result was that investors valued liquid
instruments more highly than usual and the spreads between the prices of the liquid
and illiquid instruments in LTCM’s portfolio increased dramatically. The prices of
the bonds LTCM had bought went down and the prices of those it had shorted
increased. It was required to post collateral on both. The company experienced
difficulties because it was highly leveraged. Positions had to be closed out and LTCM

zlost about $4 billion. If the company had been less highly leveraged, it would
probably have been able to survive the flightto quality and could have waited for

a the prices of the liquid and illiquid bonds to move back closer to each other.

Collateralization I
Collateralization has been used in OTC markets for some time and is similar to the
practice of posting margin in futures markets.

Consider two companies, A and B, that have entered into an OTC derivatives
transaction such as a forward. A collateralization agreement applying to the transaction
might involve the transaction being valued each day. If, from one day to the next, the
value of the transaction to company A increases by a positive amount X (so that the
value to company B decreases by X), company B is required to pay X to company A.
Similarly, if the value to company B increases by a positive amount X (so that the value
to company A decreases by X), company A is required to pay X to company B. The
contract is not settled daily, as in the case of futures. The payments are a security
deposit designed to ensure that obligations will honored. Interest is paid on the full
amount of the funds that have been deposited by one party with the other.

There are many variations on this simple arrangement and collateralization is
discussed more fully in Chapter 23. Collateralization significantly reduces the credit
risk in OTC contracts. As discussed in Business Snapshot 2.2, it was used by the hedge
fund Long-Term Capital Management (LTCM) in the 1990s. As a result LTCM’s
counterparties were prepared to accept LTCM’s credit risk. I
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The Use of Clearing Houses in OTC Markets
Since the 2007 2009 crisis, governments in the US and elsewhere have passed legislation
requiring clearing houses to be used forsome OTC transactions.

The way in which clearing houses work in the OTC market is as follows. An OTC
transaction is negotiated between two parties, A and B, in the usual way. It is then
presented to a clearing house (sometimes called a central clearing party). Assuming the
clearing house accepts the transaction, it becomes the counterparty to both A and B.
(This is similar to the way the clearing house for a futures exchange becomes the
counterparty to the two sides of a futures trade.) The clearing house takes on the credit
risk of both A and B. It manages this risk by requiring an initial margin and daily
variation margins from them.

The OTC market has traditionally been a series of bilateral agreements between
market participants as illustrated in Figure 2.2a. If all OTC contracts were cleared in the
way that has just been described, the OTC market would move to the situation where
each participant deals with one or more clearing houses, as illustrated in Figure 2.2b. In
practice, because not all OTC transactions are routed through clearing houses, the
market has elements of both Figure 2.2a and 2.2b. I

A number of arguments have been cited for the use of clearing houses in OTC
markets. Collateral will automatically have to be posted; credit risk in the financial
system will (hopefully) be reduced;2 and the trades taking place in the OTC market will
become more transparent. A major concern of governments since the credit crisis of
2007 is systemic risk. This is the risk that a failure by a large financial institution will
lead to failures by other large financial institutions and a collapse of the financial
system. The way this can happen is described in Business Snapshot 2.3.

One of the motivations for the legislation requiring that clearing houses be used for
OTC transactions is what might be termed the “AIG fiasco.” During the period
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Figure 2.2 (a) The traditional way in which OTC markets have operated: a series of
bilateral agreements between market participants; (b) how OTC markets would
operate with a single central clearing house.
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1

2 The impact of clearing houses on credit risk depends on the number of clearing houses and the proportion
of all OTC trades that are cleared through them. See D. Duflie and H. Zhu (2010), “Does a Central Clearing
Counterparty Reduce Counterparty Risk?” Working Paper, Stanford University.
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Business Snapshot 2.3" Systemic risk _- . s I . . ~ c

Systemic risk is the risk that as default by one financial institution will crea__te_a “ripple
effect’? that leads-‘to defaults by other financial institutions and threatens, the stability
of the financial system. There are huge numbers ~of"_over§.the-counter transactions
between ‘banks. IfBank Air-fails, Bank B. may take;;_.%l ;ht1ge 1osS_~__0nithe#rtraiisazctiosns it
has with Bank in This in -turn could nadvro Benign failing. (Bank c.th’at;‘ms”.many
outstanding transactions with both Bank Aand B ‘mightt-hen takealarge. loss
and experience ‘severe financial_difliculti¢S;and ,:se;,qa.: g  A I - I S Y

The financial system has "survivedldefaults such‘-as Drexel in 199,0 and “Lehman
F Brothers in 2008, but regulators continue to be concerned. During the maii'ket-turmoil
of 2007land 2008, many large financial institutions were bailed out, rather than being
allowed to fail, because governments were concerned about systemic risk. - '

leading up to the credit crisis, the insurance company AIG provided protection to
other financial institutions against a huge volume of credit risks that were related to
subprime mortgages. Since AIG had a AAA credit rating at the time the transactions
were negotiated, it was not required to post collateral by its counterparties. The
transactions resulted in big losses for AIG and led to an $85 billion bailout of the
company by the US government. Whether the clearing house legislation by itself will
prevent companies taking risks as large as those of AIG in the future is doubtful. This
is because the legislation applies only to “standardized” OTC transactions and AIG’s
transactions were nonstandard. However, mandatory collateralization for nonstandard
OTC contracts will go a long way toward preventing another AIG occurring in the
future. "

MARKET QUOTES  
Futures quotes are available from exchanges and from several online sources (see, for
example, futurestradingcharts.com/marketquotes). Table 2.2 shows quotes provided
by exchanges for a number of different commodities on May 26, 2010. Quotes for index,
currency, and interest rate futures are given in Chapters 3, 5, and 6, respectively.

The asset underlying the futures contract, the exchange that the contract is traded on,
the contract size, and how the price is quoted are all shown at the top of each section in
Table 2.2. The first asset is gold, traded on COMEX (a division of the New York
Mercantile Exchange, which is now part of the CME Group). The contract size is
100 ounces, and the price is quoted in dollars per ounce. The maturity month of the
contract is shown in the first column. 3

Prices
The first three numbers in each row show the opening price, the highest price achieved
in trading du.ring the day, and the lowest price achieved in trading during the day. The
opening price is representative of the prices at which contracts were trading immedi-
ately after the start of trading. For June 2010 gold, the opening price on May 26, 2010,
was $1,203.80. During the day, the price traded between $1,201.00 and $1,216.90.
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Table 2.2 Futures quotes for a selection of CME Group contracts on commodiues
on May 26, 2010.

Open High Low Settlement Change Volume Open interest

. ..... .. .
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Gold 100 oz, S per oz
June 2010
July 2010
Aug. 2010
Oct. 2010
Dec. 2010
June 2011

1203.80
1205.00
1205.00
1208.30
1208.80
1215.90

1216.90
1217.50
1218.70
1220.20
1222.90
1228.00

1201.00
1202.00
1202.70
1205.30
1207.50
1215.20

Crude oil 1,000 barrels, $ per barrel
July 2010
Aug. 2010
Dec. 2010
Dec. 2011
Dec. 2012

70.06
71.25
74.00
77.01
78.50

71.70
72.77
75.34
78.59
80.21

69.21
70.42
73.17
76.51
78.50

Corn 5,000 bushels, cents per bushel
July 2010
Sept. 2010
Dec. 2010
Mar. 2011
May 2011
July 2011
Dec. 2011
Soybeans 5,000 bushels, cents per
July 2010
Aug. 2010
Sept. 2010
Nov. 2010
Jan. 2011
Mar. 2011
May 2011

369.5C
379.50
389.0C
400.0C
410.5C
417.5C
416.25

934.25
922.00
914.50
906.00
917.75
926.00
933.50

372.00
381.00
390.75
403.25
411.50
419.50
418.00

939.75
931.50
918.75
912.50
921.50
930.00
935.50

368.75
379.00
380.25
400.00
410.50
417.50
415.75
bushel
933.00
922.00
912.50
905.00
914.75
925.00
931.00

Wheat 5,000 bushels, cents per bushel
July 2010
Sept. 2010
Dec. 2010
Mar. 2011
May 2011
July 2011

462.75
480.00
510.75
541.50
557.00
574.25

472.00
489.00
519.50
548.50
563.50
583.00

459.00
476.50
507.25
536.75
552.75
571.00

Live Cattle 40,000 lb, cents per lb
June 2010
Aug. 2010
Oct. 2010
Dec. 2010
Feb. 2011

1213.40
1214.20
1215.30
1217.50
1219.90
1227.80

71.51
72.54
75.23
78.53
80.18

371.50
381.00
390.75
403.25
411.50
419.50
418.00

938.00
929.50
916.50
910.00
919.75
928.50
933.50

461.75
479.00
510.00
539.00
555.50
573.75

90.800
89.700
91.100
92.100
93.200

90.850
90.050
91.150
92.250
93.550

90.450
89.525
90.750
91.875
93.200

90.800
89.925
91.100
92.175
93.550

-
1
1
1
1
1

5.4C
5.5
5.5
5.6
5.60
5.80

@@@_

2.76
2.44
2.19
2.00
1.86

7.25
7.75
8.00
7.75
7.25
7.50
7.25

7.5C
8.5C
7.0C
7.0'.
7.0C
8.0C
7.50

_)

1.25
1.00
1.25
0.75
1.25
0.75

194,461
838

130,676
2,445
7,885

408

6,315
3,746
5,055
4,175
1,258

122,528
24,186
47,428

4,581
830

3,491
- 4,760

41,816
4,881
1,935

18,908
2,621
1,406

942

45,283
13,941
9,756
2,748

923
4,938

0.775 12,410
0.850 19,341
0.750 7,718
0.800 3,347
0.800 792

156,156
714

240,074
21,792
61,497
13,461

388,902
115,305
196,033
100,674
70,126

491,587
175,798
373,026

55,836
8,995

31,939
59,061

220,712
15,674
12,983

157,826
12,391
5,857
5,626

246,683
90,257
70,618
27,879

8,199
34,300

51,817
144,587
78,300
42,102
18,428
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Settlement Price
The fourth number is the settlement price. This is the price used for calculating daily
gains and losses and margin requirements. It is usually calculated as the price at which
the contract traded immediately before the end of a day’s trading session (1:30 p.m. for
gold). The fifth number is the change in the settlement price from the previous day.
For the June 2010 gold futures contract, the settlement price on May 26, 2010, was
$1,213.40, up $15.40 from the previous trading day. In this case, an investor with a
long position in one contract would find his or her margin account balance increased
by $1,540 (= 100 >< $15.40) on March 26, 2010. Similarly, an investor with a short
position in one contract would find that the margin balance decreased by $1,540 on
this date.

The numbers in the fifth column show that, by chance, settlement prices for all the
contracts considered increased between May 25 and May 26, 2010.

Trading Volume and Open Interest
The final two columns in Table 2.2 show the trading volume for the day and the open
interest at the end of the previous day. The trading volume is the number of contracts
traded. The open interest is the number of contracts outstanding, that is, the number of
long positions or, equivalently, the number of short positions.

Trading volume can be greater than both the beginning-of-day.and end-of-day open
interest. (This was the case for June 2010 gold on May 26, 2010.) This indicates that
many traders who entered into positions during the day closed them out before the end
of the day. (Traders who do this are referred to as day traders.)

Patterns of Futures Prices
Futures prices can show a number of different patterns. The futures price of gold
generally increases with the maturity of the contract. Table 2.2 shows that this was ‘the
case on May 26, 2010. The settlement price on that day increased from $1213.40 to
$1227.80 as the contract maturity month increased from June 2010 to June 2011.
Markets Where the futures price is an increasing function of the time to maturity are
known as normal markets. Markets where the futures price decreases with the maturity
of the futures contract are known as inverted markets.3

Table 2.2 shows that there was a normal market for crude oil on May 26, 2010. This
is not always the case. For example, on October 15, 2007, oil futures prices were
inverted. The November 2007, December 2007, January 2008, February 2008,
March 2008, and April 2008 settlement prices were 86.13, 85.13, 84.25, 83.41, 82.69,
and 82.05, respectively. Sometimes futures prices, perhaps because of seasonality, show
a mixture of normal and inverted markets. For example, on May 26, 2010, the futures
price of soybeans first decreased and then increased as the maturity of the contract
increased. .

3 The term contango is sometimes used to describe situations where the futures price is an increasing function
of the maturity of the contract and the term backwardation is sometimes used to describe the situation where
the futures price is a decreasing function of the maturity of the contract. Strictly speaking, as will be explained
in Chapter 5, these term." refer to whether the price of the underlying asset is expected to increase or decrease
over time.
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DELIVERY A

As mentioned earlier in this chapter, very few of the futures contracts that are entered
into lead to delivery of the underlying asset. Most are closed out early. Nevertheless, it
is the possibility of eventual delivery that determines the futures price. An under-
standing of delivery procedures is therefore important;

The period during which delivery can be made is defined by the exchange and varies
from contract to contract. The decision on when to deliver is made by the party with
the short position, whom we shall refer to as investor A. When investor A decides to
deliver, investor A’s broker issues a notice of intention to deliver to the exchange
clearing house. This notice states how many contracts will be delivered and, in the case
of commodities, also specifies where delivery will be made and what grade will be
delivered. The exchange then chooses a party with a long position to accept delivery.

Suppose that the party on the other side of investor A’s.futures contract when it was
entered into was investor B. It is important to realize thatthere is no reason to expect
that it will be investor B who takes delivery. Investor B may well have closed out his or
her position by trading with investor C, investor C maylhave closed out his or her
position by trading with investor D, and so on. The usual rule chosen by the exchange
is to pass the notice of intention to deliver on to the party with the oldest outstanding
long position. Parties with long positions must accept delivery notices. However, if the
notices are transferable, long investors have a short period of time, usually half an
hour, to find another party with a long position that is prepared to accept the notice
from them. . 1 . I

In the case of a commodity, taking delivery usually means accepting a warehouse
receipt in return for immediate payment. The party taking delivery is then responsible
for all warehousing costs. In the case of livestock futures, there may be costs associated
with feeding and looking after the animals (see Business Snapshot 2.1). In the case of
financial futures, delivery is usually. made by wire transfer. For all contracts, the price
paid is usually the most recent settlement price. If specified by the exchange, this price is
adjusted for grade, location of delivery, and so on. The whole delivery procedure from
the issuance of the notice of intention to deliver to the delivery itself generally takes
about two to three days. g 1

There are three critical days for a contract. These are the first notice day, the last
notice day, and the last trading day. Thefirst notice day is the first day on which a notice
of intention to make delivery can be submitted to the exchange. The last notice day is
the last such day. The last trading day is generally a few days before the last notice day.
To avoid the risk of having to take delivery, an investor with a long position should
close out his or her contracts prior to the first notice day. 1

Cash Settlement I
Some financial futures, such as those on stock indices discussed in Chapter 3, are settled
in cash because it is inconvenient or impossible to deliver the underlying asset. In the
case of the futures contract on the S&P 500, for example, delivering the underlying asset
would involve delivering a portfolio of 500 stocks. When a contract is settled in cash, all
outstanding contracts are declaredclosed on a predetermined day. The final settlement
price is set equal to the spot price of the underlying asset at either the opening or close
of trading on that day. For example, in the S&P 500 futures contract traded by the
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CME Group, the predetermined day is the third Friday of the delivery month and final
settlement is at the opening price.

TYPES OF TRADERS AND TYPES OF ORDERS

There are two main types of traders executing trades: futures commission merchants
(FCMs) and locals. FCMs are following the instructions of their clients and charge a
commission for doing so; locals are trading on their own account.

Individuals taking positions, whether locals or the clients of FCMs, can be categor-
ized as hedgers, speculators, or arbitrageurs, as discussed in Chapter 1. Speculators can
be classified as scalpers, day traders, or position traders. Scalpers are watching for very
short-term trends and attempt to profit from small changes in the contract price. They
usually hold their positions for only a few minutes. Day traders hold their positions for
less than one trading day. They are unwilling to take. the risk that adverse news will
occur overnight. Position traders hold their positions for much longer periods of time.
They hope to make significant profits from major movements in the markets.

Orders
The simplest type of order placed with a broker is a market order. It is a request that a
trade be carried out immediately at the best price available in the market. However, there
are many other types of orders. We will consider those that are more commonly used.

A limit order specifies a particular price. The order can be executed only at this price
or at one more favorable to the investor. Thus, if the limit price is $30 for an investor
wanting to buy, the order will be executed only at a price of $30 or less. There is, of
course, no guarantee that the order will be executed at all, because the limit price may
never be reached. .

A stop order or stop-loss order also specifies a particular price. The order is executed
at the best available price once a bid or offer is made at that particular price or a less-
favorable price. Suppose a stop order to sell at $30 is issued when the market price
is $35. It becomes an order to sell when and if the price falls to $30. In effect, a stop
order becomes a market order as soon as the specified price has been hit. The purpose
of a stop order is usually to close out a position if unfavorable price movements take
place. It limits the loss that can be incurred.

A_ stop-limit order is a combination of a stop order and a limit order. The order
becomes a limit order as soon as a bid or offer is made at a price equal to or less
favorable than the stop price. Two prices must be specified in a stop—limit order: the stop
price and the limit price. Suppose that at the time the market price is $35, a stop—limit
order to buy is issued with a stop price of $40 and a limit price of $41. As soon as there is
a bid or ofi"er at $40, the stop-—limit becomes a limit order at $41. If the stop price and the
limit price are the same, the order is sometimes called a stop-and-limit order.

A market-if-touched (MIT) order is executed at the best available price after a trade
occurs at a specified price or at a price more favorable than the specified price. In effect,
an MIT becomes a market order once the specified price has been hit. An MIT is also
known as a board order. Consider an investor who has a long position in a futures
contract and is issuing instructions that would lead to closing out the contract. A stop
order is designed to place a limit on the loss that can occur in the event of unfavorable
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price movements. By contrast, a market-if-touched order is designed to ensure that
profits are taken if sufificiently favorable price movements occur.

A discretionary order or market-not-held order is traded as a market order except that
execution may be delayed at the broker’s discretion in an attempt to get a better price.

Some orders specify time conditions. Unless otherwise stated, an order is a day order
and expires at the end of the trading day. A time-of-day order specifies a particular
period of time during the day when the order can be executed. An open order or a good-
till-canceled order is in effect until executed or until the end of trading in the particular
contract. A fill-or-kill order, as its name implies, must be executed immediately on
receipt or not at all.

Rrcur/mow
Futures markets in the United States are currently regulated federally by the Commod-
ity Futures Trading Commission (CFTC; www.cftc.gov), which was established in
1974. This body is responsible for licensing futures exchanges and approving contracts.
All new contracts and changes to existing contracts must be approved by the CFTC. To
be approved, the contract must have some useful economic purpose. Usually this means
that it must serve the needs ofhedgers as well as speculators.

The CFTC looks after the public interest. It is responsible for ensuring that prices are
communicated to the public and that futures traders report their outstanding positions
if they are above certain levels. The CFTC also licenses all individuals who offer their
services to the public in futures trading. The backgrounds of these individuals are
investigated, and there are minimum capital requirements. The CFTC deals with
complaints brought by the public and ensures that disciplinary action is taken against
individuals when appropriate. It has the authority to force exchanges to take disciplin-
ary action against members who are in violation of exchange rules. .

With the formation of the National Futures Association (NFA; www.r1fa.futures.
org) in 1982, some of ‘responsibilities of the CFTC were shifted to the futures industry
itself. The NFA is an organization of individuals who participate in the futures
industry. Its objective is to prevent fraud and to ensure that the market operates in
the best interests of the general public. It is authorized to monitor trading and take
disciplinary action when appropriate. The agency has set up an efiicient system for
arbitrating disputes between individuals and its members.

From time to time, other bodies, such as the Securities and Exchange Commission
(SEC; www.sec.gov), the Federal Reserve Board (wwW.federalreserve.gov), and the
US Treasury Department (www.treas.gov), have claimed jurisdictional rights over
some aspects of futures trading. These bodies are concerned with the effects of futures
trading on the spot markets for securities such as stocks, Treasury bills, and Treasury
bonds. The SEC currently has an effective veto over the approval of new stock or bond
index futures contracts. However, the basic responsibility for all futures and options on
futures rests with the CFTC.

Trading lrregularities
Most of the time futures markets operate efiiciently and in the public interest. However,
from time to time, trading irregularities do come to light. One type of trading



Mechanics of Futures Markets 39

2.10

irregularity occurs when an investor group tries to “corner the market.”4 The investor
group takes a huge long futures position and also tries to exercise some control over the
supply of the underlying commodity. As the maturity of the futures contracts is
approached, the investor group does not close out its position, so that the number of
outstanding futures contracts may exceed the amount of the commodity available for
delivery. The holders of short positions realize that they will find it difficult to deliver
and become desperate to close out their positions. The result is a large rise in both
futures and spot prices. Regulators usually deal with this type of abuse of the market by
increasing margin requirements or imposing stricter position limits or prohibiting trades
that increase a speculator’s open position or requiring market participants to close out
their positions.

Other types of trading irregularity can involve the traders on the floor of the
exchange. These received some publicity early in 1989, when it was announced that
the FBI had carried out a two-year investigation, using undercover agents, of trading on
the Chicago Board of Trade and the Chicago Mercantile Exchange. The investigation
was initiated because of complaints filed by a large agricultural concern. The alleged
offenses included overcharging customers, not paying customers the full proceeds of
sales, and traders using their knowledge of customer orders to trade first for themselves
(an offence known as front running).

ACCOUNTING AND TAX

The full details of the accounting and tax treatment of futures contracts are beyond the
scope of this book. A trader who wants detailed information on this should consult
experts. In this section we provide some general background information.

Accounting  
Accounting standards require changes in the market value of a futures contract to be
recognized when they occur unless the contract qualifies as a hedge. If the contract does
qualify as a hedge, gains or losses are generally recognized for accounting purposes in
the same period in which the gains or losses from the item being hedged are recognized.
The latter treatment is referred to as hedge accounting.

Consider a company with a December year end. In September 2011 it buys a March
2012 corn futures contract and closes out the position at the end of February 2012.
Suppose that the futures prices are 250 cents per bushel when the contract is entered
into, 270 cents per bushel at the end of 2011, and 280 cents per bushel when the
contract is closed out. The contract is for the delivery of 5,000 bushels. If the contract
does not qualify as a hedge, the gains for accounting purposes are

5,000 >< (2.70 - 2.50) = $1,000
in 2011 and

1 5,000 >< (2.80 - 2.70) = $500

4 Possibly the best known example of this was the attempt by the Hunt brothers to corner the silver market in
1979-80. Between the middle of 1979 and the beginning of 1980, their activities led to a price rise from $6 per
ounce to $50 per ounce.
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in 2012. If the company is hedging the purchase of 5,000 bushels of corn in February
2012 so that the contract qualifies for hedge accounting, the entire gain of $1,500 is
realized in 2012 for accounting purposes.

The treatment of hedging gains and losses is sensible. If the company is hedging the
purchase of 5,000 bushels of corn in February 2012, the effect of the futures contract is
to ensure that the price paid is close to 250 cents per bushel. The accounting treatment
reflects that this price is paid in 2012.

In June 1998, the Financial Accounting Standards Board issued Statement No. 133
(FAS 133), Accounting for Derivative Instruments and Hedging Activities. FAS 133
applies to all types of derivatives (including futures, forwards, swaps, and options). It
requires all derivatives to be included on the balance sheet at fair market value.5 It
increases disclosure requirements. It also gives companies far less latitude than previously
in using hedge accounting. For hedge accounting to be used, the hedging instrument
must be highly effective in offsetting exposures and an assessment of this effectiveness is
required every three months. A similar standard IAS 39 has been issued by the Inter-
national Accounting Standards Board.

Tax
Under the US tax rules, two key issues are the nature of a taxable gain or loss and the
timing of the recognition of the gain or loss. Gains or losses are either classified as
capital gains or losses or alternatively as part of ordinary income.

For a corporate taxpayer, capital gains are taxed at the same rate as ordinary
income, and the ability to deduct losses is restricted.“ Capital losses are deductible
only to the extent of capital gains. A corporation may carry back a capital loss for
three years and carry it forward for up to five years. For a noncorporate taxpayer,
short-term capital gains are taxed at the same rate as ordinary income, but long-term
capital gains are subject to a maximum capital gains tax rate of 15%. (Long-term
capital gains are gains from the sale of a capital asset held for longer than one year;
short-term capital gains are the gains from the sale of a capital asset held one year or
less.) For a noncorporate taxpayer, capital losses are deductible to the extent of
capital gains plus ordinary income up to $3,000 and can be carried forward
indefinitely.

Generally, positions in futures contracts are treated as if they are closed out on the
last day of the tax year. For the noncorporate taxpayer, this gives rise to capital gains
and losses that are treated as if they were 60% long term and 40% short term without
regard to the holding period. This is referred to as the “60/40” rule. A noncorporate
taxpayer may elect to carry back for three years any net losses from the 60/40 rule to
offset any gains recognized under the rule in the previous three years.

Hedging transactions are exempt from this rule. The definition of a hedge transaction
for tax purposes is different from that for accounting purposes. The tax regulations
define a hedging transaction as a transaction entered into in the normal course of
business primarily for one of the following reasons:

1. To reduce the risk of price changes or currency fluctuations with respect to
property that is held or to be held by the taxpayer for the purposes of producing
ordinary income

— 

5 Previously the attraction of derivatives in some situations was that they were “off-balance-sheet” items.
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2. To reduce the risk of price or interest rate changes or currency fluctuations with
respect to borrowings made by the taxpayer.

A hedging transaction must be clearly identified as such in the company’s records.
Gains or losses from hedging transactions are treated as ordinary income. The timing of
the recognition of gains or losses from hedging transactions generally matches the
timing" of the recognition of income or expense associated with the transaction being
hedged.

FORWARD vs. FUTURES CONTRACTS

The main diiferences between forward and futures contracts are summarized in Table 2.3.
Both contracts are agreements to buy or sell an asset for a certain price at a certain future
time. A forward contract is traded in the over-the-counter market and there is no
standard contract size or standard delivery arrangements. A single delivery date is usually
specified and the contract is usually held to the end of its life and then settled. A futures
contract is a standardized contract traded on an exchange. A range of delivery dates is
usually specified. It is settled daily andusually closed out prior to maturity.

Profits from Forward and Futures Contracts
Suppose that the sterling exchange rate for a 90-day forward contract is 1.5000 and that
this rate is also the futures price for a contract that will be delivered in exactly 90 days.
What is the difference between the gains and losses under the two contracts‘?

Under the forward contract, the whole gain or loss is realized at the end of the life
of the contract. Under the futures contract, the gain or loss is realized day by day
because of the daily settlement procedures. Suppose that investor A is long £1 million
in a 90-day forward contract and investor B is long £1 million in 90-day futures
contracts. (Because each futures contract is for the purchase or sale of £62,500,
investor B must purchase a total of 16 contracts.) Assume that the spot exchange
rate in 90 days proves to be 1.7000 dollars per pound. Investor A makes a gain of
$200,000 on the 90th day. Investor B makes the same gain—but spread out over the
90-day period. On some days investor B may realize a loss, whereas on other days he

2'-' -1,. '.. 5 . 1.‘ ‘.1 1.--F-» -u:‘;- 1.‘.-. .. -, _,,-,;f.'j111.17....)...,...,,."I-..'“"._*"I ‘_';.= . z:;;:~..:-.-.-r:_-" : v- "..‘.7.,frn'.‘.._=.-;‘ ; . 1 .‘=_-\v:._'1.-2. 515;.

Table 2.3 Comparison of forward and futures contracts.

Forward Futures

Private contract between two parties Traded on an exchange
Not standardized Standardized contract
Usually one specified delivery date Range of delivery dates
Settled at end of contract Settled daily
Delivery or final cash settlement Contract is usually closed out
usually takes place prior to maturity
Some credit risk Virtually no credit risk
. 1 . . . . _ - - . , - . » -~~».~»--»-------~--------- — - ,
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or she makes a gain. However, in total, when losses are netted against gains, there is a
gain of $200,000 over the 90-day period.

Foreign Exchange Quotes
Both forward and futures contracts trade actively on foreign currencies. However,
there is sometimes a difference in the way exchange rates are quoted in the two
markets. For example, futures prices where one currency is the US dollar are always
quoted as the number of US dollars per unit of the foreign currency or as the number
of US cents per unit of the foreign currency. Forward prices are always quoted in the
same way as spot prices. This means that, for the British pound, the euro, the
Australian dollar, and the New Zealand dollar, the forward quotes show the number
of US dollars per unit of the foreign currency and are directly comparable with futures
quotes. For other major currencies, forward quotes show the number of units of the
foreign currency per US dollar (USD). Consider the Canadian dollar (CAD). A
futures price quote of 0.9500 USD per CAD corresponds to a forward price quote
of 1.0526 CAD per USD (10526 = 1/0.9500).

SUMMARY

A very high proportion of the futures contracts that are traded do not lead to the
delivery of the underlying asset. Traders usually enter into offsetting contracts to close
out their positions before the delivery period is reached. However, it is the possibility of
final delivery that drives the determination of the futures price. For each futures
contract, there is a range of days during which delivery can be made and a well-defined
delivery procedure. Some contracts, such as those on stock indices, are settled in cash
rather than by delivery of the underlying asset.

The specification of contracts is an important activity for a futures exchange. The two
sides to any contract must know what can be delivered, where delivery can take place,
and when delivery can take place. They also need to know details on the trading hours,
how prices will be quoted, maximum daily price movements, and so on. New contracts
must be approved by the Commodity Futures Trading Commission before trading
starts.

Margins are an important aspect of futures markets. An investor keeps a margin
account with his or her broker. The account is adjusted daily to reflect gains or losses,
and from time to time the broker may require the account to be topped up if adverse
price movements have taken place. The broker either must be a clearing house member
or must maintain a margin account with a clearing house member. Each clearing house
member maintains a margin account with the exchange clearing house. The balance in
the account is adjusted daily to reflect gains and losses on the business for which the
clearing house member is responsible.

Information on futures prices is collected in a systematic way at exchanges and
relayed within a matter of seconds to investors throughout the world. Many daily
newspapers such as the Wall Street Journal carry a summary of the previous day’s
trading.

Forward contracts differ from futures contracts in a number of ways. Forward
contracts are private arrangements between two parties, whereas futures contracts are
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traded on exchanges. There is generally a single delivery date in a forward contract,
whereas futures contracts frequently involve a range of such dates. Because they are not
traded on exchanges, forward contracts do not need to be standardized. A forward
contract is not usually settled until the end of its life, and most contracts do in fact lead
to delivery of the underlying asset or a cash settlement at this time.

In the next few chapters we shall examine in more detail the ways in which forward
and futures contracts can be used for hedging. We shall also look at how forward and
futures prices are determined.
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Practice Questions (Answers in Solutions Manual)

Distinguish between the terms open interest and trading volume.
What is the difference between a local and a futures commission merchant‘?
Suppose that you enter into a short futures contract to sell July silver for $17.20 per
ounce. The size of the contract is 5,000 ounces. The initial margin is $4,000, and the
maintenance margin is $3,000. What change in the futures price will lead to a margin call?
What happens if you do not meet the margin call‘?
Suppose that in September 2012 a company takes a long position in a contract on May
2013 crude oil futures. It closes out its position in March 2013. The futures price (per
barrel) is $68.30 when it enters into the contract, $70.50 when it closes out its position,
and $69.10 at the end of December 2012. One contract is for the delivery of 1,000 barrels.
What is the company’s total profit‘? When is it realized? How is it taxed if it is (a) a hedger
and (b) a speculator? Assume that the company has a December 31 year-end.
What does a stop order to sell at $2 mean? When might it be used? What does a limit
order to sell at $2 mean‘? When might it be used?
What is the difference between the operation of the margin accounts administered by a
clearing house and those administered by a broker‘?
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What difierences exist in the way prices are quoted in the foreign exchange futures
market, the foreign exchange spot market, and the foreign exchange forward market?
The party with a short position in a futures contract sometimes has options as to the
precise asset that will be delivered, where delivery will take place, when delivery will take
place, and so on. Do these options increase or decrease the futures price? Explain your
reasoning.
What are the most important aspects of the design of a new futures contract?
Explain how margins protect investors against the possibility of default.
A trader buys two July futures contracts on orange juice. Each contract is for the delivery
of 15,000 pounds. The current futures price is 160 cents per pound, the initial margin is
$6,000 per contract, and the maintenance margin is $4,500 per contract. What price
change would lead to a margin call? Under what circumstances could $2,000 be with-
drawn from the margin account?
Show that, if the futures price of a commodity is greater than the spot price during the
delivery period, then there is an arbitrage opportunity. Does an arbitrage opportunity
exist if the futures price is less than the spot price? Explain your answer.
Explain the difference between a market-if-touched order and a stop order.
Explain what a stop-limit order to sell at 20.30 with a limit of 20.10 means.
At the end of one day a clearing house member is long 100 contracts, and the settlement
price is $50,000 per contract. The original margin is $2,000 per contract. On the following
day the member becomes responsible for clearing an additional 20 long contracts, entered
into at a price of $51,000 per contract. The settlement price at the end of this day is
$50,200. How much does the member have to add to its margin account with the
exchange clearing house?
On July 1, 2012, a Japanese company enters into a forward contract to buy $1 million
with yen on January 1, 2013. On September 1, 2012, it enters into a forward contract to
sell $1 million on January 1, 2013. Describe the profit or loss the company will make in
yen as a function of the forward exchange rates on July 1, 2012, and September 1, 2012.
The forward price of the Swiss franc for delivery in 45 days is quoted as 1.1000. The
futures price for a contract that will be delivered in 45 days is 0.9000. Explain these two
quotes. Which is more favorable for an investor wanting to sell Swiss francs?
Suppose you call your broker and issue instructions to sell one July hogs contract.
Describe what happens.
“Speculation in futures markets is pure gambling. It is not in the public interest to allow
speculators to trade on a futures exchange.” Discuss this viewpoint.
Live cattle futures trade with June, August, October, December, February, and April
maturities. Why do you think the open interest for the June contract is less than that for
the August contract in Table 2.2?

What do you think would happen if an exchange started trading a contract in which the
quality of the ‘underlying asset was incompletely specified?
“When a futures contract is traded on the floor of the exchange, it may be the case that
the open interest increases by one, stays the same, or decreases by one.” Explain this
statement.
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2.23. Suppose that, on October 24, 2012, a company sells one April 2013 live cattle futures
contract. It closes out its position on January 21, 2013. The futures price (per pound) is
91.20 cents when it enters into the contract, 88.30 cents when it closes out its position,
and 88.80 cents at the end of December 2012. One contract is for the delivery of 40,000
pounds of cattle. What is the total profit? How is it taxed if the company is (a) a hedger
and (b) ga speculator? Assume that the company has a December 31 year-end.

2.24. A cattle farmer expects to have 120,000 pounds of live cattle to sell in 3 months. The live
cattle futures contract traded, by the CME Group is for the delivery of 40,000 pounds of
cattle. How can the farmer use the contract for hedging? From the farmer’s viewpoint,

 what are the pros and cons of hedging?
2.25. It is July 2011. A mining company has just discovered a small deposit of gold. It will

take 6 months to construct the mine. The gold will then be extracted on a more or less
continuous basis for 1 year. Futures contracts on gold are available with delivery
months every 2 months from August 2011 to December 2012. Each contract is for
the delivery of 100 ounces. Discuss how the mining company might use futures markets
for hedging.

Further Questions

2.26. Trader A enters into futures contracts to buy 1 million euros for‘1.4 million dollars in
three months. Trader B enters in a forward contract to do the same thing. The exchange
rate (dollars per euro) declines sharply during the first two months and then increases for
the third month to close at 1.4300. Ignoring daily settlement, what is the total profit of
each trader? When the impact of daily settlement is taken into account, which trader has
done better?

2.27. Explain what is meant by open interest. Why does the open interest usually decline during
the month preceding the delivery month? On a particular day, there were 2,000 tradesin a
particular futures contract. This means that there were 2,000 buyers (going long) and 2,000
sellers (going short). Of the 2,000 buyers, 1,400 were closing out positions and 600 were
entering into new positions. Of the 2,000 sellers, 1,200 were closing out positions and 800
were entering into new positions. What is the impact of the day’s trading on open interest?

2.28. One orange juice futures contract is on 15,000 pounds of frozen concentrate. Suppose
that in September 2011 a company sells a March 2013 orange juice futures contract for
120 cents per pound. In December 2011, the futures price is 140 cents; in December 2012,
it is 110 cents; and in February 2013, it is closed out at 125 cents. The company has a
December year end. What is the company’s profit or loss on the contract? How is it
realized? What is the accounting and tax treatment of the transaction if the company is
classified as (a) a hedger and (b) a speculator?

2.29. A company enters into a short futures contract to sell 5,000 bushels of wheat for 450 cents
per bushel. The initial margin is $3,000 and the maintenance margin is $2,000. What price
change would lead to a margin call? Under what circumstances could $1,500 be with-
drawn from the margin account? A

2.30. Suppose that there are no storage costs for crude oil and the interest rate for borrowing or
lending is 5% per annum. How could you make money on May 26, 2010, by trading
July 2010 and December 2010 contracts? Use Table 2.2.



46

2.31

2.32.

CHAPTER 2

What position is equivalent to a long forward contract to buy an asset at K on a certain
date and a put option to sell it for K on that date.
The author’s website (www.rotman.utoronto.ca/~hu11/data) contains daily closing
prices for crude oil and gold futures contracts. You are required to download the data
and answer the following:
(a) How high do the maintenance margin levels for oil and gold have to be set so that

there is a 1% chance that an investor with a balance slightly above the maintenance
margin level on a particular clay has a negative balance 2 days later? How high do they
have to be for a 0.1% chance? Assume daily price changes are normally distributed
with mean zero. Explain why the exchange might be interested in this calculation.
Imagine an investor who starts with a long position in the oil contract at the beginning
of the period covered by the data and keeps the contract for the whole of the period of
time covered by the data. Margin balances in excess of the initial margin are with-
drawn. Use the maintenance margin you calculated in part (a) for a 1% risk level and
assume that the maintenance margin is 75% of the initial margin. Calculate the
number of margin calls and the number of times the investor has a negative margin
balance. Assume that all margin calls are met in your calculations. Repeat the
calculations for an investor who starts with a short position in the gold contract.

(b)



ff?’
i. iii’-i‘.:,' "J ,

Hedging StrategiesG W H 1'11 W

Using Futures
4< N

Many of the participants in futures markets are hedgers. Their aim is to use futures
markets to reduce a particular risk that they face. This risk might relate to fluctuations
in the price of oil, a foreign exchange rate, the level of the stock market, or some other
variable. A perfect hedge is one that completely eliminates the risk. Perfect hedges are
rare. For the most part, therefore, a study of hedging using futures contracts is a study
of the ways in which hedges can be constructed so that they perform as close to perfect
as possible. "-

In this chapter we consider a number of general issues associated with the way hedges
are set up. When is a short futures position appropriate? When is a long futures
position appropriate? Which futures contract should be used? What is the optimal size
of the futures position for reducing risk? At this stage, we restrict our attention to what
might be termed hedge-and-forget strategies. We assume that no attempt is made to
adjust the hedge once it has been put in place. The hedger simply takes a futures
position at the beginning of the life of the hedge and closes out the position at theend
of the life of the hedge. In Chapter 18 we will examine dynamic hedging strategies in
which the hedge is monitored closely and frequent adjustments are made.

The chapter initially treats futures contracts as forward contracts (that is, it ignores
daily settlement). Later it explains an adjustment known as “tailing” that takes account
of the difference between futures and forwards.

BASIC PRINCIPLES

When an individual or company chooses to use futures markets to hedge a risk, the
objective is usually to take a position that neutralizes the risk as far as possible.
Consider a company that knows it will gain $10,000 for each 1 cent increase in the
price of a commodity over the next 3 months and lose $10,000 for each 1 cent decrease
in the price during the same period. To hedge, the company’s treasurer should take a
short futures position that is designed to offset this risk. The futures position should
lead to a loss of $10,000 for each 1 cent increase in the price of the commodity over
the 3 months and a gain of $10,000 for each 1 cent decrease in the price during this
period. If the price of the commodity goes down, the gain on the futures position
offsets the loss on the rest of the company’s business. If the price of the commodity
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goes up, the loss on the futures position is offset by the gain on the rest of the
company’s business.

Short Hedges
A short hedge is a hedge, such as the one just described, that involves a short position in
futures contracts. A short hedge is appropriate when the hedger already owns an asset
and expects to sell it at some time in the future. For example, a short hedge could be
used by a farmer who owns some hogs and knows that they will be ready for sale at the
local market in two months. A short hedge can also be used when an asset is not owned
right now but will be owned at some time in the future. Consider, for example, a US
exporter who knows that he or she will receive euros in 3 months. The exporter will
realize a gain if the euro increases in value relative to the US dollar and will sustain a
loss if the euro decreases in value relative to the US dollar. A short futures position
leads to a loss if the euro increases in value and a gain if it decreases in value. It has the
effect of offsetting the exporter’s risk.

To provide a more detailed illustration of the operation of a short hedge in a specific
situation, we assume that it is May 15 today and that an oil producer has just negotiated
a contract to sell 1 million barrels of crude oil. It has been agreed that the price that will
apply in the contract is the market price on August 15. The oil producer is therefore in
the position where it will gain $10,000 for each 1 cent increase in the price of oil over the
next 3 months and lose $10,000 for each 1 cent decrease in the price during this period.
Suppose that on May 15 the spot price is $80 per barrel and the crude oil futures price
for August delivery is $79 per barrel. Because each futures contract is for the delivery of
1,000 barrels, the company can hedge its exposure by shorting (i.e., selling) 1,000
futures contracts. If the oil producer closes out its position on August 15, the effect
of the strategy should be to lock in a price close to $79 per barrel.

To illustrate what might happen, suppose that the spot price on August 15 proves to
be $75 per barrel. The company realizes $75 million for the oil under its sales contract.
Because August is the delivery month for the futures contract, the futures price on
August 15 should be very close to the spot price of $75 on that date. The company
therefore gains approximately

$79 — $75 = $4
per barrel, or $4 million in total from the short futures position. The total amount
realized from both the futures position and the sales contract is therefore approximately
$79 per barrel, or $79 million in total.

For an alternative outcome, suppose that the price of oil on August 15 proves to be
$85 per barrel. The company realizes $85 per barrel for the oil and loses approximately

$85 — $79 == $6

per barrel on the short futures position. Again, the total amount realized is approxi-
mately $79 million. It is easy to see that in all cases the company ends up with
approximately $79 million.

Long Hedges
Hedges that involve taking a long position in a futures contract are known as long
hedges. A long hedge is appropriate when a company knows it will have to purchase a
certain asset in the future and wants to lock in a price now.
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Suppose that it is now January 15. A copper fabricator knows it will require 100,000
pounds of copper on May 15 to meet a certain contract. The spot price of copper is
340 cents per pound, and the futures price for May delivery is 320 cents per pound. The
fabricator can hedge its position by taking a long position in four futures contracts
offered by the COMEX division of the CME Group and closing its position on May 15 .
Each contract is for the delivery of 25,000 pounds of copper. The strategy has the effect
of locking in the price of the required copper at close to 320 cents per pound.

Suppose that the spot price of copper on May 15 proves to be 325 cents per pound.
Because May is the delivery month for the futures contract, this should be very close to
the futures price. The fabricator therefore gains approximately

100,000 >< ($3.25 - $3.20) = $5,000

on the futures contracts. It pays 100,000 >< $3.25 = $325,000 for the copper, making the
net cost approximately $325,000 5- $5,000 = $320,000. For an alternative outcome,
suppose that the spot price is 305 cents per pound on May 15. The fabricator then
loses approximately

100,000 >< ($3.20 — $3.05) = $15,000

on the futures contract and pays 100,000 >< $3.05 = $305,000 for the copper. Again, the
net cost is approximately $320,000, or 320 cents per pound.

Note that, in this case, it is clearly better for the company to use futures contracts
than to buy the copper on January 15 in the spot market. If it does the latter, it will pay
340 cents per pound instead of 320 cents per pound and will incur both interest costs
and storage costs. For a company using copper on a regular basis, this disadvantage
would be offset by the convenience of having the copper on hand.1 However, for a
company that knows it will not require the copper until May 15, the futures contract
alternative is likely to be preferred.

The examples we have looked at assume that the futures position is closed out in the
delivery month. The hedge has the same basic effect if delivery is allowed to happen.
However, making or taking delivery can be costly and inconvenient. For this reason,
delivery is not usually made even when the hedger keeps the futures contract until the
delivery month. As will be discussed later, hedgers with long positions usually avoid
any possibility of having to take delivery by closing out their positions before the
delivery period.  

We have also assumed in the two examples that there is no daily settlement. In
practice, daily settlement does have a small effect on the performance of a hedge. As
explained in Chapter 2, it means that the payoff from the futures contract is realized day
by day throughout the life of the hedge rather than all at the end.

ARGUMENTS FOR AND AGAINST HEDGING

The arguments in favor of hedging are so obvious that they hardly need to be stated.
Most companies are in the business of manufacturing, or retailing or wholesaling, or
providing a service. They have no particular skills or expertise in predicting variables
such as interest rates, exchange rates, and commodity prices. It makes sense for them to

1 See Section 5.11 for a discussion of convenience yields.
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hedge the risks associated with these variables as they become aware of them. The
companies can then focus on their main acti.vities—for which presumably they do have
particular skills and expertise. By hedging, they avoid unpleasant surprises such as
sharp rises in the price of a commodity that is being purchased.

In practice, many risks are left unhedged. In the rest of this section we will explore
some of the reasons for this.

Hedging and Shareholders
One argument sometimes put forward is that the shareholders can, if they wish, do the
hedging themselves. They do not need the company to do it for them. This argument is,
however, open to question. It assumes that shareholders have as much information as the
company’-s management about the risks faced by a company. In most instances, this is
not the case. The argument also ignores commissions and other transactions costs. These
are less expensive per dollar of hedging for large transactions than for small transactions.
Hedging is therefore likely to be less expensive when carried out by the company than
when it is carried out by individual shareholders. Indeed, the size of futures contracts
makes hedging by individual shareholders impossible in many situations.

One thing that shareholders can do far more easily than a corporation is diversify
risk. A shareholder with a well-diversified portfolio may be immune to many of the
risks faced by a corporation. For example, in addition to holding shares in a company
that uses copper, a well-diversified shareholder may hold shares in a copper producer,
so that there is very little overall exposure to the price of copper. If companies are acting
in the best interests of well-diversified shareholders, it can be argued that hedging is
unnecessary in many situations. However, the extent to which managers are in practice
influenced by this type of argument is open to question.

Hedging and Competitors ~
If hedging is not the norm in a certain industry, it may not make sense, for one
particular company to choose to be different from all others. Competitive pressures
within the industry may be such that the prices of the goods and services produced by
the industry fluctuate to reflect raw material costs, interest rates, exchange rates, and so
on. A company that does not hedge can expect its profit margins to be roughly
constant. However, a company that does hedge can expect its profit margins to
fluctuate!

To illustrate this point, consider two manufacturers of gold jewelry, SafeandSure
Company and TakeaChance Company. We assume that most companies in the industry
do not hedge against movements in the price of gold and that TakeaChance Company is
no exception. However, SafeandSure Company has decided to be different from its
competitors and to use futures contracts to hedge its purchase of gold over the next
18 months. If the price of gold goes up, economic pressures will tend to lead to a
corresponding increase in the wholesale price ofjewelry, so that TakeaChance Company’s
gross profit margin is unaffected. By contrast, SafeandSure Company’s profit margin will
increase afterthe effects of the hedge have been taken into account. If the price of gold
goes down, economic pressures will tend to lead to a corresponding decrease in the
wholesale price of jewelry. Again, TakeaChance Company’s profit margin is unaffected.
However, SafeandSure Company’s profit margin goes down. In extreme conditions,
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Table 3.1, Danger in hedging when competitors do not hedge.

Change in Eflect on price of Ejfect on profits of E/feet on profits of
gold price gold jewelry TakeaChance Co. SafeandSure Co.

Increase Increase None Increase
Decrease Decrease None Decrease
F 1-~1~_, Q , _. -_ 4_. . V . ~.w----—-~ -~-I--~~ ‘- r_ _ - - ..... ,. .<, Q ,_, _. .... ..__2_ _ ‘ . _b-_ .~__ _._ ..- ‘.A_ A 1 . A .-\- -. ..' -§-_,_~_,,.;- .~._ ..‘ .n-~-.._.a:;-<-~'l..-A ‘...

SafeandSure Company’s profit margin could become negative as a result of the “hedging”
carried out! The situation is summarized in Table 3.1.

This example emphasizes the importance of looking at the big picture when hedging.
All the implications of price changes on a company’s profitability should be taken into
account in the design of a hedging strategy to protect against the price changes.

Hedging Can Lead to a Worse Outcome
It is important to realize that a hedge using futures contracts can result in a decrease or
an increase in a company’s profits relative to the position it would be in with no
hedging. In the example involving the oil producer considered earlier, if the price of oil
goes down, the company loses money on its sale of 1 million barrels of oil, and the
futures position leads to an offsetting gain. The treasurer can. be congratulated for
having had the foresight to put the hedge in place. Clearly, the company is better off
than it would be with no hedging. Other executives in the organization, it is hoped, will
appreciate the contribution made by the treasurer. If the price of oil goes up, the
company gains from its sale of the oil, and the futures position leads to an offsetting
loss. The company is in a worse position than it would be with no hedging. Although
the hedging decision was perfectly logical, the treasurer may in practice have a diflicult
time justifying it. Suppose that the price of oil at the end of the hedge is $89, so that the
company loses $10 per barrel on the futures contract. We can imagine a conversation
such as the following between the treasurer and the president:

PRESIDENT: I This is terrible. We’ve lost $10 million in the futures market in the space
of three months. How could it happen? I want a full explanation.

TREASURER: The purpose of the futures contracts was to hedge our exposure to the
price of oil, not to make a profit. Don’t forget wemade $10 million
from the favorable effect of the oil price increases on our business.

PRESIDENT: What’s that got to do with it? That’s like saying that we do not need
to worry when our sales are down in California because they are up in
New York.

TREASURER: If the price of oil had gone down...
PRESIDENT: I don’t care what would have happened if the price of oil had gone

down. The fact is that it went up. I really do not know what you were
doing playing the futures markets like this. Our shareholders will
expect us to have done particularly well this quarter. I’m going to have
to explain to them that your actions reduced profits by $10 million. I’m
afraid this is going to mean no bonus for you this year.
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. Business Snapshot 3.1 Hedging by Gold Mining Companies .
: - - .

1 It is natural for a gold mining company to consider hedging against changes in the
price-of gold. Typically it takes several years to extract all the gold from a mine.
1 Oncea gold mining company decides to go ahead with production at a particular 1
mine, it has-abig exposure to the priceof gold. Indeed a’mine.that looks profitableat

§1the_'o'utsetcouldbecome unprofitable if the price 0_f gold plunges. ~ . 0 0 j ,
f G015 i11i11_lI1i‘;7I3i5n1lpa1iies' arecalréful to explain theirih’edging strategies to (potential
shareholders.i:Some,goldminingicornpanies donot hedge; They tend to attract;
shareholders -xvhori-buy‘-gold stocks “because they want to benefit when the priceof
gold. increases and are prepared totaccept the risk*of* a loss from a decrease in the
priceof gold. Other companies choose to hedge. They ‘estimate thernumber of ounces
of gold ‘they’ will -produce each month for the next-few years and enterinto short
futures or forward contracts to lock in the price for all or part of this. I

Suppose you are Goldman Sachs and are approached by a gold mining company
that wants to sell you a large amount of goldinl year at a fixed price. How do you
set the-price and then hedge your risk? The answer is that you can hedge by
borrowing the gold from a central bank, selling itinnnediately in the spot market,

2and investing -the proceeds at the risk-free rate. At the end of the year, you buy the
gold from the -gold mining company and use it to repay the central bank. "The fixeds;/2
forward price you set for the gold reflects the risk-free rate you can earn and the lease :-

>'

rate -yourpay the central bank for borrowing the ‘gold. .1

-TREASURERI That’s unfair. I was only...
PRESIDENT: Unfair! You are lucky not to be fired. You lost $10 million.
TREASURERI It all depends on how you look at it. . .

It is easy to see why many treasurers are reluctant to hedge! Hedging reduces risk for the
company. However, it may increase risk for the treasurer if others do not fully under-
stand what is being done. The only real solution to this problem involves ensuring that
all senior executives within the organization fully understand the nature of hedging
before a hedging program is put in place. Ideally, hedging strategies are set by a
company's board of directors and are clearly communicated to both the company’s
management and the shareholders. (See Business Snapshot 3.1 for a discussion of
hedging by gold mining companies.)

BASIS RISK

The hedges in the examples considered so far have been almost too good to be true. The
hedger was able to identify the precise date in the future when an asset would be bought
or sold. The hedger was then able to use futures contracts to remove almost all the risk
arising from the price of the asset on that date. In practice, hedging is often not quite as
straightforward as this. Some of the reasons are as follows:

1. The asset whose price is to be hedged may not be exactly the same as the asset
underlying the futures contract.
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2. The hedger may be uncertain as to the exact date when the asset will be bought
or sold.

3. The hedge may require the futures contract to be closed out before its delivery
month.

These problems give rise to what is termed basis risk. This concept will now be explained.

The Basis
The basis in a hedging situation is as follows:2

Basis : Spot price of asset to be hedged — Futures price of contract used

If the asset to be hedged and the asset underlying the futures contract are the same, the
basis should be zero at the expiration of the futures contract. Prior to expiration, the
basis may be positive or negative. From Table 2.2, we see that, on May 26, 2010, the
basis was negative for gold and positive for short maturity contracts on soybeans.

As time passes, the spot price and the futures price for a particular month do not
necessarily change by the same amount. As a result, the basis changes. An increase in
the basis is referred to as a strengthening of the basis; a decrease in the basis is referred
to as a weakening of the basis. Figure 3.1 illustrates how a basis might change over time
in a situation where the basis is positive prior to expiration of the futures contract.

To examine the nature of basis risk, we will use the following notation:

S1: Spot price at time t1 3 4
S2: I Spot price at time t2
F1: Futures price at time t1
F2: Futures price at time t2
bl: Basis at time t1
b2: Basis at time t2.

I.
<

Figure 3.1 Variation of basis over time.
A

Spot price

Time
I I >

tl t2

p-i--i—-——ii¢-2-

2 This is the usual dcfinition. However, the alternative definition Basis = Futures price-Spot price is
sometimes used, particularly when the futures contract is on a financial asset.
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We will assume that a hedge is put in place at time t1 and closed out at time t2. As an
example, we will consider the case where the spot and futures prices at the time the
hedge is initiated are $2.50 and $2.20, respectively, and that at the time the hedge is
closed out they are $2.00 and $1.90, respectively. This means that S1 = 2.50, F1 : 2.20,
S2 : 2.00, and F2 : 1.90.

From the definition of the basis, we have

b1:S1—F1 and b2:S2'—F2

so that, in our example, bl = 0.30 and b2 = 0.10.
Consider first the situation of a hedger who knows that the asset will be sold at time t2

and takes a short futures position at time t1. The price realized for the asset is S2 and the
profit on the futures position is F1 - F2. The effective price that is obtained for the asset
with hedging is therefore I

S2-I-1'71-*F‘2-TF1-I-[92 I

In our example, this is $2.30. The value of F1 is known at time t1. If b2 were also known
at this time, a perfect hedge would result. The hedging risk is the uncertainty associated
with b2 and is known as basis risk. Consider next a situation where a company knows it
will buy the asset at time t2 and initiates a long hedge at time t1. The price paid for the
asset is S2 and the loss on the hedge is F1 - F2. The effective price that is paid with
hedging is therefore

S2+F1—F2:F1+b2

This is the same expression as before and is $2.30 in the example. The value of F1 is
known at time t1, and the term b2 represents basis risk.

Note that basis risk can lead to an improvement or a worsening of a hedger’s
position. Consider a short hedge. If the basis strengthens (i.e., increases) unexpectedly,
the hedger’s position improves; if the basis weakens (i.e., decreases) unexpectedly, the
hedger’s position worsens. For a long hedge, the reverse holds. If the basis strengthens
unexpectedly, the hedger’s position worsens; if the basis weakens unexpectedly, the
hedger’s position improves. I

The asset that gives rise to the hedger’s exposure is sometimes different from the
asset underlying the futures contract that is used for hedging. This is known as cross
hedging and is discussed in the next section. It leads to an increase in basis risk. Define
S2 as the price of the asset underlying the futures contract at time t2. As before, S2 is
the price of the asset being hedged at time t2. By hedging, a company ensures that the
price that will be paid (or received) for the asset is

S2 + F1 "— F2

This can be written as
F1+(-521- F2) + (S2 — Si)

The terms S2‘ - F2 and S2 — S2‘ represent the two components of the basis. The S2“ — F2
term is the basis that would exist if the asset being hedged were the same as the asset
underlying the futures contract. The S2 — S2“ term is the basis arising from the difference
between the two assets. .
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Choice of Contract
One key factor affecting basis risk is the choice of the futures contract to be used for
hedging. This choice has two components:

1. The choice of the asset underlying the futures contract
2. The choice of the delivery month.

If the asset being hedged exactly matches an asset underlying a futures contract, the first
choice is generally fairly easy. In other circumstances, it is necessary to carry out a
careful analysis to determine which of the available futures contracts has futures prices
that are most closely correlated with the price of the asset being hedged.

The choice of the delivery month is likely to be influenced by several factors. In the
examples given earlier in this chapter, we assumed that, when the expiration of the
hedge corresponds to a delivery month, the contract with that delivery month is chosen.
In fact, a contract with a later delivery month is usually chosen in these circumstances.
The reason is that futures prices are in some instances quite erratic during the delivery
month. Moreover, a long hedger runs the risk of having to take delivery of the physical
asset if the contract is held during the delivery month. Taking delivery can be expensive
and inconvenient. (Long hedgers normally prefer to close out the futures contract and
buy the asset from their usual suppliers.)

In general, basis risk increases as the time difference between the hedge expiration and
the delivery month increases. A good rule of thumb is therefore: to choose a delivery
month that is as close as possible to, but later than, the expiration of the hedge. Suppose
delivery months are March, June, September, and December for a futures contract on a
particular asset. For hedge expirations in December, January, and February, the March
contract will be chosen; for hedge expirations in March, April, and May, the June
contract will be chosen; and so on. This rule of thumb assumes that there is sufficient
liquidity in all contracts to meet the hedger’s requirements. In practice, liquidity tends to
be greatest in short-maturity futures contracts. Therefore, in some situations, the hedger
may be inclined to use short-maturity contracts and roll them forward. This strategy is
discussed later in the chapter.

Example 3.1 _ .
It is March 1. A US company expects to receive 50 million Japanese yen at the end
of July. Yen futures contracts on the CME Group have delivery months of March,
June, September, and December. One contract is for the delivery of 12.5 million
yen. The company therefore shorts four September yen futures contracts on
March 1. When the yen are received at the end of July, the company closes out
its position. We suppose that the futures price on March 1 in cents per yen is
0.7800 and that the spot and futures prices when the contract is closed out are
0.7200 and 0.7250, respectively.  

The gain on the futures contract is 0.7800 - 0.7250 : 0.0550 cents per yen. The
basis is 0.7200 - 0.7250 : —0.0050 cents per yen when the contract is closed out.
The effective price obtained in cents per yen is the final spot price plus the gain on
the futures:

0.7200 + 0.0550 : 0.7750
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This can also be written as the initial futures price plus the final basis:

~ 0.7800 + (—0.0050) : 0.7750

The total amount received by the company for the 50 million yen is 50 >< 0.00775
million dollars, or $387,500.

Example 3.2
It is June 8 and a company knows that it will need to purchase 20,000 barrels of
crude oil at some time in October or November. Oil futures contracts are currently
traded for delivery every month on the NYMEX division of the CME Group and
the contract size is 1,000 barrels. The company therefore decides to use the
December contract for hedging and takes a long position in 20 December con-
tracts. The futures price on June 8 is $68.00 per barrel. The company finds that it
is ready to purchase the crude oil on November 10. It therefore closes out its
futures contract on that date. The spot price and futures price on November 10
are $70.00 per barrel and $69.10 per barrel.

The gain on the futures contract is 69.10 - 68.00 = $1.10 per barrel. The basis
when the contract is closed out is 70.00 — 69.10 = $0.90 per barrel. The effective
price paid (in dollars per barrel) is the final spot price less the gain on the
futures, or

70.00 — 1.10 : 68.90

This can also be calculated as the initial futures price plus the final basis,

68.00 + 0.90 : 68.90

The total price paid is 68.90. >< 20,000 = $1,378,000.

CROSS HEDGING

In Examples 3.1 and 3.2, the asset underlying the futures contract was the same as the
asset whose price is being hedged. Cross hedging occurs when the two assets are
different. Consider, for example, an airline that is concerned about the future price
of jet fuel. Because jet fuel futures are not actively traded, it might choose to use heating
oil futures contracts to hedge its exposure.

The hedge ratio is the ratio of the size of the position taken in futures contracts to the
size of the exposure. When the asset underlying the futures contract is the same as the
asset being hedged, it is natural to use a hedge ratio of 1.0. This is the hedge ratio we
have used in the examples considered so far. For instance, in Example 3.2, the hedger’s
exposure was on 20,000 barrels of oil, and futures contracts were entered into for the
delivery of exactly this amount of oil.

When cross hedging is used, setting the hedge ratio equal to 1.0 is not always
optimal. The hedger should choose a value for the hedge ratio that minimizes the
variance of the value of the hedged position. We now consider how the hedger can do
this.
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Calculating the Minimum Variance Hedge Ratio
The minimum variance hedge ratio depends on the relationship between changes in the
spot price and changes in the futures price. Define:

AS: Change in spot price, S, during a period of time equal to the life of the hedge
AF: Change in futures price, F, during a period of time equal to the life of the

hedge.

We will denote the minimum variance hedge ratio by h*. It can be shown that h* is the
slope of the best-fit line from a linear regression of AS against AF (see Figure 3.2). This
result is intuitively reasonable. We would expect h* to be the ratio of the average change
in S for a particular change in F.

The formula for h* is:
11* = pi-Y (3.1)

UF

where as is the standard deviation of AS, UF is the standard deviation of AF, and ,0 is
the coeflicient of correlation between the two.

Equation (3.1) shows that the optimal hedge ratio is the product of the coeflicient of
correlation between AS and AF and the ratio of the standard deviation of AS to the
standard deviation of AF. Figure 3.3 shows how the variance of the value of the
hedger’s position depends on the hedge ratio chosen. ,

If p =: 1 and oF = o5, the hedge ratio, h*, is 1.0. This result is to be expected, because
in this case the futures price mirrors the spot price perfectly. If p = 1 and UF = 205, the
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Figure 3.2 Regression of change in spot price against change in futures price.
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Figure 3.3 Dependence of variance of hedger’s position on hedge ratio.
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hedge ratio h* is 0.5. This result is also as expected, because in this case the futures price
always changes by twice as much as the spot price. The hedge eflectiveness can be
defined as the proportion of the variance that is eliminated by hedging. This is the R2
from the regression of AS against AF and equals ,o2. 1

The parameters p, op, and as in equation (3.1) are usually estimated from historical
data on AS and AF. (The implicit assumption is that the future will in some sense be
like the past.) A number of equal nonoverlappingtime intervals are chosen, and the
values of AS and AF for each of the intervals are observed. Ideally, the length of each
time interval is the same as the length of the time interval for which the hedge is in
effect. In practice, this sometimes severely limits the number of observations that are
available, and a shorter time interval is used. 5

Optimal Number of Contracts
To calculate the number of contracts that should be used in hedging, define:

Q A: Size of position being hedged (units)
Q1.-: Size of one futures contract (units)
N *: Optimal number of futures contracts for hedging. 2

The futures contracts should be on h* QA units of the asset. The number of futures
contracts required is therefore given by I I

>|< _ h*QAN _ ——QF (3.2)

Example 3.3 will show how the results in this section can be used by an airline hedging
the purchase of jet fuel.3

<

3 Heating oil futures are more actively traded than jet fuel futures contracts. For an account of how Delta
Airlines used heating oil futures to hedge its future purchases of jet fuel, see A. Ness, “Delta Wins on Fuel,”
Risk, June 2001: 8. .



Hedging Strategies Using Futures 59

Example 3.3
An airline expects to purchase 2 million gallons of jet fuel in 1 month and decides
to use heating oil futures for hedging. We suppose that Table 3.2 gives, for
15 successive months, data on the change, AS, in the jet fuel price per gallon
and the corresponding change, AF, in the futures price for the contract on
heating oil that would be used for hedging price changes during the month. In
this case, the usual formulas for calculating standard deviations and correlations
give O'F : 0.0313, o5 : 0.0263, and ,0 : 0.928. 0

From equation (3.1), the minimum variance hedge ratio, h*, is therefore

0.0263
. —— : . 70928><O'0313 0777

Each heating oil contract traded on NYMEX is on 42,000 gallons of heating oil.
From equation (3.2), the optimal number of contracts is

0.7777 >< 2,000,000 _42,000 _ 37.03

or, rounding to the nearest whole number, 37.

- -_ \, , __ __ . _ _. .. V. - . . . _ '_ ,
. .-1-. . '.- - _ _ . ...- I . .4; ._-_¢ I"

Table 3.2 Data to calculate minimum variance hedge ratio
when heating oil futures contract is usedto hedge purchase of
jet fuel.

Change in Change in
heating oil futures jet fuel

Month price per gallon price per gallon
i (: AF) (: AS)

0.029
0.020

_ -0.044
0.00s

0.044 0.026
-0.029 -0.019
-0.026 -0.010
-0.029 -0.007

0.048 0.043
1 -0.006 0.011
1 -0.036 -0.036
1 -0.011 -0.01s
1 0.019 2 0.009
14 -0.027 -0.032
15 0.029 0.023

L»Jl\J>—*©\OOO\IO\L11-I>uJl\JI-*
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Tailing the Hedge
When futures are used for hedging, a small adjustment, known as tailing the hedge,
can be made to allow for the impact of daily settlement. In practice this means that
equation (3.2) becomes4

1v* = -5VA (3.3)VF
where VA is the dollar value of the position being hedged and VF is the dollar value of
one futures contract (the futures price times Q F). Suppose that in Example 3.3 the
spot price and the futures price are 1.94 and 1.99 dollars per gallon, respectively. Then
VA — 2,000,000 >< 1.94 = 3,880,0000 while VF = 42,000 >< 1.99 = 83,580, so that the
optimal number of contracts is

0.7777 >< 3, 880, 000
83’ 580 _ 36.10

If we round this to the nearest whole number, the optimal number of contracts is now
36 rather than 37. The effect of tailing the hedge is to multiply the hedge ratio in
equation (3.2) by the ratio of the spot price to the futures price. Theoretically, the
futures position used for hedging should then be adjusted as the spot price and futures
price change, but in practice this usually makes very little difference.

If forward contracts rather than futures contracts are used, there is no daily settle-
ment and equation (3.2) should be used. in

STOCK INDEX FUTURES

We now move on to consider stock index futures and how they are used to hedge or
manage exposures to equity prices.

A stock index tracks changes in the value of a hypothetical portfolio of stocks. The
weight of a stock in the portfolio at a particular time equals the proportion of the
hypothetical portfolio invested in the stock at that time. The percentage increase in the
stock index over a small interval of time is set equal to the percentage increase in the
value of the hypothetical portfolio. Dividends are usually not included in the calcula-
tion so that the index tracks the capital gain/loss from investing in the portfolio.5

If the hypothetical portfolio of stocks remains fixed, the weights assigned to individual
stocks in the portfolio do not remain fixed. When the price of one particular stock in the
portfolio rises more sharply than others, more weight is automatically given to that stock.
Sometimes indices are constructed from a hypothetical portfolio consisting of one of
each of a number of stocks. The weights assigned to the stocks are then proportional to
their market prices, with adjustments being made when there are stock splits. Other
indices are constructed so that weights are proportional to market capitalization (stock
price x number of shares outstanding). The underlying portfolio is then automatically
adjusted to reflect stock splits, stock dividends, and new equity issues.

\-

 -

4 See Problem 5.23 for an explanation of equation (3.3).

5 An exception to this is a total return index. This is calculated by assuming that dividends on the
hypothetical portfolio are reinvested in the portfolio.
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Stock lndices
Table 3.3 shows futures prices for contracts on a number of different stock indices on
May 26, 2010.

The Dow Jones Industrial Average is based on a portfolio consisting of 30 blue-chip
stocks in the United States. The weights given to the stocks are proportional to their
prices. The CME Group trades two futures contracts on the index. The one shown is on
$10 times the index. The other (the Mini DJ Industrial Average) is on $5 times the index.

The Standard & Poor ’s 500 (S&P500) Index is based on a portfolio of 500 different
stocks: 400 industrials, 40 utilities, 20 transportation companies, and 40 financial
institutions. The weights of the stocks in the portfolio at any given time are pro-
portional to their market capitalizations. The stocks are those of large publicly held
companies that trade on NY SE Euronext or Nasdaq OMX. The CME Group trades
two futures contracts on the S&P 500. The one shown is on $250 times the index; the
other (the Mini S&P 500 contract) is on $50 times the index.

The Nasdaq-100 is based on 100 stocks using the National Association of Securities
Dealers Automatic Quotations Service. The CME Group trades two futures contracts.
The one shown is on $100 times the index; the other (the Mini Nasdaq-100 contract) is
on $20 times the index. A

The Russell 1000 Index is an index of the prices of the 1,000 largest capitalization
stocks in the United States. The US Dollar Index is a trade-weighted index of the values
of six foreign currencies (the euro, yen, pound, Canadian dollar, Swedish krona, and
Swiss franc).

As mentioned in Chapter 2, futures contracts on stock indices are settled in cash, not
by delivery of the underlying asset. All contracts are marked to market to either the
opening price or the closing price of the index on the last trading day, and the positions
are then deemed to be closed. For example, contracts on the S&P 500 are closed out at
the opening price of the S&P 500 index on the third Friday of the delivery month.
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Table 3.3 Index futures quotes as reported by exchanges on May 26, 2010.

Open High Low Settlement Change Volume Open interest

Dow Jones Industrial Average, $10 times index (CME Group)
June 2010 10080 10160 9921 9921 -104 533 12,353
Sept. 2010 10080 10085 9864 9864 -104 2 225
S&P 500, $250 times index (CME Group)
June 2010 1080.0 1089.5 1060.5 1061.2
Sept. 2010 1084.0 1085.5 1057.5 1057.0

-11.8 43,076 296,397
-11.9 6,850 26,966

Dec. 2010 1074.0 1081.9 1052.9 1053.1
Nasdaq-100, $100 times index (CME Group)
June 2010 I 1827.0 1850.0 1788.0 1791.5
Russell 1000, $100 times index (ICE)
June 2010 595.4 601.0 586.4 585.7
US Dollar Index, $1000 times index (ICE)
June 2010 86.725 87.480 86.625 87.244
Sept. 2010 87.270 87.800 87.050 87.584

.; .-_. -_. 7 . ,_. ._ ., ‘_ .7 . . .- - -, . _ A> .

-11.8 7

-24.0 2,350

-5.8 1,214

0.356 37,321
0.356 74

. , , _ . V _ .

4,326

20,674

19,275

35,401
2,533
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Hedging an Equity Portfolio
Stock index futures can be used to hedge a well-diversified equity portfolio. Define:

VA: Current value of the portfolio  
VF: Current value of one futures contract (the futures price times the contract size).

If the portfolio mirrors the index, the optimal hedge ratio, h*, equals 1.0 and
equation (3.3) shows that the number of futures contracts that should be shorted is

N * = K4 (3.4)
VF

Suppose, for example, that a portfolio worth $5,050,000 mirrors the S&P 500. The
index futures price is 1,010 and each futures contract is on $250 times the index. In this
case VA = 5,050,000 and VF = 1,010 >< 250 = 252,500, so that 20 contracts should be
shorted to hedge the portfolio. i

When the portfolio does not exactly mirror the index, we can use the capital asset
pricing model (see the appendix to this chapter). The parameter beta (,6) from the
capital asset pricing model is the slope of the best-fit line obtained when excess return on
the portfolio over the risk-free rate is regressed against the excess return of the index over
the risk-free rate. When ,6 : 1.0, the return on the portfolio tends to mirror the return
on the index; when ,6 = 2.0, the excess return on the portfolio tends to be twice as great
as the excess return on the index; when ,6 = 0.5, it tends to be half as great; and so on.

A portfolio with a ,6 of 2.0 is twice as sensitive to movements in the index as a
portfolio with a beta 1.0. It is therefore necessary to use twice as many contractsto
hedge the portfolio. Similarly, a portfolio with a beta of 0.5 is half as sensitive to
market movements as a portfolio with a beta of 1.0 and we should use half as many
contracts to hedge it. In general,

*_ L N _eV;‘ (3.5)

This formula assumes that the maturity of the futures contract is close to the maturity
of the hedge.

Comparing equation (3.5) with equation (3.3), we see that they imply h* = ,6. This is
not surprising. The hedge ratio h* is the slope of the best-fit line when changes in the
portfolio are regressed against changes in the futures price of the index. Beta (,6) is the
slope of the best-fit line when the return from the portfolio is regressed against the
return for the index.

We illustrate that this formula gives good results by extending our earlier example.
Suppose that a futures contract with 4 months to maturity is used to hedge the value of
a portfolio over the next 3 months in the following situation:

Value of S&P 500 index = 1,000
S&P 500 futures price : 1,010
Value of portfolio = $5,050,000
Risk-free interest rate : 4% per annum
Dividend yield on index : 1% per annum
Beta of 1 portfolio : 1.5.
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One futures contract is for delivery of $250 times the index. As before, VF :
250 >< 1,010 = 252,500. From equation (3.5), the number of futures contracts that
should be shorted to hedge the portfolio is

5,050,000 _

Suppose the index turns out to be 900 in 3 months and the futures price is 902. The gain
from the short futures position is then

30 >< (1010 - 902) >< 250 = $810,000

The loss on the index is 10%. The index pays a dividend of 1% per annum, or 0.25%
per3 months. When dividends are taken into account, an investor in the index would
therefore earn -9.75% over the 3-month period. Because the portfolio has a 6 of 1.5,
the capital asset pricing model gives

Expected return on portfolio - Risk-free interest rate
= 1.5 >< (Return on index — Risk-free interest rate)

The risk-free interest rate is approximately 1% per 3 months. It follows that the expected
return (%) on the portfolio during the 3 months when the 3-month return on the index
is -9.75% is

1.0 + [1.5 >< (-9.75 _ 1.0)] = -15.125 1
The expected value of the portfolio (inclusive ofdividends) at the end of the 3 months is
therefore

3 $5,050,000 >< (1 - 0.15125) = $4,286,187

It follows that the expected value of the hedger’s position, including the gain on the
hedge, is 0 7

$4,286,187 + $810,000 = $5,096,187

Table 3.4 summarizes these calculations together with similar calculations for other
values of the index at maturity. It can be seen that the total expected value of the
hedger’s position in 3 months is almost independent of the value of the index.

The only thing we have not covered in this example is the relationship between futures
prices and spot prices. We will see in Chapter 5 that the 1,010 assumed for the futures
price today is roughly what we would expect given the interest rate and dividend we are
assuming. The same is true of the futures prices in 3 months shown in Table 3.4.6

Reasons for Hedging an Equity Portfolio
Table 3.4 shows that the hedging procedure results in a value for the hedger’s position
at the end of the 3-month period being about 1% higher than at the beginning of the
3-month period. There is no surprise here. The risk-free rate is 4% per annum, or 1%
per 3 months. The hedge results in the investor’s position growing at the risk-free rate.
1-11--_-_-iiq-i

1

6 The calculations in Table 3.4 assume that the dividend yield on the index is predictable, the risk-free interest
rate remains constant, and the return on the index over the 3-month period is perfectly correlated with the
return on the portfolio. In practice, these assumptions do not hold perfectly, and the hedge works rather less
well than is indicated by Table 3.4.
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Table 3.4 Performance of stock index hedge.

Value of index in three months: 900 950 1,000 1,050 1,100
Futures price of index today: 1,010 1,010 1,010 1,010 1,010
Futures price of index

in three months: 902 952 1,003 1,053 1,103
Gain on futures position ($): 810,000 435,000 52,500 —322,500 —697,500
Return on market: —9.750% —4.750% 0.250% 5.250% l0.250%
Expected return on portfolio: —15.125% —7.625% —0.125% 7.375% 14.875%
Expected portfolio value in three 3

months including dividends ($): 4,286,187 4,664,937 5,043,687 5,422,437 5,801,187
Total value of position

in three months ($): 5,096,187 5,099,937 5,096,187 5,099,937 5,103,687
- ~__._;_-3; '_ _' ~ '_- .,_-r_1 _~,- ;—_~-_v -~ - ~--_»_r _,; ,_--. -' :w_7 "~: 9, ;_::__ _'; ‘ j ‘_' __*f.-‘»_"‘ g .- .

It is natural to ask why the hedger should go to the trouble of using futures contracts.
To earn the risk-free interest rate, the hedger can simply sell the portfolio and invest the
proceeds in risk-free instruments such as Treasury bills.

One answer to this question is that hedging can be justified if the hedger feels that
the stocks in the portfolio have been chosen well. In these circumstances, the hedger
might be very uncertain about the performance of the market as a Whole, but
confident that the stocks in the portfolio will outperform the market (after appropriate
adjustments have been made for the beta of the portfolio). A hedge using index futures
removes the risk arising from market moves and leaves the hedger exposed only to the
performance of the portfolio relative to the market. This will be discussed further
shortly. Another reason for hedging may be that the hedger is planning to hold a
portfolio for a long period of time and requires short-term protection in an uncertain
market situation. The alternative strategy of selling the portfolio and buyingit back
later might involve unacceptably high transaction costs.  

Changing the Beta of a Portfolio
In the example in Table 3.4, the beta of the hedger’s portfolio is reduced to zero so that
the hedger’s expected return is almost independent of the performance of the index.
Sometimes futures contracts are used to change the beta of a portfolio to some value
other than zero. Continuing with our earlier example:

S&P 500 index = 1,000
S&P 500 futures price : 1,010
Value of portfolio = $5,050,000
Beta of portfolio = 1.5

As before, VF = 250 >< 1,010 : 252,500 and a complete hedge requires

= 5,050,000 _

contracts to be shorted. To reduce the beta of the portfolio from 1.5 to 0.75, the
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number of contracts shorted should be 15 rather than 30; to increase the beta of the
portfolio to 2.0, a long position in 10 contracts should be taken; and so on. In general,
to change the beta of the portfolio from ,8 to ,8*, where ,8 > ,8*, a short position in

<fl~fi*>%
contracts is required. When ,8 < ,8*, a long position in

V>|< ' A(,8 e) VF
contracts is required.

Locking in the Benefits of Stock Picking
Suppose you consider yourself to be good at picking stocks that will outperform the
market. You own a single stock or a small portfolio of stocks. You do not know how
well the market will perform over the next few months, but you are confident that your
portfolio will do better than the market. What should you do?

You should short ,8VA/VF index futures contracts, where 8 is the beta of your
portfolio, VA is the total value of the portfolio, and VF is the current value of one
index futures contract. If your portfolio performs better than a well~diversified portfolio
with the same beta, you will then make money.

Consider an investor who in April holds 20,000 IBM shares, each worth $100. The
investor feels that the market will be very volatile over the next three months but that
IBM.has a good chance of outperforming themarket. The investor decides to use the
August futures contract on the S&P 500 to hedge the market’s return during the three-
month period. The 8 of IBM is estimated at 1.1. Suppose that the current futures price for
the August contract on the S&P 500 is 900. Each contract is for delivery of $250 times the
index. In this case, VA : 20,000 >< 100 :3 2,000,000 and VF = 900 >< 250 = 225,000. The
number of contracts that should be shorted is therefore

2,000,000

Rounding to the nearest integer, the investor shorts 10 contracts, closing out the
position in July. Suppose IBM falls to $90 and the futures price of the S&P 500 falls
to 750. The investor loses 20,000 >< ($100 —— $90) : $200,000 on IBM, while gaining
10 x 250 >< (900 — 750) : $375,000 on the futures contracts.

The overall gain to the investor in this case is $175,000 because IBM did not go down
by as much as a well-diversified portfolio with a ,8 of 1.1. If the market had gone up and
IBM went up by more than a portfolio with a 8 of 1.1 (as expected by the investor),
then a profit would be made in this case as well.

STACK AND RGLL

Sometimes the expiration date of the hedge is later than the delivery dates of all the
futures contracts that can be used. The hedger must then roll the hedge forward by
closing out one futures contract and taking the same position in a futures contract with
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Table 3.5 Data for the example on rolling oil hedge forward.

Date Apr. 2011 Sept. 2011 Feb. 2012 June 2012

Oct. 2011 futures price 68.20 67.40
Mar. 2012 futures price 67.00 66.50
July 2012 futures price 66.30 65.90
Spot price 69.00  66.00
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a later delivery date. Hedges can be rolled forward many times. The procedure is known
as stack and roll. Consider a company that wishes to use a short hedge to reduce the risk
associated with the price to be received for an asset at time T. If there are futures
contracts 1, 2, 3,..., n (not all necessarily in existence at the present time) with
progressively later delivery dates, the company can use the following strategy:

Time t1: Short futures contract 1
Time t2: Close out futures contract 1

Short futures contract 2
Time t3: Close out futures contract 2

Short futures contract 3

Time t,,: Close out futures contract nt — 1
Short futures contract n '

Time T: Close out futures contract n.

Suppose that in April 2011 a company realizes that it will have 100,000 barrels of oil
to sell in June 2012 and decides to hedge its risk with a hedge ratio of 01.0. (In this
example, we do not make the “tailing” adjustment described in Section 3.4.) The current
spot price is $69. Although futures contracts are traded with maturities stretching several
years into the future, we suppose that only the first six delivery months have sufficient
liquidity to meet the company’s needs. The company therefore shorts 100 October 2011
contracts. In September 2011, it rolls the hedge forward into the March 2012 contract.
In February 2012, it rolls the hedge forward again into the July 2012 contract.

One -possible outcome is shown in Table 3.5. The October 2011 contract is shorted
at $68.20 per barrel and closed out at $67.40 per barrel for a profit of $0.80 per barrel;
the March 2012 contract is shorted at $67.00 per barrel and closed out at $66.50 per
barrel for a profit of $0.50 per barrel. The July 2012 contract is shorted at $66.30 per
barrel and closed out at $65.90 per barrel for a profit of $0.40 per barrel. The final
spot price is $66.

The dollar gain per barrel of oil from the short futures contracts is

(68.20 - 67.40) + (67.00 - 66.50) + (66.30 - 65.90) = 1.70
The oil price declined from $69 to $66. Receiving only $1.70 per barrel compensation
for a price decline of $3.00 may appear unsatisfactory. However, we cannot expect total
compensation for a price decline when futures prices are below spot prices. The best we
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Business Snapshot 3.2 Metallgesellschaft: Hedging Gone Awry -
. - - .

Sometimes rolling hedges, forward can lead to cash flow pressures. The problem was
illustrated dramatically by the activities of a German company, Metallgesellschaft
(MG), in the early 1990s.

MG sold a huge volume of 5- to 10-year heating oil and gasoline fixed-"price Supply
contracts to its customers at 6 to 8 cents‘ above market prices. It hedged its exposure
with long positions in short-dated futures contracts that were rolled forward. :_As:it
turned out, the price of oil fell and there were margin calls on the futures positions.
Considerable short-term cash flow pressures were placed on MG. The members of
MG who devised the hedging strategy argued that these short-term"casl1 outflows
were offset by positive cash flows that would ultimately be realized on thelong-term
fixed-price contracts. However, the company’s senior management and its bankers
became concerned about the huge cash drain. As a result, the company closed out all
the hedge positions and agreed with its customers that the fixed-price contracts would
be abandoned. The outcome was a loss to MG of $1.33 billion. * ' .

can hope for is to lock in the futures price that would apply to a June 2012 contract if it
were actively traded.

In practice, a company usually has an exposure every month to the underlying asset
and uses a 1-month futures contract for hedging because it is the most liquid. Initially it
enters into (“stacks”) sufficient contracts to cover its exposure to the end of its hedging
horizon. One month later, it closes out all the contracts and “rolls” them into new
1-month contracts to cover its new exposure, and so on.

As described in Business Snapshot 3.2, a German company, Metallgesellschaft,
followed this strategy in the early 1990s to hedge contracts it had entered into to supply
commodities at a fixed price. It ran into difficulties because the prices of the commod-
ities declined so that there were immediate cash outflows on the futures and the
expectation of eventual gains on the contracts. This mismatch between the timing of
the cash flows on hedge and the timing of the cash flows from the position being hedged
led to liquidity problems that could not be handled. The moral of the story is that
potential liquidity problems should always be considered when a hedging strategy is
being planned. 7'

SUMMARY

This chapter has discussed various ways in which a company can take a position in
futures contracts to offset an exposure to the price of an asset. If the exposure is such
that the company gains when the price of the asset increases and loses when the price of
the asset decreases, a short hedge is appropriate. If the exposure is the other way round
(i.e., the company gains when the price of the asset decreases and loses when the price
of the asset increases), a long hedge is appropriate.

Hedging is a way of reducing risk. As such, it should be welcomed by most
executives. In reality, there are a number of theoretical and practical reasons why
companies do not hedge. On a theoretical level, we can argue that shareholders, by
holding well-diversified portfolios, can eliminate many of the risks faced by a company.
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They do not require the company to hedge these risks. On a practical level, a company
may find that it is increasing rather than decreasing risk by hedging if none of its
competitors does so. Also, a treasurer may fear criticism from other executives if the
company makes a gain from movements in the price of the underlying asset and a loss
on the hedge.

_An important concept in hedging is basis risk. The basis is the difference between the
spot price of an asset and its futures price. Basis risk arises from uncertainty as to what
the basis will be at maturity of the hedge.

The hedge ratio is the ratio of the size of the position taken in futures contracts to the
size of the exposure. It is not always optimal to use a hedge ratio of 1.0. If the hedger
wishes to minimize the variance of a position, a hedge ratio different from 1.0 may be
appropriate. The optimal hedge ratio is the slope of the best-fit line obtained when
changes in the spot price are regressed against changes in the futures price.

Stock index futures can be used to hedge the systematic risk in an equity portfolio.
The number of futures contracts required is the beta of the portfolio multiplied by the
ratio of the value of the portfolio to the value of one futures contract. Stock index
futures can also be used to change the beta of a portfolio without changing the stocks
that make up the portfolio.

When there is no liquid futures contract that matures later than the expiration of the
hedge, a strategy known as stack and roll may be appropriate. This involves entering
into a sequence of futures contracts. When the first futures contract is near expiration, it
is closed out and the hedger enters into a second contract with a later delivery month.
When the second contract is close to expiration, it is closed out and the hedger enters
into a third contract with a later delivery month; and soon. The result of all this is the
creation of a long-dated futures contract by trading a series of short-dated contracts.
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Practice Questions (Answers in Solutions Manual)
,, .

Under what circumstances are (a) a short hedge and (b) a long hedge appropriate‘?
Explain what is meant by basis risk when futures contracts are used for hedging.
Explain what is meant by a perfect hedge. Does a perfect hedge always lead to a better
outcome than an imperfect hedge? Explain your answer.
Under what circumstances does a minimum variance hedge portfolio lead to no hedging
at all?
Give three reasons why the treasurer of a company might not hedge the company’s
exposure to a particular risk.
Suppose that the standard deviation of quarterly changes in the prices of a commodity is
$0.65, the standard deviation of quarterly changes in a futures price on the commodity
is $0.81, and the coeflicient of correlation between the two changes is 0.8. What is the
optimal hedge ratio for a 3-month contract? What does it mean‘?
A company has a $20 million portfolio with a beta of 1.2. It would like to use futures
contracts on the S&P 500 to hedge its risk. The index futures price is currently standing
at 1080, and each contract is for delivery of $250 times the index. What is the hedge that
minimizes risk‘? What should the company do if it wants to reduce the beta of the
portfolio to 0.6‘?

In the corn futures contract traded on an exchange, the following delivery months are
available: March, May, July, September, and December. Which of the available
contracts should beused for hedging when the expiration of the hedge is in (a) June,
(b) July, and (c) January.
Does a perfect hedge always succeed in locking in the current spot price of an asset for a
future transaction‘? Explain your answer.
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Explain why a short hedger’s position improves when the basis strengthens unexpectedly
and worsens when the basis weakens unexpectedly-

Imagine you are the treasurer of a Japanese company exporting electronic equipment to
the United States. Discuss how you would design a foreign exchange hedging strategy and
the arguments you would use to sell the strategy to your fellow executives.

Suppose that in Example 3.2 of Section 3.3 the company decides to use a hedge ratio of
0.8. How does the decision affect the way in which the hedge is implemented and the
result‘?
“If the minimum variance hedge ratio is calculated as 1.0, the hedge must be perfect.” Is
this statement true? Explain your answer.

“If there is no basis risk, the minimum variance hedge ratio is always 1.0.” Is this
statement true‘? Explain your answer.
“For an asset where futures prices are usually less than spot prices, long hedges are likely
to be particularly attractive.” Explain this statement.
The standard deviation of monthly changes in the spot price of live cattle is (in cents per
pound) 1.2. The standard deviation of monthly changes in the futures price of live cattle
for the closest contract is 1.4. The correlation between the futures price changes and the
spot price changes is 0.7. It is now October 15. A beef producer is committed to
purchasing 200,000 pounds of live cattle on November 15. The producer wants to use
the December live cattle futures contracts to hedge its risk. Each contract is for the
delivery of 40,000 pounds of cattle. What strategy should the beef producer follow‘?
A corn farmer argues “I do not use futures contracts for hedging. My real risk is not the
price of corn. It is that my whole crop gets wiped out by the weather.” Discuss this
viewpoint. Should the farmer estimate his or her expected production of corn and hedge
to try to lock in a price for expected production‘?

On July 1, an investor holds 50,000 shares of a certain stock. The market price is $30 per
share. The investor is interested in hedging against movements in the market over the next
month and decides to use the September Mini S&P 500 futures contract. The index
futures price is currently 1,500 and one contract is for delivery of $50 times the index. The
beta of the stock is 1.3. What strategy should the investor follow? Under what circum-
stances will it be profitable?
Suppose that in Table 3.5 the company decides to use a hedge ratio of 1.5. How does the
decision affect the way the hedge is implemented and the result‘?

A futures contract is used for hedging. Explain why the daily settlement of the contract
can give rise to cash-flow problems.
An airline executive has argued: “There is no point in our using oil futures. There is just
as much chance that the price of oil in the future will be less than the futures price as there
is that it will be greater than this price.” Discuss the executive’s viewpoint.
Suppose that the 1-year gold lease rate is 1.5% and the 1-year risk-free rate is 5.0%. Both
rates are compounded annually. Use the discussion in Business Snapshot 3.1 to calculate
the maximum 1-year gold forward price Goldman Sachs should quote to the gold-mining
company when the spot price is $1,200.
The expected return on the S&P 500 is 12% and the risk-free rate is 5%. What is the
expected return on an investment with a beta of (a) 0.2, (b) 0.5, and (c) 1.4?
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Further Questions

3.24. A company wishes to hedge its exposure to a new fuel whose price changes have a 0.6
correlation with gasoline futures price changes. The company will lose $1 million for each
1 cent increase in the price per gallon of the new fuel over the next three months. The new
fuel’s price changes have a standard deviation that is 50% greater than price changes in
gasoline futures prices. If gasoline futures are used to hedge the exposure, what should the
hedge ratio be? What is the company’s exposure measured in gallons of the new fuel?
What position, measured in gallons, should the company take in gasoline futures? How

 many gasoline futures contracts should betraded? Each contract is on 42,000 gallons.
3.25. A portfolio manager has maintained an actively managed portfolio with a beta of 0.2.

During the last year, the risk-free rate was 5% and equities performed very badly
providing a return of -30%. The portfolio manager produced a return of -10% and
claims that in the circumstances it was a good performance. Discuss this claim.

3.26. The following table gives data on monthly changes in the spot price and the futures price
for a certain commodity. Use the data to calculate a minimum variance hedge ratio.
 QM I M i I M i I I M. M i i =1 i i’ M it i i ii

Spot price change +0.50 +0.61 -0.22 -0.35 +0.79
Futures price change +0.56 +0.63 -0.12 -0.44 +0.60

Spot price change +0.04 +0.15 +0.70 -0.51 -0.41
Futures price change -0.06 +0.01 +0.80 -0.56 -0.46

3.27. It is July 16. A company has a portfolio of stocks worth $100~million. The beta of the
portfolio is 1.2. The company would like to use the CME December futures contract on
the S&P 500 to change the beta of the portfolio to 0.5 during the period July 16 to
November 16. The index futures price is currently 1,000 and each contract is on $250 times
the index.
(a) What position should the company take?
(b) Suppose that the company changes its mind and decides to increase the beta of the

portfolio from 1.2 to 1.5. What position in futures contracts should it take?
3.28. A fund manager has a portfolio worth $50 million with a beta of0.87. The manager is

concerned about the performance of the market over the next 2 months and plans to use
3-month futures contracts on the S&P 500 to hedge the risk. The current level of theindex is
1,250, one contract is on 250 times the index, the risk-free rate is 6% per annum, and the
dividend yield on the index is 3% per annum. The current 3-month futures price is 1,259.
(a) What position should the fund manager take to hedge all exposure to the market over

the next 2 months?
(b) Calculate the effect of your strategy on the fund manager’s returns if the indexin

2 months is 1,000, 1,100, 1,200, 1,300, and 1,400. Assume that the 1-month futures price
is 0.25% higher than the index level at this time.

3.29. It is now October 2010. A company anticipates that it will purchase 1 million pounds of
copper in each of February 2011, August 2011, February 2012, and August 2012. The
company has decided to use the futures contracts traded in the COMEX division of the
CME Group to hedge -its risk. One contract is for the delivery of 25,000 pounds of copper.
The initial margin is $2,000 per contract and the maintenance margin is $1,500 per
contract. The companv’s policy is to hedge 80% of its exposure. Contracts with maturities
up to 13 months into the future are considered to have sufficient liquidity to meet the
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company’s needs. Devise a hedging strategy for the company. (Do not make the “tailing”
adjustment described in Section 3.4.)

Assume the market prices (in cents per pound) today and at future dates are as in the
following table. What is the impact of the strategy you propose on the price the company
pays for copper? What is the initial margin requirement in October 2010? Is the company
subject to any margin calls?

Date Oct. 2010 Feb. 2011 Aug. 2011 Feb. 2012 Aug. 2012

Spot price
Mar. 2011 futures price
Sept. 2011 futures price
.Mar. 2012 futures price
Sept. 2012 futures price

372.00 369.0‘
372.30 369.11
372.80 370.21

Qwww

365.00 377.00 388.00

364.80
370.7 364.30 376.70

364.20 376.50 388.20
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APPENDIX
CAPITAL ASSET PRICING MODEL

The capital asset pricing model (CAPM) is a model that can be used to calculate the
expected return from an asset during a period in terms of the risk of the return. The risk
in the return from an asset is divided into two parts. Systematic risk is risk related to the
return from the market as a whole and cannot be diversified away. Nonsystematic risk is
risk that is unique to the asset and can be diversified away by choosing a large portfolio
of different assets. CAPM argues that the return should depend only on systematic risk.
The CAPM formula is7

j Expected return on asset : RF + ,8(RM - RF) (3A.l)

where RM is the return on the portfolio of all available investments, RF is the return on
a risk-free investment, and 8 (the Greek letter beta) is a parameter measuring
systematic risk.

The return from the portfolio of all available investments, RM. is referred to as the
return on the market and is usually approximated as the return on a well-diversified
stock index such as the S&P 500. The beta (,8) of an asset is a measure of the sensitivity
of its returns to returns from the market. It can be estimated from historical data as the
slope obtained when the excess return on the asset over the risk-free rate is regressed
against the excess return on the market over the risk-free rate. When )8 = 0, an asset’s
returns are not sensitive to returns from the market. In this case, it has no systematic
risk and equation (3A.l) shows that its expected return is the risk-free rate; when
,8 = 0.5, the excess return on the asset over the risk-free rate is on average half of the
excess return of the market over the risk-free rate; when ,8 = 1, the expected return on
the asset equals to the return on the market; and so on. M

Suppose that the risk-free rate RF is 5% and the return on the market is 13%.
Equation (3A. 1) shows that, when the beta of an asset is zero, its expected return is 5%.
When 8 = 0.75, its expected return is 0.05 + 0.75 >< (0.13 - 0.05) -= 0.11, or 11%.

The derivation of CAPM requires a number of assumptions.8 In particular:

1. Investors care only about the expected return and standard deviation of the return
from an asset. 1

2. The returns from two assets are correlated with each other only because of their
correlation with the return from the market. This is equivalent to assuming that
there is only one factor driving returns.

3. Investors focus on returns over a single period and that period is the the same for
all investors.

4. Investors can borrow and lend at the same risk-free rate.
5. Tax does not influence investment decisions.
6. All investors make the same estimates of expected returns, standard deviations of

returns, and correlations betweeen returns.

7 If the return on the market is not known, RM is replaced by the expected value of RM in this formula.

8 For details on the derivation, see, for example, J . Hull, Risk Management and Financial Institutions, 2nd
edn. Upper Saddle River, NJ: Pearson, 2010, Chap. 1.
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These assumptions are at best only approximately true. Nevertheless CAPM has proved
to be a useful tool for portfolio managers and is often used as a benchmark for
assessing their performance.

When the asset is an individual stock, the expected return given by equation (3A.l) is
not a particularly good predictor of the actual return. But, when the asset is a well-
diversified portfolio of stocks, it is a much better predictor. As a result, the equation

Return on diversified portfolio : RF + 8(RM — RF)

can be used as a basis for hedging a diversified portfolio, as described in Section 3.5.
The 8 in the equation is the beta of the portfolio. It can be calculated as the weighted
average of the betas of the stocks in the portfolio.
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Interest rates are a factor in the valuation of virtually all derivatives and will feature
prominently in much of the material that will be presented in the rest of this book. This
chapter deals with some fundamental issues concerned with the way interest rates are
measured and analyzed. It explains the compounding frequency used to define an
interest rate and the meaning of continuously compounded interest rates, which are
used extensively in the analysis of derivatives. It covers zero rates, par yields, and yield
curves, discusses bond pricing, and outlines a “bootstrap” procedure commonly used by
a derivatives trading desk to calculate zero-coupon Treasury interest rates. It also covers
forward rates and forward rate agreements and reviews different theories of the term
structure of interest rates. Finally, it explains the use of duration and convexity measures
to determine the sensitivity of bond prices to interest rate changes.

Chapter 6 will cover interest rate futures and show how the duration measure can be
used when interest rate exposures are hedged. For ease of exposition, day count
conventions will be ignored throughoutthis chapter. The nature of these conventions
and their impact on calculations will be discussed in Chapters 6 and 7. 0

TYPES OF RATES

An interest rate in a particular situation defines the amount of money a borrower
promises to pay the lender. For any given currency, many different types of interest rates
are regularly quoted. These include mortgage rates, deposit rates, prime borrowing
rates, and so on. The interest rate applicable in a situation depends on the credit risk.
This is the risk that there will be a default by the borrower of funds, so that the interest
and principal are not paid to the lender as promised. The higher the credit risk, the
higher the interest rate that is promised by the borrower.

Treasury Rates
Treasury rates are the rates an investor earns on Treasury bills and Treasury bonds.
These are the instruments used by a government to borrow in its own currency.
Japanese Treasury rates are the rates at which the Japanese government borrows in
yen; US Treasury rates are the rates at which the US government borrows in US
dollars; and so on. It is usually assumed that there is no chance that a government will

075
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default on an obligation denominated in its own currency. Treasury rates are therefore
totally risk-free rates in the sense that an investor who buys a Treasury bill or
Treasury bond is certain that interest and principal payments will be made as
promised. 6

LIBOR F
LIBOR is short for London Interbank Oflered Rate. It is a reference interest rate,
produced once a day by the British Bankers’ Association, and is designed to reflect
the rate of interest at which banks are prepared to make large wholesale deposits with
other banks. LIBOR is quoted in all major currencies for maturities up to 12 months:
1-month LIBOR is the rate at which 1-month deposits are offered, 3-month LIBOR is
the rate at which 3-month deposits are offered, and so on. I

A deposit with a bank can be regarded as a loan to that bank. A bank must therefore
satisfy certain creditworthiness criteria in order to be able to receive deposits from
another bank at LIBOR. Typically it must have a AA credit rating.1

A rate closely related to LIBOR is LIBID. This is the London Interbank Bid Rate and is
the rate at which banks will accept deposits from other banks. At any specified time, there
is a small spread between LIBID and LIBOR rates (with LIBOR higher than LIBID).
The rates themselves are determined by active trading between banks and adjust so that
the supply of funds in the interbank market equals the demand for funds in that market.
For example, ifmore banks want to borrow US dollars for 3 months than lend US dollars
for 3 months, the 3-month US LIBID and LIBOR rates will increase. Similarly, if more
banks want to lend 3-month funds than borrow these funds, the 3-month LIBID and
LIBOR rates will decrease. This interbank market is known as the Eurocurrency market.
It is outside the control of any one government. 6

Repo Rates -
Sometimes trading activities are funded with a repurchase agreement, repo. This is a
contract where an investment dealer who owns securities agrees to sell them to
another company now and buy them back later at a slightly higher price. The other
company is providing a loan to the investment dealer. The difference. between the
price at which the securities are sold and the price at which they are repurchased is the
interest it earns. The interest rate is referred to as the repo rate. If structured carefully,
the loan involves very little credit risk. If the borrower does not honor the agreement,
the lending company simply keeps the securities. If the lending company does not
keep to its side of the agreement, the original owner of the securities keeps the cash.
The most common type of repo is an overnight repo, in which the agreement is
renegotiated each day. However, longer-term arrangements, known as term repos, are
sometimes used. 0

The Risk-Free Rate E
The “risk-free rate” is used extensively in the evaluation of derivatives. It might be
thought that derivatives traders would use the interest rates implied by Treasury bills

I As explained in Chapter 23, the best credit rating given to a company by rating agencies S&P and Fitch is
AAA. The second best is AA. The corresponding ratings from Moody’s are Aaa and Aa, respectively.
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Business Snapshot 4.1 What Is the Risk-Free Rate?
- 

Derivatives dealers argue that the interest rates implied by Treasury bills and
Treasury bonds are artificially low because: ~

1. Treasury bills and Treasury bonds must be purchased by financial institutions
‘to, fulfill a variety of regulatory requirements. This increases demand for these
Treasurylinstruments driving the price up and the yielddown. 1 6

2. The amount of capital a_bank is required to hold to support an investment in
Treasury bills gandbonds is substantially ‘smaller than the capital required to
support a similar investment in other instruments with very low risk.

3. In the United States, Treasury instruments are given a favorabletax treatment
1 compared with most other fixed-income investments because they are not taxed

at the state level. I F
Traditionally derivatives dealers havelassumed that LIBOR rates are risk-free and,
for ease of exposition, this what we will do in this book. But LIBOR rates are not
totally risk-free.‘ Following the credit crisis that started in 2007, many dealers
switched to using overnight indexed swap rates as risk-free rates. These rates are
discussed in Section 7.8. 6 6 I

and bonds as risk-free rates. In fact, they do not do this. As indicated in Business
Snapshot 4.1, there are a number of tax and regulatory issues that cause Treasury rates
to be artificially low. t

Financial institutions have traditionally used LIBOR rates as risk-free rates. For a
AA-rated financial institution LIBOR is the short-term opportunity cost of capital. The
financial institution can borrow short-term funds at the LIBOR quotes of other
financial institutions and can lend funds to other financial institutions at its own
LIBOR quotes. LIBOR rates are not totally free of credit risk. For example, when
funds are lent at 3-month LIBOR to a AA-rated financial institution, there is a small
chance that it will default during the 3 months. However, they are close to risk-free in
normal market conditions. LIBOR rates have maturities up to 1 year. As we will explain
later, traders have traditionally used Eurodollar futures and interest rate swaps to
extend the risk-free LIBOR yield curve beyond 1 year.

The credit crisis that started in 2007 caused many derivatives dealers to critically
review their practices. This is because banks became very reluctant to lend to each other
during the crisis and LIBOR rates soared. Many dealers have now switched to using the
overnight indexed swap (OIS) rate as a proxy for the risk-free rate. This rate will be
explained in Section 7.8. It is closer to risk-free than LIBOR.

MEASURING INTEREST RATES
1

A statement by a bank that the interest rate on one-year deposits is 10% per annum
sounds straightforward and unambiguous. In fact, its precise meaning depends on the
way the interest rate is measured.
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Table 4.1 Effect of the compounding frequency on the
value of $100 at the end of 1 year when the interest rate
is 10% per annum.

Compounding frequency Value of $100
_ at end of year ($)

Annually (m : 1) 110.00
Semiannually (m : 2) 110.25
Quarterly (m : 4) 110.38
Monthly (m : 12) 110.47
Weekly (m = 52) 110.51
Daily (m : 365) 110.52
$11‘ 1"->_1Z;i"'...‘- ,7 .7-' Z!‘ '.;§i-'jY.‘_‘_‘1.'. F‘ -‘Q1-£11 ..,.¢.¢i~1 ,."'.-' '1 .- A’ iI.r_'.JT1~Til.'fZ.'3I; "S VJ“-"IY_‘. .1 "' ‘f .‘T."~."Lfl?3_.;._:j,;;.,§,1.,1!

If the interest rate is measured with annual compounding, the bank’s statement that
the interest rate is 10% means that $100 grows to

$100 ><1.1= $110

at the end of 1 year. When the interest rate is measured with semiannual compounding,
it means that 5% is earned every 6 months, with the interest being reinvested. In this
case $100 grows to 6

$100 >< 1.05 ><1.05 F-_ $110.25 "

at the end of 1 year. When the interest rate is measured with quarterly compounding,
the bank’s statement means that 2.5% is earned every 3 months, with the interest being
reinvested. The $100 then grows to

$100 >< 1.0254 = $110.38
at the end of 1 year. Table 4.1 shows the effect of increasing the compounding frequency
further. 3

The compounding frequency defines the units in which an interest rate is measured. A
rate expressed with one compounding frequency can be converted into an equivalent
rate with a different compounding frequency. For example, from Table 4.-1 we see that
10.25% with annual compounding is equivalent to 10% with semiannual compound-
ing. We can think of the difference between one compounding frequency and another to
be analogous to the difference between kilometers and miles. They are two different
units of measurement. 5

To generalize our results, suppose that an amount A is invested for n years at an
interest rate of R per annum. If the rate is compounded once per annum, the terminal
value of the investment is

A(1 + R)”

If the rate is compounded m times per annum, the terminal value of the investment is

. +B)flIl1

I’l’l

When m : 1, the rate is sometimes referred to as the equivalent annual interest rate.
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Continuous Compounding
The limit as the compounding frequency, m, tends to infinity is known as continuous
compounding.2 With continuous compounding, it can be shown that an amount A
invested for n years at rate R grows to

, .4@R" (4.2)
where e =: 2.71828. The exponential function, ex, is built into most calculators, so the
computation of the expression in equation (4.2) presents no problems. In the example in
Table 4.1, A :: 100, n : 1, and R : 0.1, so that the value to which A grows with
continuous compounding is

10060-1 = $110.52
This is (to two decimal places) the same as the value with daily compounding. For most
practical purposes, continuous compounding can be thought of as being equivalent to
daily compounding. Compounding a sum of money at a continuously compounded rate
R for n years involves multiplying it by eR”. Discounting it at a continuously com-
pounded rate R for n years involves multiplying by e"R".

In this book, interest rates will be measured with continuous compounding except
where stated otherwise. Readers used to working with interest rates that are measured
with annual, semiannual, or some other compounding frequency may find this a little
strange at first. However, continuously compounded interest rates are used to such a great
extent in pricing derivatives that it makes sense to get used to working with them now.

Suppose that RC is a rate of interest with continuous compounding and Rm is the
equivalent rate with compounding m times per annum. From the results in equa-
tions (4.1) and (4.2), we have .

R "U1

AeR‘” : A(1+-3)
. m

R m

eRC :1 (1 +-11-)
m

This means that  
Rm\ .-

12, = m ln(l + --) (4.3)
m

OI“

and
Rm = m(@’*@/'" - 1) (4.4)

These equations can be used to convert a rate with a compounding frequency of m times
per annum to a continuously compounded rate and vice versa. The natural logarithm
function ln x, which is built into most calculators, is the inverse of the exponential
function, so that, if y -—_- ln x, then x : ey.

Example 4. 1
Consider aninterest rate that is quoted as 10% per annum with semiannual
compounding. From equation (4.3) with in : 2 and Rm :: 0.1, the equivalent rate

2 Actuaries sometimes refer to a continuously compounded rate as the force of interest.
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with continuous compounding is

’ 0.121n(1+ 7 = 0.09758
or 9.758% per annum.

Example 4.2
Suppose that a lender quotes the interest rate on loans as 8% per annum with
continuous compounding, and that interest is actually paid quarterly. From
equation (4.4) with m = 4 and RC = 0.08, the equivalent rate with quarterly
compounding is .

4 >< (@°-0*/4 - 1) = 0.0808
or 8.08% per annum. This means that on a $1,000 loan, interest payments of
$20.20 would be required each quarter.

ZERO RATES  
The n-year zero-coupon interest rate is the rate of interest earned on an investment that
starts today and lasts for n years. All the interest and principal is realized at the end of
n years. There are no intermediate payments. The n-year zero-coupon interest rate is
sometimes also referred to as the n-year spot rate, the n-year zero rate, or just the n-year
zero. Suppose a 5-year zero rate with continuous compounding is quoted as 5% per
annum. This means that $100, if invested" for 5 years, grows to

100 >< @°~°5><5 = 128.40
Most of the interest rates we observe directly in the market are not pure zero rates.
Consider a 5-year government bond that provides a 6% coupon. The price of this bond
does not by itself determine the 5-year Treasury zero rate because some of the return on
the bond is realized in the form of coupons prior to the end of year 5. Later in this
chapter we will discuss how we can determine Treasury zero rates from the market
prices of coupon-bearing bonds.

BOND PRICING

Most bonds pay coupons to the holder periodically. The bond’s principal (which is also
known as its par value or face value) is paid at the end of its life. The theoretical price
of a bond can be calculated as the present value of all the cash flows that will be
received by the owner of the bond. Sometimes bond traders use the same discount rate
for all the cash, flows underlying a bond, but a more accurate approach is to use a
different zero rate for each cash flow.

To illustrate this, consider the situation where Treasury zero rates, measured with
continuous compounding, are as in Table 4.2. (We explain later how these can be
calculated.) Suppose that a 2-year Treasury bond with a principal of $100 provides
coupons at the rate of 6% per annum semiannually. To calculate the present value of
the first coupon of $3, we discount it at 5.0% for 6 months; to calculate the present
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Table 4.2 Treasury zero rates.

Maturity (years) Zero rate (%)
(continuously compounded)

5.0
5.8
6.4
6.8

1-"-1 .t.,:-1"; .1. J“. . - . -~.. W"-1 . 1»

0.5
11.0
1.5
2.0

*1.‘ . . -

value of the second coupon of $3, we discount it at 5.8% for 1 year; and so on.
Thereforethe theoretical price of the bond is

3e—0.05X0.5 + 36-0.058Xl.0 + 36-—O.064Xl.5 + 1O3e—O.068><2.0 I

or $98.39.

Bond Yield
A bond’s yield is the single discount rate that, when applied to all cash flows, gives a
bond price equal to its market price. Suppose that the theoretical price of the bond we
have been considering, $98.39, is also its market value (i.e., the market’s price of the
bond is in exact agreement with the data in Table 4.2). If y is the yield on the bond,
expressed with continuous compounding, it must be true that "

3e—yx0.5 + 3e—y><l.0 + 36-y><l.5 + 1036-y><2.O.‘:

This equation can be solved using an iterative (“trial and error”) procedure to give
y :: 6.76%.}

Par Yield
The par yield for a certain bond maturity is the coupon rate that causes the bond price to
equal its par value. (The par value is the same as the principal value.) Usually the bond is
assumed to provide semiannual coupons. Suppose that the coupon on a 2-year bond in
our example is c per annum (or %c per 6 months). Using the zero rates in Table 4.2, the
value of the bond is equal to its par value of 100 when

Q -0.05><0.5 Q -0.05s><1.0 Q -0.064><1.5 E -0.06s><2.0 _ 12e +2e +2e +(100+2)e _-00

This equation can be solved in a straightforward way to give c : 6.87. The 2-year par
yield is therefore 6.87% per annum. This has semiannual compounding because
payments are assumed to be made every 6 months. With continuous compounding,
the rate is 6.75% per annum.

More generally, if d is the present value of $1 received at the maturity of the bond,
A is the value of an annuity that pays one dollar on each coupon payment date, and in

3 One way of solving nonlinear equations of the form f(y) = 0, such as this one, is to use the Newton-Raphson
method. We start with an estimate yo of the solution and produce successively better estimates y| , y;)_, y3, . ..
using the formula y,-+1 : y,- - f(y,-)/f’(y;), where f’(y) denotes the derivative of f with respect to y.
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is the number of coupon payments per year, then the par yield c must satisfy

100 = 215+ 100.1
I71

so that
(100 - 100d)m

C A
In OL11‘ example, m = 2, d = @"°~°68><2 = 0.87284, and

A Z e-—0.05><O.5 + e—0.058Xl.0 + e——0.064Xl.5 + e—0.068X2.0 I

The formula confirms that the par yield is 6.87% per annum.

DETERMINING TREASURY ZERO RATES F

One way of determining Treasury zero rates such as those in Table 4.2 is to observe the
yields on “strips.” These are zero-coupon bonds that are synthetically created by traders
when they sell coupons on a Treasury bond separately from the principal.

Another way to determine Treasury zero rates is from Treasury bills and coupon-
bearing bonds. The most popular approach is known as the bootstrap method. To
illustrate the nature of the method, consider the data in Table 4.3 on the prices of five
bonds. Because the first three bonds pay no coupons, the zero rates corresponding to
the maturities of these bonds can easily be calculated. The 3-"month bond has the effect
of turning an investment of 97.5 into 100 in 3 months. The continuously compounded
3-month rate R is therefore given by solving

100 = 97.5@R><°-25
It is 10.127% per annum. The 6-month continuously compounded rate is similarly
given by solving

100 = 94.9@"><°~5
It is l0.469% per annum. Similarly, the 1-year rate with continuous compounding is
given by solving p

100 = 90@’*><‘-°
It is 10.536% per annum.

3 .‘-' 7-} i%'E*'1'.._‘..'}'.'."-fififi 3'3 .1737 'j".'EI=’.7§27€.~.TI- ‘IQ ‘Z-C71‘ ".-';§/1i"I "L1""'I.‘§'.‘-J.‘ 4'-.‘§i"?"i.‘I‘II" .‘lIY"f'”“"" “"" W“ 1' '."!§.\'I.‘i'*_‘1‘f"U'>.'*' Y1“""

Table 4.3 Data for bootstrap method.

Bond principal Time to maturity Annual coupon* Bond price
($) (years) ($) ($)
100 0.25 0 97.5
100 0.50 0 94.9
100 1.00 0 90.0
100 1.50 8 96.0
100 2.00 12 101.6

* Half the stated coupon is assumed to be paid every 6 months.
F ‘_-Mr’, ,.‘. ., , ..-‘>.-..-.._ .._. -__,'_‘_ Va N _. ‘I g.‘ P _ U. -.__.-_, . _,_-'...=- . _-1-_ ._._ .

.__ . »- _ r . _. . .- .
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The fourth bond lasts 1.5 years. The payments are as follows:

6 months: $4
1 year: $4
1.5 years: $104. I

From our earlier calculations, we know that the discount rate for the payment at the end
of 6 months is l0.469% and that the discount rate for the payment at the end of 1 year is
10.536%. We also know that the bond’s price, $96, must equal the present value of all the
payments received by the bondholder. Suppose the 1.5-year zero rate is denoted by R. It
follows that

4e—0.10469><0.5 + 4e_0.10536><1.0 + 1046-R><l.5 : 96

This reduces to
1 e_l'5R = 0.85196

Of

R _. 1“(0'18?96) = 0.10681
0

The 1.5-year zero rate is therefore 10.681%. This is the only zero rate that is consistent
with the 6-month rate, 1-year rate, and the data in Table 4.3.

The 2-year zero rate can be calculated similarly from the 6-month, 1-year, and
1.5-year zero rates, and the information on the last bond in Table 4.3. If R is the
2-year zero rate, then ~

. 68-—-0.l0469X0.5 + 6e—0.l0536><l.0 + 6e——0.lU68lXl.5 + 106e"—R><2.O Z

This gives R = 0.10808, or 10.808%.  
The rates we have calculated are summarized in Table 4.4. A chart showing the zero

rate as a function of maturity is known as the zero curve. A common assumption is that
the zero curve is linear between the points determined using the bootstrap method.
(This means that the 1.25-year zero rate is 0.5 >< 10.536 + 0.5 >< 10.681 = 10.6085% in
our example.) It is also usually assumed that the zero curve is horizontal prior to the
first point and horizontal beyond the last point. Figure 4.1 shows the zero curve for our
data using these assumptions. By using longer maturity bonds, the zero curve would be
more accurately determined beyond 2 years.

In practice, we do not usually have bonds with maturities equal to exactly 1.5 years,
2 years, 2.5 years, and so on. The approach often used by analysts is to interpolate
.~—_:-'7 _._~ -- -_ ‘.7, .-. -_ . .1 . _.. _ I» . _-_._.--._ 4, ‘.__.‘

Table 4.4 Continuously compounded zero rates
determined from data in Table 4.3.

Maturity Zero rate (%)
(years) (continuously compounded)

0.25 10.127
0.50 10.469
1.00 10.536
1.50 10.681
2.00 10.808
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Figure 4.1 Zero rates given by the bootstrap method.
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between the bond price data before it is used to calculate the zero curve. For example, if
they know that a 2.3-year bond with a coupon of 6% sells for 98 and a 2.7-year bond
with a coupon of 6.5% sells for 99, it might be assumed that a 2.5-year bond with a
coupon of 6.25% would sell for 98.5.

FORWARD RATES »

Forward interest rates are the rates of interest implied by current zero rates for periods
of time in the future. To illustrate how they are calculated, we suppose that LIBOR zero
rates are as shown in the second column of Table 4.5. (As we shall see in Chapter 7,
LIBOR zero rates are calculated in a similar way to the Treasury zero rates calculated in
the previous section.) The rates are assumed to be continuously compounded. Thus, the
3% per annum rate for 1 year means that, in return for an investment of $100 today, an
amount 100e0'03X1 = $103.05 is received in 1 year; the 4% per annum rate for 2 years
means that, in return for an investment of $100 today, an amount 100e0'04X2 = $108.33
is received in 2 years; and so on.

The forward interest rate in Table 4.5 for year 2 is 5% per annum. This is the rate of
interest that is implied by the zero rates for the period of time between the end of the
first year and the end of the second year. It can be calculated from the 1-year zero
interest rate of 3% per annum and the 2-year zero interest rate of 4% per annum. It is
the rate of interest for year 2 that, when combined with 3% per annum for year 1, gives
4% overall for the 2 years. To show that the correct answer is 5% per annum, suppose
that $100 is invested. A rate of 3% for the first year and 5% for the second year gives

10Oe0.03Xle0.05Xl I

at the end of the second year. A rate of 4% per annum for 2 years gives

, 10080.04-X2

which is also $108.33. This example illustrates the general result that when interest rates
are continuously compounded and rates in successive time periods are combined, the
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overall equivalent rate is simply the average rate during the whole period. In our
example, 3% for the first year and 5% for the second year average to 4% over the
2 years. The result is only approximately true when the rates are not continuously
compounded.

The forward rate for year 3 is the rate of interest that is implied by a 4% per annum
2-yearzero rate and a 4.6% per annum 3-year zero rate. It is 5.8% per annum. The
reason is that an investment for 2 years at 4% per annum combined with an investment
for one year at 5.8% per annum gives an overall average return for the three years of
4.6% per annum. The other forward rates can be calculated similarly and are shown in
the third column of the table. In general, if R1 and R2 are the zero rates for maturities
T1 and T2, respectively, and RF is the forward interest rate for the period of time
between T1 and T2, then

R2712 - R1T1 (4 5)
T2 '- T1

RF‘:

To illustrate this formula, consider the calculation of the year-4 forward rate from the
data in Table 4.5: T1 : 3, T2 : 4, R1 = 0.046, and R2 : 0.05, and the formula gives
RF : 0.062.

Equation (4.5) can be written as

T
RF = R2 '1‘ (R2 — Rilij ,2 (4-6)

This shows that if the zero curve is upward sloping between T13 and T2, so that R2 > R1,
then RF > R2 (i.e., the forward rate for a period of time ending at T2 is greater than the
T2 zero rate). Similarly, if the zero curve is downward sloping with R2 < R1, then
RF < R2 (i.e., the forward rate is less than the T2 zero rate). Taking limits as T2
approaches T1 in equation (4.6) and letting the common value of the two be T, we
obtain

R —R+TaRF" 8T
where R is the zero rate for a maturity of T. The value of RF obtained in this way is
known as the instantaneous forward rate for a maturity of T. This is the forward rate
that is applicable to a very short future time period that begins at time T. Define P(0, T)

;.._.1_ -. _-_,-_ . , _ - . . ,. ... _,-,_. - _ . ...1...-.—.---.---~ . _ _- ._- --y , _- , _ .
L. ... .~ -".- .-..-'. 1'-. '-”'--" ‘ 3- ... ». ‘~-5.:-....';' .:.i.~--,

Table 4'.5 Calculation of forward LIBOR rates.

Zero rate for an Forward rate
n-year investment for nth year

Year (n) (% per annum) (% per annum)

3.0
4.0

' 4.6
5.0
5.3u1-t>-u.>t\J>-—-

5.0
5.8
6.2
6.5
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as the price of a zero-coupon bond maturing at time T. Because P(0, T) : e'RT, the
equation for the instantaneous forward rate can also be written as

3 .
RF I —5?l1'1

By borrowing and lending at LIBOR, a large financial institution can lock in LIBOR
forward rates. Suppose LIBOR zero rates are as in Table 4.5. It can borrow $100 at 3%
for 1 year and invest the money at 4% for 2 years, the result is a cash outflow of
100e°-03>“ = $103.05 at the end of year 1 and an inflow of 100e°-04x2 = $108.33 at the
end of year 2. Since 108.33 = l03.05e°-05, a return equal to the forward rate (5%) is
earned on $103.05 during the second year. Alternatively, it can borrow $100 for four
years at 5% and invest it for three years at 4.6%. The result is a cash inflow of
100e°-046” = $114.80 at the end of the third year and a cash outflow of
100e°-05x4 = $122.14 at the end of the fourth year. Since 122.14 : 114.80e°-062, money
is being borrowed for the fourth year at the forward rate of 6.2%.

If a large investor thinks that rates in the future will be different from today’s forward
rates there are many trading strategies that the investor will find attractive (see Business
Snapshot 4.2). One of these involves entering into a contract known as a forward rate
agreement. We will now discuss how this contract works and how it is valued.

FORWARD RATE AGREEMENTS

A forward rate agreement (FRA) is an over-the-counter agreement designed to ensure
that a certain interest rate will apply to either borrowing or lending a certain principal
during a specified future period of time. The assumption underlying the contract is that
the borrowing or lending would normally be done at LIBOR.

. Consider a forward rate agreement where company X is agreeing to lend money to
company Y for the period of time between T1 and T2. Define: F

RF: The rate of interest agreed to in the FRA
RF: The forward LIBOR interest rate for the period between times T1 and T2,

calculated today4
RM: The actual LIBOR interest rate observed in the market at time T1 for the

period between times T1 and T2
L: The principal underlying the contract.

We will depart from our usual assumption of continuous compounding and assume
that the rates RF, RF, and RM are all measured with a compounding frequency
reflecting the length of the period to which they apply. This means that if
T2 — T1 : 0.5, they are expressed with semiannual compounding; if T2 — T1 = 0.25,
they are expressed with quarterly compounding; and so on. (This assumption corres-
ponds to the usual market practice for FRAs.)

Normally company X would earn RM from the LIBOR loan. The FRA means that it
will earn RF. The extra interest rate (which may be negative) that it earns as a result of

4 LIBOR forward. rates are calculated-as described in Section 4.6 from the LIBOR/swap zero curve. The
latter is determined in the way described in Section 7.6.
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Business Snapshot 4.2 Orange County’s Yield Curve Plays 2 I

Suppose a large investor can borrow or lend at the rates given in Table 4.5 and thinks
that 1-year interest rates will not change much over the next 5 years. The investor can
borrow 1-year funds and invest for 5-years. The 1-year borrowings can be rolled over -
for further 1-year periods at the end of the first, second, third, and fourth years. If
interest rates do stay about the same, this strategy will yield a profit of about 2.3%

fper year, because interest will be received at 5.3% and paid at‘3°/6.,This type ;of
trading strategy is known as a yield curve play. The investor is speculating that rates in
the future will be quite different from the forward rates observed in the market today.
(In our example, forward rates observed in the market today for future 1-year periods
are 5%, 5.8%, 6.2%, and 6.5%.) , . - -

Robert Citron, the Treasurer at Orange County, used yield curve plays similar to
the one we have just described very successfully in 1992 and 1993. The profit from
Mr. Citron’s' trades became an important contributor to Orange County’s -budget
and he was re-elected. (No one listened to his opponent in the election who said his
trading strategy was too risky.) .

 In 1994 Mr. Citron expanded his yield curve plays. He invested heavilyiini inverse
floaters. These pay a rate of interest equal to a fixed‘ rate of interestminus a floating
rate. He also leveraged his position by borrowing in the repo market. ‘If sh'ort-term ;
interest rates had remained the same or declined he would have continued to do well.
As it happened, interest rates rose sharply during 1994, On December ‘l, 1994,

@Orange County announced that its investment portfolio had lost $1.5 billion and
several days later it filed for bankruptcy protection. , ;

entering into the FRA is RF - RM. The interest rate is set at time T1 and paid at time T2.
The extra interest rate therefore leads to acash flow to company X at time T2 of F

L(R1< " RM)(T2 "- T1) (4-7)

Similarly there is a cash flow to company Y at time T2 of

L(RM -8 RK)(T2 — T1) .1 (4-3)
From equations (4.7) and (4.8), we see that there is another interpretation of the

FRA. It is an agreement where company X will receive interest on the principal between
T1 and T2 at the fixed rate of RF and pay interest at the realized LIBOR rate of RM.
Company Y will pay interest on the principal between T1 and T2 at the fixed rate of RF
and receive interest at RM.

Usually FRAs are settled at time T1 rather than T2. The payoff must then be
discounted from time T2 to T1. For company X, the payoff at time T1 is

§(RK " RM)(T2 — Tl)
I + RM(T2 "' T1)

and, for company Y, the payoff at time T1 is

L(RM * R1<)(T2 " T1) 1
1+ RM(T2 "- T1)
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Example 4.3
Suppose that a company enters into an FRA that is designed to ensure it will
receive a fixed rate of 4% on a principal of $100 million for a 3-month period
starting in 3 years. The FRA is an exchange where LIBOR is paid and 4% is
received for the 3-month period. If 3-month LIBOR proves to be 4.5% for the

0 3-month period the cash flow to the lender will be

100,000,000 >< (0.04 - 0.045) >< 0.25 = -$125,000
at the 3.25-year point. This is equivalent to a cash flow of

125,000
1+ 0.045 >< 0.25 ' $123’609

at the 3-year point. The cash flow to the party on the opposite side of the
transaction will be +$125,000 at the 3.25-year point or +$123,609 at the 3-year
point. (All interest rates quoted in this example are expressed with quarterly
compounding.)

Valuation R
To value an FRAwe first note that it is always worth zero when RK = RF.5 This is
because, as noted in Section 4.6, a large financial institution can at no cost lock in the
forward rate for a future time period. For example, it can ensure that it earns the
forward rate for the time period between years 2 and 3. by borrowing a certain amount
of money for 2 years and investing it for 3 years. Similarly, it can ensure that it pays the
forward rate for the time period between years 2 and 3 by borrowing for a certain
amount of money for 3 years and investing it for 2 years.

Compare two FRAs. The first promises that the LIBOR forward rate RF will be
received on a principal of L between times T1 and T2; the second promises that RK will
be received on the same principal between the same two dates. The two contracts are
the same except for the interest payments received at time T2. The excess of the value of
the second contract over the first is, therefore, the present value of the difference
between these interest payments, or

 L(RK — RFXT2 — T1>@'"R2T2
where R2 is the continously compounded riskless zero rate for a maturity T2.6 Because
the value of the first FRA, where RF is received, is zero, the value of the second FRA,
where RK is received, is

VFRA = L(RK — RFXT2 — T1)@_R2T2 (4-9)

Similarly, the value of an FRA where RK is paid is

VFRA = L(RF - RK)(T2 - T0e""1T2 (4.10)
By comparing equations (4.7) and (4.9), or equations (4.8) and (4.10), we see that an

5 It is usually the case that RK is set equal to RF when the FRA is first initiated.

6 Note that R K, RM, and RF are expressed with a compounding frequency corresponding to T2 — Tl, whereas
R2 is expressed with continuous compounding.
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FRA can be valued if we:

1. Calculate the payoff on the assumption that forward rates are realized (that is, on
the assumption that RM : RF).

2. Discount this payoff at the risk-free rate.

We will use this result when we value swaps (which are porfolios of FRAs) in Chapter 7.

Example 4.4
Suppose that LIBOR zero and forward rates are as in Table 4.5. Consider an
FRA where we will receive a rate of 6%, measured with annual compounding, and
pay LIBOR on a principal of $100 million between the end of year l and the end
of year 2. In this case, the forward rate is 5% with continuous compounding or
5.127% with annual compounding. From equation (4.9), it follows that the value
of the FRA is

100,000,000 >< (0.06 - 0.05127)@*°'°4*2 = $805,800

DU RATION

The duration of a bond, as its name implies, is a measure of how long on average the
holder of the bond has to wait before receiving cash payments. A zero-coupon bond
that lasts n years has a duration of n years. However, a coupon-bearing bond lasting
n years has a duration of less than n years, because the holder receives some of the cash
payments prior to year n. T

Suppose that a bond provides the holder with cash flows c,- at time ti (1 < i < n). The
bond price B and bond yield y (continuously compounded) are related by

-n

B = go,-e_yt" (4.11)

The duration of the bond, D, is defined as

n _ _ ~—yt,-

1) I ____Zi=13:16 (4.12)
This can be written

n . Ci€_ytiD: 2:,-[-—-B1

The term in square brackets is the ratio of the present value of the cash flow at time ti to
the bond price. The bond price is the present value of all payments. The duration is
therefore a weighted average of the times when payments are made, with the weight
applied to time ti being equal to the proportion of the bond’s total present value
provided by the cash flow at time t,¢. The sum of the weights is 1.0. Note that for the
purposes of the definition of duration all discounting is done at the bond yield rate of
interest, y. (We do not use a different zero rate for each cash flow in the way described in
Section 4.4.)
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When a small change A y in the yield is considered, it is approximately true that

dB
AB : — Ay (4.13)

dy
From equation (4.11), this becomes

Tl

AB = —Ay Z ¢,~i,~@"Y"* (4.14)
i=1

(Note that there is a negative relationship between B and y. When bond yields increase,
bond prices decrease. When bond yields decrease, bond prices increase.) From equa-
tions (4.12) and (4.14), the key duration relationship is obtained:

AB : -—BD Ay (4.15)
This can be written

A759: -12 Ay (4.16)

Equation (4.16) is an approximate relationship between percentage changes in a bond
price and changes in its yield. It is easy to use and is the reason why duration, which
was first suggested by Macaulay in 1938, has become such a popular measure.

Consider a 3-year 10% coupon bond with a face value of_$100. Suppose that the yield
on the bond is 12% per annum with continuous compounding. This means that
y = 0.12. Coupon payments of $5 are made every 6 months. Table 4.6 shows the
calculations necessary to determine the bond’s duration. The present values of the
bond’s cash flows, using the yield as the discount rate, are shown in column 3 (e.g., the
present value of the first cash flow is 5e"0'12X0‘5 : 4.709). The sum of the numbers in
column 3 gives the bond’s price as 94.213. The weights are calculated by dividing the
numbers in column 3 by 94.213. The sum of the numbers in column 5 gives the duration
as 2.653 years.  

Small changes in interest rates are often measured in basis points. As mentioned
earlier, a basis point is 0.01% per annum. The following example investigates the
accuracy of the duration relationship in equation (4.15).

.,...._.‘,..-.-.-.-..“..,..,.,,».v.-.-.v. _ _ . . , . x ,_ , _ _ _ _ _ _ ‘. _ - , ' _ _ ,_ , ,. . , _ _

Table 4.6 Calculation of duration.

Time Cash flow Present Weight Time >< weight
(years) ($) value

0.5 4.709 0.050 0.025
1.0 4.435 0.047 0.047
1.5 4.176 0.044 0.066
2.0 3.933 0.042 0.083
2.5 3.704 0.039 0.098
3.0 105 73.256 0.778 2.333

Total: 130 94.213 1.000 2.653

L/“IL/‘ILIIL/IL)“:
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Example 4.5
For the bond in Table 4.6, the bond price, B, is 94.213 and the duration, D, is
2.653, so that equation (4.15) gives

AB : —94.2l3 >< 2.653 >< Ay
or

AB = _249.95 >< Ay
When the yield on the bond increases by 10 basis points (= 0.1%), Ay = +0.001.
The duration relationship predicts that AB = -249.95 >< 0.001 = --0.250, so that
the bond price goes down to 94.213 -0.250 :93.963. How accurate is this?
Valuing the bond in terms of its yield in the usual way, we find that, when the
bond yield increases by 10 basis points to 12.1%, the bond price is

Se-—0.l2l><().5 + 5e—0.lZl><l.() + 56-().l2lXl.5 + 5e—@.l2lX2.()

+5e—0.l2lX2.5 + 1056-—O.l2l><3.() Z

which is (to three decimal places) the same as that predicted by the duration
relationship.

Modified Duration
The preceding analysis is based on the assumption that y is expressed with continuous
compounding. If y is expressed with annual compounding, it can be shown that the
approximate relationship in equation (4.15) becomes 0

B AAB:___P__X
1+y

More generally, if y is expressed with a compounding frequency of m times per year,
then

B,(B:____1Zé_>L
l+y/m

A variable D*, defined by .
D

D*=——-———
l+y/m

is sometimes referred to as the bond’s modified duration. It allows the duration relation-
ship to be simplified to

1 AB = —BD*Ay (4.17)
when y is expressed with a compounding frequency of m times per year. The following
example investigates the accuracy of the modified duration relationship.

Example 4.6
The bond in Table 4.6 has a price of 94.213 and a duration of 2.653. The yield,
expressed with semiannual compounding is 12.3673%. The modified duration, D*,
is given by

2 653
D* I " i T A I 2.499

1 -1- 0.123673/2
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From equation (4.17),
AB : -94.213 >< 2.4985 >< Ay

or
AB : -235.39 >< Ay

When the yield (semiannually compounded) increases by 10 basis points (= 0.1%),
5 we have Ay : +0.00l. The duration relationship predicts that we expect AB to be

-235.39 >< 0.001 : -0.235, so that the bond price goes down to 94.213 - 0.235 :
93.978. How accurate is this‘? An exact calculation similar to that in the previous
example shows that, when the bond yield (semiannually compounded) increases by
10 basis points to 12.4673%, the bond price becomes 93.978. This shows that the
modified duration calculation gives good accuracy for small yield changes.

Another term that is sometimes used is dollar duration. This is the product of modified
duration and bond price, so that AB : -D**Ay, where D** is dollar duration.

Bond Portfolios
The duration, D, of a bond portfolio can be defined as a weighted average of the
durations of the individual bonds in the portfolio, with the weights being proportional
to the bond prices. Equations (4.15) to (4.17) then apply, with B being defined as the
value of the bond portfolio. They estimate the change in the value of the bond portfolio
for a small change Ay in the yields of all the bonds.

It is important to realize that, when duration is used for bond portfolios, there is an
implicit assumption that the yields of all bonds will change by approximately the same
amount. When the bonds have widely differing maturities, this happens only when there
is a parallel shift in the zero-coupon yield curve. We should therefore interpret
equations (4.15) to (4.17) as providing estimates of the impact on the price of a bond
portfolio of a small parallel shift, Ay, in the zero curve.

By choosing a portfolio so that the duration of assets equals the duration of liabilities
(i.e., the net duration is zero), a financial institution eliminates its exposure to small
parallel shifts in the yield curve. But it is still exposed to shifts that are either large or
nonparallel.

CONVEXITY

The duration relationship applies only to small changes in yields. This is illustrated in
Figure 4.2, which shows the relationship between the percentage change in value and
change in yield for two bond portfolios having the same duration. The gradients of
the two curves are the same at the origin. This means that both bond portfolios
change in value by the same percentage for small yield changes and is consistent with
equation (4.16). For large yield changes, the portfolios behave dilferently. Portfolio X
has more curvature in its relationship with yields than portfolio Y. A factor known as
convexity measures this curvature and can be used to improve the relationship in
equation (4.16).

A measure of convexity is
C _ 1 d2B __ Z1721 cl-t,2e_*W"

 _ B dyz ” B
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4.10

Figure 4.2 Two bond portfolios with the same duration.
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From Taylor series expansions, we obtain a (more accurate expression than equa-
tion (4.13), given by

2
AB—dBA +1d BA 2

_dy y 2dy2 y
This leads to -

AB__ 1 2

For a portfolio with a particular duration, the convexity of a bond portfolio tends to be
greatest when the portfolio provides payments evenly over a long period of time. It is
least when the payments are concentrated around one particular point in time. By
choosing a portfolio of assets and liabilities with a net duration of zero and a net
convexity of zero, a financial institution can make itself immune to relatively large
parallel shifts in the zero curve. However, it is still exposed to nonparallel shifts.

THEORIES OE THE TERM STRUCTURE OF INTEREST RATES

It is natural to ask what determines the shape of the zero curve. Why is it sometimes
downward sloping, sometimes upward sloping, and sometimes partly upward sloping
and partly downward sloping? A number of different theories have been proposed. The
simplest is expectations theory, which conjectures that long-term interest rates should
reflect expected future short-term interest rates. More precisely, it argues that a forward
interest rate corresponding to a certain future period is equal to the expected future zero
interest rate for that period. Another idea, market segmentation theory, conjectures that
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there need be no relationship between short-, medium-, and long-term interest rates.
Under the theory, a major investor such as a large pension fund invests in bonds of a
certain maturity and does not readily switch from one maturity to another. The short-
term interest rate is determined by supply and demand in the short-term bond market;
the medium-term interest rate is determined by supply and demand in the medium-term
bond market; and so on.

The theory that is most appealing is liquidity preference theory. The basic assumption
underlying the theory is that investors prefer to preserve their liquidity and invest funds
for short periods of time. Borrowers, on the other hand, usually prefer to borrow at fixed
rates for long periods of time. This leads to a situation in which forward rates are greater
than expected future zero rates. The theory is also consistent with the empirical result
that yield curves tend to be upward sloping more often than they are downward sloping.

The Management of Net Interest Income
To understand liquidity preference theory, it is useful to consider the interest rate risk
faced by banks when they take deposits and make loans. The net interest income of the
bank is the excess of the interest received over the interest paid and needs to be carefully
managed.

Consider a simple situation where a bank offers consumers a one-year and a five-year
deposit rate as well as a one-year and five-year mortgage rate. The rates are shown in
Table 4.7. We make the simplifying assumption that the expected one-year interest rate
for future time periods to equal the one-year rates prevailing in the market today.
Loosely speaking this means that the market considers interest rate increases to be just
as likely as interest rate decreases. As a result, the rates in Table 4.7 are “fair” in that
they reflect the market’s expectations (i.e., they correspond to expectations theory).
Investing money for one year and reinvesting for four further one-year periods give the
same expected overall return as a single five-year investment. Similarly, borrowing
money for one year and refinancing each year for the next four years leads to the same
expected financing costs as a single five-year loan.

Suppose you have money to deposit and agree with the prevailing view that interest
rate increases are just as likely as interest rate decreases. Would you choose to deposit
your money for one year at 3% per annum or for five years at 3% per annum? The
chances are that you would choose one year because this gives you more financial
flexibility. It ties up your funds for a shorter period of time.  

Now suppose that you want a mortgage. Again you agree with the prevailing view
that interest rate increases are just as likely as interest rate decreases. Would you choose
a one-year mortgage at 6% or a five-year mortgage at 6%? The chances are that you
would choose a five-year mortgage because it fixes your borrowing rate for the next five
years and subjects you to less refinancing risk.

When the bank posts the rates shown in Table 4.7, it is likely to find that the majority
.-- _ .4--'. . -_- V. .-_~ _ _ - _._ . _ -. -_> .,. .. ~ :.-. . .. - .. .. -~ 34»... » -. -=4» - - ‘r '

Table 4.7 Example of rates oflered by a bank to its customers.

Maturity (years) Deposit rate Mortgage rate

1 3% 6%
5 1 3 % 6 %
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Table 4.8 Five-year rates are increased in an attempt to match
maturities of assets and liabilities.

Maturity (years) Deposit rate Mortgage rate

1 3 % 6%
5 4% 7%

_. ‘. - V , _ , - _- - .44.».-..-... ., _ _ _ .‘, .-,' _ _ _.__..
__.. . -. .. ._ 3, , _ _ _ _ _ ,, * _ _. ~_ _‘--'-1 ,,,, _,

of its customers opt for one-year deposits and five-year mortgages. This creates an
asset/liability mismatch for the bank and subjects it to risks. There is no problem if
interest rates fall. The bank will find itself financing the five-year 6% loans with
deposits that cost less than 3% in the future and net interest income will increase.
However, if rates rise, the deposits that arc financing these 6% loans will cost more than
3% in the future and net interest income will decline. A 3% rise in interest rates would
reduce the net interest income to zero.

It is the job of the asset/liability management group to ensure that the maturities of
the assets on which interest is earned and the maturities of the liabilities on which
interest is paid are matched. One way it can do this is by increasing the five-year rate on
both deposits and mortgages. For example, it could move to the situation in Table 4.8
where the five-year deposit rate is 4% and the five-year mortgage rate 7%. This would
make five-year deposits relatively more attractive and one-year mortgages relatively
more attractive. Some customers who chose one-year deposits when the rates were as in
Table 4.7 will switch to five-year deposits in the Table 4.8 situation. Some customers
who chose five-year mortgages when the rates were as in Table 4.7 will choose one-year
mortgages. This may lead to the maturities of assets and liabilities being matched. If
there is still an imbalance with depositors tending to choose a one-year maturity and
borrowers a five-year maturity, five-year deposit and mortgage rates could be increased
even further. Eventually the imbalance will disappear. F,

The net result of all banks behaving in the way we have just described is liquidity
preference theory. Long-term rates tend to be higher than those that would be predicted
by expected future short-term rates. The yield curve is upward sloping most of the time. It
is downward sloping only when the market expects a steep decline in short-term rates.

Many banks now have sophisticated systems for monitoring the decisions being made
by customers so that, when they detect small differences between the maturities of the
assets and liabilities being chosen by customers they can fine tune the rates they offer.
Sometimes derivatives such as interest rate swaps (which will be discussed in Chapter 7)
are also used to manage their exposure. The result of all this is that net interest income
is usually very stable. This has not always been the case. In the United States, the failure
of Savings and Loan companies in the 1980s and the failure of Continental Illinois in
1984 were to a large extent a result of the fact that they did not match the maturities of
assets and liabilities. Both failures proved to be very expensive for US taxpayers.

Liquidity
In addition to creating problems in the way that has been described, a portfolio where
maturities are mismatched can lead to liquidity problems. Consider a financial institu-
tion that funds 5-year fixed rate loans with wholesale deposits that last only 3 months.
It might recognize its exposure to rising interest rates and hedge its interest rate risk.
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Business Snapshot 4.3 Liquidity and the 2007-2009 Financial Crisis

During the credit crisis that started in July 2007 there was a “flight to quality,” where
financial institutions and investors looked for safe investments and were less inclined
than before to take credit risks. Financial institutions that relied on short-term
funding experienced liquidity problems. One example is Northern Rock in the United

1Kingdom, which chose to finance much of its mortgage portfolio with wholesale»
jdeposits, some lasting only 3 months. Starting in September 2007, the ‘depositors
i became nervous and refused to roll over the funding they were providing to Northern
Rock, i.e., at the end of a 3-month period they would refuse to deposit their funds for
a further 3-month period. As a result, Northern Rock was unable to finance its assets.
It was taken over by the UK government in early 2008. In the US, financial
institutions such as Bear Stearns and Lehman Brothers experienced similar liquidity
problems because they had chosen to fund part of their of their operations with short-
term funds. '

(One way of doing this is by using interest rate swaps, as mentioned earlier.) However,
it still has a liquidity risk. Wholesale depositors may, for some reason, lose confidence
in the financial institution and refuse to continue to provide the financial institution
with short-term funding. The financial institution, even if it has adequate equity
capital, will then experience a severe liquidity problem that could lead to its downfall.
As described in Business Snapshot 4.3, these types of liquidity problems were the root
cause of some of the failures of financial institutions during the crisis that started
in 2007.

SUMMARY .

Two important interest rates for derivative traders are Treasury rates and LIBOR rates.
Treasury rates are the rates paid by a government on borrowings in its own currency.
LIBOR rates are short-term lending rates offered by banks in the interbank market.
Derivatives traders have traditionally assumed that the LIBOR rate is the short-term
risk-free rate at which funds can be borrowed or lent. if

The compounding frequency used for an interest rate defines the units in which it is
measured. The difference between an annually compounded rate and a quarterly
compounded rate is analogous to the difference between a distance measured in miles
and a distance measured in kilometers. Traders frequently use continuous compound-
ing when analyzing the value of options and more complex derivatives.

Many different types of interest rates are quoted in financial markets and calculated by
analysts. The n-year zero or spot rate is the rate applicable to an investment lasting for
n years when all of the return is realized at the end. The par yield on a bond of a certain
maturity is the coupon rate that causes the bo11d to sell for its par value. Forward rates are
the rates applicable to future periods of time implied by today’s zero rates.

The method most commonly used to calculate zero rates is known as the bootstrap
method. It involves starting with short-term instruments and moving progressively to
longer-term instruments, making sure that the zero rates calculated at each stage are
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consistent with the prices of the instruments. It is used daily by trading desks to
calculate a Treasury zero-rate curve.

A forward rate agreement (FRA) is an over-the-counter agreement that the LIBOR
rate will be exchanged for a specified interest rate during a specified future period of
time. An FRA can be valued by assuming that forward LIBOR rates are realized and
discounting the resulting payoff.

An important concept in interest rate markets is duration. Duration measures the
sensitivity of the value of a bond portfolio to a small parallel shift in the zero-coupon
yield curve. Specifically,

AB : -BD Ay

where B is the value of the bond portfolio, D is the duration of the portfolio, Ay is the
sizelof a small parallel shift in the zero curve, and AB is the resultant effect on the value
of the bond portfolio.

Liquidity preference theory can be used to explain the interest rate term structures
that are observed in practice. The theory argues that most entities like to borrow long
and lend short. To match the maturities of borrowers and lenders, it is necessary for
financial institutions to raise long-term rates so that forward interest rates are higher
than expected future spot interest rates.
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Practice Questions(Answers in Solutions Manual)

4.1. A bank quotes an interest rate of 14% per annum with quarterly compounding. What is
the equivalent rate with (a) continuous compounding and (b) annual compounding?

4.2. What is meant by LIBOR and LIBID. Which is higher?
4.3. The 6-month and 1-year zero rates are both 10% per annum. For a bond that has a life of

18 months and pays a coupon of 8% per annum (with semiannual payments and one
having just been made), the yield is 10.4% per annum. What is the bond’s price? What is
the 18-month zero rate? All rates are quoted with semiannual compounding.

4.4. An investor receives ‘$1,100 in one year in return for an investment of $1,000 now.
Calculate the percentage return per annum with:
(a) Annual compounding
(b) Semiannual compounding



98 , CHAPTE 4

(c) Monthly compounding T
(d) Continuous compounding.  5

4.5. Suppose that zero interest rates with continuous compounding are as follows:

Maturity (months) (Rate (% per annum)

, 3 8.0
6 8.2
9 8.4

12 8.5
15 8.6

. 18 . 8.7 . .

Calculate forward interest rates for the second, third, fourth, fifth, and sixth quarters.
4.6. Assuming that zero rates are as in Problem 4.5, what is the value of an FRA that enables

the holder to earn 9.5% for a 3-month period starting in 1 year on a principal of
$1,000,000? The interest rate is expressed with quarterly compounding. A

4.7. The term structure of interest rates is upward:-sloping. Put the following in order of
magnitude: - - -
(a) The 5-year zero rate , 2 ,
(b) The yield on a 5-year coupon-bearing bond
(c) The forward rate corresponding to the period between 4.75 and 5 years inithe future.
What is the answer when the term structure of interest rates is downward-sloping?

4.8. What does duration tell you about the sensitivity of a bond portfolio to interest rates.
What are the limitations of the duration measure? 5

4.9. What rate of interest with continuous compounding is equivalent to 15% perannum with
monthly compounding? A -

4.10. A deposit account pays 12% per annum with continuous compounding, but interest is
actually paid quarterly. How much interest will be paid each quarter on a $10,000 deposit?

4.11. Suppose that‘6-month, 12-month, 18-month, 24-month, and 30-month zero rates are,
respectively, 4%, 4.2%, 4.4%, 4.6%, and 4.8% per annum, with continuous compound-
ing. Estimate the cash price of a bond with a face value of 100 that will mature in
30 months and pays a coupon of 4% per annum semiannually.

4.12. A 3-year bond provides a coupon of 8% semiannually and has a cash price of 104. What
is the bond’s yield? T T

4.13. Suppose that the 6-month, 12-month, 18-month, and 24-month zero rates are 5%, 6%,
6.5%, and 7%, respectively. What is the 2-year par yield? F

4.14. Suppose that zero interest rates with continuous compounding are as follows:

Maturity,(years) Rate (% per annum)

1 2.0
2 3.0

3.7
4.2

A 4.5 A AL11-IXUJ

Calculate forward interest rates for the second, third, fourth, and fifth years.
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4.15. Use the rates in Problem 4.14 to value an FRA where you will pay 5% (compounded

4.16.

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

anually) for the third year on $1 million.

A 10-year 8% coupon bond currently sells for $90. A 10-year 4% coupon bond currently
sells for $80. What is the 10-year zero rate? (Hint: Consider taking a long position in two
of the 4% coupon bonds and a short position in one of the 8% coupon bonds.)

Explain carefully why liquidity preference theory is consistent with the observation that
the term structure of interest rates tends to be upward-sloping more often than it is
downward-sloping.

“When the zero curve is upward-sloping, the zero rate for a particular maturity is greater
than the par yield for that maturity. When the zero curve is downward-sloping the reverse
is true.” Explain why this is so.

Why are US Treasury rates significantly lower than other rates that are close to risk-free?

Why does a loan in the repo market involve very little credit risk?

Explain why an FRA is equivalent to the exchange of a floating rate of interest for a fixed
rate of interest.

A 5-year bond with a yield of 11% (continuously compounded) pays an 8% coupon at
the end of each year.
(a) What is the bond’s price?
(b) What is the bond’s duration? _
(c) Use the duration to calculate the effect on the bond’s price of at’ 0.2% decrease in its

yield. .
(d) Recalculate the bond’s price on the basis of a 10.8% per annum yield and verify that

the result is in agreement with your answer to (c).

The cash prices of 6-month and 1-year Treasury bills are 94.0 and 89.0. A 1.5-year bond
that will pay coupons of $4 every 6 months currently sells for $94.84. A 2-year bond that
will paycoupons of $5 every 6 months currently sells for $97.12. Calculate the 6-month,
1-year, 1.5-year, and 2-year zero rates. .  

“An interest rate swap where 6-month LIBOR is exchanged for a fixed rate of 5% on a
principal of $100 million for 5 years involves a known cash flow and a portfolio of nine
FRAs.” Explain this statement.

Further Questions

4.25

4.26

4.27

A five-year bond provides a coupon of 5% per annum payable semiannually. Its price
is 104. What is the bond’s yield? You may find Excel’s Solver useful.

Suppose that LIBOR rates for maturities of one, two, three, four, five, and six months are
2.6%, 2.9%, 3.1%, 3.2%, 3.25%, and 3.3% with continuous compounding. What are the
forward rates for future one-month periods?

A bank can borrow or lend at LIBOR. The two-month LIBOR rate is 0.28% per annum
with continuous compounding. Assuming that interest rates cannot be negative, what is
the arbitrage opportunity if the three-month LIBOR rate is 0.1% per year with continu-
ous compounding. How low can the three-month LIBOR rate become without an
arbitrage opportunity being created?
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4.28

4.29

4.30.

4.31

4.32

4.33

. . . CHAPTER 4

A bank can borrow or lend at LIBOR. Suppose that the six-month rate is 5% and the
nine-month rate is 6%. The rate that can be locked in for the period between six months
and nine months using an FRA is 7%. What arbitrage opportunities are open to the
bank? All rates are continuously compounded. A A
An interest rate is quoted as 5% per annum with semiannual compounding. What is the
equivalent rate with (a) annual compounding, (b) monthly compounding, and (c) con-
tinuous compounding. , , j
The 6-month, 12-month, 18-month, and 24-month zero rates are 4%, 4.5%, 4.75%, and
5%, with semiannual compounding.
(a) What are the rates with continuous compounding?
(b) What is the forward rate for the 6-month period beginning in 18 months?
(c) What is the value of an FRA that promises to pay you 6% (compounded semi-

‘ annually) on a principal of $1 million for the 6-month period starting in .18 months?
What is -the 2-year par yield when the zero rates are as in Problem 4.30? What is the yield
on a 2-year bond that pays a coupon equal to the par yield? ,
The following table gives the prices of bonds: .

Bond principal Time to maturity Annual coupon* Bond price
($) (y@¢1tS)5 ($) 5 ($)

T T 98
T 95

5 101
A 104

100 0.50
100 1.00 T
100 1.50 5
100 2.00:

0.0
0.0
6.2
8.0

* Half the stated coupon is assumed to be paid every six months.

(a) Calculate zero rates for maturities of 6 months, 12 months, 18 months, and 24 months.
(b) What are the forward rates for the following periods: 6 months to 12 months,

12 months to 18 months, and 18 months to 24 months? T
(c) What are the 6-month, 512-month, 18-month, and 24-month par yields for bonds that

provide semiannual coupon payments? - -
(d) Estimate the price and yield of a 2-year bond providing a semiannual coupon of 7%

per annum.
Portfolio A consists of a 1-year zero-coupon bond with a face value of $2,000 and a
10-year zero-coupon bond with a face value of $6,000. Portfolio B consists of a 5.95-year
zero-coupon bond with a face value of $5,000. The current yield on all bonds is 10% per
annum. 5 5 5
(a) Show that both portfolios have the same duration. -
(b) Show that the percentage changes in the values of the two portfolios for a 0.1% per

g annum increase in yields are the same. g g
(c) What are the percentage changes in the values of the two portfolios for a 5% per

T annum increase in yields? T T
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In this chapter we examine how forward prices and futures prices are related to the spot
price of the underlying asset. Forward contracts are easier to analyze than futures
contracts because there is no daily settlement—only a single payment at maturity. We
therefore start this chapter by considering the relationship between the forward price
and the spot price. Luckily it can be shown that the forward price and futures price of
an asset are usually very close when the maturities of the two contracts are the same.
This is convenient because it means that results obtained for forwards are usually also
true for futures.

In the first part of the chapter we derive some important general results on the
relationship between forward (or futures) prices and spot prices. We then use the results
to examine the relationship between futures prices and spot prices for contracts on stock
indices, foreign exchange, and commodities. We will consider interest rate futures
contracts in the next chapter.

INVESTMENT ASSETS vs. CUNSUMPTION ASSETS

When considering forward and futures contracts, it is important to distinguish between
investment assets and consumption assets. An investment asset is an asset that is held
for investment purposes by significant numbers of investors. Stocks and bonds are
clearly investment assets. Gold and silver are also examples of investment assets. Note
that investment assets do not have to be held exclusively for investment. (Silver, for
example, has a number of industrial uses.) However, they do have to satisfy the
requirement that they are held by significant numbers of investors solely for investment.
A consumption asset is an asset that is held primarily for consumption. It is not usually
held for investment. Examples of consumption assets are commodities such as copper,
oil, and pork bellies.

As we shall see later in this chapter, we can use arbitrage arguments to determine
the forward and futures prices of an investment asset from its spot price and other
observable market variables. We cannot do this for consumption assets.
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CHAPTER 5

SHORT SELLING

Some of the arbitrage strategies presented in this chapter involve short selling. This
trade, usually simply referred to as “shorting”, involves selling an asset that is not
owned. It is something that is possible for some—but not all—investment assets. We
will illustrate how it works by considering a short sale of shares of a stock.

Suppose an investor instructs a broker to short 500 IBM shares. The broker will carry
out the instructions by borrowing the shares from another client and selling them in the
market in the usual way. The investor can maintain the short position for as long as
desired, provided there are always shares for the broker to borrow. At some stage,
however, the investor will close out the position by purchasing 500 IBM shares. These
are then replaced in the account of the client from which the shares were borrowed. The
investor takes a profit if the stock price has declined and a loss if it has risen. If at any time
while the contract is open the broker is not able to borrow shares, the investor is forced to
close out the position, even if not ready to do so. Sometimes a fee is charged for lending
shares or other securities to the party doing the shorting.

An investor with a short position must pay to the broker any income, such as
dividends or interest, that would normally be received on the securities that have been
shorted. The broker will transfer this income to the account of the client from whom
the securities have been borrowed. Consider the position of an investor who shorts
500 shares in April when the price per share is $120 and closes out the position by
buying them back in July when the price per share is $100. Suppose that a dividend of
$1 per share is paid in May. The investor receives 500 >< $120 = $60,000 in April when
the short position is initiated. The dividend leads to a payment by the investor of
500 >< $1 = $500 in May. The investor also pays 500 >< $100 = $50,000 for shares when
the position is closed out in July. The net gain, therefore, is

$60,000 — $500 — $50,000 : $9,500

assuming there is no fee for borrowing the shares. Table 5.1 illustrates this example and
shows that the cash flows from the short sale are the mirror image of the cash flows
from purchasing the shares in April and selling them in July. (Again, this assumes no
borrowing fee.) r

|<v—. 4 , -1- --- -71- |_- u-'—~ " _' ‘I _ '__- .~_- . _ ,. _ \- '1 —---=, . v_- _v-;- -¢'- _ ~ ---—‘ 1- w_. 1 -1 . ., _ -.. ~- -- -' - -r‘ 1 ‘

Table 5.1 Cash flows from short sale and purchase of shares.

Purchase of shares
April: Purchase 500 shares for $120 —$60,000
May: Receive dividend +$500
July: Sell 500 shares for $100 per share +$50,000

Net profit = —$9,500
Short sale of shares

April: Borrow 500 shares and sell them for $120 +$60,000
May: Pay dividend —$500
July: Buy 500 shares for $100 per share —$50,000

Replace borrowed shares to close short position
Net profit I +$9,500

_ . _. . I _ - _ »— — — -- —— —— _ ,4 . _ . _ - I _ _ L
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The investor is required to maintain a margin account with the broker. The margin
account consists of cash or marketable securities deposited by the investor with the
broker to guarantee that the investor will not walk away from the short position if the
share price increases. It is similar to the margin account discussed in Chapter 2 for
futures contracts. An initial margin is required and if there are adverse movements (i.e.,
increases) in the price of the asset that is being shorted, additional margin may be
required. If the additional margin is not provided, the short position is closed out. The
margin account does not represent a cost to the investor. This is because interest is
usually paid on the balance in margin accounts and, if the interest rate offered is
unacceptable, marketable securities such as Treasury bills can be used to meet margin
requirements. The proceeds of the sale of the asset belong to the investor and normally
form part of the initial margin.

From time to time regulations are changed on short selling. In 1938, the uptick rule
was introduced. This allowed shares to be shorted only on an “uptick”-—that is, when
the most recent movement in the share price was an increase. The SEC abolished the
uptick rule in July 2007, but introduced an “alternative uptick” rule in February 2010.
Under this rule, when the price of a stock has decreased by more than 10% in one day,
there are restrictions on short selling for that day and the next. These restrictions are
that the stock can be shorted only at a price that is higher than the best current bid
price. Occasionally there are temporary bans on short selling. This happened in a
number of countries in 2008 because it was considered that short selling contributed to
the high market volatility that was being experienced. .-

ASSUMPTIONS AND NOTATION

In this chapter we will assume that the following are all true for some market
participants: =

1. The market participants are subject to no transaction costs when they trade. '
2. The market participants are subject to the same tax rate on all net trading profits.
3. The market participants can borrow money at the same risk-free rate of interest as

they can lend money.
4. The market participants take advantage of arbitrage opportunities as they occur.

Note that we do not require these assumptions to be true for all market participants. All
that we require is that they be true——or at least approximately true-—for a few key
market participants such as large derivativesdealers. It is the trading activities of these
key market participants and their eagerness to take advantage of arbitrage opportun-
ities as they occur that determine the relationship between forward and spot prices.

The following notation will be used throughout this chapter:

T: Time until delivery date in a forward or futures contract (in years)
S0: Price of the asset underlying the forward or futures contract today
F0: Forward or futures price today

r: Zero-coupon risk-free rate of interest per annum, expressed with continuous
compounding, for an investment maturing at the delivery date (i.e., in T years).
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The risk-free rate r is the rate at which money is borrowed or lent when there is no credit
risk, so that the money is certain to be repaid. As discussed in Chapter 4, participants in
derivatives markets have traditionally assumed that LIBOR rates rather than Treasury
rates are the relevant risk-free rates.

FORWARD PRICE FOR AN INVESTMENT ASSET

The easiest forward contract to value is one written on an investment asset that provides
the holder with no income. Non-dividend-paying stocks and zero-coupon bonds are
examples of such investment assets.

Consider a long forward contract to purchase a non-dividend-paying stock in
3 months.1 Assume the current stock price is $40 and the 3-month risk-free interest
rate is 5% per annum.

Suppose first that the forward price is relatively high at $43. An arbitrageur can
borrow $40 at the risk-free interest rate of 5% per annum, buy one share, and short a
forward contract to sell one share in 3 months. At the end of the 3 months, the
arbitrageur delivers the share and receives $43. The sum of money required to pay
off the loan is 5

40@°~°5X3/ 12 = $40.50
By following this strategy, the arbitrageur locks in a profit of $43.00 — $40.50 = $2.50
at the end of the 3-month period.  

Suppose next that the forward price is relatively low at $39. An arbitrageur can
short one share, invest the proceeds of the short sale at 5% per annum for 3 months,
and take a long position in a 3-month forward contract. The proceeds of the short
sale grow to 40e0'05X3/12, or $40.50 in 3 months. At the end of the 3 months, the
arbitrageur pays $39, takes delivery of the share under the terms of the forward
contract, and uses it to close out the short position. A net gain of

$40.50 — $39.00 = $1.50

is therefore made at the end of the 3 months. The two trading strategies we have
considered are summarized in Table 5.2.

Under what circumstances do arbitrage opportunities such as those in Table 5.2 not
exist? The first arbitrage works when the forward price is greater than $40.50. The
second arbitrage works when the forward price is less than $40.50. We deduce that for
there to be no arbitrage the forward price must be exactly $40.50.

A Generalization
To generalize this example, we consider a forward contract on an investment asset with
price S0 that provides no income. Using our notation, T is the time to maturity, r is the
risk-free rate, and F0 is the forward price. The relationship between F0 and S0 is

~ F0 = sot” (5.1)
-1?-M-—-ii

1 Forward contracts on individual stocks do not often arise in practice. However, they form useful examples
for developing our ideas. Futures on individual stocks started trading in the United States in November 2002.



Determination of Forward and Futures Prices 105
. . 4 , . . , . . - ,, . ........,> _. _ . . . , . _

Table 5.2 Arbitrage opportunities when forward price is out of line with spot
price for asset providing no income. (Asset price = $40; interest rate = 5%;
maturity of forward contract = 3 months.)

Forward Price -: $43 Forward Price -= $39

Actionnow: Action now:
Borrow $40 at 5% for 3 months Short 1 unit of asset to realize $40
Buy one unit of asset Invest $40 at 5% for 3 months
Enter into forward contract to sell Enter into a forward contract to buy

asset in 3 months for $43 asset in 3 months for $39
Action in 3 months: Action in 3 months:  
Sell asset for $43 Buy asset for $39
Use $40.50 to repay loan with interest Close short position

Receive $40.50 from investment

Profit realized = $2.50 Profit realized = $1.50
_____,._.,‘,‘ _. ,_', - _, .___. _ _ _. ,‘__._ __ .. ._.__ _._

=‘:-’ - - _: ~ - - -- .@ .1 _ ‘-4 "- .1‘ .~- -. .............. ..

If F > S0e’T, arbitra eurs can buy the asset and short forward contracts on the asset. If0 8
F0 < S0e’T, they can short the asset and enter into long forward contracts on it.2 In our
example, S0 : 40, r = 0.05, and T : 0.25, so that equation (5.1) gives

 F0 = 40@°~°5><°-‘*5 = $40.50
which is in agreement with our earlier calculations.

A long forward contract and a spot purchase both lead to the asset being owned at
time T. The forward price is higher than the spot price because of the cost of
financing the spot purchase of the asset during the life of the forward contract. This
point was overlooked by Kidder Peabody in 1994, much to its cost (see Business
Snapshot 5.1).

Example 5.1
Consider a 4-month forward contract to buy a zero-coupon bond that will mature
1 year from today. (This means that the bond will have 8 months to go when the
forward contract matures.) The current price of the bond is $930. We assume that
the 4-month risk-free rate of interest (continuously compounded) is 6% per an-
num. Because zero-coupon bonds provide no income, we can use equation (5.1)
with T : 4/12, r = 0.06, and S0 :: 930. The forward price, F0, is given by

F0 = 930@°~°6><4/‘Z = $948.79

This would be the delivery price in a contract negotiated today.
Z?-Z-1-1-it

1

2 For another way of seeing that equation (5.1) is correct, consider the following strategy: buy one unit of the
asset and enter into a short forward contract to sell it for F0 at time T. This costs S0 and is certain to lead to a
cash inflow of F0 at time T. Therefore S0 must equal the present value of F0; that is, S0 = F0e"'T, or
equivalently F0 = S0e’T.
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Business Snapshot 5.1 Kidder Peabody’s Embarrassing Mistake

Investment banks have developed a way of creating a zero-couponbond, called a
1 strip, from a coupon-bearing Treasury bond by selling each of the cash flows under-
lying the coupon-bearing bond as a separate security. Joseph Jett, a trader working
for Kidder Peabody, had a relatively simple trading strategy. He would buy strips and
sell them in the forward market. As equation (5.1) shows, the forward ,p’rice of a

security providing no income is alwayshigher than the spot--price. Suppose,"-5 for
example, that the 3-month interest rate is 4% per annum and the spot price of a strip
is $70. The 3-month forward price of the strip is 70e0'04x3/12.: ‘$70.70. . j- '

- Kidder Peabody’s computer system reported ea profit on each ofJett’s trades equal to
the excess of the forward price over the spot price ($0.70 in our example). In fact this
profit was nothing more than the cost of financing the purchase of the strip. But, by
rolling his contracts forward, Jett was able to prevent this cost from accruing to him.

-The result was that the system reported a profit of $100 million on Jett’s_ trading
(and Jett received a big bonus) when in fact there was a loss in the region of
$350 million. This shows that even large financial institutions can get relatively
simple things wrong!

What If Short Sales Are Not Possible?
Short sales are not possible for all investment assets and sometimes a fee is charged for
borrowing assets. As it happens, this does not matter. To derive equation (5.1), we do
not need to be able to short the asset. All that we require is that there be a significant
number of people who hold the asset purely for investment (and by definition this is
always true of an investment asset). If the forward price is too low, they will find it
attractive to sell the asset and take a long position in a forward contract.

Suppose that the underlying asset has no storage costs or income. If F0 > S0e’T, an
investor can adopt the following strategy:

1. Borrow S0 dollars at an interest rate r for T years.
2. Buy 1 unit of the asset.
3. Short a forward contract on 1 unit of the asset.

At time T, the asset is sold for F0. An amount S0e’T is required to repay the loan at this
time and the investor makes a profit of F0 - S0e’T.

Suppose next that F0 < S0e’T. In this case, an investor who owns the asset can:

1. Sell the asset for S0.
2. Invest the proceeds at interest rate r for time T.
3. Take a long position in a forward contract on 1 unit of the asset.

At time T, the cash invested has grown to S0e’T. The asset is repurchased for F0 and the
investor makes a profit of S0e’T - F0 relative to the position the investor would have
been in if the asset had been kept. I

As in the non-dividend-paying stock example considered earlier, we can expect the
forward price to adjust so that neither of the two arbitrage opportunities we have
considered exists. This means that the relationship in equation (5.1) must hold.
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KNOWN INCOME

In this section we consider a forward contract on an investment asset that will provide a
perfectly predictable cash income to the holder. Examples are stocks paying known
dividends and coupon-bearing bonds. We adopt the same approach as in the previous
section. We first look at a numerical example and then review the formal arguments.

Consider a long forward contract to purchase a coupon-bearing bond whose current
price is $900. We will suppose that the forward contract matures in 9 months. We will
also suppose that a coupon payment of $40 is expected after 4 months. We assume that
the 4-month and 9-month risk-free interest rates (continuously compounded) are,
respectively, 3% and 4% per annum.

Suppose first that the forward price is relatively high at $910. An arbitrageur can
borrow $900 to buy the bond and short a forward contract. The coupon payment has a
present value of 40eT0‘03X4/ 12 = $39.60. Of the $900, $39.60 is therefore borrowed at
3% per annum for 4 months so that it can be repaid with the coupon payment. The
remaining $860.40 is borrowed at 4% per annum for 9 months. The amount owing at
the end of the 9-month period is 860.40eO'04X0'75 = $886.60. A sum of $910 is received
for the bond under the terms of the forward contract. The arbitrageur therefore makes
a net profit of ’

' 910.00 - 886.60 : $23.40

Suppose next that the forward price is relatively low at $870. An investor can short the
bond and enter into a long forward contract. Of the $900 realized from shorting the
bond, $39.60 is invested for 4 months at 3% per annum so that it grows into an amount
sufficient to pay the coupon on the bond. The remaining $860.40 is invested for
9 months at 4% per annum and grows to $886.60. Under the terms of the forward
contract, $870 is paid to buy the bond and the short position is closed out. The investor
therefore gains

886.60 - 870 = $16.60 .

The two strategies we have considered are summarized in Table 5.3.3 The first strategy in
Table 5.3 produces a profit when the forward price is greater than $886.60, whereas the
second strategy produces a profit when the forward price is less than $886.60. It follows
that if there are no arbitrage opportunities then the forward price must be $886.60.

1

A Generalization
We can generalize from this example to argue that, when an investment asset will
provide income with a present value of I during the life of a forward contract, we have

F0 I (S0 "— I)€rT

In our example, S0 : 900.00, I : 40e"0503X4/I2 : 39.60, r = 0.04, and T : 0.75, so that

F0 : (900.00 - 39.60)@°~°"'>‘°575 = $880.60
1

 3i-Z.

3 If shorting the bond is not possible, investors who already own the bond will sell it and buy a forward
contract on the bond increasing the value of their position by $16.60. This is similar to the strategy we
described for gold in Section 5.4.
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Table 5.3 Arbitrage opportunities when 9-month forward price is out of line
spot price for asset providing known cash income. (Asset price : $900; income of
$40 occurs at 4 months; 4-month and 9-month rates are, respectively, 3% and 4%
per annum.)

Forward price : $910 Forward price = $870

Action now: Action now:
Borrow $900: $39.60 for 4 months Short 1 unit of asset to realize $900

and $860.40 for 9 months J Invest $39.60 for 4 months
Buy 1 unit of asset -" and $860.40 for 9 months
Enter into forward contract to sell Enter into a forward contract to buy

asset in 9 months for $910 asset in 9 months for $870
Action in 4 months: Action in 4 months:
Receive $40 of income on asset Receive $40 from 4-month investment
Use $40 to repay first loan Pay income of $40 on asset

with interest
Action in 9 months: Action in 9 months:
Sell asset for $910 Receive $886.60 from 9-month investment
Use $886.60 to repay second loan Buy asset for $870 -

with interest Close out short position
Profit realized = $23.40 Profit realized = $16.60

- , '0 ...’ _._ 0__ _ ,_ ,_._- ,,~-~~---~-~4-w--»-----45-» _.. -- .. . 0 ._ _ _-- _-,.,._._v,..,, _ ._._.._ ,.7-.‘,__ .-,|'S$u~~- _. '.."(-_.__...~... \.’._A1._-:»_~ ~ —._ _- ~. ~.-...-_.-. 1 -a r.‘<.*.-.- -~- I

This is in agreement with our earlier calculation. Equation (5.2) applies to any investment
asset that provides a known cash income.

9 If F0 > (S0 - I)e’T,an arbitrageur can lock in a profit by buying the asset and
shorting a forward contract on the asset; if F0 < (S0 - I)e’T, an arbitrageur can lock
in a profit by shorting the asset and taking a long position in a forward contract. If
short sales are not possible, investors who own the asset will find it profitable to sell the
asset and enter into long forward contracts.4

Example 5.2
Consider a 10-month forward contract on a stock when the stock price is $50. We
assume that the risk-free rate of interest (continuously compounded) is 8% per
annum for all maturities. We also assume that dividends of $0.75 per share are
expected after 3 months, 6 months, and 9 months. The present value of the
dividends, I, is

I Z + 0.758--0.08X6/12 + 0.75e—-0.08X9/12 ::

The variable T is 10 months, so that the forward price, F0, from equation (5.2), is
given by

F0 = (50 - 2.162)@°~°8X1°’” = $51.14
1

4 For another way of seeing that equation (5.2) is correct, consider the following strategy: buy one unit of the
asset and enter into a short forward contract to sell it for F0 at time T. This costs S0 and is certain to lead to a
cash inflow of F0 at time T and an income with a present value of I. The initial outflow is S0. The present
value of the inflows is I + F0e""T. Hence, S0 : I + F0e"T, or equivalently F0 = (S0 - I)e’T.
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If the forward price were less than this, an arbitrageur would short the stock and
buy forward contracts. If the forward price were greater than this, an arbitrageur
would short forward contracts and buy the stock in the spot market.

KNOWN YIELD
We now consider the situation where the asset underlying a forward contract provides a
known yield rather than a known cash income. This means that the income is known
when expressed as a percentage of the asset’s price at the time the income is paid.
Suppose that an asset is expected to provide a yield of 5% per annum. This could mean
that income is paid once a year and is equal to 5% of the asset price at the time it is paid,
in which case the yield would be 5% with annual compounding. Alternatively, it could
mean that income is paid twice a year and is equal to 2.5% of the asset price at the time
it is paid, in which case the yield would be 5% per annum with semiannual compound-
ing. In Section 4.2 we explained that we will normally measure interest rates with
continuous compounding. Similarly, we will normally measure yields with continuous
compounding. Formulas for translating a yield measured with one compounding
frequency to a yield measured with another compounding frequency are the same as
those given for interest rates in Section 4.2.

Define q as the average yield per annum on an asset during the life of a forward
contract with continuous compounding. It can be shown (see Problem 5.20) that

F0 I S0€(r_q_)T I

Example 5.3
Consider a 6-month forward contract on an asset that is expected to provide
income equal to 2% of the asset price once during a 6-month period. The risk-
free rate of interest (with continuous compounding) is 10% per annum. The asset
price is $25. In this case, S0 = 25, r := 0.10, and T = 0.5. The yield is 4% per
annum with semiannual compounding. From equation (4.3), this is 3.96% per
annum with continuous compounding. It follows that q = 0.0396, so that from
equation (5.3) the forward price, F0, is given by

F0 Z 25e(0.l0-—0.0396)><(I.5 :___

VALUING FORWARD CONTRACTS

The value of a forward contract at the time it is first entered into is zero. At a later
stage, it may prove to have a positive or negative value. It is important for banks and
other financial institutions to value the contract each day. (This is referred to as
marking to market the contract.) Using the notation introduced earlier, we suppose
K is the delivery price for a contract that was negotiated some time ago, the delivery
date is T years from today, and r is the T-year risk-free interest rate. The variable F0 is
the forward price that would be applicable if we negotiated the contract today. In
addition, we define f to be the value of forward contract today.

It is important to be clear about the meaning of the variables F0, K, and f. At the
beginning of the life of the forward contract, the delivery price, K, is set equal to the
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forward price and the value of the contract, f, is 0. As time passes, K stays the same
(because it is part of the definition of the contract), but the forward price changes and
the value of the contract becomes either positive or negative.

A general result, applicableto all long forward contracts (both those on investment
assets and those on consumption assets), is

 f = (F0 - K>e"’T (5.4)
To see why equation (5.4) is correct, we use an argument analogous to the one we used
for forward rate agreements in Section 4.7. We compare a long forward contract that
has a delivery price of F0 with an otherwise identical long forward contract that has a
delivery price of K . The difference between the two is only in the amount that will be
paid for the underlying asset at time T. Under the first contract, this amount is F0;
under the second contract, it is K. A cash outflow difference of F0 - K at time T
translates to a difference of (F0 - K)e_'T today. The contract with a delivery price F0 is
therefore less valuable than the contract with delivery price K by an amount
(F0 - K)e"’T. The value of the contract that has a delivery price of F0 is by definition
zero. It follows that the value of the contract with a delivery price of K is (F0 - K)e"’T.
This proves equation (5.4). Similarly, the value of a short forward contract with delivery
price K is  

 (K - F0)e"T
Example 5.4

A long forward contract on a non-dividend-paying stock was entered into some
time ago. It currently has 6 months to maturity. The risk-free rate of interest (with
continuous compounding) is 10% per annum, the stock price is $25, and the
delivery price is $24. In this case, S0 : 25, r = 0.10, T = 0.5, and K = 24. From
equation (5.1), the 6-month forward price, F0, is given by

F0 = 25@°~‘*°55 = $26.28
From equation (5.4), the value of the forward contract is

f = (26.28 - 24)@'°~1*°~5 = $2.17
Equation (5.4) shows that we can value a long forward contract on an asset by making
the assumption that the price of the asset at the maturity of the forward contract equals
the forward price F0. To see this, note that when we make that assumption, a long
forward contract provides a payoff at time T of F0 — K. This has a present value of
(F0 - K)e_’T, which is the value of f in equation (5.4). Similarly, we can value a short
forward contract on the asset by assuming that the current forward price of the asset is
realized. These results are analogous to the result in Section 4.7 that we can value a
forward rate agreement on the assumption that forward rates are realized.

Using equation (5.4) in conjunction with equation (5. 1) gives the following expression
for the value of a forward contract on an investment asset that provides no income

1

f = s0 - Ke—’T (5.5)
Similarly, using equation (5.4) in conjunction with equation (5.2) gives the following
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Business Snapshot 5.2 A Systems Error?

A foreign exchange trader working for a bank enters into a long forward contract to
buy 1 million pounds sterling at an exchange rate of 1.5000 in 3 months. At the same
time, another trader on the next desk takes a long position in 16 contracts for
3-month futures on sterling. The futures price is 1.5000 and each contract is on
62,500 pounds. The positions taken by the forward and futures traders are therefore
the same. Within minutes "of the positions being taken the forward and the futures
prices both increase to 1.5040. The bank’s systems show thatthe futures traderhas
made a profit of $4,000, while the forward trader has made a; profit of only$3,900.
The forward trader immediately calls the bank’s systems department to ‘complain.
Does the forward trader have a valid complaint? 5 8 ' . ' -

, The answer is no! The daily settlement of futures contracts ensures that the futures
trader realizes an almost immediate profit corresponding to the increase in the futures
price. If the forward trader closed out the position by entering into a short contract
at 1.5040, the forward trader would have contracted to buy 1 million pounds at 1.5000 5
in 3 months and sell 1 million pounds at 1.5040 in 3 months. This would lead to a
$4,000 profit-but in 3 months, not today. The forward trader’s profit is the present,
value of $4,000. This is consistent with equation (5.4). I

The forward trader can gain some consolation from the fact that gains and losses
are treated symmetrically. If the forward/futures prices dropped to 1.4960 instead of
rising to 1.5040, then the futures trader would take a loss of $4,000 while the forward
trader would take a loss of only $3,900.

expression for the value of a long forward contract on an investment asset that provides
a known income with present value I :

f = so - 1 ~ 1<@"”" (5.6)
Finally, using equation (5.4) in conjunction with equation (5.3) gives the following
expression for the value of a long forward contract on an investment asset that provides
a known yield at rate q:

f = s0@*‘1T - K6-”" (5.7)
When a futures price changes, the gain or loss on a futures contract is calculated as the

change in the futures price multiplied by the size of the position. This gain is realized
almost immediately because of the way futures contracts are settled daily. Equation (5.4)
shows that, when a forward price changes, the gain or loss is the present value of the
change in the forward price multiplied by the size of the position. The difference
between the gain/loss on forward and futures contracts can cause confusion on a foreign
exchange trading desk (see Business Snapshot 5.2).

ARE FORWARD PRICES AND FUTURES PRICES EQUAL?

Technical Note 24 at WWW.rotman.utoronto.ca/~hu11/TechnicalNotes provides an
arbitrage argument to show that, when the short-term risk-free interest rate is constant,
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the forward price for a contract with a certain delivery date is in theory the same as the
futures price for a contract with that delivery date. The argument in the appendix can
be extended to cover situations where the interest rate is a known function of time.

When interest rates vary unpredictably (as they do in the real world), forward and
futures prices are in theory no longer the same. We can get a sense of the nature of the
relationship by considering the situation where the price of the underlying asset, S, is
strongly positively correlated with interest rates. When S increases, an investor who
holds a long futures position makes an immediate gain because of the daily settlement
procedure. The positive correlation indicates that it is likely that interest rates have also
increased. The gain will therefore tend to be invested at a higher than average rate of
interest. Similarly, when S decreases, the investor will incur an immediate loss. This loss
will tend to be financed at a lower than average rate of interest. An investor holding a
forward contract rather than a futures contract is not affected in this way by interest rate
movements. It follows that a long futures contract will be slightly more attractive than a
similar long forward contract. Hence, when S is strongly positively correlated with
interest rates, futures prices will tend to be slightly higher than forward prices. When S
is strongly negatively correlated with interest rates, a similar argument shows that
forward prices will tend to be slightly higher than futures prices.

The theoretical differences between forward and futures prices for contracts that last
only a few months are in most circumstances sufliciently small to be ignored. In
practice, there are a number of factors not reflected in theoretical models that may
cause forward and futures prices to be different. These include taxes, transactions costs,
and the treatment of margins. The risk that the counterparty will default may be less in
the case of a futures contract because of the role of the exchange clearinghouse. Also, in
some instances, futures contracts are more liquid and easier to trade than forward
contracts. Despite all these points, for most purposes it is reasonable to assume that
forward and futures prices are the same. This is the assumption we will usually make in
this book. We will use the symbol F0 to represent both the futures price and the forward
price of an asset today. ‘

One exception to the rule. that futures and forward contracts can be assumed to be
the same concerns Eurodollar futures. This will be discussed in Section 6.3. 5

FUTURES PRICES OF STOCK INDICES ,_

We introduced futures on stock indices in Section 3.5 and showed how a stock index
futures contract is a useful tool in managing equity portfolios. Table 3.3 shows futures
prices for a number of different indices. We are now in a position to consider how index
futures prices are determined.

A stock index can usually be regarded as the price of an investment asset that pays
dividends.5 The investment asset is the portfolio of stocks underlying the index, and the
dividends paid by the investment asset are the dividends that would be received by the
holder of this portfolio. It is usually assumed that the dividends provide a known yield
rather than a known cash income. If q is the dividend yield rate, equation (5.3) gives the
futures price,~ F0, as

F0 = s0@<’"r>T (5.8)
5 Occasionally this is not the case: see Business Snapshot 5.3.



Determination of Forward and Futures Prices 113
i j I i | I i i 1 i — i I— -| i i i

Business Snapshot 5.3 The CME Nikkei 225 Futures Contract
 

The arguments in this chapter on how index futures prices are determined require that
the index be the value of an investment asset. This means that it must be the value of a
portfolio of assets that can be traded. The asset underlying the Chicago Mercantile
Exchange’s futures contract on the Nikkei 225 Index does not qualify, and the reason
why is quite subtle. Suppose S is the value of the Nikkei 225 Index. This is the value of
a portfolio of 225 Japanese stocks measured in yen. The variable underlying the CME
futures contract on the Nikkei 225 has a dollar value of 5S. In otherwords, the futures
contract takesa variable that is measured in yen and treats it as though it is dollars.

A We cannot invest in a portfolio whose value will always be SS dollars. The best we
cando is to invest in one that is always worth 5S yen or in one that is always worth
5QS dollars, where Q is the dollar value of 1 yen. The variable 5S dollars is not,
therefore, the price of an investment asset and equation (5.8) does not apply.

CME’s Nikkei 225 futures contract is an example of a quanto. A quanto is a
derivative where the underlying asset is measured in one currency and the payoff is in
another currency. Quantos will be discussed further in Chapter 29.

This shows that the futures price increases at rate r - q with the maturity of the futures
contract. In Table 3.3, the December futures settlement price of the S&P 500 is about
0.76% less than the June settlement price. This indicates that, on May 26, 2010, the
short-term risk-free rate r was less than the dividend yield q about 1.52% per year.

Example 5.5
Consider a 3-month futures contract on an index. Suppose that the stocks under-
lying the index provide a dividend yield of 1% per annum, that the current value
of the index isl,300, and that the continuously compounded risk-free interest rate
is 5% per annum. In this case, r: 0.05, S0 = 1,300, T = 0.25, and q : 0.01.
Hence, the futures price, F0, is given by

F0 = 1,300@<°-°5*°~°‘>><°-25 = $1,313.07
In practice, the dividend yield on the portfolio underlying an index varies week ‘by week
throughout the year. For example, a large proportion of the dividends on the NYSE
stocks are paid in the first week of February, May, August, and November each year.
The chosen value of q should represent the average annualized dividend yield during the
life of the contract. The dividends used for estimating q should be those for which the
ex-dividend date is during the life of the futures contract.

Index Arbitrage
If F0 > S0e(’_‘i)T, profits can be made by buying the stocks underlying the index at the
spot price (i.e., for immediate delivery) and shorting futures contracts. If F0 < S0e("‘i)T,
profits can be made by doing the reverse-that is, shorting or selling the stocks
underlying the index and taking a long position in futures contracts. These strategies
are known as index arbitrage. When F0 < S0e('""I)T, index arbitrage is often done by a
pension fund that owns an indexed portfolio of stocks. When F0 > S0e("‘I)T, it might be
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Business Snapshot 5.4 Index Arbitrage in October 1987 - _ 0 0 _ I

To do index arbitrage, a trader mustbe abletotrade both the index futures contract
and the portfolio of stocks underlying the index very quickly at the prices quoted in
the market. In normal market conditions this is possible using program trading, and
the relationship in equation'(5.8) holds. well.-Examples,0of_.days when the market was
anything but normal are October 19__1and 20-"of50iLl987.On__what is ter1n'e§li'*‘~B1ackr
Monday,”'October_l9, 1987,J-themarket_'fe11'by'rnore than 20%, and"the»604 million
shares tradedon tl_1é- New York Stock Exchang<-:j;0easi1y exccededgallipreviousrecordsl. -
iThe,exchange7sT systems were overloaded,'and 6;a¢;;,,p1.a¢ed to buy or 'sell.sh_ar'es on
that day could be (delayed by up to two. hours before being executed." » f 5 0 " '

"2 For most of October 19, 1987, futures prices were at a significant discount to the
underlying index. For example, -at theclose of ~trading'"the S&P 500 Indexwas at
225.06 (down 57.88 on the day), whereas the futures price for -December delivery on
the S&P 500 was 201.50 (down 80.75 on the day). Thiswas la1geily:because-the delays .
inprocessing: orders made index arbitrage impossible. On”-the ‘next day, Tuesday,
October 20,1987," the New York Stock Exchange placed temporary restrictions on
the way in which program trading could be_ done._"ThisI also made inde_x”arbi_t_rage very
difficult and the breakdown of the traditional linkagejbetween stock indices and ‘stock
index futures continued. At one point the futures, price for the December contract was
18% less than the~S&P 500 Index. However, after"‘a5“few days the market returiied to
normal, and theactivities of arbitrageurs‘ ensured that equation’ (5.8) governed the
relationship between futures and spot prices of indices. I - 9 ' I

done by a corporation holding short-term money market investments. For indices
involving many stocks, index arbitrage is sometimes accomplished by trading a rela-
tively small representative sample of stocks whose movements closely mirror those of
the index. Usually index arbitrage is implemented through program trading. This
involves using a computer system to generate the trades.

Most of the time the activities of arbitrageurs ensure that equation (5.8) holds, but
occasionally arbitrage is impossible and the futures price does get out of line with the
spot price (see Business Snapshot 5.4).

FORWARD AND FUTURES CONTRACTS ON CURRENCIES

We now move on to consider forward and futures foreign currency contracts from the
perspective of a US investor. The underlying asset is one unit of the foreign currency.
We will therefore define the variable S0 as the current spot price in US dollars of one
unit of the foreign currency and F0 as the forward or futures price in US dollars of one
unit of the foreign currency. This is consistent with the way we have defined S0 and F0
for other assets underlying forward and futures contracts. However, as mentioned in
Section 2.11, it does not necessarily correspond to the way spot and forward exchange
rates are quoted. For major exchange rates other than the British pound, euro,
Australian dollar, and New Zealand dollar, a spot or forward exchange rate is normally
quoted as the number of units of the currency that are equivalent to one US dollar.
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Figure 5.1 Two ways of converting 1,000 units of a foreign currency to dollars at
time T. Here, S0 is spot exchange rate, F0 is forward exchange rate, and r and rf are the
dollar and foreign risk-free rates.

1000 units of
foreign currency

at time zero

1000e’fT units of
foreign currency

‘at time T

1000e"fTF0
dollars

at time T
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1000S0 '
dollars

at time zero
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1 000SOe"T
dollars

at time T
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A foreign currency has the property that the holder of the currency can earn interest
at the risk-free interest rate prevailing in the foreign country. For example, the holder
can invest the currency in a foreign-denominated bond. We define rf as the value of the
foreign risk-free interest rate when money is invested for time T. The variable r is the
US dollar risk-free rate when money is invested for this period of time.

The relationship between F0 and S0 is _

F0 = s0@<’"’f>T (5.9)
This is the well-known interest rate parity relationship from international finance. The
reason it is true is illustrated in Figure 5.1. Suppose that an individual starts with
1,000 units of the foreign currency. There are two ways it can be converted to dollars at
time T. One is by investing it for T years at rf and entering into a forward contract to
sell the proceeds for dollars at time T. This generates l,000e’fTF0 dollars. Theiother is
by exchanging the foreign currency for dollars in the spot market and investing the
proceeds for T years at rate r. This generates l,000S0e'T dollars. In the absence of
arbitrage opportunities, the two strategies must give the same result. Hence,

l,000e’fTF0 = 1,000s0@’T
so that

F0 I S0€(r_rf)T

Example 5.6
Suppose that the 2-year interest rates in Australia and the United States are 5%
and 7%, respectively, and the spot exchange rate between the Australian dollar
(AUD) and the US dollar (USD) is 0.6200 USD per AUD. From equation (5.9),
the 2-year forward exchange rate should be

0.62@<°~°7*°~°5>><2 = 0.6453
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Suppose first that the 2-year forward exchange rate is less than this, say 0.6300.
An arbitrageur can:

1. Borrow 1,000 AUD at 5% per annum for 2 years, convert to 620 USD and
invest the USD at 7% (both rates are continuously compounded).

2. Enter into a forward contract to buy 1,105.17 AUD for 1,105.17 >< 0.63 =
696.26 USD.

The 620 USD that are invested at 7% grow to 620e0'O7X2 = 713.17 USD in
2 years. Of this, 696.26 USD are used to purchase 1,105.17 AUD under the

5 terms of the forward contract. This is exactly enough to rezpay principal and
interest on the 1,000 AUD that are borrowed (1,000e0'05X =1,105.17). The
strategy therefore gives rise to a riskless profit of 7l3.17—696.26= 16.91
USD. (If this does not sound very exciting, consider following a similar strategy
where you borrow 100 million AUD!)

Suppose next that the 2-year forward rate is 0.6600 (greater than the 0.6453
value given by equation (5.9)). An arbitrageur can:

1. Borrow 1,000 USD at 7% per annum for 2 years, convert to 1,000/0.6200 =
1,612.90 AUD, and invest the AUD at 5%.

2. Enter into a forward contract to sell 1,782.53 AUD for 1,782.53 x 0.66 :
1,176.47 USD. .

The 1,612.90 AUD that are invested at 5% grow to l,612.90e0'05X2 = 1,782.53
AUD in 2 years. The forward contract has the effect of converting this to
1,176.47 USD. The amount needed to payoff the USD borrowings is
l,000e0-07x2 = 1,150.27 USD. The strategy therefore gives rise to a riskless profit
of 1,176.47 — 1,150.27 : 26.20 USD.-

Table 5.4 shows currency futures quotes on May 26, 2010. The quotes are US dollars
per unit of the foreign currency. (In the case of the Japanese yen, the quote is US
dollars per 100 yen; for the Mexican peso, it is US dollars per 10 pesos.) This is the
usual quotation convention for futures contracts. Equation (5.9) applies with r equal to
the US risk-free rate and rf equal to the foreign risk-free rate.

On May 26, 2010, short-term interest rates on the Japanese yen, British pound, Swiss
franc, and euro were lower than the short-term interest rate on the US dollar. This
corresponds to the r > rf situation and explains why futures prices for these currencies
increase with maturity in Table 5.4. For the Australian dollar, Canadian dollar, and
Mexican peso, short-term interest rates were higher than in the United States. This
corresponds to the rf > r situation and explains why the futures prices of these
currencies decrease with maturity.

Example 5.7
In Table 5.4, the September settlement price for the Australian dollar is about
1% lower than the June settlement price. This indicates that the futures prices are
increasing at about 4% per year with maturity. From equation (5.9) this is an
estimate of the amount by which short-term Australian LIBOR interest rates
exceeded short-term US LIBOR interest rates on May 26, 2010.
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Table 5.4 Currency futures quotes as reported by exchanges on May 26, 2010.

Open High Low Settlement Change Volume Open interest

Australian dollar, $100,000, USD per AUD (CME Group)
June 2010 0.8266 0.8373 0.8171 0.8236 0.0062 146,968
Sept. 2010 0.8165 0.8285 0.8090 0.8152 0.0059 860
British pound, $62,500, USD per GBP (CME Group)
June 2010 1.4429 1.4446 1.4330 1.4411 0.0046 105,256
Sep 2010 1.4432 1.4450 1.4339 1.4416 0.0044 1,448
Canadian Dollar, $100,000, USD per CAD (CME Group)
June 2010 0.9384 0.9452 0.9305 0.9393 0.0097 126,564
Sept. 2010 0.9378 0.9449 0.9309 0.9392 0.0094 2,264
Euro, 125,000 euros, USD per EUR (CME Group)
June 2010 1.2371 1.2380 1.2170 1.2201 —0.0117 400,948
Sept. 2010 1.2388 1.2388 1.2186 1.2216 -—0.01l8 4,702
Japanese Yen, 12,500,000 yen, USD per 100 yen (CME Group)
June 2010 1.1073 1.1136 1.1031 1.1108 0.0009 172,240
Sept. 2010 1.1100 1.1156 1.1053 1.1129 0.0005 2,098
Mexican Peso, MXN500,000, USD per 10MXN.(CME Group)
June 2010 0.76800 0.77175 0.76000 0.76375 0.00225 37,776

101,448
4,650

140,369
10,811

111,697
8,647

267,552
13,939

135,113
5,506

84,207
Sept. 2010 0.76375 0.76375 0.75275 0.75625 0.00225 107* 727
Swiss Franc, CHF125,000, USD per CHF (CME Group) .
June 2010 0.8661 0.8688 0.8613 0.8629 I —0.0012 68,960 46,212
Sept. 2010 0.8693 0.8713 0.8644 0.8657 —0.0017 1,817 1,938
hf‘ f- _‘.-"'_ ' _'t' "' *1 ;‘:'a=~,'"._' 1'. 4 5-; ‘ ..7' _ . 5 ",1-_..--. ;_ '___- ;. ‘ = if‘_,_:_f_:f_;‘_‘_,_\__2f'1'§'" _ ;- ' '* 1 r" _ _- ,~ _. , ~_' ._

A Foreign Currency as an AssetrProviding a Known Yield  
Equation (5.9) is identical to equation (5.3) with q replaced by rf. This is not a
coincidence. A foreign currency can be regarded as an investment asset paying a known
yield. The yield is the risk-free rate of interest in the foreign currency.

To understand this, we note that the value of interest paid in a foreign currency
depends on the value of the foreign currency. Suppose that the interest rate on British
pounds is 5% per annum. To a US investor the British pound provides an income equal
to 5% of the value of the British pound per annum. In other words itis an asset that
provides a yield of 5% per annum.

FUTURES ON COMMODITIES

We now move on to consider futures contracts on commodities. First we look at the
futures prices of commodities that are investment assets such as gold and silver.6 We
then go on to examine the futures prices of consumption assets.
-1-—----ii-_-—-ii

1

6 Recall that, for an asset to be an investment asset, it need not be held solely for investment purposes. What
is required is that some individuals hold it for investment purposes and that these individuals be prepared to
sell their holdings and go long forward contracts, if the latter look more attractive. This explains why silver,
although it has significant industrial uses, is an investment asset.
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Income and Storage Costs
As explained in Business Snapshot 3.1, the hedging strategies of gold producers leads to
a requirement on the part of investment banks to borrow gold. Gold owners such as
central banks charge interest in the form of what is known as the gold lease rate when
they lend gold. The same is true of silver. Gold and silver can therefore provide income
tothe holder. Like other commodities they also have storage costs.

Equation (5.1) shows that, in the absence of storage costs and income, the forward
price of a commodity that is an investment asset is given by

F0 = so./T (5.10)
Storage costs can be treated as negative income. If U is the present value of all the
storage costs, net of income, during the life of a forward contract, it follows from
equation (5.2) that

F0 = (so + U)e’T (5.11)
Example 5.8

Consider a 1-year futures contract on an investment asset that provides no income.
It costs $2 per unit to store the asset, with the payment being made at the end of
the year. Assume that the spot price is $450 per unit and the risk-free rate is 7%
per annum for all maturities. This corresponds to r : 0.07, S0 : 450, T = 1, and

U = 2e"°~°7><‘ = 1.s65
t

From equation (5.11), the theoretical futures price, F0, is given by

F0 = (450 + l.865)e0'07X1 = $484.63
If the actual futures price is greater than 484.63, an arbitrageur can buy the asset
and short 1-year futures contracts to lock in a profit. If the actual futures price is
less than 484.63, an investor who already owns the asset can improve the return by
selling the asset and buying futures contracts.

If the storage costs (net of income) incurred at any time are proportional /to the price of
the commodity, they can be treated as negative yield. In this case, from equation (5.3),

F0 I S0€(r+u)T

where u denotes the storage costs per annum as a proportion of the spot price net of
any yield earned on the asset.

Consumption Commodities
Commodities that are consumption assets rather than investment assets usually
provide no income, but can be subject to significant storage costs. We now review
the arbitrage strategies used to determine futures prices from spot prices carefu1ly.7

7 For some commodities the spot price depends on the delivery location. We assume that the delivery
location for spot and futures are the same.



Determination of Forward and Futures Prices 119

Suppose that, instead of equation (5.11), we have

Fo > (so + u)e"T (5.13)
To take advantage of this opportunity, an arbitrageur can implement the following
strategy:

1. Borrow an amount S0 + U at the risk-free rate and use it to purchase one unit of
the commodity and to pay storage costs.

2. Short a futures contract on one unit of the commodity.

If we regard the futures contract as a forward contract, so that there is no daily
settlement, this strategy leads to a profit of Fo —- (So + U)e’T at time T. There is no
problem in implementing the strategy for any commodity. However, as arbitrageurs do
so, there will be a tendency for So to increase and F0 to decrease until equation (5.13) is
no longer true. We conclude that equation (5.13) cannot hold for any significant length
of time.

Suppose next that
Fo < (so + r/)e”" (5.14)

When the commodity is an investment asset, we can argue that many investors hold the
commodity solely for investment. When they observe the inequality in equation (5.14),
they will find it profitable to do the following: M

1. Sell the commodity, save the storage costs, and invest the proceeds at the risk-free
interest rate. 3

2. Take a long position in a futures contract.

The result is a riskless profit at maturity of (So + U)e’T - Fo relative to the position
the investors would have been in if they had held the commodity. It follows that
equation (5.14) cannot hold for long. Because neither equation (5.13) nor (5.14) can
hold for long, we must have Fo = (So + U)e’T. I

This argument cannot be used for a commodity that is a consumption asset rather
than an investment asset. Individuals and companies who own a consumption
commodity usually plan to use it in some way. They are reluctant to sell the
commodity in the spot market and buy forward or futures contracts, because /forward
and futures contracts cannot be used in a manufacturing process or consumed in some
other way. There is therefore nothing to stop equation (5.14) from holding, and all we
can assert for a consumption commodity is

Fo < (so + u)e’T (5.15)
If storage costs are expressed as a proportion u of the spot price, the equivalent result is

Fo < soe<’t">T (5.16)

Convenience Yields
We do not necessarily have equality in equations (5.15) and (5.16) because users of a
consumption commodity may feel that ownership of the physical commodity provides
benefits that are not obtained by holders of futures contracts. For example, an oil
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refiner is unlikely to regard a futures contract on crude oil in the same way as crude oil
held in inventory. The crude oil in inventory can be an input to the refining process,
whereas a futures contract cannot be used for this purpose. In general, ownership of the
physical asset enables a manufacturer to keep a production process running and
perhaps profit from temporary local shortages. A futures contract does not do the
same. The benefits from holding the physical asset are sometimes referred to as the
convenience yield provided by the commodity. If the dollar amount of storage costs is
known and has a present value U, then the convenience yield y is defined such that

Foefl = (S0 + U)e’T

If the storage costs per unit are a constant proportion, u, of the spot price, then y is
defined so that

OI‘

Fo = soe<_'+"“Y>T (5.17)
The convenience yield simply measures the extent to which the left-hand side is less than
the right-hand side in equation (5.15) or (5.16). For investment assets the convenience
yield must be zero; otherwise, there are arbitrage opportunities. Table 2.2 in Chapter 2
shows that, on May 26, 2010, the futures price of soybeans decreased as the maturity of
the contract increased from July 2010 to November 2010. This pattern suggests that the
convenience yield, y, is greater than r + u. o_

The convenience yield reflects the market’s expectations concerning the future avail-
ability of the commodity. The greater the possibility that shortages will occur, the
higher the convenience yield.‘ If users of the commodity have high inventories, there is
very little chance of shortages in the near future and the convenience yield tends to be
low. If inventories are low, shortagesrare more likely and the convenience yield is usually
higher.

THE COST OF CARRY
/.

The relationship between futures prices and spot prices can be summarized in terms of
the cost of carry. This measures the storage cost plus the interest that is paid to finance
the asset less the income earned on the asset. For a non-dividend-paying stock, the
cost of carry is r, because there are no storage costs and no income is earned; for a
stock index, it is r — q, because income is earned at rate q on the asset. For a currency,
it is r — rf; for a commodity that provides income at rate q and requires storage costs
at rate u, it is r—q+u; and so on.

Define the cost of carry as c. For an investment asset, the futures price is

Fo = soe” (5.1s)
For a consumption asset, it is

Fo I soe<“">’>T (5.19)
where y is the convenience yield.
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5.13

5.14

DELIVERY OPTIONS

Whereas a forward contract normally specifies that delivery is to take place on a
particular day, a futures contract often allows the party with the short position to
choose to deliver at any time during a certain period. (Typically the party has to give a
few days’ notice of its intention to deliver.) The choice introduces a complication into
the determination of futures prices. Should the maturity of the futures contract be
assumed to be the beginning, middle, or end of the delivery period? Even though most
futures contracts are closed out prior to maturity, it is important to know when delivery
would have taken place in order to calculate the theoretical futures price.

If the futures price is an increasing function of the time to maturity, it can be seen
from equation (5.19) that c > y, so that the benefits from holding the asset (including
convenience yield and net of storage costs) are less than the risk-free rate. It is usually
optimal in such a case for the party with the short position to deliver as early as
possible, because the interest earned on the cash received outweighs the benefits of
holding the asset. As a rule, futures prices in these circumstances should be calculated
on the basis that delivery will take place at the beginning of the delivery period. If
futures prices are decreasing as time to maturity increases (c < y), the reverse is true. It
is then usually optimal for the party with the short position to deliver as late as
possible, and futures prices should, as a rule, be calculated on this assumption.

FUTURES PRICES AND EXPECTED FUTURE SPOT PRICES

We refer to the market’s average opinion about what the spot price of an asset will be at
a certain future time as the expected spot price of the asset at that time. Suppose that it
is now June and the September futures price of corn is 350 cents. It is interesting to ask
what the expected spot price of corn in September is. Is it less than 350 cents, greater
than 350 cents, or exactly equal to 350 cents? As illustrated in Figure 2.1, the futures
price converges to the spot price at maturity. If the expected spot price is less than
350 cents, the market must be expecting the September futures price to decline, so that
traders with short positions gain and traders with long positions lose. If the expected
spot price is greater than 350 cents, the reverse must be true. The market must be

I .

expecting the September futures price to increase, so that traders with long positions
gain while those with short positions lose.

Keynes and Hicks
Economists John Maynard Keynes and John Hicks argued that, if hedgers tend to hold
short positions and speculators tend to hold long positions, the futures price of an asset
will be below the expected spot price.8 This is because speculators require compensation
for the risks they are bearing. They will trade only if they can expect to make money on
average. Hedgers will lose money on average, but they are likely to be prepared to
accept this because the futures contract reduces their risks. If hedgers tend to hold long
positions while speculators hold short positions, Keynes and Hicks argued that the
futures price will be above the expected spot price for a similar reason.

8 See: J .M. Keynes, A Treatise on Money. London: Macmillan, 1930; and J . R. Hicks, Value and Capital.
Oxford: Clarendon Press, 1939.
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Risk and Return
The modern approach to explaining the relationship between futures prices and
expected spot prices is based on the relationship between risk and expected return in
the economy. In general, the higher the risk of an investment, the higher the expected
return demanded by an investor. The capital asset pricing model, which is explained in
the appendix to Chapter 3, shows that there are two types of risk in the economy:
systematic and nonsystematic. Nonsystematic risk should not be important to an
investor. It can be almost completely eliminated by holding a well-diversified portfolio.
An investor should not therefore require a higher expected return for bearing non-
systematic risk. Systematic risk, in contrast, cannot be diversified away. It arises from a
correlation between returns from the investment and returns from the whole stock
market. An investor generally requires a higher expected return than the risk-free
interest rate for bearing positive amounts of systematic risk. Also, an investor is
prepared to accept a lower expected return than the risk-free interest rate when the
systematic risk in an investment is negative.

The Risk in a Futures Position
Let us consider a speculator who takes a long position in a futures contract that lasts for
T years in the hope that the spot price of the asset will be above the futures price at the
end of the life of the futures contract. We ignore daily settlement and assume that the
futures contract can be treated as a forward contract. We suppose that the speculator
puts the present value of the futures price into a risk-free investment while simul-
taneously taking a long futures position. The proceeds of the risk-free investment are
used to buy the asset on the delivery date. The asset is then immediately sold for its
market price. The cash flows to the speculator are as follows: I

Today: —Foe"’T ,
End of futures contract: +ST

where Fo is the futures price today, ST is the price of the asset at time T at the end of the
futures contract, and r is the risk-free return on funds invested for time T.

How do we value this investment? The discount rate we should use for the expected
cash flow at time T equals an investor’s required return on the investment.’ Suppose that
k is an investor’s required return for this investment. The present value of this
investment is

-Foe-’T + E(sT)e“"T
where E denotes expected value. We can assume that all investments in securities
markets are priced so that they have zero net present value. This means that

-Foe-'T + E(ST)e_kT = 0
OI‘

Fo : E(sT)e<’-’<>T (5.20)
As we have just discussed, the returns investors require on an investment depend on its
systematic risk. The investment we have been considering is in essence an investment in
the asset underlying the futures contract. If the returns from this asset are uncorrelated
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Table 5.5 Relationship between futures price and expected future spot price.

Underlying asset Relationship of expected Relationship offutures
return k from asset price F to expected
to risk-free rate r future spot price E(ST)

No systematic risk k = r F0 = E(ST)
Positive systematic risk k > r F0 < E(ST)
Negative systematic risk k < r F0 > E(ST)
Ki.‘ f"T'._‘ .f.'-'_'YZ'.§_‘ ".4." 'T-Y’. ' ' " 7 -7‘ 5 ..”. "'_' - . ' .1 '._'-'Y'-'-Ii".' -7'-""7?-'7' I _ .7.

with the stock market, the correct discount rate to use is the risk-free rate r, so we
should set k : r. Equation (5.20) then gives

F0 = E(5r)

This shows that the futures price is an unbiased estimate of the expected future spot
price when the return from the underlying asset is uncorrelated with the stock
market. -

If the return from the asset is positively correlated with the stock market, k > r and
equation (5.20) leads to F0 < E(ST). This shows that, when the asset underlying the
futures contract has positive systematic risk, we should expect the futures price to
understate the expected future spot price. An example of an asset that has positive
systematic risk is a stock index. The expected return of investors on the stocks underlying
an index is generally more than the risk-free rate, r. The dividends provide a return of q.
The expected increase in the index must therefore be more than r -— q. Equation (5.8) is
therefore consistent with the prediction that the futures price understates the expected
future stock price for a stock index.

If the return from the asset is negatively correlated with the stock market, k < r and
equation (5.20) gives F0 > E(ST). This shows that, when the asset underlying the futures
contract has negative systematic risk, we should expect the futures price to overstate the
expected future spot price.

These results are summarized in Table 5.5.

Normal Backwardation and Contango
When the futures price is below the expected future spot price, the situation is known as
normal backwardation; and when the futures price is above the expected future spot
price, the situation is known as contango. However, it should be noted that sometimes
these terms are used to refer to whether the futures price is below or above the current
spot price, rather than the expected future spot price.

SUMMARY

For most purposes, the futures price of a contract with a certain delivery date can be
considered to be the same as the forward price for a contract with the same delivery
date. It can be shown that in theory the two should be exactly the same when interest
rates are perfectly predictable.
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Table 5.6 Summary of results for a contract with time to maturity T on an investment
asset with price S0 when the risk-free interest rate for a T-year period is r.

Asset Forward/futures Value of long forward contract
price with delivery price K

Provides no income: S0e’T S0 — Ke"’T
Provides known income

with present value I : (S0 — I)e’T S0 — I — Ke_’T
Provides known yield q: S0e(’"‘1)T S0e“1T — Ke"T

For the purposes of understanding futures (or forward) prices, it is convenient to
divide futures contracts into two categories: those in which the underlying asset is held
for investment by a significant number of investors and those in which the underlying
asset is held primarily for consumption purposes. 5

In the case of investment assets, we have considered three different situations:

1. The asset provides no income.
2. The asset provides a known dollar income.
3. The asset provides a known yield.

The results are summarized in Table 5.6. They enable futures prices to be obtained for
contracts on stock indices, currencies, gold, and silver. Storage costs can be treated as
negative income.

In the case of consumption assets, it is not possible to obtain the futures price as a
function of the spot price and other observable variables. Here the parameter known as
the asset’s convenience yield becomes important. It measures the extent to which users
of the commodity feel that ownership of the physical asset provides benefits that are not
obtained by the holders of the futures contract. These benefits may include the ability
to profit from temporary local shortages or the ability to keep a production process
running. We can obtain an upper bound for the futures price of consumption assets
using arbitrage arguments, but we cannot nail down an equality relationship between
futures and spot prices.

The concept of cost of carry is sometimes useful. The cost of carry is the storage cost
of the underlying asset plus the cost of financing it minus the income received from it.
In the case of investment assets, the futures price is greater than the spot price by an
amount reflecting the cost of carry. In the case of consumption assets, the futures price
is greater than the spot price by an amount reflecting the cost of carry net of the
convenience yield.  

If we assume the capital asset pricing model is true, the relationship between the
futures price and the expected future spot price depends on whether the return on the
asset is positively or negatively correlated with the return on the stock market. Positive
correlation will tend to lead to a futures price lower than the expected future spot price,
whereas negative correlation will tend to lead to a futures price higher than the expected
future spot price. Only whenthe correlation is zero will the theoretical futures price be
equal to the expected future spot price.
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Practice Questions (Answers in Solutions Manual)

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5
J

5.1

9

0.

Explain what happens when an investor shorts a certain share. o

What is the difference between the forward price and the value of a forward contract?

Suppose that you enter into a 6-month forward contract on a non-dividend-paying stock
when the stock price is $30 and the risk-free interest rate (with continuous compounding)
is 12% per annum. What is the forward price‘?
A stock index currently stands at 350. The risk-free interest rate is 8% per annum (with
continuous compounding) and the dividend yield on the index is 4% per annum. What
should the futures price for a 4-month contract be? 3

Explain carefully why the futures price of gold can be calculated from its spot price and
other observable variables whereas the futuresprice of copper cannot.

Explain carefully the meaning of the terms convenience yield and cost of carry. What is the
relationship between futures price, spot price, convenience yield, and cost of carry?

Explain why a foreign currency can be treated as an asset providing a known yield.

Is the futures price of a stock index greater than or less than the expected future value of
the index‘? Explain your answer.

A 1-year long forward contract on a non-dividend-paying stock is entered into when the
stock price is $40 and the risk-free rate of interest is 10% per annum with continuous
compounding.
(a) What are the forward price and the initial value of the forward contract?
(b) Six months later, the price of the stock is $45 and the risk-free interest rate is still 10%.

What are the forward price and the value of the forward contract?

The risk-free rate of interest is 7% per annum with continuous compounding, and the
dividend yield on a stock index is 3.2% per annum. The current value of the index is 150.
What is the 6-month futures price‘?
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5.11

5.12.

5.13

5.14.

5.15

5.16

5.17

5.18

5.19

5.20

CHAPTER 5

Assume that the risk-free interest rate is 9% per annum with continuous compounding
and that the dividend yield on a stock index varies throughout the year. In February,
May, August, and November, dividends are paid at a rate of 5% per annum. In other
months, dividends are paid at a rate of 2% per annum. Suppose that the value of the index
on July 31 is 1,300. What is the futures price for a contract deliverable in December 31 of
the same year?

Suppose that the risk-free interest rate is 10% per annum with continuous compounding
and that the dividend yield on a stock index is 4% per annum. The index is standing at
400, and the futures price for a contract deliverable in four months is 405. What arbitrage
opportunities does this create?

Estimate the difference between short-term interest rates in Mexico and the United States
on May 26, 2010, from the information in Table 5.4.

The 2-month interest rates in Switzerland and the United States are, respectively, 2% and
5% per annum with continuous compounding. The spot price of the Swiss franc is
$0.8000. The futures price for a contract deliverable in 2 months is $0.8100. What
arbitrage opportunities does this create?

The spot price of silver is $15 per ounce. The storage costs are $0.24 per ounce per year
payable quarterly in advance. Assuming that interest rates are 10% per annum for all
maturities, calculate the futures price of silver for delivery in 9 months.

Suppose that F1 and F2 are two futures contracts on the same commodity with times to
maturity, t1 and t2, where t2 > t1. Prove that 3

F2 < F16r(t2_t')
where r is the interest rate (assumed constant) and there are no storage costs. For the
purposes of this problem, assume that a futures contract is the same as a forward
contract.

When a known future cash outflow in a foreign currency is hedged by a company using a
forward contract, there is no foreign exchange risk. When it is hedged usingfutures
contracts, the daily settlement process does leave the company exposed to some risk.
Explain the nature of this risk. In particular, consider whether the company is better off
using a futures contract or a forward contract when:
(a) The value of the foreign currency falls rapidly during the life of the contract.
(b) The value of the foreign currency rises rapidly during the life of the contract.
(c) The value of the foreign currency first rises and then falls back to its initial value.
(d) The value of the foreign currency first falls and then rises back to its initial value.
Assume that the forward price equals the futures price.

It is sometimes argued that a forward exchange rate is an unbiased predictor of future
exchange rates. Under what circumstances is this so?

Show that the growth rate in an index futures price equals the excess return on the
portfolio underlying the index over the risk-free rate. Assume that the risk-free interest
rate and the dividend yield are constant.

Show that equation (5.3) is true by considering an investment in the asset combined with a
short position in a futures contract. Assume that all income from the asset is reinvested in
the asset. Use an argument similar to that in footnotes 2 and 4 and explain in detail what
an arbitrageur would do if equation (5.3) did not hold.
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5.21. Explain carefully what is meant by the expected price of a commodity on a particular
future date. Suppose that the futures price for crude oil declines with the maturity of the
contract at the rate of 2% per year. Assume that speculators tend to be short crude oil
futures and hedgers tend to be long. What does the Keynes and Hicks argument imply
about the expected future price of oil?

5.22. The Value Line Index is designed to reflect changes in the value of a portfolio of over
1,600 equally weighted stocks. Prior to March 9, 1988, the change in the index from one
day to the next was calculated as the geometric average of the changes in the prices of the
stocks underlying the index. In these circumstances, does equation (5.8) correctly relate

 the futures price of the index to its cash price? If not, does the equation overstate or
understate the futures price?

5.23. A US company is interested in using the futures contracts traded by the CME Group to
hedge its Australian dollar exposure. Define r as the interest rate (all maturities) on the
US dollar and rf as the interest rate (all maturities) on the Australian dollar. Assume that
r and rf are constant and that the company uses a contract expiring at time T to hedge an
exposure at time t (T > t).
(a) Show that the optimal hedge ratio is e(’f*’)(T").
(b) Show that, when t is 1 day, the optimal hedge ratio is almost exactly S0 /F0, where S0 is

the current spot price of the currency and F0 is the current futures price of the
currency for the contract maturing at time T.

(c) Show that the company can take account of the daily settlement of futures contracts
for a hedge that lasts longer than 1 day by adjusting the hedge ratio so that it always
equals the spot price of the currency divided by the futures price of the currency. I

Further Questions

5.24. An index is 1,200. The three-month risk-free rate is 3% per annum and the dividend yield
over the next three months is 1.2% per annum. The six-month risk-free rate is 3.5%"per
annum and the dividend yield over the next six months is 1% per annum. Estimate the
futures price of the index for three-month and six-month contracts. All interest rates and
dividend yields are continuously compounded. ~

5.25. The current USD/euro exchange rate is 1.4000 dollar per euro. The six-month forward
exchange rate is 1.3950. The six-month USD interest rate is 1% per annum continuously
compounded. Estimate the six-month euro interest rate.

5.26. The spot price of oil is $80 per barrel and the cost of storing a barrel of oil for one year is
$3, payable at the end of the year. The risk-free interest rate is 5% per annum
continuously compounded. What is an upper bound for the one-year futures price of oil?

5.27. A stock is expected to pay a dividend of $1 per share in 2 months and in 5 months. The
stock price is $50, and the risk-free rate of interest is 8% per annum with continuous
compounding for all maturities. An investor has just taken a short position in a 6-month
forward contract on the stock.
(a) What are the forward price and the initial value of the forward contract?
(b) Three months later, the price of the stock is $48 and the risk-free rate of interest is

still 8% per annum. What are the forward price and the value of the short position in
the forward contract?
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A bank offers a corporate client a choice between borrowing cash at 11% per annum and
borrowing gold at 2% per annum. (If gold is borrowed, interest must be repaid in gold.
Thus, 100 ounces borrowed today would require 102 ounces to be repaid in 1 year.) The
risk-free interest rate is 9.25% per annum, and storage costs are 0.5% per annum. Discuss
whether the rate of interest on the gold loan is too high or too low in relation to the rate
of interest on the cash loan. The interest rates on the two loans are expressed with annual
compounding. The risk-free interest rate and storage costs are expressed with continuous
compounding.
A company that is uncertain about the exact date when it will pay or receive a foreign
currency may try to negotiate with its bank a forward contract that specifies a period
during which delivery can be made. The company wants to reserve the right to choose the
exact delivery date to fit in with its own cash flows. Put yourself in the position of the
bank. How would you price the product that the company wants?  
A trader owns gold as part of a long-term investment portfolio. The trader can buy gold
for $1,250 per ounce and sell it for $1,249 per ounce. The trader can borrow funds at 6%
per year and invest funds at 5.5% per year (both interest rates are expressed with annual
compounding). For what range of 1-year forward prices of gold does the trader have no
arbitrage opportunities? Assume there is no bid—olfer spread for forward prices.
A company enters into a forward contract with a bank to sell a foreign currency for K1 at
time T1. The exchange rate at time T1 proves to be S1 (> K1). The company asks the bank
if it can roll the contract forward until time T2 (> T1) rather than settle at time T1. The
bank agrees to a new delivery price, K2. Explain how K2 should be calculated.
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So far we have covered futures contracts on commodities, stock indices, and foreign
currencies. We have seen how they work, how they are used for hedging, and how futures
prices are determined. We now move on to consider interest rate futures.

This chapter explains the popular Treasury bond and Eurodollar futures contracts that
trade in the United States. Many of the other interest rate futures contracts throughout
the world have been modeled on these contracts. The chapter also shows how interest rate
futures contracts, when used in conjunction with the duration measure introduced in
Chapter 4, can be used to hedge a company’s exposure to interest rate movements.

DAY COUNT AND QUOTATION CONVENTIONS

As a preliminary to the material in this chapter, we consider the day count and quotation
conventions that apply to bonds and other instruments dependent on the interest rate.

Day Counts
The day count defines the way in which interest accrues over time. Generally, we know the
interest earned over some reference period (e.g., the time between coupon payments on a
bond), and we are interested in calculating the interest earned over some other period.

The day count convention is usually expressed as X/Y. When we are calculating the
interest earned between two dates, X defines the way in which the number of days
between the two dates is calculated, and Y defines the way in which the total number of
days in the reference period is measured. The interest earned between the two dates is

Number of days between dates . .
1 _ _ >< Interest earned in reference period
Number of days in reference period

Three day count conventions that are commonly used in the United States are:

1. Actual/actual (in period)
2. 30/360
3. Actual/360
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Business Snapshot 6.1 Day Counts Can Be Deceptive
_ 

Between February 28 and March 1, 2013, you have a choice between owning a US
government bond and a'US corporate bond. They pay the same coupon and have the
same quoted price. Assuming no risk of default, which would you prefer? .

It sounds as though you should be indifferent, but in fact you should have a"
§marked prefereince for the corporate bond. Under the 30/360 day countoconvention
used for corporate bonds, there are 3 days .between February 28, 2013, and March 1,
2013.. Under the actual/actual (in period) day-count conventionused for,-g'ove'r1ntmen_t

iabonds, there-is only 1 day. You would earn approximately three times as
interest by holding the corporate bond! I

----- V, .

The actual/actual (in period) day count is used for Treasury bonds in the United
States. This means that the interest earned between two dates is based on the ratio of the
actual days elapsed to the actual number of days in the period between coupon
payments. Assume that the bond principal is $100, coupon payment dates are
March 1 and September 1, and the coupon rate is 8% per annum. (This means that
$4 of interest is paid on each of March 1 and September 1.) Suppose that we wish to
calculate the interest earned between March 1 and July 3. The reference period is from
March 1 to September l.There are 184 (actual) days in the reference period, and interest
of $4 is earned during the period. There are 124 (actual) days between March 1 and
July 3. The interest earned between March 1 and July 3 is therefore

4

-143% x 4 = 2.6957

The 30/360 day count is used for corporate and municipal bonds in the United States.
This means that we assume 30 days, per month and 360 days per year when carrying out
calculations. With the 30/360 day count, the total number of days between March 1 and
September 1 is 180. The total number of days between March 1 and July 3 is
(4 x 30) + 2 = 122. In a corporate bond with the same terms as the Treasury bond
just considered, the interest earned between March 1 and July 3 would therefore be

»122. _ 4=2."/111180 X
As shown in Business Snapshot 6.1, sometimes the 30/360 day count convention has
surprising consequences.

The actual/360 day count is used for money market instruments in the United States.
This indicates that the reference period is 360 days. The interest earned during part of a
year is calculated by dividing the actual number of elapsed days by 360 and multiplying
by the rate. The interest earned in 90 days is therefore exactly one-fourth of the quoted
rate, and the interest earned in a whole year of 365 days is 365/360 times the quoted rate.

Conventions vary from country to country and from instrument to instrument. For
example, money market instruments are quoted on an actual/365 basis in Australia,
Canada, and New Zealand. LIBOR is quoted on an actual/360 for all currencies except
sterling, for which it is quoted on an actual/365 basis. Euro-denominated and sterling
bonds are usually quoted on an actual/actual basis.
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Price Quotations of US Treasury Bills
The prices of money market instruments are sometimes quoted using a discount rate.
This is the interest earned as a percentage of the final face value rather than as a
percentage of the initial price paid for the instrument. An example is Treasury bills in
the United States. If the price of a 91-day Treasury bill is quoted as 8, this means that
the rate of interest earned is 8% of the face value per 360 days. Suppose that the face
value is $100. Interest of $2.0222 (== $100 >< 0.08 >< 91/360) is earned over the 91-day
life. This corresponds to a true rate of interest of 2.0222/(100 — 2.0222) — 2.064% for
the 91-day period. In general, the relationship between the cash price and quoted price
of a Treasury bill in the United States is

3/0P = %(100 - Y)

where P is the quoted price, Y is the cash price, and n is the remaining life of the
Treasury bill measured in calendar days.

Price Quotations of US Treasury Bonds
Treasury bond prices in the United States are quoted in dollars and thirty-seconds of
a dollar. The quoted price is for a bond with a face value of $100. Thus, a quote of
90-05 indicates that the quoted price for a bond with a face value of $100,000
is $90,156.25.

The quoted price, which traders refer to asthe clean price, is not the same as the
cash price paid by the purchaser of the bond, which is referred to by traders as the
dirty price. In general, 0

1

Cash price : Quoted price + Accrued interest since last coupon date

To illustrate this formula, suppose that it is March 5, 2010, and the bond under
consideration is an 11% coupon bond maturing on July 10, 2018, with a quoted price
of 95-16 or $95.50. Because coupons are paid semiannually on government bonds (and
the final coupon is at maturity), the most recent coupon date is January 10, 2010, and
the next coupon date is July 10, 2010. The number of days between January l0, 2010,
and March 5, 2010, is 54, whereas the number of days between January 10, 2010, and
July 10, 2010, is 181. On a bond with $100 face value, the coupon payment is $5.50 on
January 10 and July 10. The accrued interest on March 5, 2010, is the share of the
July 10 coupon accruing to the bondholder on March 5, 2010. Because actual/actual in
period is used for Treasury bonds in the United States, this is

54

The cash price per $100 face value for the bond is therefore

$95.50 + $1.64 : $97.14

Thus, the cash price of 3 s100,000h6ht1 is $97,140.
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TREASURY BOND FUTURES

Table 6.1 shows interest rate futures quotes on May 26, 2010. One of the most popular
long-term interest rate futures contracts is the Treasury bond futures contract traded by
the CME Group. In this contract, any government bond that has more than 15 years to
maturity on the first day of the delivery month and is not callable within 15 years from
that day can be delivered. As will be explained later in this section, the exchange has
developed a procedure for adjusting the price received by the party with the short
position according to the particular bond it chooses to deliver.

The 10-year, 5-year, and 2-year Treasury note futures contract in the United States
are also very popular. In the 10-year Treasury note futures contract, any government
bond. (or note) with a maturity between 6% and 10 years can be delivered. In the 5-year
Treasury note futures contract, the bond delivered must have a remaining life between
4.167 and 5.25 years; in the 2-year contract, the remaining life must be between 1.75 and
5.25 years.

The remaining discussion in this section focuses on the Treasury bond futures. The
Treasury note futures traded in the United States and many other futures contracts in
the rest of the world are designed in a similar way to the Treasury bond futures, so that
many of the points we will make are applicable to these contracts as well.

2., _ 1 .. .14 . - '-- , . . . .. . .. ‘ .

Table 6.1 Interest rate futures quotes as reported by exchanges on May 26, 2010.

I Open High Low Settlement Change Volume Open interest

Treasury Bonds $100,000 (CME Group)  
June 2010 125-000 125-090 123-280 124-150 —25.0 691,927
Sept. 2010 124-170 124-290 123-130 124-010 -28.0 240,475
Treasury Notes 10 Year $100,000 (CME Group)
June 2010 121-180 121-230 120-245 121-050 —16.5 2,139,365
Sept. 2010 120-230 120-295 119-300 120-105 -18.0 657,677
Treasury Notes 5 Year $100,000 (CME Group)
June 2010 117-260117-287117-082 117-157 -12.0 1,008,580
Sept. 2010 116-312 117-035 116-140 116-217 —-12.5 360,038
Treasury Notes 2 Year $100,000 (CME Group)
June 2010 109-102 109-110 109-050 109-080
Sept. 2010 109-002 109-010 108-272 108-302
30-day Fed Funds Rate $5,000,000 (CME Group)
May 2010 99.7950 99.7975 99.7925
Nov. 2010 99.7150 99.7250 99.7000
Eurodollar $1,000,0
June 2010 99.3400
Sept. 2010 99.1150

2010 98.9700Dec
Dec
Dec
Dec.

2011 98.2200

2015 95.5100

00 (CME Group)
99.3400 99.305C
99.1150 99.050C
98.9700 98.8950

I 98.2250 98.l75C
2012 97.2950 97.3350 97.275C

95.5800 95.510C

99.7925
99.7150

99.3100
99.0500
98.8950
98.2050
97.3350
95.5800

-—2.5
-2.7

0.0000
0.0000

f\ f\
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0.0650
0.0400

595,833
282,058

2,440
8,440

370,183
693,097
500,388
222,979

61,428
1,403

462,946
294,151

1,085,236
754,551

710,630
353,682

4

642,470
343,447

63,402
83,036

1,110,424
1,107,562
1,065,630

530,952
141,428

10,380
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Quotes
Treasury bond and Treasury note futures contracts are quoted in dollars and thirty-
seconds of a dollar per $100 face value. This is similar to the way bonds and notes are
quoted in the spot market. In Table 6.1, the settlement price of the June 2010 Treasury
bond futures contract is specified as as 124-150. This means 124 L357‘), or 124.46875. The
settlement price of the September 2010 10-year Treasury note futures contract is quoted
as 120-105. This means 120 1300-5, or l20.328125. The settlement price of the June 2010
5-year Treasury bond price is quoted as 117-157. This means 117%, or 117.492188.
Finally, the settlement price of the September 2010 2-year Treasury note futures
contract is quoted as 108-302. This means 108 3°25, or 108.945313.

Conversion Factors
As mentioned, the Treasury bond futures contract allows the party with the short
position to choose to deliver any bond that has a maturity of more than 15 years and
is not callable within 15 years. When a particular bond is delivered, a parameter known
as its conversion factor defines the price received for the bond by the party with the short
position. The applicable quoted price is the product of the conversion factor and the
most recent settlement price for the futures contract. Taking accrued interest into account
(see Section 6.1), the cash received for each $100 face value of the bond delivered is

(Most recent settlement price x Conversion factor) + Accrued interest

Each contract is for the delivery of $100,000 face value of bonds. Suppose that the
most recent settlement price is 90-00, the conversion factor for the bond delivered is
1.3800, and the accrued interest on this bond at the time of delivery is $3 per $100 face
value. The cash received by the party with the short position (and paid by the party
with the long position) is then

(1.3800 >< 90.00) + 3.00 = $127.20  
per $100 face value. A party with the short position in one contract would deliver bonds
with a face value of $100,000 and receive $127,200.

The conversion factor for a bond is set equal to the quoted price the bond would have
per dollar of principal on the first day of the delivery month on the assumption./that the
interest rate for all maturities equals 6% per annum (with semiannual compounding).
The bond maturity and the times to the coupon payment dates are rounded down to the
nearest 3 months for the purposes of the calculation. The practice enables the exchange
to produce comprehensive tables. If, after rounding, the bond lasts for an exact number
of 6-month periods, the first coupon is assumed to be paid in 6 months. If, after
rounding, the bond does not last for an exact number of 6-month periods (i.e., there
are an extra 3 months), the first coupon is assumed to be paid after 3 months and
accrued interest is subtracted.

As a first example of these rules, consider a 10% coupon bond with 20 years and
2 months to maturity. For the purposes of calculating the conversion factor, the bond is
assumed to have exactly 20 years to maturity. The first coupon payment is assumed to
be made after 6 months. Coupon payments are then assumed to be made at 6-month
intervals until the end of the 20 years when the principal payment is made. Assume that
the face value is $100. When the discount rate is 6% per annum with semiannual
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compounding (or 3% per 6 months), the value of the bond is

40 5 100. I 146.2321.031 I 1.0340 $

Dividing by the face value gives a conversion factor of 1.4623. 5
As a second example of the rules, consider an 8% coupon bond with 18 years and

4 months to maturity. For the purposes of calculating the conversion factor, the bond is
assumed to have exactly 18 years and 3 months to maturity. Discounting all the payments
back to a point in time 3 months from today at 6% per annum (compounded semi-
annually) gives a value of 0

36 4 1004 + L03, + 100336 _ $125.83

The interest rate for a 3-month period is \/ 1.03 —- 1, or 1.4889%. Hence, discounting
back to the present gives the bond’s value as 125.83 / 1 .0l4889 == $123.99. Subtracting the
accrued interest of 2.0, this becomes $121.99. The conversion factor is therefore 1.2199.

Cheapest-to-Deliver Bond  
At any given time during the delivery month, there are many bonds that can be delivered
in the Treasury bond futures contract. These vary widely as far as coupon and maturity
are concerned. The party with the short position can choose which of the available bonds
is “cheapest” to deliver. Because the party with the short position receives

(Most recent settlement price >< Conversion factor) + Accrued interest

and the cost of purchasing a bond is .

Quoted bond price + Accrued interest

the cheapest-to-deliver bond is the one for which

Quoted bond price — (Most recent settlement price >< Conversion factor)

is least. Once the party with the short position has decided to deliver, it” can determine
the cheapest-to-deliver bond by examining each of the deliverable bonds in turn.

Example 6.1 '
The party with the short position has decided to deliver and is trying to choose
between the three bonds in the table below. Assume the most recent settlement
price is 93-08, or 93.25.
_ ___-. , w - .. . _ _ ‘ - _ .
1 I ,.. _

Bond Quoted bond Conversion
price ($) factor

1 - 99.50 1.0382
2 143.50 1.5188
3 119.75 1.2615

'_ _ . ,. . . . . , . . . . . , . . . . . . . . . . . . . . . . . , _ , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,._,,,....__.......................... ..
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I~_Business Snapshot 6.2 The Wild Card Play 7 . » _ 1 .
. _ . Z

Trading in the CME Group’s Treasury bond futures contract ceases 'at"2:O0p.m.
Chicago time. However, Treasury bonds themselves continue trading in~"tl1e spot
market until 4:00 p.m. Furthermore, a trader with a short futures position ‘has until

p_..m.to issueto theclearinghouse a notice of intention toredeliver. If theeriotice‘ is
--issued, the invoice;pr_ice is calculated on t-he basis of the,settlem'e1'itp,ri1ce that dayo. This
'-is, the price at which tradingshwas conducted just before the closing bell at pin.

This practice gives riseto an option: known as the wild cardip_lay.:'If::b6_nd. prices
:5;

 _dee11ne after  '2:00p'.m. toiiithe first dayof the deliveryfmonth», the party with ‘the (short
p'os'itioncan issuea notice of intention te deliver at, say, 3:45 p.m.“and proceed to buy
bonds in the spot ‘market for delivery at -the 2:00-p.m. futures price. If the bond price
does not decline, the party with the short position keeps the position open and waits
until the next day when the same strategy can be used. . 5 7 2

3-As withthe other options open to the party with the short position, the wioldcard
I-play is not free. Its value is reflected in the futures price, which is lower than it would
be without the option.

M“ mi | I — L

The cost of delivering each of the bonds is as follows:

Bond 1; 99.50 - (93.25 >< 1.0382) = $2.69
Bond 2; 143.50 - (93.25 >< 1.5188) = $1.87
Bond 3; 119.75 - (93.25 >< 1.2615) Z‘. $2.12

The cheapest-to-deliver bond is Bond 2.

A number of factors determine the cheapest-to-deliver bond. When bond yields are in
excess of 6%, the conversion factor system tends to favor the delivery of low-coupon
long-maturity bonds. When yields are less than 6%, the system tends to favor the
delivery of high-coupon short-maturity bonds. Also, when the yield curve is upward-
sloping, there is a tendency for bonds with a long time to maturity to be favored,
whereas when it is downward-sloping, there is a tendency for bonds with a short time to
maturity to be delivered.

In addition to the cheapest-to-deliver bond option, the party with a short (position
has an option known as the wild card play. This is described in Business Snapshot 6.2.

Determining the Futures Price
An exact theoretical futures price for the Treasury bond contract is difficult to
determine because the short party’s options concerned with the timing of delivery
and choice of the bond that is delivered cannot easily be valued. However, if we assume
that both the cheapest-to-deliver bond and the delivery date are known, the Treasury
bond futures contract is a futures contract on a traded security (the bond) that provides
the holder with known income.1 Equation (5.2) then shows that the futures price, F0, is
related to the spot price, S0, by T

I F0 I (S0 - I)-€r

1 In practice, for the purposes of estimating the cheapest-to-deliver bond, analysts usually assume that zero
rates at the maturity of the futures contract will equal today’s forward rates.
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where I is the present value of the coupons during the life of the futures contract, T is
the time until the futures contract. matures, and r is the risk-free interest rate applicable
to a time period of length T.

Example 6.2
Suppose that, in a Treasury bond futures contract, it is known that the cheapest-
to-deliver bond will be a 12% coupon bond with a conversion factor of 1.6000.
Suppose also that it is known that delivery will take placein 270 days. Coupons
are payable semiannually on the bond. As illustrated in Figure 6.1, the last coupon
date was 60 days ago, the next coupon date is in 122 days, and the coupon date
thereafter is in 305 days. The term structure is flat, and the rate of interest (with
continuous compounding) is 10% per annum. Assume that the current quoted
bond price is $115. The cash price of the bond is obtained by adding to this
quoted price the proportion of the next coupon payment that accrues to the
holder. The cash price is therefore

601 _i. 6: 6.15+60+122>< 11 978

A coupon of $6 will be received after 122 days (: 0.3342 years). The present value
of this is .

6e—0.lX0.3342 I 4

The futures contract lasts for 270 days (= 0.7397 years). The cash futures price, if
the contract were written on the 12% bond, would therefore be

(116.978 - 5.803)e°-‘><°~7397 = 119.711
At delivery, there are 148 days of accrued interest. The quoted futures price, if the
contract were written on the 12% bond, is calculated by subtracting the accrued
interest I

148
.ll—6 ——-——=ll4.81197 ><148+35 59

From the definition of the conversion factor, 1.6000 standard bonds are considered
equivalent to each 12% bond. The quoted futures price should therefore be

114.859

-.,,~ ------.. _-._ 7 , 'f\"' . .... “... . .. H ... , M H H . . _ . . . .
r .- ---1.: --. i '- :~". . ‘-‘..:,.' ‘L ~." "J ' . .- - '

Figure 6.1 Time chart for Example 6.2.
Maturity

of
Coupon Current Coupon futures Coupon
payment time payment contract payment

I I I I I I
60 122 148 35

days _ days days days
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EURODOLLAR FUTURES

The most popular interest rate futures contract in the United States is the three-month
Eurodollar futures contract traded by the CME Group. A Eurodollar is a dollar
deposited in a U.S. or foreign bank outside the United States. The Eurodollar interest
rate is the rate of interest earned on Eurodollars deposited by one bank with another
bank. It is essentially the same as the London Interbank Offered Rate (LIBOR)
introduced in Chapter 4.

A three-month Eurodollar futures contract is a futures contract on the interest that will
be paid (by someone who borrows at the Eurodollar interest rate) on $1 million for a
future three-month period. It allows a trader to speculate on a future three-month interest
rate or to hedge an exposure to a future three-month interest rate. Eurodollar futures
contracts have maturities in March, June, September, and December for up to 10 years
into the future. This means that in 2010 a trader can use Eurodollar futures to take a
position on what interest rates will be as far into the future as 2020. Short-maturity
contracts trade for months other than March, June, September, and December.

To understand how Eurodollar futures contracts work, consider the June 2010
contract in Table 6.1. The quoted settlement price on May 26, 2010, is 99.3100. The
contract ends on the third Wednesday of the delivery month. In the case of this
contract, the third Wednesday of the delivery month is June 16, 2010. The contract
is settled daily in the usual way until that date. On June 16, 2010, the settlement price is
set equal to 100 -— R, where R is the actual three-month Eurodollar interest rate on that
day, expressed with quarterly compounding and an actual/360 day count convention.
Thus, if the three-month Eurodollar interest rate on June 16, 2010, turned out to be
0.75% (actual/360 with quarterly compounding), the final settlement price would be
99.2500. Once a final settlement has taken place, all contracts are declared closed.

The contract is designed so that a one-basis-point (= 0.01) move in the futures quote
corresponds to a gain or loss of $25 per contract. When a Eurodollar futures quote
increases by one basis point, a trader who is long one contract gains $25 and a trader
who is short one contract loses. $25. Similarly, when the quote decreases by one basis
point a trader who is long one contract loses $25 and a trader who is short one contract
gains $25. Suppose, for example, a settlement price changes from 99.3100 to 99.2700.
Traders with long positions lose 4 >< 25 = $100 per contract; traders with short posi-
tions gain $100 per contract. A one-basis-point change in the futures quote corresponds
to a 0.01% change in the futures interest rate. This in turn leads to a

1,000,000 >< 0.0001 >< 0.25 : 25

or $25 change in the interest that will be earned on $1 million in three months. The $25
per basis point rule is therefore consistent with the point made earlier that the contract
locks in an interest rate on $1 million for three months.

The futures quote is 100 minus the futures interest rate, an investor who is long gains
when interest rates fall and one who is short gains when interest rates rise. Table 6.2
shows a possible set of outcomes for the June 2010 contract in Table 6.1.

The contract price is defined as  

10,000 >< [100 -— 0.25 >< (100 — Q)] (6.2)

where Q is the quote. Thus, the settlement price of 99.3100 for the June 2010 contract



Table 6.2 Possible sequence of prices for June 2010 Euro-
dollar futures contract.

Date Futures price Change Gain per contract ($)

May 26, 2010
May 27, 2010
May 28, 2010

June 16, 2010

99.3100
99.2700
99.3200

99.5300

—0.0400
+0.0500

+0.0600

-100
+125

+150

Total +0.2200 +550
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in Table 6.1 corresponds to a contract price of

10,000 >< [100 — 0.25 >< (100 — 99.3l00)] : $998,275

In Table 6.2, the final contract price is

10,000 >< [100 — 0.25 >< (100 — 99.5300)] = $998,825  

and the difference between the initial and final contract price is $550, This is consistent
with the gain calculated in Table 6.2 using the “$25 per one-basis-point move” rule.

Example 6.3 .
An investor wants to lock in the interest rate for a three-month period beginning
September 19, 2012, on a principal of $100 million. The September 2012 Euro-
dollar futures quote is 96.50, indicating that the investor can lock in an interest
rate of 100 — 96.5 or 3.5% per annum. The investor hedges by buying 100 con-
tracts. Suppose that on September 19, 2012, the three-month Eurodollar rate
turns out to be 2.6%. The final settlement in the contract is then at a price of
97.40. The investor gains ,

100 >< 25 >< (9,740 — 9,650) = 225,000

or $225,000 on the Eurodollar futures contracts. The interest earned on the three-
month investment is "

I 100,000,000 >< 0.25 >< 0.026 : 650,000

or $650,000. The gain onthe Eurodollar futures brings this up to $875,000, which
is what the interest would be at 3.5% (100,000,000 >< 0.25 >< 0.035 = 875,000).

It appears that the futures trade has the effect of exactly locking an interest rate
of 3.5% in all circumstances. In fact, the hedge is less than perfect because
(a) futures contracts are settled daily (not all at the end) and (b) the final settle-
ment in the futures contract happens on September 19, 2012, whereas the interest
payment on the investment is three months later. One way of adjusting for the
second point is to reduce the size of the hedge to reflect the difference between
funds received on September 19, 2012, and funds received three months later. In
this case, we would assume an interest rate of 3.5% for the three-month period
and multiply the number of contracts by 1/(1+0.035 >< 0.25) : 0.9913. This
would lead to 99 rather than 100 contracts being purchased.
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Example 6.3 shows how Eurodollar futures contracts can be used by an investor who
wants to hedge the interest that will be earned during a future three-month period
starting on September 19, 2012. Note that the timing of the cash flows from the hedge
does not line up exactly with the timing of the interest cash flows. This is because the
futures contract is settled daily. Also, the final settlement is on September 19, 2012,
whereas interest payments on the investment are received three months after September
19, 2012. As indicated in the example, a small adjustment can be made to the hedge
position in an attempt to allow for this second point.

Table 6.1 shows that the first year of the interest rate term structure in the U.S. was
upward sloping on August 4, 2009. The futures rate for a three-month period beginning
June 16, 2010, was 0.69%; for a three-month period beginning September 15, 2010, it was
0.95%; for a three-month period beginning December 15, 2010, it was 1.105%; and for a
three-month period beginning December 16, 2015, it was 4.42%.

Other contracts similar to the CME Group’s Eurodollar futures contracts trade on
interest rates in other countries. The CME Group trades Euroyen contracts. The London
International Financial Futures and Options Exchange (part of Euronext) trades three-
month Euribor contracts (i.e., contracts on the three-month LIBOR rate for the euro)
and three-month Euroswiss futures.

Forward vs. Futures Interest Rates
The Eurodollar futures contract is similar to a forward rate agreement (FRA: see
Section 4.7) in that it locks in an interest rate for a future period. For short maturities
(up to a year or so), the Eurodollar futures interest rate can be assumed to be the same
as the corresponding forward interest rate. For longer-dated contracts, differences
between the contracts become important. Compare a Eurodollar futures contract on
an interest rate for the period between times T1 and T2 with an FRA for the same
period. The Eurodollar futures contract is settled daily. The final settlement is at time T1
and reflects the realized interest rate for the period between times T1 and T2. By contrast
the FRA is not settled daily and the final settlement reflecting the realized interest rate
between times T1 and T2 is made at time T2.2

There are therefore two differences between a Eurodollar futures contract and an
FRA. These are:

1. The difference between a Eurodollar futures contract and a similar contract where
there is no daily settlement. Thelatter is a forward contract where a payoff equal
to the difference between the forward interest rate and the realized interest rate is
paid at time T1.

2. The difference between a forward contract where there is settlement at time T1 and
a forward contract where there is settlement at time T2.

These two components to the difference between the contracts cause some confusion in
practice. Both decrease the forward rate relative to the futures rate, but for long-dated
contracts the reduction caused by the second difference is much smaller than that
caused by the first. The reason why the first difference (daily settlement) decreases
the forward rate follows from the arguments in Section 5.8. Suppose you have a
-p-_1-i-—_i-_-1-—-i

2 As mentioned in Section -4.7, settlement may occur at time T1, but it is then equal to the present value of
what the forward contract payoff would be at time T2. _
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contract where the payoff is RM — RF at time T1, where RF is a predetermined rate for
the period between T1 and T2, and RM is the realized rate for this period, and you have
the option to switch to daily settlement. In this case daily settlement tends to lead to
cash inflows when rates are high and cash outflows when rates are low. You would
therefore find switching to daily settlement to be attractive because you tend to have
more money in your margin account when rates are high. As a result the market would
therefore set RF higher for the daily settlement alternative (reducing your cumulative
expected payoff). To put this the other way round, switching from daily settlement to
settlement at time T1 reduces RF.

To understand the reason why the second difference reduces the forward rate,
suppose that the payoff of RM — RF is at time T2 instead of T1 (as it is for a regular
FRA). If RM is high, the payofl is positive. Because rates are high, the cost to you of
having the payoff that you receive at time T2 rather than time T1 is relatively high. If RM
is low, the payoff is negative. Because rates are low, the benefit to you of having the
payoff you make at time T2 rather than time T1 is relatively low. Overall you would
rather have the payofl at time T1. If it is at time T2 rather than T1, you must be
compensated by a reduction in RF.3

Convexity Adjustment
Analysts make what is known as a convexity aajustment to account for the total
difference between the two rates. One popular adjustment is4  

Forward rate = Futures rate -— -1-02 T1 T2 (6.3)

where, as above, T1 is the time to maturityof the futures contract and T2 is the timeoto
the maturity of the rate underlying the futures contract. The variable o is the standard
deviation of the change in the short-term interest rate in 1 year. Both rates are expressed
with continuous compounding.5

Example 6.4
Consider the situation where o = 0.012 and we wish to calculate the forward rate
when the 8-year Eurodollar futures price quote is 94. In this case T1 = 8,
T2 : 8.25, and the convexity adjustment is

%>< 0.0122 >< 8 >< 8.25 = 0.00475
or 0.475% (47.5 basis points). The futures rate is 6% per annum on an actual/360
basis with quarterly compounding. This corresponds to 1.5% per 90 days or an
annual rate of (365/90) ln 1.015 = 6.038% with continuous compounding and an
actual/365 day count. The estimate of the forward rate given by equation (6.3),
therefore, is 6.038 — 0.475 : 5.563% per annum with continuous compounding.
The table below shows how the size of the adjustment increases with the time to
maturity.

3 Quantifying the effect of this type of timing difference on the value of a derivative is discussed further in
Chapter 29.

4 See Technical Note l at Www.rotma11.utoronto.ca/~hu11/TechnicalNotes for a proof of this.

5 This formula is based on the Ho—Lee interest rate model, which will be discussed in Chapter 30. See
T. S. Y. Ho and S.-B. Lee, “Term structure movements and pricing interest rate contingent claims,” Journal
of Finance, 41 (December 1986), 10ll—29.



Interest Rate Futures 141

Maturity offutures Convexity adjustments
(years) (basis points)

3.2
12.2
27.0
47.5
73.8

_ _ ,_. . ,- - . --- _ V 0. 2 . -. _ _ 4 _ ,- __,__.=...\~ ..-. _.fi,. 4 , _,_- -..
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We can see from this table that the size of the adjustment is roughly pro-
portional to the square of the time to maturity of the futures contract. For
example, when the maturity doubles from 2 to 4 years, the size of the convexity
approximately quadruples.

Using Eurodollar Futures to Extend the LIBOR Zero Curve
The LIBOR zero curve out to 1 year is determined by the 1-month, 3-month, 6-month,
and 12-month LIBOR rates. Once the convexity adjustment just described has been
made, Eurodollar futures are often used to extend the zero curve. Suppose that the ith
Eurodollar futures contract matures at time T, (i = 1, 2, . . .). It is usually assumed that
the forward interest rate calculated from the ith futures contract applies to the period T,-
to T,~+ 1. (In practice this is close to true.) This enables a bootstrapprocedure to be used
to determine zero rates. Suppose that F1 is the forward rate calculated from the ith
Eurodollar futures contract and R1 is the zero rate for a maturity T,-. From equation (4.5),

Fi : Rz+1Tt+1"— RtTz
T.-+1 — Tt

so that 0
R_ : FzfTt'+1'* Ti) + RzTz (614)

[+1 Tt+1 i

Other Euro rates such as Euroswiss, Euroyen, and Euribor are used in a similar way.

Example 6.5
The 400-day LIBOR zero rate has been calculated as 4.80% with continuous
compounding and, from Eurodollar futures quotes, it has been calculated that
(a) the forward rate for a 90-day period beginning in 400 days is 5.30% with
continuous compounding, (b) the forward rate for a 90-day period beginning in
491 days is 5.50% with continuous compounding, and (c) the forward rate for a
90-day period beginning in 589 days is 5.60% with continuous compounding. We
can use equation (6.4) to obtain the 491-day rate as

0.053 >< 91130048 >< 400 _ 0.04893

or 4.893%. Similarly we can use the second forward rate to obtain the 589-day
rate as

0.055 >< 98 4;0é04893 >< 491: 004994



CHAPTER 6

or 4.994%. The next forward rate of 5.60% would be used to determine the zero
curve out to the maturity of the next Eurodollar futures contract. (Note that, even
though the rate underlying the Eurodollar futures contract is a 90-day rate, it is
assumed to apply to the 91 or 98 days elapsing between Eurodollar contract
maturities.)

DURATION-BASED HEDGING STRATEGIES USING FUTURES

Wediscussed duration in Section 4.8. Consider the situation where a position in an
asset that is interest rate dependent, such as a bond portfolio or a money market
security, is being hedged using an interest rate futures contract. Define:

VF: Contract price for one interest rate futures contract
DF: Duration of the asset underlying the futures contract at the maturity of the

futures contract
P: Forward value of the portfolio being hedged at the maturity of the hedge (in

practice, this is usually assumed to be the same as the value of the portfolio
today)

DF: Duration of the portfolio at the maturity of the hedge

If we assume that the change in the yield, Ay, is the same, for all maturities, which
means that only parallel shifts in the yield curve can occur, it is approximately true that

t

AP : —PDF Ay
It is also approximately true that

AV}? I —1/FDF

The number of contracts required to hedge against an uncertain Ay, therefore, is

/v* = __PD” (6.5)1/Foo
This is the duration-based hedge ratio. It is sometimes also called the price sensitivity
hedge ratio.6 Using it has the effect of making the duration of the entire position zero.

When the hedging instrument is a Treasury bond futures contract, the hedger must
base DF on an assumption that one particular bond will be delivered. This means that
the hedger must estimate which of the available bonds is likely to be cheapest to deliver
at the time the hedge is put in place. If, subsequently, the interest rate environment
changes so that it looks as though a different bond will be cheapest to deliver, then the
hedge has to be adjusted and as a result its performance may be worse than anticipated.

When hedges are constructed using interest rate futures, it is important to bear in
mind that interest rates and futures prices move in opposite directions. When interest
rates go up, an interest rate futures price goes down. When interest rates go down, the
reverse happens, and the interest rate futures price goes up. Thus, a company in a
position to lose money if interest rates drop should hedge by taking a long futures

6 For a more detailed discussion of equation (6.5), see R.J. Rendleman, “Duration-Based Hedging with
Treasury Bond Futures,” Journal of Fixed Income 9, 1 (June 1999): 84-91.
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position. Similarly, a company in a position to lose money if interest rates rise should
hedge by taking a short futures position.

The hedger tries to choose the futures contract so that the duration of the underlying
asset is as close as possible to the duration of the asset being hedged. Eurodollar futures
tend to be used for exposures to short-term interest rates, whereas Treasury bond and
Treasury note futures contracts are used for exposures to longer-term rates.

Example 6.6
It is August 2 and a fund manager with $10 million invested in government bonds is
concerned that interest rates are expected to be highly volatile over the next
3 months. The fund manager decides to use the December T-bond futures contract
to hedge the value of the portfolio. The current futures price is 93-02, or 93.0625.

1 Because each contract is for the delivery of $100,000 face value of bonds, the futures
contract price is $93,062.50.

Suppose that the duration of the bond portfolio in 3 months will be 6.80 years.
The cheapest-to-deliver bond in the T-bond contract is expected to be a 20-year
12% per annum coupon bond. The yield on this bond is currently 8.80% per
annum, and the duration will be 9.20 years at maturity of the futures contract.

The fund manager requires a short position in T-bond futures to hedge the
bond portfolio. If interest rates go up, a gain will be made on the short futures
position, but a loss will be made on the bond portfolio. If interest rates decrease, a
loss will be made on the short position, but there will be ,a gain on the bond
portfolio. The number of bond futures contracts that should be shorted can be
calculated from equation (6.5) as . I   

10,000,000 6.80
93,062.50 X 9.20 Z 7942

To the nearest whole number, the portfolio manager should short 79 contracts.

HEDGING PORTFOLIOS OF ASSETS AND LIABILITIES
./ '

Financial institutions sometimes attempt to hedge themselves against interest rate risk
by ensuring that the average duration of their assets equals the average duration of their
liabilities. (The liabilities can be regarded as short positions in bonds.) This strategy is
known as duration matching or portfolio immunization. When implemented, it ensures
that a small parallel shift in interest rates will have little eflect on the value of the
portfolio of assets and liabilities. The gain (loss) on the assets should offset the loss
(gain) on the liabilities.

Duration matching does not iminunize a portfolio against nonparallel shifts in the
zero curve. This is a weakness of the approach. In practice, short-term rates are usually
more volatile than, and are not perfectly correlated with, long-term rates. Sometimes it
even happens that. short- and long-term rates move in opposite directions to each
other. Duration matching is therefore only a first step and financial institutions have
developed other tools to help them manage their interest rate exposure. See Business
Snapshot 6.3.
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Business'Snapsh0t 6.3 Asset-Liability Management by Banks
 

The asset—liability management (ALM) committees of banks now monitor their
exposure to interest rates very carefully. Matching the durations of assets and
liabilities is sometimes a first step, but this does not protect a bank against non-
parallel shifts in the yield curve. A popular approach is known as GAP management.
This involves dividing the zero-coupon yield curve into segments, known as buckets.
The first bucket might be 0 to l month, the second 1 to 3 months, and so on. The
ALM committee then investigates the effect on the value of the bank’s portfolio of I
the zero rates corresponding to one bucket changing while those corresponding to all
other buckets stay the same.

If there is a mismatch, corrective action is usually taken. This can involve changing T
deposit and lending rates in the way described in Section 4.10. Alternatively, tools
such as swaps, FRAs, bond futures, Eurodollar futures, and other interest rate
derivatives can be used. .

. .. VI; ‘ .|. . ..I .......................................................................... _ |

SUMMARY

Two very popular interest ratecontracts are the Treasury bond and Eurodollar futures
contracts that trade in the United States. In the Treasury bond futures contracts, the
party with the short position has a number of interesting delivery options:

1. Delivery can be made on any day during the delivery month.
2. There are a number of alternative bonds that can be delivered.
3. On any day during the delivery month, the notice of intention to deliver at the

2:00 p.m. settlement price can be made any time up to 8:00 p.m.

These options all tend to reduce the futures price.
The Eurodollar futures contract is a contract on the 3-month rate on the third

Wednesday of the delivery month. Eurodollar futures are frequently used to estimate
LIBOR forward rates for the purpose of constructing a LIBOR zero curve. When long-
dated contracts are used in this way, it is important to make what is termed a convexity
adjustment to allow for the marking to market in the futures contract.

The concept of duration is important in hedging interest rate risk. It enables a
hedger to assess the sensitivity of a bond portfolio to small parallel shifts in the yield
curve. It also enables the hedger to assess the sensitivity of an interest rate futures price
to small changes in the yield curve. The number of futures contracts necessary to
protect the bond portfolio against small parallel shifts in the yield curve can therefore
be calculated.

The key assumption underlying duration-based hedging is that all interest rates
change by the same amount. This means that only parallel shifts in the term structure
are allowed for. In practice, short-term interest rates are generally more volatile than are
long-term interest rates, and hedge performance is liable to be poor if the duration of
the bond underlying the futures contract differs markedly from the duration of the asset
being hedged. i



Interest Rate Futures 145

FURTHER READING '

Burghardt, G., and W. Hoskins. “The Convexity Bias in Eurodollar Futures,” Risk, 8, 3 (1995):
63-70.

Duffie, D. “Debt Management and Interest Rate Risk,” in W. Beaver and G. Parker (eds.), Risk
Management: Challenges and Solutions. New York: McGraw-Hill, 1994.

Fabozzi, F. J. Duration, Convexity, and Other Bond Risk Measures. Frank Fabozzi Assoc., 1999.
Grinblatt, M., and N. Jegadeesh. “The Relative Price of Eurodollar Futures and Forward

Contracts,” Journal of Finance, 51, 4 (September 1996): 1499—1522.

Practice Questions (Answers in Solutions Manual)

A US Treasury bond pays a 7% coupon on January 7 and July 7. How much interest
accrues per $100 of principal to the bondholder between July 7, 2011, and August 9, 2011‘?
How would your answer be different if it were a corporate bond?
It is January 9, 2013. The price of a Treasury bond with a 12% coupon that matures on
October 12, 2020, is quoted as 102-07. What is the cash price‘?
How is the conversion factor of a bond calculated by the CME Group‘? How is it used?
A Eurodollar futures price changes from 96.76 to 96.82. What is the gain or loss to an
investor who is long two contracts?
What is the purpose of the convexity adjustment made to Eurodollar futures rates? Why is
the convexity adjustment necessary? V '
The 350-day LIBOR rate is 3% with continuous compounding and the forward rate
calculated from a Eurodollar futures contract that matures in 350 days is 3.2% with
continuous compounding. Estimate the 440-day zero rate.
It is January 30. You are managing a bond portfolio worth $6 million. The duration of the
portfolio in 6 months will be 8.2 years. The September Treasury bond futures price is
currently 108-15, and the cheapest-to-deliver bond will have a duration of 7.6 years in
September. How should you hedge against changes in interest rates over the next
6 months?
The price of a 90-day Treasury bill is quoted as 10.00. What continuously compounded
return (on an actual/365 basis) does an investor earn on the Treasury bill for the 90-day
period‘?
It is May 5, 2011. The quoted price of a government bond with a 12% coupon that
matures on July 27, 2014, is 110-17. What is the cash price‘? I
Suppose that the Treasury bond futures price is 101-12. Which of the following four
bonds is cheapest to deliver?

Bond Price Conversion factor

125-05 1.2131
142-15 1.3792
115-31' 1.1149
144-02 1.4026-§UJl\-)1-‘
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6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22
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It is July 30, 2013. The cheapest-to-deliver bond in a September 2013 Treasury bond futures
contract is a 13% coupon bond, and delivery is expected to be made on September 30, 2013.
Coupon payments on the bond are made on February 4 and August 4 each year. The term
structure is flat, and the rate of interest with semiannual compounding is 12% per annum.
The conversion factor for the bond is 1.5. The current quoted bond price is $110. Calculate
the quoted futures price for the contract.
An investor is looking for arbitrage opportunities in the Treasury bond futures market.
What complications are created by the fact that the party with a short position can choose
to deliver any bond with a maturity of over 15 years? ,
Suppose that the 9-month LIBOR interest rate is 8% per annum and the 6-month LIBOR
interest rate is 7.5% per annum (both with actual/365 and continuous compounding).
Estimate the 3-month Eurodollar futures price quote for a contract maturing in 6 months.
Suppose that the 300-day LIBOR zero rate is 4% and Eurodollar quotes for contracts
maturing in 300, 398, and 489 days are 95.83, 95.62, and 95.48. Calculate 398-day and
489-day LIBOR zero rates. Assume no difference between forward and futures rates for
the purposes of your calculations.
Suppose that a bond portfolio with a duration of 12 years is hedged using a futures
contract in which the underlying asset has a duration of 4 years. What is likely to be the
impact on the hedge of the fact that the 12-year rate is less volatile than the 4-year rate?
Suppose that it is February 20 and a treasurer realizes that on July 17 the company will
have to issue $5 million of commercial paper with a maturity of 180 days. If the paper
were issued today, the company would realize $4,820,000. (In other words, the company
would receive $4,820,000 for its paper and have to redeem it at $5,000,000 in 180 days’
time.) The September Eurodollar futures price is quoted as 92.00. How should the
treasurer hedge the company’s exposure?
On August 1, a portfolio manager has a bond portfolio worth $10 million. The duration
of the portfolio in October will be 7.1 years. The December Treasury bond futures price is
currently 91-12 and the cheapest-to-deliver bond will have a duration of 8.8 years at
maturity. How should the portfolio manager immunize the portfolio against changes in
interest rates over the next 2 months?
How can the portfolio manager change the duration of the portfolio to 3.0 years in
Problem 6.17? A
Between October 30, 2012, and November 1, 2012, you have a choice between owning a
US government bond paying a 12% coupon and a US corporate bond paying a 12%
coupon. Consider carefully the‘ day count conventions discussed in this chapter and decide
which of the two bonds you would prefer to own. Ignore the risk of default.

1

Suppose that a Eurodollar futures quote is 88 for a contract maturing in 60 days. What is
the LIBOR forward rate for the 60- to 150-day period‘? Ignore the difference between
futures and forwards for the purposes of this question.
The 3-month Eurodollar futures price for a contract maturing in 6 years is quoted as
95.20. The standard deviation of the change in the short-term interest rate in 1 year is
1.1%. Estimate the forward LIBOR interest rate for the period between 6.00 and 6.25 years
in the future. '
Explain why the forward interest rate is less than the corresponding futures interest rate
calculated from a Eurodollar futures contract.
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Further Questions

6.23. The December Eurodollar futures contract is quoted as 98.40 and a company plans to
borrow $8 million for three months starting in December at LIBOR plus 0.5%.
(a) What rate can the company lock in by using the Eurodollar futures contract?
(b) Whatposition should the company take in the contracts?
(c) If the actual three-month rate turns out to be 1.3%, what is the final settlement price

on the futures contracts.
6.24. A Eurodollar futures quote for the period between 5.1 and 5.35 years in the future is 97.1.

The standard deviation of the change in the short-term interest rate in one year is 1.4%.
Estimate the forward interest rate in an FRA.

6.25. It is March 10, 2011. The cheapest-to-deliver bond in a December 2011 Treasury bond
 futures contract is an 8% coupon bond, and delivery is expected to be made on

December 31, 2011. Coupon payments on the bond are made on March 1 and
September 1 each year. The rate of interest with continuous compounding is 5% per
annum for all maturities. The conversion factor for the bond is 1.2191. The current
quoted bond price is $137. Calculate the quoted futures price for the contract.

6.26. Assume that a bank can borrow or lend money at the same interest rate in the LIBOR
market. The 90-day rate is 10% per annum, and the 180-day rate is 10.2% per annum,
both expressed with continuous compounding and actual/actual day count. The Euro-
dollar futures price for a contract maturing in 91 days is quoted as 89.5. What arbitrage
opportunities are open to the bank? ‘

z

6.27. A Canadian company wishes to create a Canadian LIBOR futures contract from a US
Eurodollar futures contract and forward contracts on foreign exchange. Using an
example, explain how the company should proceed. For the purposes of this problem,
assume that a futures contract is the same as a forward contract.

6.28. The futures price for the June 2011 CBOT bond futures contract is 118-23. .
(a) Calculate the conversion factor for a bond maturing on January 1, 2027, paying a

coupon of 10%.
(b) Calculate the conversion factor for a bond maturing on October 1, 2032, paying a

coupon of 7%.
(c) Suppose that the quoted prices of the bonds in (a) and (b) are 169.00 and,..136.00,

respectively. Which bond is cheaper to deliver?
(d) Assuming that the cheapest-to-deliver bond is actually delivered on June 25, 2011,

what is the cash price received for the bond?
6.29. A portfolio manager plans to use a Treasury bond futures contract to hedge a bond

portfolio over the next 3 months. The portfolio is worth $100 million and will have a
duration of 4.0 years in 3 months. The futures price is 122, and each futures contract is on
$100,000 of bonds. The bond that is expected to be cheapest to deliver will have a
duration of 9.0 years at the maturity of the futures contract. What position in futures
contracts is required?
(a) What adjustments to the hedge are necessary if after 1 month the bond that is

expected to be cheapest to deliver changes to one with a duration of 7 years?
(b) Suppose that all rates increase over the next 3 months, but long-term rates increase

less than short-term and medium-term rates. What is the effect of this on the
performance of the hedge?
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T E R Swaps
Isa

The first swap contracts were negotiated in the early 1980s. Since then the market has
seen phenomenal growth. Swaps now occupy a position of central importance in
derivatives markets.

A swap is an over-the-counter agreement between two companies to exchange cash
flows in the future. The agreement defines the dates when the cash flows are to be paid
and the way in which they are to be calculated. Usually the calculation of the cash flows
involves the future value of an interest rate, an exchange rate, or other market variable.

A forward contract can be viewed as a simple example of a swap. Suppose it is
March 1, 2012, and a company enters into a forward contract to buy 100 ounces of gold
for $1,200 per ounce in 1 year. The company can sell the gold in 1 year as soon as it is
received. The forward contract is therefore equivalent to a swap where the company
agrees that on March 1, 2012, it will pay $120,000 and receive 100S, where S is the
market price of 1 ounce of gold on that date.

Whereas a forward contract is equivalent to the exchange of cash flows on just one
future date, swaps typically lead to “cash flow exchanges on several future dates. In this
chapter we examine how swaps are designed, how they are used, and howthey are
valued. Most of this chapter focuses on two popular swaps: plain vanilla interest rate
swaps and fixed-for-fixed currency swaps. Other types of swaps are briefly reviewed at
the end of the chapter and discussed in more detail in Chapter 32.

MECHANICS OF INTEREST RATE SWAPS

The most common type of swap is a “plain vanilla” interest rate swap. In this swap a
company agrees to pay cash flows equal to interest at a predetermined fixed rate on a
notional principal for a predetermined number of years. In return, it receives interest at
a floating rate on the same notional principal for the same period of time.

LIBOR
The floating rate in most interest rate swap agreements is the London Interbank Offered
Rate (LIBOR). We introduced this in Chapter 4. It is the rate of interest at which a bank
is prepared to deposit money with other banks that have a AA credit rating. One-month,
three-month, six-month, and 12-month LIBOR are quoted in all major currencies.
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Just as prime is often the reference rate of interest for floating-rate loans in the
domestic financial market, LIBOR is a reference rate of interest for loans in inter-
national financial markets. To understand how it is used, consider a 5-year bond with a
rate of interest specified as 6-month LIBOR plus 0.5% per annum. The life of the bond
is divided into 10 periods, each 6 months in length. For each period, the rate of interest
is set at 0.5% per annum above the 6-month LIBOR rate at the beginning of the period.
Interest is paid at the end of the period.

Illustration
Consider a hypothetical 3-year swap initiated on March 5, 2012, between Microsoft and
Intel. We suppose Microsoft agrees to pay Intel an interest rate of 5% per annum on a
principal of $100 million, and in return Intel agrees to pay Microsoft the 6-month
LIBOR rate on the same principal. Microsoft is thefixed-rate payer; Intel is the floating-
rate payer. We assume the agreement specifies that payments are to be exchanged every
6 months and that the 5% interest rate is quoted with semiannual compounding. This
swap is represented diagrammatically in Figure 7.1.

The first exchange of payments would take place on September 5, 2012, 6 months
after the initiation of the agreement. Microsoft would pay Intel $2.5 million. This is the
interest on the $100 million principal for 6 months at 5%. Intel would pay Microsoft
interest on the $100 million principal at the 6-month LIBOR rate prevailing 6 months
prior to September 5, 2012-—that is, on March 5, 2012. Suppose that the 6-month
LIBOR rate on March 5, 2012, is 4.2%. Intel pays Microsoft 0.5 >< 0.042 >< $100 :
$2.1 million.l Note that there is no uncertainty about this first exchange of payments
because it is determined by the LIBOR rate at the time the contract is entered into.

The second exchange of payments would take place on March 5, 2013, a year after the
initiation of the agreement. Microsoft would pay $2.5 million to Intel. Intel would pay
interest on the $100 million principal to Microsoft at the 6-month LIBOR rate prevailing
6 months prior to March 5, 2013——that is, on September 5, 2012. Suppose that the
6-month LIBOR rate on September 5, 2012, is 4.8%. Intel pays 0.5 >< 0.048 >< $100 :
$2.4 million to Microsoft.

In total, there are six exchanges of payment on the swap. The fixed payments are
always $2.5 million. The floating-rate payments on a payment date are calculated
using the 6-month LIBOR rate prevailing 6 months before the payment date. An
interest rate swap is generally structured so that one side remits the difference between
the two payments to the other side. In our example, Microsoft would pay Intel
$0.4 million (= $2.5 million — $2.1 million) on September 5, 2012, and $0.1 million
(= $2.5 million — $2.4 million) on March 5, 2013.

- t -.‘ ' . ' _“

Figure 7.1 Interest rate swap between Microsoft and Intel.

5 0%
Intel Microsoft

LIBOR

' The calculations here are simplified in that they ignore day count conventions. This point is discussed in
more detail later in the chapter.
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Table 7.1 Cash flows (millions of dollars) to Microsoft in a $100 million 3-year
interest rate swap when a fixed rate of 5% is paid and LIBOR is received.

Date Six-month LIBOR Floating cash flow Fixed cash flow Net cash flow
rate (%) received paid

Mar
Sept
Mar.
Sept
hdar
Sept
hdar

5, 201
5, 201
5, 201
5, 201
5, 201
5, 201
5, 201 £11-l>-PUJUJl\)l\-)

4.20
4.80
5.30
5.50
5.60
5.90

+2.10
+2140
+2.65
+2.75
+2.80
+2.95

-2.50
-2.50
-2.50
-2.50
-2.50
-2.50

_1

__1

+1

+1

+1

+1

0.40
01.10
01.15
01.25
01.30
01.45

, -' ' " r ‘ ~ _. ' _._~»-- A - ‘* a ' _ M _

Table 7.1 provides a complete example of the payments made under the swap for one
particular set of 6-month LIBOR rates. The table shows the swap cash flows from the
perspective of Microsoft. Note that the $100 million principal is used only for the
calculation of interest payments. The principal itself is not exchanged. For this reason it
is termed the notional principal, or just the notional.

If the principal were exchanged at the end of the life of the swap, the nature of the
deal would not be changed in any way. The principal is the same for both the fixed and
floating payments. Exchanging $100 million for $100 million at the end of the life of the
swap is a transaction that would have no financial value to either Microsoft or Intel.
Table 7.2 shows the cash flows in Table 7.1 with a final exchange of principal added in.
This provides an interesting way of viewing the swap. The cash flows in the third
column of this table are the cash flows from a long position in a floating-rate bond. The
cash flows in the fourth column of the table are the cash flows from a short position in a
fixed-rate bond. The table shows that the swap can be regarded as the exchange of a
fixed-rate bond for a floating-rate bond. Microsoft, whose position is described by
Table 7.2, is long a floating-rate bond and short a fixed-rate bond. Intel is long a fixed-
rate bond and short a floating-rate bond.

1 _., . ' » . .-'~ - ~ ~- - -- - --- r - - v -.v. . *v.a..1=— -1-‘ '- ' . ".. ., .i_.J_ .... .1 .___1 _-- . . -. -1 . -_ ..1 ‘-' ‘.1 ___....\ _ -r-l-‘-1 . 7.-, .. . __ -.“,

Table 7.2 Cash flows (millions of dollars) from Table 7.1 when there is a final
exchange of principal. .

Date Six-month LIBOR Floating cash flow Fixed cash flow Net cash flow
rate (%) received paid

hdar
Sept
hdar
Sept
hlar
Sept
hdar

5, 201
5, 201
5, 201
5, 201
5, 201
5, 201
5, 201 L/1-l>~,-§bJb~Jl\)l\J

4.21
4.81
5.31
5.5
5.61
5.91 uuzlwww

+2.10
+2.40
+2.65
+2.75
+2.80

+102.95

-2.510
-2.510
-2.51
-2.510
-2.51

—102.5C

01.40
01.10

+0.15
+1 01.25
+0.30
+1$1.45
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This characterization of the cash flows in the swap helps to explain why the floating
rate in the swap is set 6 months before it is paid. On a floating-rate bond, interest is
generally set at the beginning of the period to which it will apply and is paid at the end
of the period. The calculation of the floating-rate payments in a “plain vanilla” interest
rate swap such as the one in Table 7.2 reflects this.

Using the Swap to Transform a Liability
For Microsoft, the swap could be used to transform a floating-rate loan into a fixed-rate
loan. Suppose that Microsoft has arranged to borrow $100 million at LIBOR plus
10 basis points. (One basis point is one-hundredth of 1%, so the rate is LIBOR
plus 0.1%.) After Microsoft has entered into the swap, it has the following three sets
of cash flows:

1. It pays LIBOR plus 0.1% to its outside lenders.
2. It receives LIBOR under the terms of the swap.
3. It pays 5% under the terms of the swap.

These three sets of cash flows net out to an interest rate payment of 5.1%. Thus, for
Microsoft, the swap could have the effect of transforming borrowings at a floating rate
of LIBOR plus 10 basis points into borrowings at a fixed rate of 5.1%.

For Intel, the swap could have the effect of transforming a fixed-rate loan into a
floating-rate loan. Suppose that Intel has a 3-year $100 million loan outstanding on
which it pays 5.2%. After ithas entered into the swap, it has the following three sets of
cash flows: ‘

1. It pays 5.2% to its outside lenders.
2. It pays LIBOR under the terms of the swap.
3. It receives 5% under the terms of the swap.  

These three sets of cash flows net out to an interest rate payment of LIBOR plus 0.2%
(or LIBOR plus 20 basis points). Thus, for Intel, the swap could have the effectof
transforming borrowings at a fixed rate of 5.2% into borrowings at a floating rate of
LIBOR plus 20 basis points. These potential uses of the swap by Intel and Microsoft
are illustrated in Figure 7.2.  /,

Using the Swap to Transform an Asset
Swaps can also be used to transform the nature of an asset. Consider Microsoft in our
example. The swap could have the effect of transforming an asset earning a fixed rate of
interest into an asset earning a floating rate of interest. Suppose that Microsoft owns
$100 million in bonds that will provide interest at 4.7% per annum over the next 3 years.

Figure 7.2 Microsoft and Intel use the swap to transform a liability.

5 2% 0. _ 59' »
Intel Microsoft >

LIBOR LIBOR + 0.1%
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Figure 7.3 Microsoft and Intel use the swap to transform an asset.

5% 4.7%
>' Intel _ Microsoft

LIBOR - 0.2% LIBOR
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After Microsoft has entered into the swap, it has the following three sets of cash flows:

1. It receives 4.7% on the bonds.
2. It receives LIBOR under the terms of the swap.
3. It pays 5% under the terms of the swap.

These three sets of cash flows net out to an interest rate inflow of LIBOR minus 30 basis
points. Thus, one possible use of the swap for Microsoft is to transform an asset
earning 4.7% into an asset earning LIBOR minus 30 basis points.

Next, consider Intel. The swap could have the effect of transforming an asset earning
a floating rate of interest into an asset earning a fixed rate of interest. Suppose that Intel
has an investment of $100 million that yields LIBOR minus 20 basis points. After it has
entered into the swap, it has the following three sets of cash flows:

1. It receives LIBOR minus 20 basis points on its investment.
2. It pays LIBOR under the terms of the swap. I
3. It receives 5% under the terms of the swap. if

These three sets of cash flows net out to an interest rate inflow of 4.8%. Thus, one
possible use of the swap for Intel is to transform an asset earning LIBOR minus 20 basis
points into an asset earning 4.8%. These potential uses of the swap by Intel and
Microsoft are illustrated in Figure 7.3.

Role of Financial Intermediary
Usually two nonfinancial companies such as Intel and Microsoft do not get in touch
directly to arrange a swap in the way indicated in Figures 7.2 and 7.3. They each deal
with a financial intermediary such as a bank or other financial institution. “Plain
vanilla” fixed-for-floating swaps on US interest rates are usually structured so that
the financial institution earns about 3 or 4 basis points (0.03% or 0.04%) on a pair of
offsetting transactions.

Figure 7.4- shows what the role of the financial institution might be in the situation in
Figure 7.2. The financial institution enters into two offsetting swap transactions with
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Figure 7.4 Interest rate swap from Figure 7.2 when financial institution is involved.

5.2% _ 4.985% _ _ 5.015%
~ Financial ' .Intel . . - _ Microsoft l—>institution

LIBOR LIBOR LIBOR + 0.1%
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Figure 7.5 Interest rate swap from Figure 7.3 when financial institution is involved.

4.985% 5.0l.5%

> Intel .Fm.anC.1a1 _ Microsoftinstitution
LIBOR - 0.2% LIBOR LIBOR

4.7%
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Intel and Microsoft. Assuming that both companies honor their obligations, the
financial institution is certain to make a profit of 0.03% (3 basis points) per year
multiplied by the notional principal of $100 million. This amounts to $30,000 per year
for the 3-year period. Microsoft ends up borrowing at 5.115% (instead of 5.1%, as in
Figure 7.2), and Intel ends up borrowing at LIBOR plus 21.5 basis points (instead of at
LIBOR plus 20 basis points, as in Figure 7.2).

Figure 7.5 illustrates the role of the financial institution in the situation in Figure 7.3.
The swap is the same as before and the financial institution is certain to make a profit
of 3 basis points if neither company defaults. Microsoft ends up earning LIBOR minus
31.5 basis points (instead of LIBOR minus 30 basis points, as in Figure 7.3), and Intel
ends up earning 4.785% (instead of 4.8%, as in Figure 7.3).

Note that in each case the financial institution has two separate contracts: one with
Intel and the other with Microsoft. In most instances, Intel will not even know that the
financial institution has entered into an offsetting swap with Microsoft, and vice versa.
If one of the companies defaults, the financial institution still has to honor its
agreement with the other company. The 3-basis-point spread earned by the financial
institution is partly to compensate it for the risk that one of the two companies will
default on the swap payments.  

Market Makers
In practice, it is unlikely that two companies will contact a financial institution at the
same time and want to take opposite positions in exactly the same swap. For this
reason, many large financial institutions act as market makers for swaps. This means
that they are prepared to enter into a swap without having an offsetting swap with
another counterparty.2 Market makers must carefully quantify and hedge the risks they
are taking. Bonds, forward rate agreements, and interest rate futures are examples of the
instruments that can be used for hedging by swap market makers. Table 7.3 shows
quotes for plain vanilla US dollar swaps that might be posted by a market maker.3 As
mentioned earlier, the bid-ofl“er spread is 3 to 4 basis points. The average of the bid and
offer fixed rates is known as the swap rate. This is shown in the final column of
Table 7.3. .

Consider a new swap where the fixed rate equals the current swap rate. We can
reasonably assume that the value of this swap is zero. (Why else would a market maker
choose bid-offer quotes centered on the swap rate?) In Table 7.2 we saw that a swap can

2 This is sometimes referred to as warehousing swaps.

3 The standard swap in the United States is one where fixed payments made every 6 months are exchanged
for floating LIBOR payments made every 3 months. In Table 7.1 we assumed that fixed and floating
payments are exchanged every 6 months. The fixed rate should be almost exactly the same in both cases.



Table 7.3 Bid and offer fixed rates in the swap market and swap
rates (percent per annum).

Maturity (years) Bid Ofler Swap rate

2 6.03
3 6.21

6.35
6.47
6.65
6.835\1t/14>

6.06
6.24
6.39
6.51
6.68
6.87

6.045
6.225
6.370
6.490
6.665
6.850

CHAPTER 7

be characterized as the difference between a fixed-rate bond and a floating-rate bond.
Define:

Bfix: Value of fixed-rate bond underlying the swap we are considering
Bfi: Value of floating-rate bond underlying the swap we are considering

Since the swap is worth zero, it follows that

Bfix = Ba (7-1)

We will use this result later in the chapter when discussing how the LIBOR,/swap zero
curve is determined. ‘

1

DAY COUNT ISSUES

We discussed day count conventions in Section 6.1. The day count conventions affect
payments on a swap, and some of the numbers calculated in the examples we have given
do not exactly reflect these day count conventions. Consider, for example, the 6-month
LIBOR payments in Table 7.1. Because it is a US money market rate, 6-month LIBOR
is quoted on an actual/360 basis. The first floating payment in Table 7.1, based on the
LIBOR rate of 4.2%, is shown as $2.10 million. Because there are 184 days between
March 5, 2012, and September 5, 2012, it should be

100 x 0.042 >< lg-3 = $2.l467 million
' 360

In general, a LIBOR-based floating-rate cash flow on a swap payment date is calculated
as LRn/360, where L is the principal, R is the relevant LIBOR rate, and n is the number
of days since the last payment date.

The fixed rate that is paid in a swap transaction is similarly quoted with a particular
day count basis being specified. As a result, the fixed payments may not be exactly equal
on each payment date. The fixed rate is usually quoted as actual/365 or 30/360. It is not
therefore directly comparable with LIBOR because it applies to a full year. To make the
rates approximately comparable, either the 6-month LIBOR rate must be multiplied by
365/360 or the fixed rate must be multiplied by 360/365.

For clarity of exposition, we will ignore day count issues in the calculations in the rest
of this chapter.
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Business Snapshot 7.1 Extract from Hypothetical Swap Confimiation

Trade date: 27-February-2012
Effective date: 5-March-2012
Business day convention (all dates): Following business day
Holiday calendar: US
Termination date: 5-March-2015
Fixed amounts
Fixed-rate payer: Microsoft
Fixed-rate notional principal: USD 100 million
Fixed rate: 5.015% per annum
Fixed-rate day count convention: Actual/365
Fixed-rate payment ‘dates: Each 5-March and 5-September,

commencing 5-September-2012,
r up to and including 5-March-2015

Floating amounts
Floating-rate payer: Goldman Sachs I
Floating-rate notional principal: USD 100 million '
Floating rate: 6 p USD 6-month LIBOR .
Floating-rate day count convention: Actual/360 1
Floating-rate payment dates: Each 5-Marchand 5-September,

commencing 5-September-2012,
up to and including 5-March-2015

CONFIRMATIONS  
A confirmation is the legal agreement underlying a swap and is signed by representatives
of the two parties. The drafting of confirmations has been facilitated by the work of the
International Swaps and Derivatives Association (ISDA; www.isda.org) in New York.
This organization has produced a number of Master Agreements that consist of clauses
defining in some detail the terminology used in swap agreements, what happens in the
event of default by either side, and so on. Master Agreements cover all outstanding
transactions between two parties. In Business Snapshot 7.1, we show a possible extract
from the confirmation for the swap shown in Figure 7.4 between Microsoft and a
financial institution (assumed here to be Goldman Sachs). The full confirmation might
state that the provisions of an ISDA Master Agreement apply.

The confirmation specifies that the following business day convention is to be used and
that the US calendar determines which days are business days and which days are
holidays. This means that, if a payment date falls on a weekend or a US holiday, the
payment is made on the next business day.4
 i

4 Another business day convention that is sometimes specified is the modified following business day
convention, which is the same as the following business day convention except that, when the next business
day falls in a different month from the specified day, the payment is made on the immediately preceding
business day. Preceding and modified preceding business day conventions are defined analogously.
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THE COMPARATIVE-ADVANTAGE ARGUMENT

An explanation commonly put forward to explain the popularity of swaps concerns
comparative advantages. Consider the use of an interest rate swap to transform a
liability. Some companies, it is argued, have a comparative advantage when borrowing
in. fixed-rate markets, whereas other companies have a comparative advantage in
floating-rate markets. To obtain a new loan, it makes sense for a company to go to
the market where it has a comparative advantage. As a result, the company may borrow
fixed when it wants floating, or borrow floating when it wants fixed. The swap is used to
transform a fixed-rate loan into a floating-rate loan, and vice versa.

Suppose that two companies, AAACorp and BBBCorp, both wish to borrow
$10 million for 5 years and have been oflered the rates shown in Table 7.4. AAACorp
has a AAA credit rating; BBBCorp has a BBB credit rating.5 We assume that BBBCorp
wants to borrow at a fixed rate of interest, whereas AAACorp wants to borrow at a
floating rate of interest linked to 6-month LIBOR. Because it has a worse credit rating
than AAACorp, BBBCorp pays a higher rate of interest than AAACorp in both fixed
and floating markets.

A key feature of the rates offered to AAACorp and BBBCorp is that the difference
between the two fixed rates is greater than the difference between the two floating rates.
BBBCorp pays 1.2% more than AAACorp in fixed-rate markets and only 0.7% more
than AAACorp in floating-rate markets. BBBCorp appears to have a comparative
advantage in floating-rate markets, whereas AAACorp appears to have a comparative
advantage in fixed-rate markets.6 It is this apparent anomaly that can lead to a swap
being negotiated. AAACorp borrows fixed-rate funds ‘at 4% per annum. BBBCorp
borrows floating-rate funds at LIBOR plus 0.6% per annum. They then enter into a
swap agreement to ensure that AAACorp ends up with floating-rate funds and
BBBCorp ends up with fixed-rate funds.  

To understand how this swap might work, we first assume that AAACorp and
BBBCorp get in touch with each other directly. The sort of swap they might negotiate
is shown in Figure 7.6. This is similar to our example in Figure 7.2. AAACorp,agrees to
pay BBBCorp interest at 6-month LIBOR on $10 million. In return, BBBCorp agrees to
pay AAACorp interest at a fixed rate of 4.35% per annum on $10 million.
.-I _,-_-__-._.-__._.,_.». Q-__ ,_,._,.__: .-., ___, < - .._,.. _ .,.___ .._ ._ _ ._ . ,. .- .-... - ... _ _,_
DL,a¢:u.. .1. 1. - |, ' .~. q..v¢:"- ~_ .: ’t~‘:J§-*-:¢*4._,-\'->4r-1-1-Q‘; \- ‘ ~‘*~"' -l“.'.x.’.'_l"'“~:~:» ,
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Table 7.4 Borrowing rates that provide a basis for the
comparative-advantage argument.

Fixed Floating

AAACorp 4.0% 6-month LIBOR — 0.1%
BBBCorp 5.2% 6-month LIBOR + 0.6%
,_ . ......a.__--..._ ,_.-,_- . .1 __ _. _, __..__.....

5 The credit ratings assigned to companies by S&P and Fitch (in order of decreasing creditworthiness) are
AAA, AA, A, BBB, BB, B, CCC, CC, and C. The corresponding ratings assigned by Moody’s are Aaa, Aa,
A, Baa, Ba, B, Caa, Ca, and C, respectively.

6 Note that BBBCorp’s comparative advantage in floating-rate markets does not imply that BBBCorp pays
less than AAACorp in this market. It means that the extra amount that BBBCorp pays over the amount paid
by AAACorp is less in this market. One of my students summarized the situation as follows: “AAACorp pays
more less in fixed-rate markets; BBBCorp pays less more in floating-rate markets.”
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Figure 7.6 Swap agreement between AAACorp and BBBCorp when rates in Table 7.4
apply.

4 35%
AAACorp BBBCorp

4% _ LIBOR LIBOR + 0.6%

_ - - . - _ .. _ . . _ >v.-1,".»‘v.“¢_~_~_-,~'-a~--<--------~>-;- ---~ _ _ ,. . g _ , _ . -_ . . ‘ -. < . ~ I I ,1

AAACorp has three sets of interest rate cash flows:

1 1. It pays 4% per annum to outside lenders.
2. It receives 4.35% per annum from BBBCorp.
3. It pays LIBOR to BBBCorp.

The net effect of the three cash flows is that AAACorp pays LIBOR minus 0.35% per
annum. This is 0.25 % per annum less than it would pay if it went directly to floating-
rate markets. BBBCorp also has three sets of interest rate cash flows:

1. It pays LIBOR + 0.6% per annum to outside lenders.
2. It receives LIBOR from AAACorp.
3. It pays 4.35% per annum to AAACorp. g

The net effect of the three cash flows is that BBBCorp pays 4.95% per annum. This is
0.25% per annum less than it would pay if it went directly to fixed-rate markets.

In this example, the swap has been structured so that the net gain to both sides is the
same, 0.25%. This need not be the case. However, the total apparent gain from this
type of interest rate swap arrangement is always a - b, where a is the difference between
the interest rates facing the two companies in fixed-rate markets, and b is the difference
between the interest rates facing the two companies in floating-rate markets. In this
case, a : 1.2% and b : 0.7%, so that the total gain is 0.5%. 2

If AAACorp and BBBCorp did not deal directly with each other and used a financial
institution, an arrangement such as that shown in Figure 7.7 might result. (This is
similar to the example in Figure 7.4.) In this case, AAACorp ends up borrowing a.t
LIBOR minus 0.33%, BBBCorp ends up borrowing at 4.97%, and the financial
institution earns a spread of 4 basis points per year. The gain to AAACorp is 0.23%;
the gain to BBBCorp is 0.23 %; and the gain to the financial institution is 0.04%. The
total gain to all three parties is 0.50% as before.

,--- _v - . ‘ _.- -V v - _ . - . -.-,- - _ .___ _ -~ __ - -'_-‘ -~ ~-c ’--,~.>.- -~,-_v-g»_~ -_- 7; —-- -- - - -:
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Figure 7.7 Swap agreement between AAACorp and BBBCorp when rates in Table 7.4
apply and a financial intermediary is involved.

4 33% 4 37%4% ' . . '
AAACorp' _ BBBCorp

_ LIBOR LIBOR T-IBQR + 0-6%
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Criticism of the Argument
The comparative-advantage argument we have just outlined for explaining the attrac-
tiveness of interest rate swaps is open to question. Why in Table 7.4 should the spreads
between the rates offered to AAACorp and BBBCorp be different in fixed and floating
markets? Now that the swap market has been in existence for some time, we might
reasonably expect these types of differences to have been arbitraged away.

The reason that spread differentials appear to exist is due to the nature of the
contracts available to companies in fixed and floating markets. The 4.0% and 5.2%
rates available to AAACorp and BBBCorp in fixed-rate markets are 5-year rates (e.g.,
the rates at which the companies can issue 5-year fixed-rate bonds). The LIBOR - 0.1%
and LIBOR + 0.6% rates available to AAACorp and BBBCorp in floating-rate markets
are 6-month rates. In the floating-rate market, the lender usually has the opportunity to
review the floating rates every 6 months. If the creditworthiness of AAACorp or
BBBCorp has declined, the lender has the option of increasing the spread over LIBOR
that is charged. In extreme circumstances, the lender can refuse to roll over the loan at
all. The providers of fixed-rate financing do not have the option to change the terms of
the loan in this way.7 I

The spreads between the rates offered to AAACorp and BBBCorp are a reflection of
the extent to which BBBCorp is more likely than AAACorp to default. During the next
6 months, there is very little chance that either AAACorp or BBBCorp will default. As
we look further ahead, the probability of a default by a company with a relatively low
credit rating (such as BBBCorp) is liable to increase fasterthan the probability of a
default by a company with a relatively high credit rating (such as AAACorp). This is why
the spread between the 5-year rates is greater than the spread between the 6-month rates.

After negotiating a floating-rate loan at LIBOR + 0.6% and entering into the swap
shown in Figure 7.7, BBBCorp appears to obtain a fixed-rate loan at 4.97%. The
arguments just presented show that this is not really the case. In practice, the rate paid
is 4.97% only if BBBCorp can continue to borrow floating-rate funds at a spread of
0.6% over LIBOR. If, for example, the credit rating of BBBCorp declines so that the
floating-rate loan is rolled over at LIBOR + 1.6%, the rate paid by BBBCorp increases
to 5.97%. The market expects that BBBCorp’s spread over 6-month LIBOR will on
average rise during the swap’s life. BBBCorp’s expected average borrowing rate when it
enters into the swap is therefore greater than 4.97%.

The swap in Figure 7.7 locks in LIBOR - 0.33% for AAACorp for the whole of the
next 5 years, not just for the next 6 months. This appears to be a good deal for AAACorp.
The downside is that it is bearing the risk of a default by the financial institution. If it
borrowed floating-rate funds in the usual way, it would not be bearing this risk.

THE NATURE OF SWAP RATES

At this stage it is appropriate to examine the nature of swap rates and the relationship
between swap and LIBOR markets. We explained in Section 4.1 that LIBOR is the rate of
interest at which AA-rated banks borrow for periods between 1 and 12 months from other
banks. Also, as indicated in Table 7.3, a swap rate is the average of (a) the fixed rate that a

7 If the floating-rate loans are structured so that the spread over LIBOR is guaranteed in advance regardless
of changes in credit rating, the spread differentials disappear.
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swap market maker is prepared to pay in exchange for receiving LIBOR (its bid rate) and
(b) the fixed rate that it is prepared to receive in return for paying LIBOR (its offer rate).

Like LIBOR rates, swap rates are not risk-free lending rates. However, they are close
to risk-free. A financial institution can earn the 5-year swap rate on a certain principal
by doing the following:

1. Lend the principal for the first 6 months to a AA borrower and then relend it for
successive 6-month periods to other AA borrowers; and

2. Enter into a swap to exchange the LIBOR income for the 5-year swap rate.

This shows that the 5-year swap rate is an interest rate with a credit risk corresponding
to the situation where 10 consecutive 6-month LIBOR loans to AA companies are
made. Similarly the 7-year swap rate is an interest rate with a credit risk corresponding
tothe situation where 14 consecutive 6-month LIBOR loans to AA companies are
made. Swap rates of other maturities can be interpreted analogously.

Note that 5-year swap rates are less than 5-year AA borrowing rates. It is much more
attractive to lend money for successive 6-month periods to borrowers who are always
AA at the beginning of the periods than to lend it to one borrower for the whole 5 years
when all we can be sure of is that the borrower is AA at the beginning of the 5 years.

DETERMlNlNG LIBOR/SWAP ZERO RATES

We explained in Section 4.1 that derivatives traders have traditionally used LIBOR rates
as proxies for risk-free rates when valuing derivatives. One problem with LIBOR rates is
that direct observations are possible only formaturities out to I2 months. As described
in Section 6.3, one way of extending the LIBOR zero curve beyond 12 months is to use
Eurodollar futures. Typically Eurodollar futures are used to produce a LIBOR zero
curve out to 2 years—and sometimes out to as far as 5 years. Traders then use swap
rates to extend the LIBOR zero curve further. The resulting zero curve is sometimes
referred to as the LIBOR zero curve and sometimes as the swap zero curve. To avoid any
confusion, we will refer to it as the LIBOR/swap zero curve. We will now describe how
swap rates are used in the determination of the LIBOR/swap zero curve.

The first point to note is that the value of a newly issued floating-rate bond that
pays 6-month LIBOR is always equal to its principal value (or par value) when the
LIBOR/swap zero curve is used for discounting.8 The reason is that the bond provides
a rate of interest of LIBOR, and LIBOR is the discount rate. The interest on the bond
exactly matches the discount rate, and as a result the bond is fairly priced at par.

In equation (7.1), we showed that for a newly issued swap where the fixed rate equals
the swap rate, Bfix -= Bfl. We have just argued that Bfl equals the notional principal. It
follows that Bfix also equals the swap’s notional principal. Swap rates therefore define a
set of par yield bonds. For example, from the swap rates in Table 7.3, we can deduce
that the 2-year LIBOR/swap par yield is 6.045%, the 3-year LIBOR/swap par yield is
6.225%, and so on.9

8 The same is of course true of a newly issued bond that pays 1-month, 3-month, or 12-month LIBOR.

9 Analysts frequently interpolate between swap rates before calculating the zero curve, so that they have swap
rates for maturities at 6-month intervals. For example, for the data in Table 7.3 the 2.5-year swap rate would
be assumed to be 6.135%; the 7.5-year swap rate would be assumed to be 6.696%; and so on.
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Section 4.5 showed how the bootstrap method can be used to determine the Treasury
zero curve from Treasury bond prices. It can be used with swap rates in a similar way to
extend the LIBOR/swap zero curve.

Example 7.1
Suppose that the 6-month, 12-month, and 18-month LIBOR/swap zero rates have
been determined as 4%, 4.5%, and 4.8% with continuous compounding and that
the 2-year swap rate (for a swap where payments are made semiannually) is 5%.
This 5% swap rate means that a bond with a principal of $100 and a semiannual
coupon of 5% per annum sells for par. It follows that, if R is the 2-year zero rate,
then

2.56-~0.04X0.5 + 2.5e—0.045X1.0 + 2.5e—0.048X1.5 + 102.58-—2R I

Solving this, we obtain R : 4.953%. (Note that this calculation is simplified in
that it does not take the swap’s day count conventions and holiday calendars into
account. See Section 7.2.)

VALUATION OF INTEREST RATE SWAPS .

We now move on to discuss the valuation of interest rate swaps. An interest rate swap is
worth close to zero when it is first initiated. After it has been in existence for some time,
its value may be positive or negative. There are two valuation approaches. The first
regards the swap as the difference between two bonds; the second regards it as a
portfolio of FRAs.  

Valuation in Terms of Bond Prices _
Principal payments are not exchanged in an interest rate swap. However, as illustrated
in Table 7.2, we can assume that principal payments are both received and paid at the
end of the swap without changing its value. By doing this, we find that, from the point
of view of the floating-rate payer, a swap can be regarded as a long position in a fixed-
rate bond and a short position in a floating-rate bond, so that

I Vswap : Bfix _ Bfl I '

where Vswap is the value of the swap, Bfl is the value of the floating-rate bond (corres-
ponding to payments that are made), and Bfix is the value of the fixed-rate bond
(corresponding to payments that are received). Similarly, from the point of view of
the fixed-rate payer, a swap is a long position in a floating-rate bond and a short
position in a fixed-rate bond, so that the value of the swap is

vswap : Bfi _ Bfix

The value of the fixed rate bond, Bfix, can be determined as described in Section 4.4. To
value the floating-rate bond, we note that the bond is worth the notional principal
immediately after an interest payment. This is because at this time the bond is a “fair
deal” where the borrower pays LIBOR for each subsequent accrual period.

Suppose that the notional principal is L, the next exchange of payments is at time t*,
and the floating payment that will be made at time t* (which was determined at the last
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Figure 7.8 Valuation of floating-rate bond when bond principal is L and next
payment is k* at t*

Value = PV of
L + k* received at ti‘

Value = L + k* Valm 2 L

0 \i-T111161 - -1 - -1 e - - ----1
Valuation First payment Second payment Maturity

. date date date date
Floating

payment: k*

payment date) is k*. Immediately after the payment Bfl : L as just explained. It follows
that immediately before the payment Bfi : L + k*. The floating-rate bond can therefore
be regarded as an instrument providing a single cash flow of L + k* at time t*. Discount-
ing this, the value of the floating-rate bond today is (L +k*)e“’*‘*, where r* is the
LIBOR/swap zero rate for a maturity of t*. This argument is illustrated in Figure 7.8.

Example 7.2 y J
Suppose that a financial institution has agreed to pay 6-month LIBOR and
receive 8% per annum (with semiannual compounding) on a notional principal
of $100 million. The swap has a remaining life of 1.25 years. The LIBOR rates
with continuous compounding for 3-month, 9-month, and 15-month maturities
are 10%, 10.5%, and 11%, respectively. The 6-month LIBOR rate at the last
payment date was 10.2% (with semiannual compounding). .

The calculations for valuing the swap in terms of bonds are summarized in
Table 7.5. The fixed-rate bond has cash flows of 4, 4, and 104 on the three
payment dates. The discount factors for these cash flows are, respectively,
e‘0'1X0-25, e"0-105x075, and e'0-“X1-25 and are shown in the fourth column of
Table 7.5. The table shows that the value of the fixed-rate bond (in millions of
dollars) is 98.238. I

Table 7.5 Valuing a swap in terms of bonds ($ millions). Here, Bfix is fixed-rate
bond underlying the swap, and Bfl is floating-rate bond underlying the swap.

Time Bfix Bfl Discount Present value Present value
cash flow cash flow factor Bfix cash flow Bfl cash flow

0.25
0.75
1.25

4.0
4.0

104.0

105.100 0.9753
0.9243
0.8715

3.901 102.505
3.697

90.640

Total 98.238 102.505
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In this example, L = $100 million, k* : 0.5 x 0.102 >< 100 = $5.1 million, and
t* : 0.25, so that the floating-rate bond can be valued as though it produces a
cash flow of $105.1 million in 3 months. The table shows that the value of the
floating bond (in millions of dollars) is 105.100 >< 0.9753 : 102.505.

The value of the swap is the difference between the two bond prices:

v,W,,, = 98.238 - 102.505 = -4.267
or -4.267 million dollars.

If the financial institution had been in the opposite position of paying fixed
and receiving floating, the value of the swap would be +$4.267 million. Note
that these calculations do not take account of day count conventions and holi-

8 day calendars.

Valuation in Terms of FRAs
A swap can be characterized as a portfolio of forward rate agreements. Consider the
swap between Microsoft and Intel in Figure 7.1. The swap is a 3-year deal entered into
on March 5, 2012, with semiannual payments. The first exchange of payments is known
at the time the swap is negotiated. The other five exchanges can be regarded as FRAs.
The exchange on March 5, 2013, is an FRA where interest at 5% is exchanged for
interest at the 6-month rate observed in the market on September 5, 2012; the exchange
on September 5, 2013, is an FRA where interest at 5% is exchanged for interest at the
6-month rate observed in the market on March 5, 2013; and so on.

As shown at the end of Section 4.7, an FRA can be valued by assuming that forward
interest rates are realized. Because it is nothing more than a portfolio of forward rate
agreements, a plain vanilla interest rate swap can also be valued by making the
assumption that forward interest rates are realized. The procedure is as follows:

1. Use the LIBOR/swap zero curve to calculate forward rates for each of the LIBOR
rates that will determine swap cash flows.

2. Calculate swap cash flows on the assumption that the LIBOR rates will equal the
forward rates.

3. Discount these swap cash flows (using the LIBOR/swap zero curve) to obtain the
swap value.

Example 7.3
Consider again the situation in Example 7.2. Under the terms of the swap, a
financial institution has agreed to pay 6-month LIBOR and receive 8% per annum
(with semiannual compounding) on a notional principal of $100 million. The swap
has a remaining life of 1.25 years. The LIBOR rates with continuous compound-
ing for 3-month, 9-month, and 15-month maturities are 10%, 10.5%, and 11%,
respectively. The 6-month LIBOR rate at the last payment date was 10.2% (with
semiannual compounding).

The calculations are summarized in Table 7.6. The first row of the table shows the
cash flows that will be exchanged in 3 months. These have already been determined.
The fixed rate of 8% will lead to a cash inflow of 100 >< 0.08 >< 0.5 : $4 million. The
floating rate of 10.2% (which was set 3 months ago) will lead to a cash outflow of
100 x 0.102 >< 0.5 I $5.1 million. The second row of the table shows the cash flows
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Table 7.6 Valuing swap in terms of FRAs ($ millions). Floating cash flows are
calculated by assuming that forward rates will be realized.

Time Fixed Floating Net Discount Present value
cash flow cash flow cash flow factor of net cash flow

0.25 4.0 -5.100 -1.100 0.9753 -1.073
0.75 4.0 -5.522 -1.522 0.9243 -1.407
1.25 4.0 -6.051 -2.051 0.8715 -1.787

Total: -4.267
,_ .~.. _ - ------------------------------ _ _ _ _ _ , , _ ,

that will be exchanged in 9 months assuming that forward rates are realized. The
cash inflow is $4.0 million as before. To calculate the cash outflow, we must first
calculate the forward rate corresponding to the period between 3 and 9 months.
From equation (4.5), this is  

0.05 >< 0.750; 0.10 >< 0.25 I 01075

or 10.75% with continuous compounding. From equation (4.4), the forward rate
becomes l1.044% with semiannual compounding. The cash outflow is therefore
100 >< 0.11044 >< 0.5 : $5.522 million. The third row similarly shows the cash
flows that will be exchanged in 15 months assuming that forward rates are realized.
The discount factors for the three payment dates are, respectively,

6-0.l><0.25’ 6-0.l05><0.75’ e—0.l1><1.25

The present value of the exchange in three months is -$1.073 million. The values of
the FRAs corresponding to the exchanges in 9 months and 15 months are -$1.407
and -$1.787 million, respectively. The total value of the swap is —$4.267 million.
This is in agreement with the value we calculated in Example 7.2 by decomposing
the swap into bonds.

A swap is worth close to zero initially. This means that at the outset of a swap the sum
of the values of the FRAs underlying the swap is close to zero. It does not mean that
the value of each individual FRA is close to zero. In general, some FRAs will have
positive values whereas others have negative values.

Consider the FRAs underlying the swap between Microsoft and Intel in Figure 7.1:

Value of FRA to Microsoft > 0 when forward interest rate > 5.0%
Value of FRA to Microsoft = 0 when forward interest rate : 5.0%
Value of FRA to Microsoft < 0 when forward interest rate < 5.0%.

Suppose that the term structure of interest rates is upward-sloping at the time the swap
is negotiated. This means that the forward interest rates increase as the maturity of the
FRA increases. Since the sum of the values of the FRAs is close to zero, the forward
interest rate must be less than 5.0% for the early payment dates and greater than 5.0%
for the later payment dates. The value to Microsoft of the FRAs corresponding to early
payment dates is therefore negative, whereas the value of the FRAs corresponding to
later payment dates is positive. If the term structure of interest rates is downward-
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Figure 7.9 Valuing of forward rate agreements underlying a swap as a function of
maturity. In (a) the term structure of interest rates is upward-sloping and we receive
fixed, or it is downward-sloping and we receive floating; in (b) the term structure of
interest rates is upward-sloping and we receive floating, or it is downward-sloping and

y we receive fixed.
A Value of forward

contract
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A Value of forward
contract

sloping at the time the swap is negotiated, the reverse is true. The impact of the shape of
the term structure of interest rates on the values of the forward contracts underlying a
swap is illustrated in Figure 7.9. I

OVERNIGHT INDEXED SWAPS

Before leaving interest rate swaps, we discuss overnight indexed swaps. Since their
introduction in the 1990s, they have become popular in all the major currencies. Their
use arises from the fact that banks satisfy their liquidity needs at the end of each day by
borrowing from and lending at an overnight rate. This rate is often a rate targeted by
the central bank to influence monetary policy. In the United States, the rate is called the
Fed Funds rate.

An overnight indexed swap (OIS) is a swap where a fixed rate for a period
(e.g., 1 month, 3 months, 1 year, or 2 years) is exchanged for the geometric average
of the overnight rates during the period. If during a certain period a bank borrows
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funds at the overnight rate (rolling the loan forward each day), then its effective interest
rate is the geometric average of the overnight interest rates. Similarly, if it lends money
at the overnight interest rate every day, the effective rate of interest that it earns is the
geometric average of the overnight interest rates. An OIS therefore allows overnight
borrowing or lending to be swapped for borrowing or lending at a fixed rate. The fixed
rate in an OIS is referred to as the overnight indexed swap rate.

A bank (Bank A) can engage in the following transactions:

1. Borrow $100 million in the overnight market for 3 months, rolling the loan
forward each night

2. Lend the $100 million for 3 months at LIBOR to another bank (Bank B)
3. Use an OIS to exchange the overnight borrowings for fixed-rate borrowings.

This will lead to Bank A receiving the 3-month LIBOR rate and paying the 3-month
overnight indexed swap rate. We might therefore expect the 3-month overnight indexed
swap rate to equal the 3-month LIBOR rate. However, it is generally lower. This is
because Bank A requires some compensation for the risk it is taking that Bank B will
default on the LIBOR loan.

The excess of the 3-month LIBOR rate over the 3-month overnight indexed swap rate
is known as the LIBOR-OIS spread. It is used a measure of stress in financial markets. In
normal market conditions, it is about 10 basis points. However, it rose sharply during the
2007-2009 credit crisis because banks became less willing to lend to each other. In
October 2008, the spread spiked to an all time high of 364 basis points. By a year later, it
had returned to more normal levels. It rose to over 30 basis points in June 2010 as a result
of concerns about the financial health of Greece and a few other European countries.

The OIS rate is increasingly being regarded as a better proxy for the risk-free rate
than LIBOR.

CURRENCY SWAPS M.

Another popular type of swap is known as a currency swap. In its simplest form, this
involves exchanging principal and interest payments in one currency for principal and
interest payments in another.  

A currency swap agreement requires the principal to be specified in each of the two
currencies. The principal amounts are usually exchanged at the beginning and at the end
of the life of the swap. Usually the principal amounts are chosen to be approximately
equivalent using the exchange rate at the swap’s initiation. When they are exchanged at
the end of the life of the swap, their values may be quite different.

Illustration
Consider a hypothetical 5-year currency swap agreement between IBM and British
Petroleum entered into on February 1, 2011. We suppose that IBM pays a fixed rate of
interest of 5% in sterling and receives a fixed rate of interest of 6% in dollars from British
Petroleum. Interest rate payments are made once a year and the principal amounts are
$18 million and £10 million. This is termed a fixed-for-fixed currency swap because the
interest rate in each currency is at a fixed rate. The swap is shown in Figure 7.10. Initially,
the principal amounts flow in the opposite direction to the arrows in Figure 7.10. The
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Figure 7.10 A currency swap.

Dollars 6%
F‘ * British

IBM > Petroleum
Sterling 5%
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interest payments during the life of the swap and the final principal payment flow in the
same direction as the arrows. Thus, at the outset of the swap, IBM pays $18 million and
receives £10 million. Each year during the life of the swap contract, IBM receives
$1.08 million (: 6% of $18 million) and pays £0.50 million (: 5% of £10 million). At the
end of the life of the swap, it pays a principal of £10 million and receives a principal of
$18 million. These cash flows are shown in Table 7.7. i

Use of a Currency Swap to Transform Liabilities and Assets
A swap such as the one just considered can be used to transform borrowings in one
currency to borrowings in another. Suppose that IBM can issue $18 million of US-
dollar-denominated bonds at 6% interest. The swap has the effect of transforming this
transaction into one where IBM has borrowed £10 million at 5% interest. The initial
exchange of principal converts the proceeds of the bond issue from US dollars to
sterling. The subsequent exchanges in the swap have the effect of swapping the interest
and principal payments from dollars to sterling. ,

The swap can also be used to transform the nature of assets. Suppose that IBM can
invest £10 million in the UK to yield 5% per annum for the next 5 years, but feels that
the US dollar will strengthen against sterling and prefers a US-dollar-denominated
investment. The swap has the effect of transforming the UK investment into a
$18 million investment in the US yielding 6%. 1

Comparative Advantage
Currency swaps can be motivated by comparative advantage. To illustrate this, we
consider another hypothetical example. Suppose the 5-year fixed-rate borrowing costs
to General Electric and Qantas Airways in US dollars (USD) and Australian dollars

..-" .' -.- ": -1 ‘f"-_- --_: ' -_ .r*r'* 7"‘ "- - v~.~- .--'-. ~31/3."-‘ ‘l""_I 'i"~1-

Table 7.7 Cash flows to IBM in currency swap.

Date Dollar Sterling
cash flow cash flow
(millions) (millions)

February
February
February
February
February
February

1, 201
1, 201
1, 201
1,201
1, 201
1, 201 O\U1-l>-U-Jl\)1-‘

-18.00
+1.08
+1.08
+1.08
+1.08

+l9.08

+110 .0
510
510
5
D1

-1101.5
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Table 7.8 Borrowing rates providing basis for currency swap.

USD* AUD*

General Electric 5.0% 7.6%
Qantas Airways 7.0% 8.0%

* Quoted rates have been adjusted to reflect the differential impact of taxes.
C""A_ I ' " T‘ ’1 I ' -7' -" ‘ll 0? ‘ 0- '_ )1._.1........l..,......:.;I""Y'L""'T"'7SET '. "*1?-. -‘“‘ " -.' -‘ii.’ '.~' i‘* . ;'*.'- < If. ‘ ' ,,,, I.... ..

(AUD) are as shown in Table 7.8. The data in the table suggest that Australian rates are
higher than USD interest rates, and also that General Electric is more creditworthy than
Qantas Airways, because it is offered a more favorable rate of interest in both currencies.
From the viewpoint of a swap trader, the interesting aspect of Table 7.8 is that the
spreads between the rates paid by General Electric and Qantas Airways in the two
markets are not the same. Qantas Airways pays 2% more than General Electric in the
US dollar market and only 0.4% more than General Electric in the AUD market.

This situation is analogous to that in Table 7.4. General Electric has a comparative
advantage in the USD market, whereas Qantas Airways has a comparative advantage
in the AUD market. In Table 7.4, where a plain vanilla interest rate swap was
considered, we argued that comparative advantages are largely illusory. Here we are
comparing the rates offered in two different currencies, and it is more likely that the
comparative advantages are genuine. One possible source of comparative advantage is
tax. General Electric’s position might be such that USD borrowings lead to lower taxes
on its worldwide income than AUD borrowings. Qantas Airways’ position might be the
reverse. (Note that we assume that the interest rates shown in Table 7.8 have been
adjusted to reflect these types of tax advantages.)

We suppose that General Electric wants to borrow 20 million AUD and Qantas
Airways wants to borrow 15 million USD and that the current exchange rate (USD per
AUD) is 0.7500. This creates a perfect situation for a currency swap. General Electric
and Qantas Airways each borrow in the market where they have a comparative
advantage; that is, General Electric borrows USD whereas Qantas Airways borrows
AUD. They then use a currency swap to transform General Electric’s loan into an
AUD loan and Qantas Airways’ loan into a USD loan. g

As already mentioned, the difference between the USD interest rates is 2%, whereas
the difference between the AUD interest rates is 0.4%. By analogy with the interest rate
swap case, we expect the total gain to all parties to be 2.0 - 0.4 : 1.6% per annum.

There are several ways in which the swap can be arranged. Figure 7.11 shows one way
swaps might be entered into with a financial institution. General Electric borrows USD
and Qantas Airways borrows AUD-The effect of the swap is to transform the USD

Figure 7.11 A currency swap motivated by comparative advantage.

. USD 5.0% USD 6.3%
General Financial — Qantas

USD 50% Electric._—| AUD 69% institution AUD 80% Airways AUD 80%
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Figure 7.12 Alternative arrangement for currency swap: Qantas Airways bears some
foreign exchange risk.

USD 5.0% USD 5.2%
General Financial _ Qantas
Electric institution AirwaysUSD 5-0% AUD 6.9% AUD 6.9% AUD 80%
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interest rate of 5% per annum to an AUD interest rate of 6.9% per annum for General
3 Electric. As a result, General Electric is 0.7% per annum better off than it would be if it

went directly to AUD markets. Similarly, Qantas exchanges an AUD loan at 8% per
“annum for a USD loan at 6.3% per annum and ends up 0.7% per annum better off
than it would be if it went directly to USD markets. The financial institution gains
1.3% per annum on its USD cash flows and loses 1.1% per annum on its AUD flows. If
we ignore the difference between the two currencies, the financial institution makes a
net gain of 0.2% per annum. As predicted, the total gain to all parties is 1.6% per
annum.

Each year the financial institution makes a gain of USD 195,000 (:1.3% of
15 million) and incurs a loss of AUD 220,000 (= 1.1% of 20 million). The financial
institution can avoid any foreign exchange risk by buying AUD 220,000 per annum in
the forward market for each year of the life of the swap, thus locking in a net gain
in USD. 9

It is possible to redesign the swap so that the financial institution makes a 0.2%
spread in USD. Figures 7.12 and 7.13 present two alternatives. These alternatives are
unlikely to be used in practice because they do not lead to General Electric and Qantas
being free of foreign exchange risk.1O In Figure 7.12, Qantas bears some foreign
exchange risk because it pays 1.1% per annum in AUD and pays 5.2% per annum
in USD. In Figure 7.13, General Electric bears some foreign exchange risk because it
receives 1.1% per annum in USD and pays 8% per annum in AUD.

7.10 VALUATION OF CURRENCY SWAPS

Like interest rate swaps, fixed-for-fixed currency swaps can be decomposed into either
the difference between two bonds or a portfolio of forward contracts.

_/
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Figure 7.13 Alternative arrangement for currency swap: General Electric bears some
foreign exchange risk.

USD 6.1% USD 6.3%
General Financial _ Qantas

USD 5.0% Electric AUD 8.0% institution AUD 8.0% . Airways AUD 80%

I» .; ‘ ~ ~ Y . - ‘ .

10 Usually it makes sense for the financial institution to bear the foreign exchange risk, because it is in the
best position to hedge the risk.
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Valuation in Terms of Bond Prices
If we define Vswap as the value in US dollars of an outstanding swap where dollars are
received and a foreign currency is paid, then

Vswap : BD _ SOBF

where BF is the value, measured in the foreign currency, of the bond defined by the
foreign cash flows on the swap and BD is the value of the bond defined by the domestic
cash flows on the swap, and S0 is the spot exchange rate (expressed as number of dollars
per unit of foreign currency). The value of a swap can therefore be determined from
LIBOR rates in the two currencies, the term structure of interest rates in the domestic
currency, and the spot exchange rate.

Similarly, the value of a swap where the foreign currency is received and dollars are
paid is

I/swap : SOBF "' BD

Example 7.4
Suppose that the term structure of LIBOR/swap interest rates is flat in both Japan
and the United States. The Japanese rate is 4% per annum and the US rate is
9% per annum (both with continuous compounding). Some time ago a financial
institution has entered into a currency swap in which it receives 5% per annum in
yen and pays 8% per annum in dollars once a year. The principals in the two
currencies are $10 million and 1,200 million yen. The swap will last for another
3 years, and the current exchange rate is 110 yen = $1.

The calculations are summarized in Table 7.9. In this case the cash flows from
the dollar bond underlying the swap are as shown in the second column. The
present value of the cash flows using the dollar discount rate of 9% are shown in
the third column. The cash flows from the yen bond underlying the swap are
shown in the fourth column of the table. The present value of the cash flows using
the yen discount rate of 4% are shown in the final column of the table. if

The value of the dollar bond, BD, is 9.6439 million dollars. The value of the yen
bond is 1230.55 million yen. The value of the swap in dollars is therefore

l’-2%§-5- - 9.6439 = 1.5430 million
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Table 7.9 Valuation of currency swap in terms of bonds. (All amounts in
millions.)

Time Cash flows Present value Cash flows Present value
on dollar bond ($) ($) on yen bond (yen) (yen)

L»JL»Jl\J>-—* ltd .@.¢>O00

0.8 0.7311 60
0.8 0.6682 60

0.6107 60
7.6338 1,200 1,064.30

9.6439 1,230.55

57.65
55.39
53.22

Total:  
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Valuation as Portfolio of Forward Contracts
Each exchange of payments in a fixed-for-fixed currency swap is a forward foreign
exchange contract. In Section 5.7, forward foreign exchange contracts were valued by
assuming that forward exchange rates are realized. The same assumption can therefore
be made for a currency swap.

Example 7.5
Consider again the situation in Example 7.4. The LIBOR/swap term structure of
interest rates is flat in both Japan and the United States. The Japanese rate is 4%
per annum and the US rate is 9% per annum (both with continuous compounding).
Some time ago a financial institution has entered into a currency swap in which it
receives 5% per annum in yen and pays 8% per annum in dollars once a year. The
principals in the two currencies are $10 million and 1,200 million yen. The swap will
last for another 3 years, and the current exchange rate is 110 yen : $1.

The calculations aresummarized in Table 7.10. The financial institution pays
0.08 x 10 = $0.8 million dollars and receives 1,200 >< 0.05 = 60 million yen each
year. In addition, the dollar principal of $10 million is paid and the yen principal
of 1,200 is received at the end of year 3. The current spot rate is 0.009091 dollar
per yen. In this case r = 9% and rf : 4%, so that, from equation (5.9), the 1-year
forward rate is

0.009091e<°~°9-°~°“>><1 = 0.009557
The 2- and 3-year forward rates in Table 7.10 are calculated similarly. The for-
ward contracts underlying the swap can be valued by assuming that the forward
rates are realized. If the 1-year forward rate is realized, the yen cash flow in year l

. is worth 60 >< 0.009557 = 0.5734 million dollars and the net cash flow at the end
of year 1 is 0.8 — 0.5734 = —0.2266 million dollars. This has a present value of

-0.2266 6-°~°9><‘ = -0.2071
million dollars. This is the value of forward contract corresponding to the exchange
of cash flows at the end of year 1. The value of the other forward contracts are
calculated similarly. As shown in Table 7.10, the total value of the forward con-
tracts is $l.5430 million. This agrees with the value calculated for the swap in
Example 7.4 by decomposing it into bonds.
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Table 7.10 Valuation of currency swap as a portfolio of forward contracts.
(All amounts in millions.)

Time Dollar Yen Forward Dollar value of Net cash flow Present
cash flow cash flow exchange rate yen cash flow ($) value

-0.8 60 0.009557 0.5734 —0.2266 —0.2071
——0.8 60 0.010047 0.6028 ——0.l972 —0.1647
-0.8 60 0.010562 0.6337 —0.1663 —0.1269

-10.0 1200 0.010562 12.6746 +2.6746 2.0417uauot\>>——

Total: 1.5430
i v_— --— —.-V -— ~,~_- ~-— _ . . , '
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The value of a currency swap is normally close to zero initially. If the two principals
are worth the same at the start of the swap, the value of the swap is also close to zero
immediately after the initial exchange of principal. However, as in the case of interest
rate swaps, this does not mean that each of the individual forward contracts underlying
the swap has a value close to zero. It can be shown that, when interest rates in two
currencies are significantly different, the payer of the currency with the high interest
rate is in the position where the forward contracts corresponding to the early exchanges
of cash flows have negative values, and the forward contract corresponding to final
exchange of principals has a positive value. The payer of the currency with the low
interest rate is in the opposite position; that is, the forward contracts corresponding to
the early exchanges of cash flows have positive values, while that corresponding to the
final exchange has a negative value. These results are important when the credit risk in
the swap is being evaluated.

CREDIT RISK

Contracts such as swaps that are private arrangements between two companies entail
credit risks. Consider a financial institution that has entered into offsetting contracts
with two companies (see Figure 7.4, 7.5, or 7.7). If neither party defaults, the financial
institution remains fully hedged. A decline in the value of one contract will always be
offset by an increase in the value of the other contract. However, there is a chance that
one party will get into financial difficulties and default. The financial institution then
still has to honor the contract it has with the other party. I

Suppose that, some time after the initiation of the contracts in Figure 7.4, the
contract with Microsoft has a positive value to the financial institution, whereas the
contract with Intel has a negative value. If Microsoft defaults, the financial institution is
liable to lose the whole of the positive value it has in this contract. To maintain a
hedged position, it would have to find a third party willing to take Microsoft’s position.
To induce the third party to take the position, the financial institution would have to
pay the third party an amount roughly equal to the value of its contract with Microsoft
prior to the default.

A financial institution clearly has credit-risk exposure from a swap when the value of
the swap to the financial institution is positive. What happens when this "value is
negative and the counterparty gets into financial difficulties‘? In theory, the financial
institution could realize a windfall gain, because a default would lead to it getting rid of
a liability. In practice, it is likely that the counterparty would choose to sell the contract
to a third party or rearrange its affairs in some way so that its positive value in the
contract is not lost. The most realistic assumption for the financial institution is
therefore as follows. If the counterparty goes bankrupt, there will be a loss if the value
of the swap to the financial institution is positive, and there will be no effect on the
financial institution’s position if the value of the swap to the financial institution is
negative. This situation is summarized in Figure 7.14.

In swaps, it is sometimes the case that the early exchanges of cash flows have positive
values and the later exchanges have negative values. (This would be true in Figure 7.9a
and in a currency swap where the interest paid is lower than the interest received.) These
swaps are likely to have negative values for most of their lives and therefore entail less
credit risk than swaps where the reverse is true.
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Figure 7.14 The credit exposure in a swap.
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Potential losses from defaults on a swap are much less than the potential losses from
defaults on a loan with the same principal. This is because the value of the swap is
usually only a small fraction of the value of the loan. Potential losses from defaults on a
currency swap are greater than on a11 interest rate swap. The reason is that, because
principal amounts in two different currencies are exchanged at the end of the life of a
currency swap, a currency swap is liable to have a greater value at the time of a default
than an interest rate swap. _

It is important to distinguish between the credit risk and market risk to a financial
institution in any contract. As discussed earlier, the credit risk arises from the
possibility of a default by the counterparty when the value of the contract to the
financial institution is positive. The market risk arises from the possibility that market
variables such as interest rates and exchange rates will move in such a way that the value
of a contract to the financial institution becomes negative. Market risks can be hedged
relatively easily by entering into offsetting contracts; credit risks are less easy to hedge.

One of the more bizarre stories in swap markets is outlined in Business Snapshot 7.2. It
concerns the British Local Authority Hammersmith and Fulham and shows that, in
addition to bearing market risk and credit risk, banks trading swaps also sometimes bear
legal risk.

Clearing Houses
As explained in Business Snapshot 2.3, regulators are concerned about the potential for
credit risk in the over-the-counter market to cause systemic risk. The volume of trading
between finacial institutions is huge. A default by one financial institution can lead to
losses by other financial institutions. As a result, some of these financial institutions
may also default, creating yet more losses for other financial institutions, more defaults,
and so on. It was concerns about systemic risk that led governments to bail out financial
institutions during the crisis that started in July 2007. To reduce systemic risk,
governments have, since the crisis, introduced legislation requiring that clearing houses
be used for many swaps and other derivatives. The way this works was discussed in
Section 2.5. The clearing house acts as an intermediary between the two sides in a
transaction. It requires an initial margin and variation margins in the same way that
these are required for futures contracts.
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Business Snapshot 7.2 The Hammersmith and Fulham Story

Between 1987 to 1989 the London Borough of Hammersmith and Fulham in the UK
entered into about 600 interest rate swaps and related instruments with a total notional
principal of about 6 billion pounds. The transactions appear to have been entered into
for speculative rather than hedging purposes. Thetwo employees of Hammersmith
and Fulham responsible for the trades had only a sketchy understanding of the risks
they were taking and how the products they were trading worked.

. By 1989, because of movements in sterling interest rates, Hammersmith and
Fulham had lost several hundred million pounds on the swaps. To the banks on

rthe other side of the transactions, the swaps were worth several hundred million
pounds. The banks were concerned about credit risk. They had entered into off-
setting swaps tto. hedge their interest rate risks. If Hammersmith and Fulham
defaulted, the banks would still have to honor their obligations on -the offsetting
swaps and would take a huge loss.

it What happened was something a little different from a default. Hammersmith and
Fulham’s auditor asked to have the transactions declared void because Hammer-
smith and Fulham did not have the authority to enter into the transactions. The
British courts agreed. The case was appealed and went all the way to the House of
Lords, Britain’s highest court. The final decision was that Hammersmith and
Fulham did not have the authority to enter into the swaps, but that they ought
to have the authority to do so in the future for risk-management purposes. Needless
to say, banks were furious that their contracts were overturned in this way by the
courts.

OTHER TYPES OF SWAPS

In this chapter, we have covered interest rate swaps where LIBOR is exchanged for a fixed
rate of interest and currency swaps where a fixed rate of interest in one currency is
exchanged for a fixed rate of interest in another currency. Many other types of swaps are
traded. We will discuss some of them in detail in Chapters 24, 29, and 32. At this stage, we
will provide an overview.

/.
_/

Variations on the Standard Interest Rate Swap
In fixed-for-floating interest rate swaps, LIBOR is the most common reference floating
interest rate. In the examples in this chapter, the tenor (i.e., payment frequency) of
LIBOR has been 6 months, but swaps where the tenor of LIBOR is 1 month, 3 months,
and 12 months trade regularly. The tenor on the floating side does not have to match
the tenor on the fixed side. (Indeed, as pointed out in footnote 3, the standard interest
rate swap in the United States is one where there are quarterly LIBOR payments and
semiannual fixed payments.) LIBOR is the most common floating rate, but others such
as the commercial paper (CP) rate are occasionally used. Sometimes floating-for-
floating interest rates swaps are negotiated. For example, the 3-month CP rate plus
10 basis points might be exchanged for 3-month LIBOR with both being applied to the
same principal. (This deal would allow a company to hedge its exposure when assets
and liabilities are subject to diflerent floating rates.)
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The principal in a swap agreement can be varied throughout the term of the swap to
meet the needs of a counterparty. In an amortizing swap, the principal reduces in a
predetermined way. (This might be designed to correspond to the amortization schedule
on a loan.) In a step-up swap, the principal increases in a predetermined way. (This
might be designed to correspond to drawdowns on a loan agreement.) Deferred swaps
or_ forward swaps, where the parties do not begin to exchange interest payments until
some future date, can also be arranged. Sometimes swaps are negotiated where the
principal to which the fixed payments are applied is different from the principal to
which the floating payments are applied.

A constant maturity swap (CMS swap) is an agreement to exchange a LIBOR rate for
a swap rate. An example would be an agreement to exchange 6-month LIBOR applied
to a certain principal for the 10-year swap rate applied to the same principal every
6 months for the next 5 years. A constant maturity Treasury swap (CMT swap) is a
similar agreement to exchange a LIBOR rate for a particular Treasury rate (e.g., the
10-year Treasury rate). p

In a compounding swap, interest on one or both sides is compounded forward to the
end of the life of the swap according to preagreed rules and there is only one payment
date at the end of the life of the swap. In a LIBOR-in arrears swap, the LIBOR rate
observed on a payment date is used to calculate the payment on that date. (As
explained in Section 7.1, in a standard deal the LIBOR rate observed on one payment
date is used to determine the payment on the next payment date.) In an accrual swap,
the interest on one side of the swap accrues only when the floating reference rate is in a
certain range.  

r

Other Currency Swaps
In this chapter we have considered fixed-for-fixed currency swaps. Another type of swap
is a fixed-for-floating currency swap, whereby a floating rate (usually LIBOR) in one
currency is exchanged for a fixed rate in another currency. This is a combination of a
fixed-for-floating interest rate swap and a fixed-for-fixed currency swap and is known as
a cross-currency interest rate swap. A further type of currency swap is a floating-for-
floating currency swap, where a floating rate in one currency is exchanged for a floating
rate in another currency.

Sometimes a rate observed in one currency is applied to a principal amount in
another currency. One such deal might be where 3-month LIBOR observed in the
United States is exchanged for 3-month LIBOR in Britain, with both rates being
applied to a pri.ncipai of 10 million British pounds. This type of swap is referred to
as a difi swap or a quanto.

Equity Swaps
An equity swap is an agreement to exchange the total return (dividends and capital
gains) realized on an equity index for either a fixed or a floating rate of interest. For
example, the total return on the S&P 500 in successive 6-month periods might be
exchanged for LIBOR, with both being applied to the same principal. Equity swaps can
be used by portfolio managers to convert returns from a fixed or floating investment to
the returns from investing in an equity index, and vice versa.
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Options
Sometimes there are options embedded in a swap agreement. For example, in an
extendable swap, one party has the option to extend the life of the swap beyond the
specified period. In a puttable swap, one party has the option to terminate the swap
early. Options on swaps, or swaptions, are also available. These provide one party with
the right at a future time to enter into a swap where a predetermined fixed rate is
exchanged for floating.

Commodity Swaps, Volatility Swaps, and Other Exotic Instruments
Commodity swaps are in essence a series of forward contracts on a commodity with
different maturity dates and the same delivery prices. In a volatility swap there are a
series of time periods. At the end of each period, one side pays a preagreed volatility,
while the other side pays the historical volatility realized during the period. Both
volatilities are multiplied by the same notional principal in calculating payments.

Swaps are limited only by the imagination of financial engineers and the desire of
corporate treasurers and fund managers for exotic structures. In Chapter 32, we will
describe the famous 5/30 swap entered into between Procter and Gamble and Bankers
Trust, where payments depended in a complex way on the 30-day commercial paper
rate, a 30-year Treasury bond price, and the yield on a 5-year Treasury bond.

SUMMARY  p _

The two most common types of swaps are interest rate swaps and currency swaps. In an
interest rate swap, one party agrees to pay the other party interest at a fixed rate on a
notional principal for a number of years. In return, it receives interest at a floating rate
on the same notional principal for the same period of time. In a currency swap, one
party agrees to pay interest on a principal amount in one currency. In return, it receives
interest on a principal amount in another currency. '

Principal amounts are not usually exchanged in an interest rate swap. In a currency
swap, principal amounts are usually exchanged at both the beginning and the end of the
life of the swap. Fora party paying interest in the foreign currency, the foreign principal
is received, and the domestic principal is paid at the beginning of the swap’s life. At the
end of the swap’s life, the foreign principal is paid and the domestic principal is received.

An interest rate swap can be used to transform a floating-rate loan into a fixed-rate
loan, or vice versa. It can also be used to transform a floating-rate investment to a fixed-
rate investment, or vice versa. A currency swap can be used to transform a loan in one
currency into a loan in another currency. It can also be used to transform an investment
denominated in one currency into an investment denominated in another currency.

There are two ways of valuing interest rate and currency swaps. In the first, the swap
is decomposed into a long position in one bond and a short position in another bond.
In the second it is regarded as a portfolio of forward contracts.

When a financial institution enters into a pair of oflsetting swaps with diflerent
counterparties, it is exposed to credit risk. If one of the counterparties defaults when
the financial institution has positive value in its swap with that counterparty, the
financial institution loses money because it still has to honor its swap agreement with
the other counterparty.
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Practice Questions (Answers in Solutions Manual)

7.1

7.2

7.3

1

Companies A and B have been offered the following rates per annum on a $20 million
5-year loan:

A Fixed rate Floating rate

Company A: 5.0% LIBOR + 0.1%
Company B: 6.4% LIBOR + 0.6%

Company A requires a floating-rate loan; company B requires a fixed-rate loan. Design a
swap that will net a bank, acting as intermediary, 0.1% per annum and that will appear
equally attractive to both companies.
Company X wishes to borrow US dollars at a fixed rate of interest. Company Y wishes to
borrow Japanese yen at a fixed rate of interest. The amounts required by the two
companies are roughly the same at the current exchange rate. The companies are subject
to the following interest rates, which have been adjusted to reflect the impact of taxes:

Yen Dollars

Company X : 5.0% 9.6%
Company Y: 6.5% 10.0%

Design a swap that will net a bank, acting as intermediary, 50 basis points per annum.
Make the swap equally attractive to the two companies and ensure that all foreign
exchange risk is_assumed by the bank.
A $100 million interest rate swap has a remaining life of 10 months. Under the terms of the
swap, 6-month LIBOR is exchanged for 7% per annum (compounded semiannually). The
average of the bid-offer rate being exchanged for 6-month LIBOR in swaps of all
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7.4

7.5

7.6
7.7

7.8

7.9

7.10.

7.11

maturities is currently 5% per annum with continuous compounding. The 6-month LIBOR
rate was 4.6% per annum 2 months ago. What is the current value of the swap to the party
paying floating? What is its value to the party paying fixed?
Explain what a swap rate is. What is the relationship between swap rates and par
yields?
A currency swap has a remaining life of 15 months. It involves exchanging interest
at 10% on £20 million for interest at 6% on $30 million once a year. The term structure
of interest rates in both the United Kingdom and the United States is currently flat,
and if the swap were negotiated today the interest rates exchanged would be 4% in
dollars and 7% in sterling. All interest rates are quoted with annual compounding. The
current exchange rate (dollars per pound sterling) is 1.8500. What is the value of the
swap to the party paying sterling? What is the value of the swap to the party paying
dollars‘? 3
Explain the difference between the credit risk and the market risk in a financial contract.
A corporate treasurer tells you that he has just negotiated a 5-year loan at a competitive
fixed rate of interest of 5.2%. The treasurer explains that he achieved the 5.2% rate by
borrowing at 6-month LIBOR plus 150 basis points and swapping LIBOR for 3.7%. He
goes on to say that this was possible because his company has a comparative advantage in
the floating-rate market. What has the treasurer overlooked?
Explain why a bank is subject to credit risk when it enters into two offsetting swap
contracts. »
Companies X and Y have been offered the following rates per annum on a $5 million
10-year investment: 9

Fixed rate Floating rate

Company X: 8.0% LIBOR
Company Y: 8.8% LIBOR

Company X requires a fixed-rate investment; company Y requires a floating-rate invest-
ment. Design a swap that will net a bank, acting as intermediary, 0.2% per annum and
will appear equally attractive to X and Y.
A financial institution has entered into an interest rate swap with company X. Under the
terms of the swap, it receives 10% per annum and pays 6-month LIBOR on a principal of
$10 million for 5 years. Payments are made every 6 months. Suppose that company X
defaults on the sixth payment date (at the end of year 3) when the interest rate (with
semiannual compounding) is 8% per annum for all maturities. What is the loss to the
financial institution‘? Assume that 6-month LIBOR was 9% per annum halfway through
year 3.  
Companies A and B face the following interest rates (adjusted for the differential impact
of taxes):

I I Company A Company B

US dollars (floating rate): LIBOR + 0.5% LIBOR + 1.0%
Canadian dollars (fixed rate): 5.0% 6.5%

Assume that A wants to borrow US dollars at a floating rate of interest and B wants to
borrow Canadian dollars at a fixed rate of interest. A financial institution is planning to
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7.12.

7.13

7.14

7.15

7.16

7.17

7.18

CHAPTER '7

arrange a swap and requires a 50-basis-point spread. If the swap is to appear equally
attractive to A and B, what rates of interest will A and B end up paying?
A financial institution has entered into a 10-year currency swap with company Y. Under
the terms of the swap, the financial institution receives interest at 3% per annum in Swiss
francs and pays interest at 8% per annum in US dollars. Interest payments are exchanged
once ta year. The principal amounts are 7 million dollars and 10 million francs. Suppose
that company Y declares bankruptcy at the end of year 6, when the exchange rate is $0.80
per franc. What is the cost to the financial institution? Assume that, at the end of year 6,
the interest rate is 3% per annum in Swiss francs and 8% per annum in US dollars for all
maturities. All interest rates are quoted with annual compounding.

After it hedges its foreign exchange risk using forward contracts, is the financial
institution’s average spread in Figure 7.11 likely to be greater than or less than 20 basis
points? Explain your answer.

“Companies with high credit risks are the ones that cannot access fixed-rate markets
directly. They are the companies that are most likely to be paying fixed and receiving
floating in an interest rate swap.” Assume that this statement is true. Do you think it
increases or decreases the risk of a financial institution’s swap portfolio‘? Assume that
companies are most likely to default when interest rates are high.  

Why isthe expected loss from a default on a swap less than the expected loss from the
default on a loan with the same principal?

A bank finds that its assets are not matched with its liabilities. It is taking floating-rate
deposits and making fixed-rate loans. How can swaps be used to offset the risk?

Explain how you would value a swap that is the exchange of a floating rate in one
currency for a fixed rate in another currency.

The LIBOR zero curve is flat at 5% (continuously compounded) out to 1.5 years. Swap
rates for 2- and 3-year semiannual pay swaps are 5.4% and 5.6%, respectively. Estimate
the LIBOR zero rates for maturities of 2.0, 2.5, and 3.0 years. (Assume that the 2.5-year
swap rate is the average of the 2- and 3-year swap rates.) J

Further Questions

7.19

7.20

7.21

(a) Company A has been oflered the rates shown in Table 7.3. It can borrow for 3 years at
6.45%. What floating rate can it swap this fixed rate into?
(b) Company B has been oflered the rates shown in Table 7.3. It can borrow for 5 years at
LIBOR plus 75 basis points. What fixed rate can it swap this floating rate into?

(a) Company X has been oflered the rates shown in Table 7.3. It can invest for 4 years at
5.5%. What floating rate can it swap this fixed rate into?
(b) Company Y has been offered the rates shown in Table 7.3. It can invest for 10 years at
LIBOR minus 50 basis points. What fixed rate can it swap this floating rate into?

The 1-year LIBOR rate is 10% with annual compounding. A bank trades swaps where a
fixed rate of interest is exchanged for 12-month LIBOR with payments being exchanged
annually. The 2- and 3-year swap rates (expressed with annual compounding) are 11%
and 12% per annum. Estimate the 2- and 3-year LIBOR zero rates. .
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7.22. Company A, a British manufacturer, wishes to borrow US dollars at a fixed rate of
interest. Company B, a US multinational, wishes to borrow sterling at a fixed rate of
interest. They have been quoted the following rates per annum (adjusted for differential
tax effects):
 i_rm 

Sterling US dollars

Company A 11.0% 7.0%
Company B 10.6% 6.2%

Design a swap that will net a bank, acting as intermediary, 10 basis points per annum and
that will produce a gain of 15 basis points per annum for each of the two companies.

7.23. Under the terms of an interest rate swap, a financial institution has agreed to pay 10% per
annum and to receive 3-month LIBOR in return on a notional principal of $100 million
with payments being exchanged every 3 months. The swap has a remaining life of
14 months. The average of the bid and offer fixed rates currently being swapped for
3-month LIBOR is 12% per annum for all maturities. The 3-month LIBOR rate 1 month
ago was 11.8% per annum. All rates are compounded quarterly. What is the value of
the swap?

7.24. Suppose that the term structure of interest rates is flat in the United States and Australia.
The USD interest rate is 7% per annum and the AUD rate is 9% per annum. The current
value of the AUD is 0.62 USD. Under the terms of a swap agreement, a financial
institution pays 8% per annum in AUD and receives 4% per annum in USD. The
principals in the two currencies are $12 million USD and 20 million AUD. Payments
are exchanged every year, with one exchange having just taken ‘place. The swap will last
2 more years. What is the value of the swap to the financial institution? Assu.me all
interest rates are continuously compounded.

7.25. Company X is based in the United Kingdom and would like to borrow $50 million at a
fixed rate of interest for 5 years in US funds. Because the company is not well known in
the United States, this has proved to be impossible. However, the company has been
quoted 12% per annum on fixed-rate 5-year sterling funds. Company Y is based in the
United States and would like to borrow the equivalent of $50 million in sterling funds for
5 years at a fixed rate of interest. It has been unable to get a quote but has been offered
US dollar funds at 10.5% per annum. Five-year government bonds currently yield
9.5% per annum in the United States and 10.5% in the United Kingdom. Suggest an
appropriate currency swap that will net the financial intermediary 0.5% per annum.
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Securitization
and the Credit

Crisis of 2007

Derivatives such as forwards, futures, swaps, and options are concerned with transfer-
ring risk from one entity in the economy to another. The first seven chapters of this
book have focused on forwards, futures, and swaps. Before moving on to discuss
options, we consider another important way of transferring risk in the economy:
securitization.

Securitization is of particular interest because of its role in the credit crisis (sometimes
referred to as the “credit crunch”) that started in 2007. The crisis had its origins in
financial products created from mortgagesin the United States, but rapidly spread from
the United States to other countries and from financial markets to the real economy.
Some financial institutions failed. Many more had to be rescued by national govern-
ments. There can be no question that the first decade of the twenty-first century was
disastrous for the financial sector. p

In this chapter, we examine the nature of securitization and its role in the crisis. In
the course of the chapter, we will learn about the US mortgage market, asset-backed
securities, collateralized debt obligations, waterfalls, and the importance of incentives in
financial markets.

SECURITIZATION

Traditionally, banks have funded their loans primarily from deposits. In the 1960s, US
banks found that they could not keep pace with the demand for residential mortgages
with this type of funding. This led to the development of the mortgage-backed security
(MBS) market. Portfolios of mortgages were created and the cash flows (interest and
principal payments) generated by the portfolios were packaged as securities and sold to
investors. The US government created the Government National Mortgage Association
(GNMA, also known as Ginnie Mae) in 1968. This organization guaranteed (for a fee)
interest and principal payments on qualifying mortgages and created the securities that
were sold to investors.

Thus, although banks originated the mortgages, they did not keep them on their
balance sheets. Securitization allowed them to increase their lending faster than their
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deposits were growing. GNMA’s guarantee protected MBS investors against defaults
by borrowers.1

In the 1980s, the securitization techniques developed for the mortgage market were
applied to asset classes such as automobile loans and credit card receivables in the
United States. Securitization also become popular in other parts of the world. As the
securitization market developed, investors became comfortable with situations where
they did not have a guarantee against defaults by borrowers.

ABSs
A simple securitization arrangement of the type used during the 2000 to 2007 period is
shown in Figure 8.1. This is known as an asset-backed security or ABS. A portfolio of
income-producing assets such as loans is sold by the originating banks to a special
purpose vehicle (SPV) and the cash flows from the assets are then allocated to tranches.
Figure 8.1 is simplified in that there are three tranches. These are the senior tranche, the
mezzanine tranche, and the equity tranche. The portfolio has a principal of $100 million.
This is divided as follows: $80 million to the senior tranche, $15 million to the
mezzanine tranche, and $5 million to the equity tranche. The senior tranche is promised
a return of LIBOR plus 60 basis points, the mezzanine tranche is promised a return of
LIBOR plus 250 basis points, and the equity tranche is promised a return of LIBOR
plus 2,000 basis points.
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Figure 8.1 An asset-backed security (simplified); bp == basis points (lbp == 0.01%).
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I However, MBS investors do face uncertainty about mortgage prepayments. Prepayments tend to be
greatest when interest rates are low and the reinvestment opportunities open to investors are not particularly
attractive. In the early days of MBSs, many MBS investors realized lower returns than they expected because
they did not take this into account.
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Figure 8.2 The waterfall in an asset-backed security.
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It sounds as though the equity tranche has the best deal, but this is not necessarily the
case. The payments of interest and principal are not guaranteed. The equity tranche is
more likely to lose part of its principal, and less likely to receive the promised interest
payments on its outstanding principal, than the other tranches. Cash flows are allocated
to tranches by specifying what is known as a waterfall. The general way a waterfall
works is illustrated in Figure 8.2. A separate waterfall is applied to interest payments
and the repayments of principal on the assets. Principal repayments are allocated to the
senior tranche until its principal has been fully repaid. They are then allocated to the
mezzanine tranche until its principal has been fully repaid. Only after this has happened
do principal repayments go to the equity tranche. Interest payments are allocated to the
senior tranche until the senior tranche has received its promised return on its out-
standing principal. Assuming that this promised return can be made, interest payments
are then allocated to the mezzanine tranche. If the promised return to the mezzanine
tranche can be made and cash flows are left over, they are allocated to the equity
tranche.

The extent to which the tranches get their principal back depends on losses on the
underlying assets. The effect of the waterfall is roughly as follows. The first 5% of losses
are borne by the equity tranche. If losses exceed 5%, the equity tranche loses all its
principal and some losses are borne by the principal of the mezzanine tranche. If losses
exceed 20%, the mezzanine tranche loses all its principal and some losses are borne by
the principal of the senior tranche.

There are therefore two ways of looking at an ABS. One is with reference to the
waterfall in Figure 8.2. Cash flows go first to the senior tranche, then to the mezzanine
tranche, and then to the equity tranche. The other is in terms of losses. Losses of
principal are first borne by the equity tranche, then by the mezzanine tranche, and then
by the senior tranche. Rating agencies such as Moody’s, S&P, and Fitch played a key
role in securitization. The ABS in Figure 8.1 is designed so that the senior tranche is
rated AAA. The mezzanine tranche is typically rated BBB. The equity tranche is
typically unrated.
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The description of ABSs that we have given so far is somewhat simplified. Typically,
more than three tranches with a wide range of ratings are created. In the waterfall rules,
as we have described them, the allocation of cash flows to tranches is sequential in that
they always flow first to the most senior tranche, then to the next-most-senior tranche,
and so on. In practice, the rules are somewhat more complicated than this and are
described in a legal document that is several hundred pages long. Another complication
is that there is often some over-collateralization where (a) the total principal of the
tranches is less than the total principal of the underlying assets and (b) the weighted
average return promised to the tranches is less than the weighted average return payable
on the assets.

ABS CDOs
Finding investors to buy the senior AAA-rated tranches of ABSs was usually not
diflicult because the tranches promised returns which were very attractive when com-
pared with the return on AAA-rated bonds. Equity tranches were typically retained by
the originator of the assets or sold to a hedge fund.

Finding investors for mezzanine tranches was more diflicult. This led to the creation
of ABSs of ABSs. The way this was done is indicated in Figure 8.3. Many different
mezzanine tranches, created in the way indicated in Figure 8.1, are put in a portfolio
and the risks associated with the cash flows from the portfolio are tranched out in the
same way as the risks associated with the cash flows from the assets are tranched out in
Figure 8.1. The resulting structure is known as an ABS CDO or Mezlz ABS CDO. In the
example in Figure 8.3, the senior tranche of theABS CDO accounts for 65% of the
principal of the ABS mezzanine tranches, the mezzanine tranche of the ABS CDO
accounts for 25% of the principal, and the equity tranche accounts for the remaining
10% of the principal. The structure is designed so that the senior tranche of the ABS
CDO is rated AAA. This means that the total of the AAA-rated instruments created in
the example that is considered here is about 90% (80% plus 65% of 15%) of the
principal of the underlying portfolio. This seems high but, if the securitization were
carried further with an ABS being created from the mezzanine tranches of ABS CDOs
(and this did happen), the percentage would be pushed even higher.

In the example in Figure 8.3, the AAA-rated tranche of the ABS can expect to receive
its promised return and get its principal back if losses on the underlying portfolio of
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Figure 8.3 An ABS CDO (simplified).

The mezzanine tranche is
S°“‘°‘ "a“°h° (80%) repackaged with other

mezzanine tranchesAAA .

Mezzanine tranche(l5%) > Senior tranche (65%)
BBB AAA

Mezzanine tranche (25%)

Equity tranche (5%) lBBB : : Zl
Not rated

Equity tranche (10%)
l||
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Table 8.1 Estimated losses to AAA-rated tranches of ABS CDO in Figure 8.3.

Losses on Losses to Losses to Losses to Losses to
underlying mezzanine tranche equity tranche mezzanine tranche senior tranche
assets s of ABS of ABS CDO of ABS CDO of ABS CDO

‘ 10% 33.3% 100.0% 93.3% 0.0%
13% 53.3% 100.0% 100.0% 28.2%
17% 80.0% 100.0% 100.0% 69.2%
20% 100.0% 100.0% 100.0% 100.0%
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assets is less than 20% because all losses of principal would then be absorbed by the
more junior tranches. The AAA-rated tranche of the ABS CDO in Figure 8.2 is more
risky. It will receive the promised return and get its principal back if losses on the
underlying assets are less than 10.25%. This is because a loss of 10.25% means that
mezzanine tranches of ABSs have to absorb losses equal to 5.25% of the ABS principal.
As these tranches have a total principal equal to 15% of the ABS principal, they lose
5.25/15 or 35% of their principal. The equity and mezzanine tranches of the ABS CDO
are then wiped out, but the senior tranche just manages to survive intact.

The senior tranche of the ABS CDO suffers losses if losses on the underlying portfolios
are more than 10.25%. Consider, for example, the situation where losses are 17% on the
underlying portfolios. Of the 17%, 5% is borne by the equity tranche of the ABS
and 12% by the mezzanine tranche of the ABS. Losses. on the mezzanine tranches are
therefore 12/15 or 80% of their principal. The first 35% is absorbed by the equity and
mezzanine tranches of the ABS CDO. The senior tranche of the ABS CDO therefore
loses 45/65 or 69.2% of its value. These and other results are summarized in Table 8.1.

THE US HOUSING MARKET

Figure 8.4 gives the S&P/Case—Shiller composite-10 index for house prices in the US
between January 1987 and March 2010. This tracks house prices for the top ten
metropolitan areas in the US. It shows that, in about the year 2000, house prices
started to rise much faster than they had in the previous decade. The very low level of
interest rates between 2002 and 2005 was an important contributory factor, but the
bubble in house prices was largely fueled by mortgage-lending practices.

The 2000 to 2006 period was characterized by a huge increase in what is termed
subprime mortgage lending. Subprime mortgages are mortgages that are considered to
be significantly more risky than average. Before 2000, most mortgages classified as
subprime were second mortgages. After 2000, this changed as financial institutions
became more comfortable with the notion of a subprime first mortgage.

The Relaxation of Lending Standards
The relaxation of lending standards and the growth of subprime mortgages made house
purchase possible for many families that had previously been considered to be not
sufliciently creditworthy to qualify for a mortgage. These families increased the demand
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Figure 8.4 The S&P/Case-Shiller Composite-10 index of U.S. real estate
prices, 1987-2010.
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for real estate and prices rose. To mortgage brokers and mortgage lenders, the
combination of more lending and higher house prices was attractive. More lending
meant bigger profits. Higher house prices meant that the lending was well covered by
the underlying collateral. If the borrower defaulted, the resulting foreclosure would not
lead to a loss.  

Mortgage brokers and mortgage lenders naturally wanted to keep increasing their
profits. Their problem was that, as house prices rose, it was more diflicult for first-time
buyers to afford a house. In order to continue to attract new entrants to the housing
market, they had to find ways to relax their lending standards even more-—and this is
exactly what they did. The amount lent as a percentage of the house price increased.
Adjustable-rate mortgages (ARMS) were developed where there was a low “teaser” rate
of interest that would last for two or three years and be followed by a rate that was much
higher.2 A typical teaser rate was about 6% and the interest rate after the end of the teaser
rate period was typically six-month LIBOR plus 6%.3 However, teaser rates as low as 1%
or 2% have been reported. Lenders also became more cavalier in the way they reviewed
mortgage applications. Indeed, the applicant’s income and other information reported
on the application form were frequently not checked.

Subprime Mortgage Securitization
Subprime mortgages were frequently securitized in the way indicated in Figures 8.1
to 8.3. The investors in tranches created from subprime mortgages usually had no
guarantees that interest and principal would be paid. Securitization played a part in the

2 If real estate prices increased, lenders expected the borrowers to prepay and take out a new mortgage at the
end of the teaser rate period. However, prepayment penalties, often zero on prime mortgages, were quite high
on subprime mortgages.

3 A “2/28” ARM, for example, is an ARM where the rate is fixed for two years and then floats for the
remaining 28 years.



CHAPTER 8

crisis. The behavior of mortgage originators was influenced by their knowledge that
mortgages would be securitized.4 When considering new mortgage applications, the
question was not “Is this a credit we want to assume?” Instead it was “Is this a
mortgage we can make money on by selling it to someone else?”

When mortgages were securitized, the only information received about the mortgages
by the buyers of the products that were created from them was the loan-to-value ratio
(i.e., the ratio of the size of the loan to the assessed value of the house) and the
borrower’s FICO score.5 Other infonnation on the mortgage application form was
considered irrelevant and, as already mentioned, was often not even checked by lenders.
The most important thing for the lender was whether the mortgage could be sold to
others—and this depended largely on the loan-to-value ratio and the applicant’s FICO
score.

It is interesting to note in passing that both the loan-to-value ratio and the FICO
score were of doubtful quality. The property assessors who determined the value of a
house at the time of a mortgage application sometimes succumbed to pressure from the
lenders to come up with highvalues. Potential borrowers were sometimes counseled to
take certain actions that would improve their FICO scores.6

Why was the government not regulating the behavior of mortgage lenders? The
answer is that the US government had since the 1990s been trying to expand home
ownership and had been applying pressure to mortgage lenders to increase loans to low-
and moderate;-income t people. Some state legislators, such as those in Ohio and
Georgia, were concerned about what was going on and wanted to curtail predatory
lending.7 However, the courts decided that national standards should prevail.

A number of terms have been used to describe mortgage lending during the period
leading up to the credit crunch. One is “1iar loans” because individuals applying for a
mortgage, knowing that no checks would be carried out, sometimes chose to lie on the
application form. Another term used to describe some borrowers is “NINJA” (no
income, no job, no assets).

The Bubble Bursts .
One of the features of the US housing market is that mortgages are nonrecourse in

many states. This means that, when there is a default, the lender is able to take
possession of the house, but other assets of the borrower are off-limits./Consequently,
the borrower has a free American-style put option. He or she can at any time sell the
house to the lender for the principal outstanding on the mortgage. This feature
encouraged speculative activity and was part of the cause of the house price bubble
shown in Figure 8.4 that occurred between 2000 and 2006.

All bubbles burst eventually and this one was no exception. In 2007, many mortgage
holders found that they could no longer afford their mortgages when the teaser rates
ended. This led to foreclosures and large numbers of houses coming on the market,

4 See B.J. Keys, T. Mukherjee, A. Seru, and V. Vig, “Did Securitization Lead to Lax Screening? Evidence
from Subprime Loans,” Quarterly Journal of Economics, 125, 1 (February 2010): 307-62.

5 FICO is a credit score developed by the Fair Isaac Corporation and is widely used in the US. It ranges from
300 to 850. -
6 . . _ . _ . +

One such action might be to make regular payments on a new credit card for a few months.

7 Predatory lending describes the situation where a lender deceptively convinces borrowers to agree to unfair
and abusive loan terms.
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which in turn led to a decline in house prices. Other mortgage holders, who had
borrowed 100%, or close to 100%, of the cost of a house found that they had negative
equity. Market participants realized belatedly how costly the free put option could be.
If the borrower had negative equity, the optimal decision was to exchange the house for
the outstanding principal on the mortgage. The house was then sold by the lender,
addingto the downward pressure on house prices.

It would be a mistake to assume that all mortgage defaulters were in the same
position. Some were unable to meet mortgage payments and suffered greatly when they
had to give up their homes. But many of the defaulters were speculators who bought
multiple homes as rental properties and chose to exercise their put options. It was their
tenants who suffered. There are also reports that some house owners (who were not
speculators) were quite creative in extracting value from their put options. After
handing the keys to their houses to the lender, they turned around and bought (some-
times at a bargain price) other houses that were in foreclosure. Imagine two people
owning identical houses next to each other. Both have mortgages of $250,000. Both
houses are worth $200,000 and in foreclosure can be expected to sell for $170,000. What
is the owners’ optimal strategy? The answer is that each person should exercise the put
option and buy the neighbor’s house. (There were ways of doing this without getting a
bad credit rating.)

The United States was not alone in having declining real estate prices. Prices declined
in many other countries as well. Real estate prices in the United Kingdom were
particularly badly affected. »

The Losses i
As foreclosures increased, the losses on mortgages also increased. It might be thought
that a 35% reduction in house prices would lead to at most a 35% loss of principal on a
defaulting mortgages. In fact, the losses were far greater than that. Houses in fore-
closure were often in poor condition and sold for a small fraction of their values prior
to the credit crisis. In 2008 and 2009, average losses as high 75% were reported for
mortgages on houses in foreclosure in some areas.

Investors in tranches that were formed from mortgages incurred big losses. The value
of the ABS tranches: created from subprime mortgages was monitored by a series of
indices known as ABX. These indices indicated that the tranches originally rated BBB
had lost about 80% of their value by the end of 2007 and about 97% of their value by
mid-2009. The value of the ABS CDO tranches created from BBB tranches was
monitored by a series of indices known as TABX. These indices indicated that the
tranches originally rated AAA lost about 80% of their value by the end of 2007 and
were essentially worthless by mid-2009.

Financial institutions such as UBS, Merrill Lynch, and Citigroup had big positions in
some of the tranches and incurred huge losses, as did the insurance giant AIG, which
provided protection against losses on ABS CDO tranches that had originally been rated
AAA. Many financial institutions had to be rescued with government funds. There have
been few worse years in financial history than 2008. Bear Stearns was taken over by
J . P. Morgan Chase;'Merrill Lynch was taken over by Bank of America; Goldman Sachs
and Morgan Stanley, which had formerly been investment banks, became bank holding
companies with both commercial and investment banking interests; and Lehman
Brothers was allowed to fail.
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The Credit Crisis
The losses on securities backed by residential mortgages led to a severe credit crisis. In
2006, banks were well capitalized, loans were relatively easy to obtain, and credit
spreads were low. (The credit spread is the excess of the interest rate on a loan over
the risk-free interest rate.) By 2008, the situation was totally different. The capital of
banks had been badly eroded by their losses. They had become much more risk-averse
and were reluctant to lend. Creditworthy individuals and corporations found borrowing
difficult. Credit spreads had increased dramatically. The world experienced its worst
recession in several generations. As discussed in Section 7.8, the LIBOR-OIS spread
briefly reached 364 basis points in October 2008, indicating an extreme reluctance of
banks to lend to each other. Another measure of this is the TED spread. This is the
excess of the three-month LIBOR interest rate over the three-month Treasury interest.
In normal market conditions, it is 30 to 50 basis points. It reached over 450 basis points
in October 2008.

WHAT WENT WRONG?

“Irrational exuberance” is a phrase coined by Alan Greenspan, Chairman of the
Federal Reserve Board, to describe the behavior of investors during the bull market
of the 1990s. It can also beapplied to the period leading up the the credit crisis.
Mortgage lenders, the investors in tranches of ABSs and ABS CDOs that were created
from residential mortgages, and the companies that sold protection on the tranches
assumed that the good times would last for ever. They thought that US house prices
would continue to increase. There might be declines in one or two areas, but the
possibility of the widespread decline indicated by Figure 8.4 was a scenario not
considered by most people. .

Many factors contributed to the crisis that started in 2007. Mortgage originators
used lax lending standards. Products were developed to enable mortgage originators to
profitably transfer credit risk to investors. Rating agencies moved from their traditional
business of rating bonds, where they had a great deal of experience, to rating structured
products, which were relatively new and for which there were relatively little historical
data. The products bought by investors were complex and in many instances investors
and rating agencies had inaccurate or incomplete information about the quality of the
underlying assets. Investors in the structured products that were created thought they
had found a money machine and chose to rely on rating agencies rather than forming
their own opinions about the underlying risks. The return earned by the products rated
AAA was high compared with the returns on bonds rated AAA.

Structured products such as those in Figures 8.1 and 8.3 are highly dependent on the
default correlation between the underlying assets. Default correlation measures the
tendency for different borrowers to default at about the same time. If the default
correlation between the underlying assets in Figure 8.1 is low, the AAA-rated tranches
are extremely unlikely to experience losses. As this default correlation increases, they
become more vulnerable. The tranches of ABS CDOs in Figure 8.3 are even more
heavily dependent on default correlation.

If mortgages exhibit moderate default correlation (as they do in normal times), there
is very little chance of a high overall default rate and the AAA-rated tranches of both



Securitization and the Credit Crisis of Z007 189

ABSs and ABS CDOs that are created from mortgages are fairly safe. However, as
many investors found to their cost, default correlations tend to increase in stressed
market conditions. This makes very high default rates possible.

There was a tendency to assume that a tranche with a particular rating could be
equated to a bond with the that rating. The rating agencies published the criteria they
used for rating tranches. S&P and Fitch rated a tranche so as to ensure that the
probability of the tranche experiencing a loss was the same as the probability of a
similarly rated bond experiencing a loss. Moody’s rated a tranche so that the expected
loss from the tranche was the the same as the expected loss from a similarly rated bond.8
The procedures used by rating agencies were therefore designed to ensure that one
aspect of the loss distributions of tranches and bonds were matched. However, other
aspects of the distributions were liable to be quite different.

The differences between tranches and bonds were accentuated by the fact tranches
were often quite thin. The AAA tranches often accounted for about 80% of the
principal as in Figure 8.1, but it was not unusual for there to be 15 to 20 other
tranches. Each of these tranches would be 1% or 2% wide. Such thin tranches are
likely to either incur no losses or be totally wiped out. The chance of investors
recovering part of their principal (as bondholders usually do) is small. Consider, for
example, a BBB tranche that is responsible for losses in the range 5% to 6%, If losses
on the underlying portfolio are less than 5%, the tranche is safe. If losses are greater
than 6%, the tranche is wiped out. Only in the case where losses are between 5% and
6% is a partial recovery made by investors. »

The difference between a thin BBB-rated tranche and a BBB-rated bond was over-
looked by many investors. The difference makes the tranches of ABS CDOs created
from the BBB-rated tranches of ABSs much riskier than CDOs created in a similar way
from BBB bonds. Losses on a portfolio of BBB bonds can reasonably be assumed to be
unlikely to exceed 25 % in stressed market conditions. Table 8.1 shows that 100% losses
on a portfolio of BBB tranches can occur relatively easily-—and this is even more true
when the tranches are only 1% or 2% wide.

Regulatory Arbitrage
Many of the mortgages were originated by banks and it was banks that were the main
investors in the tranches that were created from the mortgages. Why would banks
choose to securitize mortgages and then buy the securitized products that were created?
The answer concerns what is termed regulatory arbitrage. The regulatory capital banks
were required to keep for the tranches created from a portfolio of mortgages was much
less than the regulatory capital that would be required for the mortgages themselves.

Incentives
One of the lessons from the crisis is the importance of incentives. Economists use the
term “agency costs” to describe the situation where incentives are such that the interests
of two parties in a business relationship are not perfectly aligned. The process by which

8 For a discussion of the criteria used by rating agencies and the reasonableness of the ratings given the
criteria, see J . Hull and A. White, “Ratings Arbitrage and Structured Products,” Working Paper, University
of Toronto, and “The Risk of the Tranches "Created from Mortgages,” Financial Analysts Journal, 66, 5
(2010): 54-67.
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mortgages were originated, securitized, and sold to investors was unfortunately riddled
with agency costs.

The incentive of the originators of mortgages was to make loans that would be
acceptable to the creators of the ABS and ABS CDO tranches. The incentive of the
individuals who valued houses on which the mortgages were written was to please the
lender by providing as high a valuation as possible so that the loan-to-value ratio was as
low as possible. (Pleasing the lender was likely to lead to more business from that
lender.) The main concern of the creators of tranches was how the tranches would be
rated. They wanted the volume of AAA-rated tranches that they created to be as high as
possible and found ways of using the published criteria of rating agencies to achieve
this. The rating agencies were paid by the issuers of the securities they rated and about
half their income came from structured products.

Another source of agency costs concerns the incentives of the employees of financial
institutions. Employee compensation falls into three categories: regular salary, the end-
of-year bonus, and stock or stock options. Many employees at all levels of seniority in
financial institutions, particularly traders, receive much of their compensation in the
form of end-of-year bonuses. This form of compensation is focused on short-term
performance. If an employee generates huge profits one year and is responsible for
severe losses the next, the employee will receive a big bonus the first year and will not
have to return it the following year. (The employee might lose his or her job as a result of
the second year losses, but even that is not a disaster. Financial institutions seem to be
surprisingly willing to recruit individuals with losses on their resumes.)

Imagine you are an employee of a financial institution in 2006 responsible for
investing in ABS CDOs created from mortgages. Almost certainly you would have
recognized that there was a bubble in the US housing market and would expect that
bubble to burst sooner or later. However, it is possible that you would decide to
continue with your ABS CDO investments. If the bubble did not burst until after the
end of 2006, you would still get a nice bonus at the end of 2006.

THE AFTERMATH

Banks throughout the world are regulated by the Basel Committee on Banking Super-
vision and are subject to the legislation enacted by the governments of the countries in
which they operate. One of the results of the credit crisis has been a “tsunami” of new
regulation and new legislation.

The Basel Committee on Banking Supervision provides international standards
which are applied by bank supervisors in countries throughout the world. The regula-
tions produced by the committee prior to the credit crisis have become known as Basel I
and Basel II, and are summarized in Business Snapshot 8.1. The regulations are mostly
concerned with the amount of capital banks should be required to keep for the risks
they are taking.9 At the end of 2009, the committee proposed what has been termed
Basel III. This increases the amount of capital and the quality of the capital that banks
are required to keep. It also requires banks to satisfy certain liquidity requirements. One
of the lessons from the crisis is that the failures of financial institutions are frequently

9 For more details on the work of the Basel Committee and bank regulatory requirements, see J . Hull, Risk.
Management and Financial Institutions, 2nd edn., 2010.
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Business Snapshot 8.1 Basel I, Basel II. and Basel III

As the activities of banks became more global in the 1980s, it became necessary for
regulators in different countries to work together to determine an international
regulatory framework. As a result, theBasel Committee on Banking Supervision
was formed. In 1988, it published a set of rules for the capitaljbankswererequired to
keep for credit risk. “These capital requirements have become knownas Basel I". They
were modified toaccommodate nettingj(iwhich will be ‘discussed in Chapter 23) in
1995. In 1996, a new capital requirement for market risk was published. This capital

. requirement was implemented in 1998. In 1999, significant changes were proposecl for
the calculation of the capital requirements for credit risk and a capital requirement
for operational risk was introduced. These rules are referred to as Basel II and were
finally implemented in 2007-just before the credit crisis. Following the crisis, a new

is set of rules known as Basel III were proposed. .

caused by liquidity. This was discussed in Business Snapshot 4.3. Financial institutions
often choose short-term sources of funding. When the market becomes concerned
(rightly or wrongly) about the health of a financial institution, this source of funding
is liable to dry up.

Prior to the crisis, many of the Basel Committee’s regulations involved the calcula-
tion of value at risk (VaR). This is a measure of the size of the loss that could be
incurred by a bank and will be discussed in Chapter 21. VaR will continue to figure
prominently in the Basel Committee’s regulations, but the committee has become more
conscious of the need to estimate VaR using data on the movements in market variables
during stressed market conditions rather than normal market conditions. It has also put
more emphasis on stress testing. This is concerned with examining how the bank would
perform in adverse future scenarios.  

As has been mentioned in earlier chapters, many governments are introducing rules
requiring clearing houses to be used for some over-the-counter derivatives. In the US, the
Commodity Futures and Trading Commission has responsibility for determining which
categories of OTC derivatives must be cleared and for regulating the clearing houses.

Some governmentshave introduced special taxes on banks and on the bonuses of bank
employees to recoup the costs of the crisis. For example, in December 2009, the UK
government announced a “super-tax” on bonuses of more than £25,000. In its budget of
June 2010, it introduced a tax on the liabilities of banks and indicated it was considering
a proposal of the International Monetary Fund for a “financial activities tax.” ‘

Legislation enacted in the US in 2010 limits the ability of federally insured banks to
trade derivatives or engage in proprietary trading. This may result in banks spinning off
some of these activities into separate companies.

SUMMARY

Securitization is a process used by banks to create securities from loans and other
income-producing assets. The securities are sold to investors. This removes the loans
from the banks’ balance sheets and enables the banks to expand their lending faster than
they would otherwise be able to. The first loans to be securitized were mortgages in the
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1960s and 1970s in the US. Investors who bought the mortgage-backed securities were
not exposed to the risk of borrowers defaulting because the loans were backed by the
Government National Mortgage Association. Later automobile loans, corporate loans,
credit card receivables, and subprime mortgages were securitized. In many cases,
investors in the securities created from these instruments did not have a guarantee
against defaults.

Securitization played a part in the credit crisis that started in 2007. Tranches were
created from subprime mortgages and new tranches were then created from these
tranches. The origins of the crisis can be found in the US housing market. The US
government was keen to encourage home ownership. Interest rates were low. Mortgage
brokers and mortgage lenders found it attractive to do more business by relaxing their
lending standards. Securitization meant that the investors bearing the credit risk were
not usually the same as the original lenders. Rating agencies gave AAA ratings to the
senior tranches that were created. There was no shortage of buyers for these AAA-rated
tranches because their yields were higher than the yields on other AAA-rated securities.
Banks thought the “good times” would continue and, because compensation plans
focused their attention on short-term profits, chose to ignore the housing bubble and its
potential impact on some very complicated products they were trading.

House prices rose as both first-time buyers and speculators entered the market. Some
mortgages had included a low “teaser rate” for two or three years. After the teaser rate
ended, there was a significant increase in the interest rate for many borrowers. Unable
to meet the higher interest rate they had no choice but to default. This led to
foreclosures and an increase in the supply of houses be sold. The price increases
between 2000 and 2006 began to be reversed. Speculators and others who found that
the amount owing on their mortgages was less than the value of their houses (i.e., they
had negative equity) defaulted. This accentuated the price decline. _

Banks are paying a price for the crisis. New legislation and regulation will reduce
their profitability. For example, capital requirements are being increased, liquidity
requirements are being introduced, OTC derivatives are being more carefully regulated,
and new taxes have been introduced.
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Practice Questions (Answers in Solutions Manual)

8.1

8.2
8.3
8.4
8.5
s.6
8.7

8.8

8.9
8.10.

8.11
8.12

8.13

8.14

What was the role of GNMA (Ginnie Mae) in the mortgage-backed securities market of
the 1970s?
Explain what is meant by (a) an ABS and (b) an ABS CDO.
What is a mezzanine tranche?
What is the waterfall in a securitization?
What are the numbers in Table 8.1 for a loss rate of (a) 12% and (b) 15%?
What is as subprime mortgage?
Why do you think the increase in house prices during the 2000 to 2007 period is referred
to as a bubble?
Why did mortgage lenders frequently not check on information provided by potential
borrowers on mortgage application forms during the 2000 to 2007 period?
How were the risks in ABS CDOs misjudged by the market?
What is meant by the term “agency costs”? How did agency costs play a role in the credit
crisis?
How is an ABS CDO created? What was the motivation to create ABS CDOs?
Explain the impact of an increase in default correlation on the risks of the senior tranche
of an ABS. What is its impact on the risks of the equity tranche?
Explain why the AAA-rated tranche of an ABS CDO is more risky than the AAA-rated
tranche of an ABS. . '
Explain why the end-of-year bonus is sometimes referred to as “short-term compensation.”

Further Questions  I

8.15

8.16

Suppose that the principal assigned to the senior, mezzanine, and equity tranches is 70%,
20%, and 10% for both the ABS and the ABS CDO in Figure 8.3. What difference does
this make to Table 8.1?
Investigate what happens as the width of the mezzanine tranche of the ABS in Figure 8.3
is decreased with the reduction of mezzanine tranche principal being divided equally
between the equity and senior tranches. In particular, what is the effect on Table 8.1?
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Options Markets

We introduced options in Chapter 1. This chapter explains how options markets are
organized, what terminology is used, how the contracts are traded, how margin
requirements are set, and so on. Later chapters will examine such topics as trading
strategies involving options, the determination of option prices, and the ways in which
portfolios of options can be hedged. This chapter is concerned primarily with stock
options. It presents some introductoryimaterial on currency options, index options, and
futures options. More details concerning these instruments can be found in Chapters 16
and 17. I

Options are fundamentally diflerent from forward and futures contracts. An option
gives the holder of the option the right todo something, but the holder doesnot have to
exercise this right. By contrast, in a forward or futures contract, the two parties have
committed themselves to some action. It costs a trader nothing (except for the margin
requirements) to enter into aforward or futures contract, whereas the purchase of an
option requires an up-front payment. Q

When charts showing the gain or loss from options trading are produced, the usual
practice is to ignore discounting, so that the profit is the final payoff minus the initial
cost. This chapter follows this practice. o

TYPES OF OPTIONS
./

As mentioned in Chapter 1, there are two basic types of options. A call option gives the
holder of the option the right to buy an asset by a certain date for a certain price. A put
option gives the holder the right to sell an asset by a certain date for a certain price. The
date specified in the contract is known as the expiration date or the maturity date.
The price specified in the contract is known as the exercise price orthe strike price.

Options can be either American or European, a distinction thathas nothing to do
with geographical location. American options can be exercised at any time up to the
expiration date, whereas European options can be exercised only onthe expiration date
itself. Most of the options that are traded on exchanges are American. However,
European options are generally easier to analyze than American options, and some
of the properties of an American option are frequently deduced from those of its
European counterpart.
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Figure 9.1 Profit from buying a European call option on one share of a stock. Option
price = $5; strike price = $100.

A Profit ($)

30 -

/
10*

Terminal
stock price ($)

0 I I I I I I . L >
70 80 90 100 110 120 130

_5 - - A A -9 - .

:1: = :2" rr ' , ::::::: :' -

Call Options
Consider the situation of an investor who buys a European call option with a strike
price of $100 to purchase 100 shares of a certain stock. Suppose that the current stock
price is $98, the expiration date of the option is in 4 months, and the price of an option
to purchase one share is $5. The initial investment is $500‘. Because the option is
European, the investor can exercise only on the expiration date. If the stock price on this
date is less than $100, the investor will clearly choose not to exercise. (There is no point
in buying for $100 a share that has a market value of less than $100.) In these
circumstances, the investor loses the whole of the initial investment of $500. If the
stock price is above $100 on the expiration date, the option will be exercised. Suppose,
for example, that the stock price is $115. By exercising the option, the investor is ablesto
buy 100 shares for $100 per share. If the shares are sold immediately, the investor makes
a gain of $15 per share, or $1,500, ignoring transactions costs. When the initial cost of
the option is taken into account, the net profit to the investor is $1,000.

Figure 9.1 shows how the investor’s net profit or loss on an option to purchase one
share varies with the final stock price in the example. It is important to realize that an
investor sometimes exercises an option and makes a loss overall. Suppose that, in the
example, the stock price is $102 at the expiration of the option. The investor would
exercise the option contract for a gain of 100 x ($102 - $100) -= $200 and realize a loss
overall of $300 when the initial cost of the option is taken into account. It is tempting to
argue that the investor should not exercise the option in these circumstances. However,
not exercising would lead to an overall loss of $500, which is worse than the $300 loss
when the investor exercises. In general, call options should always be exercised at the
expiration date if the stock price is above the strike price.

Put Options _  
Whereas the purchaser of a call option is hoping that the stock price will increase, the
purchaser of a put option is hopingthat it will decrease. Consider an investor who
buys a European put option with a strike price of $70 to sell 100 shares of a certain
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Figure 9.2 Profit from buying a European put option on one share of a stock. Option
price = $7; strike price = $70. . . .
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stock. Suppose that the current stock price is $65, the expiration date of the option is
in 3 months, and the price of an option to sell one share is $7. The initial investment is
$700. Because the option is European, it will be exercised only if the stock price is
below $70 on the expiration date. Suppose that the stock price is $55 on this date. The
investor can buy 100 shares-for $55 per share and, under the terms of the put option,
sell the same shares for $70 to realize a. gain of $15 per share, or $1,500. (Again,
transactions costs are ignored.) When the $700 initial cost of the option is taken into
account, the investor’s net profit is $800. There is no guarantee that the investor will
make a gain. If the final stock price is above $70, the put option expires worthless, and
the investor loses $700. Figure 9.2 shows the way in which the investor’s profit or loss
on an option to sell one share varies with the terminal stock price in this example.

Early Exercise
As already mentioned, exchange-traded stock options are generally American rather
than European. This means that the investor in the foregoing examples would not have to
wait until the expiration date before exercising the option. We will see in later chapters
that there are some circumstances when it is optimal to exercise American options before
the expiration date.

OPTION POSITIONS

There are two sides to every option contract. On one side is the investor who has taken
the long position (i.e., has bought the option). On the other side is the investor who has
taken a short position (i.e., has sold or written the option). The writer of an option
receives cash up front, but has potential liabilities later. The writer’s profit or loss is the
reverse of that for the purchaser of the option. Figures 9.3 and 9.4 show the variation of
the profit or loss with the final stock price for writers of the options considered in
Figures 9.1 and 9.2.
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Figure 9.3 Profit from writing a European call option on one share of a stock. Option
price = $5; strike price = $100.
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There are four types of option positions:

1. A long position in a call option
2. A long position in a put option
3. A short position in a call option
4. A short position in a put option. 0

It is often useful to characterize a European option in terms of its payoff to the
purchaser of the option. The initial cost of the option is then not included in the
calculation. If K is the strike price and ST is the final price of the underlying asset, the
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Figure 9.4 Profit from writing a European put option on one share of a stock. Option
price = $7; strike price : $70.
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CHAPTER 9

Figure 9.5 Payoffs from positions in European options: (a) long call; (b) short call;
(c) long put; (d) short put. Strike price : K; price of asset at maturity = ST.
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payoff from a long position in a European call option is

1T1aX(ST '— K,

This reflects the fact that the option will be exercised if ST > K and will not be exercised
if ST < K . The payoff to the holder of a short position in the European call option is

- inax(ST - K, 0) = min(K - ST, 0)

The payoff to the holder of a long position in a European put option is"

and the payoff from a short position in a European put option is

- max(K - ST, 0) = min(ST - K, 0)

Figure 9.5 illustrates these payoffs.

UNDERLYING ASSETS

max(K - ST, 0)

This section provides a first look at options on stocks, currencies, stock indices, and
futures.
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Stock Options
Most trading in stock options is on exchanges. In the United States, the exchanges
include the Chicago Board Options Exchange (www.cboe.com), NASDAQ OMX
(www.nasdaqtrader.corn), which acquired the Philadelphia Stock Exchange in 2008,
NYSE Euronext (www.euronext.com), which acquired the American Stock Exchange
in 2008, the International Securities Exchange (www.iseoptions.com), and the Boston
Options Exchange (WWW.b0stoI1options.coIn). Options trade on more than 2,500
diflerent stocks. One contract gives the holder the right to buy or sell 100 shares at
the specified strike price. This contract size is convenient because the shares themselves
are normally traded in lots of 100.

Foreign Currency Options
Most currency options trading is now in the over-the-counter market, but there is some
exchange trading. Exchanges trading foreign currency options in the United States
include NASDAQ OMX. This exchange offers European-style contracts on a variety of
different currencies. One contract is to buy or sell 10,000 units of a foreign currency
(1,000,000 units in the case of the Japanese yen) for US dollars. Foreign currency
options contracts are discussed further in Chapter 16.

Index Options
Many different index options currently trade throughout the world in both the over-the-
counter market and the exchange-traded market. The most popular exchange-traded
contracts in the United States are those on the S&P 500 Index (SPX), the S&P 100 Index
(OEX), the Nasdaq-100 Index (NDX), and the Dow Jones Industrial Index (DJX). All
of these trade on the Chicago Board Options Exchange. Most of the contracts are
European. An exception is the OEX contract on the S&P 100, which is American. One
contract is usually to buy or sell 100 times the index at the specified strike price.
Settlement is always in cash, rather than by delivering the portfolio underlying the
index. Consider, for example, one call contract on an index with a strike price of 980. If
it is exercised when the value of the index is 992, the writer of the contract pays the
holder (992 - 980) >< 100 = $1,200. Index options are discussed further in Chapter 16.

Futures Options
When an exchange trades a particular futures contract, it often also trades options on
that contract. A futures option normally matures just before the delivery period in the
futures contract. When a call option is exercised, the holder’s gain equals the excess of
the futures price over the strike price. When a put option is exercised, the holder’s gain
equals the excess of the strike price over the futures price. Futures options contracts are
discussed further in Chapter 17.

SPECIFICATION OF STOCK OPTIONS

In the rest of this chapter, we will focus on stock options. As already mentioned, an
exchange-traded stock option in the United States is an American-style option contract
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to buy or sell 100 shares of the stock. Details of the contract (the expiration date, the
strike price, what happens when dividends are declared, how large a position investors
can hold, and so on) are specified by the exchange. *

Expiration Dates A A
One of the items used to describe a stock option is the month in which the expiration
date occurs. Thus, a January call trading on IBM is a call option on IBM with an
expiration date in January. The precise expiration date is the Saturday immediately
following the third Friday of the expiration month. The last day on which options trade
is the third Friday of the expiration month. An investor with a long position in an
option normally has until 4:30 p.m. Central Time on that Friday to instruct a broker to
exercise the option. The broker then has until 10:59 p.m. the next day to complete the
paperwork notifying the exchange that exercise is to take place. *

Stock options in the United States are on a January, February, or March cycle. The
January cycle consists of the months of January, April, July, and October. The
February cycle consists of the months of February, May, August, and November.
The March cycle consists of the months of March, June, September, and December.
If the expiration date for the current month has not yet been reached, options trade with
expiration dates in the current month, the following month, and the next two months in
the cycle. If the expiration date of the current month has passed, options trade with
expiration dates in the next month, the next-but-one month, and the next two months
of the expiration cycle. For example, IBM is on a January cycle. At the beginning of
January, options are traded with expiration dates in January, February, April, and July;
at the end of January, they are traded with expiration dates in February, March, April,
and July; at the beginning of May, they are traded with expiration dates in May, June,
July, and October; and so on. When one option reaches expiration, trading in another is
started. Longer-term options, known as LEAPS (long-term equity anticipation secu-
rities), also trade on about 800 stocks in the United States. These have expiration dates
up to 39 months into the future. The expiration dates for LEAPS on stocks are always
in January. I

Strike Prices I
The exchange normally chooses the strike prices at which options can be written so that
they are spaced $2.50, $5, or $10 apart. Typicallythe spacing is $2.50 when the stock
price is between $5 and $25, $5 when the stock price is between $25 and $200, and
$10 for stock prices above $200. As will be explained shortly, stock splits and stock
dividends can lead to nonstandard strike prices. -

When a new expiration date is introduced, the two. or three strike prices closest to the
current stock price are usually selected by the exchange. If the stock price moves outside
the range defined by the highest and lowest strike price, trading is usually introduced in
an option with a new strike price. To illustrate these rules, suppose that the stock price
is $84 when trading begins in the October options. Call and put options would
probably first. be offered with strike prices of $80, $85, and $90. If the stock price rose
above $90, it is likely that a strike price of $95 would be offered; if it fell below $80, it is
likely that a strike price of $75 would be offered; and so on.
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Terminology
For any given asset at any given time, many different option contracts may be trading.
Consider a stock that has four expiration dates and five strike prices. If call and put
options trade with every expiration date and every strike price, there are a total of
4-0 different contracts. All options of the same type (calls or puts) are referred to as an
option class. For example, IBM calls are one class, whereas IBM puts are another class.
An option series consists of all the options of a given class with the same expiration date
and strike price. In other words, an option series refers to a particular contract that is
traded. For example, IBM 70 October calls would constitute an option series.

Options are referred to as in the money, at the money, or out of the money. If S is the
stock price and K is the strike price, a call option is in the money when S > K, at the
money when S : K, and out of the money when S < K. A put option is in the money
when S < K, at the money when S = K, and out of the money when S > K . Clearly, an
option will be exercised only when it is in the money. In the absence of transactions
costs, an in-the-money option will always be exercised on the expiration date if it has
not been exercised previously.

The intrinsic value of an option is defined as the maximum of zero and the value the
option would have if it were exercised immediately. For a call option, the intrinsic value
is therefore max(S - K, 0). For a put option, it is max(K - S, 0). An in-the-money
American option must be worth at least as much as its intrinsic value because the
holder can realize the intrinsic value by exercising immediately. Often it is optimal for
the holder of an in-the-money American option to wait rather than exercise immedi-
ately. The option is then said to have time value. The total value of an option can be
thought of as the sum of its intrinsic value and its time value.

FLEX Options
The Chicago Board Options Exchange offers FLEX (short for flexible) options on
equities and equity indices. These are options where the traders on the floor of the
exchange agree to nonstandard terms. These nonstandard terms can involve a strike
price or an expiration date that is different from what is usually offered by the exchange.
It can also involve theoption being European rather than American. FLEX options are
an attempt by option exchanges to regain business from the over-the-counter markets.
The exchange specifies a minimum size (e.g., 100 contracts) for FLEX option trades.

Dividends and Stock Splits
The early over-the-counter options were dividend protected. If a company declared a
cash dividend, the strike price for options on the company’s stock was reduced on the
ex-dividend day by the amount of the dividend. Exchange-traded options are not
usually adjusted for cash dividends. In other words, when a cash dividend occurs,
there are no adjustments to the terms of the option contract. An exception is sometimes
made for large cash dividends (see Business Snapshot 9.1).

Exchange-traded options are adjusted for stock splits. A stock split occurs when the
existing shares are “split” into more shares. For example, in a 3-for-1 stock split, three
new shares are issued to replace each existing share. Because a stock split does not
change the assets or the earning ability of a company, we should not expect it to have
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Business Snapshot 9.1 Gucci Group’s Large Dividend

Whenthereis a large cash dividend (typically one that is more than 10% of the stock
price), a committee of the Options Clearing Corporation (OCC) at the Chicago Board
Options Exchange can decide to adjust the terms of options traded on the exchange.

r On May 28, 2003, Gucci Group NV (GUC) declared a cash dividend of 13.50 euros
(approximately $15.88) per common share and this was approved at the annual
shareholders’ meeting on July 16, 2003. The dividend was about 16% of the share

J

price at the time it was declared. In this case, the OCC committee decided to adjust the
terms of options. The result was that the holder of a call contract paid 100 times the
strike price on exercise and received $1 ,588 of cash in addition to 100 shares; the holder
of a put contract received 100 times the strike price on exercise and delivered $1,588 of
cash in addition to 100 shares. These adjustments had the effect of reducing the strike
priceby $15.88. "

Adjustments for large dividends are not always made. For example, Deutsche
Terminborse chose not to adjust the terms of options traded on that exchange when
Daimler-Benz surprised the market on March 10, 1998, with a dividend equal to about
12% of its stock price.

any effect on the wealth of the company’s shareholders. All else being equal, the 3-for-1
stock split should cause the stock price to go down to one-third of its previous value. In
general, an n-for-mstock split should cause the stock price to go down to m /n of its
previous value. The terms of option contracts are adjusted to reflect expected changes in
a stock price arising from a stock split. After an n-for-m stock split, the strike price is
reduced to m/n of its previous value, and the number of shares covered by one contract
is increased to n/m of its previous value. If the stock price declines in the way expected,
the positions of both the writer and the purchaser of a contract remain unchanged.

Example 9. 1  I
Consider a call option to buy 100 shares of a company for $30 per share.”Suppose
the company makes a 2-for-1 stock split. The terms of the option contract are then
changed so that it gives the holder the right to purchase 200 shares for $15 per share.

Stock options are adjusted for stock dividends. A stock dividend involves a company
issuing more shares to its existing shareholders. For example, a 20% stock dividend
means that investors receive one new share for each five already owned. A stock
dividend, like a stock split, has no effect on either the assets or the earning power of
a company. The stock price can be expected to go down as a result of a stock dividend.
The 20% stock dividend referred to is essentially the same as a 6-for-5 stock split. All
else being equal, it should cause the stock price to decline to 5/6 of its previous value.
The terms of an option are adjusted to reflect the expected price decline arising from a
stock dividend in the same way as they are for that arising from a stock split.

Example 9.2 ~
Consider a put option to sell 100 shares of a company for $15 per share. Suppose
the company declares a 25% stock dividend. This is equivalent to a 5-for-4 stock
split. The terms of the option contract are changed so that it gives the holder the
right to sell 125 shares for $12.
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Adjustments are also made for rights issues. The basic procedure is to calculate the
theoretical price of the rights and then to reduce the strike price by this amount.

Position Limits and Exercise Limits
The Chicago Board Options Exchange often specifies a position limit for option con-
tracts. This defines the maximum number of option contracts that an investor can hold on
one side of the market. For this purpose, long calls and short puts are considered to be on
the same side of the market. Also considered to be on the same side are short calls and
long puts. The exercise limit usually equals the position limit. It defines the maximum
number of contracts that can be exercised by any individual (or group of individuals
acting together) in any period of five consecutive business days. Options on the largest
and most frequently traded stocks have positions limits of 250,000 contracts. Smaller
capitalization stocks have position limits of 200,000, 75,000, 50,000, or 25,000 contracts.

Position limits and exercise limits are designed to prevent the market from being
unduly influenced by the activities of an individual investor or group of investors.
However, whether the limits are really necessary is a controversial issue.

TRADING

Traditionally, exchanges have had to provide a large open area for individuals to meet
and trade options. This has changed. Most derivatives exchanges are fully electronic,
so traders do not have to physically meet. The International Securities Exchange
(WWW.iseoptions.com) launched the first all-electronic options market for equities in
the United States in May 2000. Over 95% of the orders at the Chicago Board Options
Exchange are handled electronically. The remainder are mostly large or complex
institutional orders that require the skills of traders.

Market Makers
Most options exchanges use market makers to facilitate trading. A market maker for a
certain option is an individual who, when asked to do so, will quote both a’bid and
an offer priceron the option. The bid is the price at which the market maker is
prepared to buy, and the offer or asked is the price at which the market maker is
prepared to sell. At the time the bid and offer prices are quoted, the market maker
does not know whether the trader who asked for the quotes wants to buy or sell the
option. The offer is always higher than the bid, and the amount by which the offer
exceeds the bid is referred to as the bid-ofifer spread. The exchange sets upper limits
for the bid-offer spread. For example, it might specify that the spread be no more
than $0.25 for options priced at less than $0.50, $0.50 for options priced between
$0.50 and $10, $0.75 for options priced between $10 and $20, and $1 for options
priced over $20.

The existence of the market maker ensures that buy and sell orders can always be
executed at some price without any delays. Market makers therefore add liquidity to the
market. The market makers themselves make their profits from the bid-offer spread.
They use methods such as those that will be discussed in Chapter 18 to hedge their risks.
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Offsetting Orders
An investor who has purchased options can close out the position by issuing an
offsetting order to sell the same number of options. Similarly, an investor who has
written options can close out the position by issuing an offsetting order to buy the same
number of options. (In this respect options markets are similar to futures markets.) If,
when an option contract is traded, neither investor is closing an existing position, the
open interest increases by one contract. If one investor is closing an existing position
and the other is not, the open interest stays the same. If both investors are closing
existing positions, the open interest goes down by one contract.

COMMISSIONS

The types of orders that can be placed with a broker for options trading are similar to
those for futures trading (see Section 2.8). A market order is executed immediately, a limit
order specifies the least favorable price at which the order can be executed, and so on.

For a retail investor, commissions vary significantly from broker to broker. Discount
brokers generally charge lower commissions than full-service brokers. The actual
amount charged is often calculated as a fixed cost plus a proportion of the dollar
amount of the trade. Table 9.1 shows the sort of schedule that might be offered by a
discount broker. Using this schedule, the purchase of eight contracts when the option
price is $3 would cost $20 + (0.02 >< $2,400) = $68 in commissions.

If an option position is closed out by entering into an offsetting trade, the commis-
sion must be paid again. If the option is exercised, the commission is the same as it
would be if the investor placed an order to buy or sell the underlying stock.

Consider an investor who buys one call contract with a strike price of $50 when the
stock price is $49. We suppose the option price is $4.50, so that the cost of the contract
is $450. Under the schedule in Table 9.1, the purchase or sale of one contract always
costs $30 (both the maximum and minimum commission is $30 for the first contract).
Suppose that the stock price rises and the option is exercised when the stock reaches
$60. Assuming that the investor pays 0.75% commission to exercise the option and a
further 0.75% commission to sell the stock, there is an additional cost of

f .

2 >< 0.0075 >< $60 >< 100 = $90
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Table 9.1 A typical commission schedule for a discount broker.

Dollar amount of trade Commission*

< $2,500 $20 + 2% of dollar amount
$2,500 to $10,000 $45 + 1% of dollar amount
> $10,000 $120 + 0.25% of dollar amount

* Maximum commission is $30 per contract for the first five contracts plus
$20 per contract for each additional contract. Minimum commission is $30
per contract for the first contract plus $2 per contract for each additional
contract. I
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The total commission paid is therefore $120, and the net profit to the investor is

$1,000 — $450 - $120 = $430

Note that selling the option for $10 instead of exercising it would save the investor $60
in commissions. (The commission payable when an option is sold is only $30 in our
example.) As this example indicates, the commission system can push retail investors in
the direction of selling options rather than exercising them.

A hidden cost in option trading (and in stock trading) is the market maker’s bid-offer
spread. Suppose that, in the example just considered, the bid price was $4.00 and the
offer price was $4.50 at the time the option was purchased. We can reasonably assume
that a “fair” price for the option is halfway between the bid and the ofler price, or $4.25.
Thecost to the buyer and to the seller of the market maker system is the difference
between the fair price and the price paid. This is $0.25 per option, or $25 per contract.

MARGINS

When shares are purchased in the United States, an investor can borrow up to 50% of
the price from the broker. This is known as buying on margin. If the share price declines
so that the loan is substantially more than 50% of the stock’s current value, there is a
“margin call”, where the broker requests that cash be deposited by the investor. If the
margin call is not met, the broker sells the stock. ,

When call and put options with maturities less than 9 months are purchased, the
option price must be paid in full. Investors are not allowed ‘to buy these options on
margin because options already contain substantial leverage and buying on margin
would raise this leverage to an unacceptable level. For options with maturities greater
than 9 months investors can buy on margin, borrowing up to 25 % of the option value.

A trader who writes options is required to maintain funds in a margin account. Both
the trader’s broker and the exchange want to be satisfied that the trader will not default if
the option is exercised. The amount of margin required depends on the trader’s position.

Writing Naked Options
A naked option is an option that is not combined with an offsetting position in the
underlying stock. The initial and maintenance margin required by the CBOE for a
written naked call option is the greater of the following two calculations:

1. A total of 100% of the proceeds of the sale plus 20% of the underlying share
price less the amount, if any, by which the option is out of the money

2. A total of 100% of the option proceeds plus 10% of the underlying share price.

For a written naked put option, it is the greater of

1. A total of 100% of the proceeds of the. sale plus 20% of the underlying share
price less the amount, if any, by which the option is out of the money

2. A total of 100% of the option proceeds plus 10% of the exercise price.

The 20% in the preceding calculations is replaced by 15% for options on a broadly
based stock index because a stock index is usually less volatile than the price of an
individual stock.
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Example 9.3
An investor writes four naked call option contracts on a stock. The option price is
$5, the strike price is $40, and the stock price is $38. Because the option is $2 out
of the money, the first calculation gives

400 >< (5 + 0.2 x 38 - 2) = $4,240

The second calculation gives

400 x (5 + 0.1 x 38) : $3,520

The initial margin requirement is therefore $4,240. Note that, if the option had
been a put, it would be $2 in the money and the margin requirement would be

400 x (5 + 0.2 >< 38) = $5,040

In both cases, the proceeds of the sale can be used to form part of the margin
account.

A calculation similar to the initial margin calculation (but with the current market price
replacing the proceeds of sale) is repeated every day. Funds can be withdrawn from the
margin account when the calculation indicates that the margin required is less than the
current balance in the margin account. When the calculation indicates that a greater
margin is required, a margin call will be made.

Other Rules  
In Chapter 11, we will examine option trading strategies such as covered calls, protective
puts, spreads, combinations, straddles, and strangles. The CBOE has special rules for
determining the margin requirements when these trading strategies are used. These are
described in the CBOE Margin Manual, which is available on the CBOE website
(wWw.cboe.com).

As an example of the rules, consider an investor who writes a covered call. This is a
written call option when the shares that might have to be delivered are already owned.
Covered calls are far less risky than naked calls, because the worst that can happen is
that the investor is required to sell shares already owned at below their/,,market value.
No margin is required on the written option. However, the investor can borrow an
amount equal to 0.5min(S, K), rather than the usual 0.5S, on the stock position.

THE OPTIONS CLEARING CORPORATION

The Options Clearing Corporation (OCC) performs much the same function for options
markets as the clearing house does for futures markets (see Chapter 2). It guarantees
that options writers will fulfill their obligations under the terms of options contracts and
keeps a record of all long and short positions. The OCC has a number of members, and
all option trades must be cleared through a member. If a broker is not itself a member of
an exchange’s OCC, it must arrange to clear its trades with a member. Members are
required to have a certain minimum amount of capital and to contribute to a special
fund that can be used if any member defaults on an option obligation.
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The funds used to purchase an option must be deposited with the OCC by the
morning of the business day following the trade. The writer of the option maintains a
margin account with a broker, as described earlier.1 The broker maintains a margin
account with the OCC member that clears its trades. The OCC member in turn
maintains a margin account with the OCC.

Exercising an Option
When an investor notifies a broker to exercise an option, the broker in turn notifies the
OCC member that clears its trades. This member then places an exercise order with
the OCC. The OCC randomly selects a member with an outstanding short position in
the same option. The member, using a procedure established in advance, selects a
particular investor who has written the option. If the option is a call, this investor is
required to sell stock at the strike price. If it is a put, the investor is required to buy
stock at the strike price. The investor is said to be assigned. When an option is exercised,
the open interest goes down by one.

At the expiration of the option, all in-the-money options should be exercised unless
the transactions costs are so high as to wipe out the payoff from the option. Some
brokers will automatically exercise options for a client at expiration when it is in their
client’s interest to do so. Many exchanges also have rules for exercising options that are
in the money at expiration.

REGULATION

Options markets are regulated in a number of different ways. Both the exchange and
Options Clearing Corporations have rules governing the behavior of traders. In addi-
tion, there are both federal and state regulatory authorities. In general, options markets
have demonstrated a willingness to regulate themselves. There have been no major
scandals or defaults by OCC members. Investors can have a high level of confidence in
the way the market is run.

The Securities and Exchange Commission is responsible for regulating options
markets in stocks, stock indices, currencies, and bonds at the federal level. The Com-
modity Futures Trading Commission is responsible for regulating markets for options on
futures. The major options markets are in the states of Illinois and New York. These
states actively enforce their own laws on unacceptable trading practices.

TAXATION

Determining the tax implications of option trading strategies can be tricky, and an
investor who is in doubt about this should consult a tax specialist. In the United States,
the general rule is that (unless the taxpayer is a professional trader) gains and losses
from the trading of stock options are taxed as capital gains or losses. The way that

1 The margin requirements described in the previous section are the minimum requirements specified by the
OCC. A broker may require higher margins from its clients. However, it cannot require lower margins. Some
brokers do not allow their retail clients to write uncovered options at all.
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capital gains and losses are taxed in the United States was discussed in Section 2.10.
For both the holder and the writer of a stock option, a gain or loss is recognized when
(a) the option expires unexercised or (b) the option position is closed out. If the option
is exercised, the gain or loss from the option is rolled into the position taken in the
stock and recognized when the stock position is closed out. For example, when a call
option is exercised, the party with a long position is deemed to have purchased the
stock at the strike price plus the call price. This is then used as a basis for calculating
this party’s gain or loss when the stock is eventually sold. Similarly, the party with the
short call position is deemed to have sold the stock at the strike price plus the call price.
When a put option is exercised, the seller of the option is deemed to have bought the
stock for the strike price less the original put price and the purchaser of the option is
deemed to have sold the stock for the strike price less the original put price.

Wash Sale Rule
One tax consideration in option trading in the United States is the wash sale rule. To
understand this rule, imagine an investor who buys a stock when the price is $60 and
plans to keep it for the long term. If the stock price drops to $40, the investor might be
tempted to sell the stock and then immediately repurchase it, so that the $20 loss is
realized for tax purposes. To prevent this sort of thing, the tax authorities have ruled
that when therepurchase is within 30 days of the sale (i.e., between 30 days beforethe
sale and 30 days after the sale), any loss on the sale is not deductible. The disallowance
also applies where, within the 61-day period, the taxpayer enters into an option or
similar contract to acquire the stock. Thus, selling a stock at a loss and buying a call
option within a 30-day period will lead to the loss being disallowed. The wash sale rule
does not apply if the taxpayer is a dealer in stocks or securities and the loss is sustained
in the ordinary course of business.

Constructive Sales   
Prior to 1997, if a United States taxpayer shorted a security while holding a long
position in a substantially identical security, no gain or loss was recognized until the
short position was closed out. This means that short positions could be used to defer
recognition of a gain for tax purposes. The situation was changed by the Tax Relief Act
of l997._An appreciated property is now treated as “constructively so/ld” when the
owner does one of the following:

1. Enters into a short sale of the same or substantially identical property
2. Enters into a futures or forward contract to deliver the same or substantially

identical property
3. Enters into one or more positions that eliminate substantially all of the loss and

opportunity for gain.

It should be noted that transactions reducing only the risk of loss or only the opportun-
ity for gain should not result in constructive sales. Therefore an investor holding a long
position in a stock can buy in-the-money put options on the stock without triggering a
constructive sale.

Tax practitioners sometimes use options to minimize tax costs or maximize tax
benefits (see Business Snapshot 9.2). Tax authorities in many jurisdictions have
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Business Snapshot 9.2 Tax Planning Using Options

As a simple example of a possible tax planning strategy using options, suppose that t
Country A has a tax regime where the tax is low on interest and dividends and high on
capital gains, while Country B has a tax regime where tax is high on interest and
dividends and low on capital gains. It is advantageous for a company to receive the
income from a security in Country A and thecapital gain, if there is one, in Country B.

1 The company would like to keep capital losses in Country A, where they can beused to
ofl"set capital gains on other items. All of this can be accomplished by arranging for a
subsidiary company in Country A to have legal ownership of the security and for a
subsidiary company in Country B to buy ta call option on the security from the

icompany in Country A, with the strike price of the option equal to the current value
of the security. During the life of the option, income from the security is earned in
Country A. If the security price rises sharply, the option will be exercised and the
capital gain will be realized in Country B. If it falls sharply, the option will not be
exercised and the capital loss will be realized in Country A.

proposed legislation designed to combatthe use of derivatives for tax purposes. Before
entering into any tax-motivated transaction, a corporate treasurer or private individual
should explore in detail how the structure could be unwound in the event of legislative
change and how costly this process could be.

WARRANTS, EMPLOYEE STOCK OPTIONS, AND CONVERTIBLES

Warrants are options issued by a financial institution or nonfinancial corporation. For
example, a financial institution might issue put warrants on one million ounces of gold
and then proceed to create a market for the warrants. To exercise the warrant, the
holder would contact the financial institution. A common use of warrants by a
nonfinancial corporation is at the time of a bond issue. The corporation issues call
warrants on its own stock and then attaches them to the bond issue to make it more
attractive to investors.

Employee stock options are call options issued to employees by their company to
motivate them to act in the best interests of the company’s shareholders (see Chap-
ter 15). They are usually at the money at the time of issue. They are now a cost on the
income statement of the company inmost countries, making them a less attractive form
of compensation than they used to be.

Convertible bonds, often referred to as convertibles, are bonds issued by a company
that can be converted into equity at certain times using a predetermined exchange ratio.
They are therefore bonds with an embedded call option on the company’s stock.

One feature of warrants, employee stock options, and convertibles is that a predeter-
mined number of options are issued. By contrast, the number of options on a particular
stock that trade on the CBOE or another exchange is not predetermined. As people take
positions in a particular option series, the number of options outstanding increases; as
people close out positions, it declines. Warrants issued by a company on its own stock,
employee stock options, and convertibles are different from exchange-traded options in
another important way. When these instruments are exercised, the company issues more
shares of its own stock and sells them to the option holder for the strike price. The
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exercise of the instruments therefore leads to an increase in the number of shares of the
company’s stock that are outstanding. By contrast, when an exchange-traded call option
is exercised, the party with the short position buys in the market shares that have already
been issued and sells them to the party with the long position for the strike price. The
company whose stock underlies the option is not involved in any way.

OVER-THE-COUNTER OPTIONS MARKETS

Most of this chapter has focused on exchange-traded options markets. The over-the-
counter market for options has become increasingly important since the early 1980s and is
now larger than the exchange-traded market. As explained in Chapter l, in the over-the-
counter market, financial institutions, corporate treasurers, and fund managers trade over
the phone. There is a wide range of assets underlying the options. Over-the-counter
options on foreign exchange and interest rates are particularly popular. The chiefpotential
disadvantage of the over-the-counter market is that the option writer may default. This
means that the purchaser is subject to some credit risk. In an attempt to overcome this
disadvantage, market participants usually require counterparties to post collateral. This
was discussed in Section 2.5.

The instruments traded in the over-the-counter market are often structured by
financial institutions to meet the precise needs of their clients. Sometimes this involves
choosing exercise dates, strike prices, and contract sizes that are different from those
offered by an exchange. In other cases the structure of the option is different from
standard calls and puts. The option is then referred to as an exotic option. Chapter 25
describes a number of different types of exotic options.

SUMMARY

There are two types of options: calls and puts. A call option gives the holder the right to
buy the underlying asset for a certain price by a certain date. A put option gives the
holder the right to sell the underlying asset by a certain date for a certain price. There
are four possible positions in options markets: a long position in a call, a short position
in a call, a long position in a put, and a short position in a put. Taking a,-short position
in an option is known as writing it. Options are currently traded on stocks, stock
indices, foreign currencies, futures contracts, and other assets.

An exchange must specify the terms of the option contracts it trades. In particular, it
must specify the size of the contract, the precise expiration time, and the strike price. In
the United States one stock option contract gives the holder the right to buy or sell 100
shares. The expiration of a stock option contract is 10:59 p.m. Central Time on the
Saturday immediately following the third Friday of the expiration month. Options with
several different expiration months trade at any given time. Strike prices are at $2 %, $5,
or $10 intervals, depending on the stock price. The strike price is generally fairly close
to the stock price when trading in an option begins.

The terms-of a stock option are not normally adjusted for cash dividends. However,
they are adjusted for stock dividends, stock splits, and rights issues. The aim of the
adjustment is to keep the positions of both the writer and the buyer of a contract
unchanged.
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Most option exchanges use market makers. A market maker is an individual who is
prepared to quote both a bid price (at which he or she is prepared to buy) and an offer
price (at which he or she is prepared to sell). Market makers improve the liquidity of the
market and ensure that there is never any delay in executing market orders. They
themselves make a profit from the difference between their bid and offer prices (known as
their bid—offer spread). The exchange has rules specifying upper limits for the bid-offer
spread.

Writers of options have potential liabilities and are required to maintain margins
with their brokers. If it is not a member of the Options Clearing Corporation, the
broker will maintain a margin account with a firm that is a member. This firm will in
turn maintain a margin account with the Options Clearing Corporation. The Options
Clearing Corporation is responsible for keeping a record of all outstanding contracts,
handling exercise orders, and so on.

Not all options are traded on exchanges. Many options are traded by phone in the
over-the-counter market. An advantage of over-the-counter options is that they can be
tailored by a financial institution to meet the particular needs of a corporate treasurer or
fund manager.

FURTHER READING

Arzac, E. R. “PERCs, DECs, and Other Mandatory Convertibles,” Journal ofApplied Corporate
Finance, 10, l (1997): 54~63. q

Chicago Board Options Exchange, Characteristics and Risks of Standardized Options. Available
online at wWw.optionsc1ea.ri11g.com/about/publications/character-risks.jsp. First published
1994; last updated 2009.

McMillan, L. G. McMillan on Options, 2nd edn. Hoboken, NJ : Wiley, 2004.

Practice Questions (Answers in Solutions Manual)

An investor buys a European put on a share for $3. The stock price is $42 and the strike
price is $40. Under what circumstances does the investor make a profit? Under what
circumstances will. the option be exercised? Draw a diagram showing the variation of the
investor’s profit with the stock price at the maturity of the option.

An investor sells a European call on a share for $4. The stock price is $47 and the strike
price is $50. Under what circumstances does the investor make a profit? Under what
circumstances will the option be exercised? Draw a diagram showing the variation of the
investor’s profit with the stock price at the maturity of the option.
An investor sells a European call option with strike price of K and maturity T and buys a
put with the same strike price and maturity. Describe the investor’s position.

Explain why margins are required when clients write options but not when they buy options.

A stock option is on a February, May, August, and November cycle. What options trade
on (a) April l and (b) May 30?

A company declares a 2-for-l stock split. Explain how the terms change for a call option
with a strike price of $60.
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“Employee stock options issued by a company are different from regular exchange-traded
call options on the company’s stock because they can affect the capital structure of the
company.” Explain this statement. i *
A corporate treasurer is designing a hedging program involving foreign currency options.
What are the pros and cons of using (a) NASDAQ OMX and (b) the over-the-counter
market for trading? . .
Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until
maturity. Under what circumstances will the holder of the option make a profit? Under
what circumstances will the option be exercised? Draw a diagram illustrating how the profit
from a long position in the option depends on the stock price at maturity of the option.
Suppose that a European put option to sell a share for $60 costs $8 and is held until
maturity. Under what circumstances will the seller of the option (the party with the short
position) make a profit? Under what circumstances will the option be exercised? Draw a
diagram illustrating how the profit from a short position in the option depends on the
stock price at maturity of the option. ,
Describe the terminal value of the following portfolio: a newly entered-into long forward
contract on an asset and a long position in a European put option on the asset with the
same maturity as the forward contract and a strike price that is equal to the forward price
of the asset at the time the portfolio is set up. Show that the European put option has the
same value as a European call option with the same strike price and maturity.
A trader buys a call option with at strike price of $45 and a put option with a strike price
of $40. Both options have the same maturity. The call costs $3 and the put costs $4. Draw
a diagram showing the variation. of the trader’s profit with the asset price. .
Explain why an American option is always worth at least as much as a European option
on the same asset with the same strike price and exercise date. O
Explain why an American option is always worth at least as much as its intrinsic value.
Explain carefully the difference between writing a put option and buying a call option.
The treasurer of a corporation is trying to choose between options and forward contracts to
hedge the corporation’s foreign exchange risk. Discuss the advantages and disadvantages
of each.
Consider an exchange-traded call option contract to buy 500 shares with a/strike price of
$40 and maturity in 4 months. Explain how the terms of the option contract change when
there is: (a) a 10% stock dividend; (b) a 10% cash dividend; and (c) a 4-for-1 stock split.
“If most of the call options on a stock are in the money, it is likely that the stock price has
risen rapidly in the last few months.” Discuss this statement. o
What is the effect of an unexpected cash dividend on (a) a call option price and (b) a put
option price? e E
Options on General Motors stock are on a March, June, September, and December cycle.
What options trade on (a) March 1, (b) June 30, and (c) August 5? K
Explain why the market maker’s bid-offer spread represents a real cost to options
investors. . .
A United States investor writes five naked call option contracts. Theoption price is $3.50,
the strike price is $60.00, and the stock price is $57.00. Whatfis the initial margin
requirement?



Mechanics of Options Markets Z13

Further Questions

9.23. The price of a stock is $40. The price of a 1-year European put option on the stock with a
strike price of $30 is quoted as $7 and the price of a 1-year European call option on the
stock with a strike price of $50 is quoted as $5. Suppose that an investor buys 100 shares,
shorts 100 call options, and buys 100 put options. Draw a diagram illustrating how the
investor’s profit or loss varies with the stock price over the next year. How does your answer
change if the investor buys 100 shares, shorts 200 call options, and buys 200 put options?

9.24. “If a company does not do better than its competitors but the stock market goes up,
executives do very well from their stock options. This makes no sense.” Discuss this
viewpoint. Can you think of alternatives to the usual employee stock option plan that
take the viewpoint into account.

9.25. Use DerivaGem to calculate the value of an American put option on a non-dividend-
paying stock when the stock price is $30, the strike price is $32, the risk-free rate is 5%,
the volatility is 30%, and the time to maturity is 1.5 years. (Choose “Binomial American”
for the “option type” and 50 time steps.)
(a) What is the option’s intrinsic value?
(b) What is the option’s time value?
(c) What would a time value of zero indicate? What is the value of an option with zero

time value?
(d) Using a trial and error approach, calculate how low the stock price would have to be

for the time value of the option to be zero.
9.26. On July 20, 2004, Microsoft surprised the market by announcing a $3 dividend. The ex-

dividend date was November 17, 2004, and the payment date was December 2, 2004. Its
stock price at the time was about $28. It also changed the terms of its employee stock
options so that each exercise price was adjusted downward to

. .  l ' ' - .00Predividend exercise price >< C Osmg I_mC€ , $3
Closing price ;

The number of shares covered by each stock option outstanding was adjusted upward to
. . Cl ' 'Number of shares predividend >< C1OSin(;S1131;igC§1iC;3.0

“Closing Price” means the official NASDAQ closing price of a share of Microsoft
common stock on the last trading day before the ex-dividend date. Evaluate this adjust-
ment. Compare it with the system used by exchanges to adjust for extraordinary dividends
(see Business Snapshot 9.1).
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In this chapter, we look at the factors affecting stock option prices. We use a number
of different arbitrage arguments to explore the relationships between European option
prices, American option prices, and the underlying stock price. The most important of
these relationships is put—call parity, which is a relationship between the price of a
European call option, the price of a European put option, and the underlying stock
price. . . .

The chapter examines whether American options should beexercised early. It shows
that it is never optimal to exercise an American call option on a non-dividend-paying
stock prior to the option’s expiration, but that under some circumstances the early
exercise of an American put option on such a stock is optimal. When there are
dividends, it can be optimal to exercise either calls or puts early.

FACTORS AFFECTING-OPTION PRICES -

There are six factors affecting the price of a stock option:

1. The current stock price, S0 - /
2. The strike price, K -
3. -The time to expiration, T
4. The volatility of the stock price, 0"
5.: The risk-free interest rate, r
6. The dividends that are expected to be paid.

In this section, we consider what happens to option prices when there is a change to one
of these factors, with all the other factors remaining fixed. The results are summarized
in Table 10.1. I I I

Figures 10.1 and 10.2 show how European call andput prices depend on the first five
factors in the situation where S0 = 50, K : 50, r: 5% per annum, o : 30% per
annum, T = 1 year, and there are no dividends. In this case the call price. is 7.116
and the put price is 4.677. g g Q
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Table 10.1 Summary of the effect on the price of a stock option of
increasing one variable while keeping all others fixed.*

Variable European European American American
call put call put

Current" stock price + — + —
Strike price - + — +
Time to expiration ? ? + +
Volatility + + + +
Risk-free rate + -— + —
Amount of future dividends — + — +

* + indicates that an increase in the variable causes the option price to increase;
— indicates that an increase in the variable causes the option price to decrease;
? indicates that the relationship is uncertain.

_ _ . .. _ . - . - ., - . ~.»- -- ~-‘- .. -I - _—.---. 3 -,, .......».,. ... . --.‘ wq, ~ ..-;
- - V ‘ ! .......... ..i.............. ... ' 4

Stock Price and Strike Price
If a call option is exercised at some future time, the payoff will be the amount by which
the stock price exceeds the strike price. Call options therefore become more valuable as
the stock price increases and less valuable as the strike price increases. For a put option,
the payoff on exercise is the amount by which the strike price exceeds the stock price.
Put options therefore behave in the opposite way from call options: they become less
valuable as the stock price increases and more valuable as the strike price increases.
Figure 10. la—d illustrate the way in which put and call prices depend on the stock price
and strike price.

Time to Expiration   
Now consider the effect of the expiration date. Both put and call American options
become more valuable (or at least do not decrease in value) as the time to expiration
increases. Consider two American options that differ only as far as the expiration date is
concerned. The owner of the long-life option has all the exercise opportunities open to
the owner of the short-life option——and more. The long-life option must therefore
always be worth at least as much as the short-life option.

Although European put and call options usually become more valuable as the time
to expiration increases (see Figure l0.1e, f), this is not always the case. Consider two
European call options on a stock: one with an expiration date in 1 month, the other
with an expiration date in 2 months. Suppose that a very large dividend is expected in
6 weeks. The dividend will cause the stock price to decline, so that the short-life option
could be worth more than the long-life option.1

Volatility
The precise way in which volatility is defined is discussed in Chapter 14. Roughly
speaking, the volatility of a stock price is a measure of how uncertain we are about
-i—--—__-_ii-_

1 We assume that, when the life of the option -is changed, the dividends on the stock and their timing remain
unchanged.
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future stock price movements. As volatility increases, the chance that the stock will do
very well or very poorly increases. For the owner of a stock, these two outcomes tend to
offset each other. However, this is not so for the owner of a call or put. The owner of a
call benefits from price increases but has limited downside risk in the event of price
decreases because the most the owner can lose is the price of the option. Similarly, the
owner of a put benefits from price decreases, but has limited downside risk in the event
of price increases. The values of both calls and puts therefore increase as volatility
increases (see Figure l0.2a, b).
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Figure 10.1 Effect of changes in stock price, strike price, and expiration date on
option prices when S0 = 50, K = 50, r = 5%, o : 30%, and T : 1. 3
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Figure 10.2 Effect of changes in volatility and risk-free interest rate on option prices
when S0 : 50, K: 50, r: 5%, 0 : 30%, and T :1.
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Risk-Free Interest Rate I
The risk-free interest rate affects the price of an option in a less clear-cut way. As interest
rates in the economy increase, the expected return required by investors from the stock
tends to increase. In addition, the present value of any future cash flow received by the
holder of the option decreases. The combined impact of these two effects is to increase the
value of call options and decrease the value of put options (see Figure l0.2c, d).

It is important to emphasize that we are assuming that interest rates change while all
other variables stay the same. In particular we are assuming in Table 10.1 that interest
rates change while the stock price remains the same. In practice, when interest rates rise
(fall), stock prices tend to fall (rise). The combined effect of an interest rate increase and
the accompanying stock price decrease can be to decrease the value of a call option and
increase the value of a put option. Similarly, the combined effect of an interest rate
decrease and the accompanying stock price increase can be to increase the value of a
call option and decrease the value of a put option.

Amount of Future Dividends
Dividends have the effect of reducing the stock price on the ex-dividend date. This is
bad news for the value of call options and good news for the value of put options.



218

10.2

10.3

CHAPTER 10

Consider a dividend whose ex-dividend date is during the life of an option. The value of
the option is negatively related to the size of the dividend if the option is a call and
positively related to the size of the dividend if the option is a put.

ASSUMPTIONS AND NOTATION

In this chapter, we will make assumptions similar to those made when deriving forward
and futures prices in Chapter 5. We assume that there are some market participants,
such as large investment banks, for which the following statements are true:

1. There are no transactions costs.
2. All trading profits (net of trading losses) are subject to the same tax rate.

 3. Borrowing and lending are possible at the risk-free interest rate.

We assume that these market participants are prepared to take advantage of arbitrage
opportunities as they arise. As discussed in Chapters 1 and 5, this means that any
available arbitrage opportunities disappear very quickly. For the purposes of our
analysis, it is therefore reasonable to assume that there are no arbitrage opportunities.

We will use the following notation:

S01

K : Strike price of option
Current stock price

T: Time to expiration of option .
ST:

r: Continuously compounded risk-free rate of interest for an investment maturing
t in time T

Stock price on the expiration date I

C: Value of American call option to buy one share
P: Value of American put option to sell one share
c: Value of European call option to buy one share
p: Value of European put option to sell one share

It should be noted that r is the nominal rate of interest, not the real rate of interest. We
can assume that r > 0. Otherwise, a risk-free investment would provide no advantages
over cash. (Indeed, if r < 0, cash would be preferable to a risk-free investment.)

UPPER AND LOWER BOUNDS FOR OPTION PRICES

In this section we derive upper and lower bounds for option prices. These bounds do
not depend on any particular assumptions about the factors mentioned in Section 10.1
(except r > 0). If an option price is above the upper bound or below the lower bound,
then there are profitable opportunities for arbitrageurs.

Upper Bounds
An American or European call option gives the holder the right to buy one share of a
stock for a certain price. No matter what happens, the option can never be worth more
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than the stock. Hence, the stock price is an upper bound to the option price:

c < S0 and C < S0 (10.1)

If these relationships were not true, an arbitrageur could easily make a riskless profit by
buying the stock and selling the call option.

An American put option gives the holder the right to sell one share of a stock for K.
No matter how low the stock price becomes, the option can never be worth more
than K. Hence,

P < K (10.2)
For European options, we know that at maturity the option cannot be worth more
than K. It follows that it cannot be worth more than the present value of K today:

p < Ke_rT (10.3)

If this were not true, an arbitrageur could make a riskless profit by writing the option
and investing the proceeds of the sale at the risk-free interest rate.

Lower Bound for Calls on Non-Dividend-Paying Stocks
A lower bound for the price of a European call option on a non-dividend-paying stock is

S0 —" K€_rT

We first look at a numerical example and then consider a more formal argument.
Suppose that S0 = $20, K = $18, r : 10% per annum, and T = 1 year. In this case,

so - Ke_’T = 20 -186*“ = 3.71
or $3.71. Consider the situation where the European call price is $3.00, which is less
than the theoretical minimum of $3.71. An arbitrageur can short the stock and buy the
call to provide a cash inflow of $20.00 — $3.00 = $17.00. If invested for 1 year at 10%
per annum, the $17.00 grows to 17eO‘] = $18.79. At the end of the year, the option
expires. If the stock price is greater than $18.00, the arbitrageur exercises the option for
$18.00, closes out the short position, and makes a profit of

$18.79 —- $18.00 = $0.79

If the stock price is less than $18.00, the stock is bought in the market and the short
position is closed out. The arbitrageur then makes an even greater profit. For example,
if the stock price is $17.00, the arbitrageur’s profit is

$18.79 — $17.00 = $1.79

For a more formal argument, we consider the following two portfolios:

Portjblio A: one European call option plus a zero-coupon bond that provides a
payoff of K at time T

Portfolio B: one share of the stock.
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In portfolio A, the zero-coupon bond will be worth K at time T. If ST > K, the call
option is exercised at maturity and portfolio A is worth ST. If ST < K, the call option
expires worthless and the portfolio is worth K. Hence, at time T, portfolio A is worth

max(ST, K)

Portfolio B is worth ST at time T. Hence, portfolio A is always worth as much as, and
can be worth more than, portfolio B at the option’s maturity. It follows that in the
absence of arbitrage opportunities this must also be true today. The zero-coupon bond
is worth Ke"T today. Hence,

c + Ke_rT 2 S0
or

C Z S0 "- K€—rT

Because the worst that can happen to a call option is that it expires worthless, its value
cannot be negative. This means that c 2 0 and therefore

C > max(S0 - K6-rT, 0) (10.4)
Example 10.1

Consider a European call option on a non-dividend-paying stock when the stock
price is $51, the strike price is $50, the time to maturity is 6 months, and the risk-free
interest rate is 12% per annum. In this case, S0 : 51, K : 50, T : 0.5, and r = 0.12.
From equation (10.4), a lower bound for the option price is S0 — Ke_’T., or

51 - 50e*°~12>‘°~5 = $3.91

Lower Bound for European Puts on Non-Dividend-Paying Stocks
For a European put option on a non-dividend-paying stock, a lower bound for the
pf1C€ 1S

K€TrT — S0

Again, we first consider a numerical example and then look at a more formal argument.
Suppose that S0 = $37, K = $40, r : 5% per annum, and T : 0.5 years. In this case,

E-./

I 1<@"’T - so = 40@"°~°5X°-5 - 37 = $2.01
Consider the situation where the European put price is $1.00, which is less than the
theoretical minimum of $2.01. An arbitrageur can borrow $38.00 for 6 months to buy
both the put and the stock. At the end of the 6 months, the arbitrageur will be required
to repay 38e0'05X0'5 I $38.96. If the stock price is below $40.00, the arbitrageur exercises
the option to sell the stock for $40.00, repays the loan, and makes a profit of

$40.00 -— $38.96 = $1.04

If the stock price is greater than $40.00, the arbitrageur discards the option, sells the
stock, and repays the loan for an even greater profit. For example, if the stock price is
$42.00, the arbitrageur’s profit is

$42.00 — $38.96 = $3.04
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For a more formal argument, we consider the following two portfolios:

Portfolio C: one European put option plus one share
Portfolio D; a zero-coupon bond paying off K at time T.

If ST < K, then the option in portfolio C is exercised at option maturity and the
portfolio becomes worth K . If ST > K, then the put option expires worthless and the
portfolio is worth ST at this time. Hence, portfolio C is worth

1'I1E1X(ST,

in time T. Portfolio D is worth K in time T. Hence, portfolio C is always worth as much
as, and can sometimes be worth more than, portfolio D in time T. It follows that in the
absence of arbitrage opportunities portfolio C must be worth at least as much as
portfolio D today. Hence,

P + S0 > K6-”

OI‘-
p > K6_rT - so

Because the worst that can happen to a put option is that it expires worthless, its value
cannot be negative. This means that

p > max(KeTrT - so, 0) (10.5)
Example 10.2 . . o

Consider a European put option on a non-dividend-paying stock when the stock
price is $38, the strike price is $40, the time to maturity is 3 months, and the
risk-free rate of interest is 10% per annum. In this case S0 = 38, K :40,
T = 0.25, and r: 0.10. From equation (10.5), a lower bound for the option
price is KeT’T — S0, or 1

405°-1X"~25 - 3s = $1.01

PUT-CALL PARITY

We now derive an important relationship between the prices of European put’ and call
options that have the same strike price and time to maturity. Consider the following two
portfolios that were used in the previous section:

Portfolio A: one European call option plus a zero-coupon bond that provides a
payoff of K at time T

Portfolio C: one European put option plus one share of the stock.

We continue to assume that the stock pays no dividends. The call and put options have
the same strike price K and the same time to maturity T.

As discussed in the previous section, the zero-coupon bond in portfolio A will be
worth K at time T. If the stock price ST at time T proves to be above K, then the call
option in portfolio A will be exercised. This means that portfolio A is worth
(ST — K) + K : ST at time T in these circumstances. If ST proves to be less than K,
then the call option in portfolio A will expire worthless and the portfolio will be worth
K at time T.
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Table 10.2 Values of Portfolio A and Portfolio C at time T

ST > K ST < K

Portfolio A Call option ST — K 0
Zero-coupon bond K K

6 Total ST K

Portfolio C Put Option 0 K — ST
Share ST ST
Total o ST K

In portfolio C, the share will be worth ST at time T. If ST proves to be below K, then
the put option in portfolio C will be exercised. This means that portfolio C is worth
(K — ST) + ST : K at time T in these circumstances. If ST proves to be greater than K,
then the put option in portfolio C will expire worthless and the portfolio will be worth
ST at time T.

The situation is summarized in Table 10.2. If ST > K, both portfolios are worth ST at
time T; if ST < K, both portfolios are worth K at time T. In other words, both are worth

max(ST, K)

when the options expire at time T. Because they are European, the options cannot be
exercised prior to time T. Since the portfolios have identical values at time T, they must
have identical values today. If this were not the case, an arbitrageur could buy the less
expensive portfolio and sell the more expensive one. Because the portfolios are
guaranteed to cancel each other out at time T, this trading strategy would lock in an
arbitrage profit equal to the difference in the values of the two portfolios.

The components of portfolio A are worth c and Ke"T today, and the components of
portfolio C are worth p and So today. Hence,

c + KeT'T : p + S0 (10.6)

This relationship is known as put—call parity. It shows that the value of a European call
with a certain exercise price and exercise date can be deduced from the value of a
European put with the same exercise price and exercise date, and vice versa.

To illustrate the arbitrage opportunities when equation (10.6) does not hold, suppose
that the stock price is $31, the exercise price is $30, the risk-free interest rate is 10% per
annum, the price of a three-month European call option is $3, and the price of a
3-month European put option is $2.25. In this case,

C + Ke"’T = 3 + 30@"°~‘X3/12 = $32.20
p+so:2.25+31=$33.25 I

Portfolio C is overpriced relative to portfolio A. An arbitrageur can buy the securities
in portfolio A and short the securities in portfolio C. The strategy involves buying the
call and shorting both the put and the stock, generating a positive cash flow of

-3 + 2.25 + 31 = $30.25
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up front. When invested at the risk-free interest rate, this amount grows to

30.25@°-‘*0-25 = $31.02
in three months. If the stock price at expiration of the option is greater than $30, the
call will be exercised. If it is less than $30, the put will be exercised. In either case, the
arbitrageur ends up buying one share for $30. This share can be used to close out the
short position. The net profit is therefore

$31.02 ~— $30.00 -I $1.02

For an alternative situation, suppose that the call price is $3 and the put price is $1.
In this case,

C + 1<@:"T .-= 3 + 30@"°~"‘3’” = $32.26
p+so = 1 +31 =$32.00

Portfolio A is overpriced relative to portfolio C. An arbitrageur can short the securities in
portfolio A and buy the securities in portfolio C to lock in a profit. The strategy involves
shorting the call and buying both the put and the stock with an initial investment of

$31 +$l —$3 =$29

When the investment is financed at the risk-free interest rate, a repayment of
29e0'lX0'25 = $29.73 is required at the end of the three months. As in the previous case,
either the call or the put will be exercised. The short call and long put option position
therefore leads to the stock being sold for $30.00. The net profit is therefore

$30.00 — $29.73 = $0.27

These examples are illustrated in Table 10.3. Business Snapshot 10.1 shows how options

."i"3'?.IZ'<'-" 2*“; Q‘ ’T7""'?‘I'-' ‘i*" - . ' -.1‘-3'=-7:-“'f"1"("3f7'“"'l" _ "<: -; .. _' '. '-2".‘-' ' Z.‘-‘ -7" i.I._.¢$<l;"ll".‘L"'-.E?¢.F$%iHI§'k1F§'ZF;EZ fi

Table 10.3 Arbitrage opportunities when put-call parity does not hold.
Stock price = $31; interest rate : 10%; call price = $3. Both put and call
have strike price of $30 and three months to maturity

Three-month put price: $2.25 Three-month put price == $1 r

Action now: I Action now:
Buy call for $3 Borrow $29 for 3 months
Short put to realize $2.25 Short call to realize $3
Short the stock to realize $31 Buy put for $1
Invest $30.25 for 3 months Buy the stock for $31
Action in 3 months ifST > 30: Action in 3 months ifST > 30:
Receive $31.02 from investment Call exercised: sell stock for $30
Exercise call to buy stock for $30 Use $29.73 to repay loan
Net profit = $1.02 Net profit == $0.27
Action in 3 months ifST < 30: Action in 3 months ifST < 30:
Receive $31.02 from investment Exercise put to sell stock for $30
Put exercised: buy stock for $30 Use $29.73 to repay loan
Net profit = $1.02 Net profit = $0.27
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Business Snapshot 10.1 Put—Call Parity and Capital Structure T
_ . _

The pioneers of option pricing were Fischer Black, Myron Scholes, and Robert
Merton. In the early 1970s they showed that options can be used to characterize
the capital structure of a company. Today this analysis is widely used by financial
-institutions to assess a company’s creditrisk. . ,. ' , , 1. I _.

To illustrate the analysis, consider a company that has assets that are financed with
zero-coupon bonds and equity. Suppose that the bonds mature in five y_eaF;S'i'..a.t”.\,‘_/_I:I,ICI:l -

if - - ' w > _i 0 _

time a principal payment of K is required. The company pays-no divideiidsilf, the
assets are worth more than K in five years, the equity holders choose wnpay: the
bond holders. If the assets are worth less than K, the equity holders choose -to declare

2 bankruptcy and the bond holders end up owning the company. I  -
The value of the equity in five years is therefore inax(AT -— K, 0), where AT is the

value of the company’s assets at that time. This shows that the equity holders ;have_'a
five-year European call option on the assets of the company with a strike priceoof, K.-

% What about the bondholders? They get min(AT, K) in fivefyeaors. This is tl_ie_sanie as I
IQK 4 max(K — AT, 0). This shows that today the bonds) arefworth the present value

3 of K minus the value of a five-year European put option on the assets with_fa;strike 1I . _.
.priceofK. 1 Y 2 3:

To summarize, if c and p are the values, respectively, of the ‘call and ’put‘To'ption-s §;
' on the company’s assets, then _ : A A ; T _

. Value of equity = c _ ~ I

1 Value of debt = PV(K)-1 p ~ I 4 , *
- V ,.n- 1 _. -

.Denote the value of the assets of the company today by A0. The v'alue~of;,theia_ssets
must equal the total value of the instruments used to finance, the,
that it must equal the sum of the value of the equity and the value of the Ydebl, Tso.’that

, A<>=c+[Pv(K)—1>1 t  '
Rearranging this equation, we have I

Y - ~¢ ' ",...

. _ . _ \. A’, ‘ V I ' ' F

This is the put—call parity result in equation (10.6) for call andput options on the
assets of the company. 7 ,. '

in-1 j in 1

and put call parity can help us understand the positions of the debt holders and equity
holders in a company.

American Options
Put—call parity holds only for European options. However, it is possible to derive some
results for American option prices. It can be shown (see Problem 10.18) that, when
there are no dividends,

%~K<C—P<%—K€” (mp
Example 10.3

An American call option on a non-dividend-paying stock with strike price $20.00
and maturity in 5 months is worth $1.50. Suppose that the current stock price is



Properties of Stock Options Z25

10.5

$19.00 and the risk-free interest rate is 10% per annum. From equation (10.7), we
have

19 - 20 < c - P < 19 - 20@"°~1><5/12
or A

1 2 P — C 2 0.18

showing that P — C lies between $1.00 and $0.18. With C at $1.50, P must lie
between $1.68 and $2.50. In other words, upper and lower bounds for the price of
an American put with the same strike price and expiration date as the American
call are $2.50 and $1.68.

CALLS ON A NON-DIVIDEND-PAYING STOCK

In this section, we first show that it is never optimal to exercise an American call option
on a non-dividend-paying stock before the expiration date.

To illustrate the general nature of the argument, consider an American call option on
a non-dividend-paying stock with one month to expiration when the stock price is $70
and the strike price is $40. The option is deep in the money, and the investor who owns
the option might well be tempted to exercise it immediately. However, if the investor
plans to hold the stock obtained by exercising the option for more than one month, this
is not the best strategy. A better course of action is to keep the option and exercise it at
the end of the month. The $40 strike price is then paid out one month later than it
would be if the option were exercised immediately, so that interest is earned on the $40
for one month. Because the stock pays no dividends, no income from the stock is
sacrificed. A further advantage of waiting rather than exercising immediately is that
there is some chance (however remote) that the stock price will fall below $40 in one
month. In this case the investor will not exercise in one month and will be glad that the
decision to exercise early was not taken!

This argument shows that there are no advantages to exercising early if the investor
plans to keep the stock for the remaining life of the option (one month, in this case).
What if the investor thinks the stock is currently overpriced and is wondering whether
to exercise the option and sell the stock? In this case, the investor is better off selling the
option than exercising it.2 The option will be bought by another investor who does
want to hold the stock. Such investors must exist. Otherwise the current stock price
would not be $70. The price obtained for the option will be greater than its intrinsic
value of $30, for the reasons mentioned earlier.

For a more formal argument, we can use equation (10.4):

c > so - Kw”
Because the owner of an American call has all the exercise opportunities open to the
owner of the corresponding European call, we must have C 2 c. Hence,

C > SQ — K6_rT

Given r > 0, it follows that C > So — K when T > 0. This means that C is always greater

2 As an alternative strategy, the investor can keep the option and short the stock to lock in a better profit
than $10.
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than the option’s intrinsic value prior to maturity. If it were optimal to exercise at a
particular time prior to maturity, C would equal the option’s intrinsic value at that
time. It follows that it can never be optimal to exercise early.

To summarize, there are two reasons an American call on a non-dividend-paying
stock should not be exercised early. One relates to the insurance that it provides. A call
option, when held instead of the stock itself, in effect insures the holder against the
stock price falling below the strike price. Once the option has been exercised and the
strike price has been exchanged for the stock price, this insurance vanishes. The other
reason concerns the time value of money. From the perspective of the option holder,
the later the strike price is paid out the better.

Bounds
Because American call options are never exercised early when there are no dividends,
they are equivalent to European call options, so that C : c. From equations (10.1) and
(10.4), it follows that upper and lower bounds are given by

max(So - K6_rT, 0) < c, c < so
These bounds are illustrated in Figure 10.3.

The general way in which the call price varies with the stock price, So, is shown in
Figure 10.4. As r or T or the stock price volatility increases, the line relating the call
price to the stock price moves in the direction indicated by the arrows.

PUTS ON A NON-DIVIDEND-PAYING STOCK

It can be optimal to exercise an American put option on a non-dividend-paying stock
early. Indeed, at any given time during its life, a put option should always be exercised
early if it is sufficiently deep in the money. T

To illustrate, consider an extreme situation. Suppose that the strike price is $10 and
the stock price is virtually zero. By exercising immediately, an investor makes an
immediate gain of $10. If the investor waits, the gain from exercise might be less than
$10, but it cannot be more than $10, because negative stock prices are impossible.

-' P -‘.1 ' P." I'~-i-"L‘!‘;l‘.7l’.’L';""‘-"VT ::::::: . - -~. -.. - -' Y‘. I . '1" - -: >: -- -..» :. . --..<.:_/.’: r.r.--:rz-.a"'- .. -. ~t : 1:

Figure 10.3 Bounds for European and American call options when there are no
dividends.
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Figure 10.4 Variation of price of an American or European call option on a non-
dividend-paying stock with the stock price. Curve moves in the direction of the arrows
when there is an increase in the interest rate, time to maturity, or stock price volatility.

A Call option
price I,’

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

II

I
+./ >-

Ke"T Stock price, So
- - ~ -- _ - r - ,1‘ — » .' —- - -~ - — """,'f‘I'"'-p""v""" Y v _ ‘V o _-- __‘_- ,4- ¢ o - — _-_ Q----~-|\-----_~:\-1 -.; 5 -, (:--,- ;__ q»__-¢_.__,_- - __ —_ —<v , _ -~, _—-~ - ~ _--_ -

5 ‘ .._ . _1 ' _ —_ - T5 _ .._ _,,__,_,,'_‘ fl¢- . . ~_ .'-4.“! _. . - '\ .. .\_..'S__.....a.A..k....=w.-7' ' ' 1 __ ,5. ")1. ' H . _ ' ‘.. " . _-1 - .->»L_x > L . -3. -o an‘ . .

Furthermore, receiving $10 now is preferable to receiving $10 in the future. It follows
that the option should be exercised immediately.

Like a call option, a put option can be viewed as providing insurance. A put option,
when held in conjunction with the stock, insures the holder against the stock price
falling below a certain level. However, a put option is differentfrom a call option in that
it may be optimal for an investor to forgo this insurance and exercise early in order to
realize the strike price immediately. In general, the early exercise of a put option
becomes more attractive as So decreases, as r increases, and as the volatility decreases.

Bounds
From equations (10.3) and (10.5), upper and lower bounds for a European put option
when there are no dividends are given by

1 max(Ke_’T - so, 0) < < Ke"'T ,,“ti

For an American put option on a non-dividend-paying stock, the condition

P Z max(K —' S0,

must apply because the option can be exercised at any time. This is a stronger
condition than the one for a European put option in equation (10.5). Using the result
in equation (10.2), bounds for an American put option on a non-dividend-paying
stock are

*6max(K -— So, 0) < < K

Figure 10.5 illustrates the bounds.
Figure 10.6 shows the general way in which the price of an American put option

varies with So. As we argued earlier, provided that r > 0, it is always optimal to exercise
an American put immediately when the stock price is sufficiently low. When early
exercise is optimal, the value of the option is K - So. The curve representing the value
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Figure 10.5 Bounds for European and American put options when there are no
dividends.
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of the put therefore merges into the put’s intrinsic value, K — So, for a sufiiciently small
value of So. In Figure 10.6, this value of So is shown as point A. The line relating the put
price to the stock price moves in the direction indicated by the arrows when r decreases,
when the volatility increases, and when T increases.

Because there are some circumstances when it is desirable to exercise an American
put option early, it follows that an American put option is always worth more than the
corresponding European put option. Furthermore, because anAmerican put is some-
times worth its intrinsic value (see Figure 10.6), it follows that a European put option
must sometimes be worth less than its intrinsic value. This means that the curve
representing the relationship between the put price and the stock price for a European
option must be below the corresponding curve for an American option.

Figure 10.7 shows the variation of the European put price with the stock price. Note
that point B in Figure 10.7, at which the price of the option is equal to its intrinsic
value, must represent a higher value of the stock price than point A in Figure 10.6
because the curve in Figure 10.7 is below that in Figure 10.6. Point E in Figure 10.7 is
where So = 0 and the European put price is Ke_'T.
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Figure 10.6 Variation of price of an American put option with stock price. Curve
moves in the direction of the arrows when the time to maturity or stock price volatility
increases or when the interest rate decreases.

A American
put price

\
\
\
I
I
I
I
I
I
I \

\ \
I \o >

Stock price, So;>__ Ps



Properties of Stock Options 229

fife‘ 1‘ I . '0‘ I all-' - = a:‘;' 1,.‘ 1...-Q -_‘\'_ -LI_';*'17l-T-» if-.’§'.‘-T‘ ..iu......:L...1Z.:§,..}s...1.):‘I-10;.-ii;id]; - ~'_i~.L\_':‘_ r?'< ‘."§:.I‘. ~..'~r_1» 4;I4_7.'J_\'.|1i’». - . ._§r~L'-:1-l_:‘.1'-‘_.I.}$T';I|f§'»“4."= Qt; ;"_'T'Ti T _...1

Figure 10.7 Variation of price of a European put option with the stock price.
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10.7 EFFECT OF DIVIDENDS

The results produced so far in this chapter have assumed that we are dealing with
options on a non-dividend-paying stock. In this section, we examine the impact of
dividends. We assume that the dividends that will be paid during the life of the option
are known. Most exchange-traded stock options have a life of less than one year, so this
assumption is not too unreasonable in many situations. We will use D to denote the
present value of the dividends during the life of the option. In the calculation of D, a
dividend is assumed to occur at the time of its ex-dividend date.

Lower Bound for Calls and Puts
We can redefine portfolios A and B as follows:

Portfolio A: one European call option plus an amount of cash equal to D Ke"’T
Portfolio B: one share

A similar argument to the one used to derive equation (10.4) shows that

C > m2tX(So - o - 146"”, 0) (10.8)

We can also redefine portfolios C and D as follows:

Portfolio C: one European put option plus one share
Portfolio D: an amount of cash equal to D + Ke_'T

A similar argument to the one used to derive equation (10.5) shows that

p > 1112tX(D + Ke"T - so, 0) (10.9)
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Early Exercise
When dividends are expected, we can no longer assert that an American call option will
not be exercised early. Sometimes it is optimal to exercise an American call immediately
prior to an ex-dividend date. It is never optimal to exercise a call at other times. This
point is discussed further in Section 14.12.

Put-Call Parity
Comparing the value at option maturity of the redefined portfolios A and C shows that,
with dividends, the put—call parity result in equation (10.6) becomes

C + o + Ke_’T = p + so (10.10)
Dividends cause equation (10.7) to be modified (see Problem 10.19) to

So—D—K<C—P<So—Ke_’T (10.11)

SUMMARY

There are six factors affecting the value of a stock option: the current stock price, the
strike price, the expiration date, the stock price volatility, the risk-free interest rate, and
the dividends expected during the life of the option. The value of a call generally
increases as the current stock price, the time to expiration, the volatility, and the risk-
free interest rate increase. The value of acall decreases as the strike price and expected
dividends increase. The value of a put generally increases as the strike price, the time to
expiration, the volatility, and the expected dividends increase. The value of a put
decreases as the current stock price and the risk-free interest rate increase.

It is possible to reach some conclusions about the value of stock options. without
making any assumptions about the volatility of stock prices. For example, the price of a
call option on a stock must always be worth less than the price of the stock itself.
Similarly, the price of a put option on a stock must always be worth less than the
option’s strike price.

A European call option on a non-dividend-paying stock must be worth more than

II12tX(So - KeT’T, 0)
where So is the stock price, K is the strike price, r is the risk-free interest rate, and T is
the time to expiration. A European put option on a non-dividend-paying stock must be
worth more than

I max(Ke"T -— So, 0)

When dividends with present value D will be paid, the lower bound for a European call
option becomes

max(So — D — Ke_rT, 0)

and the lower bound for a European put option becomes

A max(Ke_rT + D — So, 0)
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Put—call parity is a relationship between the price, c, of a European call option on a
stock and the price, p, of a European put option on a stock. For a non-dividend-paying
stock, it is

C"l“Kv€_—rT:p'l"S()

For a dividend-paying stock, the put—call parity relationship is

c+D-I-Ke"rT=p+So

Put—call parity does not hold for American options. However, it is possible to use
arbitrage arguments to obtain upper and lower bounds for the difference between the
price of an American call and the price of an American put.

In Chapter 14, we will carry the analyses in this chapter further by making specific
assumptions about the probabilistic behavior of stock prices. The analysis will enable us
to derive exact pricing formulas for European stock options. In Chapters 12 and 20, we
will see how numerical procedures can be used to price American options.
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Practice Questions (Answers in Solutions Manual) ’

10.1
10.2

10.3

10.4.

10.5

List the six factors that affect stock option prices.
. What is a lower bound for the price of a 4-month call option on a non-dividend-paying

stock when the stock price is $28, the strike price is $25, and the risk-free interest rate is
8% per annum?

. What is a lower bound for the price of a 1-month European put option on a non-
dividend-paying stock when the stock price is $12, the strike price is $15, and the risk-
free interest rate is 6% per annum?
Give two reasons why the early exercise of an American call option on a non-dividend-
paying stock is not optimal. The first reason should involve the time value of money. The
second should apply even if interest rates are zero. A

The early exercise of an American put is a trade-off between the time value of money
and the insurance value of a put.” Explain this statement.
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10.6

10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14.

10.15
10.16

10.17

10.18

10.19

10.20

CHAPTER 10

Why is an American call option on a dividend-paying stock always worth at least as much
as its intrinsic value. Is the same true of a European call option? Explain your answer.

The price of a non-dividend-paying stock is $19 and the price of a 3-month European
call option on the stock with a strike price of $20 is $1. The risk-free rate is 4% per
annum. What is the price of a 3-month European put option with a strike price of $20?

Explain why the arguments leading to put—call parity for European options cannot be
used to give a similar result for American options.
What is a lower bound for the price of a 6-month call option on a non-dividend-paying
stock when the stock price is $80, the strike price is $75, and the risk-free interest rate is
10% per annum?
What is a lower bound for the price of a 2-month European put option on a non-
dividend-paying stock when the stock price is $58, the strike price is $65, and the risk-
free interest rate is 5% per annum?

A 4-month European call option on a dividend-paying stock is currently selling for $5.
The stock price is $64, the strike price is $60, and a dividend of $0.80 is expected in
1 month. The risk-free interest rate is 12% per annum for all maturities. What opportun-
ities are there for an arbitrageur?

A 1-month European put option on a non-dividend-paying stock is currently selling
for $2.50. The stock price is $47, the strike price is $50, and the risk-free interest rate is
6% per annum. What opportunities are there for an arbitrageur?
Give an intuitive explanation of why the early exercise of an American put becomes
more attractive as the risk-free rate increases and volatility decreases.
The price of a European call that expires in 6 months and has a strike price of $30 is $2.
The underlying stock price is $29, and a dividend of $0.50 is expected in 2 months and
again in 5 months. The term structure is flat, with all risk-free interest rates being 10%.
What is the price of a European put option that expires in 6 months and has a strike
price of $30?

Explain the arbitrage opportunities in Problem 10.14 if the European put price‘ is $3.
The price of an American call on a non-dividend-paying stock is $4. The stock price is
$31, the strike price is $30, and the expiration date is in 3 months. The risk-free interest
rate is 8%. Derive upper and lower bounds for the price of an American p],.1t on the same
stock with the same strike price and expiration date.
Explain carefully the arbitrage opportunities in Problem 10.16 if the American put price
is greater than the calculated upper bound.
Prove the result in equation (10.7). (Hint: For the first part of the relationship,
consider (a) a portfolio consisting of a European call plus an amount of cash equal
to K, and (b) a portfolio consisting of an American put option plus one share.)
Prove the result in equation (10.11). (Hint: For the first part of the relationship,
consider (a) a portfolio consisting of a European call plus an amount of cash equal
to D + K, and (b) a portfolio consisting of an American put option plus one share.)
Consider a 5-year call option on a non-dividend-paying stock granted to employees. The
option can be exercised at any time after the end of the first year. Unlike a regular
exchange-traded call option, the employee stock option cannot be sold. What is the
likely impact of this restriction on the early-exercise decision?
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10.21. Use the software DerivaGem to verify that Figures 10.1 and 10.2 are correct.

Further Questions

10.22. A European call option and put option on a stock both have a strike price of $20 and an
expiration date in 3 months. Both sell for $3. The risk-free interest rate is 10% per
annum, the current stock price is $19, and a $1 dividend is expected in 1 month. Identify
the arbitrage opportunity open to a trader. .

10.23. Suppose that c1, C2, and c3 are the prices of European call options with strike prices K1,
K2, and K3, respectively, where K3 > K2 > K1 and K3 — K2 = K2 - K1. All options
have the same maturity. Show that

C2 Q 0.5(C1 -1- C3)

(Hint: Consider a portfolio that is long one option with strike price K1, long one option
with strike price K3, and short two options with strike price K2.)

10.24. What is the result corresponding to that in Problem 10.23 for European put options?
10.25. Suppose that you are the manager and sole owner of a highly leveraged company. All the

debt will mature in 1 year. If at that time the value of the company is greater than the
face value of the debt, you will pay off the debt. If the value of the company is less than
the face value of the debt, you will declare bankruptcy and the debt holders will own the
company. o
(a) Express your position as an option on the value of the company.
(b) Express the position of the debt holders in terms of options on the value of the

company.
(c) What can you do to increase the value of your position?

10.26. Consider an option on a stock when the stock price is $41, the strike price is $40, the
risk-free rate is 6%, the volatility is 35%, and the time to maturity is 1 year. Assume that
a dividend of $0.50 is expected after 6 months. ,
(a) Use DerivaGem to value the option assuming it is a European call. A
(b) Use DerivaGem to value the option assuming it is a European put.
(c) Verify that put—call parity holds.
(d) Explore using DerivaGem what happens to the price of the options as the time to

maturity becomes very large. For this purpose, assume there are no dividends.
Explain the results you get.

10.27. Consider a put option on a non-dividend-paying stock when the stock price is $40, the
strike price is $42, the risk-free interest rate is 2%, the volatility is 25 % per annum, and
the time to maturity is three months. Use DerivaGem to determine the following:
(a) The price of the option if it is European (use Analytic: European)
(b) The price of the option if it is American (use Binomial: American with 100 tree steps)
(c) Point B in Figure 10.7.
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Involving Options

We discussed the profit pattern from an investment in a single option in Chapter 9. In
this chapter, we look at what can be achieved when an option is traded in conjunction
with other assets. In particular, we examine the properties of portfolios consisting of
positions in (a) an option and a zero-coupon bond, (b) an option and the asset
underlying the option, and (c) two or more options on the same underlying asset.

Further trading strategies involving options are considered in later chapters. For
example, Chapter 16 shows how stock indices can be used to manage the risks in a
stock portfolio and explains how range forward contracts can be used to hedge a
foreign exchange exposure; Chapter 18 covers the way in which Greek letters are used to
manage the risks when derivatives are traded; Chapter 25 covers exotic options and
what is known as static options replication.

PRINCIPAL-PROTECTED NOTES

Options are often used to create what are termed principal-protected notes for the retail
market. These are products that appeal to conservative investors. The return earned by
the investor depends on the performance of a stock, a stock index, or other risky asset,
but the initial principal amount invested is not at risk. An example will illustrate how a
simple principal-protected note can be created.

Example 1 1.1
Suppose that the 3-year interest rate is 6% with continuous compounding. This
means that 1,000e_O'O6X3 = $835.27 will grow to $1,000 in 3 years. The difference
between $1,000 and $835.27 is $164.73. Suppose that a stock portfolio is worth
$1,000 and provides a dividend yield of 1.5% per annum. Suppose further that a
3-year at-the-money European call option on the stock portfolio can be purchased
for less than $164.73. (From DerivaGem, it can be verified that this will be the
case if the volatility of the value of the portfolio is less than about 15%.) A bank
can offer clients a $1,000 investment opportunity consisting of:

1. A 3-year zero-coupon bond with a principal of $1,000
2. A 3-year at-the-money European call option on the stock portfolio.
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If the value of the porfolio increases the investor gets whatever $1,000 invested in
the portfolio would have grown to. (This is because the zero-coupon bond pays
off $1,000 and this equals the strike price of the option.) If the value of the
portfolio goes down, the option has no value, but payoff from the zero-coupon
bond ensures that the investor receives the original $1,000 principal invested.

The attraction of a principal-protected note is that an investor is able to take a risky
position without risking any principal. The worst that can happen is that the investor
loses the chance to earn interest, or other income such as dividends, on the initial
investment for the life of the note. 0

There are many variations on the product we have described. An investor who thinks
that the price of an asset will decline can buy a principal-protected note consisting of a
zero-coupon bond plus a put option. The investor’s payoff in 3 years is then $1,000 plus
the payoff (if any) from the put option.

ls a principal-protected note a good deal from the retail investor’s perspective? A
bank will always build in a profit for itself when it creates a principal-protected note.
This means that, in Example 11.1, the zero-coupon bond plus the call option will always
cost the bank less than $1,000. In addition, investors are taking the risk that the bank
will not be in a position to make the payoff on the principal-protected note at maturity.
(Some retail investors lost money on principal-protected notes created by Lehman
Brothers when it failed in 2008.) In some situations, therefore, an investor will be
better off if he or she buys the underlying option in the usual way and invests the
remaining principal in a risk-free investment. However, this is not always the case. The
investor is likely to face wider bid-offer spreads on the option than the bank and is
likely to earn lower interest rates than the bank. It is therefore possible that the bank
can add value for the investor while making a profit itself.

Now let us look at the principal-protected notes from the perspective of the bank. The
economic viability of the structure in Example 11.1 depends critically on the level of
interest rates and the volatility of the portfolio. If the interest rate is 3% instead of 6%,
the bank has only 1,000 -— l,000e'°'°3"3 : $86.07 with which to buy the call option. If
interest rates are 6%, but the volatility is 25% instead of 15%, the price of the option
would be about $221. In either of these circumstances, the product described in
Example 11.1 cannot be profitably created by the bank. However, there are a number
of ways the bank can still create a viable 3-year product. For example, the strike price of
the option can be increased so that the value of the portfolio has to rise by, say, 15%
before the investor makes a gain; the investor’s return could be capped; the return of the
investor could depend on the average price of the asset instead of the final price; a
knockout barrier could be specified. The derivatives involved in some of these alter-
natives will be discussed later in the book. (Capping the option corresponds to the
creation of a bull spread for the investor and will be discussed later in this chapter.)

One way in which a bank can sometimes create a profitable principal-protected note
when interest rates are low or volatilities are high is by increasing its life. Consider the
situation in Example 11.1 when (a) the interest rate is 3% rather than 6% and (b) the
stock portfolio has a volatility of 15% and provides a dividend yield of 1.5%.
DerivaGem shows that a 3-year at-the-money European option costs about $119. This
is more than the funds available to purchase it (1,000 — l,000e"0'03"3 = $86.07). A
10-year at-the-money option costs about $217. This is less than the funds available to
purchase it (1,000 — l,000e”°'°3X1° = $259.18), making the structure profitable. When
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the life is increased to 20 years, the option cost is about $281, which is much less than
the funds available to purchase it (1,000 — l,000e'°'03X2° = $451.19), so that the struc-
ture is even more profitable. I I

A critical variable for the bank: in our example is the dividend yield. The higher it is,
the more profitable the product is for the bank. If the dividend yield were zero, the
principal-protected note in Example 11.1 cannot be profitable for the bank no matter
how long it lasts. (This follows from equation (10.4).) T

TRADING AN OPTION AND THE UNDERLYING ASSET

For convenience, we will assume that the asset underlying the options considered in the
rest of the chapter is a stock. (Similar trading strategies can be developed for other
underlying assets. We will also follow the usual practice of calculating the profit from a
trading strategy as the final payoff minus the initial cost without discounting.

There are a number of different trading strategies involving a single option on a stock
an.d the stock itself. The profits from these are illustrated in Figure 11.1. In this figure
and in other figures throughout this chapter, the dashed line shows the relationship
between profit and the stock price for the individual securities constituting the
portfolio, whereas the solid line shows the relationshipbetween profit and the stock
price for the whole portfolio. . .

In Figure ll.la, the portfolio consists of a long position in oa stock plus a short
position in a European call option. This is known as writing a covered call. The long
stock position “covers” or protects the investor from the payoff on the short call that
becomes necessary if there is a sharprise in the stock price. In Figure 11.1b, a short
position ina stock is combined with a long position in a call option. This is the reverse
of writing a covered call. In Figure 11.1c, the investment strategy involves buying a
European put option on a stock and the stock itself. The approach is referred to as a
protective put strategy. In Figure l1.1d, a short position in a put option is combined
with a short position in the stock. This is the reverse of a protective put. A

The profit patterns in Figures ll.la, b, c, d have the same general shape as the profit
patterns discussed in Chapter 9 for short put, long put, long call, and short call,
respectively. -Put—call parity provides away of understanding why this is so. From
Chapter 10, the put—call parity relationship is .

I p+So =¢+1<@"’T+ o (11.1)
where p is the price of a European put, So is the stock price, c is the price of a European
call, K is the strike price of both call and put, r is the risk-free interest rate, T is the time
to maturity ofboth call and put, and D is the present value of the dividends anticipated
during the life of the options.

Equation (11.1) shows that a long position in a European put combined with a long
position in the stock is equivalent to a long European call position plus a certain
amount (: KcT’T + D) of cash. This explains why the profit pattern in Figure 11.1c is
similar to the profit pattern from a long call position. The position in Figure 11.1d is the
reverse of that in Figure 1 l.lc and thereforeleads to a profit pattern similar to that from
a short call position.
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Figure 11 .1 Profit patterns (a) long position in a stock combined with short position
in a call; (b) short position in a stock combined with long position in a call; (c) long
position in a put combined with long position in a stock; (d) short position in a put
combined with short position in a stock.
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Equation (11.1) can be rearranged to become

So-—c==Ke_rT+D-—p

This shows that a long position in a stock combined with a short position in a
European call is equivalent to a short European put position plus a certain amount
(: Ke"T + D) of cash. This equality explains why the profit pattern in Figure 1l.la is
similar to the profit pattern from a short put position. The position in Figure l1.1b is
the reverse of that in Figure 11.1a and therefore leads to a profit pattern similar to that
from a long put position.
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SPREADS

A spread trading strategy involves taking a position in two or more options of the same
type (i.e., two or more calls or two or more puts).

Bull Spreads
One of the most popular types of spreads is a bull spread. This can be created by buying
a European call option on a stock with a certain strike price and selling a European call
option on the same stock with a higher strike price. Both options have the same
expiration date. The strategy is illustrated in Figure 11.2. The profits from the two
option positions taken separately are shown by the dashed lines. The profit from the
whole strategy is the sum of the profits given by the dashed lines and is indicated by the
solid line. Because a call price always decreases as the strike price increases, the value of
the option sold is always less than the value of the option bought. A bull spread, when
created from calls, therefore requires an initial investment.

Suppose that K1 is the strike price of the call option bought, K2 is the strike price of
the call option sold, and ST is the stock price on the expiration date of the options.
Table 11.1 shows the total payoff that will be realized from a bull spread in different
circumstances. If the stock price does well and is greater than the higher strike price, the
payoff is the difference between the two strike prices, or K2 — K1- If the stock price on
the expiration date lies between the two strike prices, the payoff is ST -— K1. If the stock
price on the expiration date is below the lower strike price, the payoff is zero. The profit
in Figure 11.2 is calculated by subtracting the initial investment from the payoff.

A bull spread strategy limits the investor’s upside as well as downside risk. The
strategy can be described by saying that the investor has a call option with a strike price
equal to K1 and has chosen to give up some upside potential by selling a call option
with strike price K2 (K2 > K1). In return for giving up the upside potential, the investor
gets the price of the option withstrike price K2. Three types of bull spreads can be
distinguished:

1. Both. calls are initially out of the money.
2. One call is initially in the money; the other call is initially out of the money.
3. Both calls are initially in the money. /
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Figure 11.2 Profit from bull spread created using call options.
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Table 11.1 Payoff from a bull spread created using calls.

Stock price Payoflfrom Payofi’from Total
range long call option short call option payofl

STQK1 0 0 0
K1<ST.<K2 ST—-K1 0 ST—K1

STZK2 ST-K1 "(ST"K2) K2-K1
~- - .'~- _ - .q~. » - !—\¢@ ' ._ -~ .4 ~~-~-. __. _ r --~'---v’yq- -. .‘__ , - ~ . .- ,— - 4‘-7.‘ '_~7qy-—,_‘_ --
| . . ~ vi. .- _--_‘ ' ‘at I ~ . . ‘ -.5 5' ‘ "—f._..».'..,..‘. ~.- 1 ____--'41:-‘ =F._.pn.. J12’ v- fr‘. I 1 V‘. ‘H ‘ " --

The most aggressive bull spreads are those of type 1. They cost very little to set up and
have a small probability of giving a relatively high payoff (: K2 — K1). As we move
from type 1 to type 2 and from type 2 to type 3, the spreads become more conservative.

Example 11.2
An investor buys for $3 a 3-month European call with a strike price of $30 and
sells for $1 a 3-month European call with a strike price of $35. The payoff from
this bull spread strategy is $5 if the stock price is above $35, and zero if it is
below $30. If the stock price is between $30 and $35, the payoff is the amount by
which the stock price exceeds $30. The cost of the strategy is $3 — $1 = $2. So the
profit is:

Stock price range . Profit

I

ST<3O -2 ,
3O<ST<35 ST-32

S7235 3

Bull spreads can also be created by buying a European put with a low strike price and
selling a European put with a high strike price, as illustrated in Figure 11.3. Unlike bull
spreads created from calls, those created from puts involve a positive up-front cash
flow to the investor (ignoring margin requirements) and a payoff that is either negative
or zero.
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Figure 11.3 Profit from bull spread created using put options.
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Bear Spreads
An investor who enters into a bull spread is hoping that the stock price will increase. By
contrast, an investor who enters into a bear spread is hoping that the stock price will
decline. Bear spreads can be created by buying a European put with one strike price and
selling a European put with another strike price. The strike price of the option
purchased is greater than the strike price of the option sold. (This is in contrast to a
bull spread, where the strike price of the option purchased is always less than the strike
price of the option sold.) In Figure 11.4, the profit from the spread is shown by the solid
line. A bear spread created from puts involves an initial cash outflow because the price
of the put sold is less than the price of the put purchased. In essence, the investor has
bought a put with a certain strike price and chosen to give up some of the profit
potential by selling a put with a lower strike price. In return for the profit given up, the
investor gets the price of the option sold.

Assume that the strike prices are K1 and K2, with K1 < K2. Table 11.2 shows the
payoff that will be realized from a bear spread in different circumstances. If the stock
price is greater than K2, the payoff is zero. If the stock price is less than KT, the payoff is
K2 —— K1. If the stock price is between K1 and K2, the payoff is K2 — ST. The profit is
calculated by subtracting the initial cost from the payoff.

Example 11.3
An investor buys for $3 a 3-month European put with a strike price of $35 and sells
for $1 a 3-month European put with a strike price of $30. The payoff from this bear
spread strategy is zero if the stock price is above $35, and $5 if it is below $30. If the
stock price is between $30 and $35, the payoff is 35 — ST. The options cost
$3 — $1 = $2 up front. So the profit is:

Stock price range Profit

ST Q 30 +3
3O<ST<35 33—ST

ST 2 35 -2

:_|_ |- r v-- ._ . ~~~ - .--_»‘ - -' ~~.- __ __- - ._ . _-~'_~ ~ >.-- ~-- I — , » --. ¢— - , , -v<---
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Figure 1 1 .4 Profit from bear spread created using put options.
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Table 11.2 Payoff from a bear spread created with put options.

Stock price Payofi‘from Payoflfrom Total
range long put option short put option payofl

5T€K1 K2"'ST _(Kl_ST) K2-K1
K1<ST<K2 K2-ST O [(2--ST

ST 2 K2 U 0 0
"£§.7L'Z‘ 7;‘! ~'_‘="F1§. 5%? 1 -<T'1.’."“.T§ .°"73!?7'3'i'?' 1' - 3l'l§'- "LT; FL-’7‘.’1'aE'Jn;7'..~'»‘I3'$'.'.fl'§_l'Tfi.-".'P_:" l!=!3!L"Z§‘2L'?

Like bull spreads, bear spreads limit both the upside profit potential and the downside
risk. Bear spreads can be created using calls instead of puts. The investor buys a call
with a high strike price and sells a call with a low strike price, as illustrated in
Figure 11.5. Bear spreads created with calls involve an initial cash inflow (ignoring
margin requirements).

Box Spreads
A box spread is a combination of a bull call spread with strike prices K1 and K2 and a
bear put spread with the same two strike prices. As shown in Table 11.3, the payoff
from a box spread is always K2 — K1. The value of a box spread is therefore always the
present value of this payoff or (K2 — K1)e_’T. If it has a different value there is an
arbitrage opportunity. If the market price of the box spread is too low, it is profitable to
buy the box. This involves buying a call with strike price K1,. buying a put with strike
price K2, selling a call with strike price K2, and selling a put with strike price K1. If the
market price of the box spread is too high, it is profitable to sell the box. This involves
buying a call with strike price K2, buying a put with strike price K1, selling a call with
strike price K1, and selling a put with strike price K2.

It is important to realize that a box-spread arbitrage only works with European
options. Many of the options that trade on exchanges are American. As shown in
Business Snapshot 11.1, inexperienced traders who treat American options as European
are liable to lose money.

 €!Cl‘“fl<1ZT‘T'.r_-.ll'='f_"-‘.‘:- '-EL; “-.€.§4E':}TI" i§ig§A'E§m]Hm¥l7j'!:#'"L?K?§K&.€’Q'£i12L. Lfl&'l§~€E.%Tfi '. .5 -~ .£‘1.£;T'c"-?§lTI
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Figure 11.5 (Profit from bear spread created using call options.
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Table 11.3 Payoff from a box spread.

Stock price Payofi’from Payofljrom Total
range bull call spread bear put spread payojf

ST<K1 O K2—K1 K2—K1
K1<ST<K2 ST—K1 K2—ST K2—K1

STZK2 K2—K1 I 0 K2—K1
'=:-_':=.v'-'-rm--';‘.:-I.-<'-" #211 ‘.1 "lli'i'i'.""L"”"I" as - "~?=:-r.-:-i ‘.53 r = a" ~.~t-+.*_..:'. ~

Butterfly Spreads
A butterfly spread involves positions in options with three different strike prices. It can
be created by buying a European call option with a relatively low strike price K1,
buying a European call option with a relatively high strike price K3, and selling two
European call options with a strike price K2 that is halfway between K1 and K3.
Generally, K2 is close to the current stock price. The pattern of profits from the strategy
is shown in Figure 11.6. A butterfly spread leads to a profit if the stock price stays close
to K2, but gives rise to a small loss if there is a significant stock price move in either
direction. It is therefore an appropriate strategy for an investor who feels that large
stock price moves are unlikely. The strategy requires a small investment initially. The
payoff from a butterfly spread is shown in Table 11.4.

Suppose that a certain stock is currently worth $61. Consider an investor who feels
that a significant price move in the next 6 months is unlikely. Suppose that the market
prices of 6-month European calls are as follows:

Strike price ($ ) 3 Call price ($)

55 10
60 A 7
65 5

1 ll *1 I 1

.1.‘ -- ~-» -.

Figure 11.6 Profit from butterfly spread using call options.
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Table 11.4 Payoff from a butterfly spread.

Stock price Payoflfrom Payoflfrom Payofi‘from Total
range first long call second long call sliort calls payofi“

ST Q K1 0 0 0 0
K1<ST'<K2 ST—K1 0 0 ST—K1

K2 < sT < K3 sT - K1 0 -2(sT - K2) K3 - sT
37: 2 K3 ST"K1 5T—K3 —2(ST- K2) 0

* These payoffs are calculated using the relationship K2 = 0.5(K1 + K3).
rs, 2 -v '71":-/17*? .»_,._l._ -< — - -_ - - — ~ . ___'.-. _. ..> ___- .. ,_»_,,‘-,... . _
i . . . _ _ .. .=_e_ .. _ i _ - in... .¢ > .

The investor could create a butterfly spread by buying one call with a $55 strike price,
buying one call with a $65 strike price, and selling two calls with a $60 strike price. It
costs $10 + $5 — (2 >< $7) = $1 to create the spread. If the stock price in 6 months is
greater than $65 or less than $55, the total payoff is zero, and the investor incurs a net
loss of $1. If the stock price is between $56 and $64, a profit is made. The maximum
profit, $4, occurs when the stock price in 6 months is $60.

Butterfly spreads can be created using put options. The investor buys two European
puts, one with a low strike price and one with a high strike price, and sells two
European puts with an intermediate strike price, as illustrated in Figure 11.7. The
butterfly spread in the example considered above would be created by buying one put
with a strike price of $55, another with a strike price of $65, and selling two puts with a
strike price of $60. The use of put options results in exactly the same spread as the use
of call options. Put—call parity can be used to show that the initial investment is the
same in both cases.

A butterfly spread can be sold or shorted by following the reverse strategy. Options
are sold with strike prices of K1 and K3, and two options with the middle strike price K2
are purchased. This strategy produces a modest profit if there is a significant movement
in the stock price.

ILL“-..*:".-'.':'-'<'t:'-'.-1=\ T2"-'l'T."“!'~‘-'“’I'».-I1‘."-f~\'T'2. ."."; 1""; <;: ' -T._‘*.‘-T ‘ "' ’ " ' "" " ' t ‘ ?- * tt- -» '" . ~

Figure 11.7 Profit from butterfly spread using put options. ,
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Business Snapshot 11.1 Losing Money with Box Spreads

T Suppose that a stock has a price of $50 and a volatility of 30%. No dividends are
expected andthe risk-free rate is 8%. A trader offers you the chance to sell on the
CBOEa 2,-month box spread where the strike prices are $55 and $60 for $5.10.
Should you do the trade‘? F _ I A

The trade certainly sounds attractive. In this case K1 = 55, K2 = 60, and thepayoff
is certain to be $5 in 2 months. By selling the box spread for $5.10 andinvestinig the
funds for 2 months you would havemore than enough fundsto meet the_$5 payoff in
2»1non'ths.2The theoretical value of the box spread today is 5 >Z'e5°'°8?‘2/1??-‘=:$4.93.~

-~Unfortunately there is a snag. CBOE stock options are American and the $5 payoff
from the box spread is calculated on the assumption that the options comprising the
box are European. Option prices for this example (calculated using DerivaGem) are
shown in the table below. A (bull call spread where the strike prices are $55 and $60
costsi0.96 '—f 0.26 = $0.70. (This is the same for both European and American options,
because, as we saw in Chapter 10, the price of a European call is the sarneas theprice of
an “American call when there are no dividends.) A bear put spread with the same strike
prices costs 9.46’-— 5.23 = $4.23 if the options are European and 10.00 '— 5.44 = $4.56
if they are American. The combined value of both spreads if they arecreated with
European options is 0.70 +4.23 =.$4.93. This is the-theoretical box spread pTlCC§
calculated above. The combined value of buying both spreadsif they are Ajtrierican is
0.70 El-4.56 .-9 $5.26. Selling abox spread created with American options: for $5.10
would not be-a good trade; You would realize this almost immediately as the trade
involves selling a $60 strike put and this would be exercised against you almost as soon

iasyousoldit! t-  I A I
E , _ _ . . ‘
; 1 ~ . _ - '

I 

optgien 1 J 7 Strike
type I ' price

European i _- American '
option price , option price

Call - 60
' Call :55

I 0.26 0.26
0.96 - 0.96
9.46 10.00Put . 60

Put" '55 I 5.23 '3 F 5.44 "
....... .. . . . .— 1 — I

Calendar Spreads
Up to now we have assumed that the options used to create a spread all expire at the
same time. We now move on to calendar spreads in which the options have the same
strike price and different expiration dates.

A calendar spread can be created by selling a European call option with a certain
strike price and buying a longer-maturity Eurpean call option with the same strike price.
The longer the maturity of an option, the more expensive it usually is. A calendar spread
therefore usually requires an initial investment. Profit diagrams for calendar spreads are
usually produced so that they show the profit when the short-maturity option expires on
the assumption that the long-maturity option is closed out at that time. The profit
pattern for a calendar spread produced from call options is shown in Figure 11.8. The
pattern is similar to the profit from the butterfly spread in Figure 11.6. The investor
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Figure 1 1 .8 Profit from calendar spread created using two call options, calculated at
the time when the short-maturity call option expires.
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makes a profit if the stock price at the expiration of the short-maturity option is close to
the strike price of the short-maturity option. However, a loss is incurred when the stock
price is significantly above or significantly below this strike price.

To understand the profit pattern from a calendar spread, first consider what happens
if the stock price is very low when the short-maturity option expires. The short-maturity
option is worthless and the value of the long-maturity option is close to zero. The
investor therefore incurs a loss that is close to the cost of setting up the spread initially.
Consider next what happens if the stock price, ST, is very high when the short-maturity
option expires. The short-maturity option costs the investor ST — K, and the long-
maturity option is worth close to ST -— K, where K is the strike price of the options.
Again, the investor makes a net loss that is close to the cost of setting up the spread
initially. If ST is close to K, the short-maturity option costs the investor either a small
amount or nothing at all. However, the long-maturity option is still quite valuable. In
this case a significant net profit is made.

In a neutral calendar spread. a strike price close to the current stock price is chosen.
A bullish calendar spread involves a higher strike price, whereas a bearish calendar
spread involves a lower strike price.

Calendar spreads can be created with put options as well as call options. The investor
buys a long-maturity put option and sells a short-maturity put option. As shown in
Figure 11.9, the profit pattern is similar to that obtained from using calls.

A reverse calendar spread is the opposite to that in Figures 11.8 and 11.9. The investor
buys a short-maturity option and sells a long-maturity option. A small profit arises if
the stock price at the expiration of the short-maturity option is well above or well below
the strike price of the short-maturity option. However, a significant loss results if it is
close to the strike price.

Diagonal Spreads
Bull, bear, and calendar spreads can all be created from a long position in one call and
a short position in another call. In the case of bull and bear spreads, the calls have
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Figure 11.9 Profit from calendar spread created using two put options, calculated at
the time when the short-maturity put option expires.
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different strike prices and the same expiration date. In the case of calendar spreads, the
calls have the same strike price and different expiration dates.

In a diagonal spread both the expiration date and the strike price of the calls are
different. This increases the range of profit patterns that are possible.

11.4 COMBINATIONS

A combination is an option trading strategy that involves taking a position in both calls
and puts on the same stock. We will consider straddles, strips, straps, and strangles.

Straddle A
One popular combination is a straddle, which involves buying a European call and put
with the same strike price and expiration date. The profit pattern is shown in Figure 11.10.
The strike price is denoted by K. If the stock price is close to this strike price at expiration

/_.
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Figure 11.10 Profit from a straddle.
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Table 11.5 Payoff from a straddle.

Range of Payofl Payofl Total
stock price from call from put payofl

ST<K 0 K—ST K-—ST
ST>K ST-'K 0 ST-K’

Y‘>—_ . - , ,_ .2 , 2 ., ,_ ... w _- . —~. .» . 2
" I Y ' ' »-' i-‘- . ................. - - - '. - .¢ ¢‘ _ ;

of the options, the straddle leads to a loss. However, if there is a sufficiently large move in
either direction, a significant profit will result. The payoff from a straddle is calculated in
Table 11.5.

A straddle is appropriate when an investor is expecting a large move in a stock price
but does not know in which direction the move will be. Consider an investor who feels
that the price of a certain stock, currently valued at $69 by the market, will move
significantly in the next 3 months. The invest/or could create a straddle by buying both a
put and a call with a strike price of $70 and an expiration date in 3 months. Suppose
that the call costs $4 and the put costs $3. If the stock price stays at $69, it is easy to see
that the strategy costs the investor $6. (An up-front investment of $7 is required, the call
expires worthless, and the put expires worth $1.) If the stock price moves to $70, a loss
of $7 is experienced. (This is the worst that can happen.) However, if the stock price
jumps up to $90, a profit of $13 is made; if the stock moves down to $55, a profit of $8
is made; and so on. As discussed in Business Snapshot 11.2 an investor should carefully
consider whether the jump that he or she anticipates is already reflected in option prices
before putting on a straddle trade. ,

The straddle in Figure 11.10 is sometimes referred to as a bottom straddle or straddle
purchase. A top straddle or straddle write is the reverse position. It is created by selling a
call and a put with the same exercise price and expiration date. It is a highly risky strategy.
If the stock price on the expiration date isclose to the strike price, a significant profit
results. However, the loss arising from a large move is unlimited. P

Strips and Straps
A strip consists of a long position in one European call and two European puts with the
same strike price and expiration date. A strap consists of a long position in two
European calls and one European put with the same strike price and expiration date.
The profit patterns from strips and straps are shown in Figure ll.ll. In a strip the
investor is betting that there will be a big stock price move and considers a decrease in
the stock price to be more likely than an increase. In a strap the investor is also betting
that there will be a big stock price move. However, in this case, an increase in the stock
price is considered to be more likely than a decrease.

Strangles  
In a strangle, sometimes called a bottom vertical combination, an investor buys a
European put and a European call with the same expiration date and different strike
prices. The profit pattern that is obtained is shown in Figure 11.12. The call strike price,
K2, is higher than the put strike price, K1. The payoff function for a strangle is
calculated in Table 11.6.
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Business Snapshot 1.1.2 '1 Howl3to_Make Money from Trading Straddles T '
 '

_ _ 2 . . - , ‘ .

Suppose that a bigrnove is expected in a company’s stock pricebecause th,ere_.iis “a
takeover bid for. the company or. the outeomel. of_ §_a major. lawsuit-A involving the
company. isabout to be aprmounced. Should you trade'a. str.addle?3_H T-_*. _- i

. A straddle naturalJftradingrlstrategy in i_How'_evefr,'if,yotir.view',ofthe
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expensive than one The\/Qshaped I
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For a straddle to be an effective strategy,_ you must believe that there are likely to "be.
big movements in the stock price and these beliefs must be idifferent from -those-of '
most other investors.-3 Market prices incorporatethe beliefs ofmarket’ participants‘.-To T
make money from any investment strategy, you must take fa view that is idifferent from
mostsof the rest of the §market—_and you must be "right! I ' I 7 I L _

A strangle is a similar strategy to a straddle. The investor is betting that there will be a
large price move, but is uncertain whether it will be an increase or a decrease.
Comparing Figures 11.12 and 11.10, we see that the stock price has to move farther
in a strangle than in a straddle for the investor to make a profit. However, the downside
risk if the stock price ends up at a central value is less with a strangle.

The profit pattern obtained with a strangle depends on how close together the strike
prices are. The farther they are apart, the less the downside risk and the farther the
stock price has to move for a profit to be realized.

The sale of a strangle is sometimes referred to as a top vertical combination. It can be
appropriate for an investor who feels that large stock price moves are unlikely.
However, as with sale of a straddle, it is a risky strategy involving unlimited potential
loss to the investor.
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Figure 11.11 Profit froma strip and a strap. .
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Figure 11.12 Profit from a strangle.
A Profh

\\\ I

\ //
\ /
\\ Kl /I

\\ l l // >
\ /\ , S\ T

1 1 j j j j j j j j

\-

UmgCflL - - - ' _ - — _ _ _ _ _ _ _ - _ __E__}__
Stflkfi K2 . . . _ .._ ._ ... gt,

l

\ ... ___

OTHER PAYOFFS

This chapter has demonstrated just a few of the ways in which options can be used to
produce an interesting relationship between profit and stock price. If European options
expiring at time T were available with every single possible strike price, any payoff
function at time T could in theory be obtained. The easiest illustration of this involves
butterfly spreads. Recall that a butterfly spread is created by buying options with strike
prices K1 and K3 and selling two options with strike price K2, where K T < K2 < K3 and
K3 -—- K2 = K2 — K1. Figure 11.13 shows the payoff from a butterfly spread. The pattern
could be described as a spike. As K T and K3 move closer together, the spike becomes
smaller. Through the judicious combination of a large number of very small spikes, any
payoff function can be approximated.

SUMMARY

Principal-protected notes can be created from a zero-coupon bond and a European call
option. They are attractive to some investors because the issuer of the product
guarantees that the purchaser will be receive his or her principal back regardless of
the performance of the asset underlying the option.

A number of common trading strategies involve a single option and the underlying
stock. For example, writing a coveredcall involves buying the stock and selling a call
option on the stock; a protective put involves buying a put option and buying the stock.
The former is similar to selling a put option; the latter is similar to buying a call option.

-‘3_,_--_ - . _ .2- -». -.~ - . - .» .,_._ .-Y, . . .2~-......-,,-----»¢-Iv-~~r< .-I -"B _ _._-..., ~-_ 7-:
4.» .. . - r ’ . _ I» , ~— I . ._.t,...._....,.A.»,”..,. I ' ' t‘ ~ I - ~- ' I ~ ~ I

Table 11.6 Payoff from a strangle.

Range of Payofl Payofi’from Total
stock price from call put payofl

STQK1 ' 0 K1—ST K1—ST

K1<ST<K2 0 0 O

ST Z K2 ST — K2 :0 ST — K2
, _ .. "2 ~ . . . . Y _ .
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Figure 11.13 “Spike payoff” from a butterfly spread that can be used as abuilding
block to create other payofi"s. 5
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Spreads involve either taking a position in two or more calls or taking a position in two
or more puts. A bull spread can be created by buying a call (put) with a low strike price
and selling a call (put) with a high strike price. A bear spread can be created by buying a
put (call) with a high strike price and selling a put (call) with a low strike price. A
butterfly spread involves buying calls (puts) with a low and high strike price and selling
two calls (puts) with some intermediate strike price. A calendar spread involves selling a
call (put) with a short time to expiration and buying a call (put) with a longer time to
expiration. A diagonal spread involves a long position in one option and a short position
in another option such that both the strike price and the expiration date are different.

Combinations involve taking a position in both calls and puts on the same stock. A
straddle combination involves taking a long position in a call and a long position in a
put with the same strike price and expiration date. A strip consists of a long position in
one call and two puts with the same strike price and expiration date. A strap consists of
a long position in two calls and one put with the same strike price and expiration date.
A strangle consists of a long position in a call and a put with different strike prices and
the same expiration date. There are many other ways in which options can be used to
produce interesting payoffs. It is not surprising that option trading has steadily
increased in popularity and continues to fascinate investors.
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Practlce Questions (Answers in Solutions Manual)
u

ll 1 What is meant by a protective put? What position in call options is equivalent to a
protective put‘?

ll 2 Explain two ways in which a bear spread can be created.



Trading Strategies Involving Options Z51

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14.

11.15

11.16

11.17

11.18

11.19.

When is it appropriate for an investor to purchase a butterfly spread?

Call options on a stock are available with strike prices of $15, $172, and $20, and
expiration dates in 3 months. Their prices are $4, $2, and $2, respectively. Explain how
the options can be used to create a butterfly spread. Construct a table showing how
profit varies with stock price for the butterfly spread.

What trading strategy creates a reverse calendar spread?
What is the difference between a strangle and a straddle‘?
A call option with a strike price of $50 costs $2. A put option with a strike price of $45
costs $3. Explain how a strangle can be created from these two options. What is the
pattern of profits from the strangle‘?

Use put~call parity to relate the initial investment for a bull spread created using calls to
the initial investment for a bull spread created using puts.

Explain how an aggressive bear spread can be created using put options.

Suppose that put options on a stock with strike prices $30 and $35 cost $4 and $7,
respectively. How can the options be used to create (a) a bull spread and (b) a bear
spread‘? Construct a table that shows the profit and payoff for both spreads.

Use put~call parity to show that the cost of a butterfly spread created from European
puts is identical to the cost of a butterfly spread created from European calls.

A call with a strike price of $60 costs $6. A put with the same strike price and expiration
date costs $4. Construct a table that shows the profit from a straddle. For what range of
stock prices would the straddle lead to a loss? A '   

Construct a table showing the payoff from a bull spread when puts with strike prices K1
and K2, with K2 > K1, are used. A

An investor believes that there will be a big jump in a stock price, but is uncertain as to
the direction. Identify six different strategies the investor can follow and explain the
differences among them.
How can a forward contract on a stock with a particular delivery price and delivery date
be created from options‘?
“A box spread comprises four options. Two can be combined to create a long forward
position and two can be combined to create a short forward position.” Expl/ain this
statement. I
What is the result if the strike price of the put is higher than the strike price of the call in
a strangle?

One Australian dollar is currently worth $0.64. A 1-year butterfly spread is set up using
European call options with strike prices of $0.60, $0.65, and $0.70. The risk-free interest
rates in the United States and Australia are 5% and 4% respectively, and the volatility of
the exchange rate is 15%. Use the DerivaGem software to calculate the cost of setting up
the butterfly spread position. Show that the cost is the same if European put options are
used instead of European call options.

An index provides a~ dividend yield of 1% and has a volatility of 20%. The risk-free
interest rate is 4%. How long does a principal-protected note, created as in Example 11.1,
have to last for it to be profitable for the bank issuing it? Use DerivaGem.
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Further Questions

11.20. Three put options on a stock have the same expiration date and strike prices of $55, $60,
and $65. The market prices are $3, $5, and $8, respectively. Explain how a butterfly
spread can be created. Construct a table showing the profit from the strategy. For what
range of stock prices would the butterfly spread lead to a loss?

11.21. A diagonal spread is created by buying a call with strike price K2 and exercise date T2
and selling a call with strike price K1 and exercise date T1, where T2 > T1. Draw a
diagram showing the profit when (a) K2 > K1 and (b) K2 < K1.

11.22. Draw a diagram showing the variation of an investor’s profit and loss with the terminal
stock price for a portfolio consisting of:
(a) One share and a short position in one call option
(b) Two shares and a short position in one call option
(c) One share and a short position in two call options
(d) One share and a short position in four call options.
In each case, assume that the call option has an exercise price equal to the current
stock price.

11.23. Suppose that the price of a non-dividend-paying stock is $32, its volatility is 30%, and
the risk-free rate for all maturities is 5% per annum. Use DerivaGem to calculate the
cost of setting up the following positions:
(a) A bull spread using European call options with strike prices of $25 and $30 and a

maturity of 6 months
(b) A bear spread using European put options with strike prices of $25 and $30 and a

maturity of 6 months 1
(c) A butterfly spread using European call options with strike prices of $25, $30, and

$35 and a maturity of 1 year
(d) A butterfly spread using European put options with strike prices of $25, $30, and

$35 and a maturity of 1 year '
(e) A straddle using options with a strike price of $30 and a 6-month maturity
(f) A strangle using options with strike prices of $25 and $35 and a 6-month maturity.
In each case provide a table showing the relationship between profit and final stock price.
Ignore the impact of discounting.

11.24. What trading position is created from a long strangle and a short straddle when both
have the same time to maturity? Assume that the strike price in the straddle is halfway
between the two strike prices of the strangle.

11.25. Describe the trading position created in which a call option is bought with strike price K2
and a put option is sold with strike price K1 when both have the same time to maturity
and K2 > K1. What does the position become when K1 =_— K2?

11.26. A bank decides to create a five-year principal-protected note on a non-dividend-paying
stock by offering investors a zero-coupon bond plus a bull spread created from calls. The
risk-free rate is 4% and the stock price volatility is 25%. The low-strike-price option in
the bull spread is at the money. What is the maximum ratio of the high strike price to the
low strike price in the bull spread. Use DerivaGem.
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12.1

C Binomial Trees
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A useful and very popular technique for pricing an option involves constructing a
binomial tree. This is a diagram representing different possible paths that might be
followed by the stock price over the life of an option. The underlying assumption is that
the stock price follows a random walk. In each time step, it has a certain probability of
moving up by a certain percentage amount and a certain probability of moving down by
a certain percentage amount. In the limit, as the time step becomes smaller, this model
is the same as the Black—Scholes—Merton model we will be discussing in Chapter 14.
Indeed, in the appendix to this chapter, we show that the European option price given
by the binomial tree converges to the Black—Scholes—Merton price as the time step
becomes smaller.

The material in this chapter is important for a number of reasons. First, it explains the
nature of the no-arbitrage arguments that are used for valuing options. Second, it
explains the binomial tree numerical procedure that is widely used for valuing American
options and other derivatives. Third, it introduces a very important principle known as
risk-neutral valuation.

The general approach adopted here is similar to that in an important paper published
by Cox, Ross, and Rubinstein in 1979. More details on numerical procedures using
binomial trees are given in Chapter 20. /T

A ONE-STEP BINOMIAL MODEL AND A NO-ARBITRAGE
ARGUMENT

We start by considering a very simple situation. A stock price is currently $20, and it is
known that at the end of 3 months it will be either $22 or $18. We are interested in
valuing a European call option to buy the stock for $21 in 3 months. This option will
have one of two values at the end of the 3 months. If the stock price turns out to be $22,
the value of the option will be $1; if the stock price turns out to be $18, the value of the
option will be zero. The situation is illustrated in Figure l2.l.

It turns out that a relatively simple argument can be used to price the option in this
example. The only assumption needed is that arbitrage opportunities do not exist. We
set up a portfolio of the stock and the option in such a way that there is no uncertainty

253
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Figure 12.1 Stock price movements for numerical example in Section 12.1.
_ Stock price = $22

Option price = $1

Stock price = $20

Stock price = $18
Option price = $0
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about the value of the portfolio at the end of the 3 months. We then argue that, because
the portfolio has no risk, the return it earns must equal the risk-free interest rate. This
enables us to work out the cost of setting up the portfolio and therefore the option’s
price. Because there are two securities (the stock and the stock option) and only two
possible outcomes, it is always possible to set up the riskless portfolio.

Consider a portfolio consisting of a long position in A shares of the stock and a short
position in one call option (A is the capital Greek letter “delta”). We calculate the value
of A that makes the portfolio riskless. If the stock price moves up from $20 to $22, the
value of the shares is 22A and the value of the option is 1, so that the total value of the
portfolio is 22A — 1. If the stock price moves down from $20 to $18, the value of the
shares is 18A and the value of the option is zero, so that the total value of the portfolio
is 18A. The portfolio is riskless if the value of A is chosen so that the final value of the
portfolio is the same for both alternatives. This means that

. 22A — 1 = 18A
or

A = 0.25
A riskless portfolio is therefore

Long: 0.25 shares
Short: 1 option.

If the stock price moves up to $22, the value of the portfolio is

22 >< 0.25 -— 1 = 4.5

If the stock price moves down to $18, the value of the portfolio is

18 >< 0.25 : 4.5

Regardless of whether the stock price moves up or down, the value of the portfolio is
always 4.5 at the end of the life of the option. This shows that A is the number of shares
necessary tohedge a short position in one option. It is one of the “Greek letters” that
will be discussed later in this chapterand in Chapter 18.

Riskless portfolios must, in the absence of arbitrage opportunities, earn the risk-free
rate of interest. Suppose that, in this case, the risk-free rate is 12% per annum. It



Bmomzal Trees Z55

follows that the value of the portfolio today must be the present value of 4.5, or

4.5@"°-‘2><3/ 12 = 4.367
The value of the stock price today is known to be $20. Suppose the option price is
denoted by f. The value of the portfolio today is

20><0.25—f:5—f
It follows that

5 —- f : 4.367
or

f : 0.633

This shows that, in the absence of arbitrage opportunities, the current value of the
option must be 0.633. If the value of the option were more than 0.633, the portfolio
would cost less than 4.367 to set up and would earn more than the risk-free rate. If the
value of the option were less than 0.633, shorting the portfolio would provide a way of
borrowing money at less than the risk-free rate. I

A Generalization
We can generalize the no-arbitrage argument just presented by considering a stock
whose price is S0 and an option on the stock (or any derivative dependent on the stock)
whose current price is f. We suppose that the option lasts for time T and that during
the life of the option the stock price can either move up from SO to a new level, Sou,
where u > 1, or down from S0 to a new level, S061, where d < 1. The percentage increase
in the stock price when there is an up movement is u — 1; the percentage decrease when
there is a down movement is 1 -— d. If the stock price moves up to Sou, we suppose that
the payoff from the option is fu; if the stock price moves down to Sod, we suppose the
payoff from the option is fd. The situation is illustrated in Figure 12.2. ,

As before, we imagine a portfolio consisting of a long position in A shares and a
short position in one option. We calculate the value of A that makes the portfolio
riskless. If there is an up movement in the stock price, the value of the portfolio at the
end of the life of the option is p,

_ S0uA — .fu
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Figure 12.2 Stock and option prices in a general one-step tree.
S0!/l

fu

50
f

Sod
d
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If there is a down movement in the stock price, the value becomes

S0dA — fd
The two are equal when

S0uA — fa :: S0dA — fd
OT

1 fu _ fdA : ——— 12.1
S01/l — Sod ( )

In this case, the portfolio is riskless and, for there to be no arbitrage opportunities, it
must earn the risk,-free interest rate. Equation (12.1) shows that A is the ratio of the
change in the option price to the change in the stock price as we move between the
nodes at time T.

If we denote the risk-free interest rate by r, the present value of the portfolio is

(SQMA — f..>e'”
The cost of setting up the portfolio is

SOA — f
It follows that

SOA — f = (Sow — f..>@7'T
or

f = S@A(1 — M”) + f..e"T
Substituting from equation (12.1) for A, we obtain A

f = 50 ( )(1 - ”@_rT) + fu@_rT
or I

7.0 — MT) + f.<1/WT ~ 1)
f_ u—d

or

f = @"T[11f.. + <1 — p>f..1 (12.2)
where

rTe —d
:—-i 2.3p P u_d (1 )

Equations (12.2) and (12.3) enable an option to be priced when stock price movements
are given by a one-step binomial tree. The only assumption needed for the equation is
that there are no arbitrage opportunities in the market.

In the numerical example considered previously (see Figure 12.1), u : 1.1, d : 0.9,
r = 0.12, T = 0.25, fa : 1, and fd : 0. From equation (12.3), we have

e0.l2X3/12 _

P: 1.1-0.9 Z065”
and, from equation (12.2), we have

f = 67°-”><°~25(0.6523 >< 1+ 0.3477 >< 0) 1 0.633
The result agrees with the answer obtained earlier in this section.
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12.2

lrrelevance of the Stock’s Expected Return
The option pricing formula in equation (12.2) does not involve the probabilities of the
stock price moving up or down. For example, we get the same option price when the
probability of an upward movement is 0.5 as we do when it is 0.9. This is surprising and
seems counterintuitive. It is natural to assume that, as the probability of an upward
movement in the stock price increases, the value of a call option on the stock increases
and the value of a put option on the stock decreases. This is not the case.

The key reason is that we are not valuing the option in absolute terms. We are
calculating its value in terms of the price of the underlying stock. The probabilities of
future up or down movements are already incorporated into the stock price: we do not
need to take them into account again when valuing the option in terms of the stock price.

RISK-NEUTRAL VALUATION

We are now in a position to introduce a very important principle in the pricing of
derivatives known as risk-neutral valuation. This states that, when valuing a derivative,
we can make the assumption that investors are risk-neutral. This assumption means
investors do not increase the expected return they require from an investment to
compensate for increased risk. A world where investors are risk-neutral is referred to
as a risk-neutral world. The world we live in is, of course, not a risk-neutral world. The
higher the risks investors take, the higher the expected returns they require. However, it
turns out that assuming a risk-neutral world gives us the right option price for the
world we live in, as well as for a risk-neutral world. Almost miraculously, it finesses the
problem that we know hardly anything about the risk aversion of the buyers and sellers
of options.

Risk-neutral valuation seems a surprising result when it is first encountered. Options
are risky investments. Should not a person’s risk preferences affect how they are priced?
The answer is that, when we are pricing an option in terms of the price of the
underlying stock, risk preferences are unimportant. As investors become more risk-
averse, stock prices decline, but the formulas relating option prices to stock prices
remain the same.

A risk-neutral world has two features that simplify the pricing of derivatives:

1. The expected return on a stock (or any other investment) is the risk-free rate.
2. The discount rate used for the expected payoff on an option (or any other

instrument) is the risk-free rate.

Returning to equation (12.2), the parameter p should be interpreted as the probability
of an up movement in a risk-neutral world, so that 1 —- p is the probability of a down
movement in this world. The expression

pfir + '7 p)fd

is the expected future payoff from the option in a risk-neutral world and equation (12.2)
states that the value of the option today is its expected future payoff in a risk-neutral
world discounted at the risk-free rate. This is an application of risk-neutral valuation.
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To prove the validity of our interpretation of p, we note that, when p is the
probability of an up movement, the expected stock price E(ST) at time T is given by

E(ST) = PS0“ + (1 — Plsod
Or

Substituting from equation (12.3) for p gives

E(ST) = $06” (12.4)
This shows that the stock price grows, on average, at the risk-free rate when p is the
probability of an up movement. In other words, the stock price behaves exactly as we
would expect it to behave in a risk-neutral world when p is the probability of an up
movement.

Risk-neutral valuation is a very important general result in the pricing of derivatives.
It states that, when we assume the world is risk-neutral, we get the right price for a
derivative in all worlds, not just in a risk-neutral one. We have shown that risk-neutral
valuation is correct when a simple binomial model is assumed for how the price of the
the stock evolves. It can be shown that the result is true regardless of the assumptions
we make about the evolution of the stock price.

To apply risk-neutral valuation to the pricing of a derivative, we first calculate what
the probabilities of different outcomes would be if the world were risk-neutral. We then
calculate the expected payoff from the derivative and discount that expected payoff at
the risk-free rate of interest.

The One-Step Binomial Example Revisited
We now return to the example in Figure 12.1 and illustrate that risk-neutral valuation
gives the same answer as no-arbitrage arguments. In Figure 12.1, the stock price is
currently $20 and will move either up to $22 or down to $18 at the end of 3 months.
The option considered is a European call option with a strike price of $21 and an
expiration date in 3 months. The risk-free interest rate is 12% per annum.

We define p as the probability of an upward movement in the stock price in a risk-
neutral world. We can calculate p from equation (12.3). Alternatively, we can argue that
the expected return on the stock in a risk-neutral world must be the/risk-free rate
of 12%. This means that p must satisfy

22p + 1s(1 - p) = 20@‘“2>‘3/ 12
or

4p : 20e0.12><3/12 _18

That is, p must be 0.6523.
At the end of the 3 months, the call option has a 0.6523 probability of being worth 1

and a 0.3477 probability of being worth zero. Its expected value is therefore

0.6523 >< 1 + 0.3477 >< 0 : 0.6523

In a risk-neutral world this should be discounted at the risk-free rate. The value of the
option today is therefore

l 0.6523e—0.l2X3/12
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or $0.633. This is the same as the value obtained earlier, demonstrating that no-
arbitrage arguments and risk-neutral valuation give the same answer.

Real World vs. Risk-Neutral World
It should be emphasized that p is the probability of an up movement in a risk-neutral
world. In general, this is not the same as the probability of an up movement in the real
world. In our example p =-— 0.6523. When the probability of an up movement is 0.6523,
the expected return on both the stock and the option is the risk-free rate of 12%.
Suppose that, in the real world, the expected return on the stock is 16% and p* is the
probability of an up movement in this world. It follows that

+ _ ______ 20e0.l6><3/12

so that p* :: 0.7041.
The expected payoff from the option in the real world is then given by

p*><1+(1—p*)><0

or 0.7041. Unfortunately, it is not easy to know the correct discount rate to apply to the
expected payoff in the real world. The return the market requires on the stock is 16%
and this is the discount rate that would be used for the expected cash flows from an
investment in the stock. A position in a call option is riskier than a position in the
stock. As a result the discount rate to be applied to the payoff from a call option is
greater than 16%, but we do not know how much greater than 16% it should be.l
Using risk-neutral valuation solves this problem because we know that in a risk-neutral
world the expected return on all assets (and therefore the discount rate to use for all
expected payoffs) is the risk-free rate.

TWO-STEP BINOMIAL TREES >

We can extend the analysis to a two-step binomial tree such as that shown in Figure 12.3.
Here the stock price starts at $20 and in each of two time steps may go up by 10% or
down by 10%. Each time step is 3 months long and the risk-free interest rate is 12% per
annum. We consider a 6-month option with a strike price of $21.

The objective of the analysis is to calculate the option price at the initial node of the
tree. This can be done by repeatedly applying the principles established earlier in the
chapter. Figure 12.4 shows the same tree as Figure 12.3, but with both the stock price
and the option price at each node. (The stock price is the upper number and the option
price is the lower number.) The option prices at the final nodes of the tree are easily
calculated. They are the payoffs from the option. At node D the stock price is 24.2 and
the option price is 24.2 — 21 : 3.2; at nodes E and F the option is out of the money and
its value is zero.

At node C the option price is zero, because node C leads to either node E or node F
and at both of those nodes the option price is zero. We calculate the option price at
node B by focusing our attention on the part of the tree shown in Figure 12.5. Using the
-in----__.__i--i_-.1

1 Since we know the corrert value of the opt.ion is 0.633, we can deduce that the correct real-world discount
rate is 42.58%. This is because 0.633 : 0.704le_0'4258"3/'2.
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Figure 12.3 Stock prices in a two-step tree. 24-2
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notation introduced earlier in the chapter, u = 1.1, a’ = 0.9, r : 0.12, and T = 0.25, so
that p = 0.6523, and equation (12.2) gives the value of the option at node B as

e“0'12X3/l2(0.6523 >< 3.2 + 0.3477 >< 0) = 2.0257
It remains for us to calculate the option price at the initial node A. We do so by focusing
on the first step of the tree. We know that the value of the option at node B is 2.0257 and

E2’-v3.";"I‘ZT-f.§7.§I~'.§'“;-'7'§'5"'42"!'.’ . . ‘STI§:I7:' '11'_:T;'!_§“¢.¢T''-“.‘.*.l' ' '4“ 'T ‘>1 E. Z “}T§’[?I.'A51‘ 51.‘.  r?€KT:?Z§§QF§¢§'i$5‘3_-'Efi'Y1'§'I'*§'E

Figure 12.4 Stock and option prices in a two-step tree. The upper number at each
node is the stock price and the lower number is the option price.
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Figure 12.5 Evaluation of option price at node B of Figure 12.4.
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that at node C it is zero. Equation (12.2) therefore gives the value at node A as

67°-‘M/‘2(0.e523 >< 2.0257 + 0.3477 >< 0) = 1.2823
The value of the option is $12823.

Note that this example was constructed so that u and d (the proportional up and down
movements) were the same at each node of the tree and so that the time steps were of the
same length. As a result, the risk-neutral probability, p, as calculated by equation (12.3)
is the same at each node.

A Generalization 3
We can generalize the case of two time steps by considering the situation in Figure 12.6.
The stock price is initially S0. During each time step, it either moves up to a times its
initial value or moves down to d times its initial value. The notation for the value of the
option is shown on the tree. (For example, after two up movements the value of the
option is fuu.) We suppose that the risk~free interest rate is r and the length of the time
step is At years.

Because the length of a time step is now At rather than T, equations (12.2) and (12.3)
become .

r = @"”*‘1pr.. + <1 — pm] ’ (125)
eI’AI ___ d

—- ---— 12.6P d ( )T u —

Repeated application of equation (12.5) gives

fa : e—rA[lpfuu + _ p)fudl

fa = eTrAtlpfad 'l' (1 * p)fddl (12-3)

f = emtpf. + <1 3- pin] (12.9)
Substituting from equations (12.7) and (12.8) into (12.9), we get

f = @*2”“1p2f.... + 2p<1 — 11>/...i + <1 - pint] <12-10>
This is consistent with the principle of risk-neutral valuation mentioned earlier. The
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Figure 12.6 Stock and option prices in general two-step tree.
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variables p2, 2p(l — p), and (1 — p)2 are the probabilities that the upper, middle, and
lower final nodes will be reached. The option price is equal to its expected payoff in a
risk-neutral world discounted at the risk-free interest rate.

As we add more steps to the binomial tree, the risk-neutral valuation principle
continues to hold. The option price is always equal to its expected payoff in a risk-
neutral world discounted at the risk-free interest rate.

12.4 A PUT EXAMPLE  

. The procedures described in this chapter can be used to price puts as well as calls.
Consider a 2-year European put with a strike price of $52 on a stock whose current
price is $50. We suppose that there are two time steps of 1 year, and in each time step
the stock price either moves up by 20% or moves down by 20%. We also suppose that
the risk-free interest rate is 5%.

The tree is shown in Figure 12.7. In this case a : 1.2, d : 0.8 , At : 1, and r = 0.05.
From equation (12.6) the value of the risk-neutral probability, p, is given by

0.05><le -0.8
PT 1.2-0.8 ‘Q6282

The possible final stock prices are: $72, $48, and $32. In this case, fm, : 0, fad = 4,
and fdd : 20. From equation (12.10),

f 1 @“2*°~°5*‘(0.e2822 >< 0 + 2 >< 0.6282 >< 0.3718 >< 4 + 0.37182 >< 20) = 4.1923
The value of the put is $4.l923. This result can also be obtained using equation (12.5)
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Figure 12.7 Using a two-step tree to value a European put option. At each node, the
upper number is the stock price and the lower number is the option price.
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and working back through the tree one step at a time. Figure 12.7 shows the inter-
mediate option prices that are calculated. 3 at

AMERICAN OPTIONS

Up to now all the options we have considered have been European. We now move on to
consider how American options can be valued using a binomial tree such as that in
Figure 12.4 or 12.7. The procedure is to Work back through the tree from the end to the
beginning, testing at each node to see whether early exercise is optimal. The value of the
option at the final nodes is the same as for the European option. At earlier nodes the
value of the option is the greater of '/

1. The value given by equation (12.5)
2. The payoff from early exercise.

Figure 12.8 shows how Figure 12.7 is affected if the option under consideration is
American rather than European. The stock prices and their probabilities are un-
changed. The values for the option at the final nodes are also unchanged. At node B,
equation (12.5) gives the value of the option as 1.4147, whereas the payoff from early
exercise is negative (: -8). Clearly early exercise is not optimal at node B, and the value
of the option at this node is 1.4147. At node C, equation (12.5) gives the value of the
option as 9.4636, whereas the payoff from early exercise is 12. In this case, early exercise
is optimal and the value of the option at the node is 12. At the initial node A, the value
given by equation (12.5) is

@'°~"5><‘(0.e282 >< 1.4147 + 0.3718 >< 12.0) : 5.0894
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Figure 12.8 Using a two-step tree to value an American put option. At each node, the
upper number is the stock price and the lower number is the option price.
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and the payoff from early exercise is 2. In this case early exercise is not optimal. The
value of the option is therefore $5.0894. . ’

DELTA

At this stage, it is appropriate to introduce delta, an important parameter (sometimes
referred to as a “Greek letter” or simply a “Greek”) in the pricing and hedging of
opfions

The delta (A) of a stock option is the ratio of the change in the price of the stock
option to the change in the price of the underlying stock. It is the number /of units of the
stock we. should hold for each option shorted in order to create a riskless’portfo1io. It is
the same as the A introduced earlier in this chapter. The construction of a riskless
portfolio is sometimes referred to as delta hedging. The delta of a call option is positive,
whereas the delta of a put option is negative.

From Figure 12.1, we can calculate the value of the delta of the call option being
considered as

1-0__22_18=0.25  

This is because when the stock price changes from $18 to $22, the option price changes
from $0 to $1. (This is also the value of A calculated in Section 12.1.)

In Figure 12.4 the delta corresponding to stock price movements over the first time
step is

2.0257 — 0
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The delta for stock price movements over the second time step is

3.2 - 0
24.2 -719.8 T 07273

if there is an upward movement over the first time step, and

0 — 0
19.8 -— 16.2 0

if there is a downward movement over the first time step.
From Figure 12.7, delta is

1.4147 —— 9.463660_40 = 0.4024

at the end of the first time step, and either

0 — 4 4 — 20 1

at the end of the second time step.
The two-step examples show that delta changes over time. (In Figure 12.4, delta

changes from 0.5064 to either 0.7273 or 0; and, in Figure 12.7, it changes from -—0.4024 to
either -—0.l667 or —-1.0000.) Thus, in order to maintain a riskless hedge using an option
and the underlying stock, we need to adjust our holdings in the stock periodically. We
will return to this feature of options in Chapter 18.

12.7 MATCHING VOLATILITY WITH it AND d  

In practice, when constructing a binomial tree to represent the movements in a stock
price, we choose the parameters it and d to match the volatility of the stock price.
A question that arises is whether we should match volatility in the real world or the
risk-neutral world. As we will now show, this does not matter. For small At and
particular values of u and d, the volatility being assumed is the same in both"the real
world and the risk-neutral world.

Figure 12.9a shows stock price movements over one step of a binomial tree in the real
world and Figure 12.9b shows these movements in a risk-neutral world. The step is of
length At. The stock price starts at S0 and moves either up to Sou or down to Sod. These
are the only two possible outcomes in both the real world and the risk-neutral world.
The probability of an up movement in the real world is denoted by p* and, consistent
with our earlier notation, in the risk-neutral world this probability is p.

The expected stock price at the end of the first time step in the real world is S0e’*A‘,
where /J. is the expected return. On the tree the expected stock price at this time is

 P*S0" + (1 " P*)50d

In order to match the expected return on the stock with the tree’s parameters, we must
therefore have

p*SOI/l + — I SQ€MAt
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Figure 12.9 Change in stock price in time At in (a) the real world and (b) the risk-
neutral world.
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As we will explain in Chapter 14, the volatility 0 of a stock price is defined so that a\/A_t
is the standard deviation of the return on the stock price in a short period of time of
length At. Equivalently, the variance of the return is o2At. On the tree in Figure 12.9a,
the variance of the stock price return isz

pa? + <1 - p*>d2 - [pm + <1 - p*>a2
In order to match the stock price volatility with the tree’s parameters, we must therefore
have

p*a2 + (1 — p*)d2 —- [p*u + (1 — .p*)d]2 = o'2At (12.12)

Substituting from equation (12.11) into equation (12.12) gives

I e”At(a +d) —ud—e2“At -:o2At

When terms in At2 and higher powers of At are ignored, one solution to this equation is3

M : eox/At

d I e—O'\/Al‘

These are the values of u and d proposed by Cox, Ross, and Rubinstein (1979) for
matching volatility. .
--um-M-i—

2 The return is either u — l or d -— 1. Subtracting 1 from a variable makes no difference to its variance. The
variance of the return is therefore the variance of a variable that has probability p* of being u and probability
1 — p* of being d. The variance of a variable X equals E(X2) — [E(X)]2, where E denotes expected value.
3 We are here using the series expansion

2 3
ex

2! 3!
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In Figure 12.9b, the expected stock price at the end of the time step is S0€rAt, as
shown in equation (12.4). The variance of the stock price return in the risk-neutral
world is '

pt? + <1 - pr? — [pr + <1 - ad? = 1e”*‘<»t + 4) ~ Md - em]
Substituting u = e°‘/E and d == e'°“/Kl, we find this equals o2At when terms in Atz and
higher powers of At are ignored.

This analysis shows that when we move from the real world to the risk~neutral world
the expected return on the stock changes, but its volatility remains the same (at least in
the limit as At tends to zero). This is an illustration of an important general result
known as Girsan0v’s theorem. When we move from a world with one set of risk
preferences to a world with another set of risk preferences, the expected growth rates
in variables change, but their volatilities remain the same. We will examine the impact
of risk preferences on the behavior of market variables in more detail in Chapter 27.
Moving from one set of risk preferences to another is sometimes referred to as changing
the measure. The real-world measure is sometimes referred to as the P-measure, while
the risk-neutral world measure is referred to as the Q-measure.4

THE BINOMIAL TREE FORMULAS

The analysis in the previous section shows that, when the length of the time step on a
binomial tree is At, we should match volatility by setting L .

Ll = @“~/A7 (12.13)
and

d = @785 (12.14)
Also, from equation (12.6), .  

p = iii (12.15)
Lt — d

where
a = 6”“ (12.16)

I.

Equations (12.13) to (12.16) define the tree. f
Consider again the American put option in Figure 12.8, where the stock price is $50,

the strike price is $52, the risk-free rate is 5%, the life of the option is 2 years, and there
are two time steps. In this case, At = 1. Suppose that the volatility 0 is 30%. Then,
from equations (12.13) to (12.16), we have

1u=@°-3><‘=1.3499, d=__-__1_3499=0.7408, a:e0'05Xl:1.0513
and

1.053 - 0.7408
P " 1.3499 - 0.7408 “ 05097  

The tree is shown in Figure 12.10. The value of the put option is 7.43. (This is different

4 With the notation we have been using, p is the -probability under the Q-measure, while p* is the probability
under the P-measure.
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Figure 12.10 Two-step tree to value a 2-year American put option when the stock
price is 50, strike price is 52, risk-free rate is 5%, and volatility is 30%.
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from the value obtained in Figure 12.8 by assuming Ll : 1.2 and d = 0.8.) Note that the
option is exercised at the end of the first time step if the lower node is reached.

12.9 INCREASING THE NUMBER OF STEPS

The binomial model presented above is unrealistically simple. Clearly, an analyst can
expect to obtain only a very rough approximation to an option price by assuming that
stock price movements during the life of the option consist of one or two binomial
steps. 1

When binomial trees are used in practice, the life of the option is typically divided
into 30 or more time steps. In each time step there is a binomial stock price movement.
With 30 time steps there are 31 terminal stock prices and 230, or about 1 billion, possible
stock price paths are implicitly considered.

The equations defining the tree are equations (12.13) to (12.16), regardless of the
number of time steps. Suppose, for example, that there are five steps instead of two i11
the example we considered in Figure 12.10. The parameters would be At = 2/5 : 0.4,
1» _= 0.05, and 0 = 0.3. These values give Ll = e<>~?>><¢<1-Z = 1.2089, Cl = 1 /1.2089 = 0.8272,
a : e0-05>“)-4 : 1.0202, and p : (1.0202 — 0.8272)/(1.2089 — 0.8272) = 0.5056.

As the number of time steps is increased (so that At becomes smaller), the binomial
tree model makes the same assumptions about stock price behavior as the Black-
Scholes-Merton model, which will be presented in Chapter 14. When the binomial tree
is used to price a European option, the price converges to the Black Scholes—Merton
price, as expected, as the number of time steps is increased. This is proved in the
appendix to this chapter.
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12.10

12.11

USING DerivaGem  

The software accompanying this book, DerivaGem, is a useful tool for becoming
comfortable with binomial trees. After loading the software in the way described at
the end of this book, go to the Equity_FX_Index_Futures_Options worksheet. Choose
Equity as the Underlying Type and select Binomial American as the Option Type.
Enter the stock price, volatility, risk-free rate, time to expiration, exercise price, and tree
steps, as 50, 30%, 5%, 2. 52, and 2, respectively. Click on the Put button and then on
Calculate. The price of the option is shown as 7.428 in the box labeled Price. Now click
on Display Tree and you will see the equivalent of Figure 12.10. (The red numbers in
the software indicate the nodes where the option is exercised.)

Return to the Equity_FX__Index_Futures__Options worksheet and change the number
of time steps to 5. Hit Enter and click on Calculate. You will find that the value of the
option changes to 7.671. By clicking on Display Tree the five-step tree is displayed,
together with the values of u, d, a, and p calculated above.  

DerivaGem can display trees that have up to 10 steps, but the calculations can be done
for up to 500 steps. In our example, 500 steps gives the option price (to two decimal
places) as 7.47. This is an accurate answer. By changing the Option Type to Binomial
European, we can use the tree to value a European option. Using 500 time steps, the
value of a European option with the same parameters as the American option is 6.76. (By
changing the Option Type to Black—Scholes European, we can display the value of the
option using the Black—Scholes—Merton formula that will be presented in Chapter 14.
This is also 6.76.) .

By changing the Underlying Type, we can consider options on assets other than
stocks. These will now be discussed.

OPTIONS ON OTHER ASSETS

We introduced options on indices, currencies, and futures contracts in Chapter 9 and
will cover them in more detail in Chapters 16 and 17. It turns out that we can construct
and use binomial trees for these options in exactly the same way as for options on
stocks except that the equations for p change. As in the case of options on/stocks,
equation (12.2). applies so that the value at a node (before the possibility of early
exercise is considered) is p times the value if there is an up movement plus 1 -— p times
the value if there is a down movement, discounted at the risk-free rate.

Options on Stocks Paying a Continuous Dividend Yield
Consider a stock paying a known dividend yield at rate q. The total return from
dividends and capital gains in a risk-neutral world is r. The dividends provide a return
of q. Capital gains must therefore provide a return of r - q. If the stock starts at S0, its
expected value after one time step of length At must be S0e(’T‘l)At. This means that

 P50" + <1 — P)S0d = Se@‘""‘”‘“
so that

e(r~¢1)Af _ d

P I7??
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As in the case of options on non-dividend-paying stocks, we match volatility by setting
u = e°'*/E and d : 1 /u. This means that we can use equations (12.13) to (12.16), except
that we set a : e("’I)A‘ instead of a : em‘.

Options on Stock lndices
When calculating a futures price for a stock index in Chapter 5 we assumed that the
stocks underlying the index provided a dividend yield at rate q. We make a similar
assumption here. The valuation of an option on a stock index is therefore very similar
to the valuation of an option on a stock paying a known dividend yield.

Example 12. 1
A stock index is currently 810 and has a volatility of 20% and a dividend yield of
2%. The risk-free rate is 5%. Figure 12.11 shows the output from DerivaGem for
valuing a European 6-month call option with a strike price of 800 using a two-step
tree. In this case,

At = 0.25, Lt = e°~2°><~/‘T = 1.1052,
Cl = 1 /Ll = 0.9048, a Z e<°-°5-°-°2>><°-25 = 1.0075
,5 = (1.0075 - 0.9048)/(1.1052 - 0.9048) = 0.5126

The value of the option is 53.39.

;'1 7-1.. '1 7 --.'-"at-'. 'rr"*» ' ' - ;~. . . ' . t .

Figure 12.11 Two-step tree to value a European 6-month call option on an
index when the index level is 810, strike price is 800, risk-free rate is 5%,
volatility is 20%, and dividend yield is 2% (DerivaGem output).

At each node:
Upper value = Underlying Asset Price
Lower value = Option Price 7

Shading indicates where option is exercised

Strike price = 800
Discount factor per step = 0.9876
Time step, _dt = 0.2500 years, 91.25 days
Growth factor per step, a = 1.0075
Probability of up move, p = 0.5126 ’
Up step size, u = 1.1052
Down step size, d = 0.9048

100.88
810.00 810.00

53.89 ,' -10.00
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Node Time:
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Options on Currencies
A8 pointed out in Section 5.10, a foreign currency can be regarded as an asset providing
a yield at the foreign risk-free rate of interest, rf. By analogy with the stock index case
we can construct a tree for options on a currency by using equations (12.13) to (12.16)
and setting a :: e(’"’f)A‘.

Example 12.2
The Australian dollar is currently worth 0.6100 US dollars and this exchange rate
has a volatility of 12%. The Australian risk-free rate is 7% and the US risk-free rate
is 5%. Figure 12.12 shows the output from DerivaGem for valuing a 3-month
American call option with a strike price of 0.6000 using ag three-step tree. In this
case,

At = 0.08333, Li = e°~‘2*“°~°*333 = 1.0352
.1 = 1 /Ll = 0.9660, 6. .-_- e(0'05_007lX0'08333 = 0.9983
p = (09983 - 0.9660)/(1.0352 - 0.9660) = 0.4673

The value of the option is 0.019.
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Figure 1 2.12 Three-step tree to value an American 3-month call option on a
currency when the value of the currency is 0.6100, strike price is 0.6000, risk-free
rate is 5% , volatility is 12%, and foreign risk-free rate is 7% (DerivaGem output).

At each node:
Upper value = Underlying Asset Price
Lower value = Option Price

Shading indicates where option is exercised

Strike price = 0.6
Discount factor per step = 0.9958
Time step, dt = 0.0833 years, 30.42 days
Growth factor per step, a = 0.9983
Probability of up move, p = 0.4673
Up step size, u = 1.0352 /
Down step size, d = 0.9660

. ._ 9-654%;2T=:.~i»*».t>‘.rl£-$4..
0.882 0.882
0.088 1i‘1t%ii{l;ti82

0.610 0.610
0.019 0.015

0.589 0.589
0.007 0.000

0.569
0.000

5 0.550
0.000

Node Time:
0.0000 0.0833 0.1667 ' 0.2500
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Options on Futures '
It costs nothing to take a long or a short position in a futures contract. It follows that in
a risk-neutral world a futures price should have an expected growth rate of zero. (We
discuss this point in more detail in Section 17.7.) As above, we define p as the
probability of an up movement in the futures price, u as the percentage up movement,
and d as the percentage down movement. If F0 is the initial futures price, the expected
futures price at the end of one time step of length At should also be F0. This means that

PF0"+(1—P)F0d= F0
so that

_1—d
p—u—d

and we can use equations (12.13) to (12.16) with a : 1.

Example 12.3
A futures price is currently 31 and has a volatility of 30%. The risk-free rate is 5%.
Figure 12.13 shows the output from DerivaGem for valuing a 9-month American
put option with a strike price of 30 using a three-step tree. In this case,

At = 0.25, 1.1 = 6°-M25 = 1.1618
d =1/1.1 =1/1.1618 = 0.8607, 6 =1,

p : (1 - 0.8607)/(1.1618 - 0.8607) = 0.4626
The value of the option is 2.84. A

SUMMARY

This chapter has provided a first look at the valuation of options on stocks and other
assets using trees. In the simple situation where movements in the price of a stock
during the life of an option are governed by a one-step binomial tree, it is possible to set
up a riskless portfolio consisting of a position in the stock option and a position in the
stock. In a world with no arbitrage opportunities, riskless portfolios must earn the risk-
free interest. This enables the stock option to be priced in terms of the stock. It is
interesting to note that no assumptions are required about the probabilities of up and
down movements in the stock price at each node of the tree.

When stock price movements are governed by a multistep binomial tree, we can treat
each binomial step separately and work back from the end of the life of the option to
the beginning to obtain the current value of the option. Again only no-arbitrage
arguments are used, and no assumptions are required about the probabilities of up
and down movements in the stock price at each node.

A very important principle states that we can assume the world is risk-neutral when
valuing an option. This chapter has shown, through both numerical examples and
algebra, that no-arbitrage arguments and risk-neutral valuation are equivalent and lead
to the same option prices.

The delta of a stock option, A, considers the effect of a small change in the underlying
stock price on the change in the option price. It is the ratio of the change in the option
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Figure 12.13 Three-step tree to value an American 9-month put option on a
futures contract when the futures price is 31, strike price is 30, risk-free rate is 5%,
and volatility is 30% (DerivaGem output).

At each node:
Upper value = Underlying Asset Price
Lower value = Option Price

Shading indicates where option is exercised

Strike price = 30
Discount factor per step = 0.9876
Time step, dt = 0.2500 years, 91.25 days
Growth factor per step, a = 1.-000
Probability of up move, p = 0.4626
Up step size, u = 1.1618
Down step size, d = 0.8607

0.00
41.85

0.00
86-02

0.98 g 0.00
31.00 31.00

2.84
26.68 . 26.68
4.54

.-‘_-- _§'¢__4.. J.’ ‘T

19.

Node Time:
0.0000 0.2500 0.5000 0.7500

price to the change in the stock price. For a riskless position, an investor should buy A
shares for each option sold. A11 inspection of a typical binomial tree shows that delta
changes during the life of an option. This means that to hedge a particular option
position, we must change our holding in the underlying stock periodically.

Constructing binomial trees for valuing options on stock indices, currencies, and
futures contracts is very similar to doing so for valuing options on stocks. In
Chapter 20, we will return to binomial trees and provide more details on how they
are used in practice.
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Practice Questions (Answers in Solutions Manual)

12.1

12.2

12.3
12.4

12.5

12.6

12.7
12.8

12.9

12.10

12.11

12.12.

12.13

A stock price is currently $40. It is known that at the end of 1 month it will be either $42
or $38. The risk-free interest rate is 8% per annum with continuous compounding. What
is the value of a 1-month European call option with a strike price of $39?
Explain the no-arbitrage and risk-neutral valuation approaches to valuing a European
option using a one-step binomial tree. ,
What is meant by the “delta” of a stock option?
A stock price is currently $50. It is known that at the end of 6 months it will be either $45
or $55. The risk-free interest rate is 10% per annum with continuous compounding.
What is the value of a 6-month European put option with a strike price of $50?
A stock price is currently $100. Over each of the next two 6-month periods it is expected
to go up by 10% or down by 10%. The risk-free interest rate is 8% per annum with
continuous compounding. What is the value of a 1-year European call option with a
strike price of $100?
For the situation considered in Problem 12.5, what is the value of a 1-year European put
option with a strike price of $100? Verify that the European call and European put prices
satisfy put—call parity.   
What are the formulas for u and d in terms of volatility?
Consider the situation in which stock price movements during the life of a European
option are governed by a two-step binomial tree. Explain why it is not possible to set up
a position in the stock and the option that remains riskless for the whole of the life of the
option. 8
A stock price is currently $50. It is known that at the end of 2 months it will be either $53
or $48. The risk-free interest rate is 10% per annum with continuous compounding.
What is the value of a 2-month European call option with a strike price of $49‘? Use no-
arbitrage arguments. *
A stock price is currently $80. It is known that at the end of 4 months it will be either $75
or $85. The risk-free interest rate is 5% per annum with continuous compounding. What
is the value of a 4-month European put option with a strike price of $80‘? Use no-
arbitrage arguments.
A stock price is currently $40. It is known that at the end of 3 months it will be either $45
or $35. The risk-free rate of interest with quarterly compounding is 8% per annum.
Calculate the value of a 3-month European put option on the stock with an exercise
price of $40. Verify that no-arbitrage arguments and risk-neutral valuation arguments
give the same answers.
A stock price is currently $50. Over each of the next two 3-month periods it is expected
to go up by 6% or down by 5%. The risk-free interest rate is 5% per annum with
continuous compounding. What is the value of a 6-month European call option with a
strike price of $51?
For the situation considered in Problem 12.12, what is the value of a 6-month European
put option with a strike price of $51‘? Verify that the European call and European put
prices satisfy put—call parity. If the put option were American, would it ever be optimal
to exercise it early at any of the nodes on the tree?
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12.14. A stock price is currently $25. It is known that at the end of 2 months it will be either $23
or $27. The risk-free interest rate is 10% per annum with continuous compounding.
Suppose ST is the stock price at the end of 2 months. What is the value of a derivative
that pays off ST at this time‘?

12.15. Calculate u, d, and p when a binomial tree is constructed to value an option on a foreign
currency. The tree step size is 1 month, the domestic interest rate is 5% per annum, the
foreign interest rate is 8% per annum, and the volatility is 12% per annum.

Further Questions

12.16. A stock price is currently $50. It is known that at the end of 6 months it will be either $60
or $42. The risk-free rate of interest with continuous compounding is 12% per annum.
Calculate the value of a 6-month European call option on the stock with an exercise
price of $48. Verify that no-arbitrage arguments and risk-neutral valuation arguments
give the same answers.

12.17. A stock price is currently $40. Over each of the next two 3-month periods it is expected
to go up by 10% or down by 10%. The risk-free interest rate is 12% per annum with
continuous compounding. A
(a) What is the value of a 6-month European put option with a strike price of $42‘?
(b) What is the value of a 6-month American put option with a strike price of$42?

12.18. Using a “trial-and-error” approach, estimate how high the strike price has to be in
Problem 11.17 for it to be optimal to exercise the option immediately.

12.19. A stock price is currently $30. During each 2-month period for the next 4 months it will
increase by 8% or reduce by 10%. The risk-free interest rate is 5%. Use a two-step tree
to calculate the value of a derivative that pays off [max(30 — ST, 0)]2, where ST is the
stock price in 4 months. If the derivative is American-style, should it be exercised early?

12.20. Consider a European call option on a non-dividend-paying stock where the stock price is
$40, the strike price is $40, the risk-free rate is 4% per annum, the volatility is 30% per
annum, and the time to maturity is 6 months.
(a) Calculate u, d, and p for a two-step tree.
(b) Value the option using a two-step tree. /
(c) Verify that DerivaGem gives the same answer.
(d) Use DerivaGem to value the option with 5, 50, 100, and 500 time steps.

12.21. Repeat Problem 12.20 for an American put option on a futures contract. The strike price
and the futures price are $50, the risk-free rate is 10%, the time to maturity is 6 months,
and the volatility is 40% per annum.

12.22. Footnote 1 shows that the correct discount rate to use for the real-world expected payoff
in the case of the call option considered in Figure 12.1 is 42.6%. Show that if the option
is a put rather than a call the discount rate is -52.5 %. Explain why the two real-world
discount rates are so different.
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APPENDIX
DERIVATION OF THE BLACK-SCHOLES—MERTON OPTION-
PRICING FORMULA FROM A BINOMIAL TREE

One way of deriving the famous Black—Scholes—Merton result for valuing a European
option on a non-dividend-paying stock is by allowing the number of time steps in a
binomial tree to approach infinity.

Suppose that a tree with n time steps is used to value a European call option with
strike price K and life T. Each step is of length T/n. If there have been j upward
movements and n — j downward movements on the tree, the final stock price is
S0uJ'cl”—J', where u is the proportional up movement, d is the proportional down
movement, and S0 is the initial stock price. The payoff from a European call option
is then

max(SOuJd”_J — K, 0)  

From the properties of the binomial distribution, the probability of exactly j upward
and n — j downward movements is given by

__L J(1 _ )4-J01 - 011!” ”
It follows that the expected payoff from the call option is

n . n_. .Hn_.
— JII1Z1X(S()l/ljd J — K,

J-:0 (n _

As the tree represents movements in a risk-neutral world, we can discount this at the
risk-free rate r to obtain the option price:

n l . . . .
c : e_rT Zi§+p](l — p)”_J max(S0u’d”"’ — K, 0) ; (12A.1)

. (n — )1 lF0 J J

The terms in equation (12A. 1) are nonzero when the final stock price is greater than the
strike price, that is, when /,

 S0ujd”“j > K
or A

111(50/K) > —J'1H(M) — (It - 1') 111(4)
Since u : e°\’ T/” and cl = e_°\’ T/”, this condition becomes

ln(S0/K) > no,/T/n —— 2jo'\/T/n
or

n _ ln(S0/K)
2 20./T/n

Equation (12A.1) can therefore be written

j>

_ —/‘T n—- n.——_
C — 8 — j(S()l/ljd 1'"

j>(X
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where
I’!

“-2 norm
For convenience, we define

‘I 6 6 6 6' n— n-U, = p1(1 - p) 10181 1 (12A.2)
_]>a

and
ng . n_.

_]>0z

so that
8» = @"'”T(s,. U1 - KU2) (12A.4)

Consider first U2. As is well known, the binomial distribution approaches a normal
distribution as the number of trials approaches infinity. Specifically, when there are n
trials and p is the probability of success, the probability distribution of the number of
successes is approximately normal with mean np and standard deviation ,/np(1 -- p).
The variable U2 in equation (12A.3) is the probability of the number of successes being
more than or. From the properties of the normal distribution, it follows that, for large n,

_ np—aU2 _ 1v(\/;1.)_(T___I5) (12.4.5)

where N is the cumulative normal distribution function. Substituting for or, we obtain

_ l

U2 :”(24¢1i~'(li/r1Ii)T1T>liii11i1%il “M
From equations (12.13) to (12.15), we have /

— erT/n __e—o'4/T/n

p _ 604/T/n _ e—a,/T/n

By expanding the exponential functions in a series, we see that, as n tends to infinity,
p(l - p) tends to T and ,/5(1) - %) tends to

v~e7@¢T26
so that in the limit, as n tends to infinity, equation (12A.6) becomes

U2 = 1v(1“(5<>/K) :2“ 0'2/ml) (l2A.7)
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We now move on to evaluate U1. From equation (l2A.2), we have

Define

It then follows that

U. = _Zj(,,%’;.),;<p4>’1<1- p>d1"*/6 (124.8)

4 PMI 12.4.9
P P" + (1 — P)d ( )

ip __

pu+(l —p)d

and we can write equation (12A.8) as

- 6U. = in + <1 - 1041" Zicfrtl — p*>""1,~>,, (H — D11!

Since the expected return in the risk-neutral world is the risk-free rate r, it follows that
pu + (1 - p)d = 8”/" and

l . .U : rT ______n' >1=]1__ >l<l’l—_]1 6 ];(n_fJ.!(P)( P)

This shows that U1 involves a binomial distribution where the probability of an up
movement is p* rather than p. Approximating the binomial distribution with a normal
distribution, we obtain, similarly to equation (l2A.5),

U1:erTN( np*-0! ) I
. \/"P*(1—P*)

and substituting for or gives, as with equation (12A.6),

:,.TN< 1n<s../K) + ./fl<p*-4))
2%/T\/11*(1— 12*) \/P*(1-' 11*)

Substituting for u and d in equation (l2A.9) gives

* erT/n __ e—o,/T/n ea,/T/n

P _ (ea./T/n __ e-6./T/n)( e’T/” )

By expanding the exponential functions in a series we see that, as n tends to infinity,
p*(1 — p*) tends to T1; and ./%(p* — -T-) tends to

with the result that

(r + 62/2)./T
2o

U1 = @"TN(l“(S°/K);';T.+ U2/2”) (12.4.10)
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From equations (l2A.4), (l2A.7), and (l2A.10), we have

C = s01v(d,) - Ke"’TN(d2)
where

dl I ln(SO/K) + (F + 02/2)T
64/T

ln(S /K) + (r - 62/2)rdz: ° M/.1, =41-6./T

This is the Black—Scholes—Merton formula for the valuation of a European call option.
It will be discussed in Chapter 14. An alternative derivation is given in the appendix to
that chapter.

and A
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Any variable whose value changes over time in an uncertain way is said to follow a
stochastic process. Stochastic processes can be classified as discrete time or continuous
time. A discrete-time stochastic process is one where the value of the variable can
change only at certain fixed points in time, whereas a continuous-time stochastic
process is one where changes can take place at any time. Stochastic processes can also
be classified as continuous variable or discrete variable. In a continuous -variable process,
the underlying variable can take any value within a certain range, whereas in a discrete-
variable process, only certain discrete values are possible.

This chapter develops a continuous-variable, continuous-time stochastic process for
stock prices. Learning about this process is the first step to understanding the pricing
of options and other more complicated derivatives. It should be noted that, in
practice, we do not observe stock prices following continuous-variable, continuous-
time processes. Stock prices are restricted to discrete values (e.g., multiples of a cent)
and changes can be observed only when the exchange is open for trading. Never-
theless, the continuous-variable, continuous-time process proves to be a useful model
for many purposes.

Many people feel that continuous-time stochastic processes are so complicated that
they should be left entirely to “rocket scientists.” This is not so. The biggest hurdle to
understanding these processes is the notation. Here we present a step-by-step approach
aimed at getting the reader over this hurdle. We also explain an important result known
as It6’s lemma that is central to the pricing of derivatives.

THE MARKOV PROPERTY

A Markov process is a particular type of stochastic process where only the current value
of a variable is relevant for predicting the future. The past history of the variable and
the way that the present has emerged from the past are irrelevant.

Stock prices are usually assumed to follow a Markov process. Suppose that the
price of IBM stock is $100 now. If the stock price follows a Markov process, our
predictions for the future should be unaffected by the price one week ago, one month
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13.2

ago, or one year ago. The only relevant piece of information is that the price is now
$100.] Predictions for the future are uncertain and must be expressed in terms of
probability distributions. The Markov property implies that the probability distribu-
tion of the price at any particular future time is not dependent on the particular path
followed by the price in the past.

The Markov property of stock prices is consistent with the weak form of market
efliciency. This states that the present price of a stock impounds all the information
contained in a record of past prices. If the weak form of market efficiency were not true,
technical analysts could make above-average returns by interpreting charts of the past
history of stock prices. There is very little evidence that they are in fact able to do this.

It is competition in the marketplace that tends to ensure that weak-form market
efiiciency holds. There are many investors watching the stock market closely. Trying to
make a profit from it leads to a situation where a stock price, at any given time, reflects the
information in past prices. Suppose that it was discovered that a particular pattern in
stock prices always gave a 65% chance of subsequent steep price rises. Investors would
attempt to buy a stock as soon as the pattern was observed, and demand for the stock
would immediately rise. This would lead to an immediate rise in its price and the
observed effect would be eliminated, as would any profitable trading opportunities.

CONTI NUOUS-TIME STOCHASTIC PROCESSES

Consider a variable that follows a Markov stochastic process. Suppose that its current
value is 10 and that the change in its value during a year is ¢(0,1), where q’>(m, v)
denotes a probability distribution that is normally distributed with mean m and
variance 0.2 What is the probability distribution of the change in the value of the
variable during 2 years‘?

The change in 2 years is the sum of two normal distributions, each of which has a
mean of zero and variance of 1.0. Because the variable is Markov, the two probability
distributions are independent. When we add two independent normal distributions, the
result is a normal distribution where the mean is the sum of the means and the variance
is the sum of the variances. The mean of the change during 2 years in the variable we
are considering is, therefore, zero and the variance of this change is 2.0. Hence, the
change in the variable over 2 years has the distribution ¢(0, 2). The standard deviation
of the distribution is 4/2.

Consider next the change in the variable during 6 months. The variance of the
change in the value of the variable during 1 year equals the variance of the change
during the first 6 months plus the variance of the change during the second 6 months.
We assume these are the same. It follows that the variance of the change during a
6-month period must be 0.5. Equivalently, the standard deviation of the change is 4/(T5.
The probability distribution for the change in the value of the variable during 6 months
is ¢(0, 0.5).

1 Statistical properties of the stock price history of IBM may be useful in determining the characteristics of
the stochastic process followed by the stock price (e.g., its volatility). The point being made here is that the
particular path followed by the stock in the past is irrelevant.

2 Variance is the square of standard deviation. The variance of a 1-year change in the value of the variable we
are considering is therefore 1.0.
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A similar argument shows that the probability distribution for the change in the
value of the variable during 3 months is ¢(0, 0.25). More generally, the change during
any time period of length T is ¢(0, T). In particular, the change during a very short time
period of length At is ¢(0, At).

Note that, when Markov processes are considered, the variances of the changes in
successive time periods are additive. The standard deviations of the changes in
successive time periods are not additive. The variance of the change in the variable
in our example is 1.0 per year, so that the variance of the change in 2 years is 2.0 and
the variance of the change in 3 years is 3.0. The standard deviations of the changes in
2 and 3 years are \/2 and 4/3, respectively. Strictly speaking, we should not refer to the
standard deviation of the variable as 1.0 per year. The results explain why uncertainty is
sometimes referred to as being proportional to the square root of time.

Wiener Processes
The process followed by the variable we have been considering is known as a Wiener
process. It is a particular type of Markov stochastic process with a mean change of zero
and a variance rate of 1 .0 per year. It has been used in physics to describe the motion of
a particle that is subject to a large number of small molecular shocks and is sometimes
referred to as Brownian motion. 4

Expressed formally, a variable 2 follows a Wiener process if it has the following two
properties:

PROPERTY 1. The change Az during a small period of time At is

AZ = e\/tTt  (13.1)
where 6 has a standardized normal distribution <,l>(0, 1). g

PROPERTY 2. The values of Az for any two diflerent short intervals of time, At, are
independent. .

It follows from the first property that Az itself has a normal distribution with

mean of Az : 0

standard deviation of Az :_- 4/At /
' , variance of Az = At

The second property implies that z follows a Markov process. 0
Consider the change in the value of z during a relatively long period of time, T. This

can be denoted by z(T) — 2(0). It can be regarded as the sum of the changes in z in
N small time intervals of length At, where

T
N:——

At
Thus,

z(T) - 2(0) = i 4/T (13.2)
im

l> H

i:l

where the 6,- (i : 1,2,...,N) are distributed </>(0,1). We know from the second
property of Wiener processes that the 6,5 are independent of each other. It follows
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Figure 13.1 How a Wiener process is obtained when At —+ 0 in equation (12.1)
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from equation (13.2) that. z(T) — 2(0) is normally distributed, with

mean of [z(T) — 2(0)] = 0
variance of[z(T) — 2(0)] = N At : T

standard deviation of [z(T) — 2(0)] = \/T

This is consistent with the discussion earlier in this section.

Example 13.1
Suppose that the value, 2, of a variable that follows a Wiener process is initially 25
and that time is measured in years. At the end of 1 year, the value of the variable
is normally distributed with a mean of 25 and a standard deviation of 1.0. At the
end of 5 years, it is normally distributed with a mean of 25 and a standard
deviation of \/5, or 2.236. Our uncertainty about the value of the variable at a
certain time in the future, as measured by its standard deviation, increases as the
square root of how far we are looking ahead.

In ordinary calculus, it is usual to proceed from small changes to the limit as the small
changes become closer to zero. Thus, dx = adt is the notation used to indicate that
Ax : a At in the limit as At —-> 0. We use similar notational conventions in stochastic
calculus. So, when we refer to dz asa Wiener process, we mean that it has the properties
for A2 given above in the limit as At -> 0.

Figure 13.1 illustrates what happens to the path followed by 2 as the limit At —> 0 is
approached. Note that the path is quite “jagged.” This is because the standard
deviation of the movement in 2 in time At equals x/E and, when At is small, ~/AZ is
much bigger than At. Two intriguing properties of Wiener processes, related to this
\/AT property, are as follows:

1. The expected length of the path followed by 2 in any time interval is infinite.
2. The expected number of times 2 equals any particular value in any time interval is

infinite. P

Generalized Wiener Process
The mean change per unit time for a stochastic process is known as the drift rate and
the variance per unit time is known as the variance rate. The basic Wiener process, dz,
that has been developed so far has a drift rate of zero and a variance rate of 1.0. The
drift rate of zero means that the expected value of 2 at any future time is equal to its
current value. The variance rate of 1.0 means that the variance of the change in 2 in a
time interval of length T equals T. A generalized Wiener process for a variable x can be
defined in terms of dz as

dx : adt + b dz (13.3)
where a and b are constants.

To understand equation (13.3), it is useful to consider the two components on the
right-hand side separately. The a dt term implies that x has an expected drift rate of a per
unit of time. Without the bdz term, the equation is dx : adt, which implies that
dx/dt = a. Integrating with respect to time, we get

3 x:xO+at
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where x0 is the value of x at time 0. In a period of time of length T, the variable x
increases by an amount aT. The bdz term on the right-hand side of equation (13.3) can
be regarded as adding noise or variability to the path followed by x. The amount of this
noise or variability is b times a Wiener process. AWiener process has a variance rate per
unit time of 1.0. It follows that b times a Wiener process has a variance rate per unit
time of b2. In a small time interval At, the change Ax in the value of x is given by
equations (13.1) and (13.3) as

Ax -: a At + be~/Ki

where, as before, 6 has a standard normal distribution. Thus Ax has a normal
distribution with

mean of Ax = aAt

standard deviation of Ax -= b\/At
variance of Ax -_= b2At

Similar arguments to those given for a Wiener process show that the change in the value
of x in any time interval T is normally distributed with

mean of change in x = aT

standard deviation of change in x = bx/T
variance of change in x = b2T

To summarize, the generalized Wiener process given in equation (13.3) has an expected
drift rate (i.e., average drift per unit of time) of a and a variance rate (i.e., variance per
unit of time) of b2. It is illustrated in Figure 13.2.

Figure 1 3.2 Generalized Wiener process with a = 0.3 and b = 1.5.

A Value of .variablg’ x Generalized
Wiener process
dx = adt + b dz
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Example 13.2
Consider the situation where the cash position of a company, measured in thou-
sands of dollars, follows a generalized Wiener process with a drift of 20 per year
and a variance rate of 900 per year. Initially, the cash position is 50. At the end of
1 year the cash position will have a normal distribution with a mean of 70 and a

. standard deviation of \/Q0, or 30. At the end of 6 months it will have a normal
distribution with a mean of 60 and a standard deviation of 30\/(E = 21.21. Our
uncertainty about the cash position at some time in the future, as measured by its
standard deviation, increases as the square root of how far ahead we are looking.
Note that the cash position can become negative. (We can interpret this as a
situation where the company is borrowing funds.)

lt6 Process
A further type of stochastic process, known as an Ito process, can be defined. This is a
generalized Wiener process in which the parameters a and b are functions of the value of
the underlying variable x and time t. An It6 process can be written algebraically as

dx : a(x, t) dt + b(x, t) dz (13.4)

Both the expected drift rate and variance rate of an It6 process are liable to change over
time. In a small time interval between t and t+ At, the variable changes from x to
x + Ax, where

Ax : a(x, t)At + b(x, t)6\/At

This relationship involves a small approximation. It assumes that the drift and variance
rate ofx remain constant, equal to their values at time t, during the time interval between t
and t+ At.

Note that the process in equation (13.4) is Markov because the change in x at time t
depends only on the value of x at time t, not on its history. A non-Markov process could
be defined by letting a and b in equation (13.4) depend on values of x prior to time t.

THE PROCESS FOR A STOCK PRICE

In this section we discuss the stochastic process usually assumed for the price of a non-
dividend-paying stock.

It is tempting to suggest that a stock price follows a generalized Wiener process; that is,
that it has a constant expected drift rate and a constant variance rate. However, this
model fails to capture a key aspect of stock prices. This is that the expected percentage
return required by investors from a stock is independent of the stock’s price. If investors
require a 14% per annum expected return when the stock price is $10, then, ceteris
paribus, they will also require a 14% per annum expected return when it is $50.

Clearly, the assumption of constant expected drift rate is inappropriate and needs to
be replaced by the assumption that the expected return (i.e., expected drift divided by
the stock price) is constant. If S is the stock price at time t, then the expected drift rate
in S should be assumed to be ,uS for some constant parameter /2. This means that in a
short interval of time, At, the expected increase in S is /.iS At. The parameter #1 is the
expected rate of return on the stock, expressed in decimal form.
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If the coelficient of dz is zero, so that there is no uncertainty, then this model implies
that

AS : /2S At
In the limit, as At -> 0,

dS == /.iS dt
or

dS—— = dtS /-4

Integrating between time 0 and time T, we get

sT = sow” (13.5)
where S0 and ST are the stock price at time 0 and time T. Equation (13.5) shows that,
when there is no uncertainty, the stock price grows at a continuously compounded rate
of /J. per unit of time.

In practice, of course, there is uncertainty. A reasonable assumption is that the
variability of the percentage return in a short period of time, At, is the same regardless
of the stock price. In other words, an investor is just as uncertain of the percentage
return when the stock price is $50 as when it is $10. This suggests that the standard
deviation of the change in a short period of time At should be proportional to the stock
price and leads to the model

dS: /.iSdt-1-oSdz
or

dS
-§— : ttdt + odz (13.6)

Equation (13.6) is the most widely used model of stock price behavior. The variable /x is
the stock’s expected rate of return. The variable a is the volatility of the stock price. The
variable 02 is referred to as its variance rate. The model in equation (13.6) represents
the stock price process in the real world. In a risk-neutral world, ,tt equals the risk-free
rate r.

Discrete-Time Model f
The model of stock price behavior we have developed is known as geometric Brownian
motion. The discrete-time version of the model is

AS-5 = 6 At + 0164/At (13.7)
O1"

AS = as At + oSe~/Ki (13.8)
The variable AS is the change in the stock price S in a small time interval At, and as
before 6 has a standard normal distribution (i.e., a normal distribution with a mean of
zero and standard deviation of 1.0). The parameter /J. is the expected rate of return per
unit of time from the stock. The parameter 0 is the volatility of the stock price. In this
chapter we will assume these parameters are constant.

The left-hand side of equation (13.7). is the return provided by the stock in a short
period of time, At. The term /x At is the expected value of this return, and the term
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06.,/Kt is the stochastic component of the return. The variance of the stochastic
component (and, therefore, of the whole return) is o2At. This is consistent with the
definition of the volatility o given in Section 12.7; that is, o is such that ox/Ai is the
standard deviation of the return in a short time period At. T

Equation (13.7) shows that AS/S is normally distributed with mean ,uAt and
standard deviation o\/AT. In other words,

ASY ~ ¢(,... At. 6-24¢) (13.9)
Example 13.3

Consider a stock that pays no dividends, has a volatility of 30% per annum, and
provides an expected return of 15% per annum with continuous compounding. In
this case, ,u : 0.15 and o : 0.30. The process for the stock price is

dS
F : 0.l5dt + 0.30d2

If S is the stock price at a particular time and AS is the increase in the stock price
in the next small interval of time,

S
£5; = 0.15At + 0.3064/At

where 6 has a standard normal distribution. Consider a time interval of 1 week,
or 0.0192 year, so that At = 0.0192. Then

é§S— = 0.15 >< 0.0192 + 0.30 >< 4/0.01926

or
AS = 0.00288S + 0.04l6S6

Monte Carlo Simulation  
A Monte Carlo simulation of a stochastic process is a procedure for sampling random
outcomes for the process. We will use it as a way of developing some understanding of
the nature of the stock price process in equation ( 13.6).

Consider t-he situation in Example 13.3 where the expected return from a stock is
15% per annum and the volatility is 30% per annum. The stock price change over
1 week‘ was shown to be

AS = 0.002885 + 0.04l6S6 (13.10)

A path for the stock price over 10 weeks can be simulated by sampling repeatedly for 6
from ¢(0, 1) and substituting into equation (13.10). The expression :RAND( ) in Excel
produces a random sample between 0 and 1. The inverse cumulative normal distribution
is NORMSINV. The instruction to produce a random sample from a standard normal
distribution in Excel is therefore =NORMSINV(RAND( )). Table 13.1 shows one path
for a stock price that was sampled in this way. The initial stock price is assumed to be
$100. For the first period, 6 is sampled as 0.52. From equation (13. 10), the change during
the first time period is

AS : 0.00288 >< 100 + 0.0416 >< 100 >< 0.52 : 2.45

Therefore, at the beginning of the second time period, the stock price is $102.45. The
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Table 13.1 Simulation of stock price when /.L = 0 15 and
= 0.30 during 1-week periods.

Stock price Random sample Change in stock price
at start ofperiod during period

100.00
102.45
108.88
105.30
112.00
109.11
106.06
107.30
102.69
106.11
111.54

13 4 THE PARAMETERS

0.52
1.44

—0.86
1.46

-0.69
-0.74

0.21
——1.l0

0.73
1.16
2.56

2.45
6.43

-3.58
6.70

—-2.89
-3.04

1.23
-4.60

3.41
5.43

12.20
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value of 6 sampled for the next period is 1.44. From equation (13 10) the change during
the second time period is

AS == 0.00288 >< 102.45 + 0.0416 >< 102 45 >< 144 = 6 43

So, at the beginning of the next period, the stock price 1S $108 88, and so on 3 Note
that, because the process we are simulating is Markov, the samples for 6 should be
independent of each other.

Table 13.1 assumes that stock prices are measured to the nearest cent It 1S important
to realize that the table shows only one possible pattern of stock price movements
Different random samples would lead to different price movements Any small time
interval At can be used in the simulation. In the limit as At —> 0, a perfect description
of the stochastic process is obtained. The final stock price of 111 54 in Table 13 1 can be
regarded as a random sample from the distribution of stock prices at the end of
10 weeks. By repeatedly simulating movements in the stock price, a complete prob-
ability distribution of the stock price at the end of this time is obtained Monte Carlo
simulation is discussed in more detail in Chapter 20.

The process for a stock price developed in this chapter involves two parameters, ii and 0
The parameter ii is the expected return (annualized) earned by an investor in a short
period of time. Most investors require higher expected returns to induce them to take
higher risks. It follows that the value of /1. should depend on the risk of the return from
the stock.4 It should also depend on the level of interest rates in the economy The higher
the level of interest rates, the higher the expected return required on any given stock

In practice, it is more eflicient to sample ln S rather than S, as W111 be discussed in Section 20 6
4 More precisely, ii depends on that part of the risk that cannot be diversified away by the investor
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Fortunately, we do not have to concern ourselves with the determinants of ,ii in any
detail because the value of a derivative dependent on a stock is, in general, independent
of ,ii. The parameter o, the stock price volatility, is, by contrast, critically important to
the determination of the value of many derivatives. We will discuss procedures for
estimating o in Chapter 14. Typical values of o for a stock are in the range 0.15 to 0.60
(i.e., 15% to 60%).

The standard deviation of the proportional change in the stock price in a small
interval of time At is o~fA_t. As a rough approximation, the standard deviation of the
proportional change in the stock price over a relatively long period of time T is o\/T.
This means "that, as an approximation, volatility can be interpreted as the standard
deviation of the change in the stock price in 1 year. In Chapter 14, we will show that the
volatility of a stock price is exactly equal to the standard deviation of the continuously
compounded return provided by the stock in 1 year.

CORRELATED PROCESSES

So far we have considered how the stochastic process for a single variable can be
represented. We now extend the analysis to the situation where there are two or more
variables following correlated stochastic processes. Suppose that the processes followed
by two variables x1 and x2 are

dxl =a1dt+b1d21 and dX2 I612 (ll-l-L72 dZ2

where dzl and d22 are Wiener processes.
As has been explained, the discrete-time versions of these processes are

AX] C11 All-l-b1€1\/All and AX2 I C12 At-I-b2 €2\/ At

where 61 and 62 are samples from a standard normal distribution ¢(0, 1). V
The variables x1 and x2 can be simulated in the way described in Section 13.3. If they

are uncorrelated with each other, the random samples 61 and 62 that are used to obtain
movements in a particular period of time At should be independent of each other.

If x1 and x2 have a nonzero correlation p, then the 61 and 62 that are,used to obtain
movements in a particular period of time should be sampled from a bivariate normal
distribution. Each variable in the bivariate normal distribution has a standard normal
distribution and the correlation between the variables is p. In this situation, we would
refer to the Wiener processes dzl and d22 as having a correlation p.

Obtaining samples for uncorrelated standard normal variables in cells in Excel
involves putting the instruction “=NORMSINV(RAND))” in each of the cells. To
sample standard normal variables 61 and 62 with correlation p, we can set

61:u and 62:/2ii+\/l—p2v

where u and v are sampled as uncorrelated variables with standard normal distributions.
Note that, in the processes we have assumed for x1 and x2, the parameters a1, a2, bl,

and b2 can be functions of x1, x2, and t. In particular, a1 and bl can be functions of x2
as well as x1 and t; and a2 and b2 can be functions of x1 as well as x2 and t.
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The results here can be generalized. When there are three different variables following
correlated stochastic processes, we have to sample three different 6’s. These have a
trivariate normal distribution. When there are n correlated variables, we have n different
6’s and these must be sampled from an appropriate multivariate normal distribution.
The way this is done is discussed in Chapter 20.

|To’s LEMMA
The price of a stock option is a function of the underlying stock’s price and time. More
generally, we can say that the price of any derivative is a function of the stochastic
variables underlying the derivative and time. A serious student of derivatives must,
therefore, acquire some understanding of the behavior of functions of stochastic
variables. An important result in this area was discovered by the mathematician
K. It6 in 1951,5 and is known as 116 ’s lemma.

Suppose that the value of a variable x follows the Ité process

dx : a(x, t) dt + b(x, t) dz (13.11)

where dz is a Wiener process and a and b are functions of x and t. The variable x has a
drift rate of a and a variance rate of b2. It6’s lemma shows that a function G of x and t
follows the process

so so 820 ac;dG=: --. - 1--62 Cl ———bd 13.12(0x0+0t+28x2 )t+0x Z ( )
where the dz is the same Wiener process as in equation (13.11). Thus, G also follows an
It6 process, with a drift rate of

ao ac 1 820 2
-5;-C-Cl ‘I’ gt’ “I” 5 -8;-5 b

. 2
[,2

8x

A completely rigorous proof of It6’s lemma is beyond the scope of this book. /In the
appendix to this chapter, we show that the lemma can be viewed as an extension of well-
known results in differential calculus.

Earlier, we argued that

and a variance rate of

dS == iiSdt + US dz (13.13)

with /ii and 0 constant, is a reasonable model of stock price movements. From It6’s
lemma, it follows that the process followed by a function G of S and t is

ac; ac; 820 ac;dG= - s - -1-- Zsz Cl -- Sd 13.14fats“ +0t+20S2U Has“ Z ( )
Note that both S and G are affected by the same underlying source of uncertainty, dz.
This proves to be very important in the derivation of the Black-Scholes-Merton results.

5 See K. It6, “On Stochastic Differential Equations,” Memoirs of the American Mathematical Society,
4 (1951): 1-51.
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Application to Forward Contracts
To illustrate It6’s lemma, consider a forward contract on a non-dividend-paying stock.
Assume that the risk-free rate of interest is constant and equal to r for all maturities.
From equation (5.1),

_ F0 I S06rT

where F0 is the forward price at time zero, S0 is the spot price at time zero, and T is the
time to maturity of the forward contract.

We are interested in what happens to the forward price as time passes. We define F as
the forward price at a general time t, and S as the stock price at time t, with t < T. The
relationship between F and S is given by

F = se’<T*‘> (13.15)
Assuming that the process for S is given by equation ( 13.13), we can use It6’s lemma to
determine the process for F. From equation (13.15),

8F ,(T_,., 82F 8F ,(T,_,,
—— I , i :. 0, —— .:' — Sas 6 asl at F 6

From equation (13.14), the process for F is given by

dF = [e’<T"’>/is - rs@’<T">] dt + 6*"-‘>68 dz
Substituting F for Se’(T") gives

dF = (,ii —- r)Fdt + (IF dz (13.16)

Like S, the forward price F follows geometric Brownian motion. It has an expected
growth rate of ii — r rather than /i. The growth rate in F is the excess return of S over
the risk-free rate.  

THE LOG NORMAL PROPERTY
/F

We now use It6’s lemma to derive the process followed by ln S when S follows the process
in equation (13.13). We define

G : ln S  
Since

so 1 azo 1 ao
—— .: -— , i I —i , t I 0as s as-2 s1 at

it follows from equation (13.14) that the process followed by G is
2 .

dG = (0 - dt + 6812 (13.17)

Since ti and o are constant, this equation indicates that G = ln S follows a generalized
Wiener process. It has constant drift rate ii - o2 /2 and constant variance rate 02. The
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change in ln S between time 0 and some future time T is therefore normally distributed,
with mean (/J. - 02/2)T and variance o2T. This means that

2
ln ST - ln SO ~ ¢[(/J. — -5)T, or2T (13.18)

or _
2 _

ln ST ~ ¢[ln S0 + (ii - %—)T, o2T (13.19)

where ST is the stock price at a future time T, S0 is the stock price at time 0, and as
before ¢(m, v) denotes a normal distribution with mean m and variance v.

Equation (13.19) shows that ln ST is normally distributed. A variable has a lognormal
distribution if the natural logarithm of the variable is normally distributed. The model
of stock price behavior we have developed in this chapter therefore implies that a stock’s
price at time T, given its price today, is lognormally distributed. The standard deviation
of the logarithm of the stock price is Ufi. It is proportional to the square root of how
far ahead we are looking.

SUMMARY  
Stochastic processes describe the probabilistic evolution of the value of a variable
through time. A Markov process is one where only the present value of the variable
is relevant for predicting the future. The past history of the variable and the way in
which the present has emerged from the past is irrelevant.  

A Wiener process dz is a process describing the evolution of a normally distributed
variable. The drift of the process is zero and the variance rate is 1.0 per unit time. This
means that, if the value of the variable is x0 at time 0, then at time T it is normally
distributed with mean X9 and standard deviation \/T. T

A generalized Wiener process describes the evolution of a normally distributed
variable with a drift of a per unit time and a variance rate of b2 per unit time, where
a and b are constants. This means that if, as before, the value of the variable is x0 at
time 0, it is normally distributed with a mean of x0 + aT and a standard deviation of
bx,/T at time T. 6

An It6 process is a process where the drift and variance rate of x can be a function of
both x itself and time. The change in x in a very short period of time is, to a good
approximation, normally distributed, but its change over longer periods of time is liable
to be nonnormal.

One way of gaining an intuitive understanding of a stochastic process for a variable is
to simulate the behavior of the variable. This involves dividing a time interval into
many small time steps and randomly sampling possible paths for the variable. The
future probability distribution for the variable can then be calculated. Monte Carlo
simulation is discussed further in Chapter 20.

It6’s lemma is a way of calculating the stochastic process followed by a function of a
variable from the stochastic process followed by the variable itself. As we shall see in
Chapter 14, It6’s lemma plays a very important part in the pricing of derivatives. A key
point is that the Wiener process dz underlying the stochastic process for the variable is
exactly the same as the Wiener process underlying the stochastic process for the function
of the variable. Both are subject to the same underlying source of uncertainty.



Z94 CHAPTER 13

The stochastic process usually assumed for a stock price is geometric Brownian
motion. Under this process the return to the holder of the stock in a small period of
time is normally distributed and the returns in two nonoverlapping periods are
independent. The value of the stock price at a future time has a lognormal distribution.
The Black—Scholes—Merton model, which we cover in the next chapter, is based on the
geometric Brownian motion assumption.
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Practice Questions (Answers in Solutions Manual)

13.1. What would it mean to assert that the temperature at a certain place follows a, Markov
process? Do you think that temperatures do, in fact, follow a Markov process?

13.2. Can a trading rule based on the past history of a stock’s price ever produce returns that
are consistently above average? Discuss.

13.3. A company’s cash position, measured in millions of dollars, follows /a generalized
Wiener process with a drift rate of 0.5 per quarter and a variance rate of 4.0 per quarter.
How high does the company’s initial cash position have to be for the company to have a
less than 5% chance of a negative cash position by the end of 1 year?

13.4. Variables X1 and X2 follow generalized Wiener processes, with drift rates /L1 and /22 and
variances of and 02. What process does X1 + X2 follow if:
(a) The changes in X1 and X2 in any short interval of time are uncorrelated?
(b) There is a correlation p between the changes in X1 and X2 in any short time interval?

13.5. Consider a variable S that follows the process
dS = u dt + odz

For the first three years, ,ii = 2 and 0 : 3; for the next three years, ,ii = 3 and 0 = 4. If
the initial value of the variable is 5, what is the probability distribution of the value of
the variable at the end of year 6?
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13.6

13.7

13.8

13.9

13.10.

13.11

13.12

Suppose that G is a function of a stock price S and time. Suppose that as and oG are the
volatilities of S and G. Show that, when the expected return of S increases by 210$, the
growth rate of G increases by MIG, where )1 is a constant.
Stock A and stock B both follow geometric Brownian motion. Changes in any short
interval of time are uncorrelated with each other. Does the value of a portfolio consisting
of one of stock A and one of stock B follow geometric Brownian motion? Explain your
answer.
The process for the stock price in equation (13.8) is

AS -: ,iiS At + oS6~/At

where /i and o are constant. Explain carefully the difference between this model and each
of the followin

gt AS = /x At + o6\/At

AS : /x At + oS6\/At

Why is the model in equation (13.8) a more appropriate model of stock price behavior
than any of these three alternatives?
It has been suggested that the short-term interest rate r follows the stochastic process

dr = a(b —— r)dt + rcdz

where a, b, c are positive constants and dz is a Wiener process. Describe the nature of
this process.
Suppose that a stock price S follows geometric Brownian motion with expected return /J,
and volatility or

dS = /.iSdt+oSdz

What is the process followed by the variable S"? Show that S" also follows geometric
Brownian motion. .
Suppose that x is the yield to maturity with continuous compounding on a zero-coupon
bond that pays off $1 at time T. Assume that x follows the process

dx = a(x0 — x) dt + sx dz

where a, x0, and s are positive constants and dz is a Wiener process. What is the process
,.

followed by the bond price? fl
A stock whose price is $30 has an expected return of 9% and a volatility of 20%. In
Excel, simulate the stock price path over 5 years using monthly time steps and random
samples from a normal distribution. Chart the simulated stock price path. By hitting F9,
observe how the path changes as the random samples change.

Further Questions

13.13. Suppose that a stock price has an expected return of 16% per annum and a volatility of
30% per annum. When the stock price at the end of a certain day is $50, calculate the
following: -
(a) The expected stock price at the end of the next day
(b) The standard deviation of the stock price at the end of the next day
(c) The 95 % confidence limits for the stock price at the end of the next day. 6
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A company’s cash position, measured in millions of dollars, follows a generalized
Wiener process with a drift rate of 0.1 per month and a variance rate of 0.16 per month.
The initial cash position is 2.0.
(a) What are the probability distributions of the cash position after 1 month, 6 months,

and 1 year?
(b)_ What are the probabilities of a negative cash position at the end of 6 months and

1 year?
(c) At what time in the future is the probability of a negative cash position greatest‘?
Suppose that x is the yield on a perpetual government bond that pays interest at the rate
of $1 per annum. Assume that x is expressed with continuous compounding, that interest
is paid continuously on the bond, and that x follows the process

dx = a(xO — x) dt + sx dz

where a, x0, and s are positive constants, and dz is a Wiener process. What is the process
followed by the bond price? What is the expected instantaneous return (including interest
and capital gains) to the holder of the bond?
If S follows the geometric Brownian motion process in equation (13.6), what is the
process followed by
(8) y = 25   
(b) y = S2
(C) y = es  (<1) y = e"T"‘>/S.
In each case express the coeflicients of dt and dz in terms of y rather than S.
A stock price is currently 50. Its expected return and volatility are 12% and 30%,
respectively. What is the probability that the stock price will be greater than 80 in 2 years?
(Hint: ST > 80 when ln ST > ln 80.)
Stock A, whose price is $30, has an expected return of 11% and a volatility of 25%.
Stock B, whose price is $40, has an expected return of 15% and a volatility of 30%. The
processes driving the returns are correlated with correlation parameter p. In Excel,
simulate the two stock price paths over 3 months using daily time steps and random
samples from normal distributions. Chart the results and by hitting F9 observe how the
paths change as the random samples change. Consider values for ,0 equal to 0.25, 0.75,
and 0.95.

/?
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APPENDIX
DERIVATION or |To’s LEMMA
In this appendix, we show how Ito’s lemma can be regarded as a natural extension of
other, simpler results. Consider a continuous and differentiable function G of a
variable x. If Ax is a small change in x and AG is the resulting small change in G, a
well-known result from ordinary calculus is

AG % fig Ax (13A.1)
dx

In other words, AG is approximately equal to the rate of change of G with respect to x
multiplied by Ax. The error involves terms of order Ax2. If more precision is required, a
Taylor series expansion of AG can be used:  

dG 420 6130AG-;___A l.__A2 l___A3
dx x+2dx2 x+6dx3 x+

For a continuous and differentiable function G of two variables x and y, the result
analogous to equation (l3A.1) is

8G 8G
AG %——Ax+—Ay (13A.2)

8x 8y

and the Taylor series expansion of AG is  

2 2 2ac; ac; ac; ac; ac;AG=——A ——A 1-——A 2 -———A A l———A 2 13A.38x x+8y y+28x2 x+8x8y x y+28y2 y+ ( )
In the limit, as Ax and Ay tend to zero, equation (13A.3) becomes A

A .ac; 0dG = ——dx + ° dy (13.4.4)
8x 8y

We now extend equation (13A.4) to cover functions of variables following Ito processes.
Suppose that a variable x follows the Ito process ’i

dx = a(x, t) dt + b(x, t) dz (l3A.5)

and that G is some function of x and of time t. By analogy with equation (l3A.3), we
can write

ac; ac; azo 2 azc; azc; 2

Equation (l3A.5) can be discretized to

. Ax : a(x, t) At + b(x, t)e\/At

or, if arguments are dropped,
Ax : a At + bex/gt (13A.7)
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This equation reveals an important difference between the situation in equation (l3A.6)
and the situation in equation (l3A.3). When limiting arguments were used to move
from equation (l3A.3) to equation (l3A.4), terms in Ax2 were ignored because they
were second-order terms. From equation (l3A.7), we have

p Ax2 = b2e2At + terms of higher order in At (l3A.8)

This shows that the term involving Axz in equation (l3A.6) has a component that is of
order At and cannot be ignored.

The variance of a standardized normal distribution is 1.0. This means that

E(E2) — [E(6)]2 = 1
where E denotes expected value. Since E(e) = 0, it follows that E(e2) = l. The expected
value of e2At, therefore, is At. The variance of e2At is, from the properties of the
standard normal distribution, 2At2. We know that the variance of the change in a
stochastic variable in time At is proportional to At, not Atz. The variance of e2At is
therefore too small for it to have a stochastic component. As a result, we can treat e2At
as nonstochastic and equal to its expected value, At, as At tends to zero. It follows from
equation (l3A.8) that Ax2 becomes nonstochastic and equal to bzdt as At tends to zero.
Taking limits as Ax and At tend to zero in equation (l3A.6), and using this last result,
we obtain

ac; ac; azodG = 3)-C-ax + -871: +21/fifidt (13.4.9)

This is Ito’s lemma. If we substitute for dx from equation (l3A.5), equation (l3A.9)
becomes

ac; ac azc; acdG= - - l_b2 d ——bd.
(8xa+ 3t +2 8x2 )t+ 8x Z

Technical Note 29 at www.rotman.utoronto.ca/~hu11/Techn.icalNotes provides proofs
of extensions to It6’s lemma. When G is a function of variables x1, x2, . . . , x,, and

dxi = a,- dt + b,- dz,-
we have I

2 n /G af3
Q: C3 Q9 C3

+ ZM= _'["]=Q:

Q9

Also, when G is a function of a variable x with several sources of uncertainty so that
m

dx = adt + Z19, dz,-
i=1

we have A
I1 I71 m I71

dG : —— —— 1? b~b~ -- d — b-d - 13A.1l‘ ljplj) 1 Z1 ( )

In these equations, p,-j is thecorrelation between dz, and dzj (see Section 13.5).



The Black-
Scholes—Merton

Model

In the early 1970s, Fischer Black, Myron Scholes, and Robert Merton achieved a major
breakthrough in the pricing of European stock options.1 This was the development of
what has become known as the Black—Scholes—Merton (or Black—Scholes) model. The
model has had a huge influence on the way that traders price and hedge derivatives. In
1997, the importance of the model was recognized when Robert Merton and Myron
Scholes were awarded the Nobel prize for economics. Sadly, Fischer Black died in 1995;
otherwise he too would undoubtedly have been one of the recipients of this prize.

How did Black, Scholes, and Merton make their breakthrough‘? Previous researchers
had made the similar assumptions and had correctly calculated the expected payoff from
a European option. However, as explained in Section 12.2, it is difficult to know the
correct discount rate to use for this payoff. Black and Scholes used the capital asset
pricing model (see the appendix to Chapter 3) to determine a relationship between the
market’s required return on the option to the required return on the stock. This was not
easy because the relationship depends on both the stock price and time. Merton’s
approach was different from that of Black and Scholes. It involved setting up a riskless
portfolio consisting of the option and the underlying stock and arguing that the return
on the portfolio over a short period of time must be the risk-free return. This is similar
to what we did in Section l2.1——-but more complicated because the portfolio changes
continuously through time. Merton’s approach was more general than that of Black and
Scholes because it did not rely on the assumptions of the capital asset pricing model.

This chapter covers Merton’s approach to deriving the Black~—Scholes-—Merton
model. It explains how volatility can be either estimated from historical data or implied
from option prices using the model. It shows how the risk-neutral valuation argument
introduced in Chapter 12 can be used. It also shows how the Black—Scholes—Merton
model can be extended to deal with European call and put options on dividend-paying
stocks and presents some results on the pricing of American call options on dividend-
paying stocks. ,

1 See F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” Journal of Political
Economy, 81 (May/June 1973): 637-59; R.C. Merton, “Theory of Rational Option Pricing,” Bell Journal of
Economics and Management Science, 4 (Spring 1973): 141-83. '
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CHAPTER 14

LOGNORMAL PROPERTY OF STOCK PRICES

The model of stock price behavior used by Black, Scholes, and Merton is the model we
developed in Chapter 13. It assumes that percentage changes in the stock price in a
short period of time are normally distributed. Define

I /2: Expected return on stock per year
0: Volatility of the stock price per year.

The mean of the return in time At is pt At and the standard deviation of the return is
on/At, so that

AST ~ ¢(,1 At, o2At) (14.1)

where AS is the change in the stock price S in time At, and ¢(m, 0) denotes a normal
distribution with mean m and variance v. (This is equation (13.9).)

As shown in Section 13.7, the model implies that
2

ln sT - ln s0 ~ ¢[(;i - fir]
so that 2ST111$ ~ ¢K,i - T, fir] (14.2)

0,2
ln ST ~ ¢[ln S0 + (/4 — —2—>T, o2T:| (14.3)

and

where ST is the stock price at a future time T and S0 is the stock price at time 0.
Equation (14.3) shows that ln ST is normally distributed, so that ST has a lognormal
distribution. The mean of ln ST is ln S0 +(,u—o2/2)T and the standard deviation
is a\/T. 5

Example 14. 1 T
Consider a stock with an initial price of $40, an expected return of 16% per
annum, and a volatility of 20% per annum. From equation (14.3), the probability
distribution of the stock price ST in 6 months’ time is given by

3 ln sT ~ ¢[1n 40 + (0.16 - 0.22/2) X 0.5, 0.22 >< 0.515
ln sT ~ ¢(3.759, 0.02)

There is a 95% probability that a normally distributed variable has a value within
1.96 standard deviations of its mean. In this case, the standard deviation is
\/0.02 : 0.141. Hence, with 95% confidence,

3.759 -1.96 >< 0.141 < ln ST < 3.759 +1.96 x 0.141

This can be written
83.759-—1.96><0.l41< ST<e3.759+1.96><0.l4l

OI‘
5 32.55 < sT < 56.56

Thus, there is a 95% probability that the stock price in 6 months will lie between
32.55 and 56.56.
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Figure 14.1 Lognormal distribution.
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A variable that has a lognormal distribution can take any value between zero and
infinity. Figure 14.1 illustrates the shape of a lognormal distribution. Unlike the normal
distribution, it is skewed so that the mean, median, and mode are all different. From
equation (14.3) and the properties of the lognormal distribution, it can be shown that
the expected value E(ST) of ST is given by I I

E(ST) = 506*” (14.4)
This fits in with the definition of /2 as the expected rate of return. The variance var(ST)
of ST, can be shown to be given byz

2var(ST) = s§e2“T(e“ T - 1) (14.5)
Example 14.2 1

Consider a stock where the current price is $20, the expected return is 20% per
annum, and the volatility is 40% per annum. The expected stock price, E(ST), and
the variance of the stock price, var(ST), in 1 year are given by

E(ST) = 20@°~2X‘ = 24.43 a11d var(ST) = 400@2*°~2X‘(@°~42*‘ - 1) = 103.54
The standard deviation of the stock price in 1 year is \/ 103.54, or 10.18.

THE DISTRIBUTION OF THE RATE OF RETURN

The lognormal property of stock prices can be used to provide information on the
probability distribution of the continuously compounded rate’ of return earned on a
stock between times 0 and T. If we define the continuously compounded rate of return

2 See Technical Note 2 at www.rotman.utoronto.ca/~hu11/TechnicalNotes for a proof of the results in
equations (14.4) and (14.5). For a more extensive discussion of the properties of the lognormal distribution,
see J . Aitchison and J . A. C. Brown, The Lognormal Distribution. Cambridge University Press, 1966.
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per annum realized between times 0 and T as x, then

ST = 50¢”
so that

1 ST
:-—l — 4.x Tnso (1 6)

From equation (14.2), it follows that

2 2
x ~ ¢(/1. - “T. YT) (14.1)

Thus, the continuously compounded rate of return per annum is normally distributed
with mean tt — 02/2 and standard deviation or/.\/T. As T increases, the standard
deviation of x declines. To understand the reason for this, consider two cases: T = 1
and T : 20. We are more certain about the average return per year over 20 years than
we are about the return in any one year.

Example 14.3
Consider a stock with an expected return of 17% per annum and a volatility of
20% per annum. The probability distribution for the average rate of return (con-
tinuously compounded) realized over 3 years is normal, with mean

.22. 0.17_07-20.15
or 15% per annum, and standard deviation

l 2
%=0.1l55

or 11.55% per annum. Because there is a 95% chance that a normally distrib-
uted variable will lie within 1.96 standard deviations of its mean, we can be
95% confident that the average return realized over 3 years will be between
15 — 1.96 x 11.55 = ——7.6% and 15 +1.96 x 11.55 = +37.6% per annum.

THE EXPECTED RETURN /
The expected return, pt, required by investors from a stock depends on the riskiness of
the stock. The higher the risk, the higher the expected return. It also depends on the
level of interest rates in the economy. The higher the level of interest rates, the higher
the expected return required on any given stock. Fortunately, we do not have to concern
ourselves with the determinants of ,u. in any detail. It turns out that the value of a stock
option, when expressed in terms of the value of the underlying stock, does not depend
on /.t at all. Nevertheless, there is one aspect of the expected return from a stock that
frequently causes confusion and needs to be explained.

Equation (14.1) shows that ,tt At is the expected percentage change in the stock price
in a very short period of time, At. It is natural to assume from this that /2 is the expected
continuously compounded return on the stock. However, this is not the case. The
continuously compounded return, x, actually realized over a period of time of length T
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is given by equation (14.6) as
x — —l—ln§l" T so

and, as indicated in equation (14.7), the expected value E(x) of x is u — 02/2.
The reason why the expected continuously compounded return is different from /2 is

subtle, but important. Suppose we consider a very large number of very short periods of
time of length At. Define S,- as the stock price at the end of the ith interval and AS,- as
S,-+1 —- S,». Under the assumptions we are making for stock price behavior, the average
of the returns on the stock in each interval is close to /2. In other words, pt At is close to
the arithmetic mean of the AS,/S,-. However, the expected return over the whole period
covered by the data, expressed with a compounding interval of At, is close to /J. - 02/2,
not /2.3 Business Snapshot 14.1 provides a numerical example concerning the mutual
fund industry to illustrate why this is so. For a mathematical explanation of what is
going on, we start with equation (14.4):

E(ST) = soa”
Taking logarithms, we get

1I1IE($r)] = 111(50) + MT  
It is now tempting to set ln[E(ST)] = E[ln(ST)], so that E[ln(ST)] - ln(S0) = /.tT, or
E[ln(ST/S0)] r: ,aT, which leads to E(x) = /1.. However, we cannot do this because In
is a nonlinear function. In fact, ln[E(ST)] > E[ln(ST)], so that E[ln(ST/S0)] < /1T, which
leads to E(x) < /t. (As pointed out above, E(x) = pt -— 02/2.) T

VOLATILITY

The volatility, 0, of a stock is a measure of our uncertainty about the returns provided
by the stock. Stocks typically have a volatility between 15% and 60%.  

From equation (14.7), the volatility of a stock price can be defined as the standard
deviation of the return provided by the stock in 1 year when the return is expressed
using continuous compounding.

When At is small, equation (14.1) shows that 02At is approximately equal to the
variance of the percentage change in the stock price in time At. This means that 0/4/AT is
approximately equal to the standard deviation of the percentage change in the stock
price in time At. Suppose that 0 = 0.3, or 30%, per annum and the current stock price
is $50. The standard deviation of the percentage change in the stock price in 1 week is
approximately

1
30 X  - LI’.

A 1-standard—deviation move in the stock price in 1 week is therefore 50 >< 0.0416 := 2.08.
Uncertainty about a future stock price, as measured by its standard deviation,

increases»-at least approximately~——with the square root of how far ahead we are
looking. For example, the standard deviation of the stock price in 4 weeks is approxi-
mately twice the standard deviation in 1 week.

3 The arguments in this section show that the term “expected return” is ambiguous. It can refer either to /2 or
to /2 — 02/2. Unless otherwise stated, it will be used to refer to /t throughout this book.
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Estimating Volatility from Historical Data
/

To estimate the volatility of a stock price empirically, the stock price is usually observed
at fixed intervals of time (e.g., every day, week, or month). Define: .

n + 1: Number of observations
S,-: Stock price at end of ith interval, with i : 0, 1, . . . , n
r: Length of time interval in years

and let 1
u,- =ln(—§i—) fori= l,2,...,n

. 53-1
The usualestimate, s, of the standard deviation of the u,- is given by

 2f..<»—t>2
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where ti is the mean of the ti,-.4  
From equation (14.2), the standard deviation of the u,- is 0‘/T. The variable s is

therefore an estimate of 0./E. It follows that 0 itself can be estimated as 0, where
A S

0'1-..__._...

\/E

The standard error of this estimate can be shown to be approximately 0/
Choosing an appropriate value for n is not easy. More data generally lead to more

accuracy, but 0 does change over time and data that are too old may not be relevant for
predicting the future volatility. A compromise that seems to work reasonably well is to
use closing prices from daily data over the most recent 90 to 180 days. Alternatively, as
a rule of thumb, n can be set equal to the number of days to which the volatility is to be
applied. Thus, if the volatility estimate is to be used to value a 2-year option, daily data
for the last 2 years are used. More sophisticated approaches to estimating volatility
involving GARCH models are discussed in Chapter 22.

Example 14.4
Table 14.1 shows a possible sequence of stock prices during 21 consecutive trading
days. In this case, n = 20, so that  

n __ n 2 __Zi:1u,__ 0.09531 and Zizl 1/ti _ 0.00326
and the estimate of the standard deviation of the daily return is

0.00326 0.095312
\/ 19 20><19 “001216

or 1.216%. Assuming that there are 252 trading days per year, r = 1/252 and the
data give an estimate for the volatility per annum of 0.012l6~/252 = 0.193, or
19.3%. The standard error of this estimate is

. _(l'_1_9_§__: ()_()31
\/2x20

./

or 3.1% per annum.

The foregoing analysis assumes that the stock pays no dividends, but it can be adapted
to accommodate dividend-paying stocks. The return, ti,-, during a time interval that
includes an ex-dividend day is given by

ln Si + Du- : —-———-
’ 5.--1

where D is the amount of the dividend. The return in other time intervals is still

l/ii =11‘l—-—'——
Sz~1

4 The mean 12 is often assumed to be zero when estimates of historical volatilities are made.
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Table 14.1 Computation of volatility.

Day Closing stock price Price relative Daily return
i (dollars), S,- S,-/S,--1 u,- = 1n(S,~/S,~_1)

20.00
20. 10 1.00500 0.00499
19.90 0.99005 —0.01000
20.00 1.00503 0.00501
20.50 1.02500 0.02469
20.25 0.98780 —0.0l227
20.90 1.03210 .03159
20.90 1.00000 .00000
20.90 1.00000 .00000
20.75 0.99282 — .00720

1 20.75 1.00000 .00000
1 21.00 1.01205 0.01198
1 21.10 1.00476 0.00475
1 20.90 0.99052 —0.00952
1 20.90 1.00000 0.00000
1 21.25 1.01675 0.01661
1 1.40 1.00706 0.00703
1 1.40 1.00000 0.00000
1 1.25 0.99299 —0.00703
1 21.75 1.02353 0.02326
20 22.00 1.01149 0.01143

E:?fJl—.§'i '

\DOO\‘lO\U1-I>UJl\J1—*©\DOO\1O\U1-l>UJl\J1—‘©

l\Jl\Jl\J

FDFDFDFDFD

However, as tax factors play a part in determining returns around an ex-dividend date,
it is probably best to discard altogether data for intervals that include an ex-dividend
date.

1"

Trading Days vs. Calendar Days ’
An important issue is whether time should be measured in calendar days or trading
days when volatility parameters are being estimated and used. As shown in Business
Snapshot 14.2, research shows that volatility is much higher when the exchange is open
for trading than when it is closed. As a result, practitioners tend to ignore days when the
exchange is closed when estimating volatility from historical data and when calculating
the life of an option. The volatility per annum is calculated from the volatility per
trading day using the formula

Volatility __ Volatility X Number of trading days
per annum T per trading day per annum

This is what we did in Example 14.4 when calculating volatility from the data in
Table 14.1. The number of trading days in a year is usually assumed to be 252 for stocks.
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The life of an option is also usually measured using trading days rather than calendar
days. It is calculated as T years, where

T _ -Number of trading days until option maturity
_ 252

THE IDEA UNDERLYING THE BI.ACK—SCHOLES-MERTON
DIFFERENTIAL EQUATION

The Black—Scholes—Merton differential equation is an equation that must be satisfied
by the price of any derivative dependent on a non-dividend-paying stock. The equation
is derived in the next section. Here we consider the nature of the arguments we will use.

These are similar to the no-arbitrage arguments we used to value stock options in
Chapter 12 for the situation where stock price movements are binomial. They involve
setting up a riskless portfolio consisting of a position in the derivative and a position in
the stock. In the absence of arbitrage opportunities, the return from the portfolio must
be the risk-free interest rate, r. This leads to the Black-Scholes-Merton differential
equation.
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Figure 14.2 Relationship between call price and stock price. Current stock price is S0».
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The reason a riskless portfolio can be set up is that the stock price and the derivaiivc
price are both affected by the same underlying source of uncertainty: stock price
movements. In any short period of time, the price of the derivative is perfectly
correlated with the price of the underlying stock. When an appropriate portfolio of
the stock and the derivative is established, the gain or loss from the stock position
always offsets the gain or loss from thederivative position so that the overall value of
the portfolio at the end of the short period of time is known with certainty.

Suppose, for example, that at a particular point in time the relationship between a
small change AS in the stock price and the resultant small change Ac in the price of a
European call option is given by

Ac = 0.4 AS

This means that the slope of the line representing the relationship between c and S is 0.4,
as indicated in Figure 14.2. The riskless portfolio would consist of:

1. A long position in 0.4 shares
2. A short position in one call option.

Suppose, for example, that the stock price increases by 10 cents. The option price will
increase by 4 cents and the 0.4 x 10 : 4 cents gain on the shares is equal”to the 4 cents
loss on the short option position.

There is one important difference between the Black—Scholes—Merton analysis and
our analysis using a binomial model in Chapter 12. In Black—Scholes—-Merton, the
position in the stock and the derivative is riskless for only a very short period of time.
(Theoretically, it remains riskless only for an instantaneously short period of time.) To
remain riskless, it must be adjusted, or rebalanced, frequently.5 For example, the
relationship between Ac and AS in our example might change from Ac = 0.4 AS today
to Ac = 0.5 AS in 2 weeks. This would mean that, in order to maintain the riskless
position, an extra 0.1 share would have to be purchased for each call option sold. It is
nevertheless true that the return from the riskless portfolio in any very short period of
time must be the risk-free interest rate. This is the key element in the Black—Scholes-
Merton analysis and leads to their pricing formulas.

5 We discuss the rebalancing of portfolios in more detail in Chapter 18.
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Assumptions
The assumptions we use to derive the Black—Scholes—Merton differential equation are
as follows:

1. The stock price follows the process developed in Chapter 13 with /2 and 0 constant.
2. The short selling of securities with full use of proceeds is permitted.
3. There are no transactions costs or taxes. All securities are perfectly divisible.
4. There are no dividends during the life of the derivative.
5. There are no riskless arbitrage opportunities.
6. Security trading is continuous.
7. The risk-free rate of interest, r, is constant and the same for all maturities.

As we discuss in later chapters, some of these assumptions can be relaxed. For example,
0 and r can be known functions of t. We can even allow interest rates to be stochastic
provided that the stock price distribution at maturity of the option is still lognormal.

DERIVATION OF THE BLACK—SCHOLES-MERTON
DIFFERENTIAL EQUATION

In this section, the notation is different from elsewhere in the book. We consider a
derivative’s price at a general time t (not at time zero). If T isthe maturity date, the time
to maturity is T -— t.

The stock price process we are assuming is the one we developed in Section 13.3:

dS : /.tSdt + 0S dz (14.8)

Suppose that f is the price of a call option or other derivative contingent on S. The
variable f must be some function of S and t. Hence, from equation (13.14), .

a a a2 a11/: (5-§,1s+5{-+Tfi!;a2s2) dt+—é€-0Sdz (14.9)

The discrete versions of equations (14.8) and (14.9) are

AS = uS At + 0S Az (14.10)
and

af af a2f af

where Af and AS are the changes in f and S in a small time interval At. Recall from
the discussion of lt6’s lemma in Section 13.6 that the Wiener processes underlying f
and S are the same. In other words, the Az (= e\/At) in equations (14.10) and (14.11)
are the same. It follows that a portfolio of the stock and the derivative can be
constructed so that the Wiener process is eliminated. The portfolio is

—-1: derivative
+0f/8S: shares.
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The holder of this portfolio is short one derivative and long an amount 0f/8S of
shares. Define 1'1 as the value of the portfolio. By definition

T TI:-f+g—€S (14.12)

The change Al'I in the value of the portfolio in the time interval At is given by

8
Al'l : —Af+%AS (14.13)

Substituting equations (14.10) and (14.11) into equation (14.13) yields

2
An _ < 5-gS€a2s2)A¢ (14.14)

Because this equation does not involve Az, the portfolio must be riskless during time At.
The assumptions listed in the preceding section imply that the portfolio must instant-
aneously earn the same rate of return as other short-term risk-free securities. If it earned
more than this return, arbitrageurs could make a riskless profit by borrowing money to
buy the portfolio; if it earned less, they could make a riskless profit by shorting the
portfolio and buying risk-free securities. It follows that

AI'I = rl'l At (14.15)

where r is the risk-free interest rate. Substituting from equations (14.12) and (14.14) into
(14.15), we obtain

at 1821‘ 2 2 __ at(at+,-was At_r f-5-S-s At
so that

a a a2  
%f+rS%+%02S25Si;=rf (14.16)

Equation (14.16) is the Black—Scholes—Merton differential equation. It has many
solutions, corresponding to all the different derivatives that can be defined with S as
the underlying variable. The particular derivative that is obtained when the equation is
solved depends on the boundary conditions that are used. These specify the values of the
derivative at the boundaries of possible values of S and t. In the case of a European call
option, the key boundary condition is

f=max(S-—K, 0) whent=T

In the case of a European put option, it is

f = max(K — S, 0) when t = T

One point that should be emphasized about the portfolio used in the derivation of
equation (14.16) is that it is not permanently riskless. It is riskless only for an
infinitesimally short period of time. As S and t change, 8 f/8S also changes. To keep
the portfolio riskless, it is therefore necessary to frequently change the relative propor-
tions of the derivative and the stock in the portfolio.



The Black—Scholes—Merton Model 3 1 1

14.7

Example 14.5
A forward contract on a non-dividend-paying stock is a derivative dependent on
the stock. As such, it should satisfy equation (14.16). From equation (5.5), we
know that the value of the forward contract, f, at a general time t is given in terms
of the stock price S at this time by

f = s - 1<e"’<T"‘>
where K is the delivery price. This means that

2
if = -rK@r’<T"‘> -1! - 1 -8-ii — 0at ’ as T ’ as2 1'

When these are substituted into the left-hand side of equation (14.16), we obtain

—rKe_r(T_t) + rS

This equals rf, showing that equation (14.16) is indeed satisfied.

The Prices of Tradeable Derivatives
Any function f(S, t) that is a solution of the differential equation (14.16) is the
theoretical price of a derivative that could be traded. If a derivative with that price
existed, it would not create any arbitrage opportunities. Conversely, if a function f(S, t)
does not satisfy the differential equation (14.16), it cannot be the price of a derivative
without creating arbitrage opportunities for traders. .  

To illustrate this point, consider first the function es. This does not satisfy the
differential equation (14.16). It is therefore not a candidate for being the price of a
derivative dependent on the stock price. If an instrument whose price was always es
existed, there would be an arbitrage opportunity. As a second example, consider the
function .

e(02——2r)(T—-t)

S

This does satisfy the differential equation, and so is, in theory, the price of a tradeable
security. (It is the price of a derivative that pays off 1/ ST at time T.) For other examples
of tradeable derivatives, see Problems 14.11, 14.12, 14.23, and 14.28. '

RISK-NEUTRAL VALUATION

We introduced risk-neutral valuation in connection with the binomial model in
Chapter 12. It is without doubt the single most important tool for the analysis of
derivatives. It arises from one key property of the Black—Scholes—Merton differential
equation ( 14.16). This property is that the equation does not involve any variables that
are affected by the risk preferences of investors. The variables that do appear in the
equation are the current stock price, time, stock price volatility, and the risk-free rate of
interest. All are independent of risk preferences.

The Black-Scholes—Merton differential equation would not be independent of risk
preferences if it involved the expected return, /.1, on the stock. This is because the value
of /2 does depend on risk preferences. The higher the level of risk aversion by investors,
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the higher p. will be for any given stock. It is fortunate that /1. happens to drop out in
the derivation of the differential equation.

Because the Black—Scholes—Merton differential equation is independent of risk
preferences, an ingenious argument can be used. If risk preferences do not enter the
equation, they cannot affect its solution. Any set of risk preferences can, therefore, be
used when evaluating f. In particular, the very simple assumption that all investors are
risk neutral can be made.

In a world where investors are risk neutral, the expected return on all investment
assets is the risk-free rate of interest, r. The reason is that risk-neutral investors do not
require a premium to induce them to take risks. It is also true that the present value of
any cash flow in a risk-neutral world can be obtained by discounting its expected value
at the risk-free rate. The assumption that the world is risk neutral does, therefore,
considerably simplify the analysis of derivatives.

Consider a derivative that provides a payoff at one particular time. It can be valued
using risk-neutral valuation by using the following procedure:

1. Assume that the expected return from the underlying asset is the risk-free interest
rate, r (i.e., assume /t = r).

2. Calculate the expected payoff from the derivative. 2
3. Discount the expected payoff at the risk-free interest rate.

It is important to appreciate that risk-neutral valuation (or the assumption that all
investors are risk neutral) is merely an artificial device for obtaining solutions to the
Black—Scholes—Merton differential equation. The solutions that are obtained are valid
in all worlds, not just those where investors are risk neutral. When we move from a risk-
neutral world to a risk-averse world, two things happen. The expected growth rate in
the stock price changes and the discount rate that must be used for any payoffs from the
derivative changes. It happens that these two changes, always offset each other exactly.

Application to Forward Contracts on a Stock
We valued forward contracts on a non-dividend-paying stock in Section 5.7. In
Example 14.5, we verified that the pricing formula satisfies the Black—Scholes—Merton
differential equation. In this section we derive the pricing formula from risk-neutral
valuation. We make the assumption that interest rates are constant and equal to r. This
is somewhat more restrictive than the assumption in Chapter 5.

Consider a long forward contract that matures at time T with delivery price, K. As
indicated in Figure 1.2, the value of the contract at maturity is

ST-K
where ST is the stock price at time T. From the risk-neutral valuation argument, the
value of the forward contract at time 0 is its expected value at time T in a risk-neutral
world discounted at the risk-free rate of interest. Denoting the value of the forward
contract at time zero by f, this means that

f I €_rTE(ST -'

where E denotes the expected value in a risk-neutral world. Since K is a constant, this
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equation becomes
f = @""’T1_1f(sT) - Ker” (14.17)

The expected return /2 on the stock becomes r in a risk-neutral world. Hence, from
equation (14.4), we have

j 1_€"(sT) = s.,@’2 (14.18)
Substituting equation (14.18) into equation (14.17) gives

f .-= so - Ke"T (14.19)
This is in agreement with equation (5.5).

BLACK—SCHOLES-MERTON PRICING FORMULAS

The most famous solutions to the differential equation (14.16) are the Black—Scholes—-
Merton formulas for the prices of European call and put options. These formulas are:

C = s,,1\/(11,) _ 1<e":'T:1\/(11,) I I (14.20)
and

p = Ke"TN(—-d2) - s01v(-11,) (14.21)
where

_ In (s0 /K) + (T + 62/2)r
d_

I 0~/T

d2:lH(S0/K):-x/(rT— 9'2/2)T:dl _O'~/-7-_;

The function N(x) is the cumulative probability distribution function for a standardized
normal distribution. In other words, it is the probability that a variable with a standard
normal distribution, </>(0, 1), will be less than x. It is illustrated in Figure 14.3. The

_ ‘ . ....... ‘ . _ . __. - _--~1s - J ’“‘*”’_”*“—‘1 1' J '

Figure 14.3 Shaded area represents N(x). ’”

\____ii .4—..-1
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—
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remaining variables should be familiar. The variables c and p are the European call and
European put price, S0 is the stock price at time zero, K is the strike price, r is the
continuously compounded risk-free rate, 0 is the stock price volatility, and T is the time
to maturity of the option.

One way of deriving the Black—Scholes—Merton formulas is by solving the differ-
ential equation (14.16) subject to the boundary condition mentioned in Section 14.6.6
(See Problem 14.17 to prove that the call price in equation (14.20) satisfies the
differential equation.) Another approach is to use risk-neutral valuation. Consider a
European call option. The expected value of the option at maturity in a risk-neutral
world is

E[max(ST - K, 0)]
where, as before, E denotes the expected value in a risk-neutral world. From the risk-
neutral valuation argument, the European call option price c is this expected value
discounted at the risk-free rate of interest, that is,

C = @"’TE[m6X(sT - K, 0)] (14.22)
The appendix at the end of this chapter shows that this equation leads to the result in
equation (14.20).

To provide an interpretation of the terms in equation (14.20), we note that it can be
written

C = e"’T[S0N(d1)e’T - KN(d2)] (14.23)
The expression N(dz) is the probability that the option will be exercised in a risk-neutral
world, so that KN(dz) is the strike price times the probability that the strike price will be
paid. The expression S0N(d1)e'T is the expected value in a risk-neutral world of a
variable that is equal to ST if ST > K and to zero otherwise.

Since it is never optimal to exercise early an American call option on a non-
dividend-paying stock (see Section 10.5), equation (14.20) is the value of an American
call option on a non-dividend-paying stock. Unfortunately, no exact analytic formula
for the value-of an American put option on a non-dividend-paying stock has been
produced. Numerical procedures for calculating American put values are discussed in
Chapter 20.

When the Black~Scholes—Merton formula is used in practice the interest rate r is set
equal to the zero-coupon risk-free interest rate for a maturity T. As we show in later
chapters, this is theoretically correct when r is a known function of time. It is also
theoretically correct when the interest rate is stochastic provided that the stock price at
time T is lognormal and the volatility parameter is chosen appropriately. As mentioned
earlier, time is normally measured as the number of trading days left in the life of the
option divided by the number of trading days in 1 year.

6 The differential equation gives the call and put prices at a general time t. For example, the call price that
satisfies the differential equation is c : SN(d1) — Ke"’(T*‘)N(d2), where

2 d _ ln(S/K) + (r + 02/2)(T - 1)
‘ ' OK/E

and d2 : d1— 0x/T — t.
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Properties of the Black-Scholes-Merton Formulas
We now show that the Black—Scholes—Merton formulas have the right general proper-
ties by considering what happens when some of the parameters take extreme values.

When the stock price, S0, becomes very large, a call option is almost certain to be
exercised. It then becomes very similar to a forward contract with delivery price K.
From equation (5.5), we expect the call price to be

SQ -' K€—rT

This is, in fact, the call price given by equation (14.20) because, when S0 becomes very
large, both d1 and dz become very large, and N(d1) and N(d2) become close to 1.0.
When the stock price becomes very large, the price of a European put option, p,
approaches zero. This is consistent with equation (14.21) because N(—dT) and N(—d2)
are both close to zero in this case.

Consider next what happens when the volatility 0 approaches zero. Because the stock
is virtually riskless, its price will grow at rate r to S0e’T at time T and the payoff from a
call option is

3 max(S0e’T — K, 0)

Discounting at rate r,the value of the call today is

 e"’T max(S0e’T — K, 0) -= max(S0 —- Ke"T, 0)

To show that this is consistent with equation (14.20), consider first the case where
S0 > Ke"’T. This implies that ln (S0/K) + rT > 0. As 0 tends to zero, d1 and d2 tend to
+00, so that N(dT) and N(d2) tend to 1.0 and equation (14.20) becomes

C = S0 '-' K€_rT

When S0 < Ke"'T, it follows that ln(S0/K) + rT < 0. As 0 tends to zero, d1 and d2
tend to --oo, so that N(dT) and N(d2) tend to zero and equation (14.20) gives a call
price of zero. The call price is therefore always max(S0 —- Ke“’T, 0) as 0 tends to zero.
Similarly, it can be shown that the put price is always max(Ke"T — SO, 0) as/0 tends
to zero.

CUMULATIVE NORMAL DISTRIBUTION FUNCTION A

When implementing equations (14.20) and (14.21), it is necessary to evaluate the
cumulative normal distribution function N(x). Tables for N(x) are provided at the
end of this book. The NORMSDIST function in Excel also provides a convenient
way of calculating N(x).

Example 14.6
The stock price 6 months from the expiration of an option is $42, the exercise price
of the option is $40, the risk-free interest rate is 10% per annum, and the volatility
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is 20% per annum. This means that S0 = 42, K : 40, r : 0.1, 0 = 0.2, T = 0.5,

14"4 0.1 .222 .5d1_n(2/0)+( +0 /)><0 ZOJ693
0.2\/0.5

ln’42 40 +(0.1-0.22 2) >< 0.5dz-_=‘ / ) 02% / =0.627s
and I

Ke“’T = 40@"°~°5 = 38.049
Hence, if the option is a European call, its value c is given by

c : 42N(0.7693) — 38.049N(0.6278)

If the option is a European put, its value p is given by

p : 38.049N(—0.6278) -— 42N(—0.7693)

Using the NORMSDIST function in Excel gives

N(0.7693) : 0.7791, N(—0.7693) : 0.2209

1v(0.627s) = 0.7349, N(—0.6278) = 0.2651
so that  

c = 4.76, p = 0.81

Ignoring the time value of money, the stock price has to rise by $2.76 for the
purchaser of the call to break even. Similarly, the stock price has to fall by $2.81
for the purchaser of the put to break even.

WARRANTS AND EMPLOYEE STOCK OPTIONS

The exercise of a regular call option on a company has no effect on the number of the
company’s shares outstanding. If the writer of the option does not own the company’s
shares, he or she.must buy them in the market in the usual way and then sell them to the
option holder for the strike price. As explained in Chapter 9, warrants and employee
stock options are different from regular call options in that exercise leads to the
company issuing more shares and then selling them to the option holder for the strike
price. As the strike price is less than the market price, this dilutes the interest of the
existing shareholders.

How should potential dilution affect the way we value outstanding warrants and
employee stock options? The answer is that it should not! Assuming markets are
efficient the stock price will reflect potential dilution from all outstanding warrants
and employee stock options. This is explained in Business Snapshot 14.3.7

Consider next the situation a company is in when it is contemplating a new issue of
warrants (or employee stock options). We suppose that the company is interested in

7 Analysts sometimes assume that the sum of the values of the warrants and the equity (rather than just the
value of the equity) is lognormal. The result is a Black—Scho1es type of equation for the value of the warrant in
terms of the value of the warrant. See Technical Note 3 at WWW.I‘OtII18I1.111;OI‘OI1tO.C&/Nhllll/TeChI1iCalNOteS
for an explanation of this model.
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1
calculating the cost of the issue assuming that there are no compensating benefits. We
assume that the company has N shares worth S0 each and the number of new options
contemplated is M, with each option giving the holder the right to buy one share for K.
The value of the company today is NS0. This value does not change as a result of the
warrant issue. Suppose that without the warrant issue the share price will be ST at the
warrant’s maturity. This means that (with or without the warrant issue) the total value
of the equity and the warrants at time T will NST. If the warrants are exercised, there is a
cash inflow from the strike price increasing this to NST + MK. This value is distributed
among N + M shares, so that the share price immediately after exercise becomes

2 1vsT + MK T
N + M .

Therefore the payoff to an option holder if the option is exercised is

NS MK__1i__K
N+M

or N-- -KN+M(ST )

This shows that the value of each option is the value of

N
-___i-ii-_

A N+M

regular call options on the company’s stock. Therefore the total cost of the options is
M times this. Since we are assuming that there are no benefits to the company from the
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warrant issue, the total value of the company’s equity will decline by the total cost of
the options as soon as the decision to issue the warrants becomes generally known. This
means that the reduction in the stock price is

M
T N+M

times the value of a regular call option with strike price K and maturity T.

Example 14./
A company with 1 million shares worth $40 each is considering issuing 200,000
warrants each giving the holder the right to buy one share with a strike price of $60
in 5 years. It wants to know the cost of this. The interest rate is 3% per annum, and
the volatility is 30% per annum. The company pays no dividends. From equa-
tion (14.20), the value of a 5-year European call option on the stock is $7.04. In
this case, N = 1,000,000 and M = 200,000, so that the value of each warrant is

1 000 000 I’ ’ . 4 = .1,000,000 + 200,000 X 7 0 5 87
or $5.87. The total cost of the warrant issue is 200,000 x 5.87 = $1.17 million.
Assuming the market perceives no benefits from the warrant issue, we expect the
stock price to decline by $1.17 to $38.83.

IMPLIED VOLATILITIES .

The one parameter in the Black—Scholes~Merton pricing formulas that cannot be
directly observed is the volatility of the stock price. In Section 14.4, we discussed
how this can be estimated from a history of the stock price. In practice, traders (usually
work with what are known as implied volatilities. These are the volatilities implied by
option prices observed in the market.8 2

To illustrate how implied volatilities are calculated, suppose that the value of a
European call option on a non-dividend-paying stock is 1.875 when S0 : 21, K : 20,
r = 0.1, and T : 0.25. The implied volatility is the value of 0 that, when substituted
into equation (14.20), gives c = 1.875. Unfortunately, it is not possible to invert equa-
tion (14.20) so that 0 is expressed as a function of S0, K, r, T, and c. However, an
iterative search procedure can be used to find the implied 0. For example, we can start
by trying 0 : 0.20. This gives a value of c equal to 1.76, which is too low. Because c is
an increasing function of 0, a higher value of 0 is required. We can next try a value of
0.30 for 0. This gives a value of c equal to 2.10, which is too high and means that 0
must lie between 0.20 and 0.30. Next, a value of 0.25 can be tried for 0. This also proves
to be too high, showing that 0 lies between 0.20 and 0.25. Proceeding in this way, we
can halve the range for 0 at each iteration and the correct value of 0 can be calculated
to any required accuracy.9 In this example, the implied volatility is 0.235, or 23.5%, per

8 Implied volatilities for European and American options can be calculated using DerivaGem.

9 This method is presented for illustration. Other more powerful methods, such as the Newton-Raphson
method, are often used in practice (see footnote 3 of Chapter 4). DerivaGem can be used to calculate implied
volatilities.
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annum. A similar procedure can be used in conjunction with binomial trees to find
implied volatilities for American options.

Implied volatilities are used to monitor the market’s opinion about the volatility of a
particular stock. Whereas historical volatilities (see Section 14.4) are backward looking,
implied volatilities are forward looking. Traders often quote the implied volatility of an
option rather than its price. This is convenient because the implied volatility tends to be
less variable than the option price. As will be explained in Chapter 19, the implied
volatilities of actively traded options are used by traders to estimate appropriate implied
volatilities for other options.

The VIX Index
The CBOE publishes indices of implied volatility. The most popular index, the SPX
VIX, is an index of the implied volatility of 30-day options on the S&P 500 calculated
from a wide range of calls and puts.” Information on the way the index is calculated is
in Section 25.15. Trading in futures on the VIX started in 2004 and trading in options
on the VIX started in 2006. A trade involving futures or options on the S&P 500 is a bet
on both the future level of the S&P 500 and the volatility of the S&P 500. By contrast, a
futures or options contract on the VIX is a bet only on volatility. One contract is on
1,000 times the index.

Example 14.8  
Suppose that a trader buys an April futures contract on the VIX when the futures

 price is 18.5 (corresponding to a 30-day S&P 500 volatility of 18.5%) and closes
out the contract when the futures price is 19.3 (corresponding to an S&P 500
volatility of 19.3%). The trader makes a gain of $800.

Figure 14.4 shows the VIX index between January 2004 and July 2010. Between 2004
and mid-2007 it tended to stay between 10.and 20. It reached 30 during the second half

fii‘_'9!'.“1!'_'?.‘2'¢'l'?.2fT J77;‘.;.'*_T..?; -- ;.;;»4.1. 1.;-It L J . '1“_,'_-:_’.T"; E"-."7-"'.=_'.,’ *L3»!"j*"1‘f"“~';!I1"=;'='!'9L\Z-.\.=:' 9311;: ;'_~:.-1,!-_~.t?;'z;",-_<,1;,,,{,@3.,..iz:"'»;1'-",;)&;T=_=',-3111 _-5§1{,1v<;?g1v_q_\r:..3>_I;:.'g1_,p;_1-:5

Figure 14.4 The VIX index, January 2004 to July 2010.
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1° Similarly, the VXN is an index of the volatility of the NASDAQ 100 index and the VXD is an index of the
volatility of the Dow Jones Industrial Average.



320

14.12

CHAPTER 14

of 2007 and a record 80 in October and November 2008 after Lehman’s bankruptcy. By
early 2010, it had declined to a more normal levels, but in May 2010 it spiked at over 45
because of the European sovereign debt crisis.

DIVIDENDS

Up to now, we have assumed that the stock on which the option is written pays no
dividends. In this section, we modify the Black—Scholes—Merton model to take account
of dividends. We assume that the amount and timing of the dividends during the life of
an option can be predicted with certainty. When options last for relatively short periods
of time, this assumption is not too unreasonable. (For long-life options it is usual to
assume that the dividend yield rather the cash dividend payments are known. Options
can then be valued as will be described in the Chapter 16.) The date on which the
dividend is paid should be assumed to be the ex-dividend date. On this date the stock
price declines by the amount of the dividend.“

European Options
European options can be analyzed by assuming that the stock price is the sum of two
components: a riskless component that corresponds to the known dividends during
the life of the option and a risky component. The riskless component, at any given
time, is the present value of all the dividends during the life of the option discounted
from the ex-dividend dates to the present at the risk-free rate. By the time the option
matures, the dividends will have been paid and the riskless component will no longer
exist. The Black—Scholes—Merton formula is therefore correct if S0 is equal to the
risky component of the stock price and 0 is the volatility of the process followed by
the risky component.”

Operationally, this means thatthe Black—Scholes—Merton formulas can be used
provided that the stock price is reduced by the present value of all the dividends during
the life of the option, the discounting being done from the ex-dividend dates at the risk-
free rate. As already mentioned, a dividend is counted as being during the life of the
option only if its ex-dividend date occurs during the life of the option.  

Example 14.9 1”
Consider a European call option on a stock when there are ex-dividend dates in
two months and five months. The dividend on each ex-dividend date is expected
to be $0.50. The current share price is $40, the exercise price is $40, the stock price

H For tax reasons the stock price may go down by somewhat less than the cash amount of the dividend. To
take account of this phenomenon, we need to interpret the word ‘dividend’ in the context of option pricing as
the reduction in the stock price on the ex-dividend date caused by the dividend. Thus, if a dividend of $1 per
share is anticipated and the share price normally goes down by 80% of the dividend on the ex-dividend date,
the dividend should be assumed to be $0.80 for the purposes of the analysis.

'2 In theory, this is not quite the same as the volatility of the stochastic process followed by the whole stock
price. The volatility of the risky component is approximately equal to the volatility of the whole stock price
multiplied by SQ/(S0 — D), where D is the present valuc of the dividends. However, an adjustment is only
necessary when volatilities are estimated using historical data. An implied volatility is calculated after the
present value of dividends have been subtracted from the stock price and is the volatility of the risky
component.
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volatility is 30% per annum, the risk-free rate of interest is 9% per annum, and
the time to maturity is six months. The present value of the dividends is

O.5e—0.09X2/12 + 0.56--0.09X5/12 I

The option price can therefore be calculated from the Black—Scholes—Merton for-
mula, with S0 = 40 — 0.9742 = 39.0258, K : 40, r = 0.09, 0 = 0.3, and T = 0.5:

ln 39.0258 40 + 0.09+0.32 2 0.511,.-= ( / )0;__05 /)X =0.2020

ln 39.0258 40 + 0.09-0.32 2 0.5(1,: ( /)0; 05 /lx = 0.0102

Using the NORMSDIST function in Excel gives i
j N(a’1) = 0.5800, N(d2) = 0.4959 '

and, from equation (14.20), the call price is

39.0258 >< 0.5800 _ 406*“-“M5 >< 0.4959 = 3.67
. or $3.67.

American Options
Consider next American call options. Chapter 10 showed that in the absence of
dividends American options should never be exercised early. An extension to the
argument shows that, when there are dividends, it can only be optimal to exercise at
a time immediately before the stock goes ex-dividend. We assume that n ex-dividend
dates are anticipated and that they are at times t1, t2, . . . , t,,, with t1 < t2 < < t,,.
The dividends corresponding to these times will be denoted by D1, D2,..., D,,,
respectively.  

We start by considering the possibility of early exercise just prior to the final
ex-dividend date (i.e., at time t,,). If the option is exercised at time tn, the investor
I‘€C€1V€S

 S(t,,) -— K

where S(t) denotes the stock price at time t. If the option is not exercised, the stock price
drops to S(t,,) -— D,,. As shown by equation (10.4), the value of the option is then greater
than

s(t,,) - 1),, - Ke"’(T"~>
It follows that, if  

s(t,,) - 1),, - Kg-’<T*‘~> > S(t,,) ~ K
that is,

0,, < 1<[1- 6"”-‘~>] (14.24)
it cannot be optimal to exercise at time tn. On the other hand, if

2 19,, > 1<[1- @*’<2""‘~>] (14.25)
for any reasonable assumption about the stochastic process followed by the stock price,
it can be shown that it is always optimal to exercise at time t,, for a sufficiently high
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value of S(tn). The inequality in (14.25) will tend to be satisfied when the final ex-
dividend date is fairly close to the maturity of the option (i.e., T — tn is small) and the
dividend is large.

Consider next time tn_T, the penultimate ex-dividend date. If the option is exercised
immediately prior to time tn_1, the investor receives S(tn_1) — K. If the option is not
exercised at time tn_T, the stock price drops to S(tn_1) — Dn_T and the earliest
subsequent time at which exercise could take place is tn. Hence, from equation (10.4),
a lower bound to the option price if it is not exercised at time tn__1 is

J 51%-11- Dn—l - K@_r(t"—t"'1)
It follows that if

S(tn—1)_ Dn—l — K@_r(t"_t”_1) 2 S(tn—l) — K
or

Dn_1 < KP _ e"-'r(in'tn—1)]

it is not optimal to exercise immediately prior to time tn_1. Similarly, for any i < n, if

1), < 1<[1 - @"'<‘i+1"‘r>] (14.26)
it is not optimal to exercise immediately prior to time t,-.

The inequality in (14.26) is approximately equivalent to

Di < K"(li+1 — ti) .

Assuming that K is fairly close to the current stock price, this inequality is satisfied
when the dividend yield on the stock is less than the risk-free rate of interest. This is
often the case.  

We can conclude from this analysis that, in many circumstances, the most likely time
for the early exercise of an American call is immediately before the final ex-dividend date,
tn. Furthermore, if inequality (14.26) holds for i = 1, 2, . . . ,n — 1 and inequality (14.24)
holds, we can be certain that early exercise is never optimal.

Black’s Approximation
Black suggests an approximate procedure for taking account of early exercise in call
options.13 This involves calculating, as described earlier in this section, the prices of
European options that mature at times T and tn, and then setting the American price
equal to the greater of the two. This approximation seems to work well in most cases.“

Example 14. 10
Consider the situation in Example 14.9, but suppose that the option is American
rather than European. In this case D1 : D2 = 0.5, S0 : 40, K : 40, r : 0.09,

'3 See F. Black, “Fact and Fantasy in the Use of Options,” Financial Analysts Journal, 31 (July/August
1975): 36-41, 61-72.
14 For an exact formula, suggested by Roll, Geske, and Whaley, for valuing American calls when there is
only one ex-dividend date, see Technical Note 4 at www.rotman.utoronto.ca/~hull/Technica.lNotes. This
involves the cumulative bivariate normal distribution function. A procedure for calculating this function is
given in Technical Note 5 in the same place.
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t1 : 2/12, 8.1"1ClI2 = 5/12. Since
___ 6-r(t2—-1.1)] I __ e—0.09X0.25) _:

is greater than 0.5, it follows (see inequality (14.26)) that the option should never
be exercised immediately before the first ex-dividend date. In addition, since

. __ e—-r(T—t2)] __: __ e-0.09X0.0833) Z

is less than 0.5, it follows (see inequality (14.25)) that, when it is sufficiently deep
in the money, the option should be exercised immediately before the second ex-
dividend date.

We now use Black’s approximation to value the option. The present value of
the first dividend is

0.5e—0.l667X0.09 I

so that the value of the option, on the assumption that it expires just before the
final ex-dividend date, can be calculated using the Black—Scholes—Merton for-
mula with S0 : 4-0 — 0.4926 = 39.5074, K = 40, r : 0.09, 0 = 0.30, and
T = 0.4167. It is $3.52. Black’s approximation involves taking the greater of this
and the value of the option when it can only be exercised at the end of 6 months.
From Example 14.9, we know that the latter is $3.67. Black’s approximation,
therefore, gives the value of the American call as $3.67. 3

The option can be valued using a binomial tree, as will be described in
Section 20.3. As shown by DerivaGem, this approach with 500 time steps gives
$3.72 as the value. (Note that DerivaGem requires dividends to be input in
chronological order in the table; the time to a dividend is in the first column
and the amount of the dividend is in the second column.) There are two reasons
for differences between the Binomial Model (BM) and Black’s approximation
(BA). The first concerns the timing of the early exercise decision; the second

 concerns the way volatility is applied. The timing of the early exercise decision
tends to make BM greater than BA. In BA, the assumption is that the holderhas
to decide today whether the option will be exercised after 5 months or after
6 months; BM allows the decision on early exercise at the 5-month point to depend
on the stock price at that time. The way in which volatility is applied tends to make
BA greater than BM. In BA, when we assume exercise takes place after 5/months,
the volatility is applied to the stock price less the present value of the first dividend;
when we assume exercise takes place after 6 months, the volatility is applied to the
stock price less the present value of both dividends.

SUMMARY

We started this chapter by examining the properties of the process for stock prices
introduced in Chapter 13. The process implies that the price of a stock at some future
time, given its price today, is lognormal. It also implies that the continuously com-
pounded return from the stock in a period of time is normally distributed. Our
uncertainty about future stock prices increases as we look further ahead. The standard
deviation of the logarithm of the stock price is proportional to the square root of how
far ahead we are looking.
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To estimate the volatility 0 of a stock price empirically, the stock price is observed at
fixed intervals of time (e.g., every day, every week, or every month). For each time
period, the natural logarithm of the ratio of the stock price at the end of the time period
to the stock price at the beginning of the time period is calculated. The volatility is
estimated as the standard deviation of these numbers divided by the square root of the
length of the time period in years. Usually, days when the exchanges are closed are
ignored in measuring time for the purposes of volatility calculations.

The differential equation for the price of any derivative dependent on a stock can be
obtained by creating a riskless portfolio of the option and the stock. Because the
derivative and the stock price both depend on the same underlying source of uncer-
tainty, this can always be done. The portfolio that is created remains riskless for only a
very short period of time. However, the return on a riskless porfolio must always be the
risk-free interest rate if there are to be no arbitrage opportunities.

The expected return on the stock does not enter into the Black—Scholes—Merton
differential equation. This leads to a useful result known as risk-neutral valuation. This
result states that when valuing a derivative dependent on a stock price, we can assume
that the world is risk neutral. This means that we can assume that the expected return
from the stock is the risk-free interest rate, and then discount expected payoffs at the
risk-free interest rate. The Black—Scholes—Merton equations for European call and put
options can be derived by either solving their differential equation or by using risk-
neutral valuation.

An implied volatility is the volatility that, when used in conjunction with the Black-
Scholes—Merton option pricing formula, gives the market price of the option. Traders
monitor implied volatilities. They often quote the implied volatility of an option rather
than its price. They have developed procedures for using the volatilities implied by the
prices of actively traded options to estimate volatilities for other options.

 The Black—Scholes—Merton results can be extended to cover European call and put
options on dividend-paying stocks. The procedure is to use the Black¥Scholes—Merton
formula with the stock price reduced by the present value of the dividends anticipated
during the life of the option, and the volatility equal to the volatility of the stock price
net of the present value of these dividends. I

In theory, it can be optimal to exercise American call options immediately before any
ex-dividend date. In practice, it is often only necessary to consider the final ex-dividend
date. Fischer Black has suggested an approximation. This involves setting the American
call option price equal to the greater of two European call option prices. The first
European call option expires at the same time as the American call option; the second
expires immediately prior to the final ex-dividend date.
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Practice Questions (Answers in Solutions Manual)

What does the Black-Scholes-Merton stock option pricing model assume about the
probability distribution of the stock price in one year? What does it assume about the
continuously compounded rate of return on the stock during the year?
The volatility of a stock price is 30% per annum. What is the standard deviation of the
percentage price change in one trading day?
Explain the principle of risk-neutral valuation. T
Calculate the price of a 3-month European put option on a non-dividend-paying stock
with a strike price of $50 when the current stock price is $50, the risk-free interest rate is
10% per annum, and the volatility is 30% per annum.
What difference does it make to your calculations in Problem 14.4 if a dividend of $1.50
is expected in 2 months‘?
What is implied volatility? How can it be calculated?
A stock price is currently $40. Assume that the expected return from the stock is 15%
and that its volatility is 25%. What is the probability distribution for the rate of return
(with continuous compounding) earned over a 2-year period?
A stock price follows. geometric Brownian motion with an expected return of 16% and a
volatility of 35%. The current price is $38.
(a) What is the probability that a European call option on the stock with an exercise

price of $40 and a maturity date in 6 months will be exercised?
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14.14.
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14.16.

14.17

CHAPTER 14

(b) What is the probability that a European put option on the stock with the same
exercise price and maturity will be exercised?

Using the notation in this chapter, prove that a 95% confidence interval for ST is
between

S0e(,i-02/2)T-1.96m/T and S0 e(/.L—0'2/2)T+1.96(7\/T

A portfolio manager announces that the average of the returns realized in each year of
the last 10 years is 20% per annum. In what respect is this statement misleading‘?
Assume that a non-dividend-paying stock has an expected return of /.4. and a volatility
of 0. An innovative financial institution has just announced that it will trade a security
that pays off a dollar amount equal to ln ST at time T, where ST denotes the value of the
stock price at time T.
(a) Use risk-neutral valuation to calculate the price of the security at time t in terms of

the stock price, S, at time t.
(b) Confirm that your price satisfies the differential equation (14.16).

A nConsider a derivative that pays off ST at time T, where ST is the stock price at that time.
When the stock price follows geometric Brownian motion, it can be shown that its price
at time t (t Q T) has the form

h(r, T)S” 1
whereS is the stock price at time t and h is a function only of t and T.
(a) By substituting into the Black—Scholes—Merton partial differential equation, derive

an ordinary differential equation satisfied by h(t, T).
(b) What is the boundary condition for the differential equation for h(t, T)?
(c) Show that 2

h(t : e[O.5a n(n—1)+r(n—l)](T—t)

where r is the risk-free interest rate and 0 is the stock price volatility.
What is the price of a European call option on a non-dividend-paying stock when the
stock price is $52, the strike price is $50, the risk-free interest rate is 12% per annum, the
volatility is 30% per annum, and the time to maturity is 3 months?
What is the price of a European put option on a non-dividend-paying stock when the
stock price is $69, the strike price is $70, the risk-free interest rate is 5% per annum, the
volatility is 35% per annum, and the time to maturity is 6 months?
Consider an American call option on a stock. The stock price is $70, the tinre to maturity
is 8 months, the risk-free rate of interest is 10% per annum, the exercise price is $65, and
the volatility is 32%. A dividend of $1 is expected after 3 months and again after
6 months. Show that it can never be optimal to exercise the option on either of the two
dividend dates. Use DerivaGem to calculate the price of the option.
A call option on a non-dividend-paying stock has a market price of $25 The stock price
is $15, the exercise price is $13, the time to maturity is 3 months, and the risk-free
interest rate is 5% per annum. What is the implied volatility?
With the notation used in this chapter:
(a) What is N '(x)‘?
(b) Show that _SN'(d1) : Ke_’(T_‘)N'(d2), where S is the stock price at time t and

ln(S/K) + (F + 02/2)(T - t) 1n(S/K) + (F - 02/2)(T - If)
d = , d =

1 ox/T—»t 2 ox/T—t -



The Black—Scholes—Merton Model 327

14.18

14.19

14.20

14.21

14.22

14.23

14.24.

14.25

(C)
(<1)

Calculate 8d1/8S and 8d;/8S.
Show that when

C = s1\/((1,) - Ke'"’(T"‘)N(d2)
it follows that

3c 0'-=-K"’<T"‘>Nd -SN’d ----at F 8 (2) (1)2 ,————T_t

where c is the price of a call option on a non-dividend-paying stock.
(e) Show that 3c/3S = N(d1).

Show that c satisfies the Black-Scholes—Merton differential equation.
Show that c satisfies the boundary condition for a European call option, i.e., that
c:max(S-—K, 0) as t-—-> T.

(f)
(g)

Show that the Black—Scholes—Merton formulas for call and put options satisfy put—call
parity.
A stock price is currently $50 and the risk-free interest rate is 5 %. Use the DerivaGem
software to translate the following table of European call options on the stock into a
table of, implied volatilities, assuming no dividends. Are the option prices consistent with
the assumptions underlying Black—Scholes—Merton?

Maturity (months)

Strike price ($) 3 6 I2

45 7.0 8.3 10.5
50 , 3.7 , 5.2 7.5
55 1.6 2.9 5.1

Explain carefully why Black’s approach to evaluating an American call option on a
dividend-paying stock may give an approximate answer even when only one dividend is
anticipated. Does the answer given by Black’s approach understate or overstate the true
option value? Explain your answer.
Consider an American call option on a stock. The stock price is $50, the time to maturity
is 15 months, the risk-free rate of interest is 8% per annum, the exercise price is $55, and
the volatility is 25%. Dividends of $1 .50 are expected in 4 months and 10 months. Show
that it can never be optimal to exercise the option on either of the two dividend dates.
Calculate the price of the option.
Show that the probability that a European call option will be exercised in a risk-neutral
world is, with the notation introduced in this chapter, N(d2). What is an expression for
the value of a derivative that pays off $100 if the price of a stock at time T is greater
than K ?

2
Show that S-2’/U could be the price of a traded derivative security.
A company has an issue of executive stock options outstanding. Should dilution be
taken into account when the options are valued? Explain your answer.
A company’s stock price is $50 and 10 million shares are outstanding. The company is
considering giving its employees 3 million at-the-money 5-year call options. Option
exercises will be handled by issuing more shares. The stock price volatility is 25%, the
5-year risk-free rate is 5%, and the company does not pay dividends. Estimate the cost to
the company of the employee stock option issue.
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Further Questions

14.26.

14.27

14.28

14.29

14.30

14.31

A stock price is currently $50. Assume that the expected return from the stock is 18%
and its volatility is 30%. What is the probability distribution for the stock price in
2 years? Calculate the mean and standard deviation of the distribution. Determine the
95% confidence interval.
Suppose that observations on a stock price (in dollars) at the end of each of 15 consecutive
weeks are as follows:

30.2, 32.0, 31.1, 30.1, 30.2, 30.3, 30.6, 33.0, 32.9, 33.0, 33.5, 33.5, 33.7, 33.5, 33.2

Estimate the stock price volatility. What is the standard error of your estimate?
A financial institution plans to offer a security that pays off a dollar amount equal to ST
at time T, where ST is the price at time T of a stock that pays no dividends.
(a) Use risk-neutral valuation to calculate the price of the security at time t in terms of

the stock price S at time t. (Hint: The expected value of ST can be calculated from
the mean and variance of ST given in Section 14.1.)

(b) Confirm that your price satisfies the differential equation (14.16).
Consider an option on a non-dividend-paying stock when the stock price is $30, the
exercise price is $29, the risk-free interest rate is 5%, the volatility is 25% per annum,
and the time to maturity is 4 months.
(a) What is the price of the option if it is a European call?
(b) What is the price of the option if it is an American call?
(c) What is the price of the option if it is a European put? . .
(d) Verify that put—call parity holds.
Assume that the stock in Problem 14.29 is due to go ex-dividend in 1% months. The
expected dividend is 50 cents.
(a) What is the price of the option if it is a European call?
(b) What is the price of the option if it is a European put? T
(c) If the option is an American call, are there any circumstances under which it will be

exercised early? 3
Consider an American call option when the stock price is $18, the exercise price is $20,
the time to maturity is 6 months, the volatility is 30% per annum, and the risk-free
interest rate is 10% per annum. Two equal dividends are expected during the life of the
option with ex-dividend dates at the end of 2 months and 5 months. Assume the
dividends are 40 cents. Use Black’s approximation and the DerivaGem software to
value the option. How high can the dividends be without the American option being
worth more than the corresponding European option?



The Black—Scholes—Merton Model 329

APPENDIX S
PROOF OF THE BLACK—SCHOl_ES-MERTON FORMULA USING
RlSK-NEUTRAL VALUATION

We will prove the Black—Scholes result by first proving another key result that will also
be useful in future chapters.

Key Result
If V is lognormally distributed and the standard deviation of ln V is w, then

E[max(V — K, 0)] : E(V)N(a'1) — KN(d2) (14A.1)
where

d _1n[E(V)/K]+w2/2,_ -  
U)

1ntE(v>/K1 — wt/2dz A... w .

and E denotes the expected value.

Proof ofKey Result t
Define g(V) as the probability density function of V. It follows that

E[max(V -— (K, 0)] = J:(V — K)g(V) a’V (l4A.2)

The variable ln V is normally distributed with standard deviation w. From the proper-
ties of the lognormal distribution, the mean of ln V is m, where”

m = ln[E(V)] - wz/2 (14.4.3)
Define a new variable

Q = --_-InVw' "’ (14A.4)
This variable is normally distributed with a mean of zero and a standard deviation
of 1.0. Denote the density function for Q by h(Q) so that

_. _l__ —Q2/2

Using equation (14A.4) to convert the expression on the right-hand side of equa-
tion (l4A.2) from an integral over V to an integral over Q, we get

E[max(V —- K, 0)] : F0 (eQ“’+”’ — K) h(Q) dQ
(ln K—m)/w

OI‘

E[max(V — K, 0)] = J eQ“’+’"h(Q)dQ — Kl h(Q)dQ (14A.5)
(ln K—m)/w (ln K—m)/w

15 For a proof of this, see Technical Note 2 at www.rotman.utoronto.ca/~hu11/TechnicalNotes.
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Now  
eQw+mh(Q) : e(-Q2+2Qw+2m)/2

=\§_
Z [—(Q—w)2+2m+w2]/2

=1§‘~
N

2

: @m+w /2 el—(Q—w)2l/2
@

: em-l~w2/2h(Q _ w)

This means that equation (14A.5) becomes

E[max(V -— K, 0)] : e"’+'”2/2 F0 h(Q — w)dQ — K] h(Q)dQ (14A.6)
(ln K—m)/w (ln K—m)/w

If we define N(x) as the probability that a variable with a mean of zero and a standard
deviation of 1.0 is less than x, the first integral in equation (14A.6) is

1- N[(lnK — m)/w — w]
or

N[(— ln K + m)/w + w]

Substituting for m from equation (l4A.3) leads to

N(ln[E(V)/K] + w2/2)
w — NW1)

Similarly the second integral in equation (14A.6) is N(d2). Equation (14A.6), therefore,
becomes

E[max(V - K, 0)] = e’"+w2/2N(d1) - KN(d2)
Substituting for m from equation (l4A.3) gives the key result.

The Black-Scholes-Merton Result
' /7

We now consider a call option on a non-dividend-paying stock maturing 'at time T. The
strike price is K, the risk-free rate is r, the current stock price is S0, and the volatility is 0.
As shown in equation (14.22), the call price c is given by

C = e—rTE[maX(ST - K, 0)] (14A.7)
where ST is the stock price at time T and E denotes the expectation in a risk-neutral
world. Under the stochastic process assumed by Black—Scholes—Merton, ST is log-
normal. Also, from equations (14.3) and (14.4), E(ST) = S0e’T and the standard
deviation of ln ST is cm/T.

From the key result just proved, equation (14A.7) implies

c = @“’T[S@@"N(d1> - KN(d2>1
OI‘

Sc = S0N(d1) - Ke_’TN(d2)
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where .
1n[E(s )/K] + O'2T/2 ln(S /K) + (r + U2/2)TT 0

d1:e ——* *
OK/T rm/T<1

d _ ln[E(ST)/K] - O'2T/2 _ ln(S0/K) + (r - U2/2)T2 _ __  
£111

ox/T o\/T

This is the Black—Scholes—Merton result.
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Employee stock options are call options on a company’s stock granted by the company
to its employees. The options give the employees a stake in the fortunes of the
company. If the company does well so that the company’s stock price moves above
the strike price, employees gain by exercising the options and then selling the stock they
acquire at the market price.

» Employee stock options havebecome (very popular in the last 20 years. Many
companies, particularly technology companies, feel that the only way they can attract
and keep the best employees is to offer them very attractive stock option packages.
Some companies grant options only to senior management; others grant them to people
at all levels in the organization. Microsoft was one of the first companies to use
employee stock options. All Microsoft employees were granted options and, as the
company’s stock price rose, it is estimated that over 10,000 of them became millionaires.
In 2003 Microsoft announced that it would discontinue the use of options and award
shares of Microsoft to employees instead. But many other companies throughout the
world continue to be enthusiastic users of employee stock options.

Employee stock options are popular with start-up companies. Often these companies
do not have the resources to pay key employees as much as they could earn with an
established company and they solve this problem by supplementing the salaries of the
employees with stock options. If the company does well and shares are sold to the
public in an IPO, the options are likely to prove to be very valuable: Some newly
formed companies have even granted options to students who worked for just a few
months during their summer break—and in some cases this has led to windfalls of
hundreds of thousands of dollars for the students!

This chapter explains how stock option plans work and how their popularity has been
influenced by their accounting treatment. It discusses whether employee stock options
help to align the interests of shareholders with those of top executives running a com-
pany. It also describes how these options are valued and looks at backdating scandals.

CONTRACTUAL ARRANGEMENTS

Employee stock options often last as long as 10 to 15 years. Very often the strike price is
set equal to the stock price on the grant date so that the option is initially at the money.
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The following are usually features employee stock option plans:

1. There is a vesting period during which the options cannot be exercised. This
vesting period can be as long as four years.

2. When employees leave their jobs (voluntarily or involuntarily) during the vesting
period, they forfeit their options.

3. When employees leave (voluntarily or involuntarily) after the vesting period, they
forfeit options that are out of the money and they have to exercise vested options
that are in the money almost immediately.

4. Employees are not permitted to sell the options.
5. When an employee exercises options, the company issues new shares and sells

them to the employee for the strike price.

The Early Exercise Decision
The fourth feature of employee stock option plans noted above has important implica-
tions. If employees, for whatever reason, want to realize a cash benefit from options that
have vested, they must exercise the options and sell the underlying shares. They cannot
sell the options to someone else. This leads to a tendency for employee stock options to be
exercised earlier than similar regular exchange-traded or over-the-counter call options.

Consider a call option on a stock paying no dividends. In Section 10.5 we showed that,
if it is a regular call option, it should never be exercised early. The holder of the option
will always do better by selling the option rather than exercising it before the end of its
life. However, the arguments we used in Section 10.5 are not applicable to employee
stock options because they cannot be sold. The only way employees can realize a cash
benefit from the options (or diversify their holdings) is by exercising the options and
selling the stock. It is therefore not unusual for an employee stock option to be exercised
well before it would be optimal to exercise the option if it were a regular exchange-traded
or over-the-counter option.  

Should an employee ever exercise his or her options before maturity and then keep
the stock rather than selling it? Assume that the option’s strike price is constant during
the life of the option and the option can be exercised at any time. To answer the
question we consider two options: the employee stock option and an otherwise id/entical
regular option that can be sold in the market. We refer to the first option as option A
and the second as option B. If the stock pays no dividends, we know that option B
should never be exercised early. It follows that it is not optimal to exercise option A and
keep the stock. If the employee wants to maintain a stake in his or her company, a
better strategy is to keep the option. This delays paying the strike price and maintains
the insurance value of the option, as described in Section 10.5. Only when it is optimal
to exercise option B can it be a rational strategy for an employee to exercise option A
before maturity and keep the stock.1 As discussed in Section 14.12, it is optimal to
exercise option B only when a relatively high dividend is imminent.

In practice the early exercise behavior of employees varies widely from company to
company. In some companies, there is a culture of not exercising early; in others,
employees tend to exercise options and sell the stock soon after the end of the vesting
period, even if the options are only slightly in the money.

l The only exception to this could be when an executive wants to own the stock for its voting rights.
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DO OPTIONS ALIGN THE INTERESTS OF SHAREHOLDERS
AND MANAGERS? -

For investors to have confidence in capital markets, it is important that the interests of
shareholders and managers are reasonably well aligned. This means that managers
should be motivated to make decisions that are in the best interests of shareholders.
Managers are the agents of the shareholders and, as mentioned in Chapter 8, economists
use the term agency costs to describe the losses experienced when the interests of agents
and principals are not aligned.

Do employee stock options help align the interests of employees and shareholders?
The answer to this question is not straightforward. There can be little doubt that they
serve a useful purpose for a start-up company. The options are an excellent way for the
main shareholders, who are usually also senior executives, to motivate employees to
work long hours. If the company is successful and there is an IPO, the employees will
do very well; but if the company is unsuccessful, the options will be worthless.

It is the options granted to the senior executives of publicly traded companies that are
most controversial. It has been estimated that employee stock options account for about
50% of the remuneration of top executives in the United States. Executive stock options
are sometimes referred to as an executive’s “pay for performance.” If the company’s
stock price goes up, so that shareholders make gains, the executive is rewarded.
However, this overlooks the asymmetric payoffs of options. If the company does badly
then the shareholders lose money, but all that happens to the executives is that they fail
to make a gain. Unlike the shareholders, they do not experience a loss.2 A better type of
pay for performance involves the simpler strategy of giving stock to executives. The
gains and losses of the executives then mirror those of other shareholders.

What temptations do stock options create for a senior executive? Suppose an
executive plans to exercise a large number of stock options in three months and sell
the stock. He or she might be tempted to time announcements of good news—or even
move earnings from one quarter to another—so that the stock price increases just
before the options are exercised. Alternatively, if at-the-money options are due to be
granted to the executive in three months, the executive might be tempted to take actions
that reduce the stock price just before the grant date. The type of behavior we are
talking about here is of course totally unacceptable—and may well be illegal. But the
backdating scandals, which are discussed later in this chapter, show that’/the way some
executives have handled issues related to stock options leaves much to be desired.

Even when there is no impropriety of the type we have just mentioned, executive
stock options are liable to have the effect of motivating executives to focus on short-
term profits at the expense of longer-term performance. In some cases they might even
take risks they would not otherwise take (and risks that are not in the interests of the
shareholders) because of the asymmetric payoffs of options. Managers of large funds
worry that, because stock options are such a huge component of an executive’s
compensation, they are liable to be a big source of distraction. Senior management
may spend too much time thinking about all the different aspects of their compensation
and not enough time running the company!

2 When options have moved out of the money, companies have sometimes replaced them with new at-the-
money options. This practice known as “repricing” leads to the executive’s gains and losses being even less
closely tied to those of the shareholders.
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A manager’s inside knowledge and ability to affect outcomes and announcements is
always liable to interact with his or her trading in a way that is to the disadvantage of
other shareholders. One radical suggestion for mitigating this problem is to require
executives to give notice to the market—perhaps one week’s notice——of an intention to
buy or sell their company’s stock.3 (Once the notice of an intention to trade had been
given, it would be binding on the executive.) This allows the market to form its own
conclusions about why the executive is trading. As a result, the price may increase
before the executive buys and decrease before the executive sells.

ACCOUNTING ISSUES

An employee stock option represents a cost to the company and a benefit to the
employee just like any other form of compensation. This point, which for many is
self-evident, is actually quite controversial. Many corporate executives appear to believe
that an option has no value unless it is in the money. As a result, they argue that an at-
the-money option issued by the company is not a cost to the company. The reality is
that, if options are valuable to employees, they must represent a cost to the company’s
shareholders——and therefore to the company. There is no free lunch. The cost to the
company of the options arises from the fact that the company has agreed that, if its
stock does well, it will sell shares to employees at a price less than that which would
apply in the open market.

Prior to 1995 the cost charged to the income statement of a company when it issued
stock options was the intrinsic value. Most options were at the money when they were
first issued, so that this cost was zero. In 1995, accounting standard FAS 123 was
issued. Many people expected it to require the expensing of options at their fair value.
However, as a result of intense lobbying, the 1995 version of FAS 123 only encouraged
companies to expense the fair value of the options they granted on the income
statement. It did not require them to do so. If fair value was not expensed on the
income statement, it had to be reported in a footnote to the company’s accounts.

Accounting standards have now changed to require the expensing of stock options at
their fair value on the income statement. In February 2004 the International Account-
ing Standards Board issued IAS 2 requiring companies to start expensing stock options
in 2005. In December 2004 FAS 123 was revised to require the expensing of employee
stock options in the United States starting in 2005.

The effect of the new accounting standards is to require options to be valued on the
grant date and the amount to be recorded as an expense in the income statement for the
year in which the grant is made. Valuation at a time later than the grant date is not
required. It can be argued that options should be revalued at financial year ends (or
every quarter) until they are exercised or reach the end of their lives.4 This would treat
them in the same way as other derivative transactions entered into by the company. If
the option became more valuable from one year to the next, there would then be an

3 This would apply to the exercise of options because, if an executive wants to exercise options and sell the
stock that is acquired, then he or she would have to give notice of intention to sell.

4 See J . Hull and A. White, “Accounting for Employee Stock Options: A Practical Approach to Handling the
Valuation Issues,” Journal of Derivatives Accounting, 1, 1 (2004): 3—9.
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additional amount to be expensed. However, if it declined in value, there would be a
positive impact on income.

This approach would have a number of advantages. The cumulative charge to the
company would reflect the actual cost of the options (either zero if the options are not
exercised or the option payoff if they are exercised). Although the charge in any year
would depend on the option pricing model used, the cumulative charge over the life of
the option would not.5 Arguably there would be much less incentive for the company to
engage in the backdating practices described later in the chapter. The disadvantage
usually cited for accounting in this way is that it is undesirable because it introduces
volatility into the income statement? S 8

Nontraditional Option Plans
It is easy to understand why pre-2005 employee stock options tended to be at the money
on the grant date and have strike prices that did not change during the life of the option.
Any departure from this standard arrangement was likely to require the options to be
expensed. Now that accounting rules have changed so that all options are expensed at fair
value, many companies are considering alternatives to the standard arrangement.

One argument against the standard arrangement is that employees do well when the
stock market goes up, even if their own company’s stock price does less well than the
market. One way of overcoming this problem is to tie the strike price of the options to
the performance of the S&P 500. Suppose that on the option grant date the stock
price is $30 and the S&P 500 is 1,500. The strike price would initially be set at $30. If
the S&P 500 increased by 10% to 1,650, then the strike price would also increase by
10% to $33. If the S&P 500 moved down by 15% to 1,275, then the strike price
would also move down by 15% to $25.50. The effect of this is that the company’s
stock price performance has to beat the performance of the S&P 500 to become in the
money. As an alternative to using the S&P 500 as the reference index, the company
could use an index of the prices of stocks in the same industrial sector as the
company.

In another variation on the standard arrangement, the strike price increases through
time in a predetermined way such that the shares of the stock have to provide a certain
minimum return per year for the options to be in the money. In some cases, profit
targets are specified and the options vest only if the profit targets are m;et.7

VALUATION

Accounting standards give companies quite a bit of latitude in choosing a method for
valuing employee stock options. In this section we review some of the alternatives.

5 Interestingly, if an option is settled in cash rather than by the company issuing new shares, it is subject to
the accounting treatment proposed here. (However, there is no economic difference between an option that is
settled in cash and one that is settled by selling new shares to the employee.)

6 In fact the income statement is likely be less volatile if stock options are revalued. When the company does
well, income is ‘reduced by revaluing the executive stock options. When the company does badly, it is
increased.

7 This type of option is difficult to value because the payoff depends on reported accounting numbers as well
as the stock price. Valuations usually assume that targets will be met.
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The “Quick and Dirty” Approach
A frequently used approach is based on what is known as the option’s expected life. This
is the average time for which employees hold the option before it is exercised or expires.
The expected life can be approximately estimated from historical data on the early
exercise behavior of employees and reflects the vesting period, the impact of employees
leaving the company, and the tendency we mentioned in Section 15.1 for employee stock
options to be exercised earlier than regular options. The Black-Scholes—Merton model is
used with the life of the option, T, set equal to the expected life. The volatility is usually
estimated from several years of historical data as described in Section 14.4.

It should be emphasized that using the Black—Scholes—Merton formula in this way
has no theoretical validity. There is no reason why the value of a European stock option
with the time to maturity, T, set equal to the expected life should be approximately the
same as the value of the American-style employee stock option that we are interested in.
However, the results given by the model are not totally unreasonable. Companies, when
reporting their employee stock option expense, will frequently mention the volatility
and expected life used in their Black—Scholes—Merton computations.

Example 15. 1 D T T
A company grants 1,000,000 options to its executives on November 1, 2011. The
stock price on that date is $30 and the strike price of the options is also $30. The
options last for 10 years and vest after three years. The company has issued
similar at-the-money options for the last 10 years. The average time to exercise
or expiry of these options is 4.5 years. The company therefore decides to use an
“expected life” of 4.5 years. It estimates the long-term volatility of the stock
price, using 5 years of historical data, to be 25%. The present value of dividends
during the next 4.5 years is estimated to be $4. The 4.5-year zero-coupon risk-free
interest rate is 5%. The option is therefore valued using the Black—Scholes—
Merton model (adjusted for dividends in the way described in Section 14.12)
with SO = 30 — 4 = 26, K = 30, r = 5%, o = 25%, and T = 4.5. The Black-
Scholes-Merton formula gives the value of one option as $6.31. Hence, the
income statement expense is 1,000,000 x 6.31, or $6,310,000.

47

Binomial Tree Approach r
A more sophisticated approach to valuing employee stock options involves building a
binomial tree as outlined in Chapter 12 and adjusting the rules used when rolling back
through the tree to reflect (a) whether the option has vested, (b) the probability of the
employee leaving the company, and (c) the probability of the employee choosing to
exercise the option. The terms of the option define whether the option has vested at
different nodes of the tree. Historical data on turnover rates for employees can be used
to estimate the probability of the option being either prematurely exercised or forfeited
at a node because the employee leaves the company. The probability of an employee
choosing to exercise the option at different nodes of the tree is more difficult to
quantify. Clearly this probability increases as the ratio of the stock price to the strike
price increases and as the time to the optio11’s maturity declines. If enough historical
data is available, the probability of exercise as a function of these two variables can be
estimated——at least approximately.
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Example 15.2 I I
Suppose a company grants stock options that last 8 years and vest after 3 years.
The stock price and strike price are both $40. The stock price volatility is*30%, the
risk-free rate is 5%, and the company pays no dividends. Figure 15.1 shows how a
four-step tree could be used to value the option. (This is for illustration; inpractice
more time steps would be used.) In this case, cr = 0.3, At : 2, and r = 0.05, so
that, with the notation of Chapter 12, a = e0-05x2 : 1.1052, u = e0-3‘/5 : 1.5285,
d : 1/u : 0.6543, and p : (a — d)/(u — d) = 0.5158. The probability on the “up
branches” is 0.5158 and the probability on the “down branches” is 0.4842; There
are three nodes where early exercise could be desirable: D, G, and H. (The option
has not vested at node B and is not in the money at the other nodes prior to
maturity.) We assume that the probabilities that the holder will choose to exercise
at nodes D, G, and H (conditional on no earlier exercise) have been estimated as
40%, 80%, and 30 %, respectively. We suppose that the probability of an employee
leaving the company during each time step is 5%. (This corresponds to anem-
ployee turnover rate of approximately 2.5% per year.) For the purposes of the
calculation, it is assumed that employees always leave at the end of a time period.
If an employee leaves the company before an option has vested or when the option
is out of the money, the option is forfeited. In other cases the option must be
exercised immediately. I I
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Figure 15.1 Valuation of employee stock option in Example 15.2.
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The value of the option at the final nodes is its intrinsic value. Consider the
nodes at time 6 years. Nodes I and J are easy. Since these nodes are certain to lead
to nodes where the option is worth nothing, the value of the option is zero at
these nodes. At node H there is a 30% chance that the employee will choose to
exercise the option. In cases where the employee does not choose to exercise, there
is a 5% chance that the employee leaves the company and has to exercise. The
total probability of exercise is therefore 0.3 + 0.7 >< 0.05 = 0.335. If the option is
exercised, its value is 61.14 -— 40 = 21.14. If it is not exercised, its value is

e"°~°5><2(0.515s >< 53.45 + 0.4842 >< 0) = 24.95
The value of the option at node H is therefore

0.335 >< 21.14 + 0.665 x 24.95 : 23.67

The value at node G is similarly

0.81 >< 102.83 + 0.19 >< 106.64 = 103.56

We now move on to the nodes at time 4 years. At node F the option is clearly
worth zero. At node E there is a 5% chance that the employee will forfeit the
option because he or she leaves the company and a 95% chance that the option
will be retained. In the latter case the option is worth

e"°~°5*2(0.515s >< 23.67 + 0.4842 >< 0) = 11.05
The option is therefore worth 0.95 >< 11.05 = 10.49. At node D there is a 0.43
probability that the option will be exercised and a 0.57 chance that it will be
retained. The value of the option is 56.44.

Consider next the initial node and the nodes at time 2 years. The option has not
vested at these nodes. There is a 5% chance that the option will be forfeited and a
95% chance that it will be retained for a further 2 years. This leads to the
valuations shown in Figure 15.1. The valuation of the option at the initial node
is 14.97; (This compares with a valuation of 17.98 for a regular option using the
same tree.)

The Exercise Multiple Approach
/.'

Hull and White suggest a simple model where an employee exercises as soon as the
option has vested and the ratio of the stock price to the strike price is above a certain
level.8 They refer to the ratio of stock price to strike price that triggers exercise as the
“exercise multiple”. The option can be valued using a binomial or trinomial tree. As
outlined in Section 26.6, it is important to construct a binomial or trinomial tree where
nodes lie on the stock prices that will lead to exercise. For example, if the strike price is
$30 and the assumption is that employees exercise when the ratio of the stock price to
the strike price is 1.5, the tree should be constructed so that there are nodes at a stock
price level of $45. The tree calculations are similar to those for Example 15.2 and take
account of the probability of an employee leaving the company.9 To estimate the
exercise multiple, it is necessary to calculate from historical data the average ratio of

8 See J. Hull and A. White, “How to value employee stock options,” Financial Analysts Journal, 60, 1
(January/February 2004): 3—9.

9 Software implementing this approach is on www.rotman.utoronto.ca/~hu11.
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stock price to strike price at the time of exercise. (Exercises at maturity and those arising
from the termination of the employee’s job are not included in the calculation of the
average.) This may be easier to estimate from historical data than the expected life
because the latter is quite heavily dependent on the particular path that has been
followed by the stock’s price.

A Market-Based Approach
One way of valuing an employee stock option is to see what the market would pay for
it. Cisco was the first to try this in 2006. It proposed selling options with the exact terms
of its employee stock options to institutional investors. This approach was rejected by
the SEC on the grounds that the range of investors bidding for the options was not
wide enough.

Zions Bancorp has suggested an alternative approach. It proposed that securities
providing payoffs mirroring those actually realized by its employees be sold. Suppose
that the strike price for a particular grant to employees is $40 and it turns out that 1%
of employees exercise after exactly 5 years when the stock price is $60, 2% exercise after
exactly 6 years when the stock price is $65, and so on. Then 1% of the securities owned
by an investor will provide a $20 payoff after 5 years, 2% will provide a payofl of $25
after 6 years, and so on. D

Zions Bancorp tested the idea using its own stock option grant to its employees. It
sold the securities using a Dutch auction process. In this individuals or companies can
submit a bid indicating the price they are prepared to pay and the number of options
they are prepared to buy. The clearing price is the highest bid such that the aggregate
number of options sought at that price or a higher price equals or exceeds the number
of options for sale. Buyers who have bid more than the clearing price get their orders
filled at the clearing price and the buyer who bid the clearing price gets the remainder.
Zions Bancorp announced that it had received SEC approval for its market-based
approach in October 2007. A

Dilution
The fact that a company issues new stock when an employee stock option is exercised
leads to some dilution for existing stock holders because new shares are being sold to
employees at below the current stock price. It is natural to assume that this dilution
takes place at the time the option is exercised. However, this is not the case. As
explained in Section 14.10, stock prices are diluted when the market first hears about
a stock option grant. The possible exercise of options is anticipated and immediately
reflected in the stock price. This point is emphasized by the example in Business
Snapshot 14.3.

The stock price immediately after a grant is announced to the public reflects any
dilution. Provided that this stock price is used in the valuation of the option, it is not
necessary to adjust the option price for dilution. In many instances the market expects a
company to make regular stock option grants and so the market price of the stock
anticipates dilution even before the announcement is made.

If a company is contemplating a stock option grant that will surprise the market, the
cost can be calculated as described in Example 14.7. This cost can be compared with
benefits such as lower regular employee remuneration and less employee turnover.
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15.5 BACKDATING SCANDALS

No discussion of employee stock options would be complete without mentioning
backdating scandals. Backdating is the practice of marking a document with a date
that precedes the current date.

Suppose that a company decides to grant at-the-money options to its employees on
April 30 when the stock price is $50. If the stock price was $42 on April 3, it is tempting to
behave as if those the options were granted on April 3 and use a strike price of $42. This is
legal provided that the company reports the options as $8 in the money on the date when
the decision to grant the options is made, April 30. But it is illegal for the company to
report the options as at-the-money and granted on April 3. The value on April 3 of an
option with a strike price of $42 is much less than its value on April 30. Shareholders are
misled about the true cost of the decision to grant options if the company reports the
options as granted on April 3.

How prevalent is backdating? To answer this question, researchers have investigated
whether a company’s stock price has, on average, a tendency to be low at the time of
the grant date that the company reports. Early research by Yermack shows that stock
prices tend to increase after reported grant dates.1O Lie extended Yermack’s work,
showing that stock prices also tended to decrease before reported grant dates.“
Furthermore he showed that the pre- and post-grant stock price patterns had become
more pronounced over time. His results are summarized in Figure 15.2, which shows
average abnormal returns around the grant date for the 1993-94, 1995-98, and 1999-
2002 periods. (Abnormal returns are the returns after adjustments for returns on the
market portfolio and the beta of the stock.) Standard statistical tests show that it is
almost impossible for the patterns shown in Figure 15.2 to be observed by chance.
This led both academics and regulators to conclude in 2002 that backdating had
become a common practice. In August 2002 the SEC required option grants by public
companies to be reported within two business days. Heron and Lie showed that this
led to a dramatic reduction in the abnormal returns around the grant dates—-
particularly for those companies that complied with this requirement.” It might be
argued that the patterns in Figure 15.2 are explained by managers simply choosing
grant dates after bad news or before good news, but the Heron and Lie study provides
compelling evidence that this is not the case. f

Estimates of the number of companies that illegally backdated stock option grants in
the United States vary widely. Tens and maybe hundreds of companies seem to have
engaged in the practice. Many companies seem to have adopted the view that it was
acceptable to backdate up to one month. Some CEOs resigned when their backdating
practices came to light. In August 2007, Gregory Reyes of Brocade Communications
Systems, Inc., became the first CEO to be tried for backdating stock option grants.
Allegedly, Mr. Reyes said to a human resources employee: “It is not illegal if you do
not get caught.” In June 2010, he was sentenced to 18 months in prison and fined
$15 million.

10 See D. Yermack, “Good timing: CEO stock option awards and company news announcements,” Journal
of Finance, 52 (1997), 449-476.

H See E. Lie, “On the timing of CEO stock option awards,” Management Science, 51, 5 (May 2005), 802-12.

12 See R. Heron and E. Lie, “Does backdating. explain the stock price pattern around executive stock option
grants,” Journal of Financial Economics, 83, 2 (February 2007), 271-95.



CHAPTER 15
r—v _ ,. , » _ . . _ _ _ . .1 7 ., _,— _ _,,-._.- v r - T. —-I~. . 1.

Figure 15.2 Erik Lie’s results providing evidence of backdating. (Reproduced with
. permission, from wWw.biz.uiowa.edu/faculty/e1ie/backdatinghtm.)
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Companies involved in backdating have had to restate past financial statements and
have been defendants in class action suits brought by shareholders who claim to have
lost money as a result of backdating. For example, McAfee announced in December
2007 that it would restate earnings between 1995 and 2005 by $137.4 million. In 2006, it
set aside $13.8 million to cover lawsuits. 8

SUMMARY 2

Executive compensation has increased very fast in the last 20 years and much of the
increase has come from the exercise of stock options granted to the executives. Until
2005 at-the-money stock option grants were a very attractive form of /compensation.
They had no impact on the income statement and were very valuable to employees.
Accounting standards now require options to be expensed.

There are anumber of different approaches to valuing employee stock options. A
common approach is to use the Black-Scholes—Merton model with the life of the
option set equal to the expected time to exercise or expiry of the option. Another
approach is to assume that options are exercised as soon as the ratio of the stock price
to the strike price reaches a certain barrier. A third approach is to try and estimate the
relationship between the probability of exercise, the ratio of the stock price to the
strike price, and the time to option maturity. A fourth approach is to create a market
for securities that replicate the payoffs on the options.

Academicresearch l1as shown beyond doubt that many companies have engaged in
the illegal practice of backdating stock option grants in order to reduce the strike price,
while still contending that the options were at the money. The first prosecutions for this
illegal practice were in 2007. I



Employee Stock Options 343

FURTHER READING

Carpenter, J., “The Exercise and Valuation of Executive Stock Options,” Journal of Financial
Economics, 48, 2 (May): 127-58.

Core, J. E., and W. R. Guay, “Stock Option Plans for Non-Executive Employees,” Journal of
Financial Economics, 61, 2 (2001): 253-87.

Heron, R., and E. Lie, “Does Backdating Explain the Stock Price Pattern around Executive
Stock Option Grants,” Journal of Financial Economics, 83, 2 (February 2007): 271-95.

Huddart, S., and M. Lang, “Employee Stock Option Exercises: An Empirical Analysis,” Journal
of Accounting and Economics, 21, 1 (February): 5-43.

Hull, J ., and A. White, “How to Value Employee Stock Options,” Financial Analysts Journal, 60,
1 (January/February 2004): 3-9.

Lie, E., “On the Timing of CEO Stock Option Awards,” Management Science, 51, 5 (May 2005):
802-12.

Rubinstein, M., “On the Accounting Valuation of Employee Stock Options,” Journal of
Derivatives, 3 1 (Fall 1996): 8-24.

Yermack, D., “Good Timing: CEO Stock Option Awards and Company News Announcements,”
Journal of Finance, 52 (1997): 449-76.

Practice Questions (Answers in Solutions Manual)

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10.

Why was it attractive for companies to grant at-the-money stock options prior to 2005?
What changed in 2005?   
What are the main differences between a typical employee stock option and an American
call option traded on an exchange or in the over-the-counter market?
Explain why employee stock options on a non-dividend-paying stock are frequently
exercised before the end of their lives, whereas an exchange-traded call option on such a
stock is never exercised early.
“Stock option grants are good because they motivate executives to act in the best
interests of shareholders.” Discuss this viewpoint.
“Granting stock options to executives is like allowing a professional footballer to bet on
the outcome of games.” Discuss this viewpoint. .4
Why did some companies backdate stock option grants in the US prior to 2002? What
changed in 2002? "
In what way would the benefits of backdating be reduced if a stock option grant had to
be revalued at the end of each quarter?
Explain how you would do the analysis to produce a chart such as the one in
Figure 15.2.
On May 31 a company’s stock price is $70. One million shares are outstanding. An
executive exercises 100,000 stock options with a strike price of $50. What is the impact of
this on the stock price?
The notes accompanying a company’s financial statements say: “Our executive stock
options last 10 years and vest after 4 years. We valued the options granted this year using
the Black-Scholes-Merton model with an expected life of 5 years and a volatility of
20%.” What does this mean? Discuss the modeling approach used by the company.
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15.11. In a Dutch auction of 10,000 options, bids are as follows:
A bids $30 for 3,000
B bids $33 for 2,500
C bids $29 for 5,000
D bids $40 for 1,000
E bids $22 for 8,000
F bids $35 for 6,000.
What is the result of the auction? Who buys how many at what price?

15.12. A company has granted 500,000 options to its executives. The stock price and strike
price are both $40. The options last for 12 years and vest after 4 years. The company
decides to value the options using an expected life of 5 years and a volatility of 30% per
annum. The company pays no dividends and the risk-free rate is 4%. What will the
company report as an expense for the options on its income statement?

15.13. A company’s CFO says: “The accounting treatment of stock options is crazy. We
granted 10,000,000 at-the-money stock options to our employees last year when the
stock price was $30. We estimated the value of each option on the grant date to be $5. At
our year-end the stock price had fallen to $4, but we were still stuck with a $50 million
charge to the P&L.” Discuss.  T

Further Questions

15.14. What is the (risk-neutral) expected life for the employee stock option in Example 15.2?
What is the value of the option obtained by using this expected life in Black-Scholes-
Merton?

15.15. A company has granted 2,000,000 options to its employees. The stock price and strike
price are both $60. The options last for 8 years and vest after 2 years. The company
decides to value the options using an expected life of 6 years and a volatility of 22% per
annum. Dividends on the stock are $1 per year, payable halfway through eachyear, and
the risk-free rate is 5%. What will the company report as an expense for the options on
its income statement?

15.16. A company has granted 1,000,000 options to its employees. The stock price and strike
price are both $20. The options last 10 years and vest after 3 years. The stock price
volatilityis 30%, the risk-free rate is 5%, and the company pays no dividends. Use a
four-step tree to value the options. Assume that there is a probability of 4% that an
employee leaves the company at the end of each of the time steps on your tree. Assume
also that the probability of voluntary early exercise at a node, conditional on no prior
exercise, when (a) the option has vested and (b) the option is in the money, is

1 - exp[—a(S/K — 1)/T]
where S is the stock price, K is the strike price, T is the time to maturity, and a : 2.
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Options on
Stock Indices and

Currencies
Options on stock indices and currencies were introduced in Chapter 9. This chapter
discusses them in more detail. It explains how they work and reviews some of the ways
they can be used. In the second half of the chapter, the valuation results in Chapter 14
are extended to cover European options on a stock paying a known dividend yield. It is
then argued that both stock indices and currencies are analogous to stocks paying
dividend yields. This enables the results for options on a stock paying a dividend yield
to be applied to these types of options as well.

OPTIONS ON STOCK INDICES  

Several exchanges trade options on stock indices. Some of the indices track the move-
ment of the market as a whole. Others are based on the performance of a particular
sector (e.g., computer technology, oil and gas, transportation, or telecoms). Among the
index options traded on the Chicago Board Options Exchange (CBOE) are American
and European options on the S&P 100 (OEX and XEO), European options on the S&P
500 (SPX), European options on the Dow Jones Industrial Average (DJX), and Euro-
pean options on the Nasdaq 100 (NDX). In Chapter 9, we explained that the CBOE
trades LEAPS and flex options on individual stocks. It also offers these option products
on indices. '

One index option contract is on 100 times the index. (Note that the Dow Jones index
used for index options is 0.01 times the usually quoted Dow Jones index.) Index options
are settled in cash. This means that, on exercise of the option, the holder of a call option
contract receives (S - K) >< 100 in cash and the writer of the option pays this amount in
cash, where S is the value of the index at the close of trading on the day of the exercise
and K is the strike price. Similarly, the holder of a put option contract receives
(K - S) >< 100 in cash and the writer of the option pays this amount in cash.

Portfolio Insurance
Portfolio managers can use index options to limit their downside risk. Suppose that the
value of an index today is S0. Consider a manager in charge of a well-diversified portfolio
whose beta is 1.0. A beta of 1.0 implies that the returns from the portfolio mirror those
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from the index. Assuming the dividend yield from the portfolio is the same as the
dividend yield from the index, the percentage changes in the value of the portfolio can
be expected to be approximately the same as the percentage changes in the value of the
index. Since each contract is on 100 times the index, it follows that the value of the
portfolio is protected against the possibility of the index falling below K if, for each 100S0
dollars in the portfolio, the manager buys one put option contract with strike price K.
Suppose that the manager’s portfolio is worth $500,000 and the value of the index is
1,000. The portfolio is worth 500 times the index. The manager can obtain insurance
against the value of the portfolio dropping below $450,000 in the next three months by
buying five three-month put option contracts on the index with a strike price of 900.

To illustrate how the insurance works, consider the situation where the index drops
to 880 in three months. The portfolio will be worth about $440,000. The payoff from
the options will be 5 >< (900 - 880) >< 100 = $10,000, bringing the total value of the
portfolio up to the insured value of $450,000.

When the PortfoIio’s Beta Is Not 1.0
If the portfolio’s beta (,8) is not 1.0, ,8 put options must be purchased for each 100S0
dollars in the portfolio, where S0 is the current value of the index. Suppose that the
$500,000 portfolio just considered has a beta of 2.0 instead of 1.0. We continue to
assume that the index is 1,000. The number of put options required is

500,000
2'0 X1,000 ><100 _ 10   

rather than 5 as before.
To calculate the appropriate strike price, the capital asset pricing model can be used

(see the appendix to Chapter 3). Suppose that the risk free rate is 12%, the dividend
yield on both the index and the portfolio is 4%, and protection is required against the
value of the portfolio dropping below $450,000 in the next three months. Under the
capital asset pricing model, the expected excess return of a portfolio over the risk-free
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Table 16.1 Calculation of expected value of portfolio when the index is 1,040 in
three months and 5 = 2.0.

_/
1

Value of index in three months: 1,040
Return from change in index: 40/ 1,000, or 4% per three months
Dividends from index: 0.25 >< 4 = 1% per three months
Total return from index: 4 + 1 = 5% per three months
Risk-free interest rate: 0.25 >< 12 = 3% per three months
Excess return from index

over risk-free interest rate: 5 — 3 = 2% per three months
Expected excess return from portfolio

over risk-free interest rate: 2 >< 2 = 4% per three months
Expected return from portfolio: 3 + 4 = 7% per three months
Dividends from portfolio: 0.25 >< 4 =—_ 1% per three months
Expected increase in value of portfolio: 7 — 1 = 6% per three months
Expected value of portfolio:  $500,000 >< 1.06 = $530,000
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Table 16.2 Relationship between value of index
and value of portfolio for ti : 2.0.

Value of index Value ofportfolio
in three months in three months ($)

1,08 570,000
1,04 530,000
1,00 490,000

96 450,000
92 410,000
880 370,000
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rate is assumed to equal beta times the excess return of the index portfolio over the risk-
free rate. The model enables the expected value of the portfolio to be calculated for
different values of the index at the end of three months. Table 16.1 shows the calcula-
tions for the case where the index is 1,040. In this case the expected value of the portfolio
at the end of the three months is $530,000. Similar calculations can be carried out for
other values of the index at the end of the three months. The results are shown in Table
16.2. The strike price for the options that are purchased should be the index level
corresponding to the protection level required on the portfolio. In this case the
protection level is $450,000 and so the correct strike price for the 10 put option contracts
that are purchased is 960.1

To illustrate how the insurance works, consider what happens if the value of the
index falls to 880. As shown in Table 16.2, the value of the portfolio is then about
$370,000. The put options pay off (960 - 880) >< 10 >< 100 = $80,000, and this is exactly
what is necessary to move the total value of the portfolio manager’s position up from
$370,000 to the required level of $450,000. I

The examples in this section show that there are two reasons why the cost of hedging
increases as the beta of a portfolio increases. More put options are required and they
have a higher strike price.

/

CURRENCYOPTIONS
Currency options are primarily traded in the over-the-counter market. The advantage
of this market is that large trades are possible, with strike prices, expiration dates, and
other features tailored to meet the needs of corporate treasurers. Although currency
options do trade on NASDAQ OMX in the United States, the exchange-traded market
for these options is much smaller than the over-the-counter market.

An example of a European call option is a contract that gives the holder the right to
buy one million euros with US dollars at an exchange rate of 1.2000 US dollars per
euro. If the actual exchange rate at the maturity of the option is 1.2500, the payoff is

1 Approximately 1% of $500,000, or $5,000, will be earned in dividends over the next three months. If we
want the insured level of $450,000 to include dividends, we can choose a strike price corresponding to
$445,000 rather than $450,000. This is 955.
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1,000,000 >< (1.2500 - 1.2000) = $50,000. Similarly, an example of a European put
option is a contract that gives the holder the right to sell ten million Australian
dollars for US dollars at an exchange rate of 0.9000 US dollars per Australian dollar.
If the actual exchange rate at the maturity of the option is 0.8700, the payoff is
10,000,000 x (0.9000 — 0.8700) = $300,000.
For a corporation wishing to hedge a foreign exchange exposure, foreign currency

options are an alternative to forward contracts. A company due to receive sterling at a
known time in the future can hedge its risk by buying put options on sterling that mature
at that time. The hedging strategy guarantees that the exchange rate applicable to the
sterling will not be less than the strike price, while allowing the company to benefit from
any favorable exchange-rate movements. Similarly, a company due to pay sterling at a
known time in the future can hedge by buying calls on sterling that mature at that time.
This hedging strategy guarantees that the cost of the sterling will not be greater than a
certain amount while allowing the company to benefit from favorable exchange-rate
movements. Whereas a forward contract locks in the exchange rate for a future transac-
tion, an option provides a type of insurance. This is not free. It costs nothing to enter into
a forward transaction, but options require a premium to be paid up front.

Range Forwards  -
A range forward contract is a variation on a standard forward contract for hedging
foreign exchange risk. Consider a US company that knows it will receive one million
pounds sterling in three months. Suppose that the three-month forward exchange rate is
1.5200 dollars per pound. The company could lock in this exchange rate for the dollars
it receives by entering into a short forward contract to, sell one million pounds sterling
in three months. This would ensure that the amount received for the one million
pounds is $1,520,000.

An alternative is to buy a European put option with a strike price of K1 and sell a
European call option with a strike price K2, where K1 < 1.5200 < K2. This is known as
a short range forward contract. The payoff is shown in Figure 16.1a. In both cases, the
options are on one million pounds. If the exchange rate in three months proves to be less
than K1, the put option is exercised and as a result the company is able to sell the one
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Figure _1 6.1 Payoffs from (a) short and (b) long range-forward contract.

A Payoff A Payoff

Asset Asset
price price

K, K2 K, K2

(4) (b)
. - . ~ -1» -.- ._ 1' - Q ,-
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Figure 16.2 Exchange rate realized when either (a) a short range-forward contract is
used to hedge a future foreign currency inflow or (b) a long range-forward contract is
used to hedge a future foreign currency outflow.

Exchange rate realized
when range-forward
contract is used
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million pounds at an exchange rate of K1. If the exchange rate is between K1 and K2,
neither option is ‘exercised and the company gets the current exchange rate for the one
million pounds. If the exchange rate is greater than K2, the call option is exercised
against the company with the result that the one million pounds is sold at an exchange
rate of K2. The exchange rate realized for the one million pounds is shown in Figure 16.2.

If the company knew it was due to pay rather than receive one million pounds in three
months, it could sell a European put option with strike price K1 and buy a European
call option with strike price K2. This is known as a long range forward contract and the
payoff is shown in Figure 16.1b. If the exchange rate in three months proves to be less
than K1, the put option is exercised against the company and as a result the company
buys the one million pounds it needs at an exchange rate of KT. If the exchange rate is
between K1 and K2, neither option is exercised and the company buys the onefimillion
pounds at the current exchange rate. If the exchange rate is greater than K2, the call
option is exercised and the company is able to buy the one million pounds at an
exchange rate of K2. The exchange rate paid for the one million pounds is the same
as that received for the one million pounds in the earlier example and is shown in
Figure 16.2.

In practice, a range forward contract is set up so that the price of the put option
equals the price of the call option. This means that it costs nothing to set up the range
forward contract, just as it costs nothing to set up a regular forward contract. Suppose
that the US and British interest rates are both 5%, so that the spot exchange rate is
1.5200 (the same as the forward exchange rate). Suppose further that the exchange rate
volatility is 14%. We can use DerivaGem to show that a European put with strike price
1.5000 to sell one pound has the same price as a European call option with a strike price
of 1.5413 to buy one pound. (Both are worth 0.03250.) Setting K1 : 1.5000 and
K2 : 1.5413 therefore leads to a contract with zero cost in our example.
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In the limit, as the strike prices of the call and put options in a range forward
contract are moved closer, the range forward contract becomes a regular forward
contract. A short range forward contract becomes a short forward contract and a long
range forward contract becomes a long forward contract.

OPTIONS ON STOCKS PAYING KNOWN DIVIDEND YIELDS

In this section we produce a simple rule that enables valuation results for European
options on a non-dividend-paying stock to be extended so that they apply to European
options on a stock paying a known dividend yield. Later we show how this enables us to
value options on stock indices and currencies.

Dividends cause stock prices to reduce on the ex-dividend date by the amount of
the dividend payment. The payment of a dividend yield at rate q therefore causes the
growth rate in the stock price to be less than it would otherwise be by an amount q. If,
with a dividend yield of q, the stock price grows from S0 today to ST at time T, then
in the absence of dividends it would grow from S0 today to STe‘1T at time T.
Alternatively, in the absence of dividends it would grow from S0e"‘1T today to ST at
time T. it

This argument shows that we get the same probability distribution for the stock price
at time T in each of the following two cases:

1. The stock starts at price S0 and provides a dividend yield at rate q.
2. The stock starts at price S0e_‘1T and pays no dividends.

This leads to a simple rule. When valuing a European option lasting for time T on a
stock paying a known dividend yield at rate q, we reduce the current stock price from S0
to S0e“‘1T and then value the option as though the stock pays no dividends.2

Lower Bounds for Option Prices ,
As a first application of this rule, consider the problem of determining bounds for the
price of a European option on a stock paying a dividend yield at rate q. Substituting
S0e"1T for S0 in equation (10.4), we see that a lower bound for the European call option
price, c, is given by '/

 C > max(S0eTqT - Ke"T, 0) (16.1)
We can also prove this directly by considering the following two portfolios:

Portfolio A: one European call option plus an amount of cash equal to Ke"T
Portfolio B: e_qT shares with dividends being reinvested in additional shares.

To obtain a lower bound for a European put option, we can similarly replace S0 by
SOe”‘1T in equation (10.5) to get

p 2 max(Ke_'T — SOeTqT, 0) (16.2)

2 This rule is analogous to the one developed in Section 14.12 for valuing a European option on a stock
paying known cash dividends. (In that case we concluded that it is correct to reduce the stock price by the
present value of the dividends; in this case we discount the stock price at the dividend yield rate.)
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This result can also be proved directly by considering the following portfolios:

Portfolio C: one European put option plus e"qT shares with dividends on the shares
being reinvested in additional shares

Portfolio D: an amount of cash equal to Ke"’T.

Put-Call Parity
Replacing S0 by S0e_qT in equation (10.6) we obtain put-call parity for an option on a
stock paying a dividend yield at rate q:

6 + Ke_'T = p + s(,@"‘1T (16.3)
This result can also be proved directly by considering the following two portfolios:

Portfolio A: one European call option plus an amount of cash equal to Ke"T
Portfolio C : one European put option plus e_"T shares with dividends on the shares

being reinvested in additional shares.

Both portfolios are both worth max(ST, K) at time T. They must therefore be worth the
same today, and the put-call parity result in equation (16.3) follows. For American
options, the put—call parity relationship is (see Problem 16.12)

%ffl-K<C-P<%-Ki”
Pricing Formulas
By replacing S0 by S0e""T in the Black-Scholes-Merton formulas, equations (14.20)
and (14.21), we obtain the price, c, of a European call and the price, p, of a European
put on a stock paying a dividend yield at rate q as

6 = s0@"qTN(t1,) - Ke—’TN(d2) (16.4)
p = Ke"TN(-d2) - s(,@"qT1v(-61,) (16.5)

Since
__qT S

lnsoz -_ln£ qT 2

it follows that d1 and dz are given by

dl __ ln(S0/K) + (F - q + 62/2)r
_ cm/T

d2_ln(S0/K)+((:/—%q—-02/2)T_d1_U~/T

3These results were first derived by Merton. As discussed in Chapter 14, the word
dividend should, for the purposes of option valuation, be defined as the reduction in the
stock price on the ex-dividend date arising from any dividends declared. If the dividend
yield rate is known but not constant during the life of the option, equations (16.4)

3 See R.C. Merton, “Tleeory of Rational Option Pricing,” Bell Journal of Economics and Management
Science, 4 (Spring 1973): 141-83.
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and (16.5) are still true, with q equal to the average annualized dividend yield during the
option’s life.

Differential Equation and Risk-Neutral Valuation
Toprove the results in equations (16.4) and (16.5) more formally, we can either solve
the diflerential equation that the option price must satisfy or use risk-neutral valuation.

When we include a dividend yield of q in the analysis in Section 14.6, the differential
equation (14.16) becomes4

2
Q8-J;-l—(r-—q)S%{S,:+ %o2S2;;-5;: rf (16.6)

Like equation (14.16), this does not involve any variable affected by risk preferences.
Therefore the risk-neutral valuation procedure described in Section 14.7 can be used.

In a risk-neutral world, the total return from the stock must be r. The dividends
provide a return of q. The expected growth rate in the stock price must therefore be
r - q. It follows that the risk-neutral process for the stock price is

dS : (r — q)Sdt + oS dz (16.7)

To value a derivative dependent on a stock that provides a dividend yield equal to q, we
set the expected growth rate of the stock equal to r — q and discount the expected payoff
at rate r. When the expected growth rate in the stock price is r - q, the expected stock
price at time T is S0e(’_‘1)T. A similar analysis to that in the appendix to Chapter 14 gives
the expected payoff for a call option in a risk-neutral world as

€(r—q)TS0N(d1) —

where d1 and dz are defined as above. Discounting at rate r for time T leads to
equation (16.4).

VALUATION OF EUROPEAN STOCK INDEX OPTIONS
/.'4

In valuing index futures in Chapter 5, we assumed that the index could be treated as an
asset paying a known yield. In valuing index options, we make similar assumptions.
This means that equations (16.1) and (16.2) provide a lower bound for European index
options; equation (16.3) is the put-call parity result for European index options;
equations (16.4) and (16.5) can be used to value European options on an index; and
the binomial tree approach can be used for American options. In all cases, S0 is equal to
the value of the index, o is equal to the volatility of the index, and q is equal to the
average annualized dividend yield on the index during the life of the option.

Example 16.1
Consider a European call option on the S&P 500 that is two months from maturity.
The current value of the index is 930, the exercise price is 900, the risk-free interest
rate is 8% per annum, and the volatility of the index is 20% per annum. Dividend

4 See Technical Note 6 at www.rotma.n.utoronto.ca/~hu11/Tech_r1icalNotes for a proof of this.
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yields of 0.2% and 0.3% are expected in the first month and the second month,
respectively. In this case SQ = 930, K : 900, r = 0.08, o : 0.2, and T = 2/12. The
total dividend yield during the option’s life is 0.2% + 0.3% = 0.5%. This corres-
ponds to 3% per annum. Hence, q : 0.03 and

'93090 .-.3 .22 2D dl:1n( / 0)—l—(008 00 +02/)>< /l2:O.5444

0.2,/2/12
d __ ln(930/900) + (0.08 - 0.03 - 0.22/2) >< 2/12 _

2 0.2./2/12
N(d1) .-.-_ 0.7069, 1v(.12) = 0.6782

so that the call price, c, is given by equation (16.4) as

1; = 930 >< 0.7069@'°-03>“/'2 - 900 >< 0.6782@'°-°8X2/12 = 51.83

0.4628

One contract would cost $5,183.

The calculation of q should include only dividends for which the ex-dividend dates
occur during the life of the option. In the United States ex-dividend dates tend to occur
during the first week of February, May, August, and November. At any given time the
correct value of q is therefore likely to depend on the life of the option. This is even
more true for indices in other countries. In Japan, for example, all companies tend to
use the same ex-dividend dates.

If the absolute amount of the dividend that will be paid on the stocks underlying the
index (rather than the dividend yield) is assumed to be known, the basic Black-
Scholes-Merton formulas can be used with the initial stock price being reduced by
the present value of the dividends. This is the approach recommended in Chapter 14 for
a stock paying known dividends. However, it may be diflicult to implement for a
broadly based stock index because it requires a knowledge of the dividends expected
on every stock underlying the index.

It is sometimes argued that, in the long run, the return from investing a certain
amount of money in a well-diversified stock portfolio is almost certain to beat the
return from investingthe same amount of money in a bond portfolio. If this were so, a
long-dated put option allowing the stock portfolio to be sold for the value of the bond
portfolio should not cost very much. In fact, as indicated by Business Snapshot 16.1, it
is quite expensive.

Forward Prices
Define F0 as the forward price of the index for a contract with maturity T. As shown by
equation (5.3), F0 = S0e("‘1)T. This means that the equations for the European call price
c and the European put price p in equations (16.4) and (16.5) can be written

6 = F0a"’T1v(i1,) - 1<@"T1\/(81,) (16.8)
p .-_- 1<@"’T1v(--t12)- F(,@"'T1v(-81,) (16.9)

where
1FK+2T2 IFK-2T/2d1:n(6/U)/Te / and d2:n(6/U3/Te
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The put—call parity relationship in equation (16.3) can be written

c+ Ke"T = p+ F0e_'T
or I

F0 = K + (6 - p)e’T (16.10)
If, as is not uncommon in the exchange-traded markets, pairs of puts and callswith the
same strike price are traded actively for a particular maturity date, this equation can be
used to estimate the forward price of the index for that maturity date. Once the forward
prices of the index for a number of different maturity dates have been obtained, the
term structure of forward prices can be estimated, and other options can be valued
using equations (16.8) and (16.9). The advantage of this approach is that the dividend
yield on the index does not have to be estimated explicitly.

Implied Dividend Yields
If estimates of the dividend yield are required (e.g., because an American option is
being valued), calls and puts with the same strike price and time to maturity can again
be used. From equation (16.3),

1 c —— p + Ke_rT
: 1q T H so
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For a particular strike price and time to maturity, the estimates of q calculated from this
equation are liable to be unreliable. But when the results from many matched pairs of
calls and puts are combined, a clearer picture of the dividend yield being assumed by
the market emerges.

VALUATION OF EUROPEAN CURRENCY OPTIONS

To value currency options, we define S0 as the spot exchange rate. To be precise, S0 is
the value of one unit of the foreign currency in US dollars. As explained in Section 5.10,
a foreign currency is analogous to a stock paying a known dividend yield. The owner of
foreign currency receives a yield equal to the risk-free interest rate, rf, in the foreign
currency. Equations (16.1) and (16.2), with q replaced by rf, provide bounds for the
European call price, c, and the European put price, p:

c 2 max(S0e"’fT - Ke“’T, 0)

p 2 max(Ke_'T — S0eT'fT, 0)

Equation (16.3), with q replaced by rf, provides the put-call parity result for European
currency options:  

c + KeT’T : p + S0eT’fT

Finally, equations (16.4) and (16.5) provide the pricing formulas for European currency
options when q is replaced by rf:

C = s0@"’fT1v(.1,)- 1<.@"’T1\/((12) (16.11)
p = r<@"'T1v(-42) - s0@"fT1v(-(1,) (16.12)

where  
d : ln(S0/K) + (r - rf + 02/2)T

1 Uxfi

1n(S0/K) + (r - Ff - a2/2):rd __ - ._ d - 4/T .
2 cm/T 1 U '

Both the domestic interest rate, r, and the foreign interest rate, rf, are the rates for a
maturity T. Put and call options on a currency are symmetrical in that a put option to
sell currency A for currency B at strike price K is the same as a call option to buy B with
currency A at strike price 1/K (see Problem 16.8).

Example 16.2
Consider a four-month European call option on the British pound. Suppose that
the current exchange rate is 1.6000, the exercise price is 1.6000, the risk-free
interest rate in the United States is 8% per annum, the risk-free interest rate in
Britain is 11% per annum, and the option price is 4.3 cents. In this case, S9 = 1.6,
K -_—- 1.6, r := 0.08, rf = 0.11, T : 0.3333, and c : 0.043. The implied volatility
can be calculated by trial and error. A volatility of 20% gives an option price
of 0.0639; a volatility of 10% gives an option price of 0.0285; and so on. The
implied volatility is 14.1%.
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Using Forward Exchange Rates
Because banks and other financial institutions trade forward contracts on foreign
exchange rates actively, foreign exchange rates are often used for valuing options.

From equation (5.9), the forward rate, F0, for a maturity T is given by
. __: S1060’-I'f)T

This relationship allows equations (16.11) and (16.12) to be simplified to

6 = e_’T[F0N(d1)— KN(d2)] (16.13)
1» = e"'T11<N(-4.) — Fa/(-4. >1 (16.14)

where
ln(F0/K) + o2T/2

M/T
ln(F0/K) - o'2T/2d _ =4 - ~/T2 Ox/T 1 U

Equations (16.13) and (16.14) are the same as equations (16.8) and (16.9). As we shall
see in Chapter 17, a European option on the spot price of any asset can be valued in
terms of the price of a forward or futures contract on the asset using equations (16.13)
and (16.14). The maturity of the forward or futures contract must be the same as the
maturity of the European option. 8

d1-

AMERICAN OPTIONS

As described in Chapter 12, binomial trees can be used to value American options on
indices and currencies. As in the case of American options on a non-dividend-paying
stock, the parameter determining the size of up movements, u, is set equal to e°'~/A7,
where or is the volatility and At is the length of time steps. The parameter determining
the size of down movements, d, is set equal to 1/u, or e-°'~/5. For a non-dividend-
paying stock, the probability of an up movement is

- a d /
p_u—d

where a -—: emf. For options on indices and currencies, the formula for p is the same,
but a is defined differently. In the case of options on an index,

6 = e<'-‘M’ (16.15)
where q is the dividend yield on the index. In the case of options on a currency,

6 = e<’"’f>A‘ (16.16)
where rf is the foreign risk-free rate. Example 12.1 in Section 12.11 shows how a two-step
tree can be constructed to value an option on an index. Example 12.2 shows how a three-
step tree can be constructed to value an option on a currency. Further examples of the use
of binomial trees to value options on indices and currencies are given in Chapter 20.
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In some circumstances, it is optimal to exercise American currency and index options
prior to maturity. Thus, American currency and index options are worth more than
their European counterparts. In general, call options on high-interest currencies and
put options on low-interest currencies are the most likely to be exercised prior to
maturity. The reason is that a high-interest currency is expected to depreciate and a
low-interest currency is expected to appreciate. In addition, call options on indices with
high-dividend yields and put options on indices with low-dividend yields are most likely
to be exercised early.

SUMMARY

The index options that trade on exchanges are settled in cash. On exercise of an index
call option, the holder receives 100 times the amount by which the index exceeds the
strike price. Similarly, on exercise of an index put option contract, the holder receives
100 times the amount by which the strike price exceeds the index. Index options can be
used for portfolio insurance. If the value of the portfolio mirrors the index, it is
appropriate to buy one put option contract for each l00SO dollars in the portfolio,
where S0 is the value of the index. If the portfolio does not mirror the index, )9 put
option contracts should be purchased for each l00S0 dollars in the portfolio, where ,8 is
the beta of the portfolio calculated using the capital asset pricing model. The strike
price of the put options purchased should reflect the level of insurance required.  

Most currency options are traded in the over-the-counter market. They can be used
by corporate treasurers to hedge a foreign exchange exposure. For example, a US
corporate treasurer who knows that the company will be receiving sterling at a certain
time in the future can hedge by buying put options that mature at that time. Similarly, a
US corporate treasurer who knows that the company will be paying sterling at a certain
time in the future can hedge by buying call options that mature at that time. Currency
options can also be used to create a range forward contract. This is a zero-cost contract
that can be used to provide downside protection while giving up some of the upside for
a company with a known foreign exchange exposure.

The Black-Scholes-Merton formula for valuing European options on a non-dividend-
paying stock can be extended to cover European options on a stock paying af known
dividend yield. The extension can be used to value European options on stock indices and
currencies because:

1. A stock index is analogous to a stock paying a dividend yield. The dividend yield
is the dividend yield on the stocks that make up the index.

2. A foreign currency is analogous to a stock paying a dividend yield. The foreign
risk-free interest rate plays the role of the dividend yield.

Binomial trees can be used to value American options on stock indices and currencies.
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Practice Questions (Answers in Solutions Manual)

A portfolio is currently worth $10 million and has a beta of 1.0. An index is currently
standing at 800. Explain how a put option on the index with a strike price of 700 can be
used to provide portfolio insurance.
“Once we know how to value options on a stock paying a dividend yield, we know how
to value options on stock indices and currencies.” Explain this statement.
A stock index is currently 300, thedividend yield on the index is 3% per annum, and the
risk-free interest rate is 8% per annum. What is a lower bound for the price of a six-
month European call option on the index when the strike price is 290?
A currency is currently worth $0.80 and has a volatility of 12%. The domestic and
foreign risk-free interest rates are 6% and 8%, respectively. Use a two-step binomial tree
to value (a) a European four-month call option with a strike price of 0.79 and (b) an
American four-month call option with the same strike price.
Explain how corporations can use range forward contracts to hedge their foreign
exchange risk when they are due to receive a certain amount of a foreign currency in the
future. :
Calculate the value of a three-month at-the-money European call option‘ on a stock
index when the index is at 250, the risk-free interest rate is 10% per annum, the volatility
of the index is 18% per annum, and the dividend yield on the index is 3% per annum.
Calculate the value of an eight-month European put option on a currency with a strike
price of 0.50. The current exchange rate is 0.52, the volatility of the exchange rate is 12%,
the domestic risk-free interest rate is 4% per annum, and the foreign risk-free interest
rate is 8% per annum.
Show that the formula in equation (16.12) for a put option to sell one unit of currency A
for currency B at strike price K gives the same value as equation (16.11) for a call option
to buy K units of currency B for currency A at strike price 1 /K.
A foreign currency is currently worth $1.50. The domestic and foreign risk-free interest
rates are 5% and 9%, respectively. Calculate a lower bound for the value of a six-month
call option on the currency with a strike price of $1.40 if it is (a) European and
(b) American.
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Consider a stock index currently standing at 250. The dividend yield on the index is
4% per annum, and the risk-free rate is 6% per annum. A three-month European call
option on the index with a strike price of 245 is currently worth $10. What is the value of
a three-month put option on the index with a strike price of 245?
An index currently stands at 696 and has a volatility of 30% per annum. The risk-free
rate of interest is 7% per annum and the index provides a dividend yield of 4% per
annum. Calculate the value of a three-month European put with an exercise price of 700.

Show that, if C is the price of an American call with exercise price K and maturity T on a
stock paying a dividend yield of q, and P is the price of an American put on the same
stock with the same strike price and exercise date, then

S0eTqT — K < C — P < S0 — Ke'rT,

where S0 is the stock price, r is the risk-free rate, and r > 0. (Hint: To obtain the first half
of the inequality, consider possible values of:

Portfolio A: a European call option plus an amount K invested at the risk-free rate
Portfolio B: an American put option plus e"'T of stock with dividends being re-

invested in the stock.

To obtain the second half of the inequality, consider possible values of:

Portfolio C: an American call option plus an amount Ke"’T invested at the risk-
free rate

Portfolio D: a European put option plus one stock with dividends being reinvested in
the stock.) . » P

Show that a European call option on a currency has the same price as the corresponding
European put option on the currency when the forward price equals the strike price.
Would you expect the volatility of a stock index to be greater or less than the volatility of
a typical stock? Explain your answer.  2
Does the cost of portfolio insurance increase or decrease as the beta of a portfolio
increases? Explain your answer.
Suppose that a portfolio is worth $60 million and the S&P 500 is at 1,200. If the value of
the portfolio mirrors the value of the index, what options should be purchased to
provide protection against the value of the portfolio falling below $54 million /in one
year’s time? >
Consider again the situation in Problem 16.16. Suppose that the portfolio has a beta
of 2.0, the risk-free interest rate is 5% per annum, and the dividend yield on both the
portfolio and the index is 3% per annum. What options should be purchased to
provide protection against the value of the portfolio falling below $54 million in one
year’s time?
An index currently stands at 1,500. European call and put options with a strike price
of 1,400 and time to maturity of six months have market prices of 154.00 and 34.25,
respectively. The six-month risk-free rate is 5%. What is the implied dividend yield?

A total return index tracks the return, including dividends, on a certain portfolio.
Explain how you would value (a) forward contracts and (b) European options on the
index.

What is the put—call parity relationship for European currency options?
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16.21. Can an option on the yen—euro exchange rate be created from two options, one on the
dollar—euro exchange rate, and the other on the dollar—yen exchange rate? Explain your
answer.

16.22. Prove the results in equations (16.1), (16.2), and (16.3) using the portfolios indicated.

Further Questions

16.23

16.24.

16.25

16.26

16.27

16.28

16.29

The Dow Jones Industrial Average on January 12, 2007, was 12,556 and the price of the
March 126 call was $2.25. Use the DerivaGem software to calculate the implied volatility
of this option. Assume the risk-free rate was 5.3% and the dividend yield was 3%. The
option expires on March 20, 2007. Estimate the price of a March 126 put. What is the
volatility implied by the price you estimate for this option? (Note that options are on the
Dow Jones index divided by 100.)
A stock index currently stands at 300 and has a volatilityof 20%. The risk-free interest
rate is 8% and the dividend yield on the index is 3%. Use a three-step binomial tree to
value a six-month put option on the index with a strike price of 300 if it is (a) European
and (b) American? . ,
Suppose that the spot price of the Canadian dollar is US $0.95 and that the Canadian
dollar/US dollar exchange rate has a volatility of 8% per annum. The risk-free rates of
interest in Canada and the United States are 4% and 5% per annum, respectively.
Calculate the value of a European call option to buy one Canadian dollar for US $0.95
in nine months. Use put—call parity to calculate the price of a European put option to
sell one Canadian dollar for US $0.95 in nine months. What is the price of a call option
to buy US $0.95 with one Canadian dollar in nine months?
Hedge funds earn a fixed fee plus a percentage of the profits, if any, that they generate
(see Business Snapshot 1.2). How is a fund manager motivated to behave with this type
of arrangement? 1
Assume that the price of currency A expressed in terms of the price of currency B follows
the process dS : (rB -— rA)Sdt + oS dz, where rA is the risk-free interest rate in currency
A and rB is the risk-free interest rate in currency B. What is the process followed by the
price of currency B expressed in terms of currency A? /
The USD/euro exchange rate is 1.3000. The exchange rate volatility is 15%. A US
company will receive 1 million euros in three months. The euro and USD risk-free rates
are 5% and 4%, respectively. The company decides to use a range forward contract with
the lower strike price equal to 1.2500.
(a) What should the higher strike price be to create a zero-cost contract?
(b) What position in calls and puts should the company take?
(c) Show that your answer to (a) does not depend on interest rates provided that the

interest rate differential between the two currencies, r — rf, remains the same.
In Business Snapshot 16.1, what is the cost of a guarantee that the return on the fund
will not be negative over the next 10 years?
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The options we have considered so far provide the holder with the right to buy or sell a
certain asset by a certain date for a certain price. They are sometimes termed options on
spot or spot options because, when the options are exercised, the sale or purchase of the
asset at the agreed-on price takes place immediately. In this chapter we move on to
consider options on futures, also known as futures options. In these contracts, exercise of
the option gives the holder a position in a futures contract.

The Commodity Futures Trading Commission in the US authorized the trading of
options on futures on an experimental basis in 1982. Permanent trading was approved
in 1987, and since then the popularity of the contract with investors has grown very fast.

In this chapter we consider how futures options work and the differences between these
options and spot options. We examine how futures options can be priced using either
binomial trees or formulas similar to those produced by Black, Scholes, and Merton for
stock options. We also explore the relative pricing of futures options and spot options.

NATURE OF FUTURES OPTIONS

A futures option is the right, but not the obligation, to enter into a futures contract at a
certain futures price by a certain date. Specifically, a call futures option is the right to
enter into a long futures contract at a certain price; a put futures option is the right to
enter into alshort futures contract at a certain price. Futures options are generally
American; that is, they can be exercised any time during the life of the contract.

If a call futures option is exercised, the holder acquires a long position in the
underlying futures contract plus a cash amount equal to the most recent settlement
futures price minus the strike price. If a put futures option is exercised, the holder
acquires a short position in the underlying futures contract plus a cash amount equal to
the strike price minus the most recent settlement futures price. As the following
examples show, the effective payoff from a call futures option is max(FT -— K, 0) and
the effective payoff from a put futures option is max(K — FT, 0), where FT is the futures
price at the time of exercise and K is the strike price.

Example 17.1
Suppose it is August 15 and an investor has one September futures call option
contract on copper with a strike price of 240 cents per pound. One futures contract
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is on 25,000 pounds of copper. Suppose that the futures price of copper for
delivery in September is currently 251 cents, and at the close of trading on
August 14 (the last settlement) it was 250 cents. If the option is exercised, the
investor receives a cash amount of

25,000 >< (250 — 240) cents : $2,500

plus a long position in a futures contract to buy 25,000 pounds of copper in
September. If desired, the position in the futures contract can be closed out
immediately. This would leave the investor with the $2,500 cash payoff plus an
amount s

25,000 x (251 + 250) cents = $250

reflecting the change in the futures price since the last settlement. The total payoff
from exercising the option on August 15 is $2,750, which equals 25,000(F — K),
where F is the futures price at the time of exercise and K is the strike price.

Example 17.2 .
An investor has one December futures put option on corn with a strike price of
400 cents per bushel. One futures contract is on 5,000 bushels of corn. Suppose
that the current futures price of corn for delivery in December is 380, and the
most recent settlement price is 379 cents. If the option is exercised, the investor
receives a cash amount of

5,000 >< (400 — 379) cents = $1,050 ‘

plus a short position in a futures contract to sell 5,000 bushels of corn in December.
If desired, the position in the futures contract can be closed out. This would leave
the investor with the $1,050 cash payoff minus an amount

5,000 i>< (320 - 379) cents = $50
reflecting the change in the futures price since the last settlement. The net payoff
from exercise is $1,000, which equals 5,000(K — F), where F is the futures price at
the time of exercise and K is the strike price.

/.'11

Expiration Months
Futures options are referred to by the delivery month of the underlying futures contract
—not by the expiration month of the option. As mentioned earlier, most futures
options are American. The expiration date of a futures option contract is usually on,
or a few days before, the earliest delivery date of the underlying futures contract. (For
example, the CME Group Treasury bond futures option expires on the latest Friday
that precedes by at least five business days the end of the month before the futures
delivery month.) An exception is the CME Group mid-curve Eurodollar contract where
the futures contract expires either one or two years after the options contract.

Popular contracts trading in the United States are those on corn, soybeans, cotton,
sugar-world, crude oil, natural gas, gold, Treasury bonds, Treasury notes, five-year
Treasury notes, 30-day federal funds, Eurodollars, one-year and two-year mid-curve
Eurodollars, Euribor, Eurobunds, and the S&P 500.
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Options on Interest Rate Futures
The most actively traded interest rate options offered by exchanges in the United
States are those on Treasury bond futures, Treasury note futures, and Eurodollar
futures.

A Treasury bond futures option, which is traded by the CME Group, is an option to
enter a Treasury bond futures contract. As mentioned in Chapter 6, one Treasury bond
futures contract is for the delivery of $100,000 of Treasury bonds. The price of a
Treasury bond futures option is quoted as a percentage of the face value of the
underlying Treasury bonds to the nearest sixty-fourth of 1%.

f An option on Eurodollar futures, which is traded by the CME Group, is an option to
enter into a Eurodollar futures contract. As explained in Chapter 6, when the Euro-
dollar futures quote changes by 1 basis point, or 0.01%, there is a gain or loss on a
Eurodollar futures contract of $25. Similarly, in the pricing of options on Eurodollar
futures, 1 basis point represents $25.

Interest rate futures option contracts work in the same way as the other futures
options contracts discussed in this chapter. For example, in addition to the cash
payoff, the holder of a call option obtains a long position in the futures contract when
the option is exercised and the option writer obtains a corresponding short position.
The total payoff from the call, including the value of the futures position, is
max(F —— K, 0), where F is the futures price at the time of exercise and K is the strike
price.

Interest rate futures prices increase when bond prices increase (i.e., when interest rates
fall). They decrease when bond prices decrease (i.e., when interest rates rise). An
investor who thinks that short-term interest rates will rise can speculate by buying
put options on Eurodollar futures, whereas an investor who thinks the rates will fall can
speculate by buying call options on Eurodollar futures. An investor who thinks that
long-term interest rates will rise can speculate by buying put options on Treasury note
futures or Treasury bond futures, whereas an investor who thinks the rates will fall can
speculate by buying call options on these instruments. ,

Example 17.3
It is February and the futures price for the June Eurodollar contract is 93.82
(corresponding to a 3-month Eurodollar interest rate of 6.18% per a/nnum).
The price of a call option on the contract with a strike price of 94.00 is quoted
as 0.1, or 10 basis points. This option could be attractive to an investor who feels
that interest rates are likely to come down. Suppose that short-term interest rates
do drop by about 100 basis points and the investor exercises the call when the
Eurodollar futures price is 94.78 (corresponding to a 3-month Eurodollar interest
rate of 5.22% per annum). The payoff is 25 >< (94.78 — 94.00) >< 100 = $1,950.
The cost of the contract is 10 >< 25 = $250. The investor’s profit is therefore
$1,700.

Example 17.4
It is August and the futures price for the December Treasury bond contract is
96-09 (or 96 -397: 96.28125). The yield on long-term government bonds is about
6.4% per annum. An investor who feels that this yield will fall by December
might choose to buy December calls with a strike price of 98. Assume that the
price of these calls is 1-04 (or 1-6% : l.0625% of the principal). If long-term rates
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fall to 6% per annum and the Treasury bond futures price rises to 100-00, the
investor will make a net profit per $100 of bond futures of

100.00 — 98.00 -— 1.0625 = 0.9375

Since one option contract is for the purchase or sale of instruments with a face
value of $100,000, the investor’s profit is $937.50 per option contract bought.

REASONS FOR THE POPULARITY OF FUTURES OPTIONS

It is natural to ask why people choose to trade options on futures rather than options on
the underlying asset. The main reason appears to be that a futures contract is, in many
circumstances, more liquid and easier to trade than the underlying asset. Furthermore, a
futures price is known immediately from trading on the futures exchange, whereas the
spot price of the underlying asset may not be so readily available.

Consider Treasury bonds. The market for Treasury bond futures is much more active
than the market for any particular Treasury bond. Also, a Treasury bond futures price
is known immediately from exchange trading. By contrast, the current market price of a
bond can be obtained only by contacting one or more dealers. It is not surprising that
investors would rather take delivery of a Treasury bond futures contract than Treasury
bonds

Futures on commodities are also often easier to trade than the commodities
themselves. For example, it is much easier and more convenient to make or take
delivery of a live-cattle futures contract than it is to make or take delivery of the cattle
themselves.

An important point about a futures option is that exercising it does not usually lead
to delivery of the underlying asset, as in most circumstances the underlying futures
contract is closed out prior to delivery. Futures options are therefore normally even-
tually settled in cash. This is appealing to many investors, particularly those with
limited capital who may find it difficult to come up with the funds to buy the underlying
asset when an option on spot is exercised. Another advantage sometimes cited for
futures options is that futures and futures options are traded side by side in the same
exchange. Thisfacilitates hedging, arbitrage, and speculation. It also tends to make the
markets more efficient. A final point is that futures options entail lowey transactions
costs than spot options in many situations.

EUROPEAN SPOT AND FUTURES OPTIONS

The payoff from a European call option with strike price K on the spot price of an
asset is

max(ST — K, 0)

where ST is the spot price at the option’s maturity. The payoff from a European call
option with the same strike price on the futures price of the asset is

max(FT -— K, 0)

where FT is the futures price at the option’s maturity. If the futures contract matures at
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the same time as the option, then FT : ST and the two options are equivalent.
Similarly, a European futures put option is worth the same as its spot put option
counterpart when the futures contract matures at the same time as the option.

Most of the futures options that trade are American-style. However, as we shall see, it
is useful to study European futures options because the results that are obtained can be
used to value the corresponding European spot options.

PUT-CALL PARITY

In Chapter 10, we derived a put—call parity relationship for European stock options.
We now consider a similar argument to derive a put—call parity relationship for
European futures options. Consider European call and put futures options, both with
strike price K and time to expiration T. We can form two portfolios:

Portfolio A : a European call futures option plus an amount of cash equal to Ke"’T
Portfolio B: a European put futures option plus a long futures contract plus an

amount of cash equal to F0e"'T, where F0 is the futures price

In portfolio A, the cash can be invested at the risk-free rate, r, and grows to K at time T.
Let FT be the futures price at maturity of the option. If FT > K, the call option in
portfolio A is exercised and portfolio A is worth FT. If FT < K, the call is not exercised
and portfolio A is worth K. The value of portfolio A at time T is therefore

 0 8 max(FT, K)

In portfolio B, the cash can be invested at the risk-free rate to grow to F0 at time T. The
put option provides a payoff of max(K — FT, 0). The futures contract provides a payoff
of FT — F0.1 The value of portfolio B at time T is therefore

F0 + (FT — F0) + max(K —- FT, 0) = max(FT, K)

Because the two portfolios have the same value at time T and European options cannot
be exercised early, it follows that they are worth the same today. The value of portfolio A
today is »

C + Kp—l'T /

where c is the price of the call futures option. The daily settlement process ensures that the
futures contract in portfolio B is worth zero today. Portfolio B is therefore worth

p + F0e—rT

where p is the price of the put futures option. Hence

C + Kw’ = p + F0e"T (17.1)
The difference between this put—call parity relationship and the one for a non-
dividend-paying stock in equation (10.6) is that the stock price, S0, is replaced by
the discounted futures price, F0eT’T.

1 This analysis assumes that a futures contract is like a forward contract and settled at the end of its life
rather than on a day-to-day basis.
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As shown in Section 17.3, when the underlying futures contractmatures at the same
time as the option, European futures and spot options are the same. Equation (17.1)
therefore gives a relationship between the price of a call option on the spot price, the
price of a put option on the spot price, and the futures price when both options mature
at the same time as the futures contract.

Example 17.5 T
Suppose that the price of a European call option on spot silver for delivery in six
months is $0.56 per ounce when the exercise price is $8.50. Assume that the silver
futures price for delivery in six months is currently $8.00, and the risk-free interest
rate for an investment that matures in six months is 10% per annum. From a
rearrangement of equation (17.1), the price of a European put option on spot
silver with the same maturity and exercise date as the call option is

0.56 + s.50@-‘W6/12 - s.00e"°-1X6/12 = 1.04
For American futures options, the put—call relationship is (see Problem 17.19)

F0e_’T — K < C — P < F0 — Ke_rT (17.2)

BOUNDS FOR FUTURES OPTIONS

The put-call parity relationship in equation (17.1) provides bounds for European call
and put options. Because the price of a put, p, cannot be negative, it follows from
equation (17.1) that

C + KW’ > F0e"T  
or

C > (F0 _ 1<)@-’T (17.3)
Similarly, because the price of a call option cannot be negative, it follows from equa-
tion (17.1) that 7

Ke——rT < F0e——rT _l__ p

or
p > (K - r0)@*’T . (17.4)

These bounds are similar to the ones derived for European stock options in Chapter 10.
The prices of European call and put options are very close to their lower bounds when
the options are deep in the money. To see why this is so, we return to the put—call parity
relationship in equation (17.1). When a call option is deep in the money, the corres-
ponding put option is deep out of the money. This means that p is very close to zero. The
difference between c and its lower bound equals p, so that the price of the call option
must be very close to its lower bound. A similar argument applies to put options.

Because American futures options can be exercised at any time, we must have

C>F0——K
and

P>K—F0

Thus, assuming interest rates are positive, the lower bound for an American option
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price is always higher than the lower bound for the corresponding European option
price. There is always some chance that an American futures option will be exercised
early.

VALUATION OF FUTURES OPTIONS USING BINOMIAL TREES

This section examines, more formally than in Chapter 12, how binomial trees can be
used to price futures options. A key difference between futures options and stock
options is that there are no up-front costs when a futures contract is entered into.

Suppose that the current futures price is 30 and that it will move either up to 33 or
down to 28 over the next month. We consider a one-month call option on the futures
with a strike price of 29 and ignore daily settlement. The situation is as indicated in
Figure 17.1. If the futures price proves to be 33, the payoff from the option is 4 and the
value of the futures contract is 3. If the futures price proves to be 28, the payoff from the
option is zero and the value of the futures contract is -2.2

To set up a riskless hedge, we consider a portfolio consisting of a short position in
one options contract and a long position in A futures contracts. If the futures price
moves up to 33, the value of the portfolio is 3A — 4; if it moves down to 28, the value
of the portfolio is —2A. The portfolio is riskless when these are the same, that is,
when

3A - 4 = —2A
or A : 0.8.

For this value of A, we know the portfolio will be worth 3 >< 0.8 — 4 = -1.6 in one
month. Assume a risk-free interest rate of 6%. The value of the portfolio today
must be

-1.6@'°~°6X‘/ 12 = -1.592

The portfolio consists of one short option and A futures contracts. Because the value of
the futures contract today is zero, the value of the option today must be 1.592.

. . ...._ .. -. 1. .--...-T -'-.:-_. :1--1='. "'~r_11»*'» =':‘._- ‘.2. ...i*'="’-'“."""J" -'_ 1- ; --; "t 5:; ‘rt-"-.-- '-.”'=_r.; .1¢.;:.1-_.3:.~;!1.."-L*r=*.71-~1-;+.az1:.ia--1'1-.~-:lr':8=fi:_*.._...*'=*1
. ,/

Figure 17.1 Futures price movements in numerical example.
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2 There is an approximation here in that the gain or loss on the futures contract is not realized at time T. It is
realized day by day betwee .1 time 0 and time T. However, as the length of the time step in a binomial tree
becomes shorter, the approximation becomes better.
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A Generalization
We can generalize this analysis by considering a futures price that starts at F0 and is
anticipated to rise to F0u or move down to F0d over the time period T. We consider an
option maturing at time T and suppose that its payoff is fu if the futures price moves up
and fd if it moves down. The situation is summarized in Figure 17.2.

I The riskless portfolio in this case consists of a short position in one option combined
with a long position in A futures contracts, where

A: fuyfd

F0U—F0d

The value of the portfolio at time T is then always

(F011 - F0)A - fu
Denoting the risk-free interest rate by r, we obtain the value of the portfolio today as

I(F0" " F0)/3 — ful@_rT

Another expression for the present value of the portfolio is — f, where f is the value of
the option today. It follows that

-f = I(F0" 7'" F0)A — fuI@_rT

Substituting for A and simplifying reduces this equation to

f = @"TIpf.. + (1 — p)fd] (17-5)
where

1 — d= ——-— 17.6 P u _ d ( )

This agrees with the result in Section 12.9. Equation (17.6) gives the risk-neutral
probability of an up movement.

In the numerical example considered previously (see Figure 17.1), u = 1.1,
cl = 0.9333, r : 0.06, T = 1/12, f,, := 4, and fd : 0. From equation (17.6),

0 1 - 0.9333  
1’ ' 1.1- 0.9333 _ 0'4

F75?-.‘ ._;=.:_~'.-.= . 1' ~r. .:".='1:1'" 7-7 *""1"":"""'""....z?:f:.':‘s1*?"'... , ,1-'.-7.*+_7*.~=;»:'re;'¢'e"- r .-1*-5;-='..; :.»":»;::'.1-;."~1:a

Figure 17.2 Futures price and option price in a general situation.
F011

fu

F0
f

F0d
- fd
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and, from equation (17.5),

_f=e““"“m4X4+00X0y:1w2
This result agrees with the answer obtained for this example earlier.

Multistep Trees
Multistep binomial trees are used to value American-style futures options in much the
same way that they are used to value options on stocks. This is explained in Section 12.9.
The parameter u defining up movements in the futures price is e°“/K‘, where o is the
volatility of the futures price and At is the length of one time step. The probability of an
up movement in the future price is thatin equation (17.6):

3 _l—d
p_u——d

Example 12.3 illustrates the use of multistep binomial trees for valuing a futures option.
Example 20.3 in Chapter 20 provides a further illustration.

DRIFT OF A FUTURES PRICE IN A RISK-NEUTRAL WORLD

There is a general result that allows us to use the analysis in Section 16.3 for futures
options. This result is that in a risk-neutral world a futures price behaves in the same
way as a stock paying a dividend yield at the domestic risk-free interest rate r.

One clue that this might be so is given by noting that the equation for the probability p
in a binomial tree for a futures price is the same as that for a stock paying a dividend
yield equal to q when q = r (compare equation (17.6) with equations (16.15) and
(16.16)). Another clue is that the put—call'parity relationship for futures options prices
is the same as that for options on a stock paying a dividend yield at rate q when the stock
price is replaced by the futures price and q = r (compare equations (17.1) and (16.3)).

To prove the result formally, we calculate the drift of a futures price in a risk-neutral
world. We define F, as the futures price at time t and suppose the settlement dates to be
at times 0, At, 2At, . .. If we enter into a long futures contract at time 0, its value is
zero. At time At, it provides a payoff of FA, — F0. If r is the very-short-term (At-period)
interest rate at time 0, risk-neutral valuation gives the value of the contract at time 0 as

e_rAtEIFAt _ F0]

where F denotes expectations in a risk-neutral world. We must therefore have

 afifimp-r@=0
showing that

E(FAt) : F0

Similarly, E(F2A,) : FAt, F(F3A,) : FTN, and so on. Putting many results like this
together, we see that

E(FT) = F0
for any time T.
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The drift of the futures price in a risk-neutral world is therefore zero. From equa-
tion (16.7), the futures price behaves like a stock providing a dividend yield q equal to r.
This result is a very general one. It is true for all futures prices and does not depend on
any assumptions about interest rates, volatilities, etc.3

The usual assumption made for the process followed by a futures price F in the risk-
neutral world is

dF : oF dz (17.7)
where o is a constant.

Differential Equation
For another way of seeing that a futures price behaves like a stock paying a dividend
yield at rate q, we can derive the differential equation satisfied by a derivative dependent
on a futures price in the same way as we derived the differential equation for a derivative
dependent on a non-dividend-paying stock in Section 14.6. This is4

0 02?{+§b7_§<12F2=rf (17.8)

It has the same form as equation (16.6) with q set equal to r. This confirms that, for the
purpose of valuing derivatives, a futures price can be treated in the same way as a stock
providing a dividend yield at rate r.

BLACK’S MODEL FOR VALUING FUTURES OPTIONS

European futures options can be valued by extending the results we have produced.
Fischer Black was the first to show this in a paper published in 1976.5 Assuming that
the futures price follows the (lognormal) process in equation (17.7), the European call
price c and the European put price p for a futures option are given by equations (16.4)
and (16.5) with S0 replaced. by F0 and q = r: I

C = @"’T[F.,1v(a,) - KN(d2)] (17.9)
1» = @—rTIKN(-dz) — F0N(—d1>1 , (1710)

where -
d ln(F0/K) +@~2:r/2

l “' Ufi

2dz _ ln(F0/5)/go T/2 _ dl UT/-T-

and o is the volatility of the futures price. When the cost of carry and the convenience

3 As we will discover in Chapter 27, a more precise statement of the result is: “A futures price has zero drift in
the traditional risk-neutral world where the numeraire is the money market account.” A zero-drift stochastic
process is known as a martingale. A forward price is a martingale in a different risk-neutral world. This is one
where the numeraire is a zero-coupon bond maturing at time T.

4 See Technical Note 7 at www.rotman.utoronto.ca/~hu]l/TechnicalNotes for a proof of this.

5 See F. Black, “The Pricing of Commodity Contracts,” Journal of Financial Economics, 3 (March 1976):
167-79. ‘
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yield arc functions only of time, it can be shown that the volatility of the futures price is
the same as the volatility of the underlying asset.

Example 17.6
Consider a European put futures option on crude oil. The time to the option’s
maturity is 4 months, the current futures price is $20, the exercise price is $20, the
risk-free interest rate is 9% per annum, and the volatility of the futures price
is 25% per annum. In this case, F0 : 20, K : 20, r = 0.09, T = 4/12, or = 0.25,
and ln(F0/K) = 0, so that

ti, = --"*2/T = 0.07216 I
.74,- °;__ 0.07216

N(—a'1)—-: 0.4712, N(-d2) —_: 0.5288

and the put price p is given by

p _-= 67°-°9><“/12(20 >< 0.5288 - 20 >< 0.4712) = 1.12
or $1.12. 4

Using Black’s Model Instead of Black-Scholes-Merton
The results in Section 17.3 show that European futures options and European spot
options are equivalent when the option contract matures at the same time as the futures
contract. Equations (17.9) and (17.10) therefore provide a way of calculating the value
of European options on the spot price of a asset.

Example 17.7
Consider a six-month European call option on the spot price of gold, that is, an
option to buy one ounce of gold in the spot market in six months. The strike price
is $1,200, the six-month futures price of gold is $1,240, the risk-free rate of interest
is 5% per annum, and the volatility of the futures price is 20%. The option is the
same as a six-month European option on the six-month futures price. The value
of the option is therefore given by equation (17.9) as /

67°-058°-5[1,2401v(a,) - 1,200N(d2)]
where

2dl : ln(1,240/1,200) + 0.2 >< 0.5/2 : 0.3026
0.2 >< \/0.5

2 - . 2 . d2:ln(1,240/1, 00) 02 ><05/2:016“
0.2 >< ./0.5

It is $88.37.
Traders like to use Black’s model rather than Black—Scholes—Merton to value Euro-

pean spot options. It has a fairly general applicability. The underlying asset can be a
consumption or investment asset and it can provide income to the holder. The variable
F0 in equations (17.9) and (17.10) is set equal to either the futures or the forward price
of the underlying asset for a contract maturing at the same time as the option.
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Equations (16.13) and (16.14) show Black’s model being used to value European
options on the spot value of a currency. Equations ( 16.8) and (16.9) show Black’s model
being used to value European options on the spot value of an index. The big advantage
of Black’s model is that it avoids the need to estimate the income (or convenience yield)
on the underlying asset. The futures or forward price that is used in the model
incorporate the market’s estimate of this income.

When considering stock indices in Section 16.4, we explained that put—call parity is
used to imply the forward prices for maturities for which there are actively traded
options. Interpolation is then used to estimate forward prices for other maturities. The
same approach can be used for a wide range of other underlying assets.

AMERICAN FUTURES OPTIONS vs. AMERICAN SPOT OPTIONS

Traded futures options are in practice usually American. Assuming that the risk-free
rate of interest, r, is positive, there is always some chance that it will be optimal to
exercise an American futures option early. American futures options are therefore
worth more than their European counterparts.

It is not generally true that an American futures option is worth the same as the
corresponding American spot option when the futures and options contracts have the
same maturity.6 Suppose, for example, that there is a normal market with futures prices
consistently higher than spot prices prior to maturity. An American call futures option
must be worth more than the corresponding American spot call option. The reason is
that in some situations the futures option will be exercised early, in which case it will
provide a greater profit to the holder. Similarly, an American put futures option must
be worth less than the corresponding American spot put option. If there is an inverted
market with futures prices consistently lower than spot prices, the reverse must be true.
American call futures options are worth less than the corresponding American spot call
option, whereas American put futures options are worth more than the corresponding
American spot put option. ,

The differences just described between American futures options and American spot
options hold true when the futures contract expires later than the options contract as
well as when the two expire at the same time. In fact, the later the futures contract
expires the greater the differences tend to be. /

FUTURES-STYLE OPTIONS

Some exchanges trade what are termed futures-style options. These are futures contracts
on the payoff from an option. Normally a trader who buys (sells) an option, whether on
the spot price of an asset or on the futures price of an asset, pays (receives) cash up
front. By contrast, traders who buy or sell a futures-style option post margin in the
same way that they do on a regular futures contract (see Chapter 2). The contract is
settled daily as with any other futures contract and the final settlement price is the
payoff from the option. Just as a futures contract is a bet on what the future price of an
i 

6 The spot option “corresponding” to a futures option is defined here as one with the same strike price and
the same expiration date.
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asset will be, a futures-style option is a bet on what the payoff from an option will be.7
If interest rates are constant, the futures price in a futures-style option is the same as the
forward price in a forward contract on the option payoff. This shows that the futures
price for a futures-style option is the price that would be paid for the option if payment
were made in arrears. It is therefore the value of a regular option compounded forward
at the risk-free rate.

Black’s model in equations (17.9) and (17.10) gives the price of a regular European
option on an asset in terms of the futures (or forward) price F0 for a contract maturing
at the same time as the option. The futures price in a call futures-style option is
therefore

F0N(d1) — KN(d2)

and the futures price in a put futures-style option is

K1)/(~42) - F0N(—d1)

where d1 and dz are as defined in equations (17.9) and (17.10). These formulas do not
depend on the level of interest rates. They are correct for a futures-style option on a
futures contract and a futures-style option on the spot value of an asset. In the first
case, F0 is the current futures price for the contract underlying the option; in the second
case, it is the current futures price for a futures contract on the underlying asset
maturing at the same time as the option.

The put-call parity relationship for a futures-style options is

P'"I"F()=C+K - :

An American futures-style option can be exercised early, in which case there is an
immediate final settlement at the option’s intrinsic value. As it turns out, it is never
optimal to exercise an American futures-style options on a futures contract early
because the futures price of the option is always greater than the intrinsic value. This
type of American futures-style option can therefore be treated as though it were the
corresponding European futures-style option.  

SUMMARY
yfi

Futures options require delivery of the underlying futures contract on exercise. When a
call is exercised, the holder acquires a long futures position plus a cash amount equal to
the excess of the futures price over the strike price. Similarly, when a put is exercised the
holder acquires a short position plus a cash amount equal to the excess of the strike
price over the futures price. The futures contract that is delivered usually expires slightly
later than the option.

A futures price behaves in the same way as a stock that provides a dividend yield
equal to the risk-free rate, r. This means that the results produced in Chapter 16 for
options on a stock paying a dividend yield apply to futures options if we replace the
stock price by the futures price and set the dividend yield equal to the risk-free interest

7 For a more detailed discussion of futures-style options, see D. Lieu, “Option Pricing with Futures-Style
Margining,” Journal of Futures Markets, 10, 4 (1990), 327-38. For pricing when interest rates are stochastic,
see R.-R. Chen and L. Scott, “Pricing Interest~Rate Futures Options with Futures-Style Margining.” Journal
ofFutures Markets, 13, 1 (1993) 15-22).
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rate. Pricing formulas for European futures options were first produced by Fischer
Black in 1976. They assume that the futures price is lognormally distributed at the
option’s expiration.

If the expiration dates for the option and futures contracts are the same, a European
futures option is worth exactly the same as the corresponding European spot option.
This result is often used to value European spot options. The result is not true for
American options. If the futures market is normal, an American call futures is worth
more than the corresponding American spot call option, while an American put futures
is worth less than the corresponding American spot put option. If the futures market is
inverted, the reverse is true.
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Practice Questions (Answers in Solutions Manual)

17.1
17.2
17.3
17.4.

17.5

17.6

17.7

17.8

17.9

Explain the difference between a call option on yen and a call option on yen futures.
Why are options on bond futures more actively traded than options on bonds?
“A futures price is like a stock paying a dividend yield.” What is the dividend yield?
A futures price is currently 50. At the end of six months it will be either 56 or 46. The
risk-free interest rate is 6% per annum. What is the value of a six-month European call
option on the futures with a strike price of 50?
How does the put-call parity formula for a futures option differ from put-pall parity for
an option on a non-dividend-paying stock?
Consider an American futures call option where the futures contract and the option
contract expire at the same time. Under what circumstances is the futures option worth
more than the corresponding American option on the underlying asset?
Calculate the value of a five-month European put futures option when the futures price
is $19, the strike price is $20, the risk-free interest rate is 12% per annum, and the
volatility of the futures price is 20% per annum.
Suppose you buy a put option contract on October gold futures with a strike price of
$1,200 per ounce. Each contract is for the delivery of 100 ounces. What happens if you
exercise when the October futures price is $1,180?
Suppose you sell a call option contract on April live cattle futures with a strike price of
90 cents per pound. Each contract is for the delivery of 40,000 pounds. What happens if
the contract is exercised when the futures price is 95 cents?
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17.10.

17.11

17.12

17.13

17.14

17.15

17.16

17.17

17.18

17.19

17.20

17.21

Consider a two-month call futures option with a strike price of 40 when the risk-free
interest rate is 10% per annum. The current futures price is 47. What is a lower bound
for the value of the futures option if it is (a) European and (b) American?

Consider a four-month put futures option with a strike price of 50 when the risk-free
interest rate is 10% per annum. The current futures price is 47. What is a lower bound
for the value of the futures option if it is (a) European and (b) American?
A futures price is currently 60 and its volatility is 30%. The risk-free interest rate is 8%
per annum. Use a two-step binomial tree to calculate the value of a six-month European
call option on the futures with a strike price of 60. If the call were American, would it
ever be worth exercising it early?

In Problem 17.12, what does the binomial tree give for the value of a six-month
European put option on futures with a strike price of 60? If the put were American,
would it ever be worth exercising it early? Verify that the call prices calculated in
Problem 17.12 and the put prices calculated here satisfy put-call parity relationships.
A futures price is currently 25, its volatility is 30% per annum, and the risk-free interest
rate is 10% per annum. What is the value of a nine-month European call on the futures
with a strike price of 26?

A futures price is currently 70, its volatility is 20% per annum, and the risk-free interest
rate is 6% per annum. What is the value of a five-month European put on the futures
with a strike price of 65?

Suppose that a one-year futures price is currently 35. A one-year European call option
and a one-year European put option on the futures with a strike price of 34 are both
priced at 2 in the market. The risk-free interest rate is 10% per annum. Identify an
arbitrage opportunity. 0
“The price of an at-the-money European call futures option always equals the price of a
similar at-the-money European put futuresoption.” Explain why this statement is true.
Suppose that a futures price is currently 30. The risk-free interest rate is 5% per annum.
A three-month American call futures option with a strike price of 28 is worth 4.
Calculate bounds for the price of a three-month American put futures option with a
strike price of 28. ,  

Show that, if C is the price of an American call option on a futures contract wlfen the
strike price is K and the maturity is T, and P is the price of an American put on the same
futures contract with the same strike price and exercise date, then

F0e'rT- K < C— P < F0-Ke'rT

where F0 is the futures price and r is the risk-free rate. Assume that r > 0 and that there
is no difference between forward and futures contracts. (Hint: Use an analogous
approach to that indicated for Problem 16.12.)

Calculate the price of a three-month European call option on the spot value of silver.
The three-month futures price is $12, the strike price is $13, the risk-free rate is 4% and
the volatility of the price of silver is 25%.

A corporation knows that in three months it will have $5 million to invest for 90 days at
LIBOR minus 50 basis points and wishes to ensure that the rate obtained will be at least
6.5%. What position in exchange-traded options should it take to hedge?
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Further Questions

17.22.

17.23

17.24.

17.25

17.26

A futures price is currently 40. It is known that at the end of three months the price will
be either 35 or 45. What is the value of a three-month European call option on the
futures with a strike price of 42 if the risk-free interest rate is 7% per annum?
It is February 4. July call options on corn futures with strike prices of 260, 270, 280, 290,
and 300 cost 26.75, 21.25, 17.25, 14.00, and 11.375, respectively. July put options with
these strike prices cost 8.50, 13.50, 19.00, 25.625, and 32.625, respectively. The options
mature on June 19, the current July corn futures price is 278.25, and the risk-free interest
rate is 1.1%. Calculate implied volatilities for the options using DerivaGem. Comment
on the results you get.
Calculate the implied volatility of soybean futures prices from the following information
concerning a European put on soybean futures:

Current futures price 525
Exercise price 525
Risk-free rate 6% per annum
Time to maturity 5 months
Put price 20

Calculate the price of a six-month European put option on the spot value of the S&P 500.
The six-month forward price of the index is 1,400, the strike price is 1,450, the risk-free
rate is 5%, and the volatility of the index is 15%. I
The strike price of a futures option is 550 cents, the risk-free interest rate is 3%, the
volatility of the futures price is 20%, and the time to maturity of the option is 9 months.
The futures price is 500 cents.
(a) What is the price of the option if it is a European call?
(b) What is the price of the option if it is a European put?
(c) Verify that put-call parity holds.
(d) What is the futures price for a futures-style option if it is a call?
(e) What is the futures price for a futures-style option if it is a put?

/'
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A financial institution that sells anoption to a client in the over-the-counter markets is
faced with the problem of managing its risk. If the option happens to be the same as
one that is traded on an exchange, the financial institution can neutralize its exposure by
buying on the exchange the same option as it has sold. But when the option has been
tailored to the needs of a client and does not correspond to the standardized products
traded by exchanges, hedging the exposure is far more difficult.

In this chapter we discuss some of the alternative approaches to this problem. We
cover what are commonly referred to as the “Greek letters”, or simply the “Greeks”.
Each Greek letter measures a different dimension to the risk in an option position and
the aim of a trader is to manage the Greeks so that all risks are acceptable. The analysis
presented in this chapter is applicable to market makers in options on an exchange as
well as to traders working in the over-the-counter market for financial institutions.

Toward the end of the chapter, we will consider the creation of options synthetically.
This turns out to be very closely relatedto the hedging of options. Creating an option
position synthetically is essentially the same task as hedging the opposite option
position. For example, creating a long call option synthetically is the same as hedging
a short position in the call option. A

/

ILLUSTRATION 0

In the next few sections we use as an example the position of a financial institution that
has sold for $300,000 a European call option on 100,000 shares of a non-dividend-
paying stock. We assume that the stock price is $49, the strike price is $50, the risk-free
interest rate is 5% per annum, the stock price volatility is 20% per annum, the time to
maturity is 20 weeks (0.3846 years), and the expected return from the stock is 13% per
annum.1 With our usual notation, this means that T

S0 -: 49, K = 50, r = 0.05, o : 0.20, T : 0.3846, u = 0.13

The Black-Scholes-Merton price of the option is about $240,000 (that is, $2.40 for an

1 As shown in Chapters 12 and 14, the expected return is irrelevant to the pricing of an option. It is given here
because it can have some bearing on the effectiveness of a hedging scheme.
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option to buy one share). The financial institution has therefore sold the option for
$60,000 more than its theoretical value. But it is faced with the problem of hedging the
risks.2

NAKED AND COVERED POSITIONS

One strategy open to the financial institution is to do nothing. This is sometimes referred
to as a nakedposition. It is a strategy that works well if the stock price is below $50 at the
end of the 20 weeks. The option then costs the financial institution nothing and it makes
a profit of $300,000. A naked position works less well if the call is exercised because the
financial institution then has to buy 100,000 shares at the market price prevailing in 20
weeks to cover the call. The cost to the financial institution is 100,000 times the amount
by which the stock price exceeds the strike price. For example, if after 20 weeks the stock
price is $60, the option costs the financial institution $1,000,000. This is considerably
greater than the $300,000 charged for the option.

As an alternative to a naked position, the financial institution can adopt a covered
position. This involves buying 100,000 shares as soon as the option has been sold. If the
option is exercised, this strategy works well, but in other circumstances it could lead to a
significant loss. For example, if the stock price drops to $40, the financial institution
loses $900,000 on its stock position. This is considerably greater than the $300,000
charged for the option.3

Neither a naked position nora covered position provides a good hedge. If the
assumptions underlying the Black-Scholes-Merton formula l1old, the cost to the
financial institution should always be $240,000 on average for both approaches.4 But
on any one occasion the cost is liable to range from zero to over $1,000,000. A good
hedge would ensure that the cost is always close to $240,000.

A STOP-LOSS STRATEGY

One interesting hedging procedure that is sometimes proposed involves a stop-loss
strategy. To illustrate the basic idea, consider an institution that has written a call option
with strike price K to buy one unit of a stock. The hedging procedure inv6lves buying one
unit of the stock as soon as its price rises above K and selling it as soon as its price falls
below K. The objective is to hold a naked position whenever the stock price is less than K
and a covered position whenever the stock price is greater than K. The procedure is
designed to ensure that at time T the institution owns the stock if the option closes in the
money and does not own it if the option closes out of the money. In the situation
illustrated in Figure 18.1, it involves buying the stock at time t1, selling it at time t2,
buying it at time t3, selling it at time t4, buying it at time t5, and delivering it at time T.

2 A call option on a non-dividend-paying stock is a convenient example with which to develop our ideas. The
points that will be made apply to other types of options and to other derivatives.

3 Put-call parity shows that the exposure from writing a covered call is the same as the exposure from writing
a naked put.

4 More precisely, the present value of the expected cost is $240,000 for both approaches assuming that
appropriate risk-adjusted discount rates are used.
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Figure 18.1 A stop-loss strategy.
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As usual, we denote the initial stock price by S0. The cost of setting up the hedge
initially is S0 if S0 > K and zero otherwise. It seems as though the total cost, Q, of
writing and hedging the option is the option’s initial intrinsic value:

Q = max(S0 — K, 0) (18.1)

This is because all purchases and sales subsequent to time 0 are made at price K. If this
were in fact correct, the hedging procedure would work perfectly in the absence of
transactions costs. Furthermore, the cost of hedging the option would always be less
than its Black-Scholes-Merton price. Thus, an investor could earn riskless profits by
writing options and hedging them.

There are two key reasons why equation (18.1) is incorrect. The first is that the cash
flows to the hedger occur at different times and must be discounted. The second is that
purchases and sales cannot be made at exactly the same price K. This second point is
critical. If we assume a risk-neutral world with zero interest rates, we cafi justify
ignoring the time value of money. But we cannot legitimately assume that both
purchases and sales are made at the same price. If markets are efficient, the hedger
cannot know whether, when the stock price equals K, it will continue above or below K.

As a practical matter, purchases must be made at a price K + e and sales must be
made at a price K -— e, for some small positive number e. Thus, every purchase and
subsequent sale involves a cost (apart from transaction costs) of 2e. A natural response
on the part of the hedger is to monitor price movements more closely, so that e is
reduced. Assuming that stock prices change continuously, e can be made arbitrarily
small by monitoring the stock prices closely. But as e is made smaller, trades tend to
occur more frequently. Thus, the lower cost per trade is offset by the increased
frequency of trading. As e —> 0, the expected number of trades tends to infinity.5

5 As mentioned in Section 13.2, the expected number of times a Wiener process equals any particular value in
a given time interval isinfinite.
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Table 18.1 Performance of stop-loss strategy. The performance measure is
the ratio of the standard deviation of the cost of writing the option and
hedging it to the theoretical price of the option.

At (weeks) 5 4 2 1 0.5 0.25

Hedge performance 1.02 0.93 0.82 0.77 0.76 0.76
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A stop-loss strategy, although superficially attractive, does not work particularly well
as a hedging procedure. Consider its use for an out-of-the-money option. If the stock
price never reaches the strike price K, the hedging procedure costs nothing. If the path of
the stock price crosses the strike price level many times, the procedure is quite expensive.
Monte Carlo simulation can be used to assess the overall performance of stop-loss
hedging. This involves randomly sampling paths for the stock price and observing the
results of using the procedure. Table 18.1 shows the results for the option considered in
Section 18.1. It assumes that the stock price is observed at the end of time intervals of
length At.6 The hedge performance measure is the ratio of the standard deviation of the
cost of hedging the option to the Black-Scholes-Merton option price. Each result is
based on 1,000 sample paths for the stock price and has a standard error of about 2%. A
perfect hedge would have a hedge performance measure of zero. In this case it appears
to be impossible to produce a value for the hedge performance measure below 0.70
regardless of how small At is made.

DELTA HEDGING

Most traders use more sophisticated hedging procedures than those mentioned so far.
These involve calculating measures such as delta, gamma, and vega. In this section we
consider the role played by delta. ,

The delta (A) of an option was introduced in Chapter 12. It is defined as the rate of
change of the option price with respect to the price of the underlying asset. It is the
slope of the curve that relates the option price to the underlying asset price. Suppose
that the delta of a call option on a stock is 0.6. This means that when tthe stock price
changes by a small amount, the option price changes by about 60% of that amount.
Figure 18.2 shows the relationship between a call price and the underlying stock price.
When the stock price corresponds to point A, the option price corresponds to point B,
and A is the slope of the line indicated. In general,

8:95
8S

where c is the price of the call option and S is the stock price.
Suppose that, in Figure 18.2, the stock price is $100 and the option price is $10.

Imagine an investor who has sold 20 call option contracts-—that is, options on 2,000

6 The precise hedging rule used was as follows. If the stock price moves from below K to above K in a time
interval of length At, it is bought at the end of the interval. If it moves from above K to below K in the time
interval, it is sold at the end of the interval; otherwise, no action is taken.
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Figure 18.2 Calculation of delta.
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shares. The investor’s position could be hedged by buying 0.6 >< 2,000 = 1,200 shares.
The gain (loss) on the stock position would then tend to offset the loss (gain) on the
option position. For example, if the stock price goes up by $1 (producing a gain of
$1,200 on the shares purchased), the option price will tend to go up by
0.6 x $1 = $0.60 (producing a loss of $1,200 on the options written); if the stock
price goes down by $1 (producing a loss of $1,200 on the shares purchased), the
option price will tend to go down by $0.60 (producing a gain of $1,200 on the options
written). 0

In this example, the delta of the trader’s short position in 2,000 options is

0.6 x (-2,000) : —1,200

This means that the trader loses 1,200AS on the option position when the stock price
increases by AS. The delta of one share of the stock is 1.0, so that the long position in
1,200 shares has a delta of +1,200. The delta of the trader’s overall position is,
therefore, zero. The delta of the stock position offsets the delta of the option pdsition.
A position witha delta of zero is referred to as delta neutral.

It is important to realize that, since the delta of an option does not remain constant,
the trader’s position remains delta hedged (or delta neutral) for only a relatively short
period of time. The hedge has to be adjusted periodically. This is known as rebalancing.
In our example, by the end of 1 day the stock price might have increased to $110. As
indicated by Figure 18.2, an increase in the stock price leads to an increase in delta.
Suppose that delta rises from 0.60 to 0.65. An extra 0.05 x 2,000 = 100 shares would
then have to be purchased to maintain the hedge. A procedure such as this, where the
hedge is adjusted on a regular basis, is referred to as dynamic hedging. It can be
contrasted with static hedging, where a hedge is set up initially and never adjusted.
Static hedging is sometimes also referred to as hedge-and-forget.

Delta is closely related to the Black-Scholes-Merton analysis. As explained in
Chapter 14, the Black-Scholes-Merton differential equation can be derived by setting
up a riskless portfolio consisting of a position in an option on a stock and a position in
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the stock. Expressed in terms of A, the portfolio is

-1: option
+A: shares of the stock.

Using our new terminology, we can say that options can be valued by setting up a delta-
neutral position and arguing that the return on the position should (instantaneously) be
the risk-free interest rate.

Delta of European Stock Options
For a European call option on a non-dividend-paying stock, it can be shown (see
Problem 14.17) that

A(call) = N(d1)

where dl is defined as in equation (14.20) and N(x) is the cumulative distribution
function for a standard normal distribution. The formula gives the delta of a long
position in one call option. The delta of a short position in one call option is -N(d1).
Using delta hedging for a short position in a European call option involves maintaining
a long position of N(d1) for each option sold. Similarly, using delta hedging for a long
position in a European call option involves maintaining a short position of N(d1) shares
for each option purchased.

For a European put option on a non-dividend-paying stock, delta is given by

4\(13ul) = NW1) — 1 0

Delta is negative, which means that a long position in a put option should be hedged
with a long position in the underlying stock, and a short position in a put option
should be hedged with a short position in the underlying stock. Figure 18.3 shows the
variation of the delta of a call option and a put option with the stock price. Figure 18.4
shows the variation of delta with the time to maturity for in-the-money, at-the-money,
and out-of-the-money call options.
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Figure 18.3 , Variation of delta with stock price for (a) a call option and (b) a put
option on a non-dividend-paying stock. /
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Figure 18.4 Typical patterns for variation of delta with time to maturity for a call
option.
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Example 18. 1 A
Consider again the call option on a non-dividend-paying stock in Section 18.1
where the stock price is $49, the strike price is $50, the risk-free rate is 5%, the
time to maturity is 20 weeks (= 0.3846 years), and the volatility is 20%. In this case,

14 . .222 . 4dl_n(9/50)+(005+0 /)><0386:0’0542
0.2 x \/0.3846 .

Delta is N(d1), or 0.522. When the stock price changes by AS, the option price
changes by 0.522AS.

Dynamic Aspects of Delta Hedging /
Tables 18.2 and 18.3 provide two examples of the operation of delta hedging for the
example in Section 18.1. The hedge is assumed to be adjusted or rebalanced weekly.
The initial value of delta for the option being sold is calculated in Example 18.1 as
0.522. This means that the delta of the short option position is initially -52,200. As
soon as the option is written, $2,557,800 must be borrowed to buy 52,200 shares at a
price of $49. The rate of interest is 5%. An interest cost of approximately $2,500 is
therefore incurred in the first week.

In Table 18.2 the stock price falls by the end of the first week to $48.12. The delta of
the option declines to 0.458, so that the new delta of the option position is —45,800.
This means that 6,400 of the shares initially purchased are sold to maintain the hedge.
The strategy realizes $308,000 in cash, and the cumulative borrowings at the end of
Week 1 are reduced to $2,252,300. During the second week, the stock price reduces to
$47.37, delta declines again, and so on. Toward the end of the life of the option, it
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Table 18.2 Simulation of delta hedging. Option closes in the money and cost
of hedging is $263,300.

Week Stock Delta Shares Cost of shares Cumulative cost Interest
price

($000) ($000)
purchased purchased including interest cost

($000)

\OOO\IO\U1-I>UJl\J'—‘@\OOO\10\k11-l>UJl\J>—*@

49.00
48.12
47.37
50.25
51.75
53.12
53.00
51.87
51.38
53.00

1 49.88
I 48.50
1 49.88
I 50.37
1 52.13
1 51.88
1 52.87
I 54.87
I 54.62
I 55.87
20 57.25

0.522
0.458
0.400
0.596
0.693
0.774
0.771
0.706
0.674
0.787
0.550
0.413
0.542
0.591
0.768
0.759
0.865
0.978
0.990
1.000
1.000

( ,
12,900

52,200
(6,400)
(5,800)
19,600
9,700
8,100
(300)

(6,500)
(3,200)
11,300
23,700)
13 700)

4,900
17,700

(900)
10,600
11,300

1,200
1,000

0

2,557.8
(308.0)
(274.7)
984.9
502.0
430.3
(15.9)

(337.2)
(164.4)
598.9

(1,182.2)
(664.4)
643.5
246.8
922.7
(46.7)
560.4
620.0

65.5
55.9
0.0

2,557.8
2,252.3
1,979.8
2,966.6
3,471.5
3,905.1
3,893.0
3,559.5
3,398.5
4,000.7
2,822.3
2,160.6
2,806.2
3,055.7
3,981.3
3,938.4
4,502.6
5,126.9
5,197.3
5,258.2
5,263.3
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2.5
2.2
1.9
2.9
3.3
3.8
3.7
3.4
3.3
3.8
2.7
2.1  
2.7
2.9
3.8
3.8
4.3
4.9
5.0
5.1

, -_Q_ ~---an ,-rv-‘-
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becomes apparent that the option will be exercised and the delta of the option
approaches 1.0. By Week 20, therefore, the hedger has a fully covered position. The
hedger receives $5 million for the stock held, so that the total cost of writing the option
and hedging it is $263,300. '

Table 18.3 illustrates an alternative sequence of events such that the option closes out
of the money. As it becomes clear that the option will not be exercised, delta
approaches zero. By Week 20 the hedger has a naked position and has incurred costs
totaling $256,600.

In Tables 18.2 and 18.3, the costs of hedging the option, when discounted to the
beginning of the period, are close to but not exactly the same as the Black—Scholes-
Merton price of $240,000. If the hedging worked perfectly, the cost of hedging would,
after discounting, be exactly equal to the Black-Scholes-Merton price for every
simulated stock price path. The reason for the variation in the cost of hedging is that
the hedge is rebalanced only once a week. As rebalancing takes place more frequently,
the variation in the cost of hedging is reduced. Of course, the examples in Tables 18.2
and 18.3 are idealized in that they assume that the volatility is constant and there are no
transaction costs.
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Table 18.3 Simulation of delta hedging. Option closes out of the money and
cost of hedging is $256,600.

Week Stock Delta Shares Cost of shares Cumulative cost Interest
price purchased purchased including interest cost

($000) ($000) ($000)

\OO0\lO‘\U1-I>U~>I\J*-‘©\DOO\1O\U1-l>~UJl\-)1-—‘©

49.00
49.75
52.00
50.00
48.38
48.25
48.75
49.63
48.25
48.25

I 51.12
I 51.50
I 49.88
I 49.88
I 48.75
I 47.50
I 48.00
I 46.25
I 48.13
1 46.63
20 48.12

0.522
0.568
0.705
0.579
0.459
0.443
0.475
0.540
0.420
0.410
0.658
0.692
0.542
0.538
0.400
0.236
0.261
0.062
0.183
0.007
0.000

52,200 2,557.8
4,600

13,700
(12,600)
(12,000)

(1,600)
3,200
6,500

(12,000)
(1,000)
24,800

3,400
(15,000)

(400)
(13,800)
(16,400)

2,500
(19,900)
12,100

(17,600)
(700)

228.9
712.4

(630.0)
(580.6)

(77.2)
156.0
322.6

(579.0)
(48.2)

1,267.8
175.1

(748.2)
(20.0)

(672.7)
(779.0)
120.0

(920.4)
582.4

(820.7)
(33.7)

2,557.8
2,789.2
3,504.3
2,877.7
2,299.9
2,224.9
2,383.0
2,707.9
2,131.5
2,085.4
3,355.2
3,533.5
2,788.7
2,771.4
2,101.4
1,324.4
1,445.7

526.7
1,109.6

290.0
256.6

2.5
2.7
3.4
2.8
2.2
2.1
2.3
2.6
2.1
2.0
3.2
3.4
2.7
2.7
2.0
1.3
1.4
0.5
1.1
0.3
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Table 18.4 shows statistics on the performance of delta hedging obtained from
1,000 random stock price paths in our example. As in Table 18.1, the performance
measure is the ratio of the standard deviation of the cost of hedging the option to the
Black—Scholes—Merton price of the option. It is clear that delta hedging is a great
improvement over a stop-loss strategy. Unlike a stop-loss strategy, the performance of a
delta-hedging strategy gets steadily better as the hedge is monitored more frequently.
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Table 18.4 Performance of delta hedging. The perfonnance measure is the
ratio of the standard deviation of the cost of Writing the option and hedging
it to the theoretical price of the option.

Time between hedge
rebalancing (weeks): 5 4 2 l 0.5 0.25

Performance measure: 0.43 0.39 0.26 0.19 0.14 0.09
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Delta hedging aims to keep the value of the financial institution’s position as close to
unchanged as possible. Initially, the value of the written option is $240,000. In the
situation depicted in Table 18.2, the value of the option can be calculated as $414,500 in
Week 9. Thus, the financial institution has lost $174,500 on its short option position. Its
cash position, as measured by the cumulative cost, is $1,442,900 worse in Week 9 than
in Week 0. The value of the shares held has increased from $2,557,800 to $4,171,100.
The net elfect of all this is that the value of the financial institution’s position has
changed by only $4,100 between Week 0 and Week 9.

Where the Cost Comes From
The delta-hedging procedure in Tables 18.2 and 18.3 creates the equivalent of a long
position in the option. This neutralizes the short position the financial institution
created by writing the option. As the tables illustrate, delta hedging a short position
generally involves selling stock just after the price has gone down and buying stock just
after the price has gone up. It might be termed a buy-high, sell-low trading strategy!
The cost of $240,000 comes from the average difference between the price paid for the
stock and the price at which it is sold.

Delta of a Portfolio
The delta of a portfolio of options or other derivatives dependent on a single asset
whose price is S is an

BS
where I1 is the value of the portfolio.

The delta of the portfolio can be calculated from the deltas of the individual options
in the portfolio. If a portfolio consists of a quantity w,- of option i (1 < i Q n), the delta
of the portfolio is given by

. fl

A:X:w,-A,
i=1 I

where A, is the delta of the ith option. The formula can be used to calculate the
position in the underlying asset necessary to make the delta of the portfolio zero. When
this position has been taken, the portfolio is referred to as being delta grteutral.

Suppose a financial institution has the following three positions in options on a
stock:

1. A long position in 100,000 call options with strike price $55 and an expiration date
in 3 months. The delta of each option is 0.533.

2. A short position in 200,000 call options with strike price $56 and an expiration
date in 5 months. The delta of each option is 0.468.

3. A short position in 50,000 put options with strike price $56 and an expiration date
5 in 2 months. The delta of each option is -0.508.

The delta of the whole portfolio is

100,000 >< 0.533 —— 200,000 >< 0.468 — 50,000 >< (——0.508) : ——14,900

This means that the portfolio can be made delta neutral by buying 14,900 shares.
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Transactions Costs 1
Derivatives dealers usually rebalance their positions once a day to maintain delta
neutrality. When the dealer has a small number of options on a particular asset, this is
liable to be prohibitively expensive because of the transactions costs incurred on trades.
For a large portfolio of options, it is more feasible. Only one trade in the underlying asset
is necessary to zero out delta for the whole portfolio. The hedging transactions costs are
absorbed by the profits on many different trades.

THETA .

The theta (6)) of a portfolio of options is the rate of change of the value of the portfolio
with respect to the passage of time with all else remaining the same. Theta is sometimes
referred to as the time decay of the portfolio. For a European call option on a non-
dividend-paying stock, it can be shown from the Black—Scholes—Merton formula (see
Problem 14. 17) that

®(cal1): S°’;%‘)" r1<@*”"1v(a2)

where d1 and d2 are defined as inequation (14.20) and I

N'(x) : --1-e_x2/2 (18 2)
\/27t

is the probability density function for a standard normal distribution.
For a European put option on the stock,

S N’ d
®(put) -_ 0 2i?1)U + rKe"TN(—d2)

Because N(—d2) : 1 — N(d2), the theta of a put exceeds the theta of the corresponding
call by rKe""T.

In these formulas, time is measured in years. Usually, when theta is quoted, time is
measured in days, so that theta is the change in the portfolio value when 1 day passes
with all else remaining the same. We can measure theta either “per calendar day” or
“per trading day”. To obtain the theta per calendar day, the formula for theta inust be
divided by 365; to obtain theta per trading day, it must be divided by 252. (DerivaGem
measures theta per calendar day.)

Example 18.2
As in Example 18.1, consider a call option on a non-dividend-paying stock where
the stock price is $49, the strike price is $50, the risk-free rate is 5°/6, the time to
maturity is 20 weeks (: 0.3846 years), and the volatility is 20°/6. In this case,
S0 : 49, K : 50, r = 0.05, 0' == 0.2, and T :- 0.3846.

The option’s theta is
NI

. - 5° (‘ma rKeTrTN(d2) = -4.312,/T
The theta is —4.31/365 : -0.01 18 per calendar day, or -4.31/252 :: —0.0171 per
trading day.
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Figure 18.5 Variation of theta of a European call option with stock price.
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Theta is usually negative for an option.7 This is because, as time passes with all else
remaining the same, the option tends to become less valuable. The variation of (-9 with
stock price for a call option on a stock is shown in Figure 18.5. When the stock price is
very low, theta is close to zero. For an at-the-money call option, theta is large and
negative. As the stock price becomes larger, theta tends to —-rKe_’T. Figure 18.6 shows
typical patterns for the variation of C-D with the time to maturity for in-the-money, at-
the-money, and out-of-the-money call options.
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Figure 1 8.6 Typical patterns for variation of theta of a European call option with time
to maturity.

A Theta

Time to maturity
O >

Out of the moneyQ5’ .
In the money \

At the money
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7 An exception to this could be an in-the-money European put option on a non-dividend-paying stock or an
in-the-money European call option on a currency with a very high interest rate.
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Theta is not the same type of hedge parameter as delta. There is uncertainty about
the future stock price, but there is no uncertainty about the passage of time. It makes
sense to hedge against changes in the price of the underlying asset, but it does not make
any sense to hedge against the passage of time. In spite of this, many traders regard
theta as a useful descriptive statistic for a portfolio. This is because, as we shall see later,
in a delta-neutral portfolio theta is a proxy for gamma.

GAMMA

The gamma (F) of a portfolio of options on an underlying asset is the rate of change of
the portfolio’s delta with respect to the price of the underlying asset. It is the second
partial derivative of the portfolio with respect to asset price:

aznF = _-882
If gamma is small, delta changes slowly, and adjustments to keep a portfolio delta
neutral need to be made only relatively infrequently. However, if gamma is highly
negative or highly positive, delta is very sensitive to the price of the underlying asset. It
is then quite risky to leave a delta-neutral portfolio unchanged for any length of time.
Figure 18.7 illustrates this point. When the stock price moves from S to S’, delta
hedging assumes that the option price moves from C to C’, when in fact it moves from
C to C”. The difference between C’ and C” leads to a hedging error. The size of the
error depends on the curvature of the relationship between the option price and the
stock price. Gamma measures this curvature.

Suppose that AS is the price change of an underlying asset during a small interval of
time, At, and Al'I is the corresponding price change in the portfolio. The appendix at
the end of this chapter shows that, if terms of order higher than At are ignored,

AII = <9 At + gr AS2 (18.3)
for a delta-neutral portfolio, where (9 is the theta of the portfolio. Figure 18.8 shows the
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Figure 18.7 Hedging error introduced by nonlinearity.
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Figure 18.8 Relationship between Al'I and AS in time At for a delta-neutral portfolio
with (a) slightly positive gamma, (b) large positive gamma, (c) slightly negative
gamma, and (d) large negative gamma.
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nature of this relationship between AII and AS. When gamma is positive, theta tends to
be negative. The portfolio declines in value if there is no change in S, but increases in
value if there is a large positive or negative change in S. When gamma is negative, theta
tends to be positive and the reverse is true: the portfolio increases in value if there is no
change in S but decreases in value if there is a large positive or negative '/change in S. As
the absolute value of gamma increases, the sensitivity of the value of the portfolio to S
l11C1'€21SCS.

Example 18.3
Suppose that the gamma of a delta-neutral portfolio of options on an asset is
—l0,000. Equation (18.3) shows that, if a change of +2 or -2 in the price of the
asset occurs over a short period of time, there is an unexpected decrease in the
value of the portfolio of approximately 0.5 >< 10,000 x 22 : $20,000.

Making a Portfolio Gamma Neutral
A position in the underlying asset has zero gamma and cannot be used to change the
gamma of a portfolio. What is required is a position in an instrument such as an option
that is not linearly dependent on the underlying asset.
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Suppose that a delta-neutral portfolio has a gamma equal to F, and a traded option
has a gamma equal to FT. If the number of traded options added to the portfolio is wT,
the gamma of the portfolio is

wT FT + F

Hence, the position in the traded option necessary to make the portfolio gamma neutral
is -1“/FT. Including the traded option is likely to change the delta of the portfolio, so
the position in the underlying asset then has to be changed to maintain delta neutrality.
Note that the portfolio is gamma neutral only for a short period of time. As time
passes, gamma neutrality can be maintained only if the position in the traded option is
adjusted so that it is always equal to -1“/FT.

Making a portfolio gamma neutral as well as delta-neutral can be regarded as a
correction for the hedging error illustrated in Figure 18.7. Delta neutrality provides
protection against relatively small stock price moves between rebalancing. Gamma
neutrality provides protection against larger movements in this stock price between
hedge rebalancing. Suppose that a portfolio is delta neutral and has a gamma of
-—3,000. The delta and gamma of a particular traded call option are 0.62 and 1.50,
respectively. The portfolio can be made gamma neutral by including in the portfolio a
long position of

3 000_:___ :_. 21 5 ,000

in the call option. However, the delta of the portfolio will then change from zero to
2,000 >< 0.62 = 1,240. Therefore 1,240 units of the underlying asset must be sold from
the portfolio to keep it delta neutral.

Calculation of Gamma
For a European call or put option on a non-dividend-paying stock, the gamma is
given by

14: NW1)
Sofifi
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Figure 18.9 Variation of gamma with stock price for an option. v
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Figure 18.10 Variation of gamma with time to maturity for a stock option.
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where d1 is defined as in equation (14.20) and N’(x) is as given by equation (18.2). The
gamma of a long position is always positive and varies with S0 in the way indicated in
Figure 18.9. The variation of gamma with time to maturity for out-of-the-money,
at-the-money, and in-the-money options is shown in Figure 18.10. For an at-the-money
option, gamma increases as the time to maturity decreases. Short-life at-the-money
options have very high gammas, which means that the value of the option holder’s
position is highly sensitive to jumps in the stock price.

Example 18.4
As in Example 18.1, consider a call option on a non-dividend-paying stock where
the stock price is $49, the strike price is $50, the risk-free rate is 5%, the time to
maturity is 20 weeks (= 0.3846 years), and the volatility is 20%. In this case,
S0 : 49, K = 50, r : 0.05, 0 = 0.2, and T = 0.3846.

The option’s gamma is

Fifi = 0 066
S0O'\/T l

When the stock price changes by AS, the delta of the option changes by 0.066AS.

18 7 RELATIONSHIP BETWEEN DELTA, THETA, AND GAMMA

The price of a single derivative dependent on a non-dividend-paying stock must satisfy
the differential equation (14.16). It follows that the value of I1 of a portfolio of such
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derivatives also satisfies the differential equation

an an 2 ,a2n
"6?t’S'6'§ti"S '5§1‘=’“

Since
an an 8211

i 11 -@-e — -, A - -, 1" — -_at as asz
it follows that

o + FSA + §6—2s21" = rfl (18.4)
Similar results can be produced for other underlying assets (see Problem 18.19).

For a delta-neutral portfolio, A = 0 and

6) + §62s2r = rll
This shows that, when (-3 is large and positive, gamma of a portfolio tends to be large
and negative, and vice versa. This is consistent with the way in which Figure 18.8 has
been drawn and explains why theta can to some extent be regarded as a proxy for
gamma in a delta-neutral portfolio.

VEGA

Up to now we have implicitly assumed that the volatility of the asset underlying a
derivative is constant. In practice, volatilities change over time. This means that the
value of a derivative is liable to change because of movements in volatility as well as
because of changes in the asset price and the passage of time.

The vega of a portfolio of derivatives, V, is the rate of change of the value of the
portfolio with respect to the volatility of the underlying asset.8  

0H
V:-—-

00

If vega is highly positive or highly negative, the portfolio’s value is very sensitive to
small changes in volatility. If it is close to zero, volatility changes have relatively little
impact on the value of the portfolio.

A position in the underlying asset has zero vega. However, the vega of a portfolio can
be changed, similarly to the way gamma can be changed, by adding a position in a traded
option. If V is the vega of the portfolio and VT is the vega of a traded option, a position
of —V/VT in the traded option makes the portfolio instantaneously vega neutral.
Unfortunately, a portfolio that is gamma neutral will not in general be vega neutral,
and vice versa. If a hedger requires a portfolio to be both gamma and vega neutral, at
least two traded derivatives dependent on the underlying asset must usually be used.

Example 18.5
Consider a portfolio that is delta neutral, with a gamma of -—5,000 and a vega of
—-8,000. The options shown in the table below can be traded. The portfolio can be

8 Vega is the name given to one of the “Greek letters” in option pricing, but it is not one of the letters in the
Greek alphabet.
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made vega neutral by including a long position in 4,000 of Option 1. This would
increase delta to 2,400 and require that 2,400 units of the asset be sold to maintain
delta neutrality. The gamma of the portfolio would change from -5,000 to -3,000.

Delta Gamma Vega

. Portfolio 0 -5000 -8000
Option 1 0.6 0.5 2.0
Option 2 0.5 0.8 1.2

To make the portfolio gamma and vega neutral, both Option 1 and Option 2
can be used. If wl and wg are the quantities of Option 1 and Option 2 that are
added to the portfolio, we require that

-5,000 + 0.5w1 + 0.8w2 : 0
and

-8,000 + 2.0w1 + l.2w2 = 0

The solution to these equations is wl = 400, w2 = 6,000. The portfolio can there-
fore be made gamma and vega neutral by including 400 of Option 1 and 6,000 of
Option 2. The delta of the portfolio, after the addition of the positions in the two
traded options, is 400 >< 0.6 + 6,000 x 0.5 : 3,240. Hence, 3,240 units of the asset
would have to be sold to maintain delta neutrality.

For a European call or put option on a non-dividend-paying stock, vega is given by

v = s.,~/f1v'(a,)
where d1 is defined as in equation (14.20). The formula for N'(x) is given in equa-
tion ( 18.2). The vega of a long position in a European or American option is always
positive. The general way in which vega varies with S0 is shown in Figure 18.11.

Example 18.6
As in Example 18.1, consider a call option on a non-dividend-paying stock where
the stock price is $49, the strike price is $50, the risk-free rate is 5°/6, the time to
maturity is 20 weeks (: 0.3846 years), and the volatility is 20%. In this case,
S0 = 49, K : 50, r = 0.05, or : 0.2, and T = 0.3846. j,

The option’s vega is
s0~/T1v'(d,) = 12.1

Thus a 1% (0.01) increase in the volatility from (20% to 21%) increases the value
of the option by approximately 0.01 >< 12.1 = 0.121.

Calculating vega from the Black-Scholes-Merton model and its extensions may seem
strange because one of the assumptions underlying the model is that volatility is constant.
It would be theoretically more correct to calculate vega from a model in which volatility is
assumed to be stochastic. However, it turns out that the vega calculated from a stochastic
volatility model is very similar to the Black Scholes—Merton vega, so the practice of
calculating vega from a model in which volatility is constant works reasonably well.9

9 See J . C. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of
Finance 42 (June 1987): 281-300; J. C. Hull and A. White, “An Analysis of the Bias in Option Pricing Caused
by a Stochastic Volatility,” Advances in Futures and Options Research 3 (1988): 27-61.
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Figure 18.11 Variation of vega with stock price for anoption.
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Gamma neutrality protects against large changes in the price of the underlying asset
between hedge rebalancing. Vega neutrality protects against a variable o. As might be
expected, whether it is best to use an available traded option for vega or gamma
hedging depends on the time between hedge rebalancing and the volatility of the
volatility.1°

When volatilities change, the implied volatilities of short-dated options tend to change
by more than the implied volatilities of long-dated options. The vega of a portfolio is
therefore often calculated by changing the volatilities of long-dated options by less than
that of short-dated options. One way of doing this is discussed in Section 22.6.

RHO

The rho of a portfolio of options is the rate of change of the value of the portfolio with
respect to the interest rate: .

8H
87

It measures the sensitivity of the value of a portfolio to a change in the interest rate when
all else remains the same. For a European call option on a non-dividend~paying stock,

rho (call) :: KTe"’TN(d2) ,

where d2 is defined as in equation (14.20). For a European put option,

rho (put) = -KTe_’TN(-d2)

Example 18.7
As in Example 18.1, consider a call option on a non-dividend-paying stock where
the stock price is $49, the strike price is $50, the risk-free rate is 5%, the time to
maturity is 20 weeks (: 0.3846 years), and the volatility is 20°/6. In this case,
S0 = 49, K : 50, r = 0.05, o : 0.2, and T :: 0.3846.

'0 For a discussion of this issue, see J. C. Hull and A. White, “Hedging the Risks from Writing Foreign
Currency Options,” Journal of International Money and Finance 6 (June 1987): 131-52.
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The option’s rho is
KTe_'TN(d2) = 8.91

This means that a 1% (0.01) increase in the risk-free rate (from 5% to 6%)
~ increases the value of the option by approximately 0.01 x 8.91 = 9.0891.

THE REALITIES OF HEDGING

In an ideal world, traders working for financial institutions would be able to rebalance
their portfolios very frequently in order to maintain all Greeks equal to zero. In
practice, this is not possible. When managing a large portfolio dependent on a single
underlying asset, traders usually makedelta zero, or close to zero, at least once a day by
trading the underlying asset. Unfortunately, a zero gamma and a zero vega are less easy
to achieve because it is diflicult to find options or other nonlinear derivatives that can be
traded in the volume required at competitive prices. Business Snapshot 18.1 provides a
discussion of how dynamic hedging is organized at financial institutions.

There are big economies of scale in trading derivatives. Maintaining delta neutrality
for a small number of options on an asset by trading daily is usually not economically
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Table 18.5 Profit or loss realized in 2 weeks under different
scenarios ($ million).

Volatility O

0.96

Exchange rate

1.04 1.060.94 0.98 1.00 1.02

8% +102 +55 +25 +6 -10 -34 -80
10% +80 +40 +17 +2 -14 -38 -85
12% +60 +25 +9 -2 -18 -42 -90

.;.;.J.':'_.#*~. 1 . -"I='..;.'".:=.'».'*.' '1 ‘ :71’. . _"‘.::1.-" .e~. 9. ~"- ~ .1 ~'.'.,'~:1 1 1 =.'.:‘=.";..:.;.'."- --‘ ‘ 5* "1-.4

feasible. The trading costs per option being hedged are high.“ But when a derivatives
dealer maintains delta neutrality for a large portfolio of options on an asset, the trading
costs per option hedged are likely to be much more reasonable.

SCENARIO ANALYSIS

In addition to monitoring risks such as delta, gamma, and vega, option traders often
also carry out a scenario analysis. The analysis involves calculating the gain or loss on
their portfolio over a. specified period under a variety of different scenarios. The time
period chosen is likely to depend on the liquidity of the instruments. The scenarios can
be either chosen by management or generated by a model.

Consider a bank with a portfolio of options on a foreign currency. There are two
main variables on which the value of the portfolio depends. These are the exchange rate
and the exchange-rate volatility. Suppose that the exchange rate is currently 1.0000 and
its volatility is 10% per annum. The bank could calculate a table such as Table 18.5
showing the profit or loss experienced during a 2-week period under different scenarios.
This table considers seven different exchange rates and three different volatilities.
Because a one-standard-deviation move in the exchange rate during a 2-week period
is about 0.02, the exchange rate moves considered are approximately zero, one, two,
and three standard deviations. f

In Table 18.5, the greatest loss is in the lower right corner of the table. The loss
corresponds tothe volatility increasing to 12% and the exchange rate moving up to
1.06. Usually the greatest loss in a table such as 18.5 occurs at one of the corners, but
this is not always so. Consider, for example, the situation where a bank’s portfolio
consists of a short position in a butterfly spread (see Section 11.3). The greatest loss will
be experienced if the exchange rate stays Where it is.

EXTENSION OF FORMULAS

The formulas produced so far for delta, theta, gamma, vega, and rho have been for a
European option on a non-dividend-paying stock. Table 18.6 shows how they change
 iii__

H The trading costs arise from the fact that each day the hedger buys some of the underlying asset at the offer
price or sells some of the underlying asset at the bid price.
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Table 18.6 Greek letters for European options on an asset that provides a yield at
rate q.

Greek letter Call option Put option

Delta e"1TN(d1) e_‘1T[N(d1)- 1]
/ -qT / -qTGamma N (d1)€ N (d1)€

SQOK/T SQOK/T

Theta - S(;N’(d1)oe"‘1T/(2~/T ) - S0N’(d1)cre"1T/(2\/T )
+ qS0N(d1)e“1T — TK€TrTN(d2) — qS0N(-d1)e“1T + TK€—rTN(—d2)

Vega S0\/TN’(d1)e"‘1T so./TN'(d1)@-‘IT

R110 KT€_rTN(d2) —-KT€_rTl\/(-dz)

when the stock pays a continuous dividend yield at rate q. The expressions for d1 and d2
are as for equations (16.4) and (16.5). By setting q equal to the dividend yield on an index,
we obtain the Greek letters for European options on indices. By setting q equal to the
foreign risk-free rate, we obtain the Greek letters for European options on a currency. By
setting q = r, we obtain delta, gamma, theta, and vega for European options on a futures
contract. The rho for a call futures option is -cT and the rho for a European put futures
option is -pT.

In the case of currency options, there are two rhos corresponding to the two interest
rates. The rho corresponding to the domestic interest rate is given by the formula in
Table 18.6 (with d2 as in equation (16.11)). The rho corresponding to the foreign
interest rate for a European call on a currency is A

g rho(ca1l, foreign rate) = -Te_’f TS0N(d1)

For a European put, it is /

rho(put, foreign rate) = Te"’f TS0N(-d1)

with all as in equation (16.11).
The calculation of Greek letters for American options is discussed in Chapter 20.

Delta of Forward Contracts
The concept of delta can be applied to financial instruments other than options. Consider
a forward contract on a non-dividend-paying stock. Equation (5.5) shows that the value
of a forward contract is S0 - Ke"T, where K is the delivery price and T is the forward
contract’s time to maturity. When the price of the stock changes by AS, with all else
remaining the same, the value of a forward contract on the stock also changes by AS. The
delta of a long forward contract on one share of the stock is therefore always 1.0. This



The Greek Letters 399

means that a long forward contract on one share can be hedged by shorting one share; a
short forward contract on one share can be hedged by purchasing one share.”

For an asset providing a dividend yield at rate q, equation (5.7) shows that the
forward contract’s delta is e_"T. For the delta of a forward contract on a stock index, q
is set equal to the dividend yield on the index in this expression. For the delta of a
forward foreign exchange contract, it is set equal to the foreign risk-free rate, rf.

Delta of a Futures Contract
From equation (5.1), the futures price for a contract on a non-dividend-paying stock is
S0e’T, where T is the time to maturity of the futures contract. This shows that when the
price of the stock changes by AS, with all else remaining the same, the futures price
changes by AS e'T. Since futures contracts are settled daily, the holder of a long futures
position makes an almost immediate gain of this amount. The delta of a futures
contract is therefore e’T. For a futures position on an asset providing a dividend yield
at rate q, equation (5.3) shows similarly that delta is e(’—q)T.

It is interesting that daily settlement makes the deltas of futures and forward contracts
slightly different. This is true even when interest rates are constant and the forward price
equals the futures price. (A related point is made in Business Snapshot 5.2.)

Sometimes a futures contract is used to achieve a delta-neutral position. Define:

T: Maturity of futures contract
HA: Required position in asset for delta hedging
HF: Alternative required position in futures contracts for delta hedging  

If the underlying asset is a non-dividend-paying stock, the analysis we have just given
shows that 0

HF = @"’TH,, (18.5)
When the underlying asset pays a dividend yield q,

HF = e'<"‘1>TH,, (18.6)
For a stock index, we set q equal to the dividend yield on the index; for a currency, we
set it equal to the foreign risk-free rate, rf, so that ,/8

I HF 1: €_(r_rf)T HA

Example 18.8  
Suppose that a portfolio of currency options held by a US bank can be made
delta neutral with a short position of 458,000 pounds sterling. Risk-free rates are
4% in the US and 7% in the UK. From equation (18.7), hedging using 9-month
currency futures requires a short futures position

e-—-(0.04——0.07)X9/12 X

or £468,442. Since each futures contract is for the purchase or sale of £62,500, seven
contracts would be shorted. (Seven is the nearest whole number to 468,442/62,500.)

'2 These are hedge-and-forget schemes. Since delta is always 1.0, no changes need to be made to the position
in the stock during the life of the contract.
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PORTFOLIO INSURANCE

A portfolio manager is often interested in acquiring a put option on his or her portfolio.
This provides protection against market declines while preserving the potential for a
gain if the market does well. One approach (discussed in Section 16.1) is to buy put
options on a market index such as the S&P 500. An alternative is to create the options
synthetically.

Creating an option synthetically involves maintaining a position in the underlying
asset (or futures on the underlying asset) so that the delta of the position is equal to the
delta of the required option. The position necessary to create an option synthetically is
the reverse of that necessary to hedge it. This is because the procedure for hedging an
option involves the creation of an equal and opposite option synthetically.

There are two reasons why it may be more attractive for the portfolio manager to
create the required put option synthetically than to buy it in the market. First, options
markets do not always have the liquidity to absorb the trades required by managers of
large funds. Second, fund managers often require strike prices and exercise dates that are
different from those available in exchange-traded options markets.

The synthetic option can be created from trading the portfolio or from trading in
index futures contracts. We first examine the creation of a put option by trading the
portfolio. From Table 18.6, the delta of a European put on the portfolio is

A = @—‘1T[1v(a,) - 1] (18.8)
where, with our usual notation,

ln(S0/K) + (r - q + 02/2)T
ow/T

The other variables are defined as usual: S0 is the value of the portfolio, K is the strike
price, r is the risk-free rate, q is the dividend yield on the portfolio, o" is the volatility of
the portfolio, and T is the life of the option. The volatility of the portfolio can usually
be assumed to be its beta times the volatility of a well-diversified market index.

To create the put option synthetically, the fund manager should ensure that at any
given time a proportion

a, _

@""Tl1 — N(d1)l /
of the stocks in the original portfolio has been sold and the proceeds invested in riskless
assets. As the value of the original portfolio declines, the delta of the put given by
equation (18.8) becomes more negative and the proportion of the original portfolio sold
must be increased. As the value of the original portfolio increases, the delta of the put
becomes less negative and the proportion of the original portfolio sold must be
decreased (i.e., some of the original portfolio must be repurchased).

Using this strategy to create portfolio insurance means that at any given time funds
are divided between the stock portfolio on which insurance is required and riskless
assets. As the value of the stock portfolio increases, riskless assets are sold and the
position in the stock portfolio is increased. As the value of the stock portfolio declines,
the position in the stock portfolio is decreased and riskless assets are purchased. The
cost of the insurance arises from the fact that the portfolio manager is always selling
after a decline in the market and buying after a rise in the market.
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Example 18.9 O
A portfolio is worth $90 million. To protect against market downturns the man-
agers of the portfolio require a 6-month European put option on the portfolio
with a strike price of $87 million. The risk-free rate is 9% per annum, the dividend
yield is 3% per annum, and the volatility of the portfolio is 25% per annum. The
S&P 500 index stands at 900. As the portfolio is considered to mimic the S&P 500
fairly closely, one alternative, discussed in Section 16.1, is to buy 1,000 put option
contracts on the S&P 500 with a strike price of 870. Another alternative is to create
the required option synthetically. In this case, S0 : 90 million, K = 87 million,
r = 0.09, q = 0.03, 0' : 0.25, and T : 0.5, so that

d __ ln(90/87) + (0.09 - 0.03 + 0.25’/2)0.5 I 0 4499
‘ 0.25./0.5 '

and the delta of the required option is

e'""T[N(d1) - 1] = -0.3215
This shows that 32.15% of the portfolio should be sold initially and invested in
risk-free assets to match the delta of the required option. The amount of the
portfolio sold must be monitored frequently. For example, if the value of the
portfolio reduces to $88 million after 1 day, the delta of the required option
changes to 0.3679 and a further 4.64% of the original portfolio should be sold
and invested in risk-free assets. If the value of the portfolio increases to $92 million,
the delta of the requiredoption changes to -0.2787 and 4.28% of the original
portfolio should be repurchased.

Use of Index Futures  
Using index futures to create options synthetically can be preferable to using the
underlying stocks because the transaction costs associated with trades in index futures
are generally lower than those associated with the corresponding trades in the under-
lying stocks. The dollar amount of the futures contracts shorted as a proportion of the
value of the portfolio should from equations (18.6) and (18.8) be

@*‘1T@"<’"‘I>T*[1 - .v(a,)] = @‘1<T*-T>@"’T*[1 - 1v(a,)] "
where T* is the maturity of the futures contract. If the portfolio is worth A1 times the
index and each index futures contract is on A2 times the index, the number of futures
contracts shorted at any given time should be

@"‘T*“T)@"T*[1 - N<d1)141/42
Example 18. 10

Suppose that in the previous example futures contracts on the S&P 500 maturing in
9 months are used to create the option synthetically. In this case initially T = 0.5,
T* = 0.75, A1 : 100,000, and d1 -: 0.4499. Each index futures contract is on 250
times the index, so that A2 : 250. The number of futures contracts shorted
should be

e1<T*—T>@"T*[1 - N(d1)]A1/A2 = 122.96
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or 123, rounding to the nearest whole number. As time passes and the index
changes, the position in futures contracts must be adjusted.

This analysis assumes that the portfolio mirrors the index. When this is not the case, it
is necessary to (a) calculate the portfolio’s beta, (b) find the position in options on the
index that gives the required protection, and (c) choose a position in index futures to
create the options synthetically. As discussed in Section 16.1. the strike price for the
options should be the expected level of the market index when the portfolio reaches its
insured value. The number of options required is beta times the number that would be
required if the portfolio had a beta of 1.0.

STOCK MARKET VOLATILITY

We discussed in Chapter 14 the issue of whether volatility is caused solely by the arrival
of new information or whether trading itself generates volatility. Portfolio insurance
strategies such as those just described have the potential to increase volatility. When the
market declines, they cause portfolio managers either to sell stock or to sell index
futures contracts. Either action may accentuate the decline (see Business Snapshot 18.2).
The sale of stock is liable to drive down the market index further in a direct way. The
sale of index futures contracts is liable to drive down futures prices. This creates selling
pressure on stocks via the mechanism of index arbitrage (see Chapter 5), so that the
market index is liable to be driven down in this case as well. Similarly, when the market
rises, the portfolio insurance strategies cause portfolio managers either to buy stock or
to buy futures contracts. This may accentuate the rise.

In addition to formal portfolio trading strategies, we can speculate that many investors
consciously or subconsciously follow portfolio insurance rules of their own. For example,
an investor may choose to sell when the market is falling to limit the downside risk.

Whether portfolio insurance trading strategies (formal or informal) affect volatility
depends on how easily the market can absorb the trades that are generated by portfolio
insurance. If portfolio insurance trades are a very small fraction of all trades, there is
likely to be no effect. As portfolio insurance becomes more popular, it is liable to have a
destabilizing effect on the market.

/

SUMMARY

Financial institutions offer a variety of option products to their clients. Often the
options do not correspond to the standardized products traded by exchanges. The
financial institutions are then faced with the problem of hedging their exposure. Naked
and covered positions leave them subject to an unacceptable level of risk. One course of
action that is sometimes proposed is a stop-loss strategy. This involves holding a naked
position when an option is out of the money and converting it to a covered position as
soon as the option moves into the money. Although superficially attractive, the strategy
does not provide a good hedge.

The delta (A) of an option is the rate of change of its price with respect to the price of
the underlying asset. Delta hedging involves creating a position with zero delta (some-
times referred to as a delta-neutral position). Because the delta of the underlying asset
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Business Snapshot 18.2 Was Portfolio Insurance to Blame for the Crash"
of 1987? ' 6 I .

On Monday, October 19, 1987, the D.0W.Jones-Industrial Average dropped by more
than 20%. Many people feel that portfolio. insurance played a major role in this crash;
InOcto_ber 1987 between $60 billion and "$90 billion of equity assets were subject to
portfolio insurance trading rules where put options" were created synthetically in the
way discussed in Section 18.13. During the period Wednesday, October 14, 1987,1t0I

. -t . . 1 -- ~ - C "-

Friday, _Octob,er'.16_,, 1_98_7,;th_ei marketfdeclined by about 10%, with much 6t
decline taking tpiaeqpa Friday afternoon. The portfolio trading rules should have
generated at least $12 billion of equityor index futures sales as a result of this decline;
In fact, portfolio insurers had time to sellonly $4 billion and they approached the
following week with huge amounts of selling already "dictated by their models.‘ It 5

estimated that on Monday, October 19, sell programs by three portfolio insurers:
accounted for almost 10%'of the sales on the New York Stock Exchange, and that l

Y ~ * - . 1 . I '

5 portfolio insurance sales amounted to 21.3% ofall sales in index futures markets. Itis
likely that the decline in equity prices was exacerbated by investors other than portfolio
insurers selling heavily because they anticipated the actions of portfolio insurers.

Because the market declined so fast and the stockexchange ,systemsLwere_',ovler-
loaded, many portfolio insurers were unable to execute the trades generated
models and - failedlto obtain the protection they ,require_d.- Needless to ' say, the
popularity of portfolio insurance schemes has declined significantly since 5,1987.»
One of the morals of this story is that it is dangerousto follow-a particular trading
strategy-even ahedging strategy-when many other market participants are doing
the same thing. I f , I l . I I

is 1.0, one way of hedging is to take a position of -A in the underlying asset for each
long option being hedged. The delta of an option changes over time. This means that
the position in the underlying asset has to be frequently adjusted. I

Once an option position has been made delta neutral, the next stage is often to look
at its gamma (F). The gamma of an option is the rate of change of its delta with respect
to the price of the underlying asset. It is a measure of the curvature of the relationship
between the option price and the asset price. The impact of this curvature”on the
performance of delta hedging can be reduced by making an option position gamma
neutral. If P is the gamma of the position being hedged, this reduction is usually
achieved by taking a position in a traded option that has a gamma of -I‘.

Delta and gamma hedging are both based on the assumption that the volatility of the
underlying asset is constant. In practice, volatilities do change over time. The vega of an
option or an option portfolio measures the rate of change of its value with respect to
volatility. A trader who wishes to hedge an option position against volatility changes can
make the position vega neutral. As with the procedure for creating gamma neutrality, this
usually involves taking an offsetting position in a traded option. If the trader wishes to
achieve both gamma and vega neutrality, two traded options are usually required.

Two other measures of the risk of an option position are theta and rho. Theta
measures the rate of change of the value of the position with respect to the passage of
time, with all else remaining constant. Rho measures the rate of change of the value of
the position with respect to the interest rate, with all else remaining constant.
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In practice, option traders usually rebalance their portfolios at least once a day to
maintain delta neutrality. It is usually not feasibleto maintain gamma and vega
neutrality on a regular basis. Typically a trader monitors these measures. If they get
too large, either corrective action is taken or trading is curtailed.

Portfolio managers are sometimes interested in creating put options synthetically for
thepurposes of insuring an equity portfolio. They can do so either by trading the
portfolio or by trading index futures on the portfolio. Trading the portfolio involves
splitting the portfolio between equities and risk-free securities. As the market declines,
more is invested in risk-free securities. As the market increases, more is invested in
equities. Trading index futuresinvolves keeping the equity portfolio intact and selling
index futures. As the market declines, more index futures are sold; as it rises, fewer are
sold. This type of portfolio insurance works well in normal market conditions. On
Monday, October 19, 1987, when the Dow Jones Industrial Average dropped very
sharply, it worked badly. Portfolio insurers were unable to sell either stocks or index
futures fast enough to protect their positions.

FURTHER READING

Taleb, N. N., Dynamic Hedging .' Managing Vanilla and Exotic Options. New York: Wiley, 1996.
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Practice Questions (Answers in Solutions Manual)

18.1

18.2

18.3

18.4.

18.5

18.6

18.7
18.8

18.9

Explain how a stop-loss trading rule can be implemented for the writer of an out-of-the-
money call option. Why does it provide a relatively poor hedge?
What does it mean to assert that the delta of a call option is 0.7? How can a short
position in 1,000 options be made delta neutral when the delta of each option is 0.7?
Calculate the delta of an at-the-money six-month European call option on a non-
dividend-paying stock when the risk-free interest rate is 10% per annum and the stock
price volatility is 25% per annum.
What does it mean to assert that the theta of an option position is -0.1 when time is
measured in years? If a trader feels that neither a stock price nor its implied’)/olatility will
change, what type of option position is appropriate‘?
What is meant by the gamma of an option position? What are the risks in the situation
where the gamma of a position is highly negative and the delta is zero?
“The procedure for creating an option position synthetically is the reverse of the
procedure for hedging the option position.” Explain this statement.
Why did portfolio insurance not work well on October 19, 1987?
The Black-Scholes-Merton price of an out-of-the-money call option with an exercise
price of $40 is $4. A trader who has written the option plans to use a stop-loss strategy.
The trader’s plan is to buy at $40.10 and to sell at $39.90. Estimate the expected number
of times the stock will be bought or sold.
Suppose that a stock price is currently $20 and that a call option with an exercise price of
$25 is created synthetically using a continually changing position in the stock. Consider
the following two scenarios: (a) Stock price increases steadily from $20 to $35 during the
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18.10.

18.11

18.12

18.13

18.14

18.15

18.16

18.17

18.18

life of the option; (b) Stock price oscillates wildly, endingup at $35. Which scenario
would make the synthetically created option more expensive? Explain your answer.
What is the delta of a short position in 1,000 European call options on silver futures?
The options mature in 8 months, and the futures contract underlying the option matures
in 9 months. The current 9-month futures price is $8 per ounce, the exercise price of the
options is $8, the risk-free interest rate is 12% per annum, and the volatility of silver is
18% per annum.
In Problem. 18.10, what initial position in 9-month silver futures is necessary for delta
hedging? If silver itself is used, what is the initial position? If 1-year silver futures are
used, what is the initial position? Assume no storage costs for silver.
A company uses delta hedging to hedge a portfolio of long positions in put and call
options on a currency. Which of the following would give the most favorable result‘?
(a) A virtually constant spot rate
(b) Wild movements in the spot rate 9
Explain your answer.

Repeat Problem 18. 12 for a financial institution with a portfolio of short positions in put
and call options on a currency.
A financial institution has just sold 1,000 7-month European call options on the
Japanese yen. Suppose that the spot exchange rate is 0.80 cent per yen, the exercise
price is 0.81 cent per yen, the risk-free interest rate in the United States is 8% per annum,
the risk-free interest rate in Japan is 5% per annum, and the volatility of the yen is 15%
per annum. Calculate the delta, gamma, vega, theta, and rho of the financial institution’s
position. Interpret each number.
Under what circumstances is it possible to make a European option on a stock index both
gamma neutral and vega neutral by adding a position in one other European option?
A fund manager has a well-diversified portfolio that mirrors the performance of the
S&P 500 and is worth $360 million. The value of the S&P 500 is 1,200, and the portfolio
manager would like to buy insurance against a reduction of more than 5% in the value
of the portfolio over the next 6 months. The risk-free interest rate is 6% per annum. The
dividend yield on both the portfolio and the S&P 500 is 3%, and the volatility of the
index is 30% per annum. /,
(a) If the fund manager buys traded European put options, how much would the

insurance cost?
(b) Explain carefully alternative strategies open to the fund manager involving traded

European call options, and show that they lead to the same result.
(c) If the fund manager decides to provide insurance by keeping part of the portfolio in

risk-free securities, what should the initial position be?
(d) If the fund manager decides to provide insurance by using 9-month index futures,

what should the initial position be?
Repeat Problem 18.16 on the assumption that the portfolio has a beta of 1.5. Assume
that the dividend yield on the portfolio is 4% per annum.
Show by substituting for the various terms in equation (18.4) that the equation is true for:
(a) A single European call option on a non-dividend-paying stock
(b) A single European put option on a non-dividend-paying stock
(c) Any portfolio of European put and call options on a non-dividend-paying stock.
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18.19. What is the equation corresponding to equation (18.4) for (a)--a portfolio of derivatives
on a currency and (b) a portfolio of derivatives on a futures price?

18.20. Suppose that $70 billion of equity assets are the subject of portfolio insurance schemes.
Assume that the schemes are designed to provide insurance against the value of the
assets declining by more than 5% within 1 year. Making whatever estimates you find
necessary, use the DerivaGem software to calculate the value of the stock or futures
contracts that the administrators of the portfolio insurance schemes will attempt to sell if
the market falls by 23% in a single day.

18.21. Does a forward contract on a stock index have the same delta as the corresponding
futures contract? Explain your answer.

18.22. A bank’s position in options on the dollar/euro exchange rate has a delta of 30,000 and a
gamma of —80,000. Explain how these numbers can be interpreted. The exchange rate
(dollars per euro) is 0.90. What position would you take to make the position delta
neutral? After a short period of time, the exchange rate moves to 0.93. Estimate the new
delta. What additional trade is necessary to keep the position delta neutral? Assuming
the bank did set up a delta-neutral position originally, has it gained or lost money from
the exchange-rate movement?

18.23. Use the put-call parity relationship to derive, for a non-dividend-paying stock, the
relationship between:
(a) The delta of a European call and the delta of a European put
(b) The gamma of a European call and the gamma of a European put
(c) The vega of a European call and the vega of a European put
(d) The theta of a European call and the theta of a European put.

Further Questions c

18.24. Consider a 1-year European call option on a stock when the stock price is $30, the strike
price is $30, the risk-free rate is 5%, and the volatility is 25% per annum. Use the
DerivaGem software to calculate the price, delta, gamma, vega, theta, and rho of the
option. Verify that delta is correct by changing the stock price to $30.1 and recomputing
the option price. Verify that gamma is correct by recomputing the delta for the situation
where the stock price is $30.1. Carry out similar calculations to verify that vega, theta, and
rho are correct. Use the DerivaGem Applications Builder functions to plot the option
price, delta, gamma, vega, theta, and rho against the stock price for the stock option.

18.25. A financial institution has the following portfolio of over-the-counter options on sterling:

Type Position Delta Gamma Vega
of option of option of option

Call -1,000 0.50 2.2 1.8
Call -500 0.80 0.6 0.2
Put -2,000 -0.40 1.3 0.7
Call -500 0.70 1.8 1.4

A traded option is available wif-1f_a delta of 0.6, Ia gamma of 1.5, and a vega of 0.8.
(a) What position in the traded option and in sterling would make the portfolio both

gamma neutral and delta neutral?



The Greek Letters 407

18.26.

18.27

18.28

18.29

18.30

(b) What position in the traded option and in sterling would make the portfolio both
vega neutral and delta neutral?

Consider again the situation in Problem 18.25. Suppose that a second traded option with
a delta of 0.1, a gamma of 0.5, and a vega of 0.6 is available. How could the portfolio be
made delta, gamma, and vega neutral?
A deposit instrument offered by a bank guarantees that investors will receive a return
during a 6-month period that is the greater of (a) zero and (b) 40% of the return
provided by a market index. An investor is planning to put $100,000 in the instrument.
Describe the payoff as an option on the index. Assuming that the risk-free rate of interest
is 8% per annum, the dividend yield on the index is 3% per annum, and the volatility of
the index is 25% per annum, is the product a good deal for the investor?
The formula for the price c of a European call futures option in terms of the futures
price F0 is given in Chapter 17 as

c = @"T[F6I\/(d1) — KN<d2>1
where

ln(F /K) + Zr/2
(ll?-I’ Oorx/.:_2____O— and d2:d1—Ufi

and K, r, T, and o are the strike price, interest rate, time to maturity, and volatility,
respectively.
(a) Prove that F0N'(d1) = KN '(d2).
(b) Prove that the delta of the call price with respect to the futures price is e"TN(d1).
(c) Prove that the vega of the call price is FgfiN'(d1 )e"’T.
(d) Prove the formula for the rho of a call futures option given in Section 18.12.
The delta, gamma, theta, and vega of a call futures option are the same as those for a call
option on a stock paying dividends at rate q, with q replaced by r and S0 replaced by F0.
Explain why the same is not true of the rho of a call futures option.
Use DerivaGem to check that equation (18.4) is satisfied for the option considered in
Section 18.1. (Note: DerivaGem produces a value of theta “per calendar day.” The theta
in equation (18.4) is “per year.”)
Use the DerivaGem Application Builder functions to reproduce Table 18.2. (In Table 18.2
the stock position is rounded to the nearest 100 shares.) Calculate the gamma and t/heta of
the position each week. Calculate the change in the value of the portfolio each week and
check whether equation (18.3) is approximately satisfied. (Note: DerivaGem produces a
value of theta “per calendar day.” The theta in equation (18.3) is “per year.”)



CHAPTER 18

APPENDIX .
TAYLOR SERIES EXPANSIONS AND HEDGE PARAMETERS

A Taylor series expansion of the change in the portfolio value in a short period of time
shows the role played by different Greek letters. If the volatility of the underlying asset
is assumed to be constant, the value 1'1 of the portfolio is a function of the asset price S,
and time t. The Taylor series expansion gives

2 2 28n 8n 8 n 8 r1 8 r1An=_As -A l—As2 ' l--A2 AsA 18A.18s T 8: TT2 8s2 T2 8:2 tT8s8t ‘T ( )
where AI1 and AS are the change in I1 and S in a small time interval At. Delta hedging
eliminates the first term on the right-hand side. The second term is nonstochastic. The
third term (which is of order At) can be made zero by ensuring that the portfolio is
gamma neutral as well as delta neutral. Other terms are of order higher than At.

For a delta-neutral portfolio, the first term on the right-hand side of equation (18A. 1)
is zero, so that

An = oAz+§1"As2
when terms of order higher than At are ignored. This is equation (18.3).

When the volatility of the underlying asset is uncertain, II is a function of or, S, and t.
Equation (18A.1) then becomes  

 811 8n 8n 8211 .82r1Ar1=_As ——A -—A 1--AS2 4—A 28s T86 “T 8: IT-28s2 T2882 G T
where Ao is the change in or in time At. In this case, delta hedging eliminates the first
term on the right-hand side. The second term is eliminated by making the portfolio
vega neutral. The third term is nonstochastic. The fourth term is eliminated bymaking
the portfolio gamma neutral. Traders sometimes define other Greek letters to corres-
pond to later terms in the expansion. 3

/
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How close are the market prices of options to those predicted by the Black-Scholes-
Merton model? Do traders really use the Black—Scholes—Merton model when determin-
ing a price for an option? Are the probability distributions of asset prices really log-
normal‘? This chapter answers these questions. It explains that traders do use the Black-
Scholes-Merton model—-but not in exactly the way that Black, Scholes, and Merton
originally intended. This is because they allow the volatility used to price an option to
depend on its strike price and time to maturity.

A plot of the implied volatility of an option with a certain life as a function of its strike
price is known as a volatility smile. This chapter describes the volatility smiles that traders
use in equity and foreign currency markets. It explains the relationship between a
volatility smile and the risk-neutral probability distribution being assumed for the future
asset price. It also discusses how option traders use volatility surfaces as pricing tools.

WHY THE VOLATILITY SMILE IS THE SAME FOR CALLS AND PUTS

This section shows that the implied volatility of a European call option is the same as
that of a European put option when they have the same strike price and /time to
maturity. This means that the volatility smile for European calls with a certain maturity
is the same as that for European puts with the same maturity. This is a particularly
convenient result. It shows that when talking about a volatility smile we do not have to
worry about whether the options are calls or puts.

As explained in earlier chapters, put—call parity provides a relationship between the
prices of European call and put options when they have the same strike price and time
to maturity. With a dividend yield on the underlying asset of q, the relationship is

4

. p + S0e'qT -: c + Ke_'T (19.1)

As usual, c and p are the European call and put price. They have the same strike
price, K, and time to maturity, T. The variable S0 is the price of the underlying asset
today, r is the risk-free interest rate for maturity T, and q is the yield on the asset.

A key feature of the put-call parity relationship is that it is based on a relatively
simple no-arbitrage argument. It does not require any assumption about the probability
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distribution of the asset price in the future. It is true both when the asset price
distribution is lognormal and when it is not lognormal.

Suppose that, for a particular value of the volatility, pBS and cBS are the values oi
European put and call options calculated using the Black-Scholes—Merton model.
Suppose further that pmkt and cmkt are the market values of these options. Because
put—call parity holds for the Black—Scholes—Merton model, we must have

P133 + S0e_qT = CBS + Ke'rT

In the absence of arbitrage opportunities, put—call parity also holds for the market
prices, so that

-T —T
pmkt+S0e q :cnikt+Ke r

Subtracting these two equations, we get

Pss '" pmkt = CBS — Cmkt (19-2)

This shows that the dollar pricing error when the Black-Scholes—Merton model is used
to price a European put option should be exactly the same as the dollar pricing error
when it is used to price a European call option with the same strike price and time to
maturity.  

Suppose that the implied volatility of the put option is 22%. This means that
pBS : pmkt when a volatility of 22% is used in the Black-Scholes—Merton model. From
equation (19.2), it follows that cBS = cmkti when this volatility is used. The implied
volatility of the call is, therefore, also 22%. This argument shows that the implied
volatility of a European call option is always the same as the implied volatility of a
European put option when the two have the same strike price and maturity date. To put
this another way, for a given strike price and maturity, the correct volatility to use in
conjunction with the Black—Scholes—Merton model to price a European call should
always be the same as that used to price a European put. This means that the volatility
smile (i.e., the relationship between implied volatility and strike price for a particular
maturity) is the same for European calls and European puts. It also means that the
volatility term" structure (i.e., the relationship between implied volatility and maturity for
a particular strike) is the same for European calls and European puts. /

Example 19.1
The value of the Australian dollar is $0.60. The risk-free interest rate is 5% per
annum in the United States and 10% per annum in Australia. The market price of a
European call option on the Australian dollar with a maturity of 1 year and a strike
price of $0.59 is 0.0236. DerivaGem shows that the implied volatility of the call is
14.5%. For there to be no arbitrage, the put call parity relationship in equa-
tion (19.1) must apply with q equal to the foreign risk-free rate. The price p of a
European put option with a strike price of $0.59 and maturity of 1 year therefore
satisfies

S p + 0.606-°~‘°><‘ = 0.0236 + 0.59@"°~°5><‘
so that p : 0.0419. DerivaGem shows that, when the put has this price, its implied
volatility is also 14.5%. This is what we expect from the analysis just given.

\
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19.2 FOREIGN CURRENCY OPTIONS

The volatility smile used by traders to price foreign currency options has the general
form shown in Figure 19.1. The implied volatility is relatively low for at-the-money
options. It becomes progressively higher as an option moves either into the money or
out of the money.

In the appendix at the end of this chapter, we show how to determine the risk-
neutral probability distribution for an asset price at a future time from the volatility
smile given by options maturing at that time. We refer to this as the implied
distribution. The volatility smile in Figure 19.1 corresponds to the implied distribution
shown by the solid line in Figure 19.2. A lognormal distribution with the same mean
and standard deviation as the implied distribution is shown by the dashed line in
Figure 19.2. It can be seen that the implied distribution has heavier tails than the
lognormal distribution.1

To see that Figures 19.1 and 19.2 are consistent with each other, consider first a deep-
out-of-the-money call option with a high strike price of K2. This option pays oft" only if
the exchange rate proves to be above K2. Figure 19.2 shows that the probability of this
is higher for the implied probability distribution than for the lognormal distribution.
We therefore expect the implied distribution to give a relatively high price for the
option. A relatively high price leads to a relatively high implied volatility——and this is
exactly what we observe in Figure 19.1 for the option. The two figures are therefore
consistent with each other for high strike prices. Consider next a deep-out-of-the-
money put option with a low strike price of K1. This option pays ofi" only if the
exchange rate proves to be below K1. Figure 19.2 shows that the probability of this is
also higher for the implied probability distribution than for the lognormal distribution.
We therefore expect the implied distribution to give a relatively high price, and a
relatively high implied volatility, for this option as well. Again, this is exactly what we
observe in Figure 19.1. o

QEFK-ZE<?fi-(F2 4 I'IL’.‘P"I'.IH.f)H!s' Y£1;1WiE.h_==-_"'§@l§l...§$A,L”3-H‘XZ§i€%l!U1l?ii'=%i‘i1T[Zf?fff“l?C!’j¥1"}_._.1"‘-"'.:"=}. ~_._1"

Figure 19.1 Volatility smile for foreign currency options.
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1 This is known as kurtosis. Note that, in addition to having a heavier tail, the implied distribution is more
“peaked.” Both small and large movements inthe exchange rate are more likely than with the lognormal
distribution. Intermediate movements are less likely.
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Figure 19.2 Implied and lognormal distribution for foreign currency options.
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Empirical Results
We have just shown that the volatility smile used by traders for foreign currency options
implies that they consider that the lognormal distribution understates the probability of
extreme movements in exchange rates. To test whether they are right, Table 19.1
examines the daily movements in 12 different exchange rates over a 10-year period.2
The first step in the production of the table is to calculate the standard deviation of
daily percentage change in each exchange rate. The next stage is to note how often the
actual percentage change exceededl standard deviation, 2 standard deviations, and so
on. The final stage is to calculate how often this would have happened if the percentage
changes had been normally distributed. (The lognormal model implies that percentage
changes are almost exactly normally distributed over a one-day time period.)

%] '%TP3~~¥f¥£fi§i § -‘1>.S'I333a?_5S#Z' 9 :1-'.‘T'!':1!4?-‘a+:Z~'.'. 31*’); .
/'

Table 19.1 Percentage of days when daily exchange
rate moves are greater than 1, 2,..., 6 standard
deviations (SD : standard deviation of daily change).

Real world Lognormal model

>1§flD
>2fflD
>3fflD
>4§fl)
>5§H)
>6§fl)

‘I1 .1" ;' T-1 =- _'!.'..W:'.‘=r."‘ *

2

25.04
5.27
1.34
0.29
0.08
0.03

' n-. 1
_ .’_.:;_ _ .. ,_ . ~-

31.73
4.55
0.27
0.01
0.00
0.00

_~v ~-

The results ir this table are taken from J . C. Hull and A. White, “Value at Risk When Daily Changes in
Market Variables Are Not Normally Distributed.” Journal of Derivatives, 5, No. 3 (Spring 1998): 9-19.
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Daily changes exceed 3 standard deviations on 1.34% of days. The lognormal model
predicts that this should happen on only 0.27% of days. Daily changes exceed 4, 5, and
6 standard deviations on 0.29%, 0.08%, and 0.03% of days, respectively. The lognormal
model predicts that we should hardly ever observe this happening. The table therefore
provides evidence to support the existence of heavy tails (Figure 19.2) and the volatility
smile used by traders (Figure 19.1). Business Snapshot 19.1 shows how you could have
made money if you had done the analysis in Table 19.1 ahead of the rest of the market.

Reasons for the Smile in Foreign Currency Options
Why are exchange rates not lognormally distributed? Two of the conditions for an asset
price to have a lognormal distribution are:

1. The volatility of the asset is constant. I
2. The price of the asset changes smoothly with no jumps.

In practice, neither of these conditions is satisfied for an exchange rate. The volatility of
an exchange rate is far from constant, and exchange rates frequently exhibit jumps.3 It
turns out that the effect of both a nonconstant volatility and jumps is that extreme
outcomes become more likely.

The impact of jumps and nonconstant volatility depends on the option maturity. As
the maturity of the option is increased, the percentage impact of a nonconstant
volatility on prices becomes more pronounced, but its percentage impact on implied
volatility usually becomes less pronounced. The percentage impact of jumps on both
prices and the implied volatility becomes less pronounced as the maturity of the option
is increased.4 The result of all this is that the volatility smile becomes less pronounced as
option maturity increases.

3 Sometimes the jumps are in response to the actions of central banks.

4 When we look at sufficiently long-dated options, jumps tend to get “averaged out,” so that the exchange
rate distribution when there are jumps is almost indistinguishable from the one obtained when the exchange
rate changes smoothly.
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CHAPTER 19

EQUITY ()PTlONS   
The volatility smile for equity options has been studied by Rubinstein (1985, 1994) and
Jackwerth and Rubinstein (1996). Prior to 1987 there was no marked volatility smile.
Since 1987 the volatility smile used by traders to price equity options (both on individual
stocks and on stock indices) has had the general form shown in Figure 19.3. This is
sometimes referred to as a volatility skew. The volatility decreases as the strike price
increases. The volatility used to price a low-strike-price option (i.e., a deep-out-of-the-
money put or a deep-in-the-money call) is significantly higher than that used to price a
high-strike-price option (i.e., a deep-in-the-money put or a deep-out-of-the-money call).

The volatility smile for equity options corresponds to the implied probability dis-
tribution given by the solid line in Figure 19.4. A lognormal distribution with the same
mean and standard deviation as the implied distribution is shown by the dotted line. It
can be seen that the implied distribution has a heavier left tail and a less heavy right tail
than the lognormal distribution.

To see that Figures 19.3 and 19.4 are consistent with each other, we proceed as for
Figures 19.1 and 19.2 and consider options that are deep out of the money. From
Figure 19.4, a deep-out-of-the-money call with a strike price of K2 has a lower price
when the implied distribution is used than when the lognormal distribution is used. This
is because the option pays off only if the stock price proves to be above K2, and the
probability of this is lower for the implied probability distribution than for the lognormal
distribution. Therefore, we expect the implied distribution to give a relatively low price
for the option. A relatively low price leads to a relatively low implied volatility—and this
is exactly what we observe in Figure 19.3 for the option. Consider next a deep-out-of-the-
moneyput option with a strike price of K1. This option pays off only if the stock price
proves to be below K1. Figure 19.4 shows that the probability of this is higher for the

$4-‘T; =3."E;. ‘I’ if ‘I I‘ QI"I".'.'?!?'L2.'JT.€!.?'1l_‘1Z!‘ ill?V‘. .!§fi§£" !3N ."K 3rTi“"‘~'i‘T_.T'1~TY=§II’, 2:3‘-‘BEE-§“7‘.I*l'=_‘*‘.i?{‘iZ’Fffl\¢'7 riff!“-'t"'l

Figure 19.3 Volatility smile for equities.
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Figure 19.4 Implied distribution and lognormal distribution for equity options.
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implied probability distribution than for the lognormal distribution. We therefore expect
the implied distribution to give a relatively high price, and a relatively high implied
volatility, for this option. Again, this is exactly what we observe in Figure 19.3.

The Reason for the Smile in Equity Options e e
One possible explanation for the smile in equity options concerns leverage. As a
company’s equity declines in value, the company’s leverage increases. This means that
the equity becomes more risky and its volatility increases. As a company’s equity
increases in value, leverage decreases. The equity then becomes less risky and its volatility
decreases. This argument suggests that we can expect the volatility of a stock to be a
decreasing function of the stock price and is consistent with Figures 19.3 and 19.4.
Another explanation is “crashophobia” (see Business Snapshot 19.2).

ALTERNATIVE ’WAYS OF CHARACTERIZING THE
VOLATILITY SMILE

/

So far we have defined the volatility smile as the relationship between implied volatility
and strike price. The relationship depends on the current price of the asset. For
example, the lowest point of the volatility smile in Figure 19.1 is usually close to the
current exchange rate. If the exchange rate increases, the volatility smile tends to move
to the right; if the exchange rate decreases, the volatility smile tends to move to the left.
Similarly, in Figure 19.3, when the equity price increases, the volatility skew tends to
move to the right, and when the equity price decreases, it tends to move to the left.5 For
this reason the volatility smile is often calculated as the relationship between the implied
volatility and K/S0 rather than as the relationship between the implied volatility and K.
The smile is then much more stable.

5 Research by Derman suggests that this adjustment is sometimes “sticky” in the case of exchange-traded
options. See E. Derman, “Regimes of Volatility,” Risk, April 1999: 55—59.
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A refinement of this is to calculate the volatility smile as the relationship between the
implied volatility and K/F0, where F0 is the forward price of the asset for a contract
maturing at the same time as the options that are considered. Traders also often define
an “at-the-money” option as an option where K : F0, not as an option where K = S0.
The argument for this is that F0, not S0, is the expected stock price on the option’s
maturity date in a risk-neutral world.6

Yet another approach to defining the volatility smile is as the relationship between the
implied volatilityand the delta of the option (where delta is defined as in Chapter 18).
This approach sometimes makes it possible to apply volatility smiles to options other
than European and American calls and puts. When the approach is used, an at-the-
money option is then defined as a call option with a delta of 0.5 or a put option with a
delta of -0.5. These are referred to as “S0-delta options.”

THE VOLATILITY TERM STRUCTURE AND VOLATILITY SURFACES

Traders allow the implied volatility to depend on time to maturity as well as strike price.
Implied volatility tends to be an increasing function of maturity when short-dated
volatilities are historically low. This is because there is then an expectation that
volatilities will increase. Similarly, volatility tends to be a decreasing function of
maturity when short-dated volatilities are historically high. This is because there is
then an expectation that volatilities will decrease. if

Volatility surfaces combine volatility smiles with the volatility term structure to
tabulate the volatilities appropriate for pricing an option with any strike price and
any maturity. An example of a volatility surface that might be used for foreign currency
options is given in Table 19.2.

One dimension of Table 19.2 is K/S0; the other is time to maturity. The main body of
the table shows implied volatilities calculated from the Black-Scholes—Merton model. At
any given time, some of the entries in the table are likely to correspond to options for
which reliable market data are available. The implied volatilities for these options are
calculated directly from their market prices and entered into the table. The rest of the
table is typically determined using interpolation. The table shows that the volatility smile
becomes lessipronounced as the option maturity increases. As mentioned earlier, this is

6 As explained in Chapter 27 , whether the futures or forward price of the asset is the expected price in a risk-
neutral world depends on exactly how the risk-neutral world is defined.
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Table 19.2 Volatility surface.
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what is observed for currency options. (It is also what is observed for options on most
other assets.)

When a new option has to be valued, financial engineers look up the appropriate
volatility in the table. For example, when valuing a 9-month option with a K/SO ratio of
1.05, a financial engineer would interpolate between 13.4 and 14.0 in Table 19.2 to
obtain a volatility of 13.7%. This is the volatility that would be used in the Black-
Scholes—Merton formula or a binomial tree. When valuing a 1.5-year option with a
K/S0 ratio of 0.925, a two-dimensional (bilinear) interpolation would be used to give an
implied volatility of l4.525%.

The shape of the volatility smile depends on the option maturity. As illustrated in
Table 19.2, the smile tends to become less pronounced as the option maturity increases.
Define T as the time to maturity and F0 as the forward price of the asset for a contract
maturing at the same time as the option. Some financial engineers choose to define the
volatility smile as the relationship between implied volatility and

1 , ln(K)
x/T F0

rather than as the relationship between the implied volatility and K. The smile is then
usually much less dependent on the time to maturity.7

/

GREEK LETTERS

The volatility smile complicates the calculation of Greek letters. Assume that the
relationship between the implied volatility and K/S for an option with a certain time
to maturity remains the same.8 As the price of the underlying asset changes, the implied
volatility of the option changes to reflect the option’s “moneyness” (i.e., the extent to
which it is in or out of the money). The formulas for Greek letters given in Chapter 18

7 For a discussion of this approach, see S. Natenberg Option Pricing and Volatility: Advanced Trading
Strategies and Techniques, 2nd edn. McGraw-Hill, 1994; R. Tompkins Options Analysis: A State of the Art
Guide to Options Pricing, Burr Ridge, IL: Irwin, 1994.

8 It is interesting that this natural model is internally consistent only when the volatility smile is flat for all
maturities. See, for example, T. Daglish, J . Hull, and W. Suo, “Volatility Surfaces: Theory, Rules of Thumb,
and Empirical Evidence,” Quantitative Finance, 7, 5 (October 2007): 507-24.
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are no longer correct. For example, delta of a call option is given by

8cBS_+ OCBS 80hnp

as agimp as

where cBS is the Black-Scholes price of the option expressed as a function of the asset
price S and the implied volatility oimp. Consider the impact of this formula on the delta of
an equity call option. Volatility is a decreasing function of K/S. This means that the
implied volatility increases as the asset price increases, so that

wfimp—-0as>
As a result, delta is higher than that given by the Black-Scholes—Merton assumptions.

In practice, banks try to ensure that their exposure to the most commonly observed
changes in the volatility surface is reasonably small. One technique for identifying these
changes is principal components analysis, which we discuss in Chapter 21.

THE ROLE OF THE MODEL

Howimportant is the option-pricing model if traders are prepared to use ea different
volatility for every option? It can be argued that the Black—Scholes—Merton model is no
more than a sophisticated interpolation tool used by traders for ensuring that an option
is priced consistently with the market prices of other actively traded options. If traders
stopped using Black—Scholes—Merton and switched to another plausible model, then the
volatility surface and the shape of the smile would change, but arguably the dollar prices
quoted in the market would not change appreciably. Even delta, if calculated as outlined
in the previous section, does not change too much as the model is changed.

Models have most effect on the pricing of derivatives when similar derivatives do not
trade actively in the market. For example, the pricing of many of the nonstandard
exotic derivatives we will discuss in later chapters is model-dependent.

§I"§i'T;IT:§l4QiLIFCfl§3fl Mn§:Xd-.fi§31mH;'K\ r§\,I1'.-can-Q-ivtr -1.44.1- .¢-C rr -44¢‘ . ..¢._._ _,.: _..-.¢.--...-4, -_.-,. "I-L -I

Figure 19.5 Effect of a single large jump. The solid line is the true dis/tribution; the
dashed line is the lognormal distribution.
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Figure 19.6 Change in stock price in 1 month.
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WHEN A SINGLE LARGE IUMP IS ANTICIPATED

Let us now consider an example of how an unusual volatility smile might arise in equity
markets. Suppose that a stock price is currently $50 and an important news announce-
ment due in a few days is expected either to increase the stock price by $8 or to reduce it
by $8. (This announcement could concern the outcome of a takeover attempt or the
verdict in an important lawsuit.) The probability distribution of the stock price in, say,
1 month might then consist of a mixture of two lognormal distributions, the first
corresponding to favorable news, the second to unfavorable news. The situation is
illustrated in Figure 19.5. The solid line shows the mixture-of-lognormals distribution
for the stock price in 1 month; the dashed line shows a lognormal distribution with the
same mean and standard deviation as this distribution.

The true probability distribution is bimodal (certainly not lognormal). One easy way
to investigate the general effect of a bimodal stock price distribution is to consider the
extreme case where the distribution is binomial. This is what we will now do.

Suppose that the stock price is currently $50 and that it is known that in 1 month it
will be either $42 or $58. Suppose further that the risk-free rate is 12% per annum. The
situation is illustrated in Figure 19.6. Options can be valued using the binomial model
from Chapter 12. In this case u : 1.16, d=0.84, a : 1.0101, and p = 0.5314. The
results from valuing a range of different options are shown in Table 19.3. The first
"$"‘W"\‘ g _ _.,_ .. C, .. . ._;,~ __ __; ._ .. . _,,,.-_ ,., _, - _ _ A!) wt».-\,-I...-------~».. .‘ _,_ ._ . - . _. , ... . I V1 _ . , ..I-_r.5~_ .-__.k-‘€;:‘-?".IL'-_>—7'_.‘T"' .1‘ ...1' .e_.~_ 1-._,'-' T4-.; __‘ -\ A-._ _>~. ’.' .-.\ "»1'~_."'."."“_\'_"".,7J ‘- "1.1 ‘ -” '*‘-"-. "' '1 _ ‘ ... - A .-~'-.__.'f____I_';,ri

Table 19.3 Implied volatilities in situation where true distribution is binomial.

Strike price Call price Put price Implied volatility
($) ($) ($) (%)
42 8.42
44 7.37
46 6.31
48 5.26
50 4.21
52 3.16
54 . 2.10
56 1.05
58 0.00 7.42 0.0

K _ _ _ _ .{.‘_,...,..v....~,, ‘. Q , _,. _ ~._ _, _- 1- - __
. . .-

0.00
0.93
1.86
2.78
3.71
4.64
5.57
6.50

0.0
58.8
66.6
69.5
69.2
66.1
60.0
49.0
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Figure 19.7 Volatility smile for situation in Table 19.3.
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column shows alternative strike prices; the second column shows prices of 1-month
European call options; the third column shows the prices of one-month European put
option prices; the fourth column shows implied volatilities. (As shown in Section 19.1,
the implied volatility of a European put option is the same as that of a European call
option when they have the same strike price and maturity.) Figure 19.7 displays the
volatility smile from Table 19.3. It is actually a “frown” (the opposite of that observed
for currencies) with volatilities declining as we move out of or into the money. The
volatility implied from an option with a strike price of 50 will overprice an option with
a strike price of 44 or 56. C  

SUMMARY

The Black--Scholes—Merton model and its extensions assume that the probability
distribution of the underlying asset at any given future time is lognormal. This
assumption is not the one made by traders. They assume the probability distribution
of an equity price has a heavier left tail and a less heavy right tail than the lognormal
distribution. They also assume that the probability distribution of an exchange rate has
a heavier right tail and a heavier left tail than the lognormal distribution.

Traders use volatility smiles to allow for nonlognormality. The volatility smile defines
the relationship between the implied volatility of an option and its strike price. For
equity options, the volatility smile tends to be downward sloping. This means that out-
of-the-money puts and in-the-money calls tend to have high implied volatilities whereas
out-of-the-money calls and in-the-money puts tend to have low implied volatilities. For
foreign currency options, the volatility smile is U-shaped. Both out-of-the-money and
in-the-money options have higher implied volatilities than at-the-money options.

Often traders also use a volatility term structure. The implied volatility of an option
then depends on its life. When volatility smiles and volatility term structures are
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combined, they produce a volatility surface. This defines implied volatility as a function
of both the strike price and the time to maturity.
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Practice Questions (Answers in Solutions Manual)

What volatility smile is likely to be observed when:
(a) Both tails of the stock price distribution are less heavy than those of the lognormal

distribution‘? /
(b) The right tail is heavier, and the left tail is less heavy, than that of a lognormal

distribution‘?
What volatility smile is observed for equities‘?
What volatility smile is likely to be caused by jumps in the underlying asset price? Is the
pattern likely to be more pronounced for a 2-year option than for a 3-month option‘?
A European call and put option have the same strike price and time to maturity. The call
has an implied volatility of 30% and the put has an implied volatility of 25%. What
trades would you do‘?
Explain carefully why a distribution with a heavier left tail and less heavy right tail than
the lognormal distribution gives rise to a downward sloping volatility smile.
The market price of a European call is $3.00 and its price given by Black-Scholes-
Merton model with a volatility of 30% is $3.50. The price given by this Black-Scholes-
Merton model for a European put option with the same strike price and time to maturity
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is $1.00. What should the market price of the put option be? Explain the reasons for
your answer. Q, -
Explain what is meant by “crashophobia.”
A stock price is currently $20. Tomorrow, news is expected to be announced that will
either increase the price by $5 or decrease the price by $5. What are the problems in
using Black-Scholes-Merton to value 1-month options on the stock?
What volatility smile is likely to be observed for 6-month options when the volatility is
uncertain and positively correlated to the stock price?

What problems do you think would be encountered in testing a stock option pricing
model empirically?
Suppose that a central bank’s policy is to allow an exchange rate to fluctuate between
0.97 and 1.03. What pattern of implied volatilities for options on the exchange rate
would you expect to see?
Option traders sometimes refer to deep-out-of-the-money options as being options on
volatility. Why do you think they do this?
A European call option on a certain stock has a strike price of $30, a time to maturity of
1 year, and an implied volatility of 30%. A European put option on the same stock has a
strike price of $30, a time to maturity of 1 year, and an implied volatility of 33%. What
is the arbitrage opportunity open to a trader? Does the arbitrage work only when the
lognormal assumption underlying Black-Scholes—Merton holds? Explain carefully the
reasons for your answer.

Suppose that the result of a major lawsuit affecting a company is due to be announced
tomorrow. The company’s stock price is currently $60. If the ruling is favorable to the
company, the stock price is expected to jump to $75. If it is unfavorable, the stock is
expected to jump to $50. What is the risk-neutral probability of a favorable ruling?
Assume that the volatility of the company’s stock will be 25% for 6 months after the
ruling if the ruling is favorable and 40% if it is unfavorable. Use DerivaGem to calculate
the relationship between implied volatility and strike price for 6-month European
options on the company today. The company does not pay dividends. Assume that
the 6-month risk-free rate is 6%. Consider call options with strike prices of $30, $40, $50,
$60, $70, and $80.
An exchange rate is currently 0.8000. The volatility of the exchange rate is quoted as
12% and interest rates in the two countries are the same. Using the lognormal
assumption, estimate the probability that the exchange rate in 3 months will be (a) less
than 0.7000, (b) between 0.7000 and 0.7500, (c) between 0.7500 and 0.8000, (d) between
0.8000 and 0.8500, (e) between 0.8500 and 0.9000, and (f) greater than 0.9000. Based on
the volatility smile usually observed in the market for exchange rates, which of these
estimates would you expect to be too low and which would you expect to be too high?
A stock price is $40. A 6-month European call option on the stock with a strike price of
$30 has an implied volatility of 35%. A 6-month European call option on the stock with
a strike price of $50 has an implied volatility of 28%. The 6-month risk-free rate is 5%
and no dividends are expected. Explain why the two implied volatilities are different. Use
DerivaGem to calculate the prices of the two options. Use put-call parity to calculate
the prices of 6-month European put options with strike prices of $30 and $50. Use
DerivaGem to calculate the implied volatilities of these two put options. Q
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19.17. “The Black-Scholes-Merton model is used by traders as an interpolation tool.” Discuss
this view.

19.18. Using Table 19.2, calculate the implied volatility a trader would use for an 8-month
option with K/S0 : 1.04.

Further Questions

19.19. A company’s stock is selling for $4. The company has no outstanding debt. Analysts
consider the liquidation value of the company to be at least $300,000 and there are
100,000 shares outstanding. What volatility smile would you expect to see?

19.20. A company is currently awaiting the outcome of a major lawsuit. This is expected to be
known within 1 month. The stock price is currently $20. If the outcome is positive, the
stock price is expected to be $24 at the end of 1 month. If the outcome is negative, it is
expected to be $18 at this time. The 1-month risk-free interest rate is 8% per annum.
(a) What is the risk-neutral probability of a positive outcome?
(b) What are the values of 1-month call options with strike prices of $19, $20, $21, $22,

and $23?
(c) Use DerivaGem to calculate a volatility smile for 1-month call options.
(d) Verify that the same volatility smile is obtained for 1-month put options.

19.21. A futures price is currently $40. The risk-free interest rate is 5%. Some news is expected
tomorrow that will cause the volatility over the next 3 months to be either 10% or 30%.
There is a 60% chance of the first outcome and a 40% chance of the second outcome.
Use DerivaGem to calculate a volatility smile for 3-month options.

19.22. Data for a number of foreign currencies are provided on the author’s website:
http://wWw.rotn1an.utoronto.ca/~hu11/data
Choose a currency and use the data to produce a table similar to Table 19.1.

19.23. Data for a number of stock indices are provided on the author’s website:
http:,//www.rotman.utoronto.ca/~hu11/data
Choose an index and test whether a three-standard-deviation down movement happens
more often than a three-standard-deviation up movement. /,,

19.24. Consider a European call and a European put with the same strike price and time to
maturity. Show that they change in value by the same amount when the volatility
increases from a level o1 to a new level 02 within a short period of time. (Hint: Use
put-call parity.)

19.25. An exchange rate is currently 1.0 and the implied volatilities of 6-month European
options with strike prices 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 are 13%, 12%, 11%, 10%,
11%, 12%, 13%. The domestic and foreign risk-free rates are both 2.5%. Calculate the
implied probability distribution using an approach similar to that used for Example l9A.1
in the appendix to this chapter. Compare it with the implied distribution where all the
implied volatilities are 11.5%.

19.26. Using Table 19.2, calculate the implied volatility a trader would use for an 11-month
option with K/S0 : 0.98.
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APPENDIX  
DETERMINING IMPLIED RISK-NEUTRAL DISTRIBUTIONS
FROM VOLATILITY SMILES

The price of a European call option on an asset with strike price K and maturity T is
given by

OO

c = WT] (ST - K)g(ST)dST
ST=K

where r is the interest rate (assumed constant), ST is the asset price at time T, and g is
the risk-neutral probability density function of ST. Differentiating once with respect
to K gives

a _, 0°3,}:-e T] g(ST)dST
ST=K

Differentiating again with respect to K gives

82c _,
W = 6 T g(K)

This shows that the probability density function g is given by

, 820g(K) = e T 5-E5 (19A.1)
1

This result, which is from Breeden and Litzenberger (1978), allows risk-neutral prob-
ability distributions to be estimated from volatility smiles.9 Suppose that cl, c2, and c3
are the prices of T-year European call options with strike prices of K — 8, K, and K + 8,
respectively. Assuming 8 is small, an estimate of g(K), obtained by approximating the
partial derivative in equation (19A.1), is

erT 61+ C3 "' 262
82

/‘

For another way of understanding this formula, suppose you set up a butterfly spread
with strike prices K — 8, K, and K + 8, and maturity T. This means that you buy a call
with strike price K — 8, buy a ca.ll with strike price K + 8, and sell two calls with strike
price K . The value of your position is cl + c3 — 2c2. The value of the position can also be
calculated by integrating the payoff over the risk-neutral probability distribution, g(ST),
and discounting at the risk-free rate. The payoff is shown in Figure 19A.1. Since 8 is small,
we can assume that g(ST) : g(K) in the whole of the range K -— 8 < ST < K + 8, where
the payoff is nonzero. The area under the “spike” in Figure 19A.1 is 0.5 >< 28 >< 8 = 82.
The value of the payoff (when 8 is small) is therefore e"’Tg(K)82. It follows that

 e"’Tg(K)82 : cl + c3 —- 202

9 See D. T. Breeden and R. H. Litzenberger, “Prices of State-Contingent Claims Implicit in Option Prices,”
Jounal of Business, 51 (1978), 621-51.
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Figure 19A.1 Payoff from butterfly spread.
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which leads directly to
- 2g(K) .-= e” ~C-‘-“§'-E37,--Q (19.4.2)

Example I 1 9A. 1
Suppose that the price of a non-dividend-paying stock is $10, the risk-free interest
rate is 3%, and the implied volatilities of 3-month European options with strike
prices of $6, $7, $8, $9, $10, $11, $12, $13, $14 are 30%, 29%, 28%, 27%, 26%,
25%, 24%, 23%, 22%, respectively. One way of applying the above results is as
follows. Assume that g(ST) is constant between ST = 6 and ST: 7, constant
between ST = 7 and ST -: 8, and so on. Definei A

Q(5T) = Q1 f91' ST < 7

0(5T) = 02 for < 8

T‘//\//\//\//\

/A/A/A/Ammm$3“7*’

Q(5T) = Q3 f91' < 9
Q(5T) = Q4 f9F T < 10
g(ST) = g5 for ST < 11

Qfsr) = Q6 f91" T < 12
g(ST) = g7 for < 13 /-

3 g(ST) = gs for < 14

The value of g1 can be calculated by interpolating to get the implied volatility for
a 3-month option with a strike price of $6.5 as 29.5%. This means that options
with strike prices of $6, $6.5, and $7 have implied volatilities of 30%, 29.5%, and
29%, respectively. From DerivaGem their prices are $4.045, $3.549, and $3.055,
respectively. Using equation (19A.2), with K = 6.5 and 8 = 0.5, gives

°~°3><°-25 4.045 3.055 - 2 3.549g1-e ( Q5, A X )=0.0057

Similar calculations show that
g2 : 0.0444, g3 = 0.1545, g4 : 0.2781

g5 = 0.2313, g6 = 0.1659, g7 -.= 0.0573, g3 = 0.0113
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Figure 19.A.2 Implied probability distribution for Example 19A.1.
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Figure 19A.2 displays the implied distribution. (Note that the area under the
probability distribution is 0.9985. The probability that ST < 6 or ST > 14 is
therefore 0.0015.) Although not obvious from Figure 19A.2, the implied distribu-
tion does have a heavier left tail and less heavy right tail than a lognormal
distribution. For the lognormal distribution based on a single volatility of 26%,
the probability of a stock price between $6 and $7 is 0.0031 (compared with
0.0057 in Figure 19A.2) and the probability of a stock price between $13 and
$14 is 0.0167 (compared with 0.0113 in Figure 19A.2).

/
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Basic Numerical
Procedures

This chapter discusses three numerical procedures for valuing derivatives when analytic
results such as the Black-Scholes—Merton formulas do not exist. The first represents the
asset price movements in the form of a tree and was introduced in Chapter 12. The
second is Monte Carlo simulation, which we encountered briefly in Chapter 13 when
stochastic processes were explained. The third involves finite diflerence methods.

Monte Carlo simulation is usually used for derivatives where the payoff is dependent
on the history of the underlying variable or where there are several underlying variables.
Trees and finite difference methods are usually used for American options and other
derivatives where the holder has decisions to make prior to maturity. In addition to
valuing a derivative, all the procedures can be used to calculate Greek letters such as
delta, gamma, and vega.

The basic procedures discussed in this chapter can be used to handle most of the
derivatives valuation problems encountered in practice. However, sometimes they have to
be adapted to cope with particular situations, as will be explained in Chapter 26. I

BINOMIAL TREES

Binomial trees were introducedin Chapter 12. They can be used to value /either
European or American options. The Black—Scholes—Merton formulas and their exten-
sions that were presented in Chapters 14, 16, and 17 provide analytic valuations for
European options.‘ There are no analytic valuations for American options. Binomial
trees are therefore most useful for valuing these types of options.2

As explained in Chapter 12, the binomial tree valuation approach involves dividing
the life of the option into a large number of small time intervals of length At. It assumes
that in each time interval the price of the underlying asset moves from its initial value of
S to one of two new values, Su and Sd. The approach is illustrated in Figure 20.1. In

' The Black—Scholes~Merton formulas are based on the same set of assumptions as binomial trees. As shown
in the appendix to Chapter 12, in the limit as the number of time steps is increased, the price given by a
binomial tree for a European option converges to the Black—Scholes—Merton price.

2 Some analytic approximations for valuing American options have been suggested. See, for example,
Technical Note 8 at www rotman.utoronto.ca/~hu11/TechnicalNotes for a description of the quadratic
approximation approach.
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Figure 20.1 Asset price movements in time At under the binomial model.
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general, u > 1 and d < 1. The movement from S to Su, therefore, is an “up” movement
and the movement from S to Sd is a “down” movement. The probability of an up
movement will be denoted by p. The probability of a down movement is 1 — p.

Risk-Neutral Valuation
The risk-neutral valuation principle, explained in Chapters 12 and 14, states that an
option (or other derivative) can be valued on the assumption that the World is risk
neutral. This means that for valuation purposes we can use the following procedure:

1. Assume that the expected return from all traded assets is the risk-free interest rate.
2. Value payoffs from the derivative by calculating their expected values and

discounting at the risk-free interest rate.

This principle underlies the way trees are used.

Determination of p, u, and d
The parameters p, u, and d must give correct values for the mean and variance of asset
price changes during a time interval of length At. Because we are working in a risk-
neutral world, the expected return from the asset is the risk-free interest rate, r. Suppose
that the asset provides a yield of q. The expected return in the form of capital gains must
be r — q. This means that the expected value of the asset price at the end of a time interval
of length At must be Se(’_")A‘, where S is the asset price at the beginniiig of the time
interval. To match the mean return with the tree, we therefore need

Se(r_q)At = pSu + (1 — p)Sd
or

@<’*‘1>A‘ = pu + (1 - p)d (20.1)
The variance of a variable Q is defined as E(Q2) — [E(Q)]2. Defining R as the
percentage change in the asset price in time At, there is a probability p that 1 + R is
u and a probability l — p that it is d. Using equation (20.1), it follows that the variance
of 1 + R is

. pl/£2 + _ _ e2(r——q)At

Since adding a constant to a variable makes no difference to its variance, the variance
of 1 + R is the same as the variance of R. As explained in Section 14.4, this is 02 At.
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H ..
€I1C€, pl/£2 + __ ___ e2(r—q)At I O_2At

From equation (20.1), e("'q)A’(u + d) = puz + (1 — p)d2 + ad, so that

e(r_q)At(u + d) —— ud — e2(r_q)At = o2At (20.2)

Equations (20.1) and (20.2) impose two conditions on p, u, and d. A third condition
used by Cox, Ross, and Rubinstein (1979) is3

A solution to equations (20.1) to (20.3), when terms of higher order than At are
ignored, is4 L

a—d
::——-~ 2.P u_d (00

u : em/E (20.5)

h d = @"°~/5‘ (20.6)
w ere ,a = ii’-(W (20.7)
The variable a is sometimes referred to as the growth factor. Equations (20.4) to (20.7)
are consistent with the formulas in Sections 12.9 and 12.11.

Tree of Asset Prices
Figure 20.2 shows the complete tree of asset prices that is considered when the binomial
model is used with five time steps. At time zero, the asset price, S0, is known. At time
At, there are two possible asset prices, Sou and Sqd; at time 2At, there are three possible
asset prices, S0142, S0, and S0d2; and so on. In general, at time iAt, we consider i + 1
asset prices. These are  

soujditf, j=0,l,...,i .
Note that the relationship Lt :: 1/d is used in computing the asset price at each node of
the tree in Figure 20.2. For example, the asset price when j-:2 and i-=3 is
Souzd = Sou. Note also that the tree recombines in the sense that an up movement
followed by a down movement leads to the same asset price as a down movement
followed by an up movement.

Working Backward through the Tree
Options are evaluated by starting at the end of the tree (time T) and working backward.
The value of the option is known at time T. For example, a put option is worth
max(K - ST, 0) and a call option is worth max(ST — K, 0), where ST is the asset price at

3 See J. C. Cox, S.A. Ross, and M. Rubinstein, “Option Pricing: A Simplified Approach,” Journal of
Financial Economics, 7 (October 1979), 229-63.

4 To see this, we note that equations (20.4) and (20.7) satisfy the conditions in equations (20.1) and (20.3)
exactly. The exponential function ex can be expanded as 1 + x + x2/2 + - - - . When terms of higher order than
At are ignored, equation (20.5) implies that u = 1 + om/At + %a2At and equation (20.6) implies that
d = l -— cn/Ai + %a2At. Also, e("‘1)A‘ = 1 + (r — q)At and e2(’"‘1)A‘ = 1 + 2(r - q)At. By substitution, we see
that equation (20.2) is satisfied when terms of higher order than At are ignored.
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Figure 20.2 Tree used to value an option. T SW4
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time T and K is the strike price. Because a risk-neutral world is being assumed, the
value at each node at time T -— At can be calculated as the expected value at time T
discounted at rate r for a time period At. Similarly, the value at each node at time
T — 2At can be calculated as the expected value at time T — At discounted for a time
period At at rate r, and so on. If the option is American, it is necessary to check at each
node to see whether early exercise is preferable to holding the option for a further time
period At. Eventually, by working back through all the nodes, we are able to obtain the
value of the option at time zero.

Example 20. 1
Consider a 5-month American put option on a non-dividend-payi/ng stock when
the stock price is $50, the strike price is $50, the risk-free interest fate is 10% per
annum, and the volatility is 40% per annum. With our usual notation, this means
that SO : 50, K = 50, r : 0.10, 0 : 0.40, T : 0.4167, and q = 0. Suppose that we
divide the life of the option into five intervals of length l month (= 0.0833 year)
for the purposes of constructing a binomial tree. Then At: 0.0833 and using
equations (20.4) to (20.7) gives

Lt = 6°75 = 1.1224, a = @—°~’5 = 0.8909, a = 6”“ = 1.0084
_ dp = Z-:3 = 0.5073, 1- p = 0.4927

Figure .20.3 shows the binomial tree produced by DerivaGem. At each node there
are two numbers. The top one shows the stock price at the node; the lower one
shows the value of the option at the node. The probability of an up movement is
always 0.5073; the probability of a down movement is always 0.4927.
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Figure 20.3 Binomial tree from DerivaGem for American put on non-dividend-
paying stock (Example 20.1).

At each node:
Upper value = Underlying Asset Price
Lower value = Option Price

Shading indicates where option is exercised

Strike price = 50
Discount factor per step = 0.9917
Time step, dt = 0.0833 years, 30.42 days m
Growth factor per step, a = 1.0084
Probability of up move, p = 0.5073 m
Up step size, u = 1.1224
Down step size, d = 0.8909 F m
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The stock price a_t the jth node (j = 0, 1, . . . , i) at time iAt (i : 0,1,...,5) is
calculated as S0uJa"_] . For example, the stock price at node A (i = 4, j = 1) (i.e.,
the second node up at the end of the fourth time step) is 50 x 1.1224 >< 0.89093 =:
$39.69. The option prices at the final nodes are calculated as max(K —— ST, 0). For
example, the option price at node G is 50.00 - 35.36 : 14.64. The option prices at
the penultimate nodes are calculated from the option prices at the final nodes.
First, we assume no exercise of the option at the nodes. This means that the
option price is calculated as the present value of the expected option price one
time step later. For example, at node E, the option price is calculated as

 (05073 >< 0 + 0.4927 >< 5.45)@*°-1°><°~°8” = 2.66
whereas at node A it is calculated as

(05073 >< 5.45 + 0.4927 >< 14.64)@-°~‘°><°~°8” = 9.90
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We then check to see if early exercise is preferable to waiting. At node E, early
exercise would give a value for the option of zero because both the stock price and
strike price are $50. Clearly it is best to wait. The correct value for the option at
node E is therefore $2.66. At node A, it is a different story. If the option is
exercised, it is worth $50.00 — $39.69, or $10.31. This is more than $9.90. If node
A is reached, then the option should be exercised and the correct value for the
option at node A is $10.31.

Option prices at earlier nodes are calculated in a similar way. Note that it is not
always best to exercise an option early when it is in the money. Consider node B.
If the option is exercised, it is worth $50.00 —— $39.69, or $10.31. However, if it is
not exercised, it is worth

(0.5073 >< 6.38 + 0.4927 >< 14.64)@"°~1°X°-“$33 = 10.36
The option should, therefore, not be exercised at this node, and the correct option
value at the node is $10.36.

Working back through the tree, the value of the option at the initial node is
$4.49. This is our numerical estimate for the option’s current value. In practice, a
smaller value of At, and many more nodes, would be used. DerivaGem shows
that with 30, 50, 100, and 500 time steps we get values for the option of 4.263,
4.272, 4.278, and 4.283.

Expressing the Approach Algebraically
Suppose that the life of an American option is divided into N subintervals of length At.
We will refer to the jth node at time i At as the (i, j) node, where 0 < i < N and
0 < j < i). Define f,-, 1- as the value of the option at the (i, j) node. The price of the
underlying asset at the (i, j) node is S0u1a""j. If the option is a call, its value at time T
(the expiration date) is max(ST -— K, 0), so that

f,,,,,- =max(S0uja'N"j—K, 0), j:0, 1,...,N

If the option is a put, its value at time T is max(K — ST, 0), so that

9 fN,j=max(K—S0ujdN_j,0), j=0,l,...,N

There is a probability p of moving from the (i, j) node at time i At to the (i + 1, j + 1)
node at time (i + 1) At, and a probability 1 — p of moving from the (i, j) node at time
iAt to the (i + 1, j) node at time (i + 1) At. Assuming no early exercise, risk-neutral
valuation gives

fig)" I e—rAtlPfi+1,j+l '1' (1 _ P)fi+1,jl

for 0 < i < N — 1 and 0 < j < i. To take account of early exercise, this value for f,-J
must be compared with the option’s intrinsic value, so that for a call

ft.) = maxisoujdiwj — K» @TrAtlPfz+1,j+1 + (1 " p)fi+l,jl}
and for a put

fi,j : maX{K _ S0’/ljdifli» e—rAtlPfi+1,j+1 + (1 "‘ p)fi+1,jl}

Note that, because the calculations start at time T and work backward, the value at
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Figure 20.4 Convergence of the price of the option in Example 20.1 calculated from
the DerivaGem Application Builder functions.
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time i At captures not only the effect of early exercise possibilities at time i At, but also
the effect of early exercise at subsequent times.

In the limit as At tends to zero, an exact value for the American put is obtained. In
practice, N = 30 usually gives reasonable results. Figure 20.4 shows the convergence of
the option price in Example 20.1. This figure was calculated using the Application
Builder functions provided with the DerivaGem software (see Sample Application A).

Estimating Delta and Other Greek Letters
It will be recalled that the delta (A) of an option is the rate of change of its price with
respect to the underlying stock price. It can be calculated as

Af
3 AS /,

where AS is a small change in the asset price and Af is the corresponding small change
in the option price. At time At, we have an estimate fm for the option price when the
asset price is Sou and an estimate f1,0 for the option price when the asset price is Sod.
This means that, when AS = Sou - Sod, Af = fm — f1,0. Therefore an estimate of
delta at time At is

A :__ f1,1" f1,0 (208)
S01/l '— S061

To determine gamma (F), note that we have two estimates of A at time 2At.
When S = (S91/£2 + S0)/2 (halfway between the second and third node), delta is
(fl; — f2,1)/(Souz — S0); when S = (S0 + S0412)/2 (halfway between the first and second
node), delta is (f2,1 -—' f2,0)/(S0 - S0d2). The difference between the two values of S is h,
where

11 = 0.5(S0u2 - Sqdz)
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Gamma is the change in delta divided by h:

F : l(f2,2 -" f2,1)/(S0112 - 50)] Z l(f2,1 — f2,0)/(50 — 50612)] (209)

These procedures provide estimates of delta at time At and of gamma at time 2At. In
practice, they are usually used as estimates of delta and gamma at time zero as well.5

A further hedge parameter that can be obtained directly from the tree is theta (O). This
is the rate of change of the option price with time when all else is kept constant. For an
asset price of S0, the value of the option at time zero is f0,0 and at time 2At it is f2,1. An
estimate of theta is therefore

f21 — f00IT’ 20.10
G) 2At ( )

Vega can be calculated by making a small change, A0, in the volatility and constructing
a new tree to obtain a new value of the option. (The number of time steps should be
kept the same.) The estimate of vega is

_f*—f
V_ A0

where f and f* are the estimates of the option price from the original and the new tree,
respectively. Rho can be calculated similarly.

Example 20.2
Consider again Example 20.1. From Figure 20.3, fly) : 6.96 and f1,1 = 2.16.
Equation (20.8) gives an estimate for delta of 5

2.16 - 6.96
56.12 - 44.55 Z 0'41

From equation (20.9), an estimate of the gamma of the option can be obtained
from the values at nodes B, C, and F as

[(0.64 — 3.77)/(62.99 — 50.00)] — [(3.77 — 10.36)/(50.00 — 39.69)]
11.65

From equation (20.10), an estimate of the theta of the option can be obtained
from the values at nodes D and C as

3.77 — 4.49
0.1667

or —0.0l2 per calendar day. These are only rough estimates. They become pro-
gressively better as the number of time steps on the tree is increased. Using 50 time
steps, DerivaGem provides estimates of -0.415, 0.034, and -0.0117 for delta,
gamma, and theta, respectively. By making small changes to parameters and
recomputing values, vega and rho are estimated as 0.123 and -0.072, respectively.

= 0.03
/~

= 4.3 per year

5 If slightly more accuracy is required for delta and gamma, we can start the binomial tree at time -2At and
assume that the stock price is S0 at this time. This leads to the option price being calculated for three different
stock prices at time zero.
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20.2 USING THE BINOMIAL TREE FOR OPTIONS ON INDICES,
CURRENCIES, AND FUTURES CONTRACTS

As explained in Chapters 12, 16 and 17, stock indices, currencies, and futures contracts
can, for the purposes of option valuation, be considered as assets providing known
yields. For a stock index, the relevant yield is the dividend yield on the stock portfolio
underlying the index; in the case of a currency, it is the foreign risk-free interest rate; in the
case of a futures contract, it is the domestic risk-free interest rate. The binomial tree
approach can therefore be used to value options on stock indices, currencies, and futures
contracts provided that q in equation (20.7) is interpreted appropriately.

Example 20.3
Consider a 4-month American call option on index futures where the current
futures price is 300, the exercise price is 300, the risk-free interest rate is 8% per

. . .t ..,,,,-,4 . . 4- , _ 4 .. .‘_ . _ . __ . _ _ - _ 9__-_., ,,- __.,_ 9. 4,. - . -... . r ...,’ . -,. _- . . .._- 4._ - . . - 1. .' _ ~ _,,_,,__,,,___,___.,,_. _ - _ _ _ . 4 ~ _ . _ .» - -,L .. _* -11.-.. . » .t. . t. _ - v -1 .- - - . .. _

Figure 20.5 Binpmial treeproduced by DerivaGem for American call option on
an index futures contract (Example 20.3).

At each node:
Upper value = Underlying Asset Price
Lower value = Option Price

Shading indicates where option is exercised

Strike price = 300
Discount factor per step = 0.9934
Time step, dt = 0.0833 years, 30.42 days
Growth factor per step, a = 1.0000
Probability of up move, p = 0.4784 3
Up step size, u = 1.0905
Down step size, d = 0.9170
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annum, and the volatility of the index is 30% per annum. The life of the option is
divided into four 1-month periods for the purposes of constructing the tree. In this
case, F0 : 300, K = 300, r — 0.08, 0 = 0.3, T = 0.3333, and At = 0.0833. Be-
cause a futures contract is analogous to a stock paying dividends at a rate r, q
should be set equal to r in equation (20.7). This gives a = 1. The other parameters
necessary to construct the tree are 1

u = 8°15 :1.0905, d =1/11 = 0.9170
--dp = 5’-- = 0.4784, 1- p = 0.5216

u —d

The tree, as produced by DerivaGem, is shown in Figure 20.5. (The upper number
is the futures price; the lower number is the option price.) The estimated value of
the option is 20.16. More accuracy is obtained using more steps. With 50 time
steps, DerivaGem gives a value of 20.18; with 100 time steps it gives 20.22.

I’; li;“:'T“f.?»‘ ‘»l1*I‘I'I-7 "' '- J‘-' If-"-'4'>:'_'..'.-1,1. .41’ FIB’? - ,' "=11! - .-L 57:7 - ."_I‘;'.“/*‘-".,’I_’; .(/lQ'(~"7.'.§.* ." 7. .’.'.' Z.’ . _Y‘;I:’i';l..' 'T§',.Lrj’§' 7'I'.’ic_‘_= 775 §#§:I7'."."7‘ ".}'."‘~ "7 1'.*.£.':.1.'."’7’§'}".

Figure 20.6 Binomial tree produced by DerivaGem for American put option on
a currency (Example 20.4).

At each node:
Upper value = Underlying Asset Price
Lower value = Option Price

Shading indicates where option is exercised

Strike price = 1.6
Discount factor per step = 0.9802
Time step, dt = 0.2500 years, 91.25 days
Growth factor per step, a = 0.9975
Probability of up move, p = 0.4842
Up step size, 0 = 1.0818
Down step size, d = 0.9418 0.0000 8
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20.3

Example 20.4 I  A
Consider a 1-year American put option on the British pound (GBP). The current
exchange rate (USD per GBP) is 1.6100, the strike price is 1.6000, the US risk-free
interest rate is 8% per annum, the sterling risk-free interest rate is 9% per annum,
and the volatility of the sterling exchange rate is 12% per annum. In this case,
S0 = 1.61, K --: 1.60, r :_- 0.08, rf : 0.09, 0 : 0.12, and T : 1.0. The life of the
option is divided into four 3-month periods for the purposes of constructing the
tree, so that At = 0.25. In this case, q = rf and equation (20.7) gives

a : e(0.08-0.09)><0.25 : 09975

The other parameters necessary to construct the tree are

—d11=@“~’K‘=1.0818, d:1/u:0.9418 p"-=9-——-Z=0.4642, 1-p=0.5358
u__.

 The tree, as produced by DerivaGem, is shown in Figure 20.6. (The upper number
is the exchange rate; the lower number is the option price.) The estimated value of
the option is 550.0710. (Using 50 time steps, DerivaGem gives the value of the
option as 0.0738; with 100 time steps it also gives 0.0738.)

BINOMIAL M()DEL FOR A DIVIDEND-PAYING STOCK

We now move on to the more tricky issue of how the binomial model can be used for a
dividend-paying stock. As in Chapter 14, the word “dividend” will, for the purposes of
our discussion, be used to refer to the reduction in the stock price on the ex-dividend
date as a result of the dividend.

Known Dividend Yield 4
For long-life stock options, it is sometimes assumed for convenience that there is a
known continuous dividend yield of q on the stock. The options can then be valued in
the same way as options on a stock index.

For more accuracy, known dividend yields can be assumed to be paid discretely.
Suppose that there is a single dividend, and the dividend yield (i.e., the divide/nd as a
percentage of the stock price) is known. The parameters u, d, and p can be calculated as
though no dividends are expected. If the time i At is prior to the stock going ex-
dividend, the nodes on the tree correspond to stock prices

$01114”, jr-0,l,...,i
If the time i At is after the stock goes ex-dividend, the nodes correspond to stock prices

s(,(1-<s)1u'¢1"-1', j=0,1,...,i
where 8 is the dividend yield. Several known dividend yields during the life of an option
can be dealt with similarly. If 8, is the total dividend yield associated with all ex-
dividend dates between time zero and time iAt, the nodes at time iAt correspond to
stock prices Sou _ (mu 1-d,-_j
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Figure 20.7 Tree when stock pays a known dividend yield at one particular time.
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Known Dollar Dividend  
In some situations, particularly when the life of the option is short, the mostrealistic
assumption is that the dollar amount of the dividend rather than the dividend yield is
known in advance. If the volatility of the stock, 0, is assumed constant, the tree then
takes the form shown in Figure 20.8. It does not recombine, which means that the
number of nodes that have to be evaluated is liable to become very large. Suppose that
there is only one dividend, that the ex-dividend date, T, is between k At and (k + 1) At,
and that the dollar amount of the dividend is D. When i < k, the nodes/A on the tree at
time iAt correspond to stock prices

S0Ltjdi_j, j=0,1,2,...,i
as before. When i : k + 1, the nodes on the tree correspond to stock prices

I Q 0

S0u’d‘7’ —D, j=0,1,2,...,i

When i : k + 2, the nodes on the tree correspond to stock prices

(s0iifd'*‘-1 - 1))” and (S01/tjdi_1_j - D)d
for j: 0, 1, 2, . . . , i — 1, so that there are 2i rather than i + 1 nodes. When i : k + m,
there are m(k + 2) rather than k + m + 1 nodes. The number of nodes expands even
faster when there are several ex-dividend dates during the option’s life.
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Figure 20.8 Tree when dollar amount of dividend is assumed known and volatility is
assumed constant.
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The node-proliferation problem can be solved by assuming, as in the analysis of
European options in Section 14.12, that the stock price has two components: a part that
is uncertain and a part that is the present value of all future dividends during the life of
the option. Suppose that there is only one ex-dividend date, r, during the life of the
option and that k At < r < (k + 1) At. The value of the uncertain component, S*, at
time iAt is given by

S*=S wheniAt>r
and ,4

S* = S -— De_’(T'iAt) when iAt < r

where D is the dividend. Define 0* as the volatility of S* and assume that 0* is
constant.6 The parameters p, u, and d can be calculated from equations (20.4),
(20.5), (20.6), and (20.7) with 0 replaced by 0* and a tree can be constructed in the
usual way to model S *. By adding to the stock price at each node, the present value of
future dividends (if any), the tree can be converted into another tree that models S.
Suppose that S6‘ is the value of S * at time zero. At time iAt, the nodes on this tree
correspond to the stock prices

. s(;"ii1¢1"1'+1>@-’<‘""“‘>, j-_=0,1,...,i
 ;

6 As mentioned in footnote 12 of Chapter 14, 0* is greater than 0, the volatility of S. In practice, the use of a
term structure of implied volatilities avoids the need for analysts to distinguish between 0 and 0*.
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when iAt < r and
sgifld‘-1, j= 0,1,...,i

when iAt > r. This approach, which has the advantage of being consistent with the
approach for European options in Section 14.12, succeeds in achieving a situation where
the tree recombines so that there are i + 1 nodes at time i At. It can be generalized in as
straightforward way to deal with the situation where there are several dividends.7 .

Example 20.5 I I I
Consider a 5-month American put option on a stock that is expected to pay a
single dividend of $2.06 during the life of the option. The initial stock price is $52,
the strike price is $50, thc risk-free interest rate is 10% per annum, the volatility is

8 40% per annum, and the ex-dividend date is in 3% months. .
We first construct a tree to model S *, the stock price less the present value of

future dividends during the life of the option. At time zero, the present value of
the dividend is

8 X e—U.29I7X0.l I 8

The initial value of S * is therefore 50.00. If we assume that the 40% per annum
volatility refers to S *, then Figure 20.3 provides a binomial tree for S *. (This, is
because S* has the same initial value and volatility as the stock price that
Figure 20.3 was based upon.) Adding the present value of the dividend at each
node leads to Figure 20.9, which is a binomial model for S.The probabilities at
each node are, as in Figure 20.3, 0.5073 for an up movement and 0.4927 for a down
movement. Working back through the treein the usual way gives the option price
as $4.44. (Using 50 time steps, DerivaGem gives a value for the option of 4.202;
using 100 steps it gives 4.212.) A

Control Variate Technique g ,
A technique known as the control variate technique can improve the accuracy of the
pricing of an American option.8 This involves using the same tree to calculate the value
of both the American option, fA, and the corresponding European option, fE. The
Black—Scholes—Merton price of the European option, fBS, is also calculated. The error
when the tree is used to price the European option, fBS — fE, is assumed equal to the
error whenthe tree is used to price the American option. This gives the estimate of the
price of the American option as A 4

A fA + (fBS ~ fa)

To illustrate this approach, Figure 20.10 values the option in Figure 20.3 on the
assumption that it is European. The price obtained, fE, is $4.32. From the Black-
Scholes—Merton formula, the true European price of the option, fBS, is $4.08. The

7 For long-life options, where there are many dividends, the dividends are less easy to predict and the present
value of the dividends becomes a significant part of S0. It is then often more appropriate to assume a known
dividend yield. A A

8 See J. Hull and A. White, “The Use of the Control Variate Technique in Option Pricing,” Journal of
Financial and Quantitative Analysis, 23 (September 1988): 237-51. g
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Figure 20.9 Tree produced by DerivaGem for Example. 20.5.

At each node:
Upper value = Underlying Asset Price
Lower value = Option Price

Shading indicates where option is exercised

Strike price = 50
Discount factor per step = 0.9917 89.06
Time step, dt = 0.0833 years, 30.42 days 0.00
Growth factor per step, a = 1.0084 79.35
Probability of up move, p = 0.5073
Upstep size, u = 1.1224 72.75 70.70
Down step size, d = 0.8909 0.00 0.00
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estimate of the American price in Figure 20.3, fA, is $4.49. The control variate estimate
of the American price, therefore, is

4.49 + (4.08 - 4.32) = 4.25

A good estimate of the American price, calculated using 100 steps, is 4.278. The control
variate approach does, therefore, produce a considerable improvement over the basic
tree estimate of 4.49 in this case.

The control variate technique in effect involves using the tree to calculate the
difference between the European and the American price rather than the American
price itself. We give a further application of the control variate technique when we
discuss Monte Carlo simulation later in the chapter.
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Figure 20.10 Tree, as produced by DerivaGem, for European version of option in
Figure 20.3. At each node, the upper number is the stock price, and the lower number
is the option price.

At each node:
Upper value = Underlying Asset Price
Lower value = Option Price

Shading indicates where option is exercised

Strike price = 50 1
Discount factor per step = 0.9917
Time step, dt = 0.0833 years, 30.42 days g
Growth factor per step, a = 1.0084 79.35
Probability of up move, p = 0.5073 l 0.00
Up step size, u = 1.1224 8 70.70
Down step size, d = 0.8909 0.00
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ALTERNATIVE PROCEDURES FOR CONSTRUCTING TREES

The Cox, Ross, and Rubinstein approach is not the only way of building a binomial
tree. Instead of imposing the assumption u = 1/d on equations (20.1) and (20.2), we
can set p = 0.5. A solution to the equations when terms of higher order than At are
ignored is then

_ M Z 60-q-82/2)Ai+d\/Ki d I e(r-q—02/2)At—0\/AT

This allows trees with p:0.5 to be built for options on stocks, indices, foreign
exchange, and futures.
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This alternative tree-building procedure has the advantage over the Cox, Ross, and
Rubinstein approach that the probabilities are always 0.5 regardless of the value of 0 or
the number of time steps.9 Its disadvantage is that it is not quite as straightforward to
calculate delta, gamma, and rho from the tree because the tree is no longer centered at
the initial stock price.

Example 20.6
Consider a 9-month American call option on a foreign currency. The foreign
currency is worth 0.7900 when measured in the domestic currency, the strike price
is 0.7950, the domestic risk-free interest rate is 6% per annum, the foreign risk-free
interest rate is 10% per annum, and the volatility of the exchange rate is 4% per
annum. In this case, SQ = 0.79, K = 0.795, r : 0.06, rf -: 0.10, 0 :: 0.04, and

t_ - 1: . --. 0"‘ ‘ - ; — . 1 Q‘,,__f__j,_,;§,,,xI"3"1“'T'QLLT-I- “r 4 ".;.'f:.- L '1,“ -rm »'.?*.'»i*“ -'1-," !.'1‘15_'?.i‘_T.':_’

Figure 20.11 Binomial tree for American call option on a foreign currency. At
 each node, upper number is spot exchange rate and lower number is option

price. All probabilities are 0.5.

At each node: A
Upper value = Underlying Asset Price
Lower value = Option Price

Shading indicates where option is exercised

Strike price = 0.795
Discount factor per step = 0.9851
Time step, dt = 0.2500 years, 91.25 days

Probability of up move, p = 0.5000
 

A A 0-0952
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0.7885
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Node Time:

9 When time steps are so large that 0 < |(r-— q)\/At |, the Cox, Ross, and Rubinstein tree gives negative
probabilities. The alternative procedure described here does not have that drawback.
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T = 0.75. We set At = 0.25 (3 steps) and the probabilities on each branch to 0.5,
so that  

u I e(0.08-0.10-0.0016/2)0.25+0.04~/0.25 : 10098

d : e(0.08-0.10-0.0018/2)0.25-0.04\/0.25 : 09703

The tree for the exchange rate is shown in Figure 20.11. The tree gives the value of
the option as $0.0026.

Trinomial Trees
Trinomial trees can be used as an alternative to binomial trees. The general form of the
tree is as shown in Figure 20.12. Suppose that p,,, pm, and pd are the probabilities of up,
middle, and down movements at each node and At is the length of the time step. For an
asset paying dividends at a rate q, parameter values that match the mean and standard
deviation of price changes when terms of higher order than At are ignored are

~/3Au=e° I, d: l/u

_ /At r 8+1 +1) _2 _ lAt 82 +1
pd" 1281 q 2 8’ ”'"'3’ P” 1282"’ 2 8

Calculations for a trinomial tree are analogous to those for a binomial tree. We work
from the end of the tree to the beginning. At each node we calculate the value of

‘ ]TE§2 :KZ‘..‘I‘-"}".'!_4.!;Z {ZIP —‘. -.' " ".1 ~""‘&I *"'tlW!§'Z7\=.*-Qfii-—."'id_‘/‘ _» I '1"? "E'~l""“"-'¢-'.fF3\?_T.‘I.i‘-‘.“".'2".i

Figure 20.12 Trinomial stock price tree. 5003
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20.5

exercising and the value of continuing. The value of continuing is 4

e—rAt(pufu + pmfm + pdfd)

where fu, fm, and fd are the values of the option at the subsequent up, middle, and
down nodes, respectively. The trinomial tree approach proves to be equivalent to the
explicit finite difference method, which will be described in Section 20.8.

Figlewski and Gao have proposed an enhancement of the trinomial tree method,
which they call the adaptive mesh model. In this, a high-resolution (small-At) tree is
grafted onto a low-resolution (large-At) tree.” When valuing a regular American
option, high resolution is most useful for the parts of the tree close to the strike price
at the end of the life of the option.

TIME-DEPENDENT PARAMETERS

Up to now we have assumed that r, q, rf, and 0 are constants. In practice, they are
usually assumed to be time dependent. The values of these variables between times t
and t+ At are assumed to be equal to their forward values.“

To make r and q (or rf) a function of time in a Cox-Ross—Rubinstein binomial tree,
we set

a : elf(l)-Q(¢)lAl (201 1)

for nodes at time t, where f(t) is the forward interest rate between times t and t+ At
and g(t) is the forward value of q (or rf) between these times. This does not change the
geometry of the tree because u and d do not depend on a. The probabilities on the
branches emanating from nodes at time t arezlz

lf(1?)—9(l)lAl ie —- d
p - ~ A A (20.12)

u — d

,, __ elf(r)—o(r)]Ar

/'

The rest of the way that we use the tree is the same as before, except that when
discounting between times t and t+ At we use f(t).

Making 0 a function of time in a binomial tree is more challenging. One approach is to
make the lengths of time steps inversely proportional to the variance rate. The values of u
and d are then always the same and the tree recombines. Suppose that 0(t) is the volatility
for a maturity t so that 0(t)2t is the cumulative variance by time t. Define V -= 0(T)2 T,
where T is the life of the tree, and let t,- be the end of the ith time step. If there is a total
of N time steps, we choose ti to satisfy 0(t,-)2t,- = iV/N. The variance between times t,-_1
and t,- is then V/N for all i.

10 See S. Figlewski and B. Gao, “The Adaptive Mesh Model: A New Approach to Eificient Option Pricing,”
Journal of Financial Economics, 53 (1999): 313-51.

H The forward dividend yield and forward variance rate are calculated in the same way as the forward
interest rate. (The variance rate is the square ofthe volatility.)

'2 For a sufficiently large number of time steps, these probabilities are always positive.
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CHAPTER 20

With a trinomial tree, a generalized tree-building procedure can be used to match time-
dependent interest rates and volatilities (see Technical Note 9 on the author’s website).

MONTE CARLO SIMULATION A

We now explain Monte Carlo simulation, a quite different approach for valuing
derivatives from binomial trees. Business Snapshot 20.1 illustrates the random sampling
idea underlying Monte Carlo simulation by showing how a simple Excel program can
be constructed to estimate 71'.

When used to value an option, Monte Carlo simulation uses the risk-neutral
valuation result. We sample paths to obtain the expected payoff in a risk-neutral world

Figure 20.13 Calculation of 71' by throwing darts.

I
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Table 20.1 Sample spreadsheet calculations in
Business Snapshot 20. 1.

A B C

1 0.207
2 0.271
3 0.007

100 0.198
101
102

0.690
0.520
0.221

0.403

Mean 4
103 SD: 1.69

0--L--;~;.~.-, .__.-_ _ , _ . _ _ _ _ M. . .A. __._. __ .~ ._ _-
- ._ - .3. . ' .9 . _ . _ . . ._. . 1 »__ ,1 - ."; .,-r -1,

and then discount this payoff at the risk-free rate. Consider a derivative dependent on a
single market variable S that provides a payoff at time T. Assuming that interest rates
are constant, we can value the derivative as follows:

21. Sample a random path for S in a risk-neutral world.
2. Calculate the payoff from the derivative.
3. Repeat steps 1 and 2 to get many sample values of the payoff from the derivative

in a risk-neutral world.
4. Calculate the mean of the sample payoffs to get an estimate of the expected payoff

in a risk-neutral world.
5. Discount this expected payoff at the risk-free rate to get an estimate of the value of

the derivative.

Suppose that the process followed by the underlying market variable in a risk-neutral
world is

 as = /lSdt + US dz (20.13)

where dz is a Wiener process, /2 is the expected return in a risk-neutral world, and 0 is
the volatility.” To simulate the path followed by S, we can divide the life of the
derivative into N short intervals of length At and approximate equation (20.13) as

S(t + At) - s(1:) = /lS(t) At + ds(1:)@~//Ki (20.14)

where S(t) denotes the value of S at time t, e is a random sample from a normal
distribution with mean zero and standard deviation of 1.0. This enables the value of S
at time At to be calculated from the initial value of S, the value at time 2 At to be
calculated from the value at time At, and so on. An illustration of the procedure is in
Section 13.3. One simulation trial involves constructing a complete path for S using N
random samples from a normal distribution.

'3 If S is the price of a non-dividend-paying stock then /1 = r, if it is an exchange rate then /1 : r —- rf, and
so on. Note that the volatility is the same. in a risk-neutral world as in the real world, as explained in
Section 12.7.
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In practice, it is usually more accurate to simulate lnS rather than S. From It6’s
lemma the process followed by ln S is

2
dlnS= (/l—g2—)dt+0dz (20.15)

so that
2

ln S(t + At) — ln S(t) = ()1 -— U7) At + 0e~/At

or equivalently
2

s(1: + At): s(i)8Xp[(p. _ At + dek/Ki] (20.18)

This equation is used to construct a path for S.
Working with ln S rather than S gives more accuracy. Also, if /1 and 0 are constant,

then

ln S(T) — ln S(0) = (‘,1 _ Q23) T + 06x/T

is true for all T.14 It follows that

1 2
S(T) : S(0) exp[(,t7. — 3-) T + 00/T 1 (20.17)

This equation can be used to value derivatives that provide a nonstandard payoff at
time T. As shown in Business Snapshot 20.2, it can also be used to check the Black—-
Scholes—Merton formulas.

The key advantage of Monte Carlo simulation is that it can be used when the
payoff depends on the path followed by the underlying variable S as well as when it
depends only on the final valueof S. (For example, it can be used when payoffs
depend on the average value of S between time 0 and time T.) Payoffs can occur at
several times during the life of the derivative rather than all at the end. Anyxlstochastic
process for S can be accommodated. As will be shown shortly, the procedure can also
be extended to accommodate situations where the payoff from the derivative depends
on several underlying market variables. The drawbacks of Monte Carlo simulation are
that it is computationally very time consuming and cannot easily htfndle situations
where there are early exercise opportunities.”

Derivatives Dependent on More than One Market Variable
We discussed correlated stochastic processes in Section 13.5. Consider the situation
where the payoff from a derivative depends on n variables 6, (1 < i < n). Define s,- as the
volatility of 6,-, mi as the expected growth rate of 6, in a risk-neutral world, and p,-k as the
correlation between the Wiener processes driving 6, and Gk.“ As in the single-variable
case, the life of the derivative must be divided into N subintervals of length At. The

'4 By contrast. equation (20.14) is exactly true only in the limit as At tends to zero.

15 As discussed in Chapter 26, a number of researchers have suggested ways Monte Carlo simulation can be
extended to value American options.

'6 Note that s,-, ni,-, and p,-k are not necessarily constant; they may depend on the 6,.
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discrete version of the process for 6, is then

6,-(t + At) - 6,-(t) = id,-is»,-(i) At + S,-19,-(t)€,-~/A—l (20 18)
where e,- is a random sample from a standard normal distribution. The coefficient of
correlation between e,- and ek is p,-k (1 < i; k < n). One simulation trial involves obtain-
ing N samples of the e,- (1 < i < n) from a multivariate standardized normal distribu-
tion. These are substituted into equation (20.18) to produce simulated paths for each 19,-,
thereby enabling a sample value for the derivative to be calculated.

Table 20.2 Monte Carlo simulation to check Black—Scholes—Merton

A B C D E F G

L11-§UJl\-)1-"‘

1000
1001
1002
1003

45.95
54.49
50.09
47.46
44.93

68.27

Mean
SD

0 S0 K r 0 T
4.38 50 50 0.05 0.3 0.5
0.09 d1 (lg BSM price

O 0.2239 0.0118 4.817
0

17.82

4.98
7.68

‘-" 4-:’¢< ,, '_.-~._'-- >2.»-'7 -'4 . 04‘.-_-..~~ . . .-:-‘- -'- '-'-'1'*- -- "
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Generating the Random Samples from Normal Distributions
The instruction =NORMSINV(RAND( )) in Excel can be used to generate a random
sample from a standard normal distribution, as in Business Snapshot 20.2. When two
correlated samples e1 and e2 from standard normal distributions are required, an
appropriate procedure is as follows. Independent samples x1 and x2 from a univariate
standardized normal distribution are obtained as just described. The required samples
e1 and e2 are then calculated as follows:

€1=X1

52 = ,0X1+X2\/1-1,02

where p is the coefficient of correlation. t
More generally, considerithe situation where we require n correlated samples from

normal distributions with the correlation between sample i and sample j being p,-J-. We
first sample n independent variables x,- (1 < i < n), from univariate standardized
normal distributions. The required samples, e,- (1 Q i < n), are then defined as follows:

61 = 0411141
G2 I QZIX1 -l- (X22262

53 = 0431141 + 0432142 + 0433143

and so on. We choose the coefficients 0,-j so that the correlations and variances are
correct. This can be done step by step as follows. Set 011 :1; choose 021 so that
021011 : p21; choose 022 so that 021 + 022 = 1; choose 031 so that 031011 = p31; choose
(X32 SO that Ol31Qf21 -l- Ql32(X22 I p32; ChOOS€ G33 SO that G51 -l- (X52 -l- 0§3 I and SO Ol'l.l7

This procedure is known as the Cholesky decomposition.

Number of Trials 1
The accuracy of the result given by Monte Carlo simulation depends on the number of
trials. It is usual to calculate the standard deviation as well as the mean of the
discounted payoffs given by the simulation trials. Denote the mean by /.i and the
standard deviation by co. The variable ,0 is the simulation’s estimate of the value of
the derivative. The standard error of the estimate is /

W
where M is the number of trials. A 95% confidence interval for the price f of the
derivative is therefore given by

/JL_l._96c_o<f<M+l.96co
2/M 2/V

This shows that uncertainty about the value of the derivative is inversely proportional
to the square root of the number of trials. To double the accuracy of a simulation, we

17 If the equations for the 0’s do not have real solutions, the assumed correlation structure is internally
inconsistent This will be discussed further in Section 22.7.
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must quadruple the number of trials; to increase the accuracy by a factor of 10, the
number of trials must increase by a factor of 100; and so on.

Example 20.7
In Table 20.1, 71' is calculated as the average of 100 numbers. The standard
deviation of the numbers is 1.69. In this case, w = 1.69 and M := 100, so that
the standard error of the estimate is 1.69/\/1-00 == 0.169. The spreadsheet
therefore gives a 95% confidence interval for rr as (3.04—-1.96 x 0.169) to
(3.04+ 1.96 x 0.169) or 2.71 to 3.37. (The correct value of 3.14159 lies within
this confidence interval.)

Example 20.8
In Table 20.2, the value of the option is calculated as the average of 1000
numbers. The standard deviation of the numbers is 7.68. In this case, w = 7.68
and M = 1000. The standard error of the estimate is 7.68/\/1000 = 0.24. The
spreadsheet therefore gives a 95% confidence interval for the option value as
(4.98 — 1.96 >< 0.24) to (4.98 + 1.96 >< 0.24), or 4.51 to 5.45. (The Black—Scholes—
Merton price, 4.817, lies within this confidence interval.)

Sampling through a Tree  
Instead of implementing Monte Carlo simulation by randomly sampling from the
stochastic process for an underlying variable, we can use an N-step binomial tree and
sample from the 2N paths that are possible. Suppose we have a binomial tree where the
probability of an “up” movement is 0.6. The procedure for sampling a random path
through the tree is as follows. At each node, we sample a random number between 0
and 1. If the number is less than 0.4, we take the down branch. If it is greater than 0.4,
we take the up branch. Once we have a complete path from the initial node to the end of
the tree, we can calculate a payoff. This completes the first trial. A similar procedure is
used to complete more trials. The mean of the payoffs is discounted at the risk-free rate
to get an estimate of the value of the derivative.“

Example 20.9
Suppose that the tree in Figure 20.3 is used to value an option that pays off
max(Sav€ — 50, 0), where Save is the average stock price during the 5 month/s (with
the first and last stock price being included in the average). This is known as an
Asian option. When ten simulation trials are used one possible result is shown in
Table 20.3. The value of the option is calculated as the average payoff discounted at
the risk-free rate. In this case, the average payoff is $7.08 and the risk-free rate is
10% and so the calculated value is 7.08e"0'1X5/12 = 6.79. (This illustrates the
methodology. In practice, we would have to use more time steps on the tree and
many more simulation trials to get an accurate answer.)

Calculating the Greek Letters
The Greek letters discussed in Chapter 18 can be calculated using Monte Carlo
simulation. Suppose that we are interested in the partial derivative of f with respect

18 See D. Mintz, “Less is More,” Risk, July 1997: 42415, for a discussion of how sampling through a tree can
be made efficient.
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Table 20.3 Monte Carlo simulation to value Asian option from
the tree in Figure 19.3. Payoff is amount by which average stock
price exceeds $50. U = up movement; D = down movement.

Trial Path Average stock price Option payofl

S\OO0\‘lO\U‘|-l>UJl\J'—-‘

UUUUD
UUUDD
DDDUU
UUUUU
UUDDU
UDUUD
DDUDD
UUDDU
UUUDU
DDUUD

64.98
59.82
42.31
68.04
55.22
55.22
42.31
55.22
62.25
45.56

14.98
9.82
0.00

18.04
5.22
5.22
0.00
5.22

12.25
0.00

Average

to x, where f is the value of the derivative and x is the value of an underlying variable
or aparameter. First, Monte Carlo simulation is used in the usual way to calculate an
estimate f for the value of the derivative. A small increase Ax is then made in the yalue
of x, and a new value for the derivative, f *, is calculated in the same way as f. An
estimate for the hedge parameter is given by

A A
>l<f —f
Ax

7.08
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In order to minimize the standard error of the estimate, the number of time intervals N,

Applications

20 7 VARIANCE REDUCTION PROCEDURES

9

the random samples thatAare used, and the number of trials, M, should be the same for
calculating both f and f*.

Monte Carlo simulation tends to be numerically more efficient than other procedures
when there are three or more stochastic variables. This is because the time taken to
carry out a Monte Carlo simulation increases approximately linearly with the number
of variables, whereas the time taken for most other procedures increases exponentially
with the number of variables. One advantage of Monte Carlo simulation is that it can
provide a standard error for the estimates that it makes. Another is that it is an
approach that can accommodate complex payoffs and complex stochastic processes.
Also, it can be used when the payoff depends on some function of the whole path
followed by a variable, not just its terminal value.

If the stochastic processes for the variables underlying a derivative are simulated as
indicated in equations (20.13) to (20.18), a very large number of trials is usually
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necessary to estimate the value of the derivative with reasonable accuracy. This is very
expensive in terms of computation time. In this section, we examine a number of
variance reduction procedures that can lead to dramatic savings in computation time.

Antithetic Variable Technique
In the antithetic variable technique, a simulation trial involves calculating two values of
the derivative. The first value fl is calculated in the usual way; the second value f2 is
calculated by changing the sign of all the random samples from standard normal
distributions. (If e is a sample used to calculate fl, then -e is the corresponding sample
used to calculate f2.) The sample value of the derivative calculated from a simulation
trial is the average of fl and f2. This works well because when one value is above the
true value, the other tends to be below, and vice versa.

Denote f as the average of fl and f2:

J; : f1 + f2
2

The final estimate of the value of the derivative is the average of the f’s. If 6) is the
standard deviation of the f ’s, and M is the number of simulation trials (i.e., the number
of pairs of values calculated), then the standard error of the estimate is

as/~/ii?
This is usually much less than the standard error calculated using 2M random trials.

Control Variate Technique  
We have already given one example of the control variate technique in connection with
the use of trees to value American options (see Section 20.3). The control variate
technique is applicable when there are two similar derivatives, A and B. Derivative A is
the one being valued; derivative B is similar to derivative A and has an analytic solution
available. Two simulations using the same random number streams and the same At are
carried out in parallel. The first is used to obtain an estimate ff of the value of A; the
second is used to obtain an estimate fl§", of the value of B. A better estimate fA/of the
value of A is then obtained using the formula

fA = fri " fr; + fB (20-20)

where fl; is the known true value of B calculated analytically. Hull and White provide
an example of the use of the control variate technique when evaluating the effect of
stochastic volatility on the price of a European call option.” In this case, A is the
option assuming stochastic volatility and B is the option assuming constant volatility.

Importance Sampling
Importance sampling is best explained with an example. Suppose that we wish to
calculate the price ofla deep-out-of-the-money European call option with strike price
-—_—-i_¢-—uz—-ii—-

19 See J. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of
Finance, 42 (June 1987): 281--300.
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K and maturity T. If we sample values for the underlying asset price at time T in the
usual way, most of the paths will lead to zero payoff. This is a waste of computation
time because the zero-payoff paths contribute very little to the determination of the
value of the option. We therefore try to choose only important paths, that is, paths
where the stock price is above K at maturity.

Suppose F is the unconditional probability distribution function for the stock price
at time T and q, the probability of the stock price being greater than K at maturity, is
known analytically. Then G = F/q is the probability distribution of the stock price
conditional on the stock price being greater than K. To implement importance
sampling, we sample from G rather than F. The estimate of the value of the option
is the average discounted payoff multiplied by q. V

Stratified Sampling
Sampling representative values rather than random values from a probability distribu-
tion usually gives more accuracy. Stratified sampling is a way of doing this. Suppose we
wish to take 1000 samples from a probability distribution. We would divide the
distribution into 1000 equally likely intervals and choose a representative value
(typically the mean or median) for each interval.

In the case of a standard normal distribution when there are n intervals, we can
calculate the representative value for the ith interval as

 eta)
where N T1 is the inverse cumulative normal distribution. For example, when n = 4 the
representative values corresponding to the four intervals are N _](0.125), N _l(0.375),
N _1(0.625), N "1(0.875). The function N "1 can be calculated using the NORMSINV
function in Excel. I

Moment Matching
Moment matching involves adjusting the samples taken from a standardized normal
distribution so that the first, second, and possibly higher moments: are matched.
Suppose that we sample from a normal distribution with mean 0/A and standard
deviation 1 to calculate the change in the value of a particular variable over a particular
time period. Suppose that the samples are e,- (1 < i Q n). To match the first two
moments, we calculate the mean of the samples, m, and the standard deviation of
the samples, s. We then define adjusted samples sf (1 Q i < n) as

e-—m  €;*:1___
S

These adjusted samples have the correct mean of 0 and the correct standard deviation
of 1.0. We use the adjusted samples for all calculations.

Moment matching saves computation time, but can lead to memory problems
because every number sampled must be stored until the end of the simulation. Moment
matching is sometimes termed quadratic resarnpling. It is often used in conjunction with
the antithetic variable technique. Because the latter automatically matches all odd
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20.8

moments, the goal of moment matching then becomes that of matching the second
moment and, possibly, the fourth moment.

Using Quasi-Random Sequences
A quasi-random sequence (also called a low-discrepancy sequence) is a sequence of
representative samples from a probability distribution.” Descriptions of the use of
quasi-random sequences appear in Brothertcn-Ratcliffe, and Press et al.21 Quasi-random
sequences can have the desirable property that they lead to the standard error of an
estimate being proportional to 1 /M rather than 1/\/M, where M is the sample size.

Quasi-random sampling is similar to stratified sampling. The objective is to sample
representative values for the underlying variables. In stratified sampling, it is assumed
that we know in advance how many samples will be taken. A quasi-random sampling
procedure is more flexible. The samples are taken in such a way that we are always
“filling in” gaps between existing samples. At each stage of the simulation, the sampled
points are roughly evenly spaced throughout the probability space.

Figure 20.14 shows points generated in two dimensions using a procedure suggested
by Sobol’.22 It can be seen that successive points do tend to fill in the gaps left by
previous points.

FINITE DIFFERENCE METHODS

Finite difference methods value a derivative by solving the differential equation that the
derivative satisfies. The differential equation is converted into a set of difference
equations, and the difference equations are solved iteratively. .

To illustrate the approach, we consider how it might be used to value an American
put option on a stock paying a dividend yield of q. The differential equation that the
option must satisfy is, from equation (16.6),

af af azf-5; + (r - q)S5—§ + 5-azsz -is-5 = ff (20.21)

Suppose that the life of the option is T. We divide this into N equallyspaced intervals
of length At = T/N. A total of N + 1 times are therefore considered

O, At, 2At, ..., T

Suppose that Smax is a stock price sufficiently high that, when it is reached, the put has
virtually no value. We define AS = Smax/M and consider a total of M +1 equally
spaced stock prices:

0, AS, 2AS, Smax

2° The term quasi-random is a misnomer. A quasi-random sequence is totally deterministic.

21 See R. Brotherton-Ratcliffe, “Monte Carlo Motoring,” Risk, December 1994: 53-58; W.H. Press, S.A.
Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing,
2nd edn. Cambridge University Press, 1992.

22 See I.M. Sobol’, USSR Computational Mathematics and Mathematical Physics, 7, 4 (1967); 86-112. A
description of Sobol’s procedure is in W.H. Press, S.A. Teukolsky, W. T. Vetterling, and B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, 1992.
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Figure 20.14 First 1024 points of a Sobol’ sequence.
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The level Sm,“ is chosen so that one of these is the current stock price.
The time ‘points and stock price points define a grid consisting of a total of

(M + l)(N + 1) points, as shown in Figure 20.15. The (i, j) point on? the grid is the
point that corresponds to time i At and stock price ji AS. We will use the variable fl, 1- to
denote the value of the option at the (i, j) point.

Implicit Finite Difference Method
For an interior point (i, j) on the grid, 8f/8S can be approximated as

OI‘ 3.8

3f f"'+1'-ft"_ "J ’J 20.22
0S AS ( )

if f.~,,- - r~ ~ 1-_ ‘J’ . 3as AS (202 )
Equation (20.22) is known as the forward dijjference approximation; equation (20.23)
is known as the backward diflerence approximation. We use a more symmetrical
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approximation by averaging the two:

3f f1'j+1"f1j-1*9: 1* e’ 2.4
3S ZAS (02)

For 8f/8t, we will use a forward difference approximation so that the value at time i At
is related to the value at time (i + 1) At:

3f fi+1j"‘fij——-::-—-——’———-———-—’— 2.25
dt Al (0 )

c "d 82dS2Thbk ddff ' ' r afas h(")onsi er next . e ac war 1 erence approximation or att e l, ]
point is given by equation (20.23). The backward difference at the (i, j + 1) point is

fi,j+1 - jl,j
AS

Hence a finite difference approximation for 82f/8S2 at the (i, j) point is

§;2_f__ fz,j+i"f1,j fi,j‘Tfi,j—1 AS
as2 AS AS

or
2 . . . . ._ 2 . .r;=f~~+f~; f~ 12.1.2.18S AS

.'..,.,,,., -_ . 1 __ _ _. l l _ , <. ._ _ _ ~. ; _ .€NlI“*v __ _ D _ v _ ----- —» _ _.
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Figure 20.15 Grid for finite difference approach.
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Substituting equations (20.24), (20.25), and (20.26) into the differential equation (20.21)
and noting that S = j AS gives

fi+1,""fi,' . fi,"+1"fi,'-1 2-2 2f','+1+fi.'-1"2fi.'-——£—§‘—t——J+(r—q)jAS JZASJ "l“%O'_] AS U A52 J-_rf,~,j

for j = 1,2, . ..,M — 1 and i = 0,1 ...,N- 1. Rearranging terms, we obtain

ajfi,j—l -I‘ bjfi',j + cjfi,j+l = fi+1,j (20-27)
where

aj = lo - q)j At - -l-o2j2At
bj =1+o2j2At+rAt
cj :: —-ll(r ~— q)jAt — %o2j2At

The value of the put at time T is max(K — ST, 0), where ST is the stock price at time T.
Hence,

flvlj = max(K — jAS, 0), j = 0, 1, . . . , M (20.28)

The value of the put option when the stock price is zero is K. Hence,

j§,ll=K, i=0,1,...,N (20.29)

We assume that the put option is worth zero when S = Smax, so that

f,-,M=0, i=0,1,...,N (20.30)

Equations (20.28), (20.29), and (20.30) define the value of the put option along the
three edges of the grid in Figure 20.15, where S = 0, S = Smax, and t = T. It remains to
use equation (20.27) to arrive at the value of f at all other points. First the points
corresponding to time T — At are tackled. Equation (20.27) with i = N — 1 gives

aj fN-l,j—l +19; fN—l,j +6; fN—l,j+l = fN,j / I (20-31)

for j = 1,2,...,M — 1. The right-hand sides of these equations are known from
equation (20.28). Furthermore, from equations (20.29) and (20.30),

r~..1,0 = K (211.32)
fN—1,M = 0 (211.33)

Equations (20.31) are therefore M — 1 simultaneous equations that can be solved for the
M — 1 unknowns: fN_l,l, fN_l,2, . . . , fl,,_l,M_l.23 After this has been done, each value

23 This does not involve inverting a matrix. The j = 1 equation in (20.31) can be used to express fN_l,2 in
terms of flt/_l,l; the j = 2 equation, when combined with the j = 1 equation, can be used to express fN_l_3 in
terms of fN_l,l; and so on. The j = M — 2 equation, together with earlier equations, enables fN_l,M_l to be
expressed in terms of fN_l,l. The final j = M — 1 equation can then be solved for fN._l,l, which can then be
used to determine the other fN_llj.
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of fN__l,J- is compared with K-—jAS. If fN_l,j < K—jAS, early exercise at time
T — At is optimal and fN_l, 1- is set equal to K — j AS. The nodes corresponding to
time T —- 2 At are handled in a similar way, and so on. Eventually, fllll, fol, fll,3, . . .,
fll,M__l are obtained. One of these is the option price of interest.

The control variate technique can be used in conjunction with finite difference
methods. The same grid is used to value an option similar to the one under
consideration but for which an analytic valuation is available. Equation (20.20) is
then used.

Example 20.10
Table 20.4 shows the result of using the implicit finite difference method as just
described for pricing the American put option in Example 20.1. Values of 20, 10,
and 5 were chosen for M, N, and AS, respectively. Thus, the option price is
evaluated at $5 stock price intervals between $0 and $100 and at half-month time
intervals throughout the life of the option. The option price given by the grid is
$4.07. The same grid gives the price of the corresponding European option as
$3.91. The true European price given by the Black—Scholes—Merton formula is
$4.08. The control variate estimate of the American price is therefore

4.07 + (4.08 - 3.91) = $4.24

Explicit Finite Difference Method
The implicit finite difference method has the advantage of being very robust. It always
converges to the solution of the differential equation as AS and At approach zero.24 One
of the disadvantages of the implicit finite difference method is that M — 1 simultaneous
equations have to be solved in order to calculate the f,-lj from the f,-+l,j. The method can
be simplified if the values of 3f/8S and 02f/8S 2 at point (i, j) on the grid are assumed to
be the same as at point (i + 1, j). Equations (20.24) and (20.26) then become

3f _ fi+l,j+1_ f1+1,j-1
BS 2AS

02f : fi+1,j+1+ fi+1,j-1 — 2fi+1,j
 as2 AS2

The difference equation is

fi+l j T fij - fi+1j+1 — fi+1j-1___*___’_ _ AS * *
At Hr ‘Ill 2AS

I. . +1. .__ __p_. ._l_%U2j2AS2 f+1.1+1 fglgéi fi+l,]:rfi’j

or
ft.) = aifi+1,j-1+ l9§fi+1.j+ ¢§fz+1.j+i (20-34)

24 A general rule in finite difference methods. is that AS should be kept proportional to \/A—t as they approach
Z€I'O.
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Table 20.4 Grid to value American option in Example 20.1 using implicit finite
difference methods.

Stock Time to maturity (months)
price

(dollars) 5 4.5 4 3.5 3 2.5 2 1.5 I 0.5 U

100 0.00
95 0.02
90 0.05
85 0.09
80 0.16
75 0.27
70 0.47
65 0.82
60 1.42
55 2.43
50 4.07
45 6.58

. 40 10.15
35 15.00
30 20.00
25 25.00
20 30.00
15 35.00

 10 40.00
5 45.00
0 50.00

where

mmocvcco

I-coco 1\>\1-1>1\><:>
-.22
1.39
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This creates what is known as the explicit finite diflerence method.25 Figure 20.16 shows
the difference between the implicit and explicit methods. The implicit method leads to
equation (20.27), which gives a relationship between three different values of the option
at time iAt (i.e. fl - , fl - and f- - ) and one value of the option at time (i + 1)At> ,j——l ,j> J1,j+l
(i.e., fl-ll’!-). The explicit method leads to equation (20.34), which gives a relationship

25

instead of the forward difference approximation for 8f/8t.
We also obtein the explicit finite difference method if we use the backward difference approximation
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Figure 20.16 Difference between implicit and explicit finite difference methods.
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between one value of the option at time i At (i.e., fl-J-) and three different values of the
option at time (i + 1) At (i.e., f,-+l,j_l, f,-ll’!-, f,-+l,j+l).

Example 20. 1 1
Table 20.5 shows the result of using the explicit version of the finite difference
method for pricing the American put option described in Example 20.1. As in
Example 20.10, values of 20, 10, and 5 were chosen for M, N, and AS, respec-
tively. The option price given by the grid is $426.26  

Change of Variable  
When geometric Brownian motion is used for the underlying asset price, it is compu-
tationally more efficient to use finite difference methods with ln S rather than S1 as the
underlying variable. Define Z = ln S. Equation (20.21) becomes I

af <92 af 02f
6?+(r qi 2)az+%°2527:’f

The grid then evaluates the derivative for equally spaced values of Z rather than for
equally spaced values of S. The difference equation for the implicit method becomes

f1+1,'—f1,' 2 fi,'+l_fi,'-1 2fz,'+1+f1,"-1-'2f','
_'Ti§t__l+(r—qTU/2) ]2AZJ Tl“ J A22 lJ:rf’*"

Of "

91; fi,j-1 ‘I’ 13,; fi,j + Vj fi,j+1 = fi+l,j (20-35)

26 The negative numbers and other inconsistencies in the top left-hand part of the grid will be explained later.



- --.1 J ' 1, -.'~'1"""*""'"""" 1 - i. \ v -u . . ..1 I. 1 . - . _- 1 - .0 6- . - — » = .:' - ,'A'_‘ ¢v ’ ‘ _ _. 4 < _ — 4<_-*4-~l _.4_» - 4 _~ ->< 4 4 .. -. - 4 -Q. ' ->

CHAPTER 20
. 1 4|»--.<-.v~ 1 .7

Table 20.5 Grid to value American option in Example 20.1 using explicit finite
dilference method.
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The difference equation for the explicit method becomes
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Where
* 1 At At

oej : .1. +9rAt[ 2AZ(r q 0'2/2) + —————2AZ2 02] (20.37)

1 At 2"T = ---—~— 1 — -—— 20.3/91 l+rAt( AZZU) ( 8)
* 1 At 2 At 2]- = 9 9 - 2 ---- 20.39V’ l+rAtl2AZ(r q 6/ )+2AZ2U_] ( )

The change of variable approach has the property that oz1-, ,8], and yj as well as af, B35,
and yf are independent of j. In most cases, a good choice for AZ is a\/3At.

Relation to Trinomial Tree Approaches
The explicit finite difference method is equivalent to the trinomial tree approach.” In
the expressions for aj, I235, and cj in equation (20.34), we can interpret terms as follows:

—%(r -— q)j At + 5-02j2At: Probability of stock price decreasing from
jAS to (j -—. l)AS in time At.

1 -- 02j2At: Probability of stock price remaining unchanged at
jAS in time At.

%(r -— q)j At + 5-02j2At: Probability of stock price increasing from
.  jAS to (j+ l)AS in time At.

This interpretation is illustrated in Figure 20.17. The three probabilities sum to unity.
They give the expected increase in the stock price in time At as (r— q)jAS At =
(r-—q)S At. This is the expected increase in a risk-neutral World. For small values

5§@s"-§.‘.'§33T-¢.'.’.§’Z'.»"'.',':' lIl.C§7R' ;'l!4$A3*ETvT'iH¥ C€' ,,i-{,LI..'.¥'1‘l"7?'3\ 5' ’ *‘71"»'_’ if? L4-‘F? "-2 7; 7 ' ' '3 '_I:*";‘1 I.-I; t~ C‘ . ‘T T. . -I-. Q‘. Z . E1 -‘-E.’ ?fE i: '.{"F 1}.‘ L1'_'1TnfZL?§S3.

Figure 20.17 Interpretation of explicit finite difference method as a trinomial tree.

%(r- q)jAt + %02j2At
7 4 >¢ fi+1,j+l

/

1-621225:
fij 3 >0 fi+ l,j

—%(r—q)jAt+%o2j-°-At
>Ofi+1,j-1

F“ - ~ . -» ' _ -4" ~‘ '_' '7' ‘- ‘Tl ' T ' ~ ' H ' ‘ ' l‘ 3 V _ ' ‘

27 It can also be shown that the implicit finite difference method is equivalent to a multinomial tree approach
where there are M + 1 branches emanating from each node.
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of At, they also give the variance of the change in the stock price in time At as
a2j2AS2 At : a2S2At. This corresponds to the stochastic process followed by S. The
value of f at time iAt is calculated as the expected value of f at time (i + 1) At in a
risk-neutral world discounted atthe risk-free rate. 9

For the explicit version of the finite difference method to work well, the three
“probabilities”

I —%(r—q)jAt+%or2j2At,
3 1-621%:

p %(r— q)j At + %a2j2At 7

shouldall be positive. In Example 20.11, 1 — 02j2At. is negative when j 2 13 (i.e., when
S 2 65). This explains the negative option prices and other inconsistencies in the top
left-hand part of Table 20.5. This example illustrates the main problem associated with
the explicit finite difference method. Because the probabilities in the associated tree may
be negative, it does not necessarily produce results that converge to the solution of the
differential equation.28

When the change-of-variable approach is used (see equations (20.36) to (20.39)), the
probability that Z = ln S will decrease by AZ, stay the same, and increase by AZ are

At E 2 At 2
2A2“ q U/2)+2AZ2G

A
1-402

A22
At I 2 At 2

2Az“- q _ G /2) + ZAZZU
respectively. These movements in Z correspond to the stock price changing from S to
Se'AZ, S, and Se“, respectively. If we set AZ :a~/3At, then the tree and the
probabilities. are identical to those for the trinomial tree approach discussed in
Section 20.4.

Other Finite Difference Methods /
Many of the other finite difference methods that have been proposed have some of the
features of the explicit finite difference method and some features of the implicit finite
difference method.

In what is known as the hopseoteh method, we alternate between the explicit and
implicit calculations as we move from nodeto node. This is illustrated in Figure 20.18.
At each time, we first do all the calculations at the “explicit nodes” (E) inthe usual way.
The “implicit nodes” (I) can then be handled without solving a set of simultaneous
equations because the values at the adjacent. nodes have already been calculated.

28 J. Hull and A. White, “Valuing Derivative Securities Using the Explicit Finite Difference Method,”
Journal of Financial and Quantitative Analysis, 25 (March 1990): 87-100, show how this problem can be
overcome. In the situation considered here it is suflicient to construct the grid in ln S rather than S to ensure
convergence.



Basic Numerical Procedures 465
l"‘.‘[Z I. ‘. .9'_'. _' IL". .f.;?I~_"‘L . J1\ '--__ '. ..,- _ __ .. . I" ‘.11 I1 "--L J1. .‘ - "I -'9 -';f..' ...?-‘(T‘§1'l"3“I'l'-:"--§‘731.’ 1:‘~E;.$I .‘."'.'Ti'_ T-_‘_.-T7 ‘L II i. T.1".:.‘_L._.-‘Til _ '.}I=*l-'1.'L‘-A._:-»‘-"’ ‘-1. ....f..1.L.;.I..I.

Figure 20.18 The hopscotch method. I indicates node at which implicit calculations
are done; E indicates node at which explicit calculations are done.

A Asset
price

I Boundary

9099090 0990

01 0E 0I 0E 0I 0

O

Boundary

0E 01 0E 01 0E

01 0E 01 0E 0I 0

r O " O O 9 I G >

Boundary Time

EFL-1-’?\‘ -‘I1 J5’; ilk!-*_1¢ 5{f: >'.L'1'a'§1=§"'.-’:¢I1‘\L‘~'l3‘JJ‘?‘22sA'“'-_‘3‘l‘ '~€i9'i'5I .‘ ‘.¥...Zl..._,.,.3.S\"E"Z5 LIFE? ‘ Ié':'>.?!£'£ 'J".‘°’..."L' '--

The Crank—Nicolson method is an average of the explicit and implicit methods. For
the implicit method, equation (20.27) gives

fi,j = aj fi—l,j-1 + bj fr-1,; + Cjfi-1,j+1

For the explicit method, equation (20.34) gives

ft-1,1: all fi,j-1 '1' bl fig; + Ci fi,j+1

The Crank—Nicolson method averages these two equations to obtain

fz,j '1' fr-1.; = aj ft-1,;-1 + bj ft-1,; + Cj fi-l,j+1 + a;fi,j~1+ bi fi,j "l" Ci fi,j+l

Puttin
g ' _ >|= b* * 1/

gi,j — .fl',_]'__a_]..fl',_].-1 - jfi,j "'6'," fi,j+1
gives

91;; -'= aj fi—-1,j—l +19; ft-1,; +6; fi—l,j+1 "" ft-1,;

This shows that implementing the Crank—Nicolson method is similar to implementing
the implicit finite difference method. The advantage of the Crank—Nicolson method is
that it has faster convergence than either the explicit or implicit method.

Applications of Finite Difference Methods
Finite difference methods can be used for the same types of derivative pricing problems
as tree approaches. They can handle American-style as well as European-style deriva-
tives but cannot easily» be used in situations where the payoff from a derivative depends
on the past history of the underlying variable. Finite difference methods can, at the
expense of a considerable increase in computer time, be used when there are several
state variables. The grid in Figure 20.15 then becomes multidimensional.
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The method for calculating Greek letters is similar to that used for trees. Delta,
gamma, and theta can be calculated directly from the f,-, 1- values on the grid. For vega,
it is necessary to make a small change to volatility and recalculate the value of the
derivative using the same grid.

SUMMARY

We have presented three different numerical procedures for valuing derivatives when no
analytic solution is available. These involve the use of trees, Monte Carlo simulation,
and finite difference methods.

Binomial trees assume that, in each short interval of time At, a stock price either moves
up by a multiplicative amount u or down by a multiplicative amount d. The sizes of u and
a’ and their associated probabilities are chosen so that the change in the stock price has
the correct mean and standard deviation in a risk-neutral world. Derivative prices are
calculated by starting at the end of the tree and working backwards. For an American
option, the value at a node is the greater of (a) the value if it is exercised immediately
and (b) the discounted expected value if it is held for a further period of time At.

Monte Carlo simulation involves using random numbers to sample many different
paths that the variables underlying the derivative could follow in a risk-neutral world.
For each path, the payoff is calculated and discounted at the risk-free interest rate. The
arithmetic average of the discounted payoffs is the estimated value of the derivative.

Finite difference methods solve the underlying differential equation by converting it
to a difference equation. They are similar to tree approaches in that the computations
work back from the end of the life of the derivative to the beginning. The explicit finite
difference method is functionally the same as using a trinomial tree. The implicit finite
difference method is more complicated but has the advantage that the user does not
have to take any special precautions to ensure convergence. ,

In practice, the method that is chosen is likely to depend on the characteristics of the
derivative being evaluated and the accuracy required. Monte Carlo simulation works
forward from the beginning to the end of the life of a derivative. It can be used for
European-style derivatives and can cope with a great deal of complexity as far as the
payoffs are concerned. It becomes relatively more efficient as the number of underlying
variables increases. Tree approaches and finite difference methods work fr/om the end of
the life of a security to the beginning and can accommodate American-style as well as
European-style derivatives. However, they are difficult to apply when the payoffs
depend on the past history of the state variables as well as on their current values.
Also, they are liable to become computationally very time consuming when three or
more variables are involved.
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Practice Questions (Answers in Solutions Manual)

20.1

20.2

20.3

20.4

20.5

20.6.

20.7

20.8

Which of the following can be estimated for an American option by constructing a single
binomial tree: delta, gamma, vega, theta, rho?
Calculate the price of a 3-month American put option on a non-dividend-paying stock
when the stock price is $60, the strike price is $60, the risk-free interest rate is 10% per
annum, and the volatility is 45% per annum. Use a binomial tree with a time interval of
l month.
Explain how the control variate technique is implemented when a tree is used to value
American options. .
Calculate the price of a 9-month American call option on corn futures when the durrent
futures price is 198 cents, the strike price is 200 cents, the risk-free interest rate is 8% per
annum, and the volatility is 30% per annum. Use a binomial tree with a time interval of
3 months.
Consider an option that pays off the amount by which the final stock price exceeds the
average stock price achieved during the life of the option. Can this be valued using the
binomial tree approach‘? Explain your answer.
“For a dividend-paying stock, the tree for the stock price does not recombine; but the
tree for the stock price less the present value of future dividends does recombine.”
Explain this statement.
Show that the probabilities in a Cox, Ross, and Rubinstein binomial tree are negative
when the condition in footnote 9 holds.
Use stratified sampling with 100 trials to improve the estimate of rt in Business Snap-
shot 20.1 and Table 20.1.
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20.9

20.10

20.11

20.12

20.13

20.14.

20.15

20.16

20.17

20.18

20.19

CHAPTER 20

Explain why the Monte Carlo simulation approach cannot easily be used for American-
style derivatives. Q
A 9-month American put option on a non-dividend-paying stock has a strike price of
$49. The stock price is $50, the risk-free rate is 5% per annum, and the volatility is 30%
per annum. Use a three-step binomial tree to calculate the option price.
Use 9a three-time-step tree to value a 9-month American call option on wheat futures. The
current futures price is 400 cents, the strike price is 420 cents, the risk-free rate is 6%, and
the volatility is 35% per annum. Estimate the delta of the option from your tree.
A 3-month American call option on a stock has a strike price of $20. The stock price is $20,
the risk-free rate is 3% per annum, and the volatility is 25 % per annum. A dividend of $2 is
expected in 1.5 months. Use a three-step binomial tree to calculate the option price.
A l-year American put option on a non-dividend-paying stock has an exercise price of
$18. The current stock price is $20, the risk-free interest rate is 15% per annum, and the
volatility of the stock price is 40% per annum. Use the DerivaGem software with four
3-month time steps to estimate the value of the option. Display the tree and verify that
the option prices at the final and penultimate nodes are correct. Use DerivaGem to value
the European version of the option. Use the control variate technique to improve your
estimate of the price of the American option. . . .
A 2-month American put option on a stock index has an exercise price of 480. The
current level of the index is 484, the risk-free interest rate is 10% per annum, the
dividend yield on the index is 3% per annum, and the volatility of the index is 25%
per annum. Divide the life of the option into four half-month periods and use the tree
approach to estimate the value of the option.
How can the control variate approach improve the estimate of the delta of an American
option when the tree approach is used?
Suppose that Monte Carlo simulation is being used to evaluate a European call option
on a non-dividend-paying stock when the volatility is stochastic. How could the control
variate and antithetic variable technique be used to improve numerical efficiency‘?
Explain why it is necessary to calculate six values of the option in each simulation trial
when both the control variate and the antithetic variable technique are used.
Explain how equations (20.27) to (20.30) change when the implicit finite difference
method is being used to evaluate an American call option on a currency. /9
An American put option on a non-dividend-paying stock has 4 months to maturity. The
exercise price is $21, the stock price is $20, the risk-free rate of interest is 10% per
annum, and the volatility is 30% per annum. Use the explicit version of the finite
difference approach to value the option. Use stock price intervals of $4 and time
intervals of 1 month.
The spot price of copper is $0.60 per pound. Suppose that the futures prices (dollars per
pound) are as follows:

3 months 0.59
6 months 0.57
9 months 9 0.54

12 months 0.50

The volatility of the price of copper is 40% per annum and the risk-free rate is 6% per
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20.20.

20.21

20.22

20.23

20.24

annum. Use a binomial tree to value an American call option on copper with an
exercise price of $0.60 and a time to maturity of 1 year. Divide the life of the option
into four 3-month periods for the purposes of constructing the tree. (Hint: As explained
in Section 17.7, the futures price of a variable is its expected future price in a risk-
neutral world.)

Use the binomial tree in Problem 20.19 to value a security that pays off x2 in 1 year
where x is the price of copper.
When do the boundary conditions for S =0 and S-> oo affect the estimates of
derivative prices in the explicit finite difference method?
How would you use the antithetic variable method to improve the estimate of the
European option in Business Snapshot 20.2 and Table 20.2?
A company has issued a 3-year convertible, bond that has a face value of $25 and can be
exchanged for two of the company’s shares at any time. The company can call the issue,
forcing conversion, when the share price is greater than or equal to $18. Assuming that
the company will force conversion at the earliest opportunity, what are the boundary
conditions for the price of the convertible? Describe how you would use finite difference
methods to value the convertible assuming constant interest rates. Assume there is no
risk of the company defaulting. 9
Provide formulas that can be used for obtaining three random samples from standard
normal distributions when the correlation between sample i and sample j is p,-J.

Further Questions

20.25

20.26

20.27

20.28

An American put option to sell a Swiss franc for dollars has a strike price of $0.80 and a
time to maturity of 1 year. The Swiss franc’s volatility is 10%, the dollar interest rate is
6%, the Swiss franc interest rate is 3%, andthe current exchange rate is 0.81. Use a three-
step binomial tree to value the option. Estimate the delta of the option from your tree.
A 1-year American call option on silver futures has an exercise price of $9.00. The
current futures price is $8.50, the risk-free rate of interest is 12% per annum, and the
volatility of the futures price is 25% per annum. Use the DerivaGem software with four
3-month time steps to estimate the value of the option. Display the tree and vefify that
the option prices at the final and penultimate nodes are correct. Use DerivaGem to value
the European version of the option. Use the control variate technique to improve your
estimate of the price of the American option.
A 6-month American call option on a stock is expected to pay dividends of $1 per share
at the end of the second month and the fifth month. The current stock price is $30, the
exercise price is $34, the risk-free interest rate is 10% per annum, and the volatility of the
part of the stock price that will not be used to pay the dividends is 30% per annum. Use
the DerivaGem software with the life of the option divided into six time steps to estimate
the value of the option. Compare your answer with that given by Black’s approximation
(see Section 14.12).
The current value of the British pound is $1.60 and the volatility of the pound/dollar
exchange rate is 15% per annum. An American call option has an exercise price of $1.62
and a time to maturity of 1 year. The risk-free rates of interest in the United States and
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the United Kingdom are 6% per annum and 9% per annum, respectively. Use the
explicit finite difference method to value the option. Consider exchange rates at intervals
of 0.20 between 0.80 and 2.40 and time intervals of 3 months.
Answer the following questions concerned with the alternative procedures for construct-
ing trees in Section 20.4:
(a) Show that the binomial model in Section 20.4 is exactly consistent with the mean

and variance of the change in the logarithm of the stock price in time At.
Show that the trinomial model in Section 20.4 is consistent with the mean and
variance of the change in the logarithm of the stock price in time At when terms of
order (At)2 a.nd higher are ignored.
Construct an alternative to the trinomial model in Section 20.4 so that the prob-
abilities are 1/6, 2/3, and 1/6 on the upper, middle, and lower branches emanating
from each node. Assume that the branching is from S to Su, Sm, or Sd with m2 = ud.
Match the mean and variance of the change in the logarithm of the stock price
exactly.

(b)

(9)

The DerivaGem Application Builder functions enable you to investigate how the prices
of options calculated from a binomial tree converge to the correct value as the number of
time steps increases. (See Figure 20.4 and Sample Application A in DerivaGem.)
Consider a put option on a stock index where the index level is 900, the strike price is
900, the risk-free rate is 5%, the dividend yield is 2%, and the time to maturity is 2 years.
(a) Produce results similar to Sample Application A on convergence for the situation

where the option is European and the volatility of the index is 20%.
(b) Produce results similar to Sample Application A on convergence for the situation

where the option is American and the volatility of the index is 20%.
(c) Produce a chart showing the pricing of the American option when the volatility is

20% as a function of the number of time steps when the control variate technique is
used.

(d) Suppose that the price of the American option in the market is 85.0. Produce, a chart
showing the implied volatility estimate as a function of the number of time steps.

Estimate delta, gamma, and theta from the tree in Example 20.3. Explain howeach can
be interpreted.
How much is gained from exercising early, at the lowest node at the 9-month point in
Example 20.4? /.
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Value at Risk

Chapter 18 examined measures such as delta, gamma, and vega for describing different
aspects of the risk in a portfolio of derivatives. A financial institution usually calculates
each of these measures each day for every market variable to which it is exposed. Often
there are hundreds, or even thousands, of these market variables. A delta-gamma—vega
analysis, therefore, leads to a very large number of different risk measures being
produced each day. These risk measures provide valuable information for the financial
institution’s traders. However, they do not provide a way of measuring the total risk to
which the financial institution is exposed.

Value at Risk (VaR) is an attempt to provide a single number summarizing the total
risk in a portfolio of financial assets. It has become widely used by corporate treasurers
and fund managers as well as by financial institutions. Bank regulators also use VaR in
determining the capital a bank is required to keep for the risks it is bearing.

This chapter explains the VaR measure and describes the two main approaches for
calculating it. These are known as the historical simulation approach and the model-
building approach. '

THE VaR MEASURE ,
When using the value-at-risk measure, an analyst is interested in making a statement of
the following form:

I am X percent certain there will not be a loss of more than V dollars in the next N days.

The variable V is the VaR of the portfolio. It is a function of two parameters: the time
horizon (N days) and the confidence level (X%). It is the loss level over N days that has
a probability of only (100 - X)% of being exceeded. Bank regulators require banks to
calculate VaR for market risk with N --: 10 and X = 99 (see the discussion in Business
Snapshot 21.1).

When N days is the time horizon and X% is the confidence level, VaR is the loss
corresponding to the (100 - X)th percentile of the distribution of the gain in the value of
the portfolio over the next N days. (Note that, when we look at the probability
distribution of the gain, a loss is a negative gain and VaR is concerned with the left
tail of the distribution. When we look at the probability distribution of the loss, a gain is

471
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How Bank Regulators Us_e_,VaR 5 1 1 _ .
. '<. , - . . - ;

I . ._ - , - . . 1

The_ Basel ‘~C-ommittee on Bank Supervision is a committee of the world’s bank.
regulators ithat__9_mee'_ts(regularly in Basel, Switzerland. In.l9889it published what has
become known "as Basel I. This is an agreement between the regulators on how the
capital a ‘bank is required to hold for credit riskshould be calculated. Later" the'3Basel
Committee (published The ‘1996 Amendment, which was implemented‘ in "-1998
=requi’iQe’d banks Ito", ho1dit$‘apital',for-market risk as well as credit rislc,.9,'1T?l:i,e',_ia1nendinent
distinguished -'betweenfEa,bank’s9;trading9_boOk'?_and its -banking.*boo:l§j.;9‘The
book:-9669561518 primarily of loans and is not ‘usually revalued. on a "regular basis for
manage'rialI‘.and -‘accounting purposes. The trading book consists of-the myriadlof
different instruments’, that are traded by the blank (stocks, bonds, swaps, fOI'W&I‘Cl§
contracts, options, etc.) and is normally revalued daily. 9. _ 1 " J ‘ Y

T" The 1996 amendment calculated capital for the trading book using the VaRi
measure with. N = 10. and X = 99. This means that it focused on the revaluationi
loss over -a 310-day period that is expected to be exceeded only 1% of the time. -The

- capital it required thebank to hold k times this VaR_measure (with anfadjustment
for what are [termed specific risks),~‘The multiplier -;_k was chosen ‘on a bank-by-bank
basis 'by‘_the regulators and must beat le'ast_3.0. For abank with "excellent well-tested

9 VaR~est_iinat.ion proced'_ures,'it was likely that be set equal-to_the minimum
._valu_e io'fi3.0. Forotfher 9-banks, iteould behigher. Following‘.'the credit crisis thati
started in 200,7,‘ the rules wererevised. 3 ‘ 3 9 3' 1 . L

-- . .. . ................... . .- . .......................... ...... ........... ................................................................. ------------------------------ 9 ' - =

a negative loss and VaR is concerned with the right tail of the distribution.) For
example, when N = 5 and X : 97, VaR is the third percentile of the distribution of
gain in the value of the portfolio over the next 5 days. VaR is illustrated for the situation
where the change in the value of the portfolio is approximately normally distributed in
Figure 21.1. ‘

VaR is an attractive measure because it is easy to understand. In essence, it asks
the simple question “How bad can things get?” This is the question all senior
managers want answered. They are very comfortable with the idea of compressing
all the Greek le.tters for all the market variables underlying a portfolio into a single
number. /9

If we accept that it is useful to have a single number to describe the risk of a portfolio,
an interesting question is whether VaR is the best alternative. Some researchers have
argued that VaR may tempt traders to choose a portfolio with a return distribution
similar to that in Figure 21.2. The portfolios in Figures 21.1 and 21.2 have the same
VaR, but the portfolio in Figure 21.2 is much riskier because potential losses are much
larger.

A measure that deals with the problem we have just mentioned is expected short-
fall.‘ Whereas VaR asks the question “How bad can things get?”, expected shortfall
asks “If things do get bad, how much can the company expect to lose?” Expected
shortfall is the expected loss during an N-day period conditional that an outcome in

1 This measure, which is also known as C- VaR or tail loss, was suggested by P. Artzner, F. Delbaen, J .-M. Eber,
and D. Heath, “Coherent Measures of Risk,” Mathematical Finance, 9 (1999): 203-28. These authors define
certain properties that a good risk measure should have and show that the standard VaR measure does not have
all of them. For more details, see J . Hull, Risk Management and Financial Institutions, 2nd edn., 2010.
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Figure 21.1 Calculation of VaR from the probability distribution of the change in the
portfolio value; confidence level is X%. Gains in portfolio value are positive; losses
are negative.

(100-X)%

I .

VaR 108$ Gain (loss) over N days

'*F.Z§_*.'!:1R;-:1 9'3 '.‘.*!_-5771' *'T.‘;1'-'-'-' ' 7" ' _ . ' ‘ -' " ‘ 4"? _'. 1' _ _ *2‘. 119-'-Til. §§"""""9'-“.4l".'i.”' ' -J :<Z,§2r-T.'in'€z"§?12.l'§ ".l1'Z€ 37-£3137

I51-i9 -‘"|"7F.”'1 . ‘J I".>'9¢"'$* “'TI"5"T4"."'_7. '1 “'1' T uni 7-:~ ‘Y3-\'G " 4- ‘T 14? 1' - 2‘!-T~‘?3*-"-'3' ‘ '-if'\'T!.f§.."5"'7§'iA.'§'.1 C‘?-'!7}‘7L".'-' 7'1 -'7.-"1

Figure 21.2 Alternative situation to Figure 21.1. VaR is the same, but the potential
loss is larger.
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the (100 — X)% left tail of the distribution occurs. For example, with X = 99 and
N = 10, the expected shortfall is the average amount the company loses over a 10-day
period when the loss is in the 1% tail of the distribution.

In spite of its weaknesses, VaR (not expected shortfall) is the most popular measure
of risk among both regulators and risk managers. We will therefore devote mosf of the
rest of this chapter to how it can be measured.

The Time Horizon
VaR has two parameters: the time horizon N, measured in days, and the confidence
level X . In practice, analysts almost invariably set N :: 1 in the first instance. This is
because there is not enough data to estimate directly the behavior of market variables
over periods of time longer than 1 day. The usual assumption is

N-day VaR = 1-day VaR >< ~/N
This formula is exactly true when the changes in the value of the portfolio on successive
days have independent identical normal distributions with mean zero. In other cases it
is an approximation.
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Business Snapshot 21.1 explains that the 1996 amendment to Basel I required a
bank’s capital for market risk to be at least Il’11E€_ times the 10-day 99% VaR. Given the
way a 10-day VaR is calculated, this is 3 >< \/ 10 = 9.49 times the 1-day 99% VaR.

HISTORICAL SIMULATION

Historical simulation is one popular way of estimating VaR. It involves using past data
as a guide to what will happen in the future. Suppose that we want to calculate VaR for
a portfolio using a one-day time horizon, a 99% confidence level, and 501 days of data.
(The time horizon and confidence level are those typically used for a market risk VaR
calculation; 501 is a popular choice for the number of days of data used because, as we
shall see, it leads to 500 scenarios being created.) The first step is to identify the market
variables affecting the portfolio. These will typically be interest rates, equity prices,
commodity prices, and so on. All prices are measured in the domestic currency. For
example, one market variable for a German bank is likely to be the S&P 500 measured
in euros.

Data are collected on movements in the market variables over the most recent
501 days. This provides 500 alternative scenarios for what can happen between today
and tomorrow. Denote the first day for which we have data as Day 0, the second day as
Day 1, and so on. Scenario 1 is where the percentage changes in the values of all
variables are the same as they were between Day 0 and Day 1, Scenario 2 is where they
are the same as between Day 1 and Day 2, and so on. For each scenario, the dollar
change in the value of the portfolio between today and tomorrow is calculated. This
defines a probability distribution for daily loss (gains are negative losses) in the value of
our portfolio. The 99th percentile of the distribution can be estimated as the fifth-
highest loss.2 The estimate of VaR is the loss when we are at this 99th percentile point.
We are 99% certain that we will not take a loss greater than the VaR estimate if the
changes in market variables in the last 501 days are representative of what will happen
between today and tomorrow. Q

To express the approach algebraically, define 12,- as the value of a market variable on
Day i and suppose that today is Day n. The ith scenario in the historical simulation
approach assumes that the value of the market variable tomorrow will be

/"
. _ . U.

Value under ith scenario : 0,, -'
vi-1

Illustration: Investment in Four Stock lndices
To illustrate the calculations underlying the approach, suppose that an investor in the
United States owns, on September 25, 2008, a portfolio worth $10 million consisting of
investments in four stock indices: the Dow Jones Industrial Average (DJIA) in the US,
the FTSE 100 in the UK, the CAC 40 in France, and the Nikkei 225 in Japan. The
value of the investment in each index on September 25, 2008, is shown in Table 21.1.
An Excel spreadsheet containing 501 days of historical data on the closing prices of the

2 There are alternatives here. A case can be made for using the fifth-highest loss, the sixth-highest loss, or an
average of the two. In Excel’s PERCENTILE function, when there are n observations and k is an integer, the
k/(n - 1) percentile is the observation ranked k + 1. Other percentiles are calculated using linear interpolation.
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Table 21.1

Index
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Investment portfolio used for VaR calculations.

Portfolio value ($0O0s)

DJIA
FTSE 100
CAC 40 .
Nikkei 225

$4,000
$3,000
$1,000
$2,000

Total $10,000
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four indices, together with exchange rates and a complete set of VaR calculations are on
the author’s website:3

WWw.rotrria_n.utoronto.ca/~hul.l/OFOD/VaRExarnp1e

The quoted values of the FTSE 100, CAC 40, and Nikkei 225 are adjusted for exchange
rate changes so that they are measured in US dollars. For example, the FTSE 100 was
5197.00 on September 25, 2008, when the exchange rate was 1.8472 USD per GBP. It
was 5823.40 on August 10, 2006, when the exchange rate was 1.8918 USD per GBP.
When measuring in USD, if the index is set to 5197.00 on September 25, 2008 it is

1.8918
5,823.40 >< _ 5,964.00

on August 10, 2006. An extract from the data after exchange rate adjustments have
been made is shown in Table 21.2.

September 25, 2008, is an interesting date to choose in evaluating an equity invest-
ment. The turmoil in credit markets, which started in August 2007, was over a year old.
Equity prices had been declining for several months. Volatilities were increasing.
Lehman Brothers had filed for bankruptcy ten days earlier. The Treasury Secretary’s
$700 billion Troubled Asset Relief Program (TARP) had not yet been passed by the
United States Congress.

 fiKT7LL."§IIZ'$. .:T"'.."Z1-""."I“.i"121fi‘;':....lI»l3‘3Tl'72';I'J'§Y§4~’iE‘Y-‘ ‘T '.‘;':"'_-' ‘.. 5.'.’."." BIZ Z". *7 x 3 ‘-3 1’-3'5‘ f_""-if ' ~‘ I E

Table 21.2 Data on stock indices for historical simulation after
exchange rate adjustments.

Day Date DJIA FTSE 100 CAC 40 Nikkei 225

L»->l\)>—*O

Aug. 7, 2006
Aug. 8, 2006
Aug. 9, 2006
Aug. 10, 2006

499 Sept. 24, 2008
500 Sept. 25, 2008

K".-3"‘ I 2.-""77-"

3

11,219.38
11,173.59
11,076.18
11,124.37

10,825.17
11,022.06

6,026.33
6,007.08
6,055.30
5,964.00

5,109.67
5,197.00

4,345.08
4,347.99
4,413.35
4,333.90

4,113.33
4,226.81

14,023.44
14,300.91
14,467.09
14,413.32

12,159.59
12,006.53

To keep the example as straightforward as possible, only days when all four indices traded were included in
the compilation of the data. This is why the 501 items of data extend from August 7, 2006 to September 25,
2008. In practice, if the analysis were carried out by a US financial institution, an attempt might well be made
to fill in data for days that were not US holidays.
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Table 21.3 Scenarios generated for September 26, 2008, using data in Table 21.2.

Scenario DJIA FTSE 100 CAC 40 Nikkei 225 Portfolio value Loss
number ($00Os) ($000.9)

1 10,977.08 5,180.40 4,229.64 12,244.10 l0,014.334 —14.334
2 10,925.97 5,238.72 4,290.35 12,146.04 l0,027.481 —27.481

3 11,070.01 5,118.64 4,150.71 11,961.91 9,946.736 53.264
0 0 0 0 I 0

499 10,831.43 5,079.84 4,125.61 12,115.90 9,857.465 142.535
500 11,222.53 5,285.82 4,343.42 11,855.40 10,126.439 —126.439
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Table 21.3 shows the values of the market variables on September 26, 2008, for the
scenarios considered. Scenario 1 (the first row in Table 21.3) shows the values of market
variables on September 26, 2008, assuming that their percentage changes between
September 25 and September26, 2008, are the same as they were between August 7
and August 8, 2006; Scenario 2 (the second row in Table 21.3) shows the values of
market variables on September 26, 2008, assuming these percentage changes are the
same as those between August 8 and August 9, 2006; and so on. In general, Scenario i
assumes that the percentage changes in the indices between September 25 and Septem-
ber 26 are the same as they were between Day i — 1 and Day i for 1 < i < 500. The 500
rows in Table 21.3 are the 500 scenarios considered.

The DJIA was 11,022.06 on September 25, 2008. On August 8, 2006, it was 11,173.59,
down from 11,219.38 on August 7, 2006. Therefore the value of the DJIA under

l$¢Yl'fE§ 1? ~ "

Figure 21.3 Histogram of losses for the scenarios considered between September 25
and September 26, 2008.
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Scenario 1 is 11,173.59 ,

Similarly, the values of the FTSE 100, the CAC 40, and the Nikkei 225 are 5,180.40,
4,229.64, and 12,244.10, respectively. Therefore the value of the portfolio under
Scenario 1 is (in $0008)

10,977.08 5,180.40
X + X

4 229.64 12 224.10
+1,000 x  +2,000 >< = l0,0l4.334

The portfolio therefore has a gain of $14,334 under Scenario 1. A similar calculation is
carried out for the other scenarios. A histogram for the losses is shown in Figure 21.3.
(The bars on the histogram represent losses ($0008) in the ranges 450 to 550, 350 to 450,
250 to 350, and so on.)

The losses for the 500 different scenarios are then ranked. An extract from the results
of doing this is shown in Table 21.4. The worst scenario is number 494 (where indices
are assumed to change in the same way that they did at the time of the bankruptcy of
Lehman Brothers). The one-day 99% value at risk can be estimated as the fifth-worst
loss. This is $253,385.

' As explained in Section 21.1, the ten-day 99°/6 VaR is usually calculated as \/1.0 times
the one-day 99% VaR. In this case the ten-day VaR would therefore be

4/E >< 253,385 = 801,274
or $801,274.

2'4

Table 21.4 Losses ranked from highestto
lowest for 500 scenarios.

Scenario number Loss ($0008)

494 477.841
339 345.435
349 282.204 ”
329 277.041
487 253.385
227 217.974
131 205.256
238 201.389
473 191.269
306 191.050
477 185.127
495 184.450
376 182.707
237 180.105
365 172.224
._, ‘, ___.-_. ‘-
AA-V ¢._ - .
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Each day the VaR estimate in our example would be updated using the most recent
501 days of data. Consider, for example, what happens on September 26, 2008
(Day 501). We find out new values for all the market variables and are able to calculate
a new value for our portfolio. We then go through the procedure we have outlined to
calculate a new VaR. Data on the market variables from August 8, 2006, to September
26, 2008 (Day 1 to Day 501) are used in the calculation. (This gives us the required 500
observations on the percentage changes in market variables; the August 7, 2006, Day 0,
values of the market variables are no longer used.) Similarly, on the next trading day
September 29, 2008 (Day 502), data from August 9, 2006, to September 29, 2008 (Day 2
to Day 502) are used to determine VaR, and so on. I

In practice, a financial institution’s portfolio is, of course, considerably more
complicated than the one we have considered here. It is likely to consist of thousands
or tens of thousands of positions. Some of the bank’s positions are typically in forward
contracts, options, and other derivatives. The VaR is calculated at the end of each day
on the assumption that the portfolio will remain unchanged over the next business day.
If a bank’s trading during a day leads to a more risky (less risky) portfolio, the ten-day
99% VaR typically increases (decreases) over the previous day’s value.

It is often necessary to consider hundreds or even thousands of market variables in a
VaR calculation. In the case of interest rates, a bank typically needs the Treasury and
LIBOR/swap term structure of zero-coupon interest rates in a number of different
currencies in order to value its portfolio. The market variables that are considered are
the ones from which these term structures are calculated (see Chapter 4 for the
calculation of the term structure of zero rates). There might be as many as ten market
variables for each zero curve to which the bank is exposed.

MODEL-BUILDING APPROACH

The main alternative to historical simulation is the model-building approach. Before
getting into the details of the approach, it is appropriate to mention one issue
concerned with the units for measuring volatility. 1

Daily Volatilities
In option pricing, time is usually measured in years, and the volatility/of an asset is
usually quoted as a “volatility per year”. When using the model-building approach to
calculate VaR, time is usually measured in days and the volatility of an asset is usually
quoted as a “volatility per day.”

What is the relationship between the volatility per year used in option pricing and the
volatility per day used in VaR calculations? Let us define om, as the volatility per year
of a certain asset and oday as the equivalent volatility per day of the asset. Assuming 252
trading days in a year, equation (14.2) gives the standard deviation of the continuously
compounded return on the asset in 1 year as either oyea, or oday\/E. It follows that

Uyear : Uday V
OI'

U_ year
Gday — _i_'\/252

so that daily volatility is about 6% of annual volatility.
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As pointed out in Section 14.4, oday is approximately equal to the standard deviation
of the percentage change in the asset price in one day. For the purposes of calculating
VaR we assume exact equality. The daily volatility of an asset price (or any other
variable) is therefore defined as equal to the standard deviation of the percentage
change in one day.

Our discussion in the next few sections assumes that estimates of daily volatilities and
correlations are available. Chapter 22 discusses how the estimates can be produced.

Single-Asset Case
Consider how VaR is calculated using the model-building approach in a very simple
situation where the portfolio consists of a position in a single stock: $ 10 million in shares
of Microsoft. We suppose that N : 10 and X : 99, so that we are interested in the loss
level over 10 days that we are 99 % confident will not be exceeded. Initially, we consider a
1-day time horizon.

Assume that the volatility of Microsoft is 2% per day (corresponding to about 32%
per year). Because the size of the position is $10 million, the standard deviation of daily
changes in the value of the position is 2% of $10 million, or $200,000.

It is customary in the model-building approach to assume that the expected change in
a market variable over the time period considered is zero. This is not strictly true, but it
is a reasonable assumption. The expected change in the price of a market variable over
a short time period is generally small when compared with the standard deviation of the
change. Suppose, for example, that Microsoft has an expected return of 20% per
annum. Over a 1-day period, the expected return is 0.20/252, or about 0.08%, whereas
the standard deviation of the return is 2%. Over a 10-day period, the expected return is
0.08 >< 10, or about 0.8%, whereas the standard deviation of the return is 2~/10, or
about 6.3%. q

So far, we have established that the change in the value of the portfolio of Microsoft
shares over a 1-day period has a standard deviation of $200,000 and (at least approxi-
mately) a mean of zero. We assume that the change is normally distributed.4 From the
tables at the end of this book, N(-2.33) = 0.01. This means that there is a 1%
probability that a normally distributed variable will decrease in value by more than
2.33 standard deviations. Equivalently, it means that we are 99% certain that a normally
distributed variable will not decrease in value by more than 2.33 standard deviations.
The 1-day 99% VaR for our portfolio consisting of a $10 million position in Microsoft
is therefore

2.33 >< 200,000 = $466,000

As discussed earlier, the N-day VaR is calculated as 8/7V’ times the 1-day VaR. The
10-day 99% VaR for Microsoft is therefore

466,000 X 8/I6 = $1,473,621
Consider next a portfolio consisting of a $5 million position in AT&T, and suppose

the daily volatility of AT&T is 1% (approximately 16% per year). A similar calculation

4 To be consistent with the option pricing assumption in Chapter 14, we could assume that the price of
Microsoft is lognormal tomorrow. Because 1 day is such a short period of time, this is almost
indistinguishable from the assumption we do make—that the change in the stock price between today and
tomorrow is normal.
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to that for Microsoft shows that the standard deviation of the change in the value of the
portfolio in 1 day is

5,000,000 >< 0.01 = 50,000

Assuming the change is normally distributed, the 1-day 99% VaR is

50,000 >< 2.33 = $116,500
and the 10-day 99% VaR is

116,500 x \/10 = $368,405

Two-Asset Case '
Now consider a portfolio consisting of both $10 million of Microsoft shares and
$5 million of AT&T shares. We suppose that the returns on the two shares have a
bivariate normal distribution with a correlation of 0.3. A standard result in statistics
tells us that, if two variables X and Y have standard deviations equal to ox and Uy with
the coeflicient of correlation between them equal to p, the standard deviation of X + Y
is given by

UX+Y I \/“fr + “fr + zpaxgr

To apply this result, we set X equal to the change in the value of the position in
Microsoft over a 1-day period and Y equal to the change in the value of the position in
AT&T over a 1-day period, so that

6,, = 200,000 and 6-, = 50,000
The standard deviation of the change in the value of the portfolio consisting of both
stocks over a 1-day period is therefore

,/200.0002 + 50, 0002 + 2 >< 0.3 >< 200,000 >< 50,000 I 220,227 .
The mean change is assumed to be zero and the change is normally distributed. So the
1-day 99% VaR is therefore

220,227 x 2.33 = $513,129 /'

The 10-day 99% VaR is \/ 10 times this, or $1,622,657.

The Benefits of Diversification
In the example we have just considered:

1. The 10-day 99% VaR for the portfolio of Microsoft shares is $1,473,621.
2. The 10-day 99% VaR for the portfolio of AT&T shares is $368,405.
3. The 10-day 99% VaR for the portfolio of both Microsoft and AT&T shares is

$1,622,657.

The amount
(1,473,621 + 368,405) — 1,622,657 = $219,369
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represents the benefits of diversification. If Microsoft and AT&T were perfectly
correlated, the VaR for the portfolio of both Microsoft and AT&T would equal the
VaR for the Microsoft portfolio plus the VaR for the AT&T portfolio. Less than
perfect correlation leads to some of the risk being “diversified away.”5

THE LINEAR MODEL .

The examples we have just considered are simple illustrations of the use of the linear
model for calculating VaR. Suppose that we have a portfolio worth P consisting of n
assets with an amount 07,- being invested in asset i (1 < i < n). Define Ax,- as the return
on asset i in one day. The dollar change in the value of our investment in asset i in one
day is oz, Ax,- and

I1

AP: Z81, Ax,- (21.1)

where AP is the dollar change in the value of the whole portfolio in one day.
In the example considered in the previous section, $10 million was invested in the first

asset (Microsoft) and $5 million was invested in the second asset (AT&T), so that (in
millions of dollars) a1 = 10, 0:2 : 5, and

AP = 10Ax1+ 5Ax2

If we assume that the Ax,- in equation (21.1) are multivariate normal, then AP is
normally distributed. To calculate VaR, we therefore need to calculate only the
mean and standard deviation of AP. We assume, as discussed in the previous
section, that the expected value of each Ax,- is zero. This implies that the mean
of AP is zero. 6

To calculate the standard deviation of AP, we define o',- as the daily volatility of the
ith asset and p,-1- as the coefficient of correlation between returns on asset i and asset j.
This means that oi is the standard deviation of Ax,-, and p,-j is the coefficient of
correlation between Ax,- and AxJ-. The variance of AP, which we will denote by 0%,,
is given by

';M= 2M= Z9R“
12of» = ,-aj 0,-oj (21.2)

This equation can also be written as

n Tl

2 2 : 2 2 E :
UPI (XiO'i-1-2 p,-jot,-oz]-(7,-o'j

i=1 i=1 j<i

The standard deviation of the change over N days is om/_1\7, and the 99% VaR for an
N-day time horizonis 2.330,“/1_V.

5 Harry Markowitz was one of the first researchers to study the benefits of diversification to a portfolio
manager. He was awarded a Nobel prize for this research in 1990. See H. Markowitz, “Portfolio Selection,”
Journal of Finance, 7, 1 (March 1952): 77-91.
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The portfolio return in one day is AP/ P. From equation (21 .2), the variance of this is

‘M;
%l

‘II

M; P xi
U)l"lUjO'l'O'j

where w,- -= at / P is the weight of the ith investment in the portfolio. This version of
equation (21.2) is the one usually used by portfolio managers.

In the example considered in the previous section, 01 = 0.02, 02 = 0.01, and
pl; = 0.3. As already noted, Oil = 10 and 012 = 5, so that

6%. = 102 >< 0.022 + 52 >< 0.012 + 2 >< 10 >< 5 >< 0.3 >< 0.02,>< 0.01: 0.0485
and UP = 0.220. This is the standard deviation of the change in the portfolio value per
day (in millions of dollars). The ten-day 99% VaR is 2.33 x 0.220 >< 8/W =
$1.623 million. This agrees with the calculation in the previous section.

Correlation and Covariance Matrices
A correlation matrix is a matrix where the entry in the ith row and jth column is the
correlation p,- 1- between variable i and j. It is shown in Table 21.5. Since a variable is
always perfectly correlated with itself, the diagonal elements of the correlation matrix
are 1. Furthermore, because p,- 1- = pj,-, the correlation matrix is symmetric. The correla-
tion matrix, together with the daily standard deviations of the variables, enables the
portfolio variance to be calculated using equation (21.2).

Instead of working with correlations and volatilities, analysts often use variances and
covariances. The daily variance var, of variable i is the square of its daily volatility:

V€:11',- Z V

The covariance cov,-j between variable i and variable j is the product of the daily
volatility of variable i, the daily volatility of variable j, and the correlation between i
and j:  

cov,¢j:o,~ojp,-j p

The equation for the variance of the portfolio in equation (21.2) can be written
' /‘

NM: am

3

OI U; I OV,-j 01,-

FIT-ii..*..lZi$&’??:?i f;T3}E.-“VI? T-‘_¥.5‘L?111‘S;F'££!B'.‘»‘5*.?J.1.3-12¢ 1‘,J'."IT 1 '_ 3-I ‘£71212; TC»??? ~r1("'%."_"D-";'!"'¢"'1K' 1 11".’ " "“"'1'?'?LI"i5'7f!""!'?‘1‘L"£'"'l‘"YT “"‘

Table 21.5 A correlation matrix: p,- 1- is the correlation between variable i and
variable j.

1 P12 P13 pln
P21 1 P23 P2”
P31 P32 1 P3”.

_ pnl 10122 pn3 ' ' ' 1 _

< ._- _ v.->--- . -, 4- .4-_~ ~--,,<,-~'—-- ,
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Table 21.6 A variance—covariance matrix: cov,-J; is the covariance between variable i
and variable j. Diagonal entries are variance: cov,-,- = var,-

VEIT1 COV12 COV13 . . . COVM

COV21 VaI'2 COV23 ' ' ' COV2n

COV31 COV32 VHT3 ' ' ' COV3n

u 0 0 0

4 c u 0

I 0 0 0

_cov,,1 cov,,2 cov,,3 var” d
.__,._- V -. .,._ _.__ _,_. . __.. _,,_-_,_, .... ,_ ._ - . .2‘l'- ~-11' -» ‘ Y .- . --‘.‘,.~ . 1 I . w ‘--‘J 1»

In a covariance matrix, the entry in the ith row and jth column is the covariance
between variable i and variable j. As just mentioned, the covariance between a
variable and itself is its variance. The diagonal entries in the matrix are therefore
variances (see Table 21.6). For this reason, the covariance matrix is sometimes called
the variance covariance matrix. (Like the correlation matrix, it is symmetric.) Using
matrix notation, the equation for the standard deviation of the portfolio just given
becomes 1

of.» : ocTCoc

where or is the (column) vector whose ith element is oi,-, C is the variance—covariance
matrix, and otT is the transpose of oi.

The variances and covariances are generally calculated from historical data. We will
illustrate this in Section 22.8 for the four-index example introduced in Section 21.2.

Handling Interest Rates
It is out of the question in the model-building approach to define a separate market
variable for every single bond price or interest rate to which a company is exposed.
Some simplifications are necessary when the model-building approach is used. One
possibility is to assume that only parallel shifts in the yield curve occur. It is then
necessary to define only one market variable: the size of the parallel shift. The changes
in the value of a bond portfolio can then be calculated using the duration relationship

I AP: —DPAy

where P is the value of the portfolio, AP is the change in P in one day, D is the
modified duration of the portfolio, and Ay is the parallel shift in 1 day.

This approach does not usually give enough accuracy. The procedure usually
followed is to choose as market variables the prices of zero-coupon bonds with standard
maturities: 1 month, 3 months, 6 months, 1 year, 2 years, 5 years, 7 years, 10 years, and
30 years. For the purposes of calculating VaR, the cash flows from instruments in the
portfolio are mapped into cash flows occurring on the standard maturity dates.
Consider a $1 million position in a Treasury bond lasting 1.2 years that pays a coupon
of 6% semiannually. Coupons are paid in 0.2, 0.7, and 1.2 years, and the principal is
paid in 1.2 years. This bond is, therefore, in the first instance regarded as a $30,000
position in 0.2-year zero-coupon bond plus a $30,000 position in a 0.7-year zero-
coupon bond plus a $1.03 million position in a 1.2-year zero-coupon bond. The
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position in the 0.2-year bond is then replaced by an equivalent position in 1-month and
3-month zero-coupon bonds; the position in the 0.7-year bond is replaced by an
equivalent position in 6-month and 1-year zero-coupon bonds, and the position in
the 1.2-year bond is replaced by an equivalent position in l-year and 2-year zero-
coupon bonds. The result is that the position in the 1.2-year coupon-bearing bond is for
VaR purposes regarded as a position in zero-coupon bonds having maturities of
1 month, 3 months, 6 months, 1 year, and 2 years.

This procedure is known as cash-flow mapping. One way of doing it is explained in
Technical Note 25 at wWw.rotman.utoronto.ca/~nu11/TechnicalNotes. Note that
cash-flow mapping is not necessary when the historical simulation approach is used.
This is because the complete term structure of interest rates can -be calculated for each
of the scenarios considered.

Applications of the Linear Model
The simplest application of the linear model is to a portfolio with no derivatives
consisting of positions in stocks, bonds, foreign exchange, and commodities. In this
case, the change in the value of the portfolio is linearly dependent on the percentage
changes in the prices of the assets comprising the portfolio. Note that, for the purposes
of VaR calculations, all asset prices are measured in the domestic currency. The market
variables considered by a large bank in the United States are therefore likely to include
the value of the Nikkei 225 index measured in dollars, the price of a 10-year sterling
zero-coupon bond measured in dollars, and so on.

An example of a derivative that can be handled by the linear model is a forward
contract to buy a foreign currency. Suppose the contract matures at time T. It can be
regarded as the exchange of a foreign zero-coupon bond maturing at time T for a
domestic zero-coupon bond maturing at time T. For the purposes of calculating VaR,
the forward contract is therefore treated as a long position in the foreign bond
combined with a short position in the domestic bond. Each bond can be handled using
a cash-flow mapping procedure.

Consider next an interest rate swap. As explained in Chapter 7, this can beregarded
as the exchange of a floating-rate bond for a fixed-rate bond. The fixed-rate bond is a
regular coupon-bearing bond. The floating-rate bond is worth par just after the next
payment date. It can be regarded as a zero-coupon bond with a maturity/, date equal to
the next payment date. The interest rate swap therefore reduces to a portfolio of long
and short positions in bonds and can be handled using a cash-flow mapping procedure.

The Linear Model and Options
We now consider how we might try to use the linear model when there are options.
Consider first a portfolio consisting of options on a single stock whose current price is
S. Suppose that the delta of the position (calculated in the way described in Chapter 18)
is 5.6 Since 8 is the rate of change of the value of the portfolio with S, it is approximately
true that

5 Z All
AS

6 Normally we denote the delta and gamma of a portfolio by A and P. In this section and the next, we use the
lower case Greek letters 8 and y to avoid overworking A.
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OI‘

AP = 5AS (21.4)
where AS is the dollar change in the stock price in 1 day and AP is, as usual, the dollar
change in the portfolio in 1 day. Define Ax as the percentage change in the stock price
in l day, so that

 A
Ax---——:-S-

S

It follows that an approximate relationship between AP and Ax is

AP: S5Ax

When we have a position in several underlying market variables that includes options,
we can derive an approximate linear relationship between AP and the Ax, similarly.
This relationship is

AP = 8,-8, Ax, (21.5)

where S, is the value of the ith market variable and 8, is the delta of the portfolio with
respect to the ith market variable. This corresponds to equation (21.1):

fl

AP=;a,-Ax,

8 with a,- : S,-8,-. Equation (21.2) or (21.3) can therefore be used to calculate the standard
deviation of AP.

Example 21.1
A portfolio consists of options on Microsoft and AT&T. The options on Micro-
soft have a delta of 1,000, and the options on AT&T have a delta of 20,000. The
Microsoft share price is $120, and the AT&T share price is $30. From equa-
tion (21.5), it is approximately true that

AP =-.120 >< 1,000 >< Ax1+ 30 >< 20,000 >< Ax;
Of

AP = l20,000Ax1 + 600,000Ax2
where AX1 and Ax; are the returns from Microsoft and AT&T in 1 day and AP is
the resultant change in the value of the portfolio. (The portfolio is assumed to be
equivalent to an investment of $120,000 in Microsoft and $600,000 in AT&T.)
Assuming that the daily volatility of Microsoft is 2% and the daily volatility of
AT&T is 1% and the correlation between the daily changes is 0.3, the standard
deviation of AP (in thousands of dollars) is

i\[(120 >< 0.02)2 -1-(600 >< 0.01)2 + 2 >< 120 >< 0.02 >< 600 >< 0.01 >< 0.3 1: 7.099

811166 1v(-1.65) == 0.05, the 5-day 95% VaR is 1.65 >< ,/5 >< 7,099 = $26,193.



486

21.5

CHAPTER 21

THE QUADRATIC MODEL

When a portfolio includes options, the linear model is an approximation. It does not
take account of the gamma of the portfolio. As discussed in Chapter 18, delta is defined
as the rate of change of the portfolio value with respect to an underlying market
variable and gamma is defined as the rate of change of the dclta with respect to the
market variable. Gamma measures the curvature of the relationship between the
portfolio value and an underlying market variable.

Figure 21.4 shows the impact of a nonzero gamma on the probability distribution of
the value of the portfolio. When gamma is positive, the probability distribution tends to
be positively skewed; when gamma is negative, it tends to be negatively skewed.
Figures 21.5 and 21.6 illustrate the reason for this result. Figure 21.4 shows the relation-
ship between the value of a long call option and the price of the underlying asset. A long
call is an example of an option position with positive gamma. The figure shows that,
when the probability distribution for the price of the underlying asset at the end of 1 day
is normal, the probability distribution for the option price is positively skewed.7
Figure 21.6 shows the relationship between the value of a short call position and the
price of the underlying asset. A short call position has a negative gamma. In this case, we
see that a normal distribution for the price of the underlying asset at the end of 1 day gets
mapped into a negatively skewed distribution for the value of the option position.

The VaR for a portfolio is critically dependent on the left tail of the probability
distribution of the portfolio value. For example, when the confidence level used is 99%,
the VaR is the value in the left tail below which there is only 1% of the distribution. As
indicated in Figures 21.4a and 21.5, a positive gamma portfolio tends to have a less
heavy left tail than the normal distribution. If the distribution of AP is normal, the
calculated VaR tends to be too high. Similarly, as indicated in Figures 2l.4b and 21.6, a
negative gamma portfolio tends to have a heavier left tail than the normal distribution.
If the distribution of AP is normal, the calculated VaR tends to be too low.  

For a more accurate estimate of VaR than that given by the linear model, both delta
and gamma measures can be used to relate AP to the Ax,-. Consider a portfolio
dependent on a single asset whose price is S. Suppose 6 and y are the delta and gamma

13 1.. H-5- ‘.'.Lf.'lT.'1-7.‘.“._‘-€.'Tf1’.'S4"l‘~l -‘;§5;'i‘>‘.‘1.".?1T"4'*.‘-I.‘ ’."':>1T-'§l.'.‘kXfZZ!.TL?- 7'-.'.'rr'¢ ‘S.’-.‘.f'.’I'Z.E‘\'.-I -'. ‘_ é . .‘.I'.“If‘JT_ if IT.‘ :.-'”'L‘ T76 ‘.13 ".‘.'.¥-' ~" '1'iQ2f;'.‘.I‘i. 7;? 7‘-1 1‘f‘.i&"’; F. ‘ Z-i."._‘.‘~' T‘ "i 11'" ~‘ 1' - ‘~l"1

Figure 21.4 Probability distribution for value of portfolio: (a) positive gamma;
(b) negative gamma.

(H) (b)
_ .-~ __~_/. , C .- - . .

. \ D. -11 ............................................................... .. .1

7 As mentioned in footnote 4, we can use the normal distribution as an approximation to the lognormal
distribution in VaR calculations.
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Figure 21.5 Translation of normal probability distribution for asset into probability
distribution for value of a long call on asset.

*1‘ Value of
long call
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Figure 21.6 Translation of normal probability distribution for asset into probability
distribution for value of a short call on asset.
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of the portfolio. From the appendix to Chapter 18, the equation

AP=8As+§mA$2

is an improvement over the approximation in equation (21.4).8 Setting

 AS
A“?

reduces this to
AP = 88 Ax + %S2y(Ax)2 (21.6)

More generally for a portfolio with n underlying market variables, with each instrument
in the portfolio being dependent on only one of the market variables, equation (21.6)
becomes

AP = Z s,-8, Ax,- + Z -1-s,-2)/,~ (Ax,-)2
z==l i=1

where Si is the value of the ith market variable, and 55,- and y,- are the delta and gamma
of the portfolio with respect to the ith market variable. When individual instruments in
the portfolio may be dependent on more than one market variable, this equation takes
the more general form

fl I I1 It 1 f

l= l= _]=

where y,- 1- is a “cross gamma” defined as

_ 82P
. 1"] T as, as,

Equation (21.7) is not as easy to work with as equation (21.1), but it can be used to
calculate moments for AP. A result in statistics known as the Cornish-Fisher expansion
can be used to estimate percentiles of the probability distribution from the moments.9

/'

MONTE CARLO SIMULATION

As an alternative to the procedure described so far, the model-building approach can be
implemented using Monte Carlo simulation to generate the probability distribution

8 The Taylor series expansion in the appendix to Chapter 18 suggests the approximation

AP : ®At+5AS+ 1)/(As)2
when terms of higher order than At are ignored. In practice, the ®At term is so small that it is usually
ignored.

9 See Technical Note 10 at www.rotman.utoronto.ca/~hu11/TechnicalNotes for details of the calculation of
moments and the use of Cornish—Fisher expansions. When there is a single underlying variable, E(AP) =-
0.5S2)/02, E(AP2) = $28261 + 0.7584)/26-4, and E(AP3) = 4.5S452)/04 + 1.87556)/306,Wl'l€l'€ Sis the value of
the variable and 0 is its daily volatility. Sample Application E in the DerivaGem Applications implements the
Cornish—Fisher expansion method for this case.
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for AP. Suppose we wish to calculate a 1-day VaR for a portfolio. The procedure is
as follows:

1. Value the portfolio today in the usual way using the current values of market
variables.

2. Sample once from the multivariate normal probability distribution of the Ax,~.10
3. Use the values of the Ax,- that are sampled to determine the value of each market

variable at the end of one day.
4. Revalue the portfolio at the end of the day in the usual way.
5. Subtract the value calculated in Step 1 from the value in Step 4 to determine a

sample AP.
6. Repeat Steps 2 to 5 many times to build up a probability distribution for AP.

The VaR is calculated as the appropriate percentile of the probability distribution of
AP. Suppose, for example, that we calculate 5,000 different sample values of AP in the
way just described. The 1-day 99% VaR is the value of AP for the 50th worst outcome;
the 1-day VaR 95% is the value of AP for the 250th worst outcome; and so on.“ The
N-day VaR is usually assumed to be the 1-day VaR multiplied by \/R.”

The drawback of Monte Carlo simulation is that it tends to be slow because a
company’s complete portfolio (which might consist of hundreds of thousands of
different instruments) has to be revalued many times.” One way of speeding things up
is to assume that equation (21.7) describes the relationship between AP and the Ax,-. We
can then jump straight from Step 2 to Step 5 in the Monte Carlo simulation and avoid the
need for a complete revaluation of the portfolio. This is sometimes referred to as the
partial simulation approach. A similar approach is sometimes used when implementing
historical simulation.

COMPARISON OF APPROACHES

We have discussed two methods for estimating VaR: the historical simulation approach
and the model-building approach. The advantages of the model-building approach are
that results can be produced very quickly and it can easily be used in conjunction with
volatility updating schemes such as those we will describe in the next chapter. The main
disadvantage of the model-building approach is that it assumes that the market variables
have a multivariate normal distribution. In practice, daily changes in market variables
often have distributions with tails that are quite diflerent from the normal distribution.
This is illustrated in Table 19.1.

The historical simulation approach has the advantage that historical data determine
the joint probability distribution of the market variables. It also avoids the need for

10 One way of doing so is given in Section 20.6.

11 As in the case of historical simulation, extreme value theory can be used to “smooth the tails” so that
better estimates of extreme percentiles are obtained.

12 This is only approximately true when the portfolio includes options, but it is the assumption that is made
in practice for most VaR calculation methods.

13 An approach for limiting the number of portfolio revaluations is proposed in F. Jamshidian and Y. Zhu
“Scenario simulation model: theory and methodology,” Finance and Stochastics, 1 (1997), 43—67.
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cash-flow mapping. The main disadvantages of historical simulation are that it is
computationally slow and does not easily allow volatility updating schemes to be used.14

One disadvantage of the model-building approach is that it tends to give poor results
for low-delta portfolios (see Problem 21.21).

STRESS TESTING AND BACK TESTING
In addition to calculating VaR, many companies carry out what is known as stress
testing. This involves estimating how a company’s portfolio would have performed
under some of the most extreme market moves seen in the last 10 to 20 years.

For example, to test the impact of an extreme movement in US equity prices, a
company might set the percentage changes in all market variables equal to those on
October 19, 1987 (when the S&P 500 moved by 22.3 standard deviations). If this is
considered to be too extreme, the company might choose January 8, 1988 (when the S&P
500 moved by 6.8 standard deviations). To test the effect of extreme movements in UK
interest rates, the company might set the percentage changes in all market variables equal
to those on April 10, 1992 (when 10-year bond yields moved by 7.7 standard deviations).

The scenarios used in stress testing are also sometimes generated by senior manage-
ment. One technique sometimes used is to ask senior management to meet periodically
and “brainstorm” to develop extreme scenarios that might occur given the current
economic environment and global uncertainties.

Stress testing can be considered as a way of taking into account extreme events that
do occur from time to time but are virtually impossible according to the probability
distributions assumed for market variables. A 5-standard-deviation daily move in a
market variable is one such extreme event. Under the assumption of a normal
distribution, it happens about once every 7,000 years, but, in practice, it is not
uncommon to see a 5-standard-deviation daily move once or twice every 10 years.

Following the credit crisis of 2007 and 2008, regulators have proposed the calculation
of stressed VaR. This is VaR based on a historical simulation of how marketvariables
moved during a period of stressed market conditions (such as those in 2008).

Whatever the method used for calculating VaR, an important reality check is back
testing. It involves testing how well the VaR estimates would have performed in the past.
Suppose that we are calculating a 1-day 99% VaR. Back testing would involve looking
at how often the loss in a day exceeded the 1-day 99% VaR that would have been
calculated for that day. If this happened on about 1% of the days, we can feel
reasonably comfortable with the methodology for calculating VaR. If it happened
on, say, 7% of days, the methodology is suspect.

PRINCIPAL COMPONENTS ANALYSIS

One approach to handling the risk arising from groups of highly correlated market
variables is principal components analysis. This takes historical data on movements in

'4 For a way of adapting the historical simulation approach to incorporate volatility updating, see J . Hull
and A. White. “Incorporating volatility updating into the historical simulation method for value-at-risk,”
Journal of Risk 1, No. 1 (1998): 5-19.
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Table 21.7 Factor loadings for US Treasury data.
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the market variables and attempts to define a set of components or factors that explain
the movements.

The approach is best illustrated with an example. The market variables we will
consider are 10 US Treasury rates with maturities between 3 months and 30 years.
Tables 21.7 and 21.8 shows results produced by Frye for these market variables using
1,543 daily observations between 1989 and 1995.15 The first column in Table 21.7 shows
the maturities of the rates that were considered. The remaining 10 columns in the table
show the 10 factors (or principal components) describing the rate moves. The first
factor, shown in the column labeled PC1, corresponds to a roughly parallel shift in the
yield curve. When there is one unit of that factor, the 3-month rate increases by
0.21 basis points, the 6-month rate increases by 0.26 basis points, and so on. The
second factor is shown in the column labeled PC2. It corresponds to a “twist” or
“steepening” of the yield curve. Rates between 3 months and 2 years move in one
direction; rates between 3 years and 30 years move in the other direction. The third
factor corresponds to a “bowing” of the yield curve. Rates at the short end and long end
of the yield curve move in one direction; rates in the middle move in the other direction.
The interest rate move for a particular factor is known as factor loading. In the example,
the first factor’s loading for the three-month rate is 0.21.16 /.

Because there are 10 rates and 10 factors, the interest rate changes observed on any
given day can always be expressed as a linear sum of the factors by solving a set of
10 simultaneous equations. The quantity of a particular factor in the interest rate
changes on a particular day is known as the factor score for that day.
..,,- - - .. - _ -..- - .-.... 4 - .. .-.- I -_-,__.._ ..- . lv"”“tM¢'-"“!If‘I\",“"" --. - -- '. 5..- - . — w. -
\ - -‘ . . ' 1 .. _ .' - _ ' ’: - u. . '_n. ' *2 1-‘l-1..J_‘ _§‘-4-. - .~ ..__‘.' 1- -1 .'-.n| \ AA?

Table 21.8 Standard deviation of factor scores.

PC] PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCIO

17.49 6.05 3.10 2.17 1.97 1.69 1.27 1.24 0.80 0.79
S . . ._ .. .. , . _ _ _ _ _| _ _ 7 _ .

'5 See J . Frye, “Principals of Risk: Finding VAR through Factor-Based Interest Rate Scenarios,” in VAR:
Understanding and Applying Value at Risk, pp. 275-88. London: Risk Publications, 1997.

16 The factor loadings have the property that the sum of their squares for each factor is 1.0.
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Figure 21.7 The three most important factors driving yield curve movements.
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The importance of a factor is measured by the standard deviation of its factor score.
The standard deviations of the factor scores in our example are shown in Table 21.8
and the factors are listed in order of their importance. The numbers in Table 21.8 are
measured in basis points. A quantity of the first factor equal to one standard
deviation, therefore, corresponds to the 3-month rate moving by 0.21 ><17.49 =
3.67 basis points, the 6-month rate moving by 0.26 x 17.49 = 4.55 basis points, and
so on.  

The technical details of how the factors are determined are not covered here. It is
sufficient for us to note that the factors are chosen so that the factor scores are
uncorrelated. For instance, in our example, the first factor score (amouifit of parallel
shift) is uncorrelated with the second factor score (amount of twist) across the
1,543 days. The variances of the factor scores (i.e., the squares of the standard
deviations) have the property that they add up to the total variance of the data. From
Table 21.8, the total variance of the original data (i.e., sum of the variance of the
observations on the 3-month rate, the variance of the observations on the 6-month rate,
and so on) is

17.492 + 6.052 + 3.102 + - - - + 0.792 = 367.9

From this it can be seen that the first factor accounts for 17.492 /367.9 : 83.1% of the
variance in the original data; the first two factors account for (17.492 + 6.052)/367.9 :
93.1% of the variance in the data; the third factor accounts for a further 2.8% of the
variance. This shows most of the risk in interest rate moves is accounted for by the first
two or three factors. It suggests that we can relate the risks in a portfolio of interest
rate dependent instruments to movements in these factors instead of considering all
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ten interest rates. The three most important factors from Table 21.7 are plotted in
Figure 21.7.17

Using Principal Components Analysis to Calculate VaR
To illustrate how a principal components analysis can be used to calculate VaR, consider
a portfolio with the exposures to interest rate moves shown in Table 21.9. A l-basis-point
change in the 1-year rate causes the portfolio value to increase by $10 million, a l-basis-
point change in the 2-year rate causes it to increase by $4 million, and so on. Suppose the
first two factors are used to model rate moves. (As mentioned above, this captures 93.1 °/6
of the variance in rate moves.) Using the data in Table 21.7, the exposure to the first
factor (measured in millions of dollars per factor score basis point) is

10 >< 0.32 +4 >< 0.35 - 8 >< 0.36 - 7 x 0.36 + 2 >< 0.36 == -0.08

and the exposure to the second factor is

10 >< (-0.32) +4 x (-0.10) - 8 x 0.02 - 7 x 0.14 +2 x 0.17 : -4.40

Suppose that fl and f2 are the factor scores (measured in basis points). The change in
the portfolio value is, to a good approximation, given by

AP = -0.08;, - 4.40f_,_
The factor scores are uncorrelated and have the standard deviations given in Table 21.8.
The standard deviation of AP is therefore

\/0.0s2 >< 17.492 + 4.402 >< 6.052 =_- 26.66
Hence, the 1-day 99% VaR is 26.66 x 2.33 = 62.12. Note that the data in Table 21.9
are such that there is very little exposure to the first factor and significant exposure to
the second factor. Using only one factor would significantly understate VaR (see
Problem 21.11). The duration-based method for handling interest rates, mentioned in
Section 21.4, would also significantly understate VaR as it considers only parallel shifts
in the yield curve. ‘

A principal components analysis can in theory be used for market variables other
than interest rates. Suppose that a financial institution has exposures to a number of
different stock indices. A principal components analysis can be used to identify

-ax _:‘.»\.1~"....r; "W-. Ira .CFZ"f;<r'l ~1 i. ' '. .11 ;1'.f.;' '. :'.~-',_',="s'I'“£"i:"."-~'Y.3 i ‘..'~_+."-2 ,.'.'_:_.'.~I~,-1_' .- J: . ‘_i' -*:.;".= .-s;7,'_~f;,_1_"',

Table 21.9 Change in portfolio value for a l-basis-point
rate move (8 millions).

I -year 2-year 3-year 4-year 5-year
rate rate rate rate rate

+10 +4 -8 -7 +2
. ' ‘ ' v ' I ' .

111- 

'7 Similar results to those described here, in respect of the nature of the factors and the amount of the total
risk they account for, are obtained when a principal components analysis is used to explain the movements in
almost any yield curve in any country.
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factors describing movements in the indices and the most important of these can be
used to replace the market indices in a VaR analysis. How effective . a principal
components analysis is for a group of market variables depends on how closely
correlated they are.

As explained earlier in the chapter, VaR is usually calculated by relating the actual
changes in a portfolio to percentage changes in market variables (the Ax,~). For a VaR
calculation, it may therefore be most appropriate to carry out a principal components
analysis on percentage changes in market variables rather than actual changes.

SUMMARY

A value at risk (VaR) calculation is aimed at making a statement of the form: “We
are X percent certain that we will not lose more than V dollars in the next N days.”
The variable V is the VaR, X ‘/6 is the confidence level, and N days is the time
horizon.

Une approach to calculating VaR is historical simulation. This involves creating a
database consisting of the daily movements in all market variables over a period of
time. The first simulation trial assumes that the percentage changes in each market
variable are the same as those on the first day covered by the database; the second
simulation trial assumes that the percentage changes are the same as those on the
second day; and so on. The change in the portfolio value, AP, is calculated for each
simulation trial, and the VaR is calculated as the appropriate percentile of the
probability distribution of AP. 2 2  

An alternative is the model-building approach. This is relatively straightforward if
two assumptions can be made: 6

1. The change in the value of the portfolio (A P) is linearly dependent on percentage
changes in market variables.

2. The percentage changes in market variables are multivariate normally distributed.

The probability distribution of AP is then normal, and there are analytic formulas for
relating the standard deviation of AP to the volatilities and correlations of the under-
lying marketvariables. The VaR can be calculated from well-known properties of the
normal distribution. /A

When a portfolio includes options, AP is not linearly related to the percentage
changes in market variables. From knowledge of the gamma of the portfolio, we can
derive an approximate quadratic relationship between AP and percentage changes in
market variables. Monte Carlo simulation can then be used to estimate VaR.

In the next chapter we discuss how volatilities and correlations can be estimated and
monitored.
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Practice Questions (Answers in Solutions Manual)

21.1. Consider a position consisting of a $100,000 investment in asset A and a $100,000
investment in asset B. Assume that the daily volatilities of both assets are 1% and that
the coefficient of correlation between their returns is 0.3. What is the 5-day 99% VaR for
the portfolio?

21.2. Describe three ways of handling instruments that are dependent on interest rates when
the model-building approach is used to calculate VaR. How would you handle these
instruments when historical simulation is used to calculate VaR?

21.3.
r
A financial institution owns a portfolio of options on the US dollar-sterling exchange
ate. The delta of the portfolio is 56.0. The current exchange rate is 1.5000. Derive an

approximate linear relationship between the change in the portfolio value and the
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percentage change in the exchange rate. If the daily volatility of the exchange rate is
0.7%, estimate the 10-day 99% VaR.
Suppose you know that the gamma of the portfolio in the previous question is 16.2. How
does this change your estimate of the relationship between the change in the portfolio
value and the percentage change in the exchange rate‘?

Suppose that the daily change in the value of a portfolio is, to a good approximation,
linearly dependent on two factors, calculated from a principal components analysis. The
delta of a portfolio with respect to the first factor is 6 and the delta with respect to the
second factor is -4. The standard deviations of the factor are 20 and 8, respectively.
What is the 5-day 90% VaR? "
Suppose that a company has a portfolio consisting of positions in stocks, bonds, foreign
exchange, and commodities. Assume that there are no derivatives. Explain the
assumptions underlying (a) the linear model and (b) the historical simulation model for
calculating VaR. ,
Explain how an interest rate swap is mapped into a portfolio of zero-coupon bonds with
standard maturities for the purposes of a VaR calculation.
Explain the difference between value at risk and expected shortfall.
Explain why the linear model can provide only approximate estimates of VaR for a
portfolio containing options. A  

Some time ago a company entered into a forward contract to buy £1 million for
$1.5 million. The contract now has 6 months to maturity. The daily volatility of a
6-month zero-coupon sterling bond (when its price is translated to dollars) is 0.06% and
the daily volatility of a 6-month zero-coupon dollar bond is 0.05%. The correlation
between returns from the two bonds is 0.8. The current exchange rate is 1.53. Calculate
the standard deviation of the change in the dollar value of the forward contract in 1 day.
What is the 10-day 99% VaR‘? Assume that the 6-month interest rate in both sterling and
dollars is 5% per annum with continuous compounding.
The text calculates a VaR estimate for the example in Table 21.9 assuming two factors.
How does the estimate change if you assume (a) one factor and (b) three factors.

A bank has a portfolio of options on an asset. The delta of the options is -30 and the
gamma is -5. Explain how these numbers can be interpreted. The asset price is 20 and
its volatility is 1% per day. Adapt Sample Application E in the DerivaGem Application
Builder software to calculate VaR.

Suppose that in Problem 21.12 the vega of the portfolio is -2 per 1% change in the
annual volatility. Derive a model relating the change in the portfolio value in 1 day to
delta, gamma, and vega. Explain without doing detailed calculations how you would use
the model to calculate a VaR estimate.
The one-day 99% VaR is calculated for the four-index example in Section 21.2 as
$253,385. Look at the underlying spreadsheets on the author’s website and calculate:
(a) the one-day 95% VaR and (b) the one-day 97% VaR.

Use the spreadsheets on the author’s website to calculate the one-day 99% VaR, using the
basic methodology in Section 21.2, if the four—index portfolio considered in Section 21.2 is
equally divided between the four indices.
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Further Questions

21.16. A company has a position in bonds worth $6 million. The modified duration of the
portfolio is 5.2 years. Assume that only parallel shifts in the yield curve can take place
and that the standard deviation of the daily yield change (when yield is measured in
percent). is 0.09. Use the duration model to estimate the 20-day 90% VaR for the
portfolio. Explain carefully the weaknesses of this approach to calculating VaR. Explain
two alternatives that give more accuracy.

21.17. Consider a position consisting of a $300,000 investment in goldqand a $500,000
investment in silver. Suppose that the daily volatilities of these two assets are 1.8%
and 1.2%, respectively, and that the coefficient of correlation between their returns is 0.6.
What is the 10-day 97.5% VaR for the portfolio? By how much does diversification
reduce the VaR‘?

21.18. Consider a portfolio of options on a single asset. Suppose that the delta of the portfolio
is 12, the value of the asset is $10, and the daily volatility of the asset is 2%. Estimate the
1-day 95% VaR for the portfolio from the delta. Suppose next that the gamma of the
portfolio is -2.6. Derive a quadratic relationship between the change in the portfolio
value and the percentage change in the underlying asset price in one day. How would
you use this in a Monte Carlo simulation‘?

21.19. A company has a long position in a 2-year bond and a 3-year bond, as well as a short
position in a 5-year bond. Each bond has a principal of $100 and pays a 5% coupon
annually. Calculate the company’s exposure to the 1-year, 2-year, 3-year, 4-year, and
5-year rates. Use the data in Tables 21.7 and 21.8 to calculate a 20-day 95% VaR on the
assumption that rate changes are explained by (a) one factor, (b) two factors, and (c) three
factors. Assume that the zero-coupon yield curve is fiat at 5%.

21.20. A bank has written a call option on one stock and a put option on another stock. For
the first option the stock price is 50, the strike price is 51, the volatility is 28% per
annum, and the time to maturity is 9 months. For the second option the stock price is
20, the strike price is 19, the volatility is 25% per annum, and the time to maturity is
1 year. Neither stock pays a dividend, the risk-free rate is 6% per annum, and the
correlation between stock price returns is 0.4. Calculate a 10-day 99% VaR:
(a) Using only deltas"
(b) Using the partial simulation approach /
(c) Using the full simulation approach.

21.21. A common complaint of risk managers is that the model-building approach (either linear
or quadratic) does not work well when delta is close to zero. Test what happens when delta
is close to zero by using Sample Application E in the DerivaGem Applications. (You can
do this by experimenting with different option positions and adjusting the position in the
underlying to give a delta of zero.) Explain the results you get.

21.22. Suppose that the portfolio considered in Section 20.2 has (in $000s) 3,000 in DJIA, 3,000
in FTSE, 1,000 in CAC 40 and 3,000 in Nikkei 225. Use the spreadsheet on the author’s
website to calculate what difference this makes to the one-day 99% VaR that is
calculated in Section 21.2.
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Correlations
In this chapter we explain how historical data can be used to produce estimates of the
current and future levels of volatilities and correlations. The chapter is relevant both to
the calculation of value at risk using the model-building approach and to the valuation
of derivatives. When calculating value at risk, we are most interested in the current
levels of volatilities and correlations because we are assessing possible changes in the
value of a portfolio over a very short period of time. When valuing derivatives, forecasts
of volatilities and correlations over the whole life of the derivative are usually required.

The chapter considers models with imposing names such as exponentially weighted
moving average (EWMA), autoregressive conditional heteroscedasticity (ARCH), and
generalized autoregressive conditional heteroscedasticity (GARCH). The distinctive
feature of the models is that they recognize that volatilities and correlations are not
constant. During some periods, a particular volatility or correlation may be relatively
low, whereas during other periods it may be relatively high. The models attempt to keep
track of the variations in the volatility or correlation through time. I

ESTIMATING VOLATILITY
/"

Define 0,, as the volatility of a market variable on day n, as estimated at the end of
day n - 1. The square of the volatility, 0,3, on day n is the variance rate. We described
the standard approach to estimating on from historical data in Section 14.4. Suppose
that the value of the market variable at the end of day i is S,-. The variable u,- is defined
as the continuously compounded return during day i (between the end of day i - 1 and
the end of day i):

u -—ln Si
l_ S11

An unbiased estimate of the variance rate per day, oi, using the most recent m
observations on the u,- is

2-ll m _-"2 22a..»m_1;(u,._. u) < -1)
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where ii is the mean of the u,-s:
_ lm
u:"__§ iun-i

W1 zl

For the purposes of monitoring daily volatility, the formula in equation (22.1) is
usually changed in a number of ways:

1. u,- is defined as the percentage change in the market variable between the end of
day i - 1 and the end of day i, so thatz‘

it, =.- (22.2)
2. ii is assumed to be zero.2
3. m - 1 is replaced by m.3

These three changes make very little difference to the estimates that are calculated, but
they allow us to simplify the formula for the variance rate to

6,3 = - _- (22.3)
§I- 2M6

K 3I\-3

where u,- is given by equation (22.2).4

Weighting Schemes  
Equation (22.3) gives equal weight to u,%_1, ui_2, . . . , ui_,,,. Our objective is to estimate
the current level of volatility, on. It therefore makes sense to give more weight to recent
data. A model that does this is

0,3 = _ (22.4)T-Mi Fig
2 :z\>

The variable 01,- is the amount of weight given to the observation i days ago. The oz’s are
positive. If we choose them so that a,- < Olj when i > j, less weight is given to older
observations. The weights must sum to unity, so that /

LME 52.:1

 in

1 This is consistent with the point made in Section 21.3 about the way that volatility is defined for the
purposes of VaR calculations.

2 As explained in Section 21.3, this assumption usually has very little effect on estimates of the variance
because the expected change in a variable in one day is very small when compared with the standard deviation
of changes.

3 Replacing m - 1 by m moves us from an unbiased estimate of the variance to a maximum likelihood
estimate. Maximum likelihood estimates are discussed later in the chapter.
4 Note that the u’s in this chapter play the same role as the Ax’s in Chapter 21. Both are daily percentage
changes in market variables. In the case of the u’s, the subscripts count observations made on different days
on the same market variable. In the case of the Ax’s, they count observations made on the same day on
different market variables. The use of subscripts for or is similarly different between the two chapters. In this
chapter, the subscripts refer to days; in Chapter 21 they referred to market variables.
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An extension of the idea in equation (22.4) is to assume that there is a long-run average
variance rate and that this should be given some weight. This leads to the model that
takes the form

m

U3 = 1/V1. + Z011" "31-z (22-5)
i=1

where VL is the long-run variance rate and y is the weight assigned to VL. Since the
weights must sum to unity, it follows that

"Z

)/+201,-=1
zl

This is known as an ARCH(m) model. It was first suggested by Engle.5 The estimate of
the variance is based on a long-run average variance and m observations. The older an
observation, the less weight it is given. Defining co : )/VL, the model in equation (22.5)
can be written

m

0,3 : co + Zia,-ui_i (22.6)
z l

In the next two sections we discuss two important approaches to monitoring volatility
using the ideas in equations (22.4) and (22.5).

THE EXPONENTIALLY WEIGHTED MOVING AVERAGE MODEL

The exponentially weighted moving average (EWMA) model is a particular case of the
model in equation (22.4) where the weights oi, decrease exponentially as we move back
through time. Specifically, oi,-+1 : Aa,», where A is a constant between 0 and 1.

It turns out that this weighting scheme leads to a particularly simple formula for
updating volatility estimates. The formula is

0,3 = A034 + (1 - )t)u,%_1 (22.7)

The estimate, on, of the volatility of a variable for day n (made at the end ofday n - 1) is
calculated from o,,_1 (the estimate that was made at the end of day n - 2 ofthe volatility
for day n - 1) and u,,_1 (the most recent daily percentage change in the variable).

To understand why equation (22.7) corresponds to weights that decrease exponen-
tially, we substitute for o,§_1 to get

63 = 41463-2 + <1 - >»>ui-21+<1 - t):/12-1
OI‘

U5 = (1 - 7~)("}i-1 -l" W5-2) -I" A265-2

Substituting in a similar way for o,%_2 gives

i U5 = (1 — Alfuii-1 + M54 -1" 42215-3) + 4305-3
- 

5 See R. Engle “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of UK
Inflation,” Econometrica, 50 (1982): 987-1008.



Estimating Volatilities and Correlations 501

Continuing in this way gives

I1162 = <1 - 1>§j1~'1%.-. + 1262-..
i=1

For large m, the term A'"o,%_m is sufficiently small to be ignored, so that equation (22.7)
is the same as equation (22.4) with oi, -= (1 - A)A‘"']. The weights for the u,- decline at
rate A as we move back through time. Each weight is A times the previous weight.

Example 22.1  
Suppose that A is 0.90, the volatility estimated for a market variable for day n - 1
is 1% per day, and during day n - 1 the market variable increased by 2%. This
means that 6,1, = 0.012 = 0.0001 and u,§_1 = 0.022 = 0.0004. Equation (22.7)
gives

<13 = 0.9 >< 0.0001 + 0.1 >< 0.0004 = 0.00013
The estimate of the volatility, on, for day n is therefore ~/ 0.00013, or 1.14%, per
day. Note that the ex ected value of u“_ is o2_ , or 0.0001. In this exam le, the2 p ' n l n l P
realized value of 1 u,,__1 1s greater than the expected value, and as a result our
volatility estimate increases. If the realized value of ui_1 had been less than its
expected value, our estimate of the volatility would have decreased.

The EWMA approach has the attractive feature that relatively little data need be
stored. At any given time, only the current estimate of the variance rate and the most
recent observation on the value of the market variable need be remembered. When a
new observation on the market variable is obtained, a new daily percentage change is
calculated and equation (22.7) is used to update the estimate of the variance rate. The
old estimate of the variance rate and the old value of the market variable can then be
discarded.

The EWMA approach is designed to track changes in the volatility. Suppose there is
a big move in the market variable on day n - 1, so that u,%_1 is large. From
equation (22.7) this causes the estimate of the current volatility to move upward. The
value of A governs how responsive the estimate of the daily volatility is to th/e most
recent daily percentage change. A low value of A leads to a great deal of weight being
given to the ui_1 when on is calculated. In this case, the estimates produced for the
volatility on successive days are themselves highly volatile. A high value of A (i.e., a
value close to 1.0) produces estimates of the daily volatility that respond relatively
slowly to new information provided by the daily percentage change.

The RiskMetrics database, which was originally created by J . P. Morgan and made
publicly available in 1994, uses the EWMA model with A = 0.94 for updating daily
volatility estimates in its RiskMetrics database. The company found that, across a range
of different market variables, this value of A gives forecasts of the variance rate that
come closest to the realized variance rate.6 The realized variance rate on a particular
day was calculated as an equally weighted average of the u? on the subsequent 25 days
(see Problem 22.19). I

6 See J. P. Morgan, RiskMetrics Monitor, Fourth Quarter, 1995. We will explain an alternative (maximum
likelihood) approach to estimating parameters later in the chapter. '
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THE GARCH(1,1) MODEL

We now move on to discuss what is known as the GARCH(1,1) model, proposed by
Bollerslev in 1986.7 The difference between the GARCH(l, 1) model and the EWMA
model is analogous to the difference between equation (22.4) and equation (22.5). In
GARCH(1,1), oi is calculated from a long-run average variance rate, VL, as well as
from o,,_1 and u,,_1. The equation for GARCH(1,1) is

<15 = VVL + 0413-1 + 1263-1 <22-8)
where y is the weight assigned to VL, oi is the weight assigned to u,2,_1, and ,8 is the weight
assigned to o',%_1. Since the weights must sum to unity, it follows that

y+a+fi=1

The EWMA model is a particular case of GARCH(1,1) where y: 0, 01:1-A,
and I3 : A.

The “(1,1)” in GARCH(l, 1) indicates that 0,3 is based on the most recent observa-
tion of uz and the most recent estimate of the variance rate. The more general
GARCH(p,q) model calculates oi from the most recent p observations on u2 and
the most recent q estimates of the variance rate.8 GARCH(1,1) is by far the most
popular of the GARCH models.

Setting co : 3/VL, the GARCH(l, 1) model can also be written

oi = 60 + otu,%_1 + ,3a,%_1 I (22.9)

This is the form of the model that is usually used for the purposes of estimating the
parameters. Once co, Oi, and ,8 have been estimated, we can calculate y as 1 - Cr! - ,8. The
long-term variance VL can then be calculated as co/y. For a stable GARCH(1,1) process
we require Ol + 6 < 1. Otherwise the weight applied to the long-term, variance is
negative. I

Example 22.2
Suppose that a GARCH(1,1) model is estimated from daily data as

6,3 = 0.000002 + 0.13u3,_, + 0.s66,2__, ,
This corresponds to Ol = 0.13, B = 0.86, and co : 0.000002. Because
y = 1 - Ol - ,8, it follows that y = 0.01. Because co = yVL, it follows that
VL = 0.0002. In other words, the long-run average variance per day implied by
the model is 0.0002. This corresponds to a volatility of \/0.0002 = 0.014, or 1.4%,
per day.

7 See T. Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Econometrics,
31 (1986): 307-27.
8 Other GARCH models have been proposed that incorporate asymmetric news. These models are designed
so that 0,, depends on the sign of u,,_|. Arguably, the models are more appropriate for equities than
GARCH(l, 1). As mentioned in Chapter 19, the volatility of an equity’s price tends to be inversely related to
the price so that a negative u,,_1 should have a bigger effect on 0,, than the same positive u,,_1. For a
discussion of models for handling asymmetric news, see D. Nelson, “Conditional Heteroscedasticity and
Asset Returns: A New Approach,” Econometrica, 59 (1990): 347-70; R. F. Engle and V. N g, “Measuring and
Testing the Impact of News on Volatility,” Journal of Finance, 48 (1993): 1749-78.
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22.4

Suppose that the estimate of the volatility on day n - 1 is 1.6% per day, so that
__ : 0.0162 : 0.000256, and that on day n - 1 the market variable decreased

6, SOIl121ILli__1= 0 012 = 0 0001 ThenEafla '“">—¢
O/ . . .

0,3 :: 0.000002 + 0.13 >< 0.0001 + 0.86 >< 0.000256 : 0.000235l6

The new estimate of the volatility is therefore \/000023516 : 0.0153, or 1.53%,
per day.

The Weights
Substituting for o,§_1 in equation (22.9) gives

oi = co + OlM5_1 + ,3(co + oiu,%_2 + ,Bo,‘Z'_2)
or

0,3 r: w + /360 oiu,%_1 + oi,Bu%_2 + ,32o,%_2

Substituting for o,f_2 gives

<13 = w + fiw + 1% + <wi_1 + 11511.12 + <><fl211;";_a + 18303-3  
Continuing in this way, we see that the weight applied to u,%_,-I is a,Bi_1. The weights
decline exponentially at rate ,8. The parameter 6 can be interpreted as a “decay rate”. It
is similar to A in the EWMA model. It defines the relative importance of the observa-
tions on the u’s in determining the current variance rate. For example, if )8 = 0.9, then
u,%_2 is only 90% as important as u,%_1; uZ_3 is 81% as important as u,%_1; and so on.
The GARCH(l, 1) model is similar to the EWMA model except that, in addition to
assigning weights that decline exponentially to past u2, it also assigns some weight to
the long-run average volatility.

Mean Reversion
The GARCH (1,1) model recognizes that over time the variance tends to get pulled
back to a long-run average level of VL. The amount of weight assigned to I/L is y -:
1 - or - 6. The GARCH(l, 1) is equivalent to a model where the variance V follows the
stochastic process  /

I dV:a(VL-V)dt+1§Vdz

where time is measured in days, a : 1 - ct - ,8, and 5 : Ol-\/E (see Problem 22.14). This
is a mean-reverting model. The variance has a drift that pulls it back to VL at rate a.
When V > VL, the variance has a negative drift; when V < VL, it has a positive drift.
Superimposed on the drift is a volatility §. Chapter 26 discusses this type of model
further. '

CHOOSING BETWEEN THE MODELS

In practice, variance rates do tend to be mean reverting. The GARCH(1,1) model
incorporates mean reversion, whereas the EWMA model does not. GARCH (1,1) is
therefore theoretically more appealing than the EWMA model.
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In the next section, we will discuss how best-fit parameters co, Oi, and 6 in GARCH(1 , 1)
can be estimated. When the parameter co is zero, the GARCH(l, 1) reduces to EWMA. In
circumstances where the best-fit value of co turns out to be negative, the GARCH(l, 1)
model is not stable and it makes sense to switch to the EWMA model.

MAXIMUM LIKELIHOOD METHODS
It is now appropriate to discuss how the parameters in the models we have been
considering are estimated from historical data. The approach used is known as the
maximum likelihood method. It involves choosing values for the parameters that
maximize the chance (or likelihood) of the data occurring.

To illustrate the method, we start with a very simple example. Suppose that we
sample 10 stocks at random on a certain day and find that the price of one of them
declined on that day and the prices of the other nine either remained the same or
increased. What is the best estimate of the probability of a price decline? The natural
answer is 0.1. Let us see if this is what the maximum likelihood method gives.

Suppose that the probability of a price decline is p. The probability that one
particular stock declines in price and the other nine do not is p(l - p)9. Using the
maximum likelihood approach, the best estimate of p is the one that maximizes
p(l - p)9. Differentiating this expression with respect to p and setting the result equal
to zero, we find that p = 0.1 maximizes the expression. This shows that the maximum
likelihood estimate of p is 0.1, as expected.

Estimating a Constant Variance  
Our next example of maximum likelihood methods considers the problem of estimating
the variance of a variable X from m observations on X when the underlying distribution
is normal with zero mean. Assume that the observations are ul, u2, . . . , um. Denote the
variance by 0. The likelihood of u,- being observed is defined as the probability density
function for X when X : u,-. This is I

1 -uf
-—-— ex
a/2711) p( 21) ) / .

The likelihood of m observations occurring in the order in which they are observed is

_,,g
§ 

Til

1—\

Using the maximum likelihood method, the best estimate of v is the value that
maximizes this expression.

Maximizing an expression is equivalent to maximizing the logarithm of the expres-
sion. Taking logarithms of the expression in equation (22.10) and ignoring constant
multiplicative factors, it can be seen that we wish to maximize

T-P12
[- ln(v) - (22.11)
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or m M2
-m 111(6) - Zi-

i=1

Differentiating this expression with respect to v and setting the resulting equation to
zero, we see that the maximum likelihood estimator of v is9

m1 2it i=1

Estimating GARCH (1,1) Parameters
We now consider how the maximum likelihood method can be used to estimate the
parameters when GARCH (1,1) or some other volatility updating scheme is used.
Define vi : 0,-2 as the variance estimated for day i. Assume that the probability
distribution of u,~ conditional on the variance is normal. A similar analysis to the one
just given shows the best parameters are the ones that maximize

l -u?

Taking logarithms, we see that this is equivalent to maximizing

ILIIE 11*:

ll‘? s
?[~ ln(v,-) - 5‘-I (22.12)

This is the same as the expression in equation (22.11), except that v is replaced by vi. It is
necessary to search iteratively to find the parameters in the model that maximize the
expression in equation (22.12).

The spreadsheet in Table 22.1 indicates how the calculations could be organized for
the GARCH(1,1) model. The table analyzes data on the S&P 500 between July 18,
2005, and August 13, 2010.10 The numbers in the table are based on trial estimates of
the three GARCH(1,1) parameters: co, Ol, and B. The first column in the table records
the date. The second column counts the days. The third column shows the S&P 500, S,-,
at the end of day i. The fourth column shows the proportional change in the/S&P 500
between the end of day i - 1 and the end of day i. This is u,- : (S, - S,-_1)/S,-__1. The fifth
column shows the estimate of the variance rate, vi : 0,-2, for day i made at the end of
day i- 1. On day 3, we start things off by setting the variance equal to On
subsequent days, equation (22.9) is used. The sixth column tabulates the likelihood
measure, - ln(v,-) - /0,.The values in the fifth and sixth columns are based on the
current trial estimates of co, Ol, and ,8. We are interested in choosing co, oi, and B to
maximize the sum of the numbers in the sixth column. This involves an iterative search
procedure. 1 1

9 This confirms the point made in footnote 3.

'0 The data and calculations can be found at www.rotman.utoronto.ca/~hu11/OFOD/Ga.rchExamp1e.

H As discussed later, a general purpose algorithm such as Solver in Microsoft’s Excel can be used.
Alternatively, a special purpose algorithm, such as Levenberg-Marquardt, can be used. See, e.g., W. H. Press,
B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C: The Art of Scientific
Computing, Cambridge University Press, 1988.
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Table 22.1 Estimation of Parameters in GARCH(1,1) Model for S&P 500 between
July 18, 2005, and August 13, 2010.

Date Day 1" s,~ u,- U, = 6,2 -111(1),-) - 11,2 /11,-
18-Ju'

2 19-Ju
20-Ju
21-Ju'
22-Ju
25-Ju

11-Aug-2010 1277
12-Aug-2010 127s

-2005
-2005
-2005
-2005
-2005
-2005

1
2

O\kl1-l>~UJ

1221.13
1229.35
1235.20
1227.04
1233.68
1229.03

1089.47
1083.61
1079.25

0.006731
0.004759 0.0000453l

-0.006606 0.00004447
0.005411 0.00004546

-0.003769 0.00004517

-0.028179 0.0001 1834
-0.005379 0.000l7527
-0.004024 0.00016327

9.5022
9.0393
9.3545
9.6906

0

0

0

2.3322
8.4841
8.620913-Aug-2010 1279

 10,22s.2349
Trial estimates of GARCH parameters
co : 0.000001347 Ol = 0.08339 ,8 : 0.9101

. 7; . .. H : . - _ l. - ‘.._--¢----- -----_,- . - ,_ _.,.__ -.....- -.. ...-_ _,.. . _ . __ _ __-._ _ . _ . ; ._LT-‘r.'~-if ‘- 3"£~4-I--.2‘ 2 s- _ -.-2'5-_A_ 2.-ma“‘e»m.t-,.:s..."....-....1....1.H.,......J.\.... '.-- -4 - ‘-7- . -- - ' .-...-W

In our example, the optimal values of the parameters turn out to be

w = 0.000001366, Ol = 0.083394, . )8 = 0.910116 .

and the maximum value of the function in equation (22.12) is 10,228.2349. The
numbers shown in Table 22.1 were calculated on the final iteration of the search for
the optimal co, Oi, and ,6.

The long-term variance rate, VL, in our example is

co 0000001366--_ _ . 2 71 - a - 6 0.006490 0 000 0 5
The long-term volatility is ~/ 0.0002075 , or 1.4404%, per day.

Figures 22.1 and 22.2 show the S&P 500 index and its GARCH(l, 1) volatility during
the 5-year period covered by the data. Most of the time, the volatility was less than 2%
per day, but volatilities as high as 5% per day were experienced during the credit crisis.
(The very high volatilities are also indicated by the VIX index—see Section 14.11.)

An alternative approach to estimating parameters in GARCH(l, 1), which is sometimes
more robust, is known as variance targeting.” This involves setting the long-run average
variance rate, VL, equal to the sample variance calculated from the data (or to some other
value that is believed to be reasonable). The value of co then equals VL(1 - Ol - )9) and only
two parameters have to be estimated. For the data in Table 22.1, the sample variance is
0.0002412, which gives a daily volatility of 1.5531%. Setting VL equal to the sample
variance, the values of Ol and ,6 that maximize the objective function in equation (22.12)
are 0.08445 and 0.9101, respectively. The value of the objective function is l0,228.l941,
only marginally below the value of 10,228.2349 obtained using the earlier procedure.

12 See R. Engle and J . Mezrich, “GARCH for Groups,” Risk, August 1996: 36-40.
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Figure 22.1 S&P 500 index: July 18, 2005, to August 13, 2010.
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When the EWMA model is used, the estimation procedure is relatively simple. We set
co : 0, oz : 1 -— A, and ;6 : A, and only one parameter has to be estimated. In the data in
Table 22.1, the value of X that maximizes the objective function in equation (22.12) is
0.93-74 and the value of the objective function is l0,l92.5104.

Both GARCH (1,1) and the EWMA method can be implemented by using the Solver
routine in Excel to search for the values of the parameters that maximize the likelihood
function. The routine works well provided that the spreadsheet is structured so that the
parameters being searched for have roughly equal values. For example, in GARCH (1,1)

3'» ‘<1 "1' .:» ' -Y .' '1' ::_ Q, :--.;~j1.: -,-_=;1»a.—,=~".:.‘ ~.--~';.-,;___;;_;,3-_,_,1__::,_j7_,,,,,j,_<,,'rI:*:i'£i'1"Z=;'ii;1"¥¢;'I";';;;:Pg..;_-L2'.."_'@_= -1;'=."-=1 ¢*#.:_‘:—.=;.’:1.1'r_~a';2aY% j::,?

Figure 22.2 Daily volatility of S&P 500 index: July 18, 2005, to August 13, 2010.
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we could let cells Al, A2, and A3 contain w >< 105, 100:, and /5’. We could then set
Bl ==Al/100,000, B2=A2/10, and B3 =A3. We would use Bl, B2, and B3 to calculate
the likelihood function. We would ask Solver to calculate the values of Al, A2, and A3
that maximize the likelihood function. Occasionally Solver gives a local maximum, so
testing a number of different starting values for parameters is a good idea.

How Good Is the Model?
The assumption underlying a GARCH model is that volatility changes with the passage
of time. During some periods volatility is relatively high; during other periods it is
relatively low. To put this another way, when is high, there is a tendency for u,2+1,
u,2+2, . . . to be high; when 14,2 is low, there is a tendency for u,2+1, u,2+2, . .. to be low. We
can test how true this is by examining the autocorrelation structure of the

Let us assume the u? do exhibit autocorrelation. If a GARCH model is working well, it
should remove the autocorrelation. We can test whether it has done so by considering the
autocorrelation structure for the variables /0",-2.If these show very little autocorrelation,
our model for oi has succeeded in explaining autocorrelations in the u,2.

Table 22.2 shows results for the S&P 500 data used above. The first column shows the
lags considered when the autocorrelation is calculated. The second shows autocorrela-
tions for u;?; the third shows autocorrelations for u? /0,-2.13 The table shows that the
autocorrelations are positive for u? for all lags between l and 15. In the case of u?/0,-2,
some of the autocorrelations are positive and some are negative. They are all much
smaller in magnitude than the autocorrelations for ug.

,- ‘- >, V ,.. . . ,_ _. .> _ - _.7, _ _ , .. _, “ - - -.7’;-.7. _ _ - ...__ _ - _ _. . , ._.. L
L - _ - 1-; .1:-'2 .'_ ' .; - 1 - ..-4. _ Q I .-. . .~ — w : .> -'l-_X;_;—-- r'.__ -¢-. , _ -. ._; . --. 1‘ ~ .. _,,.[\;,,,_;___ 1, -, H :

Table 22.2 Autocorrelations before and after the use of a
.GARCH model for S&P 500 data.

Time lag Autocorrelationy Autocarrelation
for u? for ulg/at-2

0.183 -0.063
-0.004
—0.007

0.022
r .339 0.014

0.308 -0.011
0.329
0.207
0.324 '41

1 0.269 >83
1 0.431 —— '07
1 0.286 0.006
1 0.224 0.001
1 0.121 0.017
1 0.222 -0.031u1-l>wt\J>—-<:>\ooo\1o\u1-l>wt\)>—-

@@fDC>

L»J>—*U~J QONOO >—*Qu1

@<D¢D©@ 21%-wk->'QE3

u.>l\> OOO\

/'

13 For a series x,-, the autocorrelation with a lag of k is the coefficient of correlation between x,- and x,-+k.
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22.6

The GARCH model appears to have done a good job in explaining the data. For a
more scientific test, we can use what is known as the Ljung-Box statistic.“ If a certain
series has m observations the Ljung—Box statistic is

K
2

"1 wk '7/<
k=l

where nk is the autocorrelation for a lag of k, K is the number of lags considered, and

m+2
w":Hi—/Z

For K : 15, zero autocorrelation can be rejected with 95% confidence when the Ljung—
Box statistic is greater than 25 .

From Table 22.2, the Ljung-Box statistic for the l/£12 series is about 1,566. This is
strong evidence of autocorrelation. For the ti?/0,-2 series, the Ljung—Box statistic is 21.7,
suggesting that the autocorrelation has been largely removed by the GARCH model.

USING GARCH(1,1) TO FORECAST FUTURE VOLATILITY

The variance rate estimated at the end of day n -— l for day n, when GARCH(l, 1) is
used, is I

<13 = <1 - a - iavi + om.-’;_i + i%;%_i
so that A

<75 '" VL = “("3-1 " Vt)-1‘ 5153-1 _ Vt)

On day n + t in the future,

2 2 . » 2
Un+t _ VL : a(un+t-l _ VL) + iBlUn+t——l _ VL)

2 - 2The expected value of u,,+,_1 1s a,,+,_1. Hence,

E[Uri+t _ VL1 : (CY '1‘ i3)E[<7ri+z—1 _ V1.1

where E denotes expected value. Using this equation repeatedly yields /  

Etaiii — VL] = (a + fi>‘<<1,% ~ vi)
OI‘

Etaiiii = vi + ta + mm? — vi) (22.13)
This equation forecasts the volatility on day n + t using the information available at the
end of day n — 1. In the EWMA model, 06 + _B : l and equation (22.13) shows that the
expected future variance rate equals the current variance rate. When oi + t9 < l, the final
term in the equation becomes progressively smaller as t increases. Figure 22.3 shows the
expected path followed by the variance rate for situations where the current variance
rate is different from VL. As mentioned earlier, the variance rate exhibits mean reversion
with a reversion level of VL and a reversion rate of 1 — (X — 6. Our forecast of the future

14 See G. M. Ljung and G. E. P. Box, “On a Measure of Lack of Fit in Time Series Models,” Biomezrica, 65
(1978): 297—303.
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Figure 22.3 Expected path for the variance rate when (a) current variance rate is
above long-term variance rate and (b) current variance rate is below long-term
variance rate.
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variance rate tends towards VL as we look further and further ahead. This analysis
emphasizes the point that we must have a + ,3 < 1 for a stable GARCH(1,1) process.
When Ot + 6 > l, the weight given to the long-term average variance is negative and the
process is “mean fleeing” rather than “mean reverting”.

For the S&P 500 data considered earlier, Ot + ,3 = 0.9935 and VL = 0.0002075.
Suppose that the estimate of the current variance rate per day is 0.0003. (This
corresponds to a volatility of 1.732% per day.) In 10 days, the expected variance rate is

0.0002075 + 0.9935‘°(0.0003 - 0.0002075) = 0.0002942  
The expected volatility per day is 1.72%, still well above the long-term volatility of
1.44% per day. However, the expected variance rate in 500 days is

0.0002075 + 0.99355“"(0.0003 - 0.0002075) = 0.0002110 /
and the expected volatility per day is 1.45%, very close to the long-term volatility.

Volatility Term Structures
Suppose it is day n. Define:

v<0 = E00.)
and

1
azlni

0z+,3
so that equation (22.13) becomes

V(t) = vL + @"“‘[v(0) - vL]
Here, V(t) is an estimate of the instantaneous variance rate in t days. The average
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Table 22.3 S&P 500 volatility term structure predicted from GARCH(l,1).

Option life (days) 10 30 50 100 500

Option volatility (% per annum) 27.36 27.10 26.87 26.35 24.32

variance rate per day between today and time T is given by

1 T __ 1 _ e—-CIT _

- V(t)dzr = VL +————[V(0) - VL]
T 0 CIT

The larger T is, the closer this is to VL. Define o(T) as the volatility per annum that
should bemused to price a T-day option under GARCH(l,1). Assuming 252 days per
year, a(T)‘ is 252 times the average variance rate pei day, so that

_ —aT
o(T)2 = 252 (vi + 1%-[v(0) - vL]) (22.14)

As discussed in Chapter 19, the market prices of difi"erent options on the same asset are
often used to calculate a volatility term structure. This is the relationship between the
implied volatilities of the options and their maturities. Equation (22.14) can be used to
estimate a volatility term structure based on the GARCH(l, 1) model. The estimated
volatility term structure is not usually the same as the actual volatility term structure.
However, as we will show, it is often used to predict the way that the actual volatility
term structure will respond to volatility changes.

When the current volatility is above the long-term volatility, the GARCH(1,1)
model estimates a downward-sloping volatility term structure. When the current
volatility is below the long-term volatility, it estimates an upward-sloping volatility
term structure. In the case of the S&P 500 data, a == ln(1/0.99351) : 0.006511 and
VL = 0.0002075. Suppose that the current variance rate per day, V(0), is estimated as
0.0003 per day. It follows from equation (22.14) that

1 _ e-0.0065llT
0'(T)2 :2 252 (00002075 + (0.0003 - 0.0002075))

0.00651 1T /

where T is measured in days. Table 22.3 shows the volatility per year for different values
of T.

Impact of Volatility Changes
Equation (22.14) can be written

1___ —aT.; (... 01
When 0(0) changes by Ao(0), o(T) changes by approximately

1 - WT 0(0)
aT o(T)

210(0) (22.15)
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Table 22.4 Impact of 1% change in the instantaneous volatility predicted
from GARCH(l, 1).

Option life (days) 10 30 50 100 500

Increase in volatility (%) 0.97 0.92 0.87 0.77 0.33
l , _ - V _ 1 , I . _,. ._ __ _ ‘ , . V L 1 _ VI V . . . V- 1 _ —— -_ A _ I V ’ _ .. . - V - ., .. \ . . V ~ , I 1 "=_ .'2.. '~ - 1 —-_>_1_~~' :

Table 22.4 shows the effect of a volatility change on options of varying maturities for
the S&P 500 data considered above. We assume as before that V(0) : 0.0003, so that
0(0) = \/E >< \/0.0003 : 27.50%. The table considers a 100-basis-point change in the
instantaneous volatility from 27.50% per year to 28.50% per year. This means that
Ao(0) : 0.01, or 1%.

Many financial institutions use analyses such as this when determining the exposure
of their books to volatility changes. Rather than consider an across-the-board increase
of 1% in implied volatilities when calculating vega, they relate the size of the volatility
increase that is considered to the maturity of the option. Based on Table 22.4, a 0.97%
volatility increase would be considered for a 10-day option, a 0.92% increase for a
30-day option, a 0.87% increase for a 50-day option, and so on.  

CORRELATIONS

The discussion so far has centered on the estimation and forecasting of volatility. As
explained in Chapter 21, correlations also play a key role in the calculation of VaR. In
this section, we show how correlation estimates can be updated in a similar way to
volatility estimates.

The correlation between two variables X and Y can be defined as

cov(X, Y)
' UXUY

where ax and UY are the standard deviations of X and Y and cov(X, Y) is the covariance
between X and Y. The covariance between X and Y is defined as /V

El(X — HXXY — H1/)1

where ,u.X and /ty are the means of X and Y, and E denotes the expected value.
Although it is easier to develop intuition about the meaning of a correlation than it
is for a covariance, it is covariances that are the fundamental variables of our analysis.“

Define x,- and y,- as the percentage changes in X and Y between the end of day i — 1
and the end of day i:

Xi " Xi"-1 Yr — Y1-1
x.:-ii . 

I Xi"-1 yl Yi"-1

where X,- and Y,» are the values of X and Y at the end of day i. We also define the

'5 An analogy here is that variance rates were the fundamental variables for the EWMA and GARCH
procedures in the first part of this chapter, even though volatilities are easier to understand.
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following:

om: Daily volatility of variable X, estimated for day n
om: Daily volatility of variable Y, estimated for day n

cov,,: Estimate of covariance between daily changes in X and Y, calculated on day n.

The estimate of the correlation between X and Y on day n is

covn
Ux,n Uy,n 1

Using equal weighting and assuming that the means of x,- and y,- are zero, equation (22.3)
shows that the variance rates of X and Y can be estimated from the most recent m
observations as

2 _ 2 _ 1 m 2
Ux,n — _ — Uy,n “’ -7 yn—i

' m i 1§)-—l l-Mr><SN

A similar estimate for the covariance between X and Y is

covn : 7- n-i yn—-i5._- $19
><

One alternative for updating covariances is an EWMA model similar to equation (22.7).
The formula for updating the covariance estimate is then

CO‘/n : AC0‘/n—l '_ )‘)xn——l yn——l

A similar analysis to that presented for the EWMA volatility model shows that the
weights given to observations on the xi y,- decline as we move back through time. The
lower the value of 2», the greater the weight that is given to recent observations.

Example 22.3
Suppose that A = 0.95 and that the estimate of the correlation between two
variables X and Y on day n ~ 1 is 0.6. Suppose further that the estimate of the
volatilities for the X and Y on day n - 1 are 1% and 2%, respectively. From the
relationship between correlation and covariance, the estimate of the covariance
between the X and Y on day n —- 1 is

0.6 >< 0.01 >< 0.02 = 0.00012

Suppose that the percentage changes in X and Y on day n — 1 are 0.5% and 2.5%,
respectively. The variance and covariance for day n would be updated as follows:

0,3,, = 0.95 >< 0.012 + 0.05 >< 0.0052 = 000009625
0,’;,, = 0.95 >< 0.022 + 0.05 >< 0.0252 = 0.000-41125

00v, Z 0.95 >< 0.00012 + 0.05 >< 0.005 >< 0.025 = 0.00012025
The new volatility of X is ~/000009625 = 0.981% and the new volatility of Y is
~/000041125 = 2.028%. The new coeflicient of correlation between X and Y is

0.00012025
0.00981 >< 0.02028 _ 06044
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GARCH models can also be used for updating covariance estimates and forecasting the
future level of covariances. For example, the GARCH(l,l) model for updating a
covariance is

Covn : (U + axn——l yn—l + 1860‘/n—l

and the long-term average covariance is co/(1 — oz — ,8). Formulas similar to those in
equations (22.13) and (22.14) can be developed for forecasting future covariances and
calculating the average covariance during the life of an option.16

Consistency Condition for Covariances A
Once all the variances and covariances have been calculated, a variance—covariance
matrix can be constructed. As explained in Section 21.4, when i 75 j, the (i, j)th element
of this matrix shows the covariance between variable i and variable j. When i : j, it
shows the variance of variable i.

Not all variance~covariance matrices are internally consistent. The condition for an
N >< N variance—covariance matrix Q to be internally consistent is

1011210 > 0 (22.17)
for all N >< 1 vectors w, where 'wT is the transpose of w. A matrix that satisfies this
property is known as positive-semidefinite.

To understand why the condition in equation (22.17) must hold, suppose that wl is
[w1, 1,02, . . . , w,,]. The expression wTS2"w is the variance of wlxl + w2x2 + ' - - + w,,x,,,
where x,- is the value of variable i. As such, it cannot be negative.

To ensure that a positive-semidefinite matrix is produced, variances and covariances
should be calculated consistently. For example, if variances are calculated by giving equal
weight to the last m data items, the same should be done for covariances. If variances are
updated using an EWMA model with A : 0.94, the same should be done for covariances.

An example of a variance—covariance matrix that is not internally consistent is

1 0 0.9
0 1 0.9

0.9 0.9 1 /

The variance of each variable is 1.0, and so the covariances are also coefficients of
correlation. The first variable is highly correlated with the third variable and the second
variable is highly correlated with the third variable. However, there is no correlation at
all between the first and second variables. This seems strange. When w is set equal to
(1, 1, -1), the condition in equation (22.17) is not satisfied, proving that the matrix is
not positive-semidefinite. 17

l6 The ideas in this chapter can be extended to multivariate GARCH models, where an entire variance—
covariance matrix is updated in a consistent way. For a discussion of alternative approaches, see R. Engle and
J . Mezrich, “GARCH for Groups,” Risk, August 1996: 36-40.

17 It can be shown that the condition for a 3 >< 3 matrix of correlations to be internally consistent is

pi; + pig + vii -2012 P13 023 < 1
where ,0,-j is the coeflicient of correlation between variables i and j.
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22.8 APPLICATION OF EWMA TO FOUR-INDEX EXAMPLE

We now return to the example considered in Section 21.2. This involved a portfolio on
September 25, 2008, consisting of a $4 million investment in the Dow Jones Industrial
Average, a $3 million investment in the FTSE 100, a $1 million investment in the
CAC 40, and a $2 million investment in the Nikkei 225. Daily returns were collected
over 500 days ending on September 25, 2008. Data and all calculations presented here
can be found at: www.rotma_n.utoronto.ca/~hu11,/OFOD/VaRExample.

The correlation matrix that would be calculated on September 25, 2008, by giving
equal weight to the last 500 returns is shown in Table 22.5. The FTSE 100 and CAC 40
are very highly correlated. The Dow Jones Industrial Average is moderately highly
correlated with both the FTSE 100 and the CAC 40. The correlation of the Nikkei 225
with other indices is less high.

The covariance matrix for the equal-weight case is shown in Table 22.6. From
equation (21.3), this matrix gives the variance of the portfolio losses ($000s) as
8,76l.833. The standard deviation is the square root of this, or 93.60. The o11e-day
99% VaR in $000s is therefore 2.33 >< 93.60 : 217.757. This is $217,757, which
compares with $253,385, calculated using the historical simulation approach in
Section 21.2. I

Instead of calculating variances and covariances by giving equal weight to all observed
returns, we now use the exponentially weighted moving average method with A = 0.94.
This gives the variance—covariance matrix in Table 22.7.18 From equation (21.3), the

. .. .11 -, _ V " ; 5; - ' . . '. "0 ...? -:1‘ ;*.;_»; '.;'_:'Lr....~.,.1_:.'zV‘;.‘.;-'1;-'0'; V Li‘;>‘<=l':__§i-LTI‘-":}'El';»;_'£'. *- , E

Table 22.5 Correlation matrix on September 25, 2008, calculated by giving equal
weight to the last 500 daily returns: variable 1 is DJIA; variable 2 is FTSE 100;
variable 3 is CAC 40; variable 4 is Nikkei 225.

1 0.489 0.496 -0.062
0.489 1 0.918 0.201
0.496 0.918 1 0.211

-0.062 0.201 0.211 l
' '_ '. _ fr‘_j_j___7,|_;_§__1;},1,f1'W1‘”'M:1A' '1'“w'7"m'1W»““ ._"'Vi.'. '1 :".=17:'."~ ‘ fur ~..*§"_'1§'i";"'.Z”"5.-'_T'._.V4.?. 1' "T-T.—\ 3:: V'K‘_:§.*;i: 1 71... - T 1 0 'YT‘.'.->'fl"L' ' Ix: Q03-
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Table 22.6 Covariance matrix on September 25, 2008, calculated by giving equal
weight to the last 500 daily returns: variable 1 is DJIA; variable 2 is FTSE 100;
variable 3 is CAC 40; variable 4 is Nikkei 225.

0.0001227
0.0000768
0.0000767

—0.0000095

@ 

0.0000768
0.0002010
0.0001817
0.0000394

0.0000767
0.0001817
0.0001950
0.0000407

—0.0000095
0.0000394
0.0000407
0.0001909

-v .... -....

18 In the EWMA calculations, the variance is initially set equal to the population variance But all reasonable
starting variances give essentially the same result because in this case all we are interested in is the final
variance.
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Table 22.7 Covariance matrix on September 25, 2008, calculated using the EWMA
method with A : 0.94: variable 1 is DJIA; variable 2 is FTSE 100; variable 3 is CAC
40; variable 4 is Nikkei 225.

T 0.0004801 0.0004303

0.0004303 0.0010314

0.0004257 0.0009630

_—0.0000396 0.0002095
A. . V ‘, ,7 '47.,’ - V. ~ - 4 .

._~ ‘_ V- ..---_.._ 4|...-' . ':».1..- _n~_.. -._~. 7-‘ I __ _.-_

variance of portfolio losses ($000s) is 40,995.765. The standard deviation is the square
root of this, or 202.474. The one-day 99% VaR is therefore

0.0004257

0.0009630

0.0009535 I

0.0001681
_,.“,,_.............,.._,..,.........,....._,..,..,.....,............,.......

;...;.__-4i_...

2.33 >< 202.474 = 471.025

This is $471,025, over twice as high as the value given when returns are equally
weighted. Tables 22.8 and 22.9 show the reasons. The standard deviation of a portfolio
consisting of long positions in securities increases with the standard deviations of
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security returns and also with the correlations between security returns. Table 22.8
shows that the estimated daily standard deviations are much higher when EWMA is
used than when data are equally weighted. This is because volatilities were much higher
during the period immediately preceding September 25, 2008, than during the rest of
the 500 days covered by the date; Comparing Table 22.9 with Table 22.5, we see that

1correlations had also increased.
_ , .. V. .1 - Y ...” ~ ~ , "'IYl1"|'I"'7'1"WF'_I‘ ,._.,.....,.~._. . Wu....‘.....,M.-,,;...--.-----.--i-~,»-..,M -------_;--»\.,‘.,»-.»,<\»---- _.,, , _ .. < .,, _ . .. _,_, >~._ .
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Table 22.8 Volatilities (% per day) using equal weighting and EWMA.

. DJIA FTSE 100 CAC 40 Nikkei 225

Equal weighting: 1.11 a 1 42 1.40 1.38
EWMA: - 2.19 3 21 3.09 1.59

?, — 4.777‘ 1.i.- —1 _.\, ~ __. -- .- . - ,_ _ V ~ 1 v.-- _ -1-.’ _-_~ ‘,- pf"; ‘,,,-~ ~-;'»‘<—- --.
1
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Table 22.9 Correlation matrix on September 25, 2008, calculated using the EWMA
method: variable 1 is DJIA; variable 2 is FTSE 100; variable 3 is CAC 40; variable 4
is Nikkei 225.

_ -0.113 0.409

_ 1 0.611 0.629 —0.113_

0.611 1 0.971 0.409

0.629 0.971 1 0.342

0.342 1

19 This is an example of the phenomenon that correlations tend to increase in adverse market conditions.
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SUMMARY

Most popular option pricing models, such as Black-Scholes, assume that the volatility
of the underlying asset is constant. This assumption is far from perfect. In practice, the
volatility of an asset, like the asset’s price, is a stochastic variable. Unlike the asset price,
it is not directly observable. This chapter has discussed procedures for attempting to
keep track of the current level of volatility.

We define u,- as the percentage change in a market variable between the end of
day i - 1 and the end of day i. The variance rate of the market variable (that is, the
square of its volatility) is calculated as a weighted average of the The key feature of
the procedures that have been discussed here is that they do not give equal weight to
the observations on the The more recent an observation, the greater the weight
assigned to it. In the EWMA and the GARCH(l,l) models, the weights assigned to
observations decrease exponentially as the observations become older. The
GARCH(l,l) model differs from the EWMA model in that some weight is also
assigned to the long-run average variance rate. It has a structure that enables forecasts
of the future level of variance rate to be produced relatively easily.

Maximum likelihood methods are usually used to estimate parameters from historical
data in the EWMA, GARCH(l , 1), and similar models. These methods involve using an
iterative procedure to determine the parameter values that maximize the chance or
likelihood that the historical data will occur. Once its parameters have been determined,
a GARCH(l,l) model can be judged by how well it removes autocorrelation from
the . , .

For every model that is developed to track variances, there is a corresponding model
that can be developed to track covariances. The procedures described here can therefore
be used to update the complete variance-covariance matrix used in value at risk
calculations.
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Practice Questions (Answers in Solutions Manual)

22.1

22.2.

22.3

22.4

22.5

22.6

22.7

22.8

22.9

22.10

22.11

Explain the exponentially weighted moving average (EWMA) model for estimating
volatility from historical data.

What is the difference between the exponentially weighted moving average model and
the GARCH(l, 1) model for updating volatilities?

The most recent estimate of the daily volatility of an asset is 1.5% and the price of the
asset at the close of trading yesterday was $30.00. The parameter A in the EWMA model
is 0.94. Suppose that the price of the asset at the close of trading today is $30.50. How
will this cause the volatility to be updated by the EWMA model?

A company uses an EWMA model for forecasting volatility. It decides to change the
parameter A from 0.95 to 0.85. Explain the likely impact on the forecasts.

The volatility of a certain market variable is 30% per annum. Calculate a 99%
confidence interval for the size of the percentage daily change in the variable.

A company uses the GARCH(l, 1) model for updating volatility. The three parameters
are co, oz, and ,8. Describe the impact of making a small increase in each of the parameters
while keeping the others fixed.
The most recent estimate of the daily volatility of the US dollar/sterling exchange rate is
0.6% and the exchange rate at 4p.m. yesterday was 1.5000. The parameter A in the
EWMA model is 0.9. Suppose that the exchange rate at 4 p.m. today proves to be 1.4950.
How would the estimate of the daily volatility be updated? L
Assume that S&P 500 at close of trading yesterday was 1,040 and the daily volatility of
the index was estimated as 1% per day at that time. The parameters in a GARCH(l, 1)
model are co = 0.000002, or = 0.06, and ,8 = 0.92. If the level of the index at close of
trading today is 1,060, what is the new volatility estimate?
Suppose that the daily volatilities of asset A and asset B, calculated at the close of trading
yesterday, are 1.6% and 2.5%, respectively. The prices of the assets at close of trading
yesterday were $20 and $40 and the estimate of the coeflicient of correlation between the
returns on the two assets was 0.25. The parameter A used in the EWMA model is 0.95.
(a) Calculate the current estimate of the covariance between the assets.
(b) On the assumption that the prices of the assets at close of trading t/oday are $20.5

and $4-0.5, update the correlation estimate.
The parameters of a GARCH(l, 1) model are estimated as co : 0.000004, or = 0.05, and
,8 = 0.92. What is the long-run average volatility and what is the equation describing the
way that the variance rate reverts to its long-run average? If the current volatility is 20%
per year, what is the expected volatility in 20 days?

Suppose that the current daily volatilities of asset X and asset Y are 1.0% and 1.2%,
respectively. The prices of the assets at close of trading yesterday were $30 and $50 and
the estimate of the coefficient of correlation between the returns on the two assets made
at this time was 0.50. Correlations and volatilities are updated using a GARCH(l,l)
model. The estimates of the model’s parameters are or : 0.04 and ,8 = 0.94. For the
correlation co: 0.000001, and for the volatilities co : 0.000003. If the prices of the two
assets at close of trading today are $31 a11d $51, how is the correlation estimate
updated?
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22.12. Suppose that the daily volatility of the FTSE 100 stock index (measured in pounds
sterling) is 1.8% and the daily volatility of the dollar/sterling exchange rate is 0.9%.
Suppose further that the correlation between the FTSE 100 and the dollar/sterling
exchange rate is 0.4. What is the volatility of the FTSE 100 when it is translated to
US dollars? Assume that the dollar/sterling exchange rate is expressed as the number of
US dollars per pound sterling. (Hint: When Z = X Y, the percentage daily change in Z is
approximately equal to the percentage daily change in X plus the percentage daily
change in Y.)

22.13. Suppose that in Problem 22.12 the correlation between the S&P 500. Index (measured in
dollars) and the FTSE 100 Index (measured in sterling) is 0.7, the correlation between
the S&P 500 Index (measured in dollars) and the dollar/sterling exchange rate is 0.3, and
the daily volatility of the S&P 500 index is 1.6%. What is the correlation between the
S&P 500 index (measured in dollars) and the FTSE 100 index when it is translated to
dollars? (Hint: For three variables X, Y, and Z, the covariance between X + Y and Z
equals the covariance between X and Z plus the covariance between Y and Z.)

22.14. Show that the GARCH (1,1) model o;3=co+au,i,_1+,8o,‘3_1 in equation (22.9) is
equivalent to the stochastic volatility model dV = a(VL - V) dt + §V dz, where time is
measured in days, V is the square of the volatility of the asset price, and

I co a-:1-ot—,8, v,,=---, 5:0“/5
l—a—fi

What is the stochastic volatility model when time is measured in years? (Hint: The
variable u,,_1 is the return on the assetprice in time At. It can be assumed to be normally
distributed with mean zero and standard deviation o,,_1. It follows that the mean of u§_1
and u:_1 are o,3_1 and 30:4, respectively.)

22.15. At the end of Section 22.8, the VaR for the four-index example was calculated using the
model-building approach. How does the VaR calculated change if the investment is
$2.5 million in each index? Carry out calculations when (a) volatilities and correlations
are estimated using the equally weighted model and (b) when they are estimated using
the EWMA model with A = 0.94. Use the spreadsheets on the author’s website.

22.16. What is the effect of changing A from 0.94 to 0.97 in the EWMA calculations in the four-
index example at the end of Section 22.8. Use the spreadsheets on the author’s website.

. . 7/.

Further Questions

22.17. Suppose that the price of gold at close of trading yesterday was $600 and its volatility
was estimated as 1.3% per day. The price at the close of trading today is $596. Update
the volatility estimate using
(a) The EWMA model with A : 0.94
(b) The GARCH(l, 1) model with to : 0.000002, ot = 0.04, and ,6 = 0.94.

22.18. Suppose that in Problem 22.17 the price of silver at the close of trading yesterday was $16,
its volatility was estimated as 1 .5% per day, and its correlation with gold was estimated as
0.8. The price of silver at the close of trading today is unchanged at $16. Update the
volatility of silver and the correlation between silver and gold using the two models in
Problem 22.17. In practice, is the to parameter likely to be the same for gold and silver?
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CHAPTER 22

An Excel spreadsheet containing over 900 days of daily data on a number of different
exchange rates and stock indices can be downloaded from the author’s website:

www.rotma11.utoronto.ca/~hu11/data.
Choose one exchange rate and one stock index. Estimate the value of A in the EWMA
model that minimizes the value of Z,-(vi — ,8,-)2, where v,- is the variance forecast made at
the end of day i - 1 and ,8, is the variance calculated from data between day i and day
i + 25. Use the Solver tool in Excel. Set the variance forecast at the end of the first day
equal to the square of the return on that day to start the EWMA calculations.
Suppose that the parameters in a GARCH (1,1) model are or : 0.03, ,8 = 0.95, and
co : 0.000002.

What is the long-run average volatility?
If the current volatility is 1.5% per day, what is your estimate of the volatility in 20,
40, and 60 days?

(c) What volatility should be used to price 20-, 40-, and 60-day options?
(d) Suppose that there is an event that increases the current volatility by 0.5% to 2% per

day. Estimate the effect on the volatility in 20, 40, and 60 days.
Estimate by how much the event increases the volatilities used to price 20-, 40-, and
60-day options? t U

(a)
(b)

(6)

The calculations for the four-index example at the end of Section 22.8 assume that the
investments in the DJIA, FTSE 100, CAC 40, and Nikkei 225 are $4 million, $3 million,
$1 million, and $2 million, respectively. How does the VaR calculated change if the
investments are $3 million, $3 million, $1 million, and $3 million, respectively? Carry out
calculations when (a) volatilities and correlations are estimated using the equally
weighted model and (b) when they are estimated using the EWMA model. What is
the effect of changing A from 0.94 to 0.90 in the EWMA calculations? Use the
spreadsheets on the author’s website.
Apply EWMA and GARCH(l, 1) to data on the euro-USD exchange rate between
July 27, 2005, and July 27, 2010. This data can be found on the author’s website:

www.rotmar1.utoronto.ca/~hu11/dat a. :

/
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The value-at-risk measure we covered in Chapter 21 and the Greek letters we studied in
Chapter 18 are aimed at quantifying market risk. In this chapter we consider another
important risk for financial institutions: credit risk. Most financial institutions devote
considerable resources to the measurement and management of credit risk. Regulators
have for many years required banks to keep capital to reflect the credit risks they are
bearing. This capital is in addition to the capital, described in Business Snapshot 21.1,
that is required for market risk.

Credit risk arises from the possibility that borrowers and counterparties in derivatives
transactions may default. This chapter discusses a number of different approaches to
estimating the probability that a company will default and explains the key difference
between risk-neutral and real-world probabilities of default. It examines the nature of
the credit risk in over-the-counter derivatives transactions and discusses the clauses
derivatives dealers write into their contracts to reduce credit risk. It also covers default
correlation, Gaussian copula models, and the estimation of credit value at risk.

Chapter 24 will discuss credit derivatives and show how ideas introduced in this
chapter can be used to value these instruments.

/'

CREDIT RATINGS

Rating agencies, such as Moody’s, S&P, and Fitch, are in the business of providing
ratings describing the creditworthiness of corporate bonds. The best rating assigned by
Moody’s is Aaa. Bonds with this rating are considered to have almost no chance of
defaulting. The next best rating is Aa. Following that comes A, Baa, Ba, B, Caa, Ca,
and C. Only bonds with ratings of Baa or above are considered to be investment grade.
The S&P and Fitch ratings corresponding to Moody’s Aaa, Aa, A, Baa, Ba, B, Caa,
Ca, and C are AAA, AA, A, BBB, BB, B, CCC, CC, and C, respectively. To create finer
rating measures, Moody’s divides its Aa rating category into Aal, Aa2, and Aa3, its A
category into Al, A2, and A3, and so on. Similarly, S&P and Fitch divide their AA
rating category into AA+, AA, and AA-, their A rating category into A+, A, and A-,
and so on. Moody’s Aaa category and the S&P/Fitch AAA category are not sub-
divided, nor usually are the two lowest rating categories.
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HISTORICAL DEFAULT PROBABILITIES

Table 23.1 is typical of the data produced by rating agencies. It shows the default
experience during a 20-year period of bonds that had a particular rating at the
beginning of the period. For-example, a bond with a credit rating of Baa has a
0.176% chance of defaulting by the end of the first year, a 0.494% chance of defaulting
by the end of the second year, and so on. The probability of a bond defaulting during a
particular year can be calculated from the table. For example, the probability that a
bond initially rated Baa will default during the second year is 0.494 - 0.176 : 0.318%.

Table 23.1 shows that, for investment-grade bonds, the probability of default in a
year tends to be an increasing function of time (e.g., the probabilities of an A-rated
bond defaulting during years 0-5, 5-10, 10-15, and 15-20 are 0.717%, 1.329%,
1.526%, and 2.362%, respectively). This is because the bond issuer is initially con-
sidered to be creditworthy, and the more time that elapses, the greater the possibility
that its financial health will decline. For bonds with a poor credit rating, the probability
of default isoften a decreasing function of time (e.g., the probabilities that a B-rated
bond will default during years 0-5, 5-10, 10-15, and 15-20 are 25.895%, 18.482%,
11.721%, and 6.380%, respectively). The reason here is that, for a bond with a poor
credit rating, the next year or two may be critical. The longer the issuer survives, the
greater the chance that its financial health improves. 7

Hazard Rates c c
From Table 23.1 we can calculate the probability of a bond rated Caa or below
defaulting during the third year as 38.682 — 29.384 = 9.298%. We will refer to this as
the unconditional default probability. It is the probability of default during the third year
as seen at time 0. The probability that the bond will survive until the end of year 2 is
100 - 29.384 = 70.616%. The probability that it will default during the third year
conditional on no earlier default istherefore 0.09298 /0.7061 6, or 13.17%. Conditional
default probabilities are referred to as hazard rates or default intensities. M

The 13.17% we have just calculated is for a 1-year time period. Suppose instead that
we consider a short time period of lengthcAt. The hazard rate A(t) at time t is then
defined so thatA(t) At is the probability of default between time t and t + At conditional
on no earlier default. If V(t) is the cumulative probability of the company surviving to
time t (i.e., no default by time t), the conditional probability of default between time t
.- - - 1 , -_-» 3 _---7 ,_;~ . . , _ ._,_-_ . ~, -. , . _ - . _ ...-._. _. ._- _ ‘.r.....‘_ _ _ _ - _ -__ ;. _,. . - - _ _-. _r 1, -~ -.. .
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Table 23.1 Average cumulative default rates (%), 1970-2009. Source: Moody’s.

Term (years): I Z2 3 4 5 7 10 15 20

Aaa 0.000 0.012 0.012 0.037 0.105 0.245 0.497 0.927 1.102
Aa 7 0.022 0.059 0.091 0.159 0.234 0.384 0.542 1.150 2.465
A 0.051 0.165 0.341 0.520 0.717 1.179 2.046 3.572 5.934
Baa A 0.176 0.494 0.912 1.404 1.926 2.996 4.851 8.751 12.327
Ba , 1.166 14.318 19.964 29.703 37.173

34.473 44.377 56.098 62.478
59.771 71.376 77.545 80.211

B g 4.546
Caa-C 17.723
, ,_ . _. .
’; t ‘.'

3.186
10.426
29.384

5.583
16.188
38.682

8.123 10.397
21.256 25.895
46.094 52.286

~ . —. ‘ -\.
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23.3

and t+ At is [V(t) - V(t + At)j/ V(t). Since this equals A(t) At, it follows that

V(t + At) - V(t) : -A(t)V(t) At
Taking limits

dV(t) _—d}- _ -A(t)V(t)
from which

V(t) : 6- A(t)dt

Defining Q(t) as the probability of default by time t, so that Q(t) : 1 — V(t), gives

. Q(t) : 1 _ 6- IO A(t)dt

or
 Q(t) = 1 - 6-*9‘ (23.1)

where A(t) is the average hazard rate (default intensity) between time 0 and time t.

RECOVERY RATES

When a company goes bankrupt, those that are owed money by the company file claims
against the assets of the company.l Sometimes there is a reorganization in which these
creditors agree to a partial payment of their claims. In other cases the assets are sold by
the liquidator and the proceeds are used to meet the claims as far as possible. Some
claims typically have priority over other claims and are met more fully.

The recovery rate for a bond is normally defined as the bond’s market value a few
days after a default, as a percent of its face value. Table 23.2 provides historical data on
average recovery rates for different categories of bank loans and bonds in the United
States. It shows that bank loans with a first lien on assets had the best average recovery
rate, 65.6%. For bonds, the average recovery rate ranges from 49.8% for those that are

. . ,- H . - , _ __ _ . _ ._.__ ,1 . ,__ _ . _- .- _.._._. ~ . _~ ,,._- I. 2. _:. ,.. _-_ __ “W, , . ~ _ - _ _. , . _ _ . _ _ -. _ _- . '_ ¢\¢ , _ ~\,!I ~x.;-_

Table 23.2 Recovery rates on corporate bonds as a percentage
of face value, 1982-2009. Source: Moody’s.

/:

Class Average
recovery rate (%)

65.6
32.8
48.7
49.8
36.6
30.7
31.3
24.7

First lien bank loan
Second lien bank loan
Senior unsecured bank loan
Senior secured bond
Senior unsecured bond
Senior subordinated bond
Subordinated bond
Junior subordinated bond

1 In the United States, the claim made by a bond holder is the bond’s face value plus accrued interest.
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both senior to other lenders and secured to 24.7% for those that rank after other
lenders with a security interest that is subordinate to other lenders.

Recovery rates are significantly negatively correlated with default rates.2 This means
that a bad year for the default rate is usually doubly bad because it is accompanied by a
low recovery rate. For example, when the default rate for non-investment-grade bonds
in a year is only 0.1%, the average recovery rate might be relatively high at 60%. When
the default rate is relatively high at 3%, the average recovery rate might be only 35%.

ESTIMATING DEFAULT PROBABILITIES FROM BOND PRICES

The probability of default for a company can be estimated from the prices of bonds it
has issued. The usual assumption is that the only reason a corporate bond sells for less
than a similar risk-free bond is the possibility of default?’

Consider first an approximate calculation. Suppose that a bond yields 200 basis
points more than a similar risk-free bond and that the expected recovery rate in the
event of a default is 40%. The holder of a corporate bond must be expecting to lose 200
basis points (or 2% per year) from defaults. Given the recovery rate of 40%, this leads
to an estimate of the probability of a default per year conditional on no earlier default
of 0.02/(1 — 0.4), or 3.33%. In general,

_ S 1
A :4 23.2

where A is the average hazard rate (default intensity) per year, s is the spread of the
corporate bond yield over the risk-free rate, and R is the expected recovery rate.

A More Exact Calculation »  
For a more exact calculation, suppose that the corporate bond we have been consider-
ing lasts for 5 years, provides a coupon 6% per annum (paid semiannually) and that the
yield on the corporate bond is 7% per annum (with continuous compounding). The
yield on a similar risk-free bond is 5% (with continuous compounding). The yields
imply that the price of the corporate bond is 95.34 and the price of the/risk-free bond
is 104.09. The expected loss from default over the 5-year life of the bond is therefore
104.09 — 95.34, or $8.75. Suppose that the unconditional probability of default per year
(assumed to be the same each year) is Q. Table 23.3 calculates the expected loss from
default in terms of Q on the assumption that defaults can happen at times 0.5, 1.5, 2.5,
3.5, and 4.5 years (immediately before coupon payment dates). Risk-free rates for all
maturities are assumed to be 5% (with continuous compounding).

To illustrate the calculations, consider the 3.5-year row in Table 23.3. The expected
value of the corporate bond at time 3.5 years (calculated using forward interest rates

2 See E.I. Altman, B. Brady, A. Resti, and A. Sironi, “The Link between Default and Recovery Rates:
Theory, Empirical Evidence, and Implications,” Journal of Business, 78, 6 (2005), 2203-28. This is also
discussed in publications by Moody’s Investors Service.

3 This assumption is not perfect. In practice the price of a corporate bond is affected by its liquidity. The
lower the liquidity, the lower the price.
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Table 23.3 Calculation of loss from default on a bond in terms of the default
probabilities per year, Q. Notional principal : $100.

Time Default Recovery Risk-free Loss given Discount PV of expected
(years) probability amount ($) value ($) default ($) factor loss ($)

0.5
1.5
2.5
3.5

IQIQIQIQIQ

106.73
105.97
105.17
104.34
103.46

66.73
65.97
65.17
64.34
63.46

0.9753
0.9277
0.8825
0.8395
0.7985

65.08Q
61.20Q
57.52Q
54.01 Q
50.67Q4.5

Total 288.48Q
, _ _ ._ , T i >_ U , _

A ~ - ~ - - - -- - I > 1 — ..

and assuming no possibility of default) is

3 + 36-—0.05X0.5 + 36-—0.05Xl.0 + 103e—0.05Xl.5 _____

Given the definition of recovery rates in the previous section, the amount recovered if
there is a default is 40, so that the loss given default is 104.34 - 40, or $64.34. The
present value of this loss is 54.01. The expected loss is therefore 54.01Q.

The total expected loss is 288.48Q. Setting this equal to 8.75, we obtain a value for Q
of 8.75/288.48, or 3.03%. The calculations we have given assume that the default
probability is the same in each year and that defaults take place at just one time during
the year. We can extend the calculations to assume that defaults can take place more
frequently. Also, instead of assuming a constant unconditional probability of default we
can assume a constant hazard rate (default intensity) or assume a particular pattern for
the variation of default probabilities with time. With several bonds we can estimate
several parameters describing the term structure of default probabilities. Suppose, for
example, we have bonds maturing in 3, 5, 7, and 10 years. We could use the first bond to
estimate a default probability per year for the first 3 years, the second bond to estimate
default probability per year for years 4 and 5, the third bond to estimate a default
probability for years 6 and 7, and the fourth bond to estimate a default probability for
years 8, 9, and 10 (see "Problems 23.13 and 23.27). This approach is analogous to the
bootstrap procedure in Section 4.5 for calculating a zero-coupon yield curve. '/

The Risk-Free Rate
A key issue when bond prices are used to estimate default probabilities is the meaning of
the terms “risk-free rate” and “risk-free bond.” In equation (23.2), the spread s is the
excess of the corporate bond yield over the yield on a similar risk-free bond. In Table 23.3,
the risk-free value of the bond must be calculated using the risk-free discount rate. The
benchmark risk-free rate that is usually used in quoting corporate bond yields is the yield
on similar Treasury bonds. (For example, a bond trader might quote the yield on a
particular corporate bond as being a spread of 250 basis points over Treasuries.)

As discussed in Section 4.1, traders usually use LIBOR/swap rates as proxies for risk-
free rates when valuing derivatives. Traders also often use LIBOR/swap rates as risk-
free rates when calculating default probabilities. For example, when they determine
default probabilities from bond prices, the spread s in equation (23.2) is the spread of
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the bond yield over the LIBOR/swap rate. Also, the risk-free discount rates used in the
calculations in Table 23.3 are LIBOR/swap zero rates.

Credit default swaps (which will be discussed in the next chapter) can be used to imply
the risk-free rate assumed by traders. The implied rate appears to be approximately
equal to the LIBOR/swap rate minus 10 basis points on average.4 This estimate is
plausible. As explained in Section 7.5, the credit risk in a swap rate is the credit risk from
making a series of short-term loans to AA-rated counterparties and 10 basis points is a
reasonable default risk premium for a AA-rated short-term instrument.

Asset Swaps 5
In practice, traders often use asset swap spreads as a way of extracting default
probabilities from bond prices. This is because asset swap spreads provide a direct
estimate of the spread of bond yields over the LIBOR/swap curve.

To explain how asset swaps work, consider the situation where an asset swap
spread for a particular bond is quoted as 150 basis points. There are three possible
situations:

1. The bond sells for its par value of 100. The swap then involves one side (company A)
paying the coupon on the bond and the other side (company B) paying LIBOR plus
150 basis points. Note that it is the promised coupons that are exchanged. The
exchanges take place regardless of whether the bond defaults.

2. The bond sells below its par value, say, for 95. The swap is then structured so that,
in addition to the coupons, company A pays $5 per $100 of notional principal at
the outset. Company B pays LIBOR plus 150 basis points.

3. The underlying bond sells above par, say, for 108. The swap is then structured so
that, in addition to LIBOR plus 150 basis points, company B makes a payment
of $8 per $100 of principal at the outset. Company A pays the coupons.

The effect of all this is that the present value of the asset swap spread is the amount by
which the price of the corporate bond is exceeded by the price of a similar risk-free
bond where the risk-free rate is assumed to be given by the LIBOR/swap curve (see
Problem 23.22).

Consider again the example in Table 23.3 where the LIBOR/swap zero curve is flat at
5%. Suppose that instead of knowing the bond’s price we know tliat the asset swap
spreadis 150 basis points. This means that the amount by which the value of the risk-
free bond exceeds the value of the corporate bond is the present value of 150 basis
points per year for 5 years. Assuming semiannual payments, this is $6.55 per $100 of
principal. The total loss in Table 23.3 would in this case be set equal to $6.55. This
means that the default probability per year, Q, would be 6.55/288.48, or 2.27%.

COMPARISON OF DEFAULT PROBABILITY ESTIMATES

The default probabilities estimated from historical data are usually much less than those
derived from bond prices. The difference between the two was particularly large during

4 See J . Hull. M. Predescu, and A. White, “The Relationship between Credit Default Swap Spreads, Bond
Yields, and Credit Rating Announcements,” Journal ofBanking and Finance, 28 (November 2004): 2789-281 1.
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the credit crisis which started in mid-2007. This is because there was what is termed a
“flight to quality” during the crisis, where all investors wanted to hold safe securities
such as Treasury bonds. The prices of corporate bonds declined, thereby increasing
their yields. The credit spread s on these bonds increased and calculations such as the
one in equation (23.2) gave very high default probability estimates.

We now show that it was also true that default probabilities calculated from bonds
were higher than those calculated before the credit crisis. We first calculate the historical
default probabilities using the data in the 7-year column of Table 23. 1. (We use the 7-year
column because the bonds we will look at later have a life of about 7 years.) From
equation (23.1), we have

110 = -%1n11 - Q(7)]
where A(t) is the average hazard rate (or default intensity) by time t and Q(t) is the
cumulative probability of default by time t. The values of Q(7) for different rating
categories are in Table 23.1. For example, for an A-rated company, Q(7) is 0.01179. The
average 7-year hazard rate is therefore

1(7) = -%1n(1 - 0.01179) = 0.0017
or 0.17%.  1

To calculate average hazard rates from bond prices, we use equation (23.2) and bond
yields published by Merrill Lynch. The results shown are averages between December
1996 and June 2007. The recovery rate is assumed to be 40%. The Merrill Lynch bonds
have a life of about seven years. (This explains why we focused on the 7-year column in
Table 23.1 when calculating historical default probabilities.) To calculate the bond yield
spread, we assume, to be consistent with the arguments in the previous section, that the
risk-free interest rate is the 7-year swap rate minus 10 basis points. For example, for A-
rated bonds, the average Merrill Lynch yield was 5.995%. The average 7-year swap rate
was 5.408%, so that the average risk-free rate was 5.308%. This gives the average 7-year
hazard rate as I

0.05995 - 0.05308- 1_0_4 _0.0115
or 1.15%.

Table 23.4 shows that the ratio of the hazard rate backed out from bond prices to the
hazard rate calculated from historical data is very high for investment-grade companies

.. . .| - , . . A. . _ _ ., _, ,. _ ,_ .,.,~-..,..........-Hy. --.,_ _ :_ )_ .-. ., - - ,-_. ~. _ . .--- . <1‘-..,-,..‘.-_
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Table 23.4 Seven-year average hazard rates (% per annum).

Rating Historical Hazard rate Ratio Dijference
hazard rate from bonds

Aaa
Aa
A
Baa
Ba
B

0.04
0.05
0.17
0.43
2.21
6.04

Caa and lower 13.01

0.60
0.73
1.15
2.13
4.67
8.02

18.39

0.56
0.67
0.98
1.69
2.46
1.98
5.39
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Table 23.5 Expected excess return on bonds (basis points).

Rating Bond yield spread Spread of risk-free rate Spreadfor Excess
over Treasuries over Treasuries historical defaults return

Aaa 78 42 2 34
Aa 86 42 3 41
A 111 42 10 59
Baa 169 42 26 101
Ba 322 42 132 148
B 523 42 362 119
Caa 1 146 42 781 323

' ,‘. .-.-.:..:-- ’ 1, . .~- _; . . 1. _ __ 4 - _ _ .- ,' . r-_,.- .

and tends to decline as a company’s credit rating dec1ines.5 The difference between the
two hazard rates tends to increase as the credit rating declines.

Table 23.5 provides another way of looking at these results. It shows the excess return
over the risk-free rate (still assumed to be the 7-year swap rate minus 10 basis points)
earned by investors in bonds with different credit rating. Consider again an A-rated
bond. The average spread over 7-year Treasuries is 111 basis points. Of this, 42 basis
points are accounted for by the average spread between 7-year Treasuries and our proxy
for the risk-free rate. A spread of 10 basis points is necessary to cover expected defaults.
(This equals the historical hazard rate from Table 23.4 multiplied by 0.6 to allow for
recoveries.) This leaves an excess return (after expected defaults have been taken into
account) of 59 basis points.

Tables 23.4 and 23.5 show that a large percentage difference between default
probability estimates translates into a small (but significant) excess return on the bond.
For Aaa-rated bonds, the ratio of the two hazard rates is 17.0, but the expected excess
return is only 34 basis points. The excess return tends to increase as credit quality
declines.6  

The excess return in Table 23.5 does not remain constant through time. Credit
spreads, and therefore excess returns, were high in 2001, 2002, and the first half of
2003. After that they were fairly low until the credit crisis.

Real-World vs. Risk-Neutral Probabilities '1
The default probabilities implied from bond yields are risk-neutral probabilities of
default. To explain why this is so, consider the calculations of default probabil-
ities in Table 23.3. The calculations assume that expected default losses can be
discounted at the risk-free rate. The risk-neutral valuation principle shows that this is a
valid procedure providing the expected losses are calculated in a risk-neutral world. This
means that the default probability Q in Table 23.3 must be a risk-neutral probability.

By contrast, the default probabilities implied from historical data are real-world default
probabilities (sometimes also called physical probabilities). The expected excess return in
Table 23.5 arises directly from the difference between real-world and risk-neutral default
i 

5 The results in Tables 23.4 and 23.5 are updates of the results in J. Hull, M. Predescu, and A. White, “Bond
Prices, Default Probabilities, and Risk Premiums,” Journal of Credit Risk, 1, 2 (Spring 2005): 53-60.

6 The results for B-rated bonds in Tables 23.4 and 23.5 run counter to the overall pattern.
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probabilities. If there were no expected excess return, then the real-world and risk-neutral
default probabilities would be the same, and vice versa.

Why do we see such big differences between real-world and risk-neutral default
probabilities? As we have just argued, this is the same as asking why corporate bond
traders earn more than the risk-free rate on average.

One reason often advanced for the results is that corporate bonds are relatively
illiquid and the returns on bonds are higher than they would otherwise be to
compensate for this. This is true, but research shows that it does not fully explain the
results in Table 23.5.7 Another possible reason for the results is that the subjective
default probabilities of bond traders may be much higher than the those given in
Table 23.1. Bond traders may be allowing for depression scenarios much worse than
anything seen during the period covered by historical data. However, it is diflicult to see
how this can explain a large part of the excess return that is observed.

By far the most important reason for the results in Tables 23.4 and 23.5 is that bonds
do not default independently of each other. There are periods of time when default
rates are very low and periods of time when they are very high. Evidence for this can be
obtained by looking at the default rates in different years. Moody’s statistics show that
between 1970 and 2009 the default rate per year ranged from a low of 0.09% in 1979 to
highs of 3.97% and 5.35% in 2001 and 2009, respectively. The year-to-year variation in
default rates gives rise to systematic risk (i.e., risk that cannot be diversified away) and
bond traders earn an excess expected return for bearing the risk. (This is similar to the
excess expected return earned by equity holders that is calculated by the capital asset
pricing model—see the appendix to Chapter 3.) The variation in default rates from year
to year may be because of overall economic conditions and it may be because a default
by one company has a ripple effect resulting in defaults by other companies. (The latter
is referred to by researchers as credit contagion.) Q

In addition to the systematic risk we have just talked about there is nonsystematic (or
idiosyncratic) risk associated with each bond. If we were talking about stocks, we would
argue that investors can diversify the nonsystematic risk by choosing a portfolio of, say,
30 stocks. They should not therefore demand a risk premium for bearing nonsystematic
risk. For bonds, the arguments are not so clear-cut. Bond returns are highly skewed
with limited upside. (For example, on an individual bond, there might be a 99.75%
chance of a 7% return in a year, and a 0.25% chance of a -60% return in the year, the
first outcome corresponding to no default and the second to default.) This type/of risk
is difficult to “diversify away”.8 It would require tens of thousands of different bonds.
In practice, many bond portfolios are far from fully diversified. As a result, bond
traders may earn an extra return for bearing nonsystematic risk as well as for bearing
the systematic risk mentioned in the previous paragraph.

Which Default Probability Estimate Should Be Used?  
At this stage it is natural to ask whether we should use real-world or risk-neutral default
probabilities in the analysis of credit risk. The answer depends on the purpose of the

7 For example, J. Dick-Nielsen, P. Feldhtitter, and D. Lando, “Corporate Bond Liquidity before and after the
Onset of the Subprime Crisis,” Working Paper, Copenhagen Business School, 2010, uses a number of different
liquidity measures and a large database of bond trades. It shows that the liquidity component of credit spreads
is relatively small.

8 See J. D. Amato and E. M. Remolona, “The Credit Spread Puzzle,” BIS Quarterly Review, 5 (Dec. 2003): 51-63.
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analysis. When valuing credit derivatives or estimating the impact of default risk on the
pricing of instruments, risk-neutral default probabilities should be used. This is because
the analysis calculates the present value of expected future cash flows and almost
invariably (implicitly or explicitly) involves using risk-neutral valuation. When carrying
out scenario analyses to calculate potential future losses from defaults, real-world
default probabilities should be used.

USING EQUITY PRICES TO ESTIMATE DEFAULT PROBABILITIES

When we use a table such as Table 23.1 to estimate a company’s real-world probability
of default, we are relying on the company’s credit rating. Unfortunately, credit ratings
are revised relatively infrequently. This has led some analysts to argue that equity prices
can provide more up-to-date information for estimating default probabilities.

In 1974, Merton proposed a model where a company’s equity is an option on the
assets of the company.9 Suppose, for simplicity, that a firm has one zero-coupon bond
outstanding and that the bond matures at time T. Define:

V0: Value of company’s assets today
VT: Value of company’s assets at time T
E0: Value of company’s equity today T
ET: Value of company’s equity at time T
D: Debt repayment due at time T

av: Volatility of assets (assumed constant)
0E: Instantaneous volatility of equity.

If VT < D, it is (at least in theory) rational for the company to default on the debt at
time T. The value of the equity is then zero. If VT > D, the company should make the
debt repayment at time T and the value of the equity at this time is VT - D. Merton’s
model, therefore, gives the value of the firm’s equity at time T as  

ET I maX(VT — D,

This shows that the equity is a call option on the value of the assets with a strike price
equal to the repayment required on the debt. The Black-Scholes-Merton formula gives
the value of the equity today as

E0 = v01v(a,) - oe-'T1v(a2) (23.3)
where

1 v 1) 2 2a,_ nl °/ )+f;T+“V/ )T and d2=d1-ov\/T
av

The value of the debt today is V0 - E0.
The risk-neutral probability that the company will default on the debt is N(—d2). To

calculate this, we require V0 and av. Neither of these are directly observable. However,
if the company is publicly traded, we can observe E0. This means that equation (23.3)
provides one condition that must be satisfied by V0 and av. We can also estimate oE
-—z-¢-ii-——-i-_i-

9 See R. Merton “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates,” Journal of
Finance, 29 (1974): 449-70.
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from historical data or options. From It6’s lemma,

0E
UEE0 I wfit/V0

Of
UEEQ I lV(d1)O'\/V0

This provides another equation that must be satisfied by V0 and av. Equations (23.3)
and (23.4) provide a pair of simultaneous equations that can be solved for V0 and av.”

Example 23.1 _
The value of a company’s equity is $3 million and the volatility of the equity is
80%. The debt that will have to be paid in 1 year is $10 million. The risk-free rate
is 5% per annum. In this case E0 = 3, aE : 0.80, r = 0.05, T : 1, and D = 10.
Solving equations (23.3) and (23.4) yields V0 : 12.40 and av = 0.2123. The par-
ameter d2 is 1.1408, so that the probability of default is N(-d2) = 0.127, or 12.7%.
The market value of the debt is V0 - E0, or 9.40. The present value of the
promised payment on the debt is l0e"0~05Xl : 9.51. The expected loss on the debt
is therefore (9.51 - 9.40)/9.51, or about 1.2% of its no-default value. The expected
loss (EL) equals the probability of default (PD) times one minus the recovery rate.
It follows that the recovery rate equals one minus EL/PD. In this case, the recovery
rate is 1 - 1.2/12.7, or about 91%, of the debt’s no-default value.

The basic Merton model we have just presented has been extended in a number of ways.
For example, one version of the model assumes that a default occurs whenever the
value of the assets falls below a barrier level. Another allows payments on debt
instruments to be required at more than one time.

How well do the default probabilities produced by Merton’s model and its extensions
correspond to actual default experience? The answer is that Merton’s model and its
extensions produce a good ranking of default probabilities (risk-neutral or real-world).
This means that a monotonic transformation can be used to convert the probability of
default output from Merton’s model into a good estimate of either the real-world or
risk-neutral default probability.“ It may seem strange to take a default probability
N(-d2) that is in theory a risk-neutral default probability (because it is calculated from
an option-pricing model) and use it to estimate a real-world default probability. Given
the nature of the calibration process we have just described, the underlying assumption
is that the ranking of the risk-neutral default probabilities of different companies is the
same as the ranking of their real-world default probabilities.

CREDIT RISK IN DERIVATIVES TRANSACTIONS

The credit exposure on a derivatives transaction is more complicated than that on a
loan. This is because the claim that will be made in the event of a default is more
uncertain. Consider a financial institution that has one derivatives contract outstanding

10 To solve two nonlinear equations of the form F(x, y) = 0 and G(x, y) = 0, the Solver routine in Excel can
be asked to find the values of x and y that minimize [F(x, y)]2 + [G(x, y)]2.

H Moody’s KMV provides a service that transforms a default probability produced by Merton’s model into a
real-world default probability (which it refers to as an expected default frequency, or EDF). CreditGrades use
Merton’s model to estimate credit spreads, which are closely linked to risk-neutral default probabilities.
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with a counterparty. Three possible situations can be distinguished:

1. Contract is always a liability to the financial institution
2. Contract is always an asset to the financial institution
3. Contract can become either an asset or a liability to the financial institution.

An example of a derivatives contract in the first category is a short option position; an
example in the second category is a long option position; an example in the third
category is a forward contract.

Derivatives in the first category have no credit risk to the financial institution. If the
counterparty goes bankrupt, there will be no loss. The derivative is one of the counter-
party’s assets. It is likely to be retained, closed out, or sold to a third party. The result is
no loss (or gain) to the financial institution.

Derivatives in the second category always have credit risk to the financial institution. If
the counterparty goes bankrupt, a loss is likely to be experienced. The derivative is one of
the counterparty’s liabilities. The financial institution has to make a claim against the
assets of the counterparty and may receive some percentage of the value of the derivative.
(Typically, a claim arising from a derivatives transaction is unsecured and junior.)

Derivatives in the third category may or may not have credit risk. If the counterparty
defaults when the value of the derivative is positive to the financial institution, a claim
will be made against the assets of the counterparty and a loss is likely to be experienced.
If the counterparty defaults when the value is negative to the financial institution, no
loss is made because the derivative is retained, closed out, or sold to a third party.”

Adjusting Derivatives’ Valuations for Counterparty Default Risk
How should a financial institution (or end-user of derivatives) adjust the value of a
derivative to allow for counterparty credit risk? Consider a derivative that lasts until
time T and has a value of f0 today, assuming no defaults. Let us suppose that defaults
can take place at times t1, t;>_, . . ., tn, where t,, = T, and that the value of the derivative
to the financial institution (assuming no defaults) at time t,- is f,-. Define the risk-neutral
probability of default at time t,- as q,- and the expected recovery rate as R13

The exposure at time t,- is the financial institution’s potential loss. This is max(f,-, 0).
Assume that the expected recovery in the event of a default is R times the exposure.
Assume also that the recovery rate and the probability of default are independent of the
value of the derivative. The risk-neutral expected loss from default at time t,~ is

q.-<1 - R>E1ma><a.-.0)1
where E denotes expected value in a risk-neutral world. Taking present values leads to
what is termed the credit value adjustment (CVA):

Z; it, 0, (23.5)
where u,¢ equals q,¢(1 - R) and vi is the value today of an instrument that pays off the
exposure on the derivative under consideration at time t,-.
i 

'2 Note that a company usually defaults because of a. deterioration in its overall financial health, not because
of the value of any one transaction.

13 The probability of default could be calculated from bond prices in the way described in Section 23.4.
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Consider again the three categories of derivatives mentioned earlier. The first
category (where the derivative is always a liability to the financial institution) is easy
to deal with. The value of f,- is always negative and so the total expected loss from
defaults given by equation (23.5) is always zero. The financial institution needs to make
no adjustments for the cost of defaults. (Of course, the counterparty may want to take
account of the possibility of the financial institution defaulting in its own pricing.)

For the second category (where the derivative is always an asset to the financial
institution), f,- is always positive. This means than the expression max(fj-,0) always
equals f,-. Suppose that the only payoff from the derivative is at time T, the end of its
life. In this case, f0 must be the present value of f,-, so that vi : f0 for all i. The
expression in equation (23.5) for the present value of the cost of defaults becomes

I1

f02:qi(1_'R)
1 l

If f0‘ is the actual value of the derivative (after allowing for possible defaults), then

fti = f0 — f0 £61.-(1— R) = f0[1* ijqt-(1— 13)] (23-6)
z 1 z 1

One particular instrument that falls into the second category we are considering is an
unsecured zero-coupon bond that promises $1 at time T and is issued by the counterparty
in the derivatives transaction. Define B0 as the value of the bond assuming no possibility
of default and B0 as the actual value of the bond. If we make the simplifying assumption
that the recovery on the bond as a percent of its no-default value is the same as that on the
derivative, then  

fl

B3 = B0[1- Zq,(l - 10] (23.7)
t 1

From equations (23.6) and (23.7)

5:53 (238)
f0 B0 I I

If y is the yield on a risk-free zero-coupon bond maturing at time T and y* is the yield
on a zero-coupon bongl issued by the counterparty that matures at time T, then
B0 : e'yT and B0 = e"' T, so that equation (23.8) gives

ft = .~8@7‘Y*">’>T (23.9)
This shows that any derivative promising a payoff at time T can be valued by increasing
the discount rate that is applied to the expected payoff in a risk-neutral world from the
risk-free rate y to the risky rate y*.

Example 23.2 .
Consider a 2-year over-the-counter option sold by company X with a value,
assuming no possibility of default, of $3. Suppose that 2-year zero-coupon
bonds issued by the company X have a yield that is 1.5% greater than a similar
risk-free zero-coupon bond. The value of the option is 3e'“0-015><-2 : 2.91, or
$2.91.



534

23.8

CHAPTER 23

For the third category of derivatives, the sign of f,- is uncertain. The variable vi is a
call option on f,- with a strike price of zero. One way of calculating vi is to simulate the
underlying market variables over the life of the derivative. Sometimes approximate
analytic calculations are possible (see, e.g., Problems 23.15 and 23.16).

The analyses we have presented assume that the probability of default is independent
of . the value of the derivative. This is likely to be a reasonable approximation in
circumstances when the derivative is a small part of the portfolio of the counterparty
or when the counterparty is using the derivative for hedging purposes. When a
counterparty wants to enter into a large derivatives transaction for speculative purposes
a financial institution should be wary. When the transaction has a large negative value
for the counterparty (and a large positive value for the financial institution), the chance
of counterparty declaring bankruptcy may be much higher than when the situation is
the other way round.

Traders working for a financial institution use the term right-way risk to describe the
situation where a counterparty is most likely to default when the financial institution
has zero, or very little, exposure. They use the term wrong-way risk to describe the
situation where the counterparty is most likely to default when the financial institution
has a big exposure.

CREDIT RISK MITIGATION

In many instances the analysis we just have presented overstates the credit risk in a
derivatives transaction. This is because there are a number of clauses that derivatives
dealers include in their contracts to mitigate credit risk.

Netting  
A clause that has become standard in the Master Agreements that govern transactions in
the over-the-counter market is known as netting. This states that, if a company defaults
on one transaction it has with a counterparty, it must default on all outstanding
transactions with the counterparty.

Netting has been successfully tested in the courts in most jurisdigtions. It can
substantially reduce credit risk for a financial institution. Consider, for example, a
financial institution that has three transactions outstanding with a particular counter-
party. The transactions are worth +$l0 million, +$30 million, and -$25 million to the
financial institution. Suppose the counterparty runs into financial difliculties and
defaults on its outstanding obligations. To the counterparty, the three transactions
have values of —$10 million, —$30 million, and +$25 million, respectively. Without
netting, the counterparty would default on the first two transactions and retain the
third for a loss to the financial institution of $40 million. With netting, it is compelled to
default on all three transactions for a loss to the financial institution of $15 million.“

Suppose a financial institution has a portfolio of N derivatives transactions with a
particular counterparty. Suppose that the no-default value of the ith transaction is V,
 i

'4 Note that, if the third transaction were worth -$45 million to the financial institution instead of
-$25 million, t‘."1e counterparty would choose not to default and there would be no loss to the financial
institution.
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and the amount recovered in the event of default is the recovery rate times this no
default value. Without netting, the financial institution loses

N

(1 - R)Zmax(V,~, 0)
i=-1

where R is the recovery rate. With netting, it loses

N
(1 - R)max<Z V,-, 0)

l 1

Without netting, its loss is the payoff from a portfolio of call options on the transac-
tions where each option has 2. strike price of zero. With netting, it is the payoff from a
single option on the portfolio of transactions with a strike price of zero. The value of an
option on a portfolio is never greater than, and is often considerably less than, the value
of the corresponding portfolio of options.

The CVA analysis presented in the previous section can be extended so that equation
(23.5) gives the present value of the expected loss from all transactions with a counter-
party when netting agreements are in place. This is achieved by redefining vi in the
equation as the present value of a derivative that pays off the exposure at time t,- on the
portfolio of all transactions with a counterparty.

A challenging task for a financial institution when considering whether it should
enter into a new derivatives transaction with a counterparty is to calculate the
incremental effect on expected credit losses. This can be done by using equation
(23.5) in the way just described to calculate expected default costs with and without
the transaction. It is interesting to note that, because of netting, the incremental effect
of a new transaction on expected default losses can be negative. This happens when the
value of the new transaction is negatively correlated with the value of existing
transactions. 7

Collateralization
Another clause frequently used to mitigate credit risks is known as collateralization.
Suppose that a company and a financial institution have entered into a number of
derivatives transactions. A typical collateralization agreement specifies that the transac-
tions be valued periodically. If the total value of the transactions to the financial
institution is above a specified threshold level, the agreement requires the cumulative
collateral posted by the company to equal the difference between the value of the
transactions to the financial institution and the threshold level. If, after the collateral
has been posted, the value of the transactions moves in favor of the company so that the
difference between value of the transactions to the financial institution and the threshold
level is less than the total margin already posted, the company can reclaim margin. In
the event of a default by the company, the financial institution can seize the collateral. If
the company does not post collateral as required, the financial institution can close out
the transactions.

Suppose, for example, that the threshold level for the company is $10 million and the
transactions are marked to market daily for the purposes of collateralization. If on a
particular day the value of the transactions to the financial institution rises from
$9 million to $10.5 million, it can ask for $0.5 million of collateral. If the next day the
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value of the transactions rises further to $11.4 million, it can ask for a further $0.9 million
of collateral. If the value of the transactions falls to $10.9 million on the following day,
the company can ask for $0.5 million of the collateral to be returned. Note that the
threshold ($10 million in this case) can be regarded as a line of credit that the financial
institution is prepared to grant to the company.

The margin must be deposited by the company with the financial institution in cash
or in the form of acceptable securities such as bonds. The securities are subject to a
discount known as a haircut applied to their market value for the purposes of margin
calculations. Interest is normally paid on cash.

If the collateralization agreement is a two-way agreement a threshold will also be
specified for the financial institution. The company can then ask the financial institu-
tion to post collateral when the value of the outstanding contracts to the company
exceeds the threshold.

Collateralization agreements provide a great deal of protection against the possibility
of default (just as the margin accounts discussed in Chapter 2 provide protection for
people who trade futures on an exchange). However, the threshold amount is not
subject to protection. Furthermore, even when the threshold is zero, the protection is
not total. This is because, when a company gets into financial difficulties, it is likely to
stop responding to requests to post collateral. By the time the counterparty exercises its
right to close out contracts, their value may have moved further in its favor.

As explained in Chapter 2, over-the-counter derivatives are increasingly moving to
clearing houses where market participants post both an initial margin and maintenance
margins.

Downgrade Triggers
Another credit risk mitigation technique sometimes used by a financial institution is
known as a downgrade trigger. This is a clause stating that if the credit rating of the
counterparty falls below a certain level, say Baa, the financial institution has the option
to close out a derivatives transaction at its market value.

Downgrade triggers do not provide protection from a big jump in a company’s credit
rating (for example, from A to default). Also, downgrade triggers work well only if
relatively little. use is made of them. If a company has many downgrade triggers
outstanding with its counterparties, they are liable to provide little protection to any
of the counterparties (see Business Snapshot 23.1).

DEFAULT CORRELATION

The term default correlation is used to describe the tendency for two companies to
default at about the same time. There are a number of reasons why default correlation
exists. Companies in the same industry or the same geographic region tend to be
affected similarly by external events and as a result may experience financial difliculties
at the same time. Economic conditions generally cause average default rates to be
higher in some years than in other years. A default by one company may cause a default
by another-—the credit contagion effect. Default correlation means that credit risk
cannot be completely diversified away and is the major reason why risk-neutral default
probabilities are greater than real-world default probabilities (see Section 23.5).

\
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Business Snapshot 23.1 Downgrade Triggers and Enr0n’s_ Bankruptcy

In December 2001, Enron, one of the largest companies in the_United States, went
bankrupt. Right up to the last few days, it had an investment-grade credit rating. The
Moody’s rating immediately prior to default was Baa3 and the S&P rating was BBB-.
-The default was, however, anticipated to some extent by the stock marketbecause
8Enron"s stock price fell sharply in the period leading up to the bankrup_tcy.*The
pr'o'babi_lityof defaultestin_iatefd bymodels such as the one described in}S.ection 23.6
increasedshafrply during" this period. - I if " '

4 , . 1 . 1.:; - - . . 0 - ' 1
E5 i" Enron had entered, into a-huge number of derivatives transactions with downgrade
trigge'rs.>The 'downgi*ade triggers stated that, if its credit rating fell below investment
grade (i.e., below, Baa3”/BBB-), its counterparties would have the option of closing
out the transactions. Suppose that Enron had been downgraded to below investment
grade "in, say, October 2001. The transactions that counterparties would choose to
closeout,‘ would be those with negative values to Enron (and positive values to the
counterparties). So, Enron would have been required to make huge cash ipayments to
its counterparties. It would not have been able to do this and immediate. bankruptcy
would have resulted. it - - _  -

This iexainple illustrates) that downgrade _triggers provide protectionionlyl when
relatively-_lit_tle'useis macle of them. When a company enters .int'o'a_huge ,nun1be_r of
contracfs with downIg"faIde_'tri'ggers‘,Ithey n'1ay' actually cause a company to igo ‘bank-
rupt premature’1y.i:I:n' En_ron’s case, we could argue that it was going to gobankrupt
anyway and accelerating) the event by two months would not have done anyiharm.‘ -In
fact, Enron did have a chance of survival in October 2001. Attempts were being made

1 to work out a deal_with§_another'energy company, Dynerg‘y,' and so bank-
ruptcy in'O'etoberl'2001 was not in the interests of either creditors or _s_hareholder's.,

5 - . 0 _ . - _ ‘ - .

The credit rating »_co_inpanies found themselves in ‘a difficult, position. 7. If "they
downgradedEnron tofecognizeits deteriorating financial. position, they_we_re signing

sits-death warrant. If they did-‘not do so, there was achance of Enron_surviv'ing. "

Default correlation is important in the determination of probability distributions for
default losses from aportfolio of exposures to different counterparties.” Two types of
default correlation models that have been suggested by researchers are referred to as
reduced form models and structural models.

Reduced form models assume that the hazard rates for different companies follow
stochastic processes and are correlated with macroeconomic variables. When the hazard
rate for company A is high there is a tendency for the hazard rate for company B to be
high. This induces a default correlation between the two companies.

Reduced form models are mathematically attractive and reflect the tendency for
economic cycles to generate default correlations. Their main disadvantage is that the
range of default correlations that can be achieved is limited. Even when there is a perfect
correlation between the hazard rates of the two companies, the probability that they will
both default during the same short period of time is usually very low. This is liable to be a
problem in some circumstances. For example, when two companies operate in the same

'5 A binomial correlation measure that has been used by rating agencies is described in Technical Note 26 at
www.rotma.n.utoronto.ca/~hu11/TechnicalNotes.
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industry and the same country or when the financial health of one company is for some
reason heavily dependent on the financial health of another company, a relatively high
default correlation may be warranted. One approach to solving this problem is by
extending the model so that the hazard rate exhibits large jumps.

Structural models are based on a model similar to Merton’s model (see Section 23.6).
A company defaults if the value of its assets is below a certain level. Default correlation
between companies A and B is introduced into the model by assuming that the
stochastic process followed by the assets of company A is correlated with the stochastic
process followed by the assets of company B. Structural models have the advantage
over reduced form models that the correlation can be made as high as desired. Their
main disadvantage is that they are liable to be computationally quite slow.

The Gaussian Copula Model for Time to Default
A model that has become a popular practical tool is the Gaussian copula model for
the time to default. It can be characterized as a simplified structural model. It assumes
that all companies will default eventually and attempts to quantify the correlation
between the probability distributions of the times to default for two or more different
companies.

The model can be used in conjunction with either real-world or risk-neutral default
probabilities. The left tail of the real-world probability distribution for the time to
default of a company can be estimated from data produced by rating agencies such as
that in Table 23. 1. The left tail of the risk-neutral probability distribution of the time to
default can be estimated from bond prices using the approach in Section 23.4.

Define t1 as the time to default of company 1 and t2 as the time to default of
company 2. If the probability distributions of t1 and t2 were normal, we could assume
that the joint probability distribution of t1 and t2 is bivariate normal. As it happens, the
probability distribution of a company’s time to default is not even approximately
normal. This is where a Gaussian-copula model comes in. We transform t1 and t2 into
new variables x1 and x2 using I

X1 = N_1lQ1(t1)l- X2 = N_1lQ2(t2)l  

where Q1 and Q2 are the cumulative probability distributions for t1 and t2, respectively,
and N"l is the inverse of the cumulative normal distribution (ur: N'1(v) when
v = N(u)). These are "percentile-to-percentile" transformations. The 5-percentile point
in the probability distribution for t1 is transformed to x1 = -1.645, which is the
5-percentile point in the standard normal distribution; the 10-percentile point in the
probability distribution for t1 is transformed to xl : -1.282, which is the 10-percentile
point in the standard normal distribution, and so on. The t0-to-x2 transformation is
similar.

By construction, x1 and x2 have normal distributions with mean zero and unit
standard deviation. The model assumes that the joint distribution of x1 and x2 is
bivariate normal. This assumption is referred to as using a Gaussian copula. The
assumption is convenient because it means that the joint probability distribution of
t1 and t2 is fully defined by the cumulative default probability distributions Q1 and Q2
for t1 and t2, together with a single correlation parameter.

The attraction of the Gaussian copula model is that it can be extended to many
companies. Suppose that we are considering n companies and that t,- is the time to default
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of the ith company. We transform each t,- into a new variable, xi, that has a standard
normal distribution. The transformation is the percentile-to-percentile transformation

x. = 1\’T‘[Q.-(I.-)1
where Q, is the cumulative probability distribution for t,-. It is then assumed that the x,-
are multivariate normal. The default correlation between t,- and tj is measured as the
correlation between x,- and x1-. This is referred to as the copula correlation.“

The Gaussian copula is a useful way of representing the correlation structure
between variables that are not normally distributed. It allows the correlation structure
of the variables to be estimated separately from their marginal (unconditional)
distributions. Although the variables themselves are not multivariate normal, the
approach assumes that after a transformation is applied to each variable they are
multivariate normal.

Example 23.3
Suppose that we wish to simulate defaults during the next 5 years in 10 com-
panies. The copula default correlations between each pair of companies is 0.2. For
each company the cumulative probability of a default during the next 1, 2, 3, 4,
5 years is 1%, 3%, 6%, 10%, 15%, respectively. When a Gaussian copula is used
we sample from a multivariate normal distribution to obtain the x,- (1 Q i Q 10)
with the pairwise correlation between the x,- being 0.2. We then convert the xi to t,-,
a time to default. When the sample from the normal distribution is less than
N'1(0.0l) :: -2.33, a default takes place within the first year; when the sample
is between -2.33 and NT1(0.03) = -1.88, a default takes place during the second
year; when the sample is between -1.88 and N_1(0.06) : -1.55, a default takes
place during the third year; when the sample is between -1.55 and N'1(0.10) -:
-1.28, a default takes place during the fourth year; when the sample is between
-1.28 and N_1(0.15) -: -1.04, a default takes place during the fifth year. When
the sample is greater than -1.04, there is no default during the 5 years.

A Factor-Based Correlation Structure
To avoid defining a different correlation between x,- and x1- for each pair of companies i
and j in the Gaussian copula model, a one-factor model is often used. The assumption
is that

Xi I CliF ’l‘ \/ I -' (112.21:

In this equation, F is a common factor affecting defaults for all companies and Z,- is a
factor affecting only company i. The variable F and the variables Z, have independent
standard normal distributions. The a,- are constant parameters between -1 and +1. The
correlation between x,- and xj is a,- aJ-.17

Suppose that the probability that company i will default by a particular time T
is Q,-(T). Under the Gaussian copula model, a default happens by time T when

16 As an approximation, the copula correlation between t,- and t1- is often assumed to be the correlation
between the equity returns for companies i and j.

17 The parameter a,~ is sometimes approximated as the correlation of company i’s equity returns with a well-
diversified market index.
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N(x,-) < Q,-(T) or x,- < N'1[Q,-(T)]. From equation (23.10), this condition is

a,-F + ./1- it? Z,- < N'1[Q,-(T)]
or

Z_ < N~llQt(T)l — aiF
. l

Conditional on the value of the factor F, the probability of default is therefore

Q,-(T | F): 1v(N_1lQ"1(i)]a2_“"F) (23.11)

A particular case of the one-factor Gaussian copula model is where the probability
distributions of default are the same for all i and the correlation between x,- and x1- is the
same for all i and j. Suppose that Q,-(T) : Q(T) for all i and that the common
correlation is ,0, so that a,- = (/5 for all i. Equation (23.11) becomes

__] __

Q(T|F)=1v(N [Q(T)] ‘/FF) (23.12)
\/1_-Tn

CREDIT VaR

Credit value at risk can be defined analogously to the way value at risk is defined for
market risks (see Chapter 21). For example, a credit VaR with a confidence level of
99.9% and a 1-year time horizon is the credit loss that we are 99.9% confident will not
be exceeded over 1 year. .

Consider a bank with a very large portfolio of similar loans. As an approximation,
assume that the probability of default is the same for each loan and the correlation
between each pair of loans is the same. When the Gaussian copula model for time to
default is used, the right-hand side of equation (23.12) is to a good approximation
equal to the percentage of defaults by time T as a function of F. The factor F has a
standard normal distribution. We are X % certain that its value will /be greater than
N_l(l - X) = —NT1(X). We are therefore X% certain that the percentage of losses
over T years on a large portfolio will be less than V(X, T), where

V(X, T) = N(N—1[Q(T N—1(X)) (23.13)

This result was first produced by Vasicek.18 As in equation (23.12), Q(T) is the prob-
ability of default by time T and ,o is the copula correlation between any pair of loans.

A rough estimate of the credit VaR when an X% confidence level is used and the time
horizon is T is therefore L(1 — R)V(X, T), where L is the size of the loan portfolio and
R is the recovery rate. The contribution of a particular loan of size L, to the credit VaR

I8 See O. Vasicek, “Probability of Loss on a Loan Portfolio,” Working Paper, KMV, 1987. Vasicek’s results
were published in Risk magazine in December 2002 under the title “Loan Portfolio Value”.
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is L,-(1 - R) V(X, T). This model underlies some of the formulas that regulators use for
credit risk capital.”

Example 23.4
Suppose that a bank has a total of $100 million of retail exposures. The 1-year
probability of default averages 2% and the recovery rate averages 60%. The
copula correlation parameter is estimated as 0.1. In this case,

iv"‘(0.02) + t/0.1 N_l(0.999))
V 0.999,1)= N( _ 0.128

( \/ 1 - 0.1 C

showing that the 99.9% worst case default rate is 12.8%. The 1-year 99.9% credit
VaR is therefore 100 x 0.128 >< (1 — 0.6) or $5.13 million.

Cred itMetrics
Many banks have developed other procedures for calculating credit VaR for internal use.
One popular approach is known as CreditMetrics. This involves estimating a probability
distribution of credit losses by carrying out a Monte Carlo simulation of the credit rating
changes of all counterparties. Suppose we are interested in determining the probability
distribution of losses over a l-year period. On each simulation trial, we sample to
determine the credit rating changes and defaults of all counterparties during the year.
We then revalue our outstanding contracts to determine the total of credit losses for the
year. After a large number of simulation trials, a probability distribution for credit losses
is obtained. This can be used to calculate credit VaR. 9 A I

This approach is liable to be computationally quite time intensive. However, it has
the advantage that credit losses are defined as those arising from credit downgrades as
well as defaults. Also the impact of credit mitigation clauses such as those described in
Section 23.8 can be approximately incorporated into the analysis.

Table 23.6 is typical of the historical data provided by rating agencies on credit
rating changes and could be used as a basis for a CreditMetrics Monte Carlo
simulation. It shows the percentage probability of a bond moving from one rating
category to another during a 1-year period. For example, a bond that starts with an A
credit rating has a 90.91% chance of still having an A rating at the end of 1 year. It has
a 0.05% chance of defaulting during the year, a 0.09% chance of dropping to /B, and
so on.2° 8

In sampling to determine credit losses, the credit rating changes for different counter-
parties should not be assumed to be independent. A Gaussian copula model is typically
used to construct a joint probability distribution of rating changes similarly to the way
it is used in the model in the previous section to describe the joint probability
distribution of times to default. The copula correlation between the rating transitions
for two companies is usually set equal to the correlation between their equity returns
using a factor model similar to that in Section 23.9.

As an illustration of the CreditMetrics approach suppose that we are simulating the
rating change of a Aaa and a Baa company over a 1-year period using the transition

19 For more details, see J . Hu.ll, Risk Management and Financial Institutions, 2nd edn. Upper Saddle River,
Pearson, 2010.

20 Technical Note 11 at wWw.rotman.utoror1to.ca/~hu11/TechnicalNotes explains how a table Such as
Table 23.6 can be used to calculate transition matrices for periods other than 1 year.
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Table 23.6 One-year ratings transition matrix, 1970-2009, with probabilities ex-
pressed as percentages and adjustments for transitions to the WR (without rating)
category. Source: Moody’s.

Initial rating Rating at year-end

7 I Aaa Aa A Baa Ba B Caa Ca-C Default

Aaa 90.57
Aa 1.06
A 0.06
Baa 0.04
Ba 0.01
B 0.01

8.76
90.30
2.90
0.20
0.07
0.04

0.63
8.19
0.91
4.91
0.42
0.15

0.01 0.03
0.36 0.05
5.44 0.50

89.18 4.44
6.24 83.47 7.99
0.39 5.40 82.50

0.00
0.02
0.09
0.83

0.00
0.01
0.03
0.19
0.58
6.35

(D<DC>

©© ©©

.00
0.02
0.09
0.79

0.00
0.02
0.05
0.17
1.13
4.37

Caa 0.00
Ca-C 0.00
Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
1-» '- '}>_r- - -_, I‘ _,.. . _ ,,,_ T‘ __, ,. - _ . .,. . __ _ -. w -_- 1- ‘--~-q:~~¢---q~w-~v-w~-.-----v-- 0 - - _ » -__.- .-- w-, - r- 1| ~ 11- --_ _ _-. >- _-‘ _~- --_ '-_ ' .> --1-"*1"1'"1'"--~-v---\;v-------v--;m'~..».;._, r 1 4.1.. _ .__.,_ ._ . . ,.~~.» _.....-.. . ..-- . . - I 11 ~~ >.-1 -.- -1. 1.6---.‘.-.. A

0.02
0.00

0.02
0.00

0.19 0.51 9.55
0.00 0.43 3.01

4.97
51.67

14.72
33.28

70.01
11.61

matrix in Table 23.6. Suppose that the correlation between the equities of the two
companies is 0.2. On each simulation trial, we would sample two variables xA and xB
from normal distributions so that their correlation is 0.2. The variable xA determines
the new rating of the Aaa company and variable xB determines the new rating
of the Baa company. Since N"1(0.9057) = 1.3147, the Aaa company stays Aaa if
xA < 1.3147; since N_1(0.9057 +0.0876) = 2.4730, it becomes Aa if 1.3147 < xA <
2.4730; since N'1(0.9057 + 0.0876 + 0.0063) : 3.3528, it becomes A if 2.4730 é xA <
3.3528; and so on. Consider next the Baa company. Since N_1(0.0004) = -3.3528, the
Baa company becomes Aaa if x0 < -3.3528; since N_1(0.0004 + 0.0020) : -2.8202, it
becomes Aa if -3.3528 < xB < -2.8202; since

iv-‘(0.0004 + 0.0020 + 0.0491) = _1.6305  
it becomes A if -2.8202 < xB < -1.6305; and so on. The Aaa never defaults during the
year. The Baa defaults when xB > N'1(0.9983), that is when xB > 2.9290.

/

SUMMARY

The probability that a company will default during a particular period of time in the
future can be estimated from historical data, bond prices, or equity prices. The default
probabilities calculated from bond prices are risk-neutral probabilities, whereas those
calculated from historical data are real-world probabilities. Real-world probabilities
should be used for scenario analysis and the calculation of credit VaR. Risk-neutral
probabilities should be used for valuing credit-sensitive instruments. Risk-neutral
default probabilities are often significantly higher than real-world default probabilities.

The expected loss experienced from a counterparty default is reduced by what is known
as netting. This is a clause in most contracts written by a financial institution stating that,
if a counterparty defaults on one contract it has with the financial institution, it must
default on all contracts it has with the financial institution. Losses are also reduced by
collateralization and downgrade triggers. Collateralization requires the counterparty to
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post collateral and a downgrade trigger gives a financial institution the option to close out
a contract if the credit rating of a counterparty falls below a specified level.

Credit VaR can be defined similarly to the way VaR is defined for market risk. One
approach to calculating it is the Gaussian copula model of time to default. This is used
by regulators in the calculation of capital for credit risk. Another popular approach for
calculating credit VaR is CreditMetrics. This uses a Gaussian copula model for credit
rating changes.
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Practice Questions (Answers in the Solutions Manual)

23.1

23.2.

23.3

23.4.
23.5

The spread between the yield on a 3-year corporate bond and the yield on a similar risk-
free bond is 50 basis points. The recovery rate is 30%. Estimate the average hazard rate
per year over the 3-year period.
Suppose that in Problem 23.1 the spread between the yield on a 5-year bond issued by the
same company and the yield on a similar risk-free bond is 60 basis points. Assume the
same recovery rate of 30%. Estimate the average hazard rate per year over the 5-year
period. What do your results indicate about the average hazard rate in years 4 and 5?
Should researchers use real-world or risk-neutral default probabilities for (a) calculating
credit value at risk and (b) adjusting the price of a derivative for defaults?
How are recovery rates usually defined?
Explain the difference between an unconditional default probability density and a
hazard rate.
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23.6

23.7

23.8

23.9

23.10

23.11

23.12

23.13

23.14

CHAPTER 23

Verify (a) that the numbers in the second column of Table 23.4 are consistent with the
numbers in Table 23.1 and (b) that the numbers in the fourth column of Table 23.5 are
consistent with the numbers in Table 23.4 and a recovery rate of 40%.

Describe how netting works. A bank already has one transaction with a counterparty on
its books. Explain why a new transaction by a bank with a counterparty can have the
effect of increasing or reducing the bank’s credit exposure to the counterparty.
What is meant by a “haircut” in a collateralization agreement. A company offers to post
its own equity as collateral. How would you respond?
Explain the difference between the Gaussian copula model for the time to default and
CreditMetrics as far as the following are concerned: (a) the definition of a credit loss and
(b) the way in which default correlation is modeled.

Suppose that the LIBOR/swap curve is flat at 6% with continuous compounding and a
5-year bond with a coupon of 5% (paid semiannually) sells for 90.00. How would an
asset swap on the bond be structured? What is the asset swap spread that would be
calculated in this situation?
Show that the value of a coupon-bearing corporate bond is the sum of the values of its
constituent zero-coupon bonds when the amount claimed in the event of default is the
no-default value of the bond, but that this is not so when the claim amount is the face
value of the bond plus accrued interest. .  
A 4-year corporate bond provides a coupon of 4% per year payable semiannually and
has a yield of 5% expressed with continuous compounding. The risk-free yield curve is
flat at 3% with continuous compounding. Assume that defaults can take place at the end
of each year (immediately before a coupon or principal payment) and that the recovery
rate is 30%. Estimate the risk-neutral default probability on the assumption that it is the
same each year.
A company has issued 3- and 5-year bonds with a coupon of 4% per annum payable
annually. The yields on the bonds (expressed with continuous compounding) are 4.5%
and 4.75%, respectively. Risk-free rates are 3.5% with continuous compounding for all
maturities. The recovery rate is 40%. Defaults can take place halfway through each year.
The risk-neutral default rates per year are Q1 for years 1 to 3 and QT for years 4 and 5.
Estimate Q1 and Q2. /
Suppose that a financial institution has entered into a swap dependent on the sterling
interest rate with counterparty X and an exactly offsetting swap with counterparty Y.
Which of the following statements are true and which are false?
(a) The total present value of the cost of defaults is the sum of the present value of the

cost of defaults on the contract with X plus the present value of the cost of defaults
on the contract with Y.

(b) The expected exposure in 1 year on both contracts is the sum of the expected
exposure on the contract with X and the expected exposure on the contract with Y.

(c) The 95% upper confidence limit for the exposure in 1 year on both contracts is
the sum of the 95% upper confidence limit for the exposure in 1 year on the
contract with X and the 95% upper confidence limit for the exposure in 1 year on
the contract with Y.

Explain your answers.
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23.15

23.16.

23.17

23.18

23.19

23.20

23.21
23.22

23.23

23.24

23.25

A company enters into a 1-year forward contract to sell $100 for AUDl50. The contract
is initially at the money. In other words, the forward exchange rate is 1.50. The l-year
dollar risk-free rate of interest is 5% per annum. The l-year dollar rate of interest at
which the counterparty can borrow is 6% per annum. The exchange rate volatility is
12% per annum. Estimate the present value of the cost of defaults on the contract.
Assume that defaults are recognized only at the end of the life of the contract.
Suppose that in Problem 23.15, the 6-month forward rate is also 1.50 and the 6-month
dollar risk-free interest rate is 5% per annum. Suppose further that the 6-month dollar
rate of interest at which the counterparty can borrow is 5.5% per annum. Estimate the
present value of the cost of defaults assuming that defaults can occur either at the
6-month point or at the l-year point? (If a default occurs at the 6-month point, the
company’s potential loss is the market value of the contract.)
“A long forward contract subject to credit risk is a combination of a short position in a
no-default put and a long position in a call subject to credit risk.” Explain this
statement.
Explain why the credit exposure on a matched pair of forward contracts resembles a
straddle.
Explain why the impact of credit risk on a matched pair of interest rate swaps tends to be
less than that on a matched pair of currency swaps.
“When a bank is negotiating currency swaps, it should try to ensure that it is receiving
the lower interest rate currency from a company with a low credit risk.” Explain why.
Does put-call parity hold when there is default risk? Explain your answer.
Suppose that in an asset swap B is the market price of the bond per dollar of principal,
B* is the default-free value of the bond per dollar of principal, and V is the present value
of the asset swap spread per dollar of principal. Show that V : B* - B.
Show that under Merton’s model in Section 23.6 the credit spread on a T-year zero-
coupon bond is -1n[N(a'2) + N(-d1)/L]/T, where L = De_’T/ V0.
Suppose that the spread between the yield on a 3-year zero-coupon riskless bond and a
3-year zero-coupon bond issued by a corporation is 1%. By how much does Black-
Scholes-Merton overstate the value of a 3-year European option sold by the corporation.
Give an example of (a) right-way risk and (b) wrong-way risk.

Further Questions

23.26

23.27

Suppose a 3-year corporate bond provides a coupon of 7% per year payable semi-
annually and has a yield of 5% (expressed with semiannual compounding). The yields
for all maturities on risk-free bonds is 4% per annum (expressed with semiannual
compounding). Assume that defaults can take place every 6 months (immediately before
a coupon payment) and the recovery rate is 45%. Estimate the default probabilities
assuming (a) that the unconditional default probabilities are the same on each possible
default date and (b) that the default probabilities conditional on no earlier default are
the same on each possible default date.
A company has 1- and 2-year bonds outstanding, each providing a coupon of 8% per year
payable annually. The yields on the bonds (expressed with continuous compounding) are
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23.29

23.30
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6.0% and 6.6%, respectively. Risk-free rates are 4.5% for all maturities. The recovery rate
is 35%. Defaults can take place halfway through each year. Estimate the risk-neutral
default rate each year.
Explain carefully the distinction between real-world and risk-neutral default probabil-
ities. Which is higher? A bank enters into a credit derivative where it agrees to pay $100
at theend of 1 year if a certain company’s credit rating falls from A to Baa or lower
during the year. The l-year risk-free rate is 5%. Using Table 23.6, estimate a value for
the derivative. What assumptions are you making? Do they tend to overstate or under-
state the value of the derivative.
The value of a company’s equity is $4 million and the volatility of its equity is 60%. The
debt that will have to be repaid in 2 years is $15 million. The risk-free interest rate is 6%
per annum. Use Merton’s model to estimate the expected loss from default, the
probability of default, and the recovery rate in the event of default. (Hint: The Solver
function in Excel can be used for this question, as indicated in footnote 10.)
Suppose that a bank has a total of $10 million of exposures of a certain type. The 1-year
probability of default averages 1% and the recovery rate averages 40%. The copula
correlation parameter is 0.2. Estimate the 99.5% 1-year credit VaR.

/
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An important development in derivatives markets since the late 1990s has been the
growth of credit derivatives. In 2000, the total notional principal for outstanding credit
derivatives contracts was about $800 billion. By December 2009, this had become
$32 trillion. Credit derivatives are contracts where the payoff depends on the credit-
worthiness of one or more companies or countries. This chapter explains how credit
derivatives work and how they are valued.

Credit derivatives allow companies to trade credit risks in much the same way that
they trade market risks. Banks and other financial institutions used to be in the position
where they could do little once they had assumed a credit risk. except wait (and hope for
the best). Now they can actively manage their portfolios of credit risks, keeping some
and entering into credit derivatives contracts to protect themselves from others. As
indicated in Business Snapshot 24.1, banks have been the biggest buyers of credit
protection and insurance companies have been the biggest sellers.

Credit derivatives can be categorized as “single-name” or “multi-name.” The most
popular single-name credit derivative is a credit default swap. The payoff from this
instrument depends on the creditworthiness of one company or country. There are two
sides to the contract: the buyer and seller of protection. There is a payoff from the seller
of protection to the "buyer of protection if the specified entity (company or c/ountry)
defaults on its obligations. The most popular multi-name credit derivative is a
collateralized debt obligation. In this, a portfolio of debt instruments is specified and
a complex structure is created where the cash flows from the portfolio are channelled to
different categories of investors. Chapter 8 describes how multi-name credit derivatives
were created from residential mortgages during the period leading up to the credit crisis.
This chapter focuses on the situation where the underlying credit risks are those of
corporations or countries. Multi-name credit derivatives increased in popularity relative
to single-name credit derivatives up to June 2007 but became less popular during the
2007~2009 credit crisis.

This chapter starts by explaining how credit default swaps work and how they are
valued. It then covers the trading of forwards and options on credit default swaps and
total return swaps. It explains credit indices, basket credit default swaps, asset-backed
securities, and collateralized debt obligations. It expands on the material in Chapter 23
to show how the Gaussian copula model of default correlation can be used to value
tranches of collateralized debt obligations.

547
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24.1

CHAPTER 24

tBuisine[s_'s Snapshot 24.1 WhoBears the CreditRisk? _. . _ _  
.- » _ . < - _ . , . - .‘E , ." - ° -I . _ . . - -
3 >_ . .  __ _ . . f . ‘

Traditionallybanks havefbeen in the business of making loans and then bearing the
credit_.risk;tl1at the-Fb,orrower will default.0However, banks havefor some time .-been.
re1u¢t.a;;.t~,t,@ keep loans “on their -balance sheets. This is becausesafter, the capitals
required regulators has been accounted for, the aver"age~re,tu'rn'earned, on loans is
1ofte_n_.1léss 'att_rac_tive than that on other assets. As idiscussed .Sectio‘n“; 18 ;_1_,
c,re:at.ed »-asseteibadced seilllfrities to passsloans (and .their_ credit -risk) Ton '.t_6,inYé$tt$_f§:=iIna

{the and 'early*Tsj200Qs,'banks"also made exte11sive.;use=of'.tb.
s_l_1‘_if:ti-i]2§'_.(31‘t=:§dit__¢I‘iSl< in their,;l6ans-lto__Qther parts of the ,fina.nci’al"syste_rn._
” If banks have been net buyers of credit protection, who have been net sellers‘?-;;The

IE answer is insurance companies. Insurance companies are not regulated in the same way
Ya_1s_ba_nks -andias aresult are sornetimesrfinore willing to bear credit risks than ibanksa A

The 1'.esult of all this is that the financial institution bearing thecredit riskliof a loan
; ‘ _ _ V . . ,

is often different from the financial institution that didthe original credit checks.
the ‘credit crisis of12007 has shown, this is not always good‘ for the overall healthicf
theifinkiilcialSystem. is i * ' if '  9 9 ' " " '9

CREDIT DEFAULT SWAPS

The most popular credit derivative is a credit default swap (CDS). This is a contract that
provides insurance against the risk of a default by particular company. The company is
known as the reference entity and a default by the company is known as a credit event.
The buyer of the insurance obtains the right to sell bonds issued by the company for
their face value when a credit event occurs and the seller of the insurance agrees to buy
the bonds for their face value when acredit event occurs.1 The total face value of the
bonds that can be sold is known as the credit default swap’s notional principal. A

The buyer of the CDS makes periodic payments to the seller until the end of the life
of the CDS or until a credit event occurs. These payments are typically made in arrears
every quarter, but deals where payments are made every month, 6 months, or 12 months
also occur and sometimes payments are made in advance. The settlement in the event of
a default involves either physical delivery of the bonds or a cash payment.”

An example will help to illustrate how a typical deal is structured. Suppose that two
parties enter into a 5-year credit default swap on March 20, 2012. Assume that the
notional principal is $100 million and the buyer agrees to pay 90 basis points per annum
for protection against default by the reference entity, with payments being made
quarterly in arrears.

The CDS is shown in Figure 24.1. If the reference entity does not default (i.e., there is
no credit event), the buyer receives no payoff and pays 22.5 basis points (a quarter of
90 basis points) on $100 million on June 20, 2012, and every quarter thereafter until
March 20, 2017. The amount paid each q_uarter is 0.00225 >< 100,000,000, or $225,000.2

)

I The face value (or par value) of a coupon-bearing bond is the principal amount that the issuer repays at
maturity if it does not default.

2 The quarterly payments are liable to be slightly different from $225,000 because of the application of the
day count conventions described in Chapter 6.
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Figure 24.1 Credit default swap.
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If there is a credit event, a substantial payoff is likely. Suppose that the buyer notifies the
seller of a credit event on May 20, 2015 (2 months into the fourth year). If the contract
specifies physical settlement, the buyer has the right to sell bonds issued by the reference
entity with a face value of $100 million for $100 million. If, as is now usual, there is cash
settlement, an ISDA-organized auction process is used to determine the mid-market
value of the cheapest deliverable bond several days after the credit event. Suppose the
auction indicates that the bond is worth $35 per $100 of face value. The cash payoff
would be $65 million.

The regular quarterly, semiannual, or annual payments from the buyer of protection to
the seller of protection cease when there is a credit event. However, because these
payments are made in arrears, a final accrual payment by the buyer is usually required.
In our example, where there is a default on May 20, 2015, the buyer would be required to
pay to the seller the amount of the annual payment accrued between March 20, 2015, and
May 20, 2015 (approximately $150,000), but no further payments would be required.

The total amount paid per year, as a percent of the notional principal, to buy
protection (90 basis points in our example) is known as the CDS spread. Several large
banks are market makers in the credit default swap market. When quoting on a new
5-year credit default swap on a company, a market maker might bid 250 basis points
and offer 260 basis points. This meanstliat the market maker is prepared to buy
protection by paying 250 basis points per year (i.e., 2.5% of the principal per year) and
to sell protection for 260 basis points per year (i.e., 2.6% of the principal per year).

Many different companies and countries are reference entities for the CDS contracts
that trade. As mentioned, payments are usually made quarterly in arrears. Contracts with
maturities of 5 years are most popular, but other maturities such as 1, 2, 3, 7, and years
are not uncommon. Usually contracts mature on one of the following standard dates:
March 20, June“20, September 20, and December 20. The effect of this is that the actual
time to maturity of a contract when it is initiated is close to, but not necessarily the same
as, the number of years to maturity that is specified. Suppose you call a dealer on
November 15, 2012, to buy 5-year protection on a company. The contract would probably
last until December 20, 2017. Your first payment would be due on December 20, 2012,
and would equal an amount covering the November 15, 2012, to December 20, 2012,
period.3 A key aspect of a CDS contract is the definition of a credit event (i.e., a default).
Usually a credit event is defined as a failure to make a payment as it becomes due, a
restructuring of debt, or a bankruptcy. Restructuring is sometimes excluded in North
American contracts, particularly in situations where the yield on the company’s debt is
high. More information on the CDS market is given in Business Snapshot 24.2.

3 If the time to the first standard date is less than l month, then the first payment is typically made on the
second standard payment date; otherwise it is made on the first standard payment date.
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Businesss',Snapshot 24.2 The CDS Market
§ 

sIn_“l998 arid (1999, the International Swaps and Derivatives Association (ISDA)
 developec,l~a standard contract for trading credit default swaps in the over-the-
counter market. ‘Since then the market has grown very fast. A CDS contract is like

: an Finsuranfcescontract in many ways, but there is one key difference. An insurance
c_ontraett..prbyides protection against losses on an asset that is owned. In the case of a
,(\§D$,‘.the,underlying asset does’ not have to be owned. Y 5
fF"'DuringIthecredit turmoil that started in August 2007, regulators became very
concerned about systemic risk (see Business Snapshot 2.3). They felt that credit default
swaps were ~a‘ source of vulnerability for financial markets. The danger is that a default
by one financial institution might lead to big losses by its counterparties in CDS
transaetions‘and further defaults by other financial institutions. Regulatory concerns
were fueled by troubles at insurance giant AIG. This was a big seller of protection on
the ‘AAA-rated tranches created from mortgages (see Chapter 8). The protection
proved very costly to AIG and the company was bailed out by the U.S. government.

_ Regulatory concerns have led to the development of clearing houses for CDS
trades (and other over-the-counter derivatives) between financial institutions. The
clearing house requires market participants to post margin on their CDS trades int
mucli the same way that traders post margin on futures contracts.

A During2007 and 2008, trading ceased in many types of credit derivatives, but CDSs
continued .toi,trade actively (although the cost of protection increased dramatically).
The advantage of CDSs over some other credit derivatives is that the way they work is
straightforward. Other credit derivatives, such as those created from the securitization

. of household mortgages (see Chapter 8), lack this transparency. . 1
:- It is not uncommon for the volume of CDSs on a company to be greater than its

debt; settlementof contracts is then clearly necessary. When Lehman defaulted
in .Sep.temb.er'200.3, there was about $400 billion of CDS contracts and $155 billion of
Ifehmangdebt outstanding. The payout to the buyers of protection (determined by an
auction process) was~91.375% of principal. p

Credit Default Swaps and Bond Yields
./'

A CDS'can be used to hedge a position in a corporate bond. Suppose that an investor
buys a 5-year corporate bond yielding 7% per year for its face value and at the same
time enters into a 5-year CDS to buy protection against the issuer of the bond
defaulting. Suppose that the CDS spread is 200 basis points, or 2%, per annum. The
effect of the CDS is to convert the corporate bond to a risk-free bond (at least
approximately). If the bond issuer does not default the investor earns 5% per year
when the CDS spread is netted against the corporate bond yield. If the bond does
default the investor earns 5% up to the time of the default. Under the terms of the
CDS, the investor is then able to exchange the bond for its face value. This face value
can be invested at the risk-free rate for the remainder of the 5 years.

This shows that the excess of an n-year bond yield over the risk-free rate should
approximately equal the n-year CDS spread. If it is markedly more than this, an
investor can earn more than the risk-free rate by buying the corporate bond and
buying protection. If it is markedly less than this, an investor can borrow at less than



Credit Derivatives 551

24.2

the risk—free rate by shorting the corporate bond and selling CDS protection. The
relevant risk-free rate is usually assumed to be the LIBOR/swap rate, so that the
excess of the bond yield over the risk-free rate is the asset swap spread (see
Section 23.4).

The CDS-bond basis is defined as

CDS—bond basis : CDS spread — Excess of bond yield over risk-free rate

or equivalently
CDS—bond basis = CDS spread -— Asset swap spread

The arbitrage argument given above suggests that this should be close to zero. Prior to
the 2007 credit crisis, it was on average slightly positive. During the crisis, it tended to
be negative and became highly negative for a short period of time in January 2009.

The Cheapest-to-Deliver Bond
As explained in Section 23.3, the recovery rate on a bond is defined as the value of the
bond immediately after default as a percent of face value. This means that the payoff
from a CDS is L(l — R), where L is the notional principal and R is the recovery rate.

Usually a CDS specifies that a number of different bonds can be delivered in the event
of a default. The bonds typically have the same seniority, but they may not sell for the
same percentage of face value immediately after a default.4 This gives the holder of a CDS
a cheapest-to-deliver bond option. As already mentioned, an auction process, organized
by ISDA, is usually used to determine the value of the cheapest-to-deliver bond and,
therefore, the payoff to the buyer of protection.

VALUATION OF CREDIT DEFAULT SWAPS

The CDS spread for a particular reference entity can be calculated from default
probability estimates. We will illustrate how this is done with a simple example.

Suppose that the probability of a reference entity defaulting during a year conditional
on no earlier default is 2%.5 Table 24.1 shows survival probabilities and unconditional
default probabilities (i.e., default probabilities as seen at time zero) for each of the
5 years. The probability of a default during the first year is 0.02 and the probability the
reference entity will survive until the end of the first year is 0.98. The probability of a
default during the second year is 0.02 >< 0.98 = 0.0196 and the probability of survival
until the end of the second year is 0.98 >< 0.98 = 0.9604. The probability of default
during the third year is 0.02 >< 0.9604 = 0.0192, and so on.

We will assume that defaults always happen halfway through a year and that payments
on the credit default swap are made once a year, at the end of each year. We also assume
that the risk-free (LIBOR) interest rate is 5% per annum with continuous compounding

4 There are a number of reasons for this. The claim that is made in the event of a default is typically equal to
the bond’s face value plus accrued interest. Bonds with high accrued interest at the time of default therefore
tend to have higher prices immediately after default. Also the market may judge that in the event of a
reorganization of the company some bond holders will fare better than others.

5 This is a hazard rate €7'.p1‘€SS€(l with annual compounding. The equivalent continuously compounded
hazard rate is 2.02%.
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Tabie 24.1 Unconditional default probabilities and survival
probabilities.

Time Default Survival
(years) probability probability

0.0200 0.9800
0.0196 0.9604
0.0192 0.9412
0.0188 0.9224
0.0184 0.9039
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and the recovery rate is 40 %. There are three parts to the calculation. These are shown in
Tables 24.2, 24.3, and 24.4.

Table 24.2 shows the calculation of the present value of the expected payments made
on the CDS assuming that payments are made at the rate of s per year and the notional
principal is $1. For example, there is a 0.9412 probability that the third payment of s is
made. The expected payment is therefore 0.9412s and its present value is
0.9412se"0'05 X3, = 0.810ls. The total present value of the expected payments is 4.0704s.

Table 24.3 shows the calculation of the present value of the expected payoff assum-
ing a notional principal of $1. As mentioned earlier, we are assuming that defaults
always happen halfway through a year. For example, there is a 0.0192 probability of a
payoff halfway through the third year. Given that the recovery rate is 40%, the
expected payoff at this time is 0.0192 >< 0.6 >< 1 = 0.0115. The present value of the
expected payoff is 0.0115e'0'°5"2'5 = 0.0102. The total present value of the expected
payoffs is $0.0511.  t

As a final step, Table 24.4 considers the accrual payment made in the event of a default.
For example, there is a 0.0192 probability that there will be a final accrual’ payment
halfway through the third year. The accrual payment is 0.5s. The expected accrual
payment at this time is therefore 0.0192 x 0.5s = 0.0096s. Its present value is
0.0096se"°-0532-5 : 0.0085s. The total present value of the expected accrual payments
is 0.04265.

/
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Table 24.2 Calculation of the present value of expected payments.
Payment = s per annum.

Time Probability Expected Discount PV of expected
(years) of survival payment factor payment

L/1-I>~u->l\J*—“

0.9800
0.9604
0.9412
0.9224
0.9039

0.9800s
0.9604s
0.94l2s
0.9224s
0.9039s

0.9512
0.9048
0.8607
0.8187
0.7788

0.9322s
0.8690s
0.8l01s
0.7552s
0.7040s

Total 4.0704s
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Table 24.3 Calculation of the present value of expected payoff.
Notional principal = $1.

Time Probability Recovery Expected Discount PV of expected
rarer?’ ($)(years) of default rate payojf ($) factor

0.5
1.5
2.5
3.5
4.5

0.0200
0.0196
0.0192
0.0188
0.0184

0.0120
0.0118
0.0115
0.0113
0.0111

0.9753
0.9277
0.8825
0.8395
0.7985

0.0117
0.0109
0.0102
0.0095
0.0088

Total 0.0511
- »- - _ 1 .- . . ._ . ' -. . ;__;» ;'--2 :--"-.;-K"-" "._ i -'3"—:.-2

From Tables 24.2 and 24.4, the present value of the expected payments is

4.0704s + 0.04265 = 4.1 130s

From Table 24.3, the present value of the expected payoff is 0.0511. Equating the two
gives e

4.1130s = 0.0511

or s = 0.0124. The mid-market CDS spread for the 5-year deal we have considered
should be 0.0124 times the principal or 124 basis points per year. This result can also be
produced using the DerivaGem CDS worksheet. The hazard rate (continuously com-
pounded in DerivaGem) should be input as 2.02% for all maturities, the term structure is
flat at 5%, and the recovery rate is 40%.

The calculations assume that defaults happen only at points midway between
payment dates. This simple assumption can be relaxed, but usually gives good results.

Marking to Market a CDS
A CDS, like most other swaps, is marked to market daily. It may have a positive or
negative value. Suppose, for example the credit default swap in our example had been
negotiated some time ago for a spread of 150 basis points, the present value of the
payments by the buyer would be 4.1130 >< 0.0150 = 0.0617 and the present value of the
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Table 24.4 Calculation of the present value of accrual payment.

Time Probability Expected Discount PV of expected
(years) of default accrual payment factor accrual payment

0.5 0.9753
0.9277
0.8825
0.8395
0.7985

1.5
2.5
3.5
4.5

0.0200
0.0196
0.0192
0.0188
0.0184

0.0100s
0.0098s
0.0096s
0.0094s
0.0092s

Q_1

Q;

1:);

0»
Q_|

3097s
3091s
3085s
3079s
3074s

Total Q_|3426s
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payoff would be 0.0511 as above. The value of swap to the seller would therefore be
0.0617 — 0.0511, or 0.0106 times the principal. Similarly the mark-to-market value of
the swap to the buyer of protection would be —0.0106 times the principal.

Estimating Default Probabilities
The default probabilities used to value a CDS should be risk-neutral default prob-
abilities, not real-world default probabilities (see Section 23.5 for a discussion of the
difference between the two). Risk-neutral default probabilities can be estimated from
bond prices or asset swaps as explained in Chapter 23. An alternative is to imply them
from CDS quotes. The latter approach is similar to the practice in options markets of
implying volatilities from the prices of actively traded options.

Suppose we change the example in Tables 24.2, 24.3 and 24.4 so that we do not know
the default probabilities. Instead we know that the mid-market CDS spread for a newly
issued 5-year CDS is 100 basis points per year. We can reverse-engineer our calculations
(using Excel in conjunction with Solver) to conclude that the implied default probability
per year (conditional on no earlier default) is 1.61% per year.6

Binary Credit Default Swaps e
A binary credit default swap is structured similarly to a regular credit default swap
except that the payoff is a fixed dollar amount. Suppose that, in the example we
considered in Tables 24.1 to 24.4, the payoff is $1 instead of 1 — R dollars and the
swap spread is s. Tables 24.1, 24.2 and 24.4 are the same, but Table 24.3 is replaced by
Table 24.5. The CDS spread for a new binary CDS is given by 4.1 130s = 0.0852, so that
the CDS spread, s, is 0.0207, or 207 basis points.

How Important is the Recovery Rate?
Whether we use CDS spreads or bond prices to estimate default probabilities we need
an estimate of the recovery rate. However, provided that we use the same recovery rate

1.: ;. *-; .i.::;;" rt" " . - 1 * - -"" ~*' '-1"" Y" "M--' "‘-“""”""“""""'.*'-'-F'>'?‘»’-"*’~"7"‘-1‘li~?0" \:.Q.'11!-'r;‘m*r=='*;~s1r;r~:*"7":~:"*:";"t

Table 24.5 Calculation of the present value of expected payoff from
a binary credit default swap. Principal = $1. /

Time Probability Expected Discount PV of expected
(years) of default payojf ($) factor payojf ($)

0.5
1.5
2.5
3.5
4.5

0.0200
0.0196
0.0192
0.0188
0.0184

0.0200
0.0196
0.0192
0.0188
0.0184

0.9753
0.9277
0.8825
0.8395
0.7985

0.0195
0.0182
0.0170
0.0158
0.0147

Total
,- - ---.»<,-.. . -‘...-A ~r~ ~~. 1- _ ... ...: ,,. ..._........,.‘,,....,...........t-..,......l _ _

_‘.' x—."

0.0852
. -._.x.-

6 The DerivaGem worksheet gives a continuously compounded hazard rate of 1.626% This 1S equivalent to
1.61% with annual compounding. If spreads for CDS swaps with different maturities are available,
DerivaGem calculates a step function for the hazard rate.
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for (a) estimating risk-neutral default probabilities and (b) valuing a CDS, the value of
the CDS (or the estimate of the CDS spread) is not very sensitive to the recovery rate.
This is because the implied probabilities of default are approximately proportional to
1/(1 — R) and the payoffs from a CDS are proportional to 1 — R.

This argument does not apply to the valuation of binary CDS. Implied probabilities
of default are still approximately proportional to 1/(1 — R). However, for a binary
CDS, the payoffs from the CDS are independent of R. If we have a CDS spread for
both a plain vanilla CDS and a binary CDS, we can estimate both the recovery rate and
the default probability (see Problem 24.25).

The Future of the CDS Market
The credit default swap market survived the credit crunch of 2007 reasonably well. It is
true that it has come under a great deal of regulatory scrutiny and CDSs are being moved
to clearing houses. But their importance is unlikely to decline. They are important tools
for managing credit risk. A financial institution can reduce its credit exposure to
particular companies by buying protection. It can also use CDSs to diversify credit risk.
For example, if a financial institution has too much credit exposure to a particular
business sector, it can buy protection against defaults by companies in the sector and at
the same time sell protection against default by companies in other unrelated sectors.

Some market participants think the CDS market will eventually be as big as the
interest rate swap market. Others are less optimistic. There is a potential asymmetric
information problem in the CDS market that is not present in other over-the-counter
derivatives markets (see Business Snapshot 24.3).

CREDIT INDICES

Participants in credit markets have developed indices to track credit default swap spreads.
In 2004 there were agreements between different producers of indices that led to some
consolidation. Two important standard portfolios used by index providers are:

1. CDX NA IG, a portfolio of 125 investment grade companies in North America
2. iTraxx Europe, a portfolio of 125 investment grade names in Europe /P

These portfolios are updated on March 20 and September 20 each year. Companies that
are no longer investment grade are dropped from the portfolios and new investment
grade companies are added.7

Suppose that the 5-year CDX NA IG index is quoted by a market maker as bid
65 basis points, offer 66 basis points. (This is referred to as the index spread.) Roughly
speaking, this means that a trader can buy CDS protection on all 125 companies in the
index for 66 basis points per company. Suppose a trader wants $800,000 of protection
on each company. The total cost is 0.0066 >< 800,000 >< 125, or $660,000 per year. The
trader can similarly sell $800,000 of protection on each of the 125 companies for a total
of $650,000 per annum. When a company defaults, the protection buyer receives the

7 On September 20, 2010, the Series 14 iTraxx Europe portfolio and the Series 15 CDX NA IG portfolio were
defined. The series numbers indicate that, by the end of September 2010, the iTraxx Europe portfolio had
been updated 13 times and the CDX NA IG portfolio had been updated 14 times.
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Business Snapshot "24.3 Is the CD_S:Market a Pair Game‘?

There is one important difference between credit default swaps and the other over-
the-counterderivativese that we have considered in this book. The other over-the-
1co.unterderivatives depend on interest rates,exchange rates, equity indices, commod-

pricesgandsso on. 'There'is noreason to assume. that any one market participant
hasibettejreiniforrnation than any other-fsma,rket participant about these variables.
j _’ ‘Credit_’de'fault_?swafps spreads ‘depend’ on the probability that fat particiilar‘ company

twill defa‘ul'tfduringe'a pafticular periofd of _t'ime. Arguably some markelpalrticipants
E have more information to estimate this’ probability‘ than others. A financial institution
that works closely with a particular company by providing advice, making 1oans,'and

handling new islsuesof securities is likely to have more information about the
I cre'clitwo'rth_',iness of the company than another financial institution that has no deal-
I ings withfthelcornpany. Economists refer to this as an asymmetric information problem.

A Whether asynunetriciiiformation will curtail the expansion of the credit default
swap market remains to be seen’; Financial institutions emphasize that the decision to
buy protection against‘ the risk of default by a company is normally made by a risk
manager andfis not based on any special information that may exist elsewhere in the
financial institution about the company. '

usual CDS payoff and the annual payment is reduced by 660,000/ 125 = $5,280. There is
an active market in buying and selling CDS index protection for maturities of 3, 5, 7,
and 10 years. The maturities for these types of contracts on the index are usually
December 20 and June 20. (This means that a “5-year” contract actually lasts between
4% and 5% years.) Roughly speaking, the index is the average of the CDS spreads on the
companies in the underlying portfolio.8

THE USE OF FIXED COUPONS

The precise way in which CDS and CDS index transactions work is a little more
complicated than has been described up to now. For each underlying and each
maturity, a coupon and a recovery rate are specified. A price is calculated from the
quoted spread using the following procedure:

1. Assume four payments per year, made in arrears.
2. Imply a hazard rate (default intensity) from the quoted spread. This involves

calculations similar to those in Section 24.2. An iterative search is used to
determine the hazard rate that leads to the quoted spread.

8 More precisely, the index is slightly lower than the average of the credit default swap spreads for the
companies in the portfolio. To understand the reason for this consider a portfolio consisting of two
companies, one with a spread of 1,000 basis points and the other with a spread of 10 basis points. To buy
protection on the companies would cost slightly less than 505 basis points per company. This is because the
1,000 basis points is not expected to be paid for as long as the 10 basis points and should therefore carry less
weight. Another complication for CDX NA IG, but not iTraxx Europe, is that the definition of default
applicable to the index includes restructuring, whereas the definition for CDS contracts on the underlying
companies often does not.
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3. Calculate a duration D for the CDS payments. This is the number that the spread
is multiplied by to get the present value of the spread payments. (In the example in
Section 24.2, it is 4.1130.)

4. The price P is given by P : 100 — 100 >< D >< (S — C), where S is the spread and
C is the coupon expressed in decimal form.

When a trader buys protection the trader pays 100 — P per $100 of the total remaining
notional and the seller of protection receives this amount. (If 100 — P is negative, the
buyer of protection receives money and the seller of protection pays money.) The buyer
of protection then pays the coupon times the remaining notional on each payment date.
(On a CDS, the remaining notional is the original notional until default and zero
thereafter. For a CDS index, the remaining notional is the number of names in the
index that have not yet defaulted multiplied by the principal per name.) The payoff when
there is a default is calculated in the usual way. This arrangement facilitates trading
because the regular quarterly payments made by the buyer of protection are independ-
ent of the spread at the time the buyer enters into the contract.

Example 24.1
Suppose that the iTraxx Europe index quote is 34 basis points and the coupon is
40 basis points for a contract lasting exactly 5 years, with both quotes being
expressed using a 30/360 day count. (This is the usual day count convention in
CDS and CDS index markets.) The equivalent actual/actual quotes are 0.345%
for the index and 0.406% for the coupon. Suppose that the yield curve is flat at
4% per year (actual/actual, continuously compounded). The specified recovery
rate is 40%. With four payments per year in arrears, the implied hazard rate is
0.5717%. The duration is 4.447 years. The price is therefore  

100 — 100 >< 4.447 >< (0.00345 -— 0.00406) : 100.27

Consider a contract where protection is $1 million per name. Initially, the seller of
protection would pay the buyer $1,000,000 >< 125 x 0.0027. Thereafter, the buyer
of protection would make quarterly payments in arrears at an annual rate of
$1,000,000 x 0.00406 >< n, where n is the number of companies that have not
defaulted. When a company defaults, the payoff is calculated in the usual way
and there is an accrual payment from the buyer to the seller calculated at the rate
of 0.406% per year on $1 million. '

CDS FORWARDS AND OPTIONS

Once the CDS market was well established, it was natural for derivatives dealers to
trade forwards and options on credit default swap spreads.9

A forward credit default swap is the obligation to buy or sell a particular credit
default swap on a particular reference entity at a particular future time T. If the
reference entity defaults before time T, the forward contract ceases to exist. Thus a
bank could enter into a forward contract to sell 5-year protection on a company for

9 The valuation of these instruments is discussed in J .C. Hull and A. White, “The Valuation of Credit
Default Swap Options,” Journal of Derivatives, 10, 5 (Spring 2003): 40-50.
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280 basis points starting in 1 year. If the company defaulted before the l-year point, the
forward contract would cease to exist.

A credit default swap option is an option to buy or sell a particular credit default
swap on a particular reference entity at a particular future time T. For example, a trader
could negotiate the right to buy 5-year protection on a company starting in 1 year for
280 basis points. This is a call option. If the 5-year CDS spread for the company in
1 year turns out to be more than 280 basis points, the option will be exercised;
otherwise it will not be exercised. The cost of the option would be paid up front.
Similarly an investor might negotiate the right to sell 5-year protection on a company
for 280 basis points starting in l year. This is a put option. If the 5-year CDS spread for
the company in l year turns out to be less than 280 basis points, the option will be
exercised; otherwise it will not be exercised. Again the cost of the option would be paid
up front. Like CDS forwards, CDS options are usually structured so that they cease to
exist if the reference entity defaults before option maturity.

BASKET CREDIT DEFAULT SWAPS

In what is referred to as a basket credit default swap there are a number of reference
entities. An add-up basket CDS provides a payoff when any of the reference entities
default. A first-to-default CDS provides a payoff only when the first default occurs. A
second-to-default CDS provides a payoff only when the second default occurs. More
generally, a kth-to-default CDS provides a payoff only when the kth default occurs.
Payoffs are calculated in the same way as for a regular CDS. After the relevant default
has occurred, there is a settlement. The swap then terminates and there are no further
payments by either party.  

TOTAL RETURN SWAPS

A total return swap is a type of credit derivative. It is an agreement to exchange the total
return on a bond (or any portfolio of assets) for LIBOR plus a spread. The total return
includes coupons, interest, and the gain or loss on the asset over the life of the swap.

An example of a total return swap is a 5-year agreement with a notional principal of
$100 million to exchange the total return on a corporate bond for LIBOR plus 25 basis
points. This is illustrated in Figure 24.2. On coupon payment dates the payer pays the
coupons earned on an investment of $100 million in the bond. The receiver pays interest
at a rate of LIBOR plus 25 basis points on a principal of $100 million. (LIBOR is set on
one coupon date andpaid on the next as in a plain vanilla interest rate swap.) At the
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Figure 24.2 Total return swap.

Total Total return on bond > Total

return i _( return
Payer LIBOR + 25 basis points Tecgivfl
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end of the life of the swap there is a payment reflecting the change in value of the bond.
For example, if the bond increases in value by 10% over the life of the swap, the payer
is required to pay $10 million (=10% of $100 million) at the end of the 5 years.
Similarly, if the bond decreases in value by 15%, the receiver is required to pay
$15 million at the end of the 5 years. If there is a default on the bond, the swap is
usually terminated and the receiver makes a final payment equal to the excess of $100
million over the market value of the bond.

If the notional principal is added to both sides at the end of the life of the swap, the
total return swap can be characterized as follows. The payer pays the cash flows on an
investment of $100 million in the corporate bond. The receiver pays the cash flows on a
$100 million bond paying LIBOR plus 25 basis points. If the payer owns the corporate
bond, the total return swap allows it to pass the credit risk on the bond to the receiver.
If it does not own the bond, the total return swap allows it to take a short position in
the bond.

Total return swaps are often used as a financing tool. One scenario that could lead to
the swap in Figure 24.2 is as follows. The receiver wants financing to invest $100 million
in the reference bond. It approaches the payer (which is likely to be a financial
institution) and agrees to the swap. The payer then invests $100 million in the bond.
This leaves the receiver in the same position as it would have been if it had borrowed
money at LIBOR plus 25 basis points to buy the bond. The payer retains ownership of
the bond for the life of the swap and faces less credit risk than it would have done if it
had lent money to the receiver to finance the purchase of the bond, with the bond being
used as collateral for the loan. If the receiver defaults the payerdoes not have the legal
problem of trying to realize on the collateral. Total return swaps are similar to repos
(see Section 4.1) in that they are structured to minimize credit risk when securities are
being financed. 5

The spread over LIBOR received by the payer is compensation for bearing the risk
that the receiver will default. The payer will lose money if the receiver defaults at a time
when the reference bond’s price has declined. The spread therefore depends on the
credit quality of the receiver, the credit quality of the bond issuer, and the correlation
between the two.

There are a number of variations on the standard deal we have described. Sometimes,
instead of there being a cash payment for the change in value of the bond,/there is
physical settlement where the payer exchanges the underlying asset for the notional
principal at the end of the life of the swap. Sometimes the change-in-value payments are
made periodically rather than all at the end.

COLLATERAL DEBT OBLIGATIONS

We discussed asset-backed securities (ABSs) in Chapter 8. Figure 8.1 shows a simple
structure. An ABS where the underlying assets are bonds is known as a collateralized
debt abligatiorz, or CDO. A waterfall similar to that indicated in Figure 8.2 is defined for
the interest and principal payments on the bonds. The precise rules underlying the
waterfall are complicated, but they are designed to ensure that if one tranche is more
senior than another it is more likely to receive promised interest payments and
repayments of principal.
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Synthetic (IDOs
When a CDO is created from a bond portfolio, as just described, the resulting structure
is known as a cash CDO. In an important market development, it was recognized that a
long position in a corporate bond has a similar risk to a short position in a CDS when
the reference entity in the CDS is the company issuing the bond. This led an alternative
structure known as a synthetic CDO, which has become very popular.

The originator of a synthetic CDO chooses a portfolio of companies and a maturity
(e.g., 5 years) for the structure. It sells CDS protection on each company in the portfolio
with the CDS maturities equaling the maturity of the structure. The synthetic CDO
principal is the total of the notional principals underlying the CDSs. The originator has
cash inflows equal to the the CDS spreads and cash outflows when companies in the
portfolio default. Tranches are formed and the cash inflows and outflows are distributed
to tranches. The rules for determining the cash inflows and outflows of tranches are
more straightforward for a synthetic CDO than for a cash CDO. Suppose that there are
only three tranches: equity, mezzanine, and senior. The rules might be as follows:

1. The equity tranche is responsible for the payouts on the CDSs until they reach 5%
of the synthetic CDO principal. It earns a spread of 1000 basis points per year on
the outstanding tranche principal. 5 6

2. The mezzanine tranche is responsible for payouts in excess of 5% up to a
maximum of 20% of the synthetic CDO principal. It earns a spread of 100 basis
points per year on the outstanding tranche principal.

3. The senior tranche is responsible for payouts in excess of 20%. It earns a spread of
10 basis points per year on the outstanding tranche principal.

To understand how the synthetic CDO would work, suppose that its principal is
$100 million. The equity, mezzanine, and senior tranche principals are $5 million,
$15 million, and $80 million, respectively. The tranches initially earn the specified
spreads on these notional principals. Suppose that after 1 year defaults by companies
in the portfolio lead to payouts of $2 million on the CDSs. The equity tranche holders
are responsible for these payouts. The equity tranche principal reduces to $3 million
and its spread (1,000 basis points) is then earned on $3 million instead of $5 million. If,
later during the life of the CDO, there are further payouts of $4 million on the CDSs,
the cumulative of the payments required by the equity tranche is $5 million, so that its
outstanding principal becomes zero. The mezzanine tranche holders have to pay
$1 million. This reduces their outstanding principal to $14 million.

Cash CDOs require an initial investment by the tranche holders (to finance the
underlying bonds). By contrast, the holders of synthetic CDOs do not have to make
an initial investment. They just have to agree to the way cash inflows and outflows will
be calculated. In practice, they are almost invariably required to post the initial tranche
principal as collateral. When the tranche becomes responsible for a payoff on a CDS,
the money is taken out of the collateral. The balance in the collateral account earns
interest at LIBOR.

Standard Portfolios and Single-Tranche Trading
In the synthetic CDO we have described, the tranche holders sell protection to the
originator of the CDO, who in turn sells protection on CDSs to other market
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Table 24.6 Mid-market quotes for 5-year tranches of iTraxx Europe. Quotes are in
basis points except for the 0-3% tranche where the quote equals the percent of the
tranche principal that must be paid up front in addition to 500 basis points per
year. (Source: Creditex Group Inc.)

Tranche Z-Tmxx
3-6% 6—9 % 9- 12 % 12-22% index

41.59 11.95 5.60 2.00 23
316.90 212.40 140.00 73.60 77

1185.63 606.69 315.63 97.13 165
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0-3 %

10.34%
30.98%

Date

January 31, 2007
January 31, 2008
January 30, 2009 64.28%
ex/'~"*-1 1-_<'-;~:'.'.'-".3 "-1'.-.'....':'; L; . ~L-.‘ r 1,

participants. An innovation in the market was the trading of a tranche without the
underlying portfolio of short CDS positions being created. This is sometimes referred
to as single-tranche trading. There are two parties to a trade: the buyer of protection on
a tranche and the seller of protection on the tranche. The portfolio of short CDS
positions is used as a reference point to define the cash flows between the two sides, but
it is not created. The buyer of protection pays the tranche spread to the seller of
protection, and the seller of protection pays amounts to the buyer that correspond to
those losses on the reference portfolio of CDSs that the tranche is responsible for.

In Section 24.3, we discussed CDS indices such as CDX NA IG and iTraxx Europe.
The market has used the portfolios underlying these indices to define standard synthetic
CDO tranches. These trade very actively. The six standard tranches of CDX NA IG
cover losses in the ranges 0-3%, 3-6%, 6-9%, 9-12%, 12-22%, and 22-100%. The
six standard tranches of iTraxx Europe cover losses in the ranges 0—3%, 3-7%, 7-10%,
10-15%, 15-30%, and 30-100%.

Table 24.6 shows the quotes for 5-year iTraxx tranches at the end of January of three
successive years. The index spread is the cost in basis points of buying protection on all
the companies in the index, as described in Section 24.3. The quotes for all tranches
except the 0-3% tranche is the cost in basis point per year of buying tranche protection.
(As explained earlier, this is paid on a principal that declines as the tranche experiences
losses.) In the case of the 0-3% (equity) tranche, the protection buyer makes an initial
payment and then pays 500 basis points per year on the outstanding tranche principal.
The quote is for the initial payment as a percentage of the initial tranche principal.

What a difference two years makes in the credit markets! Table 24.6 shows that the
credit crunch led to a huge increase in credit spreads. The iTraxx index rose from 23 basis
points in January 2007 to 165 basis points in January 2009. The individual tranche
quotes have also shown huge increases. One reason for the changes is that the market’s
assessment of default probabilities for investment-grade corporations has increased.
However, it is also the case that protection sellers were in many cases experiencing
liquidity problems. They became more averse to risk and increased the risk premiums
they required.

ROLE OF CORRELATION IN A BASKET CDS AND CDO

The cost of protection in a kth-to-default CDS or a tranche of a CDO is critically
dependent on default correlation. Suppose that a basket of 100 reference entities is used
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to define a 5-year kth-to-default CDS and that each reference entity has a risk-neutral
probability of 2% of defaulting during the 5 years. When the default correlation
between the reference entities is zero the binomial distribution shows that the prob-
ability of one or more defaults during the 5 years is 86.74% and the probability of 10 or
more defaults is 0.0034%. A first-to-default CDS is therefore quite valuable whereas a
tenth-to-default CDS is worth almost nothing.

As the default correlation increases the probability of one or more defaults declines
and the probability of 10 or more defaults increases. In the limit where the default
correlation between the reference entities is perfect the probability of one or more
defaults equals the probability of ten or more defaults and is 2%. This is because in this
extreme situation the reference entities are essentially the same. Either they all default
(with probability 2%) or none of them default (with probability 98%).

The valuation of a tranche of a synthetic CDO is similarly dependent on default
correlation. If the correlation is low, the junior equity tranche is very risky and the senior
tranches are very safe. As the default correlation increases, the junior tranches become
less risky and the senior tranches become more risky. In the limit where the default
correlation is perfect and the recovery rate is zero, the tranches are equally risky.

VALUATION OF A SYNTHETIC CDO

Synthetic CDOs can be valued using the DerivaGem software. To explain the calcula-
tions, suppose that the payment dates on a synthetic CDO tranche are at times
t1, t2, . . . , rm and to : 0. Define E1- as the expected tranche principal at time rj and
v(t) as the present value of $1 received at time r. Suppose that the spread on a
particular tranche (i.e., the number of basis points paid for protection) is s per year.
This spread is paid on the remaining tranche principal. The present value of the
expected regular spread payments on the CDO is therefore given by sA, where

A = f(tJ- — tj__1)Ejv(tJ-) (24.1)
j=l

The expected loss between times tj-_1 and t1- is EJ-_1 — Ej. Assume that the loss occurs at
the midpoint of the time interval (i.e., at time 0.5tJ-__1 + 0.5rJ-). The present value of the
expected payoffs on the CDO tranche is

c = Z(Ej_1 - E]-)v(0.5tj_1 + 0.5:,-) (24.2)
j=l

The accrual payment due on the losses is given by sB, where

m

B = 0.5(¢,_ - r,_,)(E,-_, - E]-)v(0.5tj_1+ 0.51,) (24.3)
J’:

The value of the tranche to the protection buyer is C — sA - sB. The breakeven spread
on the tranche occurs when the present value of the payments equals the present value
of the payoffs or

C : sA + sB
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The breakeven spread is therefore
C

Equations (24. 1) to (24.3) show the key role played by the expected tranche principal in
calculating the breakeven spread for a tranche. If we know the expected principal for a
tranche on all payment dates and We also know the zero-coupon yield curve, the
breakeven tranche spread can be calculated from equations (24.1) to (24.4).

Using the Gaussian Copula Model of Time to Default
The one-factor Gaussian copula model of time to default was introduced in Section 22.9.
This is the standard market model for valuing synthetic CDOs. All companies are
assumed to have the same probability Q(t) of defaulting by time t. Equation (23.12)
converts this unconditional probability of default by time t to the probability of default
by time t conditional on the factor F:

_1 _

Q(t I F) : N(N [ fiF) (24.5)

Here p is the copula correlation, assumed to be the same for any pair of companies.
In the calculation of Q(t), it is usually assumed that the hazard rate for a company is

constant and consistent with the index spread. The hazard rate that is assumed can be
calculated by using the CDS valuation approach in Section 24.2 and searching for the
hazard rate that gives the index spread. Suppose that this hazard rate is 2.. Then, from
equation (23.1),

Q(t) = 1 - 6"“ (24.6)
From the properties of the binomial distribution, the standard market model gives the
probability of exactly k defaults by time t, conditional on F, as

Pt/<. I 1 F) = 5,-;’%)m Q(t 1 an - Q(t I F)1""" / (24.1)
Suppose that the tranche under consideration covers losses on the portfolio between aL
and aH. The parameter aL is known as the attachment point and the parameter aH is
known as the detachment point. Define

Oll’l (X l’l
FZLI-i-E-k‘ and nH: 

where R is the recovery rate. Also, define m(x) as the smallest integer greater than x.
Without loss of generality, we assume that the initial tranche principal is 1. The tranche
principal stays 1 while the number of defaults, k, is less than m(nL). It is zero when the
number of defaults is greater than or equal to m(nH). Otherwise, the tranche principal is

aH - k(l - R)/n
05H “OIL
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Define EJ-(F) as the expected tranche principal at time tj conditional on the value of the
factor F. It follows that

R“:1

I“

@\/

Pinz( - m(nH)—l _ k(l __ R

E]-(F): P(k,rJ-|F)+ Z P(k,r-|F)aH ‘ )/” (24.8)J _
/<=m(n1.) 06H aL

Define A(F), B(F), and C(F) as the values of A, B, and C conditional on F. Similarly to
equations (24.1) to (24.3),

I'll

A(F) = Zn, _ T]-_1)E]-(F)U(‘L'j) (24.9)
i=1
m

B(F) : Z0.5(tj - T]-_1)(Ej_1(F) - E]-(F))v(0.5rj_1 + 0.5rj) (24.10)
j:1

C(F) : fi(EJ-_1(F) — E]-(F))v(0.5tj_1 + 0.5tj) (24.11)
)"=1

The variable F has a standard normal distribution. To calculate the unconditional
values of A, B, and C, it is necessary to integrate A(F), B(F), and C(F) over a standard
normal distribution. Once the unconditional values have been calculated, the breakeven
spread on the tranche can be calculated as C/(A + B).1O

The integration is best accomplished with a procedure known as Gaussian quadrature.
It involves the following approximation:

OO 1 2 lC=M

j 7: 5” /2g(F)dF re Z wkg(Fk) (24.12)
- 2” /<=1

As M increases, accuracy increases. The values of wk and Fk for different values of M
are given on the author’s website.“ The value of M is twice the “number of integration
points” variable in DerivaGem. Setting the number of integration points) equal to 20
usually gives good results.

Example 24.2
Consider the mezzanine tranche of iTraxx Europe (5-year maturity/) when the copula
correlation is 0.15 and the recovery rate is 40%. In this case, aL = 0.03, aH : 0.06,
n : 125, nL = 6.25, and nH = 12.5. We suppose that the term structure of interest
rates is flat at 3.5 % , payments are made quarterly, and the CDS spread on the index is
50 basis points. A calculation similar to that in Section 24.2 shows that the constant
hazard rate corresponding to the CDS spread is 0.83 % (with continuous compound-
ing). An extract from the remaining calculations is shown in Table 24.7. A value of
M : 60 is used in equation (24.12). The factor values, Fk, and their weights, wk, are
shown in first segment of the table. The expected tranche principals on payment
dates conditional on the factor values are calculated from equations (24.5) to (24.8)

10 In the case of the equity tranche, the quote is the upfront payment that must be made in addition to
500 basis points per year. The breakeven upfront payment is C — 0.05(A + B).

H The parameters wk and Fk are calculated from the roots of Hermite polynomials. For more information on
Gaussian quadrature, see Technical Note 21 at www.rotma.n.utoronto.ca/~hu11/TechnicalNotes.
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Table 24.7 Valuation of CDO in Example 24.2: principal:-:1
payments are per unit of spread.

Weights and values for factors
wk
F),  

0.1579 0.1579
0.2020 -0.2020

0.1342
0.6060

0.0969
1.0104

Expected principal, EJ-(Fk)
Time
j: 1 1.0000 1.0000

j=19 0.9953 0.9687
)"=20 0.9936 0.9600

1.0000

0.8636
0.8364

1.0000

0.6134
0.5648

PV expected payment, A(F),)
jzl 0.2478

)"=19 0.2107
j.-=20 0.2085
Total -- - 4.5624

0.2478

0.2051
0.2015
4.5345

0.2478
0

0

0

0.1828
0.1755
4.4080

0.2478

0.1299
0.1185
4.0361

PV expected accrual payment, B(F),)
j = 1 1- - 0.0000 0.0000

j=19 0.0001
j = 20 - - - 0.0002
Total - - - 0.0007

0.0008
0.0009
0.0043

0.0000

0.0026
0.0029
0.0178

0.0000

0.0051
0.0051
0.0478

PV expected payoff, C(F).)
jél

j-:19
j:2()
Total

0.0000
0

0

0

0.0011
0.0014
0.0055

0.0000

0.0062
0.0074
0.0346

0.0000

0.0211
0.0230
0.1423

0.0000
0

0

0

0.0412
0.0410
0.3823
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and shown in the second segment of the table. The values of A, B, and C condi-
tional on the factor values are calculated in the last three segments of the table using
equations (24.9) to (24.11). The unconditional values of A, B, and C are calculated
by integrating A(F), B(F), and C(F) over the probability distribution of F. This is
done by setting g(F) equal in turn to A(F), B(F), and C(F) in equation (24.12). The
result is

A : 4.2846, B = 0.0187, C = 0.1496

The breakeven tranche spread is 0.1496/(4.2846 + 0.0187) : 0.0348, or 348 basis
points. 5

This result can be obtained from DerivaGe1n. The CDS worksheet is used to
convert the 50-basis-point spread to a hazard rate of 0.83%. The CDO worksheet
is then used with this hazard rate and 30 integration points.
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Valuation of kth-to-Default CDS
A kth-to-default CDS (see Section 24.5) can also be valued using the standard market
model by conditioning on the factor F. The conditional probability that the kth default
happens between times tj_1 a11d tj is the probability that there are k or more defaults by
time rj minus the probability that there are k or more defaults by time tj-_1. This can be
calculated from equations (24.5) to (24.7) as

2P(q,Tj I F)“2P(q,Tj-1 I F)
q=k q=k

Defaults between time tj-_,1 and r1- can be assumed to happen at time 0.5tJ~_1 + 0.5tJ-. This
allows the present value of payments and of payoffs, conditional on F, to be calculated in
the same way as for regular CDS payoffs (see Section 24.2). By integrating over F, the
unconditional present values of payments and payoffs can be calculated.

Example 24.3
Consider a portfolio consisting of 10 bonds each with the default probabilities in
Table 24.1 and suppose we are interested in valuing a third-to-default CDS where
payments are made annually in arrears. Assume that the copula correlation is
0.3, the recovery rate is 40%, and all risk-free rates are 5%. As in Table 24.7, we
consider M = 60 different factor values. The unconditional cumulative probabil-
ity of each bond defaulting by years 1, 2, 3, 4, 5 is 0.0200, 0.0396, 0.0588, 0.0776,
0.0961, respectively. Equation (24.5) shows that, conditional on F = -1.0104,
these default probabilities are 0.0365, 0.0754, 0.1134, 0.1498, 0.1848, respectively.
From the binomial distribution, the conditional probability of three or more
defaults by times 1, 2, 3, 4, 5 years is 0.0048, 0.0344, 0.0950, 0.1794, 0.2767,
respectively. The conditional probability of the third default happening during
years 1, 2, 3, 4, 5 is therefore 0.0048, 0.296, 0.0606, 0.0844, 0.0974, respectively.
An analysis similar to that in Section 24.2 shows that the present values of
regular payments, accrual payments, and payolfs conditional on F: -1.0104
are 3.8344s, 0.1l7ls, and 0.1405, where s is the spread. Similar calculations are
carried out for the other 59 factor values and equation (24.12) is used to integrate
over F. The unconditional present values of payoffs, regular payments, and
accrual payments are 0.0637, 4.0543s, and 0.0531s. The breakeven CDS spread
is therefore 0.0637/(4.0543 + 0.0531) = 0.0155, or 155 basis points.

Implied Correlation
In the standard market model, the recovery rate R is usually assumed to be 40%. This
leaves the copula correlation ,0 as the only unknown parameter. This makes the model
similar to Black-Scholes-Merton, where there is only one unknown parameter, the
volatility. Market participants like to imply a correlation from the market quotes for
tranches in the same way that they imply a volatility from the market prices of options.

Suppose that the values of {aL, 04H} for successively more senior tranches are
{oi0, O61}, {O[1,Ot2}, {(12,013}, . . . , with 040 : 0. (For example, in the case of iTraxx Europe,
(X0 I 0, OZ] I O62 I (X3 I O64 I (X5 I (X6 I Tl1€r€ ale

two alternative implied correlations measures. One is compound correlation. For a
tranche {aq_1,aq}, this is the value of the correlation, ,o, that leads to the spread
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calculated from the model being the same as the spread in the market. It is found using
an iterative search. The other is base correlation. For a particular value of aq (q 2 1),
this is the value of p that leads to the {0, aq} tranche being priced consistently with the
market. It is obtained using the following steps:

1. Calculate the compound correlation for each tranche.
2. Use the compound correlation to calculate the present value of the expected loss

on each tranche during the life of the CDO as a percent of the initial tranche
principal. This is the variable we have defined as C above. Suppose that the value
of C for the aq_1 to aq tranche is Cq.

3. Calculate the present value of the expected loss on the {0, aq} tranche as a percent
of the total principal of the underlying portfolio. This is 221,21 C,,(oip - ap_1).

4. The C-value for the {0, aq} tranche is the value calculated in Step 3 divided by Olq.
The base correlation is the value of the correlation parameter, p, that is consistent
with this C-value. It is found using an iterative search.

The present value of the loss as a percent of underlying portfolio that would be calculated
in Step 3 for the iTraxx Europe quotes for January 31, 2007, given in Table 24.6 are
shown in Figure 24.3. The implied correlations for these quotes are shown in Table 24.8.
The calculations were carried out using DerivaGem assuming that the term structure of
interest rates is flat at 3% and the recovery rate is 40%. The CDSs worksheet shows that
the 23-basis-point spread implies a hazard rate of 0.382%. The implied correlations are
calculated using the CDOs worksheet. The values underlying Figure 24.3 can also be
calculated with this worksheet using the expression in Step 3 above.

The correlation patterns in Table 24.8 are typical of those usually observed. The
compound correlations exhibit a “correlation smile”. As the tranche becomes more
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Figure 24.3 Present value of expected loss on 0 to X% tranche as a percent of
total underlying principal for iTraxx Europe on January 31, 2007.
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Table 24.8 Implied correlations for 5-year iTraxx Europe tranches on
January 31, 2007.

Compound correlations
Tranche 0-3 % 3-6 % 6-9 % 9- 12% 12-22%
Implied correlation 17.7% 7.8% 14.0% 18.2% 23.3%

Base correlations
Tranche 0-3% 0-6% 0-9% 0—12% 0-22%
Implied correlation 17.7% 28.4% 36.5% 43.2% 60.5%
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senior, the implied correlation first decreases and then increases. The base correlations
exhibit a correlation skew where the implied correlation is an increasing function of the
tranche detachment point.

If market prices were consistent with the one-factor Gaussian copula model, then the
implied correlations (both compound and base) would be the same for all tranches.
From the pronounced smiles and skews that are observed in practice, we can infer that
market prices are not consistent with this model.

Valuing Nonstandard Tranches
We do not need a model to value the standard tranches of a standard portfolio such as
iTraxx Europe because the spreads for these tranches can be observed in the market.
Sometimes quotes need to be produced for nonstandard tranches of a standard
portfolio. Suppose that you need a quote for the 4—8% iTraxx Europe tranche. One
approach is to interpolate base correlations so as to estimate the base correlation for the
0-4% tranche and the 0-8% tranche. These two base correlations allow the present
value of expected loss (as a percent of the underlying portfolio principal) to be
estimated for these tranches. The present value of the expected loss for the 4—8%
tranche (as a percent of the underlying principal) can be estimated as the difference
between the present value of expected losses for the 0-8 % and 0-4% tranches. This can
be used to imply a compound correlation and a breakeven spread for the tranche.

It is now recognized that this is not the best way to proceed. A better/approach is to
calculate expected losses for each of the standard tranches and produce a chart such as
Figure 24.3 showing the variation of expected loss for the 0-X% tranche with X . Values
on this chart can be interpolated to give the expected loss for the 0-4% and the 0-8%
tranches. The difference between these expected losses is a better estimate of the
expected loss on the 4-8% tranche than that obtained from the base correlation
approach.

It can be shown that for no arbitrage the expected losses in Figure 24.4 must increase
at a decreasing rate. If base correlations are interpolated and then used to calculate
expected losses, this no-arbitrage condition is often not satisfied. (The problem here is
that the base correlation for the 0-X% tranche is a nonlinear function of the expected
loss on the 0-X% tranche.) The direct approach of interpolating expected losses is
therefore much better than the indirect approach of interpolating base correlations.
What is more, it can be done so as to ensure that the no-arbitrage condition just
mentioned is satisfied.
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24.11 ALTERNATIVES TO THE STANDARD MARKET MODEL

This section outlines a number of alternatives to the one-factor Gaussian copula model
that has become the market standard.

Heterogeneous Model
The standard market model is a homogeneous model in the sense that the time-to-
default probability distributions are assumed to be the same for all companies and the
copula correlations for any pair of companies are the same. The homogeneity assump-
tion can be relaxed so that a more general model is used. However, this model is more
complicated to implement because each company has a different probability of default-
ing by any given time and P(k, t I F) can no longer be calculated using the binomial
formula in equation (24.7). It is necessary to use a numerical procedure such as that
described in Andersen et al. (2003) and Hull and White (2004).12

Other Copulas
The one-factor Gaussian copula model is a particular model of the correlation between
times to default. Many other one-factor copula models have been proposed. These
include the Student t copula, the Clayton copula, Archimedean copula, and Marshall-
Olkin copula. We can also create new one-factor copulas by assuming that F and the Z,-
in equation (23.10) have nonnormal distributions with mean 0 and standard deviation 1.
Hull and White show that a good fit to the market is obtained when F and the Z,- have
Student t distributions with four degrees of freedom.” They call this the double t copula.

Another approach is to increase the number of factors in the model. Unfortunately,
the model is then much slower to run because it is necessary to integrate over several
normal distributions instead of just one.

Random Factor Loadings
Andersen and Sidenius have suggested a model where the copula correlation p in
equation (24.5) is a function of F.14

In general, ,0 increases as F decreases. This means that in states of the world where the
default rate is high (i.e., states of the world where F is low) the default correlation is also
high. There is empirical evidence suggesting that this is the case.15 Andersen and Sidenius
find that this model fits market quotes much better than the standard market model.

12 See L. Andersen, J . Sidenius, and S. Basu, “All Your Hedges in One Basket,” Risk, November 2003; and
J . C. Hull and A. White, “Valuation of a CDO and nth-to-Default Swap without Monte Carlo Simulation,”
Journal of Derivatives, 12, 2 (Winter 2004), 8-23.

13 See J. C. Hull and A. White, “Valuation of a CDO and nth-to-Default Swap without Monte Carlo
Simulation,” Journal of Derivatives, 12, 2 (Winter 2004), 8-23.

14 See L. Andersen and J . Sidenius, “Extension of the Gaussian Copula Model: Random Recovery and
Random Factor Loadings,” Journal of Credit Risk, 1, 1 (Winter 2004), 29-70.

'5 See, for example, A. Sevigny and O. Renault, “Default Correlation: Empirical Evidence,” Working Paper,
Standard and Poors, 2002; S.R. Das, L. Freed, G. Geng, and N. Kapadia, “Correlated Default Risk,”
Journal of Fixed Income, 16 (2006), 2, 7-32, J.C. Hull, M. Predescu, and A. White, “The Valuation of
Correlation-Dependent Credit Derivatives Using a Structural Model,” Journal of Credit Risk, 6 (2010),
99-132; and A. Ang and J. Chen, “Asymmetric Correlation of Equity Portfolios,” Journal of Financial
Economics, 63 (2002), 443-494.
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The Implied Copula Model
Hull and White show how a copula can be implied from market quotes.16 The simplest
version of the model assumes that a certain average hazard rate applies to all companies
in a portfolio over the life of a CDO. That average hazard rate has a probability
distribution that can be implied from the pricing of tranches. The calculation of the
implied copula is similar in concept to the idea, discussed in Chapter 19, of calculating
an implied probability distribution for a stock price from option prices.

Dynamic Models
The models discussed so far can be characterized as static models. In essence they
model the average default environment over the life of the CDO. The model con-
structed for a 5-year CDO is different from the model constructed for a 7-year CDO,
which is in turn different from the model constructed for a 10-year CDO. Dynamic
models are diflerent from static models in that they attempt to model the evolution of
the loss on a portfolio through time. There are three different types of dynamic
models:

1. Structural Models: These are similar to the models described in Section 23.6
except that the stochastic processes for the asset prices of many companies are

is modeled simultaneously. When the asset price for a company reaches a barrier,
there is a default. The processes followed by the assets are correlated. The problem
with these types of models is that they have to be implemented with Monte Carlo
simulation and calibration is therefore diflicult.

2. Reduced Form Models: In these models the hazard rates of companies are modeled.
In order to build in a realistic amount of correlation, it is necessary to assume that
there are jumps in the hazard rates.

3. Top Down Models: These are models where the total loss on a portfolio is
modeled directly. The models do not consider what happens to individual
companies.

SUMMARY
/

Credit derivatives enable banks and other financial institutions to actively manage their
credit risks. They can be used to transfer credit risk from one company to another and
to diversify credit risk by swapping one type of exposure for another.

The most common credit derivative is a credit default swap. This is a contract where
one company buys insurance from another company against a third company (the
reference entity) defaulting on its obligations. The payoff is usually the diflerence
between the face value of a bond issued by the reference entity and its value immedi-
ately after a default. Credit default swaps can be analyzed by calculating the present
value of the expected payments and the present value of the expected payoff in a risk-
neutral world.

16 See J . C. Hull and A. White, “Valuing Credit Derivatives Using an Implied Copula Approach,” Journal of
Derivatives, 14 (2006), 8-28; and J .C. Hull and A. White, “An Improved Implied Copula Model and its
Application to the Valuation of Bespoke CDO Tranches,” Journal of Investment Management, 8, 3 (2010),
11-31.
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A forward credit default swap is an obligation to enter into a particular credit default
swap on a particular date. A credit default swap option is the right to enter into a
particular credit default swap on a particular date. Both instruments cease to exist if the
reference entity defaults before the date. A kth-to-default CDS is defined as a CDS that
pays off when the kth default occurs in a portfolio of companies.

A total return swap is an instrument where the total return on a portfolio of credit-
sensitive assets is exchanged for LIBOR plus a spread. Total return swaps are often used
as financing vehicles. A company wanting to purchase a portfolio of assets will approach
a financial institution to buy the assets on its behalf. The financial institution then enters
into a total return swap with the company where it pays the return on the assets to the
company and receives LIBOR plus a spread. The advantage of this type of arrangement
is that the financial institution reduces its exposure to defaults by the company.

In a collateralized debt obligation a number of different securities are created from a
portfolio of corporate bonds or commercial loans. There are rules for determining how
credit losses are allocated. The result of the rules is that securities with both very high
and very low credit ratings are created from the portfolio. A synthetic collateralized
debt obligation creates a similar set of securities from credit default swaps. The
standard market model for pricing both a kth-to-default CDS and tranches of a
synthetic CDO is the one-factor Gaussian copula model for time to default.
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Practice Questions (Answers in Solutions Manual)

Explain the differencebetween a regular credit default swap and a binary credit default
oWZlp.

2 2 A credit default swap requires a semiannual payment at the rate of 60 basis points per
year. The principal is $300 million and the credit default swap is settled in cash. A
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default occurs after 4 years and 2 months, and the calculation agent estimates that the
price of the cheapest deliverable bond is 40% of its face value shortly after the default.
List the cash flows and their timing for the seller of the credit default swap.
Explain the two ways a credit default swap can be settled.
Explain how a cash CDO and a synthetic CDO are created.
Explain what a first-to-default credit default swap is. Does its value increase or decrease
as the default correlation between the companies in the basket increases? Explain.
Explain the difference between risk-neutral and real-world default probabilities.
Explain why a total return swap can be useful as a financing tool.
Suppose that the risk-free zero curve is flat at 7% per annum with continuous
compounding and that defaults can occur halfway through each year in a new 5-year
credit default swap. Suppose that the recovery rate is 30% and the default probabilities
each year conditional on no earlier default is 3%. Estimate the credit default swap
spread. Assume payments are made annually.
What is the value of the swap in Problem 24.8 per dollar of notional principal to the
protection buyer if the credit default swap spread is 150 basis points‘?
What is the credit default swap spread in Problem 24.8 if it is a binary CDS‘?
How does a 5-year nth-to-default credit default swap work‘? Consider a basket of 100
reference entities where each reference entity has a probability of defaulting in each year
of 1%. As the default correlation between the reference entities increases what would
you expect to happen to the value of the swap when (a) n = 1 and (b) n : 25. Explain
your answer. .
What is the formula relating the payoff on a CDS to the notional principal and the
recovery rate?  
Show that the spread for a new plain vanilla CDS should be (1 — R) times the spread for
a similar new binary CDS, where R is the recovery rate. ,
Verify that, if the CDS spread for the example in Tables 24.1 to 24.4 is 100 basis points,
the probability of default in a year (conditional on no earlier default) must be 1.61%.
How does the probability of default change when the recovery rate is 20% instead of
40%? Verify that your answer is consistent with the implied probability of default being
approximately proportional to 1/(1 - R), where R is the recovery rate. /
A company enters into a total return swap where it receives the return on a corporate
bond paying a coupon of 5% and pays LIBOR. Explain the difference between this and
a regular swap where 5% is exchanged for LIBOR.
Explain how forward contracts and options on credit default swaps are structured.
“The position of a buyer of a credit default swap is similar to the position of someone
who is long a risk-free bond and short a corporate bond.” Explain this statement.
Why is there a potential asymmetric information problem in credit default swaps‘?
Does valuing a CDS using real-world default probabilities rather than risk-neutral
default probabilities overstate or understate its value? Explain your answer.
What is the difference between a total return swap and an asset swap?
Suppose that in a one-factor Gaussian copula model the 5-year probability of default for
each of 125 names is 3% and the pairwise copula correlation is 0.2. Calculate, for factor
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values of -2, -1, 0, 1, and 2: (a) the default probability conditional on the factor value
and (b) the probability of more than 10 defaults conditional on the factor value

24.22. Explain the difference between base correlation and compound correlation.
24.23. In Example 24.2, what is the tranche spread for the 9% to 12% tranche?

Further Questions

24.24. Suppose that the risk-free zero curve is flat at 6% per annum with continuous
compounding and that defaults can occur at times 0.25 years, 0.75 years, 1.25 years,
and 1.75 years in a 2-year plain vanilla credit default swap with semiannual payments
Suppose that the recovery rate is 20% and the unconditional probabilities of default (as
seen at time zero) are 1% at times 0.25 years and 0.75 years, and 1.5% at times 1 25
years and 1.75 years. What is the credit default swap spread? What would the credit
default spread be if the instrument were a binary credit default swap‘?

24.25. Assume that the default probability for a company in a year, conditional on no earlier
defaults is )t and the recovery rate is R. The risk-free interest rate is 5% per annum
Default always occurs halfway through a year. The spread for a 5-year plain vanilla CDS
where payments are made annually is 120 basis points and the spread for a 5-year binary
CDS where payments are made annually is 160 basis points. Estimate R and A.

24.26. Explain how you would expect the returns offered on the various tranches in a synthetic
CDO to change when the correlation between the bonds in the portfolio increases

24.27. Suppose that:
(a) The yield on a 5-year risk-free bond is 7%.  
(b) The yield on a 5-year corporate bond issued by company X is 9.5%.
(c) A 5-year credit default swap providing insurance against company X defaulting

costs 150 basis points per year. 9
What arbitrage opportunity is there in this situation‘? What arbitrage opportunity would
there be if the credit default spread were 300 basis points instead of 150 basis points‘?
Give two reasons why arbitrage opportunities such as those you identify are less than
perfect.

24.28. In Example 24.3, what is the spread for (a) a first-to-default CDS and (b) a second-to
7default CDS.

24.29. In Example 24.2, what is the tranche spread for the 6% to 9% tranche?
24.30. The 1-, 2-, 3-, 4-, and 5-year CDS spreads are 100, 120, 135, 145, and 152 basis points

respectively. The risk-free rate is 3% for all maturities, the recovery rate is 35% and
payments are quarterly. Use DerivaGem to calculate the continuously compounded
hazard rate each year. What is the probability of default in year 1‘? What 1S the
probability of default in year 2?

24.31. Table 24.6 shows the five-year iTraxx index was 77 basis points on January 31 2008
Assume the risk-free rate is 5% for all maturities, the recovery rate is 40%, and
payments are quarterly. Assume also that the spread of 77 basis points applies to all
maturities. Use the DerivaGem CDS worksheet to calculate a hazard rate consistent
with the spread. Use this in the CDO worksheet with 10 integration points to imply base
correlations for each tranche from the quotes for January 31, 2008.
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Derivatives such as European and American call and put options are what are termed
plain vanilla products. They have standard well-defined properties and trade actively.
Their prices or implied volatilities are quoted by exchanges or by inter-dealer brokers
on a regular basis. One of the exciting aspects of the over-the-counter derivatives
market is the number of nonstandard products that have been created by financial
engineers. These products are termed exotic options, or simply exotics. Although they
usually constitute a relatively small part of its portfolio, these exotics are important to
a derivatives dealer because they are generally much more profitable than plain
vanilla products.

Exotic products are developed for a number of reasons. Sometimes they meet a
genuine hedging need in the market; sometimes there are tax, accounting, legal, or
regulatory reasons why corporate treasurers, fund managers, and financial institutions
find exotic products attractive; sometimes the products are designed to reflect a view on
potential future movements in particular market variables; occasionally an exotic
product is designed by a derivatives dealer to appear more attractive than it is to an
unwary corporate treasurer or fund manager.

In this chapter, we describe some of the more commonly occurring exotic options
and discuss their valuation. We assume that the asset provides a yield at rate q. As
discussed in Chapters 16 and 17, for an option on a stock index q should be set equal to
the dividend yield on the index, for an option on a currency it should be set equal to the
foreign risk-free rate, and for an option on a futures contract it should be set equal to
the domestic risk-free rate. Most of the options discussed in this chapter can be valued
using the DerivaGem software.

PACKAGES

A package is a portfolio consisting of standard European calls, standard European
puts, forward contracts, cash, and the underlying asset itself. We discussed a number of
different types of packagesin Chapter ll: bull spreads, bear spreads, butterfly spreads,
calendar spreads, straddles, strangles, and so on.
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Often a package is structured by traders so that it has zero cost initially. An example
is a range forward contract.‘ This was discussed in Section 16.2. It consists of a long call
and a short put or a short call and a long put. The call strike price is greater than the
put strike price and the strike prices are chosen so that the value of the call equals the
value of the put.

It is worth noting that any derivative can be converted into a zero-cost product by
deferring payment until maturity. Consider a European call option. If c is the cost of
the option when payment is made at time zero, then A = ce'T is the cost when payment
is made at time T, the maturity of the option. The payoff is then max(ST - K, 0) - A or
max(ST - K - A, -A). When the strike price, K, equals the forward price, other names
for a deferred payment option are break forward, Boston option, forward with optional
exit, and cancelable forward.

NONSTANDARD AMERICAN OPTIONS

In a standard American option, exercise can take place a.t any time during the life of the
option and the exercise price is always the same. The American options that are traded
in the over-the-counter market sometimes have nonstandard features. For example:

1. Early exercise may be restricted to certain dates. The instrument is then known as
a Bermudan option. (Bermuda is between Europe and America!) 0

2. Early exercise may be allowed during only part of the life of the option. For
example, there may be an initial “lock out” period with no early exercise.

3. The strike price may change during the life of the option.

The warrants issued by corporations on their own stock often have some or all of these
features. For example, in a 7-year warrant, exercise might be possible on particular dates
during years 3 to 7, with the strike price being $30 during years 3 and 4, $32 during the
next 2 years, and $33 during the final year.

Nonstandard American options can usually be valued using a binomial tree. At each
node, the test (if any) for early exercise is adjusted to reflect the terms of the option.

/'

GAP OPTIONS

A gap call option is a European call options that pays off ST - K1 when ST > K2. The
difference between a gap call option and a regular call option with a strike price of KT is
that the payoff when ST > KT is increased by K2 - K1. (This increase is positive or
negative depending on whether K2 > K1 or K1 > K2.)

A gap call option can be valued by a small modification to the Black-Scholes-
Merton formula. With our usual notation, the value is

0 s0@*‘1T1v(a,) - 1<,@"’T1v(d2) (25.1)
-I-1-r 

1 Other names used for a range forward contract are zero-cost collar, flexible forward, cylinder option,
option fence, min-max, and forward band.
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where
lnot/K2) + 0 - q + <12/2>Td1 _

o\/T

dz I d1 — Ufi

The price in this formula is greater than the price given by the Black--Scholes-Merton
formula for a regular call option with strike price K2 by

(K2 " Ki)@_rTN(d2)

To understand this diflerence, note that the probability that the option will be exercised
is N(d2) and, when it is exercised, the payoff to the holder of the gap option is greater
than that to the holder of the regular option by KT - K1.

For a gap put option, the payoff is K1 — ST when ST < KT. The value of the option is

1<,@—”"1v(_a2) _ s(,@"qT1v(-(1,) (25.2)
where d1 and d2 are defined as for equation (25.1).

Example 25. 1
An asset is currently worth $500,000. Over the next year, it is expected to have a
volatility of 20%. The risk-free rate is 5%, and no income is expected. Suppose
that an insurance company agrees to buy the asset for $400,000 if its value has
fallen below $400,000 at the end of one year. The payout will be 400,000 — ST

5 whenever the value of the asset is less than $400,000. The insurance company has
provided a regular put option where the policyholder has the right to sell the asset
to the insurance company for $400,000 in one year. This can be valued using
equation (14.21), with S0 : 500,000, K = 400,000, r = 0.05, o = 0.2, T = 1. The
value is $3,436. 0

Suppose next that the cost of transferring the asset is $50,000 andthis cost is
borne by the policyholder. The option is then exercised only if the value of the
asset is less than $350,000. In this case, the cost to the insurance company is
K1 — ST when ST < K2, where K2 = 350,000, K1 = 400,000, and ST is the price
of the asset in one year. This is a gap put option. The value is given by
equation (25.2), with S0 = 500,000, K1 = 400,000, K2 = 350,000, r : 0.05,
q = 0, o = 0.2, T : 1. It is $1,896. Recognizing the costs to the policyholder of
making a claim reduces the cost of the policy to the insurance company by about
45% in this case.

FORWARD START OPTIONS

Forward start options are options that will start at some time in the future. Sometimes
employee stock options, which were discussed in Chapter 15, can be viewed as forward
start options. This is because the company commits (implicitly or explicitly) to granting
at-the-money options to employees in the future.

Consider a forward start at-the-money European call option that will start at time T1
and mature at time T2. Suppose that the asset price is S0 at time zero and S1 at time T1.
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To value the option, we note from the European option pricing formulas in Chapters 14
and 16 that the value of an at-the-money call option on an asset is proportional to the
asset price. The value of the forward start option at time T1 is therefore cS1/S0, where c
is the value at time zero of an at-the-money option that lasts for T2 - T1. Using risk-
neutral valuation, the value of the forward start option at time zero is

eTrTlE oi
S0

where E denotes the expected value in a risk-neutral world. Since c and S0 are known and
E[S1] == S0e(’“‘1)T1, the value of the forward start option is ce"1T‘. For a non-dividend-
paying stock, q = 0 and the value of the forward start option is exactly the same as the
value of a regular at-the-money option with the same life as the forward start option.

CLIQUET OPTIONS
A cliquet option (which is also called a ratchet or strike reset option) is a series of call or
put options with rules for determining the strike price. Suppose that the reset dates are
at times t, 2t, . . . , (n - 1)r, with nt being the end of the cliquet’s life. A simple structure
would be as follows. The first option has a strike price K (which might equal the initial
asset price) and lasts between times 0 and 1:; the second option provides a payoff at time
2r with a strike price equal to the value of the asset at time r; the third option provides
a payoff at time 3t with a strike price equal to the value of the asset at time 2r; and so
on. This is a regular option plus n - 1 forward start options. The latter can be valued as
described in Section 25.2.

Some cliquet options are much more complicated than the one described here. For
example, sometimes there are upper and lower limits on the total payoff over the whole
period; sometimes cliquets terminate at the end of a period if the asset price is in a
certain range. When analytic results are not available, Monte Carlo simulation can
often be used for valuation.

COMPOUND OPTIONS  ,
Compound options are options on options. There are four main types of compound
options: a call on a call, a put on a call, a call on a put, and a put on a put. Compound
options have two strike prices and two exercise dates. Consider, for example, a call on a
call. On the first exercise date, T1, the holder of the compound option is entitled to pay
the first strike price, K1, and receive a call option. The call option gives the holder the
right to buy the underlying asset for the second strike price, K2, on the second exercise
date, T2. The compound option will be exercised on the first exercise date only if the
value of the option on that date is greater than the first strike price.

When the usual geometric Brownian motion assumption is made, European-style
compound options can be valued analytically in terms of integrals of the bivariate
normal distribution.2 With our usual notation, the value at time zero of a European call

2 See R. Geske, “The Valuation of Compound Options,” Journal of Financial Economics, 7 (1979): 63-81;
M. Rubinstein, “Double Trouble,” Risk, December 1991 /January 1992: 53-56.
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option on a call option is

S<>@"’T2M(a1,b1; ~,/T1/T2) — 1<2e-“Z Mm 192; \/T1/T2) ~ 6”“ K1N<@)
where

+ (r— q+O'2/2)T1
a1— \,— t, ¢12=a1'"<7\/T1

‘Ty/T1
1 ___ 2

bl:n(S0/K2)+U(i"/_T_¢]+<7/2)T2, b2__;b1_U\/‘f2

2

The function M(a, b : p) is the cumulative bivariate normal distribution function that
the first variable will be less than a and the second will be less than b when the coefficient
of correlation between the two is ,o.3 The variable S * is the asset price at time T1 for
which the option price at time T1 equals K1. If the actual asset price is above S * at time
T1, the first option will be exercised; if it is not above S *, the option expires worthless.

With similar notation, the value of a European put on a call is

K2@_rT2M(—a2» 522 —\/ T1/T2) - 50@~qT2M(-611,51; -V T1/T2) -‘P @_rT1K1N(—a2)

The value of a European call on a put is

K2@_rT2M(—a2, 492; \/ T1/T2) "- 50@_qT2M(—a1, -1912 V T1/T2) — @_rT1K1N("a2)

The value of a European put on a put is

S<>@'qT2M(a1, “bl; —\/T1/T2) — K2@“’T2M(a2, -192; -\/T1/T2>+ e"“1<1N(a2>

CHOOSER OPTIONS

A chooser option (sometimes referred to as an as you like it option) has the feature that,
after a specified period of time, the holder can choose whether the option is a call or a
put. Suppose that the time when the choice is made is T1. The value of the» chooser
option at this time is /'

' max(c, p)

where c is the value of the call underlying the option and p is the value of the put
underlying the option.

If the options underlying the chooser option are both European and have the same
strike price, put—call parity can be used to provide a valuation formula. Suppose that S1
is the asset price at time T1, K is the strike price, T2 is the maturity of the options, and r
is the risk-free interest rate. Put—call parity implies that

maX(c, p) : max(c, c + Ke"(T2_T‘) - S1e_q(T2_T‘))
: C + e—q(T2“T1)maX(0, K6-(r—q)(Tg"T1) _ S1)

 _i

3 See Technical Note 5 at www.rotmaI1.utoronto.ca/ "hull/Technica1Notes for a numerical procedure for
calculating M. A function for calculating M is also on the website.
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This shows that the chooser option is a package consisting of:

1. A call option with strike price K and maturity T2
2. e“1(T2‘T‘) put options with strike price Ke_("‘1)(T2"T') and maturity T1

As such, it can readily be valued.
Morecomplex chooser options can be defined where the call and the put do not have

the same strike price and time to maturity. They are then not packages and have
features that are somewhat similar to compound options.

BARRIER OPTIONS

Barrier options are options where the payoff depends on whether the underlying asset’s
price reaches a certain level during a certain period of time.

A number of different types of barrier options regularly trade in the over-the-counter
market. They are attractive to some market participants because they are less expensive
than the corresponding regular options. These barrier options can be classified as either
knock-out options or knock-in options. A knock-out option ceases to exist when the
underlying asset price reaches a certain barrier; a knock-in option comes into existence
only when the underlying asset price reaches a barrier.

Equations (16.4) and (16.5) show that the values at time zero of a regular call and put
option are V p

C = S0e_qTN(d1) - Ke"TN(a'2)
p = 1<e"TN<-d2>- S0e"‘”N<-(11)

where
ln(S0/K) + (r —rq + 02/2)T

o\/T

1n(S@/K) + (r - q - <12/2>Td ._~ A _ d - \/T2 U‘/T 1 U

dli-—

A down-and-out call is one type of knock-out option. It is a regular call option that
ceases to exist if the asset price reaches a certain barrier level H. The barrier level is
below the initial asset price. The corresponding knock-in option is a down-and-in call.
This is a regular call that comes into existence only if the asset price reaches the barrier
level.

If H is less than or equal to the strike price, K, the value of a down-and-in call at time
Z€I‘O 1S

or = S0e“‘”<H/S0>2*N(y> - 1<e*”(H/S0>”~'2No ~ 0»/T)
where

r—q+ow2
0.2

)\___

2Y _ 1n[HUi;_;s:0K)] + Mfi
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Because the value of a regular call equals the value of a down-and-in call plus the value
of a down-and-out call, the value of a down-and-out call is given by

Q10 :C—Cdi
If H 2 K, then

cdo : S0N(x1)e_qT — Ke_’TN(x1 — ow/T)

- S0@'qT<H/s@>2*~<y1>+ Ke"’T<H/s@>”*"2No1 — ow/T)
and

Cdi = ¢ -" Cdo
where

__ 111(50/H)
*1” 0',/r

_ ln(H/S0)
)7] -— mix/T + AUN/-f

An up-and-out call is a regular call option that ceases to exist if the asset price reaches a
barrier level, H, that is higher than the current asset price. An up-and-in call is a regular
call option that comes into existence only if the barrier is reached. When H is less than
or equal to K, the value of the up-and-out call, cue, is zero and the value of the up-and-
in call, cui, is c. When H is greater than K,

+ kox/T

Cui = 50N(X1)@__qT - K@_rTN(X1 *" OW/T) — 50@_qT(H/50)2A[N("")’) - N(—)’1)l

A + K@'”<H/s0>2*"2t~<—y + OW) - N(-)’1 + <1~/Tn
and

cuo : C — cui

Put barrier options are defined similarly to call barrier options. An up-and-out put is a
put option that ceases to exist when a barrier, H, that is greater than the current asset
price is reached. An up-and-in put is a put that comes into existence only if the barrier
is reached. When the barrier, H, is greater than or equal to the strike price, K, their
prices are Q,

 pm = —S0@"q’<H/S0>2*N<—y> + Ke"T<H/S@>“"2N<—y + <1~/T)
and

Puo : P '_ pui

When H is less than or equal to K,

P... = '"S0N(”'x1)e_qT + Ke"”N<—x1 + ow/T)
+ S@<F"T(H/S@)”‘N(—y1) — K6-’T<H/S@>’**2N<—y1 + ow/T)

and
' Pui : P T" puo

A down.-and-out put is a put option that ceases to exist when a barrier less than the
current asset price is reached. A down-and-in put is a put option that comes into
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existence only when the barrier is reached. When the barrier is greater than the strike
price, pdo = 0 and pd, = p. When the barrier is less than the strike price,

pa = _S0N("x1)e_qT + 1<@—”~<—x1 + a~/T) + S0@“‘”<H/$@>2*tN<y> — Non]
—- K@"”'<H/s@>2*"2i1v<y - M1‘) — N(yl ~ afi >1

and
Pdo = P — Pdi

All of these valuations make the usual assumption that the probability distribution for
the asset price at a future time is lognormal. An important issue for barrier options is the
frequency with which the asset price, S, is observed for purposes of determining whether
the barrier has been reached. The analytic formulas given in this section assume that S is
observed continuously and sometimes this is the case.4 Often, the terms of a contract
state that S is observed periodically; for example, once a day at l2 noon. Broadie,
Glasserman, and Kou provide a way of adjusting the formulas we have just given for the
situation where the price of the underlying is observed discretely.5 The barrier level H is
replaced by He°"5826"*/W’; for an up-and-in or up-and-out option and by He'°'5826"\/F’;
for a down-and-in or down-and-out option, where m is the number of times the asset
price is observed (so that T/m is the time interval between observations).

Barrier options often have quite difierent properties from regular options. For
example, sometimes vega is negative. Consider an up-and-out call option when the
asset price is close to the barrier level. As volatility increases, the probability that the
barrier will be hit increases. As a result, a volatility increase can cause the price of the
barrier option to decrease in these circumstances.

One disadvantage of the barrier options we have considered so far is that a “spike” in
the asset price can cause the option to be knocked in or out. An alternative structure is a
Parisian option, where the asset price has to be above or below the barrier for a period of
time for the option to be knocked in or out. For example, a down-and-out Parisian put
option with a strike price equal to 90% of the initial asset price and a barrier at 75% of
the initial asset price might specify that the option is knocked out if the asset price is
below the barrier for 50 days. The confirmation might specify that the 50 days are a
“continuous period of 50 days” or “any 50 days during the option’s 1ife.” Parisian
options are more difficult to value than regular barrier options.6 Monte Carlo siniulation
and binomial trees can be used with the enhancements discussed in Section 26.5 and 26.6.

BINARY OPTIONS

Binary options are options with discontinuous payoffs. A simple example of a binary
option is a cash-or-nothing call. This pays off nothing if the asset price ends up below
the strike price at time T and pays a fixed amount, Q, if it ends up above the strike

4 One way to track whether a barrier has been reached from below (above) is to send a limit order to the
exchange to sell (buy) the asset at the barrier price and see whether the order is filled.

5 M. Broadie, P. Glasserman, and S. G. Kou, “A Continuity Correction for Discrete Barrier Options,”
Mathematical Finance 7, 4 (October 1997): 325—49.

6 See, for example, M. Chesney, J . Cornwall», M. Jeanblanc-Picque, G. Kentwell, and M. Yor, “Parisian
pricing,” Risk, 10, l (1977), 77-79.
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price. In a risk-neutral world, the probability of the asset price being above the strike
price at the maturity of an option is, with our usual notation, N(d2). The value of a
cash-or-nothing call is therefore Qe_'TN(d2). A cash-or-nothing put is defined analo-
gously to a cash-or-nothing call. It pays off Q if the asset price is below the strike price
and nothing if it is above the strike price. The value of a cash-or-nothing put is
Q.@"’T1v(-a2).

Another type of binary option is an asset-or-nothing call. This pays off nothing if the
underlying asset price ends up below the strike price and pays the asset price if it ends
up above the strike price. With our usual notation, the value of an asset-or-nothing call
is S0e“1TN(d1). An asset-or-nothing put pays off nothing if the underlying asset price
ends up above the strike price and the asset price if it ends up below the strike price. The
value of an asset-or-nothing put is S0e'"‘1TN(—d1).

A regular European call option is equivalent to a long position in an asset-or-nothing
call and a short position in a cash-or-nothing call where the cash payoff in the cash-or-
nothing call equals the strike price. Similarly, a regular European put option is equivalent
to a long position in a cash-or-nothing put and a short position in an asset-or-nothing
put where the cash payoff on the cash-or-nothing put equals the strike price.

LOOKBACK OPTIONS

The payoffs from lookback options depend on the maximum or minimum asset price
reached during the life of the option. The payoff from a floating lookback call is the
amount that the final asset price exceeds the minimum asset price achieved during the
life of the option. The payoff from a floating lookback put is the amount by which the
maximum asset price achieved during the life of the option exceeds the final asset price.

Valuation formulas have been produced for floating lookbacks.7 The value of a
floating lookback call at time zero is

2 2 T_ __ 0 _, 0' -
Cfl = 50¢ "T1\’(a1)— $06 qT——N(—a1) — Smine T Nfaz) ————@{‘N(—a3)2(r — q) 2(r — q)

where Jlnrso/smin>+<r—q+<¥/2>T ’
ow/T

Cl]-—

a2 = 611 — Us/T,

1n<$0/Sm) + <—r + q + <12/2>T
C13 - (T\/T

20» — q — <12/2) 1n<S0/Sm)- U2Y1_

and Smin is the minimum asset price achieved to date. (If the lookback has just been
originated, Smin : S0.) See Problem 25.23 for the r : q case.

7 See B. Goldman, H. Sosin, and M. A. Gatto, “Path-Dependent Options: Buy at the Low, Sell at the High,”
Journal of Finance, 34 (December 1979): llll—27.; M. Garman, “Recollection in Tranquility,” Risk, March
(1989): l6—l9.
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The value of a floating lookback put is

2 2._, 6 _ 0 _
Pfl = Smaxe T[N(b1) — -2?-__—C13@Y2N(—b3)] + S06 qT'2_G"_—q‘5N(-52) — 506 qTN(/92)

hW am b 1n(s,,,,,,/so) + (—r + q + 0'2/2)T
1 0\/T

b2 I bl — Ufi

b : ln(Smax/S0) + (F 77' q '7 0'2/2)T
3 0*/"T

Y _ 2(r — q — <12/2>1n<sm,./st), _
0.2

and Smax is the maximum asset price achieved to date. (If the lookback has just been
originated, then Smax = SO.)

A floating lookback call is a way that the holder can buy the underlying asset at the
lowest price achieved during the life of the option. Similarly, a floating lookback put is a
way that the holder can sell the underlying asset at the highest price achieved during the
life of the option.

Example 25.2
Consider a newly issued floating lookback put on a non-dividend-paying stock
where the stock price is 50, the stock price volatility is 40% per annum, the
risk-free rate is 10% per annum, and the time to maturity is 3 months. In this
case, Smax = 50, S0 : 50, r = 0.l, q = 0, or = 0.4, and T = 0.25, bl = -0.025,
b2 = -0.225, b3 =0.025, and Y2 =0, so that the value of the lookback put
is 7.79. A newly issued floating lookback call on the same stock is worth 8.04.

In a fixed lookback option, a strike price is specified. For a fixed lookback call option,
the payoff is the same as a regular European call option except that the final asset price
is replaced by the maximum asset price achieved during the life of the option. For a
fixed lookback put option, the payoff is the same as a regular European put option
except that the the final asset price is replaced by the minimum asset price achieved
during the life of the option. Define S,f,ax = max(SmaX, K), where as before Smax is the
maximum asset price achieved to date and K is the strike price. Also, define pfi as the
value of a floating lookback put which lasts for the same period as the fixed lookback
call when the actual maximum asset price so far, Smax, is replaced by S,;,,,. A put—call
parity type of argument shows that the value of the fixed lookback call option, cfix is
given by8

cfix r: pi] + S0e_qT — Ke_rT

Similarly, if S,f,,,, : min(S,,,,,,. K), then the value of a fixed lookback put option, pfix, is
given by T T

 Pfix = Ci + K@_r — 506%]

8 The argument was proposed by H. Y. Wong and Y. K. Kwok, “Sub-replication and Replenishing Premium:
Eflicient Pricing of Multi-state Lookbacks,” Review of Derivatives Research, 6 (2003), 83-106.
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where cfi is the value of a floating lookback call that lasts for the same period as the
fixed lookback put when the actual minimum asset price so far, Smin, is replaced by
S,f,,,,. This shows that the equations given above for floating lookbacks can be modified
to price fixed lookbacks.

Lookbacks are appealing to investors, but very expensive when compared with
regular options. As with barrier options, the value of a lookback option is liable to
be sensitive to the frequency with which the asset price is observed for the purposes of
computing the maximum or minimum. The formulas above assume that the asset price
is observed continuously. Broadie, Glasserman, and Kou provide a way of adjusting the
formulas we have just given for the situation where the asset price is observed
discretely.9

SHOUT OPTIONS

A shout option is a European option where the holder can “shout” to the writer at one
time during its life. At the end of the life of the option, the option holder receives either
the usual payoff from a European option or the intrinsic value at the time of the shout,
whichever is greater. Suppose the strike price is $50 and the holder of a call shouts when
the price of the underlying asset is $60. If the final asset price is less than $60, the holder
receives a payoff of $10. If it is greater than $60, the holder receives the excess of the
asset price over $50.

A shout option has some of the same features as a lookback option, but is
considerably less expensive. It can be valued by noting that if the holder shouts at a
time r when the asset price is S, the payoff from the option is

max(0, ST — S,) + (S, — K)

where, as usual, K is the strike price and ST is the asset price at time T. Thevalue at
time ‘L’ if the holder shouts is therefore the present value of S, — K (received at time T)
plus the value of a European option with strike price S,. The latter can be calculated
using Black—Scholes—Merton formulas.

A shout option is valued by constructing a binomial or trinomial tree for the under-
lying asset in the usual way. Working back through the tree, the value of the option if the
holder shouts and the value if the holder does not shout can be calculated at each node.
The option’s price at the node is the greater of the two. The procedure for valuing a shout
option is therefore similar to the procedure for valuing a regular American option.

ASIAN OPTIONS

Asian options are options where the payoff depends on the arithmetic average of the
price of the underlying asset during the life of the option. The payoff from an average
price call is max(0, Save — K) and that from an average price put is max(0, K — Save),
where Sm is the average price of the underlying asset. Average price options are less

9 M. Broadie, P. Glasserman, and S. G. Kou, “Connecting Discrete and Continuous Path-Dependent
Options,” Finance and Stochastics, 2 (1998): l—28.
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expensive than regular options and are arguably more appropriate than regular options
for meeting some of the needs of corporate treasurers. Suppose that a US corporate
treasurer expects to receive a cash flow of 100 million Australian dollars spread evenly
over the next year from the company’s Australian subsidiary. The treasurer is likely to
be interested in an option that guarantees that the average exchange rate realized during
the year is above some level. An average price put option can achieve this more
effectively than regular put options.

Average price options can be valued using similar formulas to those used for regular
options if it is assumed that Save is lognomal. As it happens, when the usual assumption
is made for the process followed by the asset price, this is a reasonable assumption“)
A popular approach is to fit a lognormal distribution to the first two moments of Save
and use Black’s model.“ Suppose that M1 and M2 are the first two moments of Save.
The value of average price calls and puts are given by equations (17.9) and (17.10), with

and
1 M0'2 = in (25.4)

When the average is calculated continuously, and r, q, and 0 are constant (as in
DerivaGem):

(r—q)Te — l
M1 = ———— S0(r — q)T

and

M_ +
2 (r—q+ot2)(2r—2q+o2)T2 (r—q)T2 2(r~—q)+o2 r—q+a2

5

2e[2(r—q)+<r2]T S3 253 ( 1 ,,<r—q>T )

More generally, when the average is calculated from observations at times T,- (l < ' < m),

l m . .
::—— and M2 I;*i2e0'1'2Tl + iF-jefiizfi)

l 1 =
§ g1- $13 31 l\> we _M_:*1

where F,- and 0, are the forward price and implied volatility for maturity T,-. See Technical
Note 27 on www.rotman.utoronto.ca/~hul1/TechnicalNotes for a proof of(this.

Example 25.3
Consider a newly issued average price call option on a non-dividend-paying stock
where the stock price is 50, the strike price is 50, the stock price volatility is 40%
per annum, the risk-free rate is 10% per annum, and the time to maturity is l year.
In this case, S11 = 50, K = 50, r = 0.1, q = 0, o = 0.4, and T : l. If the average is
calculated continuously, M1 = 52.59 and M2 : 2,922.76. From equations (25.3)
and (25.4), F11 : 52.59 and or : 23.54%. Equation (16.9), with K : 50, T = 1, and
r = 0.1, gives the value of the option as 5.62. When 12, 52, and 250 observations
are used for the average, the price is 6.00, 5.70, and 5.63, respectively.

10 When the asset price follows geometric Brownian motion, the geometric average of the price is exactly
lognormal and the arithmetic average is approximately lognormal.

H See S. M. Turnbull and L. M. Wakeman, “A Quick Algorithm for Pricing European Average Options,”
Journal of Financial and Quantitative Analysis, 26 (September 1991): 377-89.
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We can modify the analysis to accommodate the situation where the option is not newly
issued and some prices used to determine the average have already been observed.
Suppose that the averaging period is composed of a period of length t1 over which
prices have already been observed and a future period of length t2 (the remaining life of
the option). Suppose that the average asset price during the first time period is S. The
payoff from an average price call is

max (Stl + Savet2 K’ 0)

I1 + t2

where Save is the average asset price during the remaining part of the averaging period.
This is the same as

$2—— S -— K*, 0tl + t2 maX( ave )

where
K*_t1+i2K I15

:2 :2

When K * > 0, the option can be valued in the same way as a newly issued Asian option
provided that we change the strike price from K to K * and multiply the result by
t2/(t1 + t2). When K* < 0 the option is certain to be exercised and can be valued as a
forward contract. The value is

2%[Mle—rt2 _ K*e—rt2]

l 2 I '

Another type of Asian option is an average strike option. An average strike call pays off
max(0, ST — Save) and an average strike put pays off max(0, Save — ST). Average strike
options can guarantee that the average price paid for an asset in frequent trading over a
period of time is not greater than the final price. Alternatively, it can guarantee that the
average price received for an asset in frequent trading over a period of time is not less
than the final price. It can be valued as an option to exchange one asset for another
when Save is assumed to be lognormal.

OPTIONS TO EXCHANGE ONE ASSET FOR ANOTHER

Options to exchange one asset for another (sometimes referred to as exchange options)
arise in various contexts. An option to buy yen with Australian dollars is, from the
point of view of a US investor, an option to exchange one foreign currency asset for
another foreign currency asset. A stock tender ofler is an option to exchange shares in
one stock for shares in another stock.

Consider a European option to give up an asset worth UT at time T and receive in
return an asset worth VT. The payoff from the option is

max(VT — UT, 0)

A formula for valuing this option was first produced by Margrabelz Suppose that the

12 See W. Margrabe, “The Value of an Option to Exchange One Asset for Another,” Journal of Finance, 33
(March 1978): 177-86.
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asset prices, U and V, both follow geometric Brownian motion with volatilities 0U and
av. Suppose further that the instantaneous correlation between U and V is p, and the
yields provided by U and V are qU and qv, respectively. The value of the option at time
Z61"O 1S

V11e"""TN(d1)- U11e_"”TN(d2) (25.5)
where

1 v U - *2dl__11( 0/e0)+(§i1/_TqV+O'/2)T’ d2:__dl_6_/-f

~_ 2 20 _ \/0U +01, —2poUo1,

and

and U0 and V11 are the values of U and V at times zero.
This result will be proved in Chapter 27. It is interesting to note that equation (25.5)

is independent of the risk-free rate r. This is because, as r increases, the growth rate of
both asset prices in a risk-neutral world increases, but this is exactly offset by an
increase in the discount rate. The variable 6 is the volatility of V/U. Comparisons with
equation (16.4) show that the option price is the same as the price of U0 European call
options on an asset worth V/U when the strike price is 1.0, the risk-free interest rate is
qu, and the dividend yield on the asset is qv. Mark Rubinstein shows that the American
version of this option can be characterized similarly for valuation purposes.” It can be
regarded as U11 American options to buy an asset worth V/U for 1.0 when the risk-free
interest rate is qU and the dividend yield on the asset is qv. The option can therefore be
valued as described in Chapter 20 using a binomial tree.

An option to obtain the better or worse of two assets can be regarded as a position in
one of the assets combined with an option to exchange it for the other asset:

min(UT, VT) = VT — max(VT - UT, 0)

max(UT, VT): UT + max(VT — UT, 0)

OPTIONS INVOLVING SEVERAL ASSETS ’

Options involving two or more risky assets are sometimes referred to as rainbow options.
One example is the bond futures contract traded on the CBOT described in Chapter 6.
The party with the short position is allowed to choose between a large number of
different bonds when making delivery.

Probably the most popular option involving several assets is a European basket
option. This is an option where the payoff is dependent on the value of a portfolio
(or basket) of assets. The assets are usually either individual stocks or stock indices or
currencies. A European basket option can be valued with Monte Carlo simulation, by
assuming that the assets follow correlated geometric Brownian motion processes. A
much faster approach is to calculate the first two moments of the basket at the maturity
of the option in a risk-neutral world, and then assume that value of the basket is

‘3 See M. Rubinstein, “One for Another,” Risk, July/August 1991: 30-32
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lognormally distributed at that time. The option can then be valued using Black’s
model with the parameters shown in equations (25.3) and (25.4). In this case,

= F, and M2: F -e’°‘1°“°1T. . i=1 . -M="M
3

I15

3'1 \-

where n is the number of assets, T is the option maturity, F,- and oi are the forward price
and volatility of the ith asset, and p,-1- is the correlation between the ith and jth asset.
See Technical Note 28 at www.rotma.n.utoronto.ca/~hul1/TechnicalNotes. 5

VOLATILITY AND VARIANCE SWAPS

A volatility swap is an agreement to exchange the realized volatility of an asset between
time 0 and time T for a prespecifed fixed volatility. The realized volatility is usually
calculated as described in Section 14.4 but with the assumption that the mean daily
return is zero. Suppose that there are n daily observations on the asset price during the
period between time 0 and time T. The realized volatility is .

la2 11e>t1 ne— .= S,

where S,- is the ith observation on the asset price. (Sometimes n - l might replace n - 2
in this formula.) 5 5 2

The payoff from the volatility swap at time T to the -payer of the fixed volatility is
Lve1(6 — 0K), where Lve1 is the notional principal and 0K. is the fixed volatility. Whereas
an option provides a complex exposure to the asset price and volatility, a volatility swap
is simpler in that it has exposure only to volatility. T

A variance swap is an agreement to exchange the realized variance rate I7 between
time 0 and time T for a prespecified variance rate. The variance rate is the square of
the volatility (I7 = 62). Variance swaps are easier to value than volatility swaps. This is
because the variance rate between time 0 and time T can be replicated using a
portfolio of put and call options. The payoff from ea variance swap at time T to
the payer of the fixed variance rate is Lva,(V — VK), where Lva, is the notional
principal and VK is the fixed variance rate. Often the notional principal for a variance
swap is expressed in terms of the corresponding notional principal for a volatility swap
using Lvar = Lvol/(ZUK 7 5

t\)l\J"PT

Valuation of Variance Swap . .
Technical Note 22 at wWw.rotman.utoronto.ca/~hu11/Tec1micalNotes shows that,
for any value. S * of the asset price, the expected average variance between times 0 and
T is

. _ 2”F0 2 F0 2 5* 1 e  °° 1 T  
EV =1 l — — -— ” —- r .( ) T nS* T[S* 1] +TUK:0 Kae p(K)a'K+JK=S* Kze c(K)dK (25 6)

where F11 is the forward price of the asset for a contract maturing at time T, c(K) is
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the price of a European call option with strike price K and time to maturity T, and
p(K) is the price of a European put option with strike price K and time to
maturity T.

This provides a way of valuing a variance swap.” The value of an agreement to
receive the realized variance between time 0 and time T and pay a variance rate of VK,
with both being applied to a principal of Lva,, is

LvarIE(I7) _' VKIe—rT

Suppose that the prices of European options with strike prices K1 (l < i Q n) are known,
where K1 < K2 < - - - < Ka. A standard approach for implementing equation (25.6) is to
set S * equal to the first strike price below F0 and then approximate the integrals as

" S* 1 rT O0 1 rT n AKi rTK:0—I<3€ p(K)dK-I- K:S*-fie @(K)aK=;-E,-e Q(K,-) (25.8)

where AK, = 0.5(K,-+1- K,-__1) for 2 Q i < n - l, AK1-: K2 - K1, AK, = K,, - K,,_1.
The function Q(K,-) is the price of a European put option with strike price K1 if K,- < S *
and the price of a European call option with strike price K,- if K,- > S*. When K1 := S *,
the function Q(K,-) is equal to the average of the prices of a European call and a
European put with strike price K1.

Example 25.4 _ .
Consider a 3-month contract to receive the realized variance rate of an index over
the 3 months and pay a variance rate of 0.045 on a principal of $100 million. The
risk-free rate is 4% and the dividend yield on the index is 1%. The current level of
the index is 1020. Suppose that, for strike prices of 800, 850, 900, 950, 1,000,
1,050, l,l00, l,l50, 1,200, the 3-month implied volatilities of the index are 29%,
28%, 27%, 26%, 25%, 24%, 23%, 22%, 21%, respectively. In this case, n = 9,
K1 = 800, K2 -—= 850, . . . , K9 -_—_ 1,200, F1) = l,020e(0-04"“-01)“)-25 = 1,027.68, and
S* 1: 1,000. DerivaGem shows that Q(K1) : 2.22, Q(K2) = 5.22, Q(K3) = ll.05,
Q(K4) : 21.27, Q(K5) = 5l.2l, Q(K6) = 38.94, Q(K7) = 20.69, Q(K8) = 9.44,
Q(K9) = 3.57. Also, AK, -= 50 for all i. Hence, /

I1

Z5;-<a1@’TQ(K,)= 0.008139

From equations (25.6) and (25.8), it follows that

. _ 2 1027.68 2 1027.68 2E v = __-1 -  -1 _-_» 0.008139 = 0.0621( ) 0.25 nk 1,000 i 0.25( 1,000 )+0.25 X
From equation (25.7), the value of the variance swap (in millions of dollars) is
100 >< (00621 - 0.045)@*0~°4X°~25 _-I 1.69.

 _@i-in-

'4 See also K. Demeterfi, E. Derman, M. Kamal, and J . Zou, “A Guide to Volatility and Variance Swaps,”
The Journal ofDerivatives, 6, 4 (Summer 1999), 9-32. For options on variance and volatility, see P. Carr and
R. Lee, “Realized Volatility and Variance: Options via Swaps,” Risk, May 2007, 76-83.
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Valuation of a Volatility Swap
To value a volatility swap, we require 131(5), where 6 is the average value of volatility
between time 0 and time T. We can write

a=1/E(V)/1+gDE(V)
Expanding the second term on the right-hand side in a series gives

- _ 9 - - _ ~ - 2tar):
Taking expectations, _

E(o) = ,/E(v) [1 -  (25.9)

where var(l7) is the variance of I7’. The valuation of a volatility swap therefore requires
an estimate of the variance of the average variance rate during the life of the contract.
The value of an agreement to receive the realized volatility between time 0 and time T
and pay a volatility of 0K, with both being applied to a principal of Lve1, is

LvolIE(6) _' UKIe-rT

Example 25.5
For the situation in Example 25.4, consider a volatility swap where the realized
volatility is received and a volatility of 23% is paid on a principal of $100 million.
In this case E(l7) = 0.0621. Suppose that the standard deviation of the average
variance over 3 months has been estimated as 0.01. This means that
V8.I‘(l7) = 0.0001. Equation (25.9) gives

A _  0.0001E(o) = 4/0.0621 (1 -T >< MET) - 0.2484

The value of the swap in (millions of dollars) is

 100 >< (02484 -_ 0.23)e-°~°4*°~25 = 1.82 /
The VIX Index
In equation (25.6), the ln function can be approximated by the first two terms in a series
expansion:

F0 F0 F11 21<.v)—<. 1)'i(F")
This means that the risk-neutral expected cumulative variance is calculated as

2 n

E(V)T = -_ _ 1) + 2 Z%@'TQ(K,) (25.10)
1 I 1

Since 2004 the VIX volatility index (see Section 14.11) has been based on equa-
tion (25. 10). The procedure used on any given day is to calculate E(V)T for options that
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25.16

trade in the market and have maturities immediately above and below 30 days. The
30-day risk-neutral expected cumulative variance is calculated from these two numbers
using interpolation. This is then multiplied by 365/30 and the index is set equal to the
square root of the result. More details on the calculation can be found on:

~ www.cboe.com/micro/vix/vixwhite.pdf

STATIC OPTIONS REPLICATION

If the procedures described in Chapter l8 are used for hedging exotic options, some are
easy to handle, but others are very difficult because of discontinuities (see Business
Snapshot 25.1). For the difficult cases, a technique known as static options replication is
sometimes useful.” This involves searching for a portfolio of actively traded options that
approximately replicates the exotic option. Shorting this position provides the hedge.“

The basic principle underlying static options replication is as follows. If two
portfolios are worth the same on a certain boundary, they are also worth the same at
all interior points of the boundary. Consider as an example a 9-month up-and-out call
option on a non-dividend-paying stock where the stock price is 50, the strike price is 50,
the barrier is 60, the risk-free interest rate is 10% per annum, and the volatility is 30%
per annum. Suppose that f(S, t) is the value of the option at time t for a stock price of S.
Any boundary in (S, t) space can be used for the purposes of producing the replicating
portfolio. A convenient one to choose is shown in Figure 25.1. It is defined by S = 60
and t :- 0.75. The values of the up-and-out option on the boundary are given by

f(S, 0.75) == max(S - 50, 0) when S < 60

f(60, t) = 0 when 0 < < 0.759+

There are many ways that these boundary values can be approximately matched
using regular options. The natural option to match the first boundary is a 9-month
European call with a strike price of 50. The first component of the replicating portfolio
is therefore one unit of this option. (We refer to this option as option A.)

One way of matching the f(60, t) boundary is to proceed as follows:

1. Divide the life of the option into N steps of length At /’:
2. Choose a European call option with a strike price of 60 and maturity at time NAt

(= 9 months) to match the boundary at the {60, (N — l)At} point
3. Choose a European call option with a strike price of 60 and maturity at

time (N - l)At to match the boundary at the {60, (N - 2)At} point

and so on. Note that the options are chosen in sequence so that they have zero value on
the parts of the boundary matched by earlier options.” The option with a strike price

15 See E. Derman, D. Ergener, and I. Kani, “Static Options Replication,” Journal of Derivatives 2, 4
(Summer 1995): 78-95.

16 Technical Note 22 at www.rotma.n.utoronto.ca/~hu]1/'I‘echnica1Notes provides an example of static
replication. It shows that the variance rate of an asset can be replicated by a position in the asset and out-of-the-
money options on the asset. This result, which leads to equation (25.6), can be used to hedge variance swaps.

'7 This is not a requirement. If K points on the boundary are to be matched, we can choose K options and
solve a set of K linear equations to determine required positions in the options.
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of 60 that matures in 9 months has zero value on the vertical boundary that is matched
by option A. The option maturing at time i At has zero value at the point {60, i At} that
is matched by the option maturing at time (i + l)At for 1 < i < N - 1.

Suppose that A = 0.25. In addition to option A, the replicating portfolio consists of
positions in European options with strike price 60 that mature in 9, 6, and 3 months.
We will refer to these as options B, C, and D, respectively. Given our assumptions

 J

Figure 25.1 Boundary points used for static options replication example.

AS

/

60

50 -

I1 1 ,
0.25 0.50 0.75
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Table 25.1 The portfolio of European call options, used to
replicate an up-and-out option.

Option Strike Maturity Position Initial
price (years) value

3 50 0.75 1.00 +6.99
60 0.75 -2.66 -8.21
60 0.50 0.97 +1.78
60 0.25 0.28 +0.17

. .""1' ----1»_w- 1 ' " “"'t'-' ‘- 1.. tr ~ - -. . - . -1 . . 1 . - ' .. ._ . . _, --- - . ---4.- ~ - .~ ..........x...l4...~§..'.

UOUUD>

about volatility and interest rates, option B is worth 4.33 at the {60, 0.5} point. Option A
is worth ll.54 at this point. The position in option B necessary to match the boundary
at the {60, 0.5} point is therefore -l 1.54/4.33 = -2.66. Option C is worth 4.33 at the
{60, 0.25} point. The position taken in options A and B is worth -4.21 at this point.
The position in option C necessary to match the boundary at the {60, 0.25} point is
therefore 4.21/4.33 : 0.97. Similar calculations show that the position in option D
necessary to match the boundary at the {60, 0} point is 0.28.

The portfolio chosen is summarized in Table 25.1. (See also Sample Application F of
the DerivaGem Applications.) It is worth 0.73 initially (i.e., at time zero when the stock
price is 50). This compares with 0.31 given by the analytic formula for the up-and-out
call earlier in this chapter. The replicating portfolio is not exactly the same as the up-
and-out option because it matches the latter at only three points on the second
boundary. If we use the same procedure, but match at 18 points on the second
boundary (using options that mature every half month), the value of the replicating
portfolio reduces to 0.38. If 100 points are matched, the value reduces further to 0.32.

To hedge a derivative, the portfolio that replicates its boundary conditions must be
shorted. The portfolio must be unwound when any part of the boundary is reached.

Static options replication has the advantage over delta hedging that it does not
require frequent rebalancing. It can be used for a wide range of derivatives. The user
has a great deal of flexibility in choosing the boundary that is to be matched and the
options that are to be used.

/‘

SUMMARY

Exotic options are options with rules governing the payoff that are more complicated
than standard options. We have discussed 14 different types of exotic options: packages,
nonstandard American options, gap options, forward start options, cliquet options,
compound options, chooser options, barrier options, binary options, lookback options,
shout options, Asian options, options to exchange one asset for another, and options
involving several assets. We have discussed how these can be valued using the same
assumptions as those used to derive the Black-Scholes-Merton model in Chapter l4.
Some can be valued analytically, but using much more complicated formulas than those
for regular European calls and puts, some can be handled using analytic approximations,
and some can be valued using extensions of the numerical procedures in Chapter 20. We
will present more numerical procedures for valuing exotic options in Chapter 26.
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Some exotic options are easier to hedge than the corresponding regular options;
others are more difficult. In general, Asian options are easier to hedge because the
payoff becomes progressively more certain as we approach maturity. Barrier options can
be more difficult to hedge because delta is discontinuous at the barrier. One approach
to hedging an exotic option, known as static options replication, is to find a portfolio of
regular options whose value matches the value of the exotic option on some boundary.
The exotic option is hedged by shorting this portfolio.
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Practice Questions (Answers in Solutions Manual)

25.1. Explain the difference between a forward start option and a chooser option.
25.2. Describe the payoff from a portfolio consisting of a floating lookback call and a floating

lookback put with the same maturity.



Exotic

25.3.

25.4.

25.5.

25.6.

25.7.

25.8.

25.9.

25.10.

25.11.

25.12.

25.13.

25.14.

25.15.
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Consider a chooser option where the holder has the right to choose between a European
call and a European put at any time during a 2-year period. The maturity dates and
strike prices for the calls and puts are the same regardless of when the choice is made. Is
it ever optimal to make the choice before the end of the 2-year period? Explain your
answer.

Suppose that c1 and p1 are the prices of a European average price call and a European
average price put with strike price K and maturity T, c2 and p2 are the prices of a
European average strike call and European average strike put with maturity T, and c3
and p3 are the prices of a regular European call and a regular European put with strike
price K and maturity T. Show that c1 + c2 - c3 = p1 + p2 - p3.
The text derives a decomposition of a particular type of chooser option into a call
maturing at time T2 and a put maturing at time T1. Derive an alternative decomposition
into a call maturing at time T1 and a put maturing at time T2.
Section 25.8 gives two formulas for a down-and-out call. The first applies to the situation
where the barrier, H, is less than or equal to the strike price, K. The second applies to the
situation where H > K. Show that the two formulas are the same when H : K.
Explain why a down-and-out put is worth zero when the barrier is greater than the strike
price.

Suppose that the strike price of an American call option on a non-dividend-paying stock
grows at rate g. Show that if g is less than the risk-free rate, r, it is never optimal to
exercise the call early.

How can the value of a forward start put option on a non-dividend-paying stock be
calculated if it is agreed that the strike price will be 10% greater than the stock price at
the time the option starts?
If a stock price follows geometric Brownian motion, what process does A(t) follow where
A(t) is the arithmetic average stock price between time zero and time t?
Explain why delta hedging is easier for Asian options than for regular options.

Calculate the price of a l-year European option to give up 100 ounces of silver in
exchange for l ounce of gold. The current prices of gold and silver are $380 and $4,
respectively; the risk-free interest rate is 10% per annum; the volatility of each
commodity price is 20%; and the correlation between the two prices is 0.7. ’lgnore
storage costs.

Is a European down-and-out option on an asset worth the same as a European down-
and-out option on the asset’s futures price for a futures contract maturing at the same
time as the option? -

Answer the following questions about compound options:
(a) What put-call parity relationship exists between the price of a European call on a

call and a European put on a call? Show that the formulas given in the text satisfy
the relationship.

(b) What put-call parity relationship exists between the price of a European call on a
put and a European put on a put? Show that the formulas given in the text satisfy
the relationship. S

Does a floating lookback call become more valuable or less valuable as we increase the
frequency with which we observe the asset price in calculating the minimum‘?
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25.16. Does a down-and-out call become more valuable or less valuable as we increase the
frequency with which we observe the asset price in determining whether the barrier has
been crossed? What is the answer to the same question for a down-and-in call?

25.17. Explain why a regular European call option is the sum of a down-and-out European call
and a down-and-in European call. Is the same true for American call options?

25.18. What is the value of a derivative that pays off $100 in 6 months if the S&P 500 index is
greater than 1,000 and zero otherwise? Assume that the current level of the index is 960,
the risk-free rate is 8% per annum, the dividend yield on the index is 3% per annum, and
the volatility of the index is 20%.

25.19. In a 3-month down-and-out call option on silver futures the strike price is $20 per ounce
and the barrier is $18. The current futures price is $19, the risk-free interest rate is 5%,
and the volatility of silver futures is 40% per annum. Explain how the option works and
calculate its value. What is the value of a regular call option on silver futures with the
same terms? What is the value of a down-and-in call option on silver futures with the
same terms?

25.20. A new European-style floating lookback call option on a stock index has a maturity of
9 months. The current level of the index is 400, the risk-free rate is 6% per annum, the
dividend yield on the index is 4% per annum, and the volatility of the index is 20%. Use
DerivaGem to value the option.

25.21. Estimate the value of a new 6-month European-style average price call option on a non-
dividend-paying stock. The initial stock price is $30, the strike price is $30, the risk-free
interest rate is 5%, and the stock price volatility is 30%. A

25.22. Use DerivaGem to calculate the value of:
(a) A regular European call option on a non-dividend-paying stock where the stock

price is $50, the strike price is $50, the risk-free rate is 5% per annum, the volatility is
30%, and the time to maturity is one year

(b) A down-and-out European call which is as in (a) with the barrier at $45
(c) A down-and-in European call which is as in (a) with the barrier at $45.
Show that the option in (a) is worth the sum of the values of the options in (b) and (c).

25.23. Explain adjustments that have to be made when r --: q for (a) the valuation formulas for
floating lookback call options in Section 25.10 and (b) the formulas for M1 and M2 in
Section 25.12. /I-r

25.24. Value the variance swap in Example 25.4 of Section 25.15 assuming that the implied
volatilities for options with strike prices 800, 850, 900, 950, 1,000, 1,050, 1,100, 1,150,
1,200 are 20%, 20.5%, 21%, 21.5%, 22%, 22.5%, 23%, 23.5%, 24%, respectively.

Further Questions

25.25. What is the value in dollars of a derivative that pays off £10,000 in 1 year provided that
the dollar/sterling exchange rate is greater than 1.5000 at that time? The current
exchange rate is 1.4800. The dollar and sterling interest rates are 4% and 8% per
annum, respectively. The volatility of the exchange rate is 12% per annum.

25.26. Consider an up-and-out barrier call option on a non-dividend-paying stock when the
stock price is 50, the strike price is 50, the volatility is 30%, the risk-free rate is 5 %, the
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time to maturity is 1 year, and the barrier at $80. Use the software to value the option
and graph the relationship between (a) the option price and the stock price, (b) the delta
and the stock price, (c) the option price and the time to maturity, and (d) the option
price and the volatility. Provide an intuitive explanation for the results you get. Show
that the delta, gamma, theta, and vega for an up-and-out barrier call option can be
either positive or negative.
Sample Application F in the DerivaGem Application Builder Software considers the
static options replication example in Section 25.15. It shows the way a hedge can be
constructed using four options (as in Section 25.15) and two ways a hedge can be
constructed using 16 options. .
(a) Explain the difference between the two ways a hedge can be constructed using

16 options. Explain intuitively why the second method works better.
(b) Improve on the four-option hedge by changing Tmat for the third and fourth options.
(c) Check how well the 16-option portfolios match the delta, gamma, and vega of the

barrier option.
Consider a down-and-out call option on a foreign currency. The initial exchange rate is
0.90, the time to maturity is 2 years, the strike price is 1.00, the barrier is 0.80, the
domestic risk-free interest rate is 5%, the foreign risk-free interest rate is 6%, and the
volatility is 25% per annum. Use DerivaGem to develop a static option replication
strategy involving five options.
Suppose that a stock index is currently 900. The dividend yield is 2%, the risk-free rate is
5%, and the volatility is 40%. Use the results in the appendix to calculate the value of a
l-year average price call where the strike price is 900 and the index level is observed at
the end of each quarter for the purposes of the averaging. Compare this with the price
calculated by DerivaGem for a l-year average price option where the price is observed
continuously. Provide an intuitive explanation for any differences between the prices.
Use the DerivaGem Application Builder software to compare the effectiveness of daily
delta hedging for (a) the option considered in Tables 18.2 and 18.3 and (b) an average
price call with the same parameters. Use Sample Application C. For the average price
option you will find it necessary to change the calculation of the option price in cell C16,
the payoffs in cells H15 and H16, and the deltas (cells G46 to G186 and N46 to N186).
Carry out 20 Monte Carlo simulation runs for each option by repeatedly presaing F9.
On each run record the cost of writing and hedging the option, the volume of trading
over the whole 20 weeks and the volume of trading between weeks ll and 20. Comment
on the results.
In the DerivaGem Application Builder Software modify Sample Application D to test
the effectiveness of delta and gamma hedging for a call on call compound option on a
100,000 units of a foreign currency where the exchange rate is 0.67, the domestic risk-free
rate is 5%, the foreign risk-free rate is 6%, the volatility is 12%. The time to maturity of
the first option is 20 weeks, and the strike price of the first option is 0.015. The second
option matures 40 weeks from today and has a strike price of 0.68. Explain how you
modified the cells. Comment on hedge effectiveness.
Outperformance certificates (also called “sprint certificates,” “accelerator certificates,”
or “speeders”) are offered to investors by many European banks as a way of investing in
a company’s stock. The initial investment equals the stock price, S11. If the stock price
goes up between time 0 and time T, the investor gains k times the increase at time T,
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where k is aconstant greater than 1.0. However, the stock price used to calculate the gain
at time T is capped at some maximum level M. If the stock price goes down, the
investor’s loss is equal to the decrease. The investor does not receive dividends.
(a) Show that an outperformance certificate is a package. a
(b) Calculate using DerivaGem the value of a one-year outperformance certificate when

, the stock price is 50 euros, k =.1.5, M = 70 euros, the risk-free rate is 5%, and the
stock price volatility is 25%. Dividends equal to 0.5 euros are expected in 2 months,
5 months, 8 months, and ll months.

Carry out the analysis in Example 25.4 of Section 25.15 to value the variance swap on
the assumption that the life of the swap is 1 month rather than 3 months.
What is the relationship between a regular call option, a binary call option, and a gap
call option‘? 5 5
Produce la formula for valuing a cliquet option where an amount Q is invested to
produce 5a payofl" at the end of n periods. The return earned each period is the greater
of the return on an index (excluding dividends) and zero. .

/
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._ More on Models
and Numerical

Procedures

Up to now the models we have used to value options have been based on the geometric
Brownian motion model of asset price behavior that underlies the Black—Scholes-
Merton formulas and the numerical procedures we have used have been relatively
straightforward. In this chapter we introduce a number of new models and explain
how the numerical procedures can be adapted to cope with particular situations.

Chapter 19 explained how traders overcome the weaknesses in the geometric Brown-
ian motion model by using volatilitysurfaces. A volatility surface determines an
appropriate volatility to substitute into Black—Scholes—Merton when pricing plain
vanilla options. Unfortunately it says little about the volatility that should be used
for exotic options when the pricing formulas of Chapter 25 are used. Suppose the
volatility surface shows that the correct volatility to use when pricing a one-year plain
vanilla option with a strike price of $40 is 27%. This is liable to be totally inappropriate
for pricing a barrier option (or some other exotic option) that has a strike price of $40
and a life of one year.

The first part of this chapter discusses a number of alternatives to geometric
Brownian motion that are designed to deal with the problem of pricing exotic options
consistently with plain vanilla options. These alternative asset price processes” fit the
market prices of plain vanilla options better than geometric Brownian motion. As a
result, we can have more confidence in using them to value exotic options.

The second part of the chapter extends the discussion of numerical procedures. It
explains how convertible bonds and some types of path-dependent derivatives can be
valued using trees. It discusses the special problems associated with valuing barrier
options numerically and how these problems can be handled. Finally, it outlines
alternative ways of constructing trees for two correlated variables and shows how
Monte Carlo simulation can be used to value derivatives when there are early exercise
opportunities.

As in earlier chapters, results are presented for derivatives dependent on an asset
providing a yield at rate q. For an option on a stock index q should be set equal to the
dividend yield on the index, for an option on a currency it should be set equal to the
foreign risk-free rate, and for an option on a futures contract it should be set equal to
the domestic risk-free rate.
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ALTERNATIVES TO BLACK—SCHOLES-MERTON

The Black—Scholes—Merton model assumes that an asset’s price changes continously in
a way that produces a lognormal distribution for the price at any future time. There are
many alternative processes that can be assumed. One possibility is to retain the property
that the asset price changes continuously, but assume a process other than geometric
Brownian motion. Another alternative is to overlay continuous asset price changes with
jumps. Yet another alternative is to assume a process where all the asset price changes
that take place are jumps. We will consider examples of all three types of processes in
this section. A model where stock prices change continuously is known as at dijjfusion
model. A model where continuous changes are overlaid with jumps is known as a mixed
jump—difi’usion model. A model where all stock price changes are jumps is known as a
pure jump model. These typesof processes are known collectively as Levy processes.‘

The Constant Elasticity of Variance Model O
One alternative to Black--Scholes—Merton is the constant elasticity of variance (CEV)
model. This is a dilfusion model where the risk-neutral process for a stockprice S is

dS= (r—q)Sdt+oS°‘dz 5

where r is the risk-free rate, q is the dividend yield, dz is a Wiener process, o is a
volatility parameter, and C! is a positive constant.2 . .

When at = 1, the CEV model is the geometric Brownian motion model we have been
using up to now. When at < l, the volatility increases as the stock price decreases. This
creates a probability distribution similar to that observed for equities with a heavy left
tail and less heavy right tail (see Figure l9.4).3 When at > 1, the volatility increases as
the stock price increases. This creates a probability distribution with a heavy right tail
and a less heavy left tail. This corresponds to a volatility smile where the implied
volatility is an increasingfunction of the strike price. This type of volatility smile is
sometimes observed for options on futures (see Problem 17.23).

The valuation formulas for European call and put options under the CEV model are

c = S0e'qT[l — )(2(a, b + 2, c)] — Ke"'T)(2(c, b, a) 53/

p = Ke_'T[l — )(2(c, b, a)] — S0e"qT)(2(a, b + 2, c) 5

when0<oz<l,and 5 5

C = s0e"‘1T[1 - X2(¢, —b, a)] - 1<e"'T ;(2(a, 2 - b, C)  
P = Ke""i1 - x2(a, 2 - 1>.c>1 — S0e"”><2<c. -1». to  

1 Roughly speaking, a Levy process is a continuous-time stochastic process with stationary independent
increments.
2 See J . C. Cox and S. A. Ross, “The Valuation of Options for Alternative Stochastic Processes,” Journal of
Financial Economics, 3 (March 1976): 145-66. 5 5

3 The reason is as follows. As the stock price decreases, the volatility increases makingeven lower stock price
more likely; when the stock price increases, the volatility decreases making higher stock prices less likely.
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when Ol > l, with

[Ke—(r—q)T]2(l —-Oi) 1 S2(1 -(X)
;: 5 , b:-——-—’ :———-———-—-a (l—ot)2v 1-01 C (1-(1)20

where
2: U t 2(r-not-1>T_1" 2(r-q><<»-i>[“ 1

and )(2(z,lc, v) is the cumulative probability that a variable with a noncentral X2
distribution with noncentrality parameter v and k degrees of "freedom is less than z.
A procedure for computing X2(z, k, v) is provided in Technical Note l2 on the author’s
website: www.rotman.utoro11to.ca/~hu11/TechnicalNotes.

The CEV model is particularly useful for valuing exotic equity options. The par-
ameters of the model can be chosen to fit the prices of plain vanilla options as closely as
possible by minimizing the sum of the squared differences between model prices and
market prices.

Merton’s Mixed lump-Diffusion Model
Merton has suggested a model where jumps are combined with continuous changes.4
Define:  

2»: Average number of jumps per year
k: Average jump size measured as a percentage of the asset price A

The percentage jump size is assumed to be drawn from a probability distribution in the
model.

The probability of a jump in time At is A At. The average growth rate in the asset
price from the jumps is therefore Ak. The risk-neutral process for the asset price is

dS
—§=(r-q-)J<)dt+odz+dp

where dz is a Wiener process, dp is the Poisson process generating the jumps, and a is
the volatility of the geometric Brownian motion. The processes dz and dp are assumed
to be independent.

An important particular case of Merton’s model is where the logarithm of the size of
the percentage jump is normal. Assume that the standard deviation of the normal
distribution is s. Merton shows that a European option price can then be written

, <><> 6-i’T(A/T)"

Z-5———-—. frnzo l’l.

where A’ : k(l + k). The variable f,, is the Black-Scholes—Merton option price when the
dividend yield is q, the variance rate is

2

11--_-1-\—-_¢i-Q-_

4 See R.C. Merton, “Opt‘on Pricing When Underlying Stock Returns Are Discontinuous,” Journal of
Financial Economics, 3 (March 1976): 125-44.
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and the risk-free rate is
Hr_ yk _r + T

where y = ln(l + k). _
This model gives rise to heavier left and heavier right tails than Black—Scholes-

Merton. It can be used for pricing currency options. As in the case of the CEV model,
the model parameters are chosen by minimizing the sum of the squared differences
between model prices and market prices.

Models such as Merton’s that involve jumps can be implemented with Monte Carlo
simulation. When jumps are generated by a Poisson process, the probability of exactly
m jumps in time t is

e_)‘t(}~t)'"
ml

where A is the average number of jumps per year. Equivalently, At is the average number
of jumps in time t.

Suppose that on average 0.5 jumps happen per year. The probability of m jumps in
2 years is

e"°-5*2(0.5 >< 2)'" _ O 3679
m!

Table 26.1 gives the probability and cumulative probability of 0, 1, 2, 3, 4, 5, 6, 7, and 8
jumps in 2 years. (The numbers in a table such as this can be calculated using the
POISSON function in Excel.)

To simulate a process following jumps over 2 years, it is necessary to determine on
each simulation trial:

1. The number of jumps
2. The size of each jump.

To determine the number of jumps, on each simulation trial we sample a random
number between 0 and 1 and use Table 26.1 as a look-up table. If the random number
is between 0 and 0.3679, no jumps occur; if the random number is between 0.3679 and
0.7358, one jump occurs; if the random number is between 0.73 58 and 0.9197, two jumps

Table 26.1 Probabilities for number of jumps in 2 years.

Number of Probability of Probability of
jumps, m exactly m jumps m jumps or less

 0
1

OO\lO\kJ‘|-PU-)l\)

0.3679
0.3679
0.1839
0.0613
0.0153
0.0031
0.0005
0.0001
0.0000

0.3679
0.7358
0.9197
0.9810
0.9963
0.9994
0.9999
1.0000
1.0000
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occur; and so on. To determine the size of each jump, it is necessary on each simulation
trial to sample from the probability distribution for the jump size once for each jump
that occurs. Once the number of jumps and the jump sizes have been determined, the
final value of the variable being simulated is known for the simulation trial.

In Merton’s mixed jump—diffusion model, jumps are superimposed upon the usual
lognormal diffusion process that is assumed for stock prices. The process then has two
components (the usual diffusion component and the jump component) and each must
be sampled separately. The diffusion component is sampled as described in Sections 20.6
and 20.7 while the jump component is sampled as just described. When derivatives are
valued, it is important to ensure that the overall expected return from the asset (from
both components) is the risk-free rate. This means that the drift for the diffusion
component in Merton’s model is r - q — ilk.

The Variance-Gamma Model
An example of a pure jump model that is proving quite popular is the variance-gamma
model.5 Define a variable g as the change over time T in a variable that follows a
gamma process with mean rate of 1 and variance rate of v. A gamma process is a pure
jump process where small jumps occur very frequently and large jumps occur only
occasionally. The probability density for g is

gT/v-16-g/v

vT/"l“(T/v)

where l“(-) denotes the gamma function. This probability density can be computed in
Excel using the GAMMADIST( -, -, -, -) function. The first argument of the function is
g, the second is T/v, the third is v, and the fourth is TRUE or FALSE, where TRUE
returns the cumulative probability distribution function and FALSE returns the prob-
ability density function we have just given.

As usual, we define ST as the asset price at time T, S0 as the asset price today, r as the
risk-free interest rate, and q as the dividend yield. In a risk-neutral world ln ST, under
the variance-gamma model, has a probability distribution that, conditional on g, is
normal. The conditional mean is

/'
1nS0+(r—q)T+w+6g

and the conditional standard deviation is

G./ii
co = (T/v) ln(l — (iv -— ozv/2)

where

The variance-gamma model has three parameters: v, o, and 6.6 The parameter v is the
variance rate of the gamma process, o is the volatility, and 6 is a parameter defining
skewness. When 6 = 0, ln ST is symmetric; when 6 < 0, it is negatively skewed (as for
equities); and when 6 > 0, it is positively skewed.

5 See D.B. Madan, P.P. Carr, and E. C. Chang, “The Variance-Gam.ma Process and Option Pricing,”
European Finance Review, 2 (1998): 79-105.

6 Note that all these parameters are liable to change when we move from the real world to the risk-neutral
world. This is in contrast to pure diffusion models where the volatility remains the same.
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Suppose that we are interested in using Excel to obtain 10,000 random samples of the
change in an asset price between time 0 and time T using the variance-gamma model.
As a preliminary, we could set cells El, E2, E3, E4, E5, E6, and E7 equal to T, v, 6, a, r,
q, and S0, respectively. We could also set E8 equal to co by defining it as

V = $E$l >|< LN(l —- $E$3 >|< $E$2 — $E$4 >l< $E$4 * $E$2/2)/$E$2

We could then proceed as follows:

1. Sample values for g usingthe GAMMAINV function. Set the contents of cells
A1, A2, . . . , A10000 as

=GAMMAINV(RAND(), $E$l/$E$2, $E$2)

2. For each value of g we sample a value z for a variable that is normally distributed
with mean 6g and standard deviation or/§. This can be done by defining cell B1 as

= A1 >l< $E$3 + SQRT(Al) >|< $E$4 *,NORMSINV(RAND())

and cells B2, B3, ..., B10000 similarly.
3. The stock price ST is given by

$1 = 50 @XPl(r — q)T + w + Z]
By defining C1 as

= $E$7 * EXP(($E$5 — $E$6) >|< $E$l + Bl + $E$8)

and C2, C3,. . . , C10000 similarly, random samples from the distribution of ST are
created in these cells.

' ' <"§‘.-‘Ff;-7.”. £3 T?*‘-7.:7Té'7!'S'i'(}‘!§$k‘.~'.~§-Z\_'-‘~'-‘I1’ -"" 7 \' i -7'-'4"II.'~."5"-'3?‘ '7. ‘-‘ 3-3'41 -I ' ' 7.‘.'>L LTQLJZ 1‘Y}'1!C"';“lZ."‘?$l"'IG'1ElQi“'il'f1‘f'I'Z‘3‘I‘T“

Figure 26.1 Distributions obtained with variance-gamma process and geometric
Brownian motion.
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Figure 26.1 shows the probability distribution that is obtained using the variance-
gamma model for ST when S0 = 100, T = 0.5, v = 0.5, 6 = 0.1, o = 0.2, and
r = q = 0. For comparison it also shows the distribution given by geometric Brownian
motion when the volatility, 0 is 0.2 (or 20%). Although not clear in Figure 26.1, the
variance-gamma distribution has heavier tails than the lognormal distribution given by
geometric Brownian motion.

One way of characterizing the variance-gamma distribution is that g defines the rate
at which information arrives during time T. If g is large, a great deal of information
arrives and the sample we take from a normal distribution in step 2 above has a
relatively large mean and variance. If g is small, relatively little information arrives
and the sample we take has a relatively small mean and variance. The parameter T is the
usual time measure, and g is sometimes referred to as measuring economic time or time
adjusted for the flow of information.

Semi-analytic European option valuation formulas are provided by Madan et al.
(1998). The variance-gamma model tends to produce a U-shaped volatility smile. The
smile is not necessarily symmetrical. It is very pronounced for short maturities and “dies
away” for long maturities. The model can be fitted to either equity or foreign currency
plain vanilla option prices.

STOCHASTIC VOLATILITY MODELS

The Black-Scholes—Merton model assumes that volatility is constant. In practice, as
discussed in Chapter 22, volatility varies through time. The variance-gamma model
reflects this with its g parameter. Low values of g correspond to a low arrival rate for
information and a low volatility; high values of g correspond to a high arrival rate for
information and a high volatility.

An alternative to the variance-gamma model is a model where the process followed
by the volatility variable is specified explicitly. Suppose first that the volatility parameter
in the geometric Brownian motion is a known function of time. The risk-neutral process
followed by the asset price is then

P as = (F - g)Sdt + o(t)S dz , (26.1)
The Black-Scholes—Merton formulas are then correct provided that the variance rate is
set equal to the average variance rate during the life of the option (see Problem 26.6).
The variance rate is the square of the volatility. Suppose that during a 1-year period the
volatility of a stock will be 20% during the first 6 months and 30% during the second
6 months. The average variance rate is

0.5 >< 0.202 + 0.5 >< 0.302 = 0.065
It is correct to use Black—Scholes—Merton with a variance rate of 0.065. This corre-
sponds to a volatility of = 0.255, or 25.5%.

Equation (26.1) assumes that the instantaneous volatility of an asset is perfectly
predictable. In practice, volatility varies stochastically. This has led to the develop-
ment of more complex models with two stochastic variables: the stock price and its
volatility.
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One model that has been used by researchers is

asF = (r - q) at + ~/Vdzs (26.2)

av = a(VL - V)dt + gv“ dzv (26.3)

where a, VT, 5, and Oi are constants, and dzS and dzv are Wiener processes. The variable V
in this model is the asset’s variance rate. The variance rate has a drift that pulls it back to
a level VT at rate a.

Hull and White show that, when volatility is stochastic but uncorrelated with the asset
price, the price of a European option is the Black-Scholes-Merton price integrated over
the probability distribution of the average variance rate during the life of the option.7
Thus, a European call price is I

OO

 1 ¢(V)0(V)dV
0

where 17 is the average value of the variance rate, c is the Black-Scholes-Merton price
expressed as a function of 17, and g is the probability density function of I7 in a risk-
neutral world. This result can be used to show that Black-Scholes-Merton overprices
options that are at the money or close to the money, and underprices options that are
deep in or deep out of the money. The model is consistent with the pattern of implied
volatilities observed for currency options (see Section 19.2).

The case where the asset price and volatility are correlated is more complicated.
Option prices can be obtained using Monte Carlo simulation. In the particular case
where oz = 0.5, Hull and White provide a series expansion and Heston provides an
analytic result.8 The pattern of implied volatilities obtained when the volatility is
negatively correlated with the asset price is similar to that observed for equities (see
Section l9.3).9 T

Chapter 22 discusses exponentially weighted moving average (EWMA) and
GARCH(l, 1) models. These are alternative approaches to characterizing a stochastic
volatility model. Duan shows that it is possible to use GARCH(l, 1) as the basis for an
internally consistent option pricing model“) (See Problem 22-14 for the equivalence of
GARCH(l, 1) and stochastic volatility models.)

Stochastic volatility models can be fitted to the prices of plain vanilla options and then
used to price exotic options.“ For options that last less than a year, the impact of a
stochastic volatility on pricing is fairly small in absolute terms (although in percentage

7 See J . C. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of
Finance, 42 (June 1987): 281-300. This result is independent of the process followed by the variance rate.

8 See J . C. Hull and A. White, “An Analysis of the Bias in Option Pricing Caused by a Stochastic Volatility,”
Advances in Futures and Options Research, 3 (1988): 27-61; S.L. Heston, “A Closed Form Solution for
Options with Stochastic Volatility with Applications to Bonds and Currency Options,” Review of Financial
Studies, 6, 2 (1993): 327-43.
9 The reason is given in footnote 3. H

10 See J .-C. Duan, “The GARCH Option Pricing Mode1,” Mathematical Finance, vol. 5 (1995), 13-32; and
J .-C. Duan, “Cracking the Smile” RISK, vol. 9 (December 1996), 55-59.

H For an example of this, see J . C. Hull and W. Suo, “A Methodology for the Assessment of Model Risk and
its Application tc the Implied Volatility Function Model,” Journal ofFinancial and Quantitative Analysis, 37,
2 (June 2002): 297-318.
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terms it can be quite large for deep-out-of-the-money options). It becomes progressively
larger as the life of the option increases. The impact of a stochastic volatility on the
performance of delta hedging is generally quite large. Traders recognize this and, as
described in Chapter 18, monitor their exposure to volatility changes by calculating vega.

THE IVF MODEL

The parameters of the models we have discussed so far can be chosen so that they
provide an approximate fit to the prices of plain vanilla options on any given day.
Financial institutions sometimes want to go one stage further and use a model that
provides an exact fit to the prices of these options.” In 1994 Derman and Kani, Dupire,
and Rubinstein developed a model that is designed to do this. It has become known as
the implied volatility function (IVF) model or the implied tree model.“ It provides an
exact fit to the European option prices observed on any given day, regardless of the
shape of the volatility surface.

The risk-neutral process for the asset price in the model has the form

dS -.= [r(t) — q(t)]S dt + o(S, t)S dz

where r(t) is the instantaneous forward interest rate for a contract maturing at time t
and q(t) is the dividend yield as a function of time. The volatility o(S, t) is a function of
both S and t and is chosen so that the model prices all European options consistently
with the market. It is shown both by Dupire and by Andersen and Brotherton-Ratcliffe
that a(S, t) can be calculated analytically: 14

where cmkt(K, T) is the market price of a European call option with strike price K and
maturity T. If a sufficiently large number of European call prices are available in the
market, this equation can be used to estimate the a(S, t) function.“

Andersen and Brotherton-Ratclilfe implement the model by using equation (26.4)
together with the implicit finite difference method. An alternative approach, the /implied
tree methodology suggested by Derman and Kani and Rubinstein, involves constructing
a tree for the asset price that is consistent with option prices in the market.

When it is used in practice the IVF model is recalibrated daily to the prices of plain
vanilla options. It is a tool to price exotic options consistently with plain vanilla
options. As discussed in Chapter 19 plain vanilla options define the risk-neutral

‘Z There is a practical reason for this. If the bank does not use a model with this property, there is a danger
that traders working for the bank will spend their time arbitraging the bank’s internal models.
'3 See B. Dupire, “Pricing with a Smile,” Risk, February (1994): 18-20; E. Derman and I. Kani, “Riding on a
Smile,” Risk, February (1994): 32-39; M. Rubinstein, “Imp1ied Binomial Trees” Journal of Finance, 49, 3
(July 1994), 771-818.
14 See B. Dupire, “Pricing with a Smile,” Risk, February (1994), 18-20; L. B. G. Andersen and R.
Brotherton-Ratclilfe “The Equity Option Volatility Smile: An Implicit Finite Difference Approach,” Journal
of Computation Finance 1, No. 2 (Winter 1997/98): 5-37. Dupire considers the case where r and q are zero;
Andersen and Brotherton-Ratclilfe consider the more general situation.
15 Some smoothing of the observed volatility surface is typically necessary.
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probability distribution of the asset price at all future times. It follows that the IVF
model gets the risk-neutral probability distribution of the asset price at all future times
correct. This means that options providing payoffs at just one time (e.g., all-or-nothing
and asset-or-nothing options) are priced correctly by the IVF model. However, the
model does not necessarily get the joint distribution of the asset price at two or more
times correct. This means that exotic options such as compound options and barrier
options may be priced incorrectly.“

CONVERTIBLE BONDS

We now move on to discuss how the numerical procedures presented in Chapter 20 can
be modified to handle particular valuation problems. We start by considering con-
vertible bonds.

Convertible bonds are bonds issued by a company where the holder has the option to
exchange the bonds for the company’s stock at certain times in the future. The conversion
ratio is the number of shares of stock obtained for one bond (this can be a function of
time). The bonds are almost always callable (i.e., the issuer has the right to buy them back
at certain times at a predetermined prices). The holder always has the right to convert the
bond once it has been called. The call feature is therefore usually a way of forcing
conversion earlier than the holder would otherwise choose. Sometimes the holder’s call
option is conditional on the price of the company’s stock being above a certain level.

Credit risk plays an important role in the valuation of convertibles. If credit risk is
ignored, poor prices are obtained because the coupons and principal payments on the
bond are overvalued. Ingersoll provides a way of valuing convertibles using a model
similar to Merton’s (1974) model discussed in Section 23.6.17 He assumes geometric
Brownian motion for the issuer’s total assets and models the company’s equity, its
convertible debt, and its other debt as claims contingent on the value of the assets.
Credit risk is taken into account because the debt holders get repaid in full only if the
value of the assets exceeds the amount owing to them.

A simpler model that is widely used in practice involves modeling the issuer’s stock
price. It is assumed that the stock follows geometric Brownian motion except that there
is a probability A At that there will be a default in each short period of time At. In the
event of a default the stock price falls to zero and there is a recovery on the bond. The
variable A is the risk-neutral default intensity defined in Section 23.2.

The stock price process can be represented by varying the usual binomial tree so that
at each node there is:

1. A probability pu of a percentage up movement of size u over the next time period
of length At

16 Hull and Suo test the IVF model by assuming that all derivative prices are determined by a stochastic
volatility model. They found that the model works reasonably well for compound options, but sometimes
gives serious errors for barrier options. See J. C. Hull and W. Suo, “A Methodology for the Assessment of
Model Risk and its Application to the Implied Volatility Function Model,” Journal of Financial and
Quantitative Analysis, 37, 2 (June 2002): 297-318

17 See J.E. Ingersoll, “A Contingent Claims Valuation of Convertible Securities,” Journal of Financial
Economics, 4, (May 1977), 289-322.
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2. A probability pd of a percentage down movement of size d over the next time
period of le11gth At

3. A probability A At, or more accurately 1 — e_"A‘, that there will be a default with
the stock price moving to zero over the next time period of length At

Parameter values, chosen to match the first two moments of the stock price distribu-
tion, are:

_._)(A _
Cl "— t U6 }\At "" Cl /(O.2__}‘)At 1

pzt: > Pa="—L"t—:;l-—» “=6 , dz;

where a -: e(’_q)A‘, r is the risk-free rate, and q is the dividend yield on the stock.
The life of the tree is set equal to the life of the convertible bond. The value of the

convertible at the final nodes of the tree is calculated based on any conversion options
that the holder has at that time. We then roll back through the tree. At nodes where the
terms of the instrument allow conversion we test whether conversion is optimal. We
also test whether the position of the issuer can be improved by calling the bonds. If so,
we assume that the bonds are called and retest whether conversion is optimal. This is
equivalent to setting the value at a node equal to

mflX[miH(Q1. Q2), Q31
where Q1 is the value given by the rollback (assuming that the bond is neither converted
nor called at the node), Q2 is the call price, and Q3 is the value if conversion takes place.

Example 26.1 T T
Consider a 9-month zero-coupon bond issued by company XYZ with a face value
of $100. Suppose that it can be exchanged for two shares of company XYZ’s
stock at any time during the 9 months. Assume also that it is callable for $113 at
any time. The initial stock price is $50, its volatility is 30% per annum, and there
are no dividends. The default intensity A is 1% per year, and all risk-free rates for
all maturities are 5%. Suppose that in the event of a default the bond is worth $40
(i.e., the recovery rate, as it is usually defined, is 40%).

Figure 26.2 shows the stock price tree that can be used to value the convertible
when there are three time steps (At = 0.25). The upper number at each node is the
stock price; the lower number is the price of the convertible bond. The tree par-
ameters are:

Ll = e‘/(0'09—0'01)X0'25 = 1.1519, a = 1 /u = 0.8681
a =.- @°~°5><°~25 = 1.0126, p, = 0.5167, pd = 0.4808  

The probability of a default (i.e., of moving to the lowest nodes on the tree is
1 - e‘0-01x0-25 = 0.002497. At the three default nodes the stock price is zero and
the bond price is 40.

Consider first the final nodes. At nodes G and H the bond should be converted
and is worth twice the stock price. At nodes I and J the bond should not be
converted and is worth 100.

Moving back through the tree enables the value to be calculated at earlier
nodes. Consider, for example, node E. The value, if the bond is converted, is
2 >< 50 : $100. If it is not converted, then there is (a) a probability 0.5167 that it
will move to node H, where the bond is worth 115.19, (b) a 0.4808 probability
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Figure 26.2 Tree for valuing convertible. Upper number at each node is
stock price; lower number is convertible bond price. ca

 
D
66 34
32 69

57 60 57
1519 15A

50.00 50 00
106.93 06 36

43 41 43
01 20 00

37 6
98 6

1K1LNNOllw
1L1L

-FllTl

.460.... LIA}
1LA

L—I

Q-*@—*CQ@

32
1 00

Default Default Default
0.00 Mm ME

40.00 40.00 40.00

*;"feZ_1‘-I-2?11 mil.’-2 \.L.'.‘_Y'_,'-1'-1 ;"'i"'."!"

that it will move down to node I, where the bond is worth 100, and (c) a 0.002497
probability that it will default and be worth 40. The value of the bond if it is not
converted is therefore

(0.5167 >< 115.19 + 0.4808 >< 100 + 0.002497 >< 40) >< 6-°~°5><°-25 = 106.36
This is more than the value of 100 that it would have if converted. We deduce that
it is not worth converting the bond at node E. Finally, we note that the bond
issuer would not call the bond at node E because this would be offering 113 for a
bond worth 106.36.

As another example consider node B. The value of the bond if it is converted is
2 >< 57.596 = 115.19. If it is not converted a similar calculation to that just given
for node E gives its value as 118.31. The convertible bond hold6r will therefore
choose not to convert. However, at this stage the bond issuer will call the bond for
113 and the bond holder will then decide that converting is better than being
called. The value of the bond at nod.c B is therefore 115.19. A similar argument is
used to arrive at the value at node D. With no conversion the value is 132.79.
However, the bond is called, forcing conversion and reducing the value at the
node to 132.69.

The value of the convertible is its value at the initial node A, or 106.93.

When interest is paid on the debt, it must be taken into account. At each node, when
valuing the bond on the assumption that it is not converted, the present value of any
interest payable on the bond in the next time step should be included. The risk-neutral
default intensity A can be estimated from either bond prices or credit default swap
spreads. In a more general implementation, A, o, and r are functions of time. This can
be handled using a trinomial rather than a binomial tree (see Section 20.4).
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26.5

One disadvantage of the model we have presented is that the probability of default is
independent of the stock price. This has led some researchers to suggest an implicit
finite difference method implementation of the model where the default intensity A is a
function of the stock price as well as time.18

PATH-DEPENDENT DERIVATIVES

A path-dependent derivative (or history-dependent derivative) is a derivative where the
payoff depends on the path followed by the price of the underlying asset, not just its
final value. Asian options and lookback options are examples of path-dependent
derivatives. As explained in Chapter 25, the payoff from an Asian option depends on
the average price of the underlying asset; the payoff from a lookback option depends on
its maximum or minimum price. One approach to valuing path-dependent options
when analytic results are not available is Monte Carlo simulation, as discussed in
Chapter 20. A sample value of thederivative can be calculated by sampling a random
path for the underlying asset in a risk-neutral world, calculating the payoff, and
discounting the payoff at the risk-free interest rate. An estimate of the value of the
derivative is found by obtaining many sample values of the derivative in this way and
calculating their mean.  

The main problem with Monte Carlo simulation is that the computation time
necessary to achieve the required level of accuracy can be unacceptably high. Also,
American-style path-dependent derivatives (i.e., path-dependent derivatives where one
side has exercise opportunities or other decisions to make) cannot easily be handled. In
this section, we show how the binomial tree methods presented in Chapter 20 can be
extended to cope with some path-dependent derivatives.” The procedure can handle
American-style path-dependent derivatives and is computationally more efficient than
Monte Carlo simulation for European-style path-dependent derivatives.

For the procedure to work, two conditions must be satisfied:

1. The payoff from the derivative must depend on a single function, F, of the path
followed by the underlying asset.

2. It must be possible to calculate the value of F at time r + At from the vafue of F
at time r and the value of the underlying asset at time r + At. I 2  

Illustration Using Lookback Options
As a first illustration of the procedure, consider an American floating lookback put
option on a non-dividend-paying stock.20 If exercised at time r, this pays off the amount
by which the maximum stock price between time 0 and time r exceeds the current stock

18 See, e.g., L. Andersen and D. Buffum, “Calibration and Implementation of Convertible Bond Models,”
Journal of Computational Finance, 7, 1 (Winter 2003/04), 1-34. These authors suggest assuming that the
default intensity is inversely proportional to S“, where S is the stock price and Ot is a positive constant.

19 This approach was suggested in J . Hull and A. White, “Efficient Procedures for Valuing European and
American Path-Dependent Options,” Journal of Derivatives, 1, 1 (Fall 1993): 21-31.

20 This example is used as a first illustration of the general procedure for handling path dependence. For a
more efficient approach to valuing American-style lookback options, see Technical Note 13 at:

www.rotman.utoronto.ca/~hu11/Technica.lNotes.
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Figure 26.3 Tree for valuing an American lookback option.
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price. Suppose that the initial stock price is $50, the stock price volatility is 40% per
annum, the risk-free interest rate is 10% per annum, the total life of the option is three
months, and that stock price movements are represented by a three-step binomial tree.
With our usual notation this means that S0 = 50, o= 0.4, r= 0.10, At: 0.08333,
u : 1.1224, d : 0.8909, a = 1.0084, and p : 0.5073.

The tree is shown in Figure 26.3. In this case, the path function F is the maximum
stock price so far. The top number at each node is the stock price. The next level of
numbers at each node shows the possible maximum stock prices achieyable on paths
leading to the node. The final level of numbers shows the values of the derivative
corresponding to each of the possible maximum stock prices.

The values of the derivative at the final nodes of the tree are calculated as the
maximum stock price minus the actual stock price. To illustrate the rollback procedure,
suppose that we are at node A, where the stock price is $50. The maximum stock price
achieved thus far is either 56.12 or 50. Consider first the situation where it is equal to
50. If there is an up movement, the maximum stock price becomes 56.12 and the value
of the derivative is zero. If there is a down movement, the maximum stock price stays at
50 and the value of the derivative is 5.45. Assuming no early exercise, the value of the
derivative at A when the maximum achieved so far is 50 is, therefore,

(0 >< 0.5073 + 5.45 >< 0.4927)e*°5‘*°5°8333 = 2.66

Clearly, it is not worth exercising at node A in these circumstances because the payoff
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from doing so is zero. A similar calculation for the situation where the maximum value at
node A is 56. 12 gives the value of the derivative at node A, without early exercise, to be

(0 >< 0.5073 + 11.57 >< 0.4927)@"°-‘X°-“$33 -_-.- 5.65
In this case, early exercise gives a value of 6.12 and is the optimal strategy. Rolling
back through the tree in the way we have indicated gives the value of the American
lookback as $5.47.

Generalization
The approach just described is computationally feasible when the number of alternative
values of the path function, F, at each node does not grow too fast as the number of
time steps is increased. The example we used, a lookback option, presents no problems
because the number of alternative values for the maximum asset price at a node in a
binomial tree with n time steps is never greater than n. 5

Luckily, the approach can be extended to cope with situations where there are a very
large number of different possible values of the path function at each node. The basic
idea is as follows. Calculations are carried out at each node for a small number of
representative values of F. When the value of the derivative is required for other values
of the path function, it is calculated from the known values using interpolation.

The first stage is to work forward through the tree establishing the maximum and
minimum values of the path function at each node. Assuming the value of the path
function at time r + At depends only on the value of the path function at time 1: and the
value of the underlying variable at time r + At, the maximum and minimum values of
the path function for the nodes at time r + At can be calculated in a straightforward
way from those for the nodes at time r. The second stage is to choose representative
values of the path function at each node. There are a number of approaches. A simple
rule is to choose the representative values as the maximum value, the minimum value,
and a number of other values that are equally spaced between the maximum and the
minimum. As we roll back through the tree, we value the derivative for each of the
representative values of the path function.

To illustrate the nature of the calculation, consider the problem of valuiiig the
average price call option in Example 25.2 of Section 25.12 when the payoff depends
on the arithmetic average stock price. The initial stock price is 50, the strike price is 50,
the risk-free interest rate is 10%, the stock price volatility is 40%, and the time to
maturity is 1 year. For 20 time steps, the binomial tree parameters are At --: 0.05,
u = 1.0936, d 5: 0.9144, p = 0.5056, and 1 — p == 0.4944. The path function is the
arithmetic average of the stock price.

Figure 26.4 shows the calculations that are carried out in one small part of the tree.
Node X is the central node at time 0.2 year (at the end of the fourth time step). Nodes Y
and Z are the two nodes at time 0.25 year that are reachable from node X. The stock
price at node X is 50. Forward induction shows that the maximum average stock price
that is achievable in reaching node X is 53.83. The minimum is 46.65. (The initial and
final stock prices areincluded when calculating the average.) From node X, the tree
branches to one of the two nodes Y and Z. At node Y, the stock price is 54.68 and the
bounds for the average are 47.99 and 57.39. At node Z, the stock price is 45.72 and the
bounds for the average stock price are 43.88 and 52.48.
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Figure 26.4 Part of tree for valuing option on the arithmetic average.
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Suppose that the representative values of the average are chosen to be four equally
spaced values at each node. This means that, at node X, averages of 46.65, 49.04, 51.44,
and 53.83 are considered. At node Y, the averages 47.99, 51.12, 54.26, and 57.39 are
considered. At node Z, the averages 43.88, 46.75, 49.61, and 52.48 are considered.
Assume that backward induction has already been used to calculate the value of the
option for each of the alternative values of the average at nodes Y and Z. Values are
shown in Figure 26.4 (e.g., at node Y when the average is 51.12, the value of the option
is 8.101).  .

Consider the calculations at node X for the case where the average is 51.44. If the
stock price moves up to node Y, the new average will be .

5 >< 51.42f+54.68 : 51.98

The value of the derivative at node Y for this average can be found by interpolating
between the values when the average is 51.12 and when it is 54.26. It is /

(51.98 - 51.12) >< 8.635 +(54.26 — 51.98) >< 8.101 _ 8 247
54.26-51.12 _ '

Similarly, if the stock price moves down to node Z, the new average will be

.44 4.5><5l 6+ 572_5O‘49

and by interpolation the value of the derivative is 4.182.
The value of the derivative at node X when the average is 51.44 is, therefore,

A (0.5056 >< 8.247 + 0.4944 >< 4.182)@"°-‘><°-°5 = 6.206
The other values at node X are calculated similarly. Once the values at all nodes at
time 0.2 year have been calculated, the nodes at time 0.15 year can be considered.
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26.6

The value given by the full tree for the option at time zero is 7.17. As the number of
time steps and the number of averages considered at each node is increased, the value of
the option converges to the correct answer. With 60 time steps and 100 averages at each
node, the value of the option is 5.58. The analytic approximation for the value of the
option, as calculated in Example 25.2, with continuous averaging is 5.62.

A key advantage of the method described here is that it can handle American
options. The calculations are as we have described them except that we test for early
exercise at each node for each of the alternative values of the path function at the
node. (In practice, the early exercise decision is liable to depend on both the value of
the path function and the value of the underlying asset.) Consider the American
version of the average price call considered here. The value calculated using the 20-step
tree and four averages at each node is 7.77; with 60 time steps and 100 averages, the
value is 6.17.

The approach just described can be used in a wide range of different situations. The
two conditions that must be satisfied were listed at the beginning of this section.
Efficiency is improved somewhat if quadratic rather than linear interpolation is used
at each node.

BARRIER OPTIONS

Chapter 25 presented analytic results for standard barrier options. This section con-
siders numerical procedures that can be used for barrier options when there are no
analytic results.

In principle, many barrier options can be valued using the binomial and trinomial
trees discussed in Chapter 20. Consider an up-and-out option. A simple approach is to
value this in the same way as a regular option except that, when a node above the
barrier is encountered, the value of the option is set equal to zero.

Trinomial trees work better than binomial trees, but even for them convergence is
very slow when the simple approach is used. A large number of time steps are required
to obtain a reasonably accurate result. The reason for this is that the barrier being
assumed by the tree is different from the true barrier.” Define the inner barrier as the
barrier formed by nodes just on the inside of the true barrier (i.e., closer to the denter of
the tree) and the outer barrier as the barrier formed by nodes just outside the true
barrier (i.e., farther away from the center of the tree). Figure 26.5 shows the inner and
outer barrier for a trinomial tree on the assumption that the true barrier is horizontal.
The usual tree calculations implicitly assume that the outer barrier is the true barrier
because the barrier conditions are first used at nodes on this barrier. When the time step
is At, the vertical spacing between the nodes is of order This means that errors
created by the difference between the true barrier and the outer barrier also tend to be
of order

One approach to overcoming this problem is to:

1. Calculate the price of the derivative on the assumption that the inner barrier is the
true barrier.

21 For a discussion of this, see P.P. Boyle and S.H. Lau, “Bumping Up Against the Barrier with the
Binomial Method,” Journal of Derivatives, 1, 4 (Summer 1994): 6-14.
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Figure 26.5 Barriers assumed by trinomial trees.
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2. Calculate the value of the derivative on the assumption that the outer barrier is the
true barrier.

3. Interpolate between the two prices.

Another approach is to ensure that nodes lie on the barrier. Suppose that the initial
stock price is S0 and that the barrier is at H. In a trinomial tree, there are three possible
movements in the asset’s price at each node: up by a proportional amount u; stay the
same; and down by a proportional amount d, where d = 1/u. We can always choose u
so that nodes lie on the barrier. The condition that must be satisfied by u is

H=S0uN
OI

lnH=lnS0+Nlnu

for some positive or negative N.
When discussing trinomial trees in Section 20.4, the value suggested for u was ea‘/E,

so that ln u : ox/E. In the situation considered here, a good rule is to choose ln u as
close as possible to this value, consistent with the condition given above. This means
that

mu :lnH—lnS0
N
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Figure 26.6 Tree with nodes lying on barrier.
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l oV3At
lnH-lnS0 jl

and int(x) is the integral part of x.
This leads to a tree of the form shown in Figure 26.6. The probabilities pu, pm, and

pd on the upper, middle, and lower branches of the tree are chosen to match the first
two moments of the return, so that /,

pd _  (r--q-I-02/2)At+ a2At2’ pm :1__ 622312, pa _(r—q—o2/2)At.+ a2At2
Zlnu 2(1n u) (ln u) 2111” 2(1n u)

where pu, pm, and pd are the probabilities on the upper, middle, and lower branches.

The Adaptive Mesh Model
The methods presented so far work reasonably well when the initial asset price is not
close to the barrier. When the initial asset price is close to a barrier, the adaptive mesh
model, which was introduced in Section 20.4, can be used.22 The idea behind the model
is that computational efficiency can be improved by grafting a fine tree onto a coarse

22 See S. Figlewski and B. Gao, “The Adaptive Mesh Model: A New Approach to Efficient Option Pricing,”
Journal of Financial Economics, 53 (1999): 313-51.
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Figure 26.7 The adaptive mesh model used to value barrier options.
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tree to achieve a more detailed modeling of the asset price in the regions of the tree
where it is needed most.

To value a barrier option, it is useful to have a fine tree close to barriers. Figure 26.7
illustrates the design of the tree. The geometry of the tree is arranged so that nodes lie
on the barriers. The probabilities on branches are chosen, as usual, to match the first
two moments of the process followed by the underlying asset. The heavy lines in
Figure 26.7 are the branches of the coarse tree. The light solid line are the fine tree.
We first roll back through the coarse tree in the usual way. We then calculate the value
at additional nodes using the branches indicated by the dotted lines. Finally we roll
back through the fine tree.

OPTIONS ON TWO CORRELATED ASSETS

Another tricky numerical problem is that of valuing American options dependent on
two assets whose prices are correlated. A number of alternative approaches have been
suggested. This section will explain three of these.

Transforming Variables
It is relatively easy to construct a tree in three dimensions to represent the movements
of two uncorrelated variables. The procedure is as follows. First, construct a two-
dimensional tree for each variable, a11d then combine these trees into a single three-



More on Models and Numerical Procedures 619

dimensional tree. The probabilities on the branches of the three-dimensional tree are
the product of the corresponding probabilities on the two-dimensional trees. Suppose,
for example, that the variables are stock prices, ST and S2. Each can be represented in
two dimensions by a Cox, Ross, and Rubinstein binomial tree. Assume that ST has a
probability pl of moving up by a proportional amount ul and a probability 1 - pl of
moving down by a proportional amount d1. Suppose further that S2 has a
probability p2 of moving up by a proportional amount M2 and a probability 1 - p2
of moving down by a proportional amount dz. In the three-dimensional tree there are
four branches emanating from each node. The probabilities are:

p1p2: S1 increases; ST increases
p1(1 — p2)I S1 increases; S2 decreases 8
(1 - p1)p2I ST decreases; S2 increases

(1 - p1)(l - p2): S1 decreases; ST decreases

Consider next the situation where S1 and S2 are correlated. Suppose that the risk-
neutral processes are:

a'S1=-(r — q1)S1dt"l" O'1S1dZ1

_ CZSZ 1: (T -- q2)S2 db + U282 dZ2

and the instantaneous correlation between the Wiener processes, dzl and dzT, is p. This
means that

I dlnS1=(r—q1—o%/2)dt+U1dz1

d1nS2 = (r—q2 -05/2)dt+oi2dz2

Two new uncorrelated variables can be defined:23

.X1=O'2lI1S1‘l"O'1lHS2

X2 =-‘(T211181 '—O'1lHS2

These variables follow the processes /

an =1<6<r - 4. — of/2) + U10 - 412 — vi/2)]dt + <w272<1 + a (12..
we = [var - 41 - of/2) - U10 - 412 - 6%/2>1dt + <11<a72<1 - p)dZB

where dzA and dzB are uncorrelated Wiener processes.
The variables x1 and x2 can be modeled using two separate binomial trees. In time At,

x,- has a probability p,» of increasing by hi and a probability 1 - p,- of decreasing by hi.
The variables h,- and p,- are chosen so that the tree gives correct values for the first two
moments of the distribution of x1 and x2. Because they are uncorrelated, the two trees
can be combined into a single three-dimensional tree, as already described. At each
node of the tree, ST and ST can be calculated from x1 and x2 using the inverse

23 This idea was suggested in J. Hull and A. White, “Valuing Derivative Securities Using the Explicit Finite
Difference Method,” Journal of Financial and Quantitative Analysis, 25 (1990): 87-100.
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relationships

I 2S1 = exp xil+ x2] and S2 : exp[——-x12_X2]
|_ <72 <71

The procedure for rolling back through a three-dimensional tree to value a derivative is
analogous to that for a two-dimensional tree.

Using a Nonrectangular Tree .
Rubinstein has suggested a way of building a three-dimensional tree for two correlated
stock prices by using a nonrectangular arrangement of the nodes.24 From a
node (S1, S2), where the first stock price is S1 and the second stock price is S2, there
is a 0.25 chance of moving to each of the following:

(S11/£1, S2/I), (S11/ll, SZB), (Sldl, SQC), (S2011,

where
u1: exp[(r — q1— of/2) At —l—o1x/Lg]

a, = 6Xp[(r - g1 - 6%/2) At _ 6,./E]
and

4 = @X1>1[r - at - 6%/2>4t + @747 0) + 7?1»:
B = @8610 - 412 - 6%/mt + <I2~//K509 - 71-F 1»:
C = explir - at - 6%/2)/it — 6»/4'5 tp - 7:7? 1-:
9 = @x1>i0~ - 412 - 6%/2>4i - <1»/47 (/1 + \/T81»:

When the correlation is zero, this method is equivalent to constructing separate trees for
S1 and S2 using the alternative binomial tree construction method in Section 19.4.

Adjusting the Probabilities I
A third approach to building a three-dimensional tree for S1 and S2 involves first
assuming no correlation and then adjusting the probabilities at each node to reflect the
correlation.” The alternative binomial tree construction method for each of S1 and S2 in
Section 20.4 is used. This method has the property that all probabilities are When the

?.""..'F-§"<‘.f""“.~‘l" -‘: "T ' 7 ?~'l§:“.! "Fl"-\§' 2-"3.-T1 5 " '€:‘,‘5Fw’ '§'Efi§?Z- if 9-‘. 1- iii-3.l.7§.'mZ"'nzi¢=>":'¥L'\.Z:\,

Table 26.2 Combination of binomials assuming
no correlation.

S2 -move S1-move
Down Up

Up 0.25 0.25
Down 0.25 0.25

24 See M. Rubinstein, “Return to Oz,” Risk, November (1994): 67-70.
25 This approach was suggested in the context of interest rate trees in J. Hull and A. White, “Numerical
Procedures for Implementing Term Structure Models II: Two-Factor Models,” Journal ofDerivatives, Winter
(1994): 37-48.
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Table 26.3 Combination of binomials assuming
correlation of p.

S2-move S1-move
Down Up

Up  0.25(1 - 6) 0.25(1 + p)
Down 0.25(1 + ,0) 0.25(1 - ,o)
'5_JfJI2l1I‘.i.?¢!."T1'<£*I:-» -‘.251.1;-l£.:..Li.Z'.I,.""5"".EI‘T-!!..1__i=""‘;i{I‘Z"5$ (.21.;-. "$.11"; ».& .\2;;~_1.".i.?.‘.:,,__.,...f.._3

two binomial trees are combined on the assumption that there is no correlation, the
probabilities are as shown in Table 26.2. When the probabilities are adjusted to reflect the
correlation, they become those shown in Table 26.3.

MONTE CARLO SIMULATION AND AMERICAN OPTIONS

Monte Carlo simulation is well suited to valuing path-dependent options and options
where there are many stochastic variables. Trees and finite difference methods are well
suited to valuing American-style options. What happens if an option is both path
dependent and American? What happens if an American option depends on several
stochastic variables? Section 26.5 explained a way in which the binomial tree approach
can be modified to value path-dependent options in some situations. A number of
researchers have adopted a different approach by searching for a way in which Monte
Carlo simulation can be used to value American-style options.26 This section explains
two alternative ways of proceeding.  

The Least-Squares Approach
In order to value an American-style option it is necessary to choose between exercising
and continuing at each early exercise point. The value of exercising is normally easy to
determine. A number of researchers including Longstaff and Schwartz provide a way of
determining the value of continuing when Monte Carlo simulation is used.27 Their
approach involves using a least-squares analysis to determine the best-fit relatipnship
between the value of continuing and the values of relevant variables at each time an
early exercise decision has to be made. The approach is best illustrated with a numerical
example. We use the one in the Longstaff-Schwartz paper.

Consider a 3-year American put option on a non-dividend-paying stock that can be
exercised at the end of year 1, the end of year 2, and the end of year 3. The risk-free rate
is 6% per annum (continuously compounded). The current stock price is 1.00 and the
strike price is 1.10. Assume that the eight paths shown in Table 26.4 are sampled for the
stock price. (This example is for illustration only; in practice many more paths would be
sampled.) If the option can be exercised only at the 3-year point, it provides a cash flow
equal to its intrinsic value at that point. This is shown in the last column of Table 26.5.

26 Tilley was the first researcher to publish a solution to the problem. See J . A. Tilley, “Valuing American
Options in a Path Simulation Model,” Transactions of the Society of Actuaries, 45 (1993): 83-104.

27 See F. A. Longstaff and E.S. Schwartz, “Valuing American Options by Simulation: A Simple Least-
Squares Approach,” Review of Financial Studies, 14, 1 (Spring 2001): 113-47.
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Table 26.4 Sample paths for put option example.

Pmh t=0 t:1 i=2 t=3
1.00 1.09 1.08 1.34
1.00 1.16 1.26 1.54
1.00 1.22 1.07 1.03
1.00 0.93 0.97 0.92
1.00 1.11 1.56 1.52
1.00 0.76 0.77 0.90
1.00 0.92 0.84 1.01
1.00 0.88 1.22 1.34

52- . . .7 L‘ » 732.71 '- -_ 15.-i‘;zE'..“. “.;-1‘-z.-E’ -Hal . 5' 5;).-‘?L1'~‘-. 5‘ E ’.'$;L'i5—?.'l‘ '§.‘;l\' "KC-‘Z-2111‘; 3!¢.=.='_"I_7e“'§:”-".ClI1I'll'Z!l"PL'!?l'l‘1‘fA"T

O0\lO\Ll1-I>UJl\)'—‘

If the put option is in the money at the 2-year point, the option holder must decide
whether to exercise. Table 26.4 shows that the option is in the money at the 2-year point
for paths 1, 3, 4, 6, and 7. For these paths, we assume an approximate relationship:

V=a+bS+cS2 Q

where S is the stock price at the 2-year point and V is the value of continuing,
discounted back to the 2-year point. Our five observations on S are: 1.08, 1.07, 0.97,
0.77, and 0.84. From Table 26.5 the corresponding values for V are: 0.00, 0.07e'°-06*‘,
0.l8e'°~°6X1, 0.20e-0-06>“, and 0.09e'°-06*‘. The values of a, b, and c that minimize

5
Z:(V,- — a — bS,~ — cS,-2)2
i=1

where S,- and Vi are the ith observation on S and V, respectively, are a = -1.070,
b = 2.983 and c = -1.813, so that the best-fit relationship is  

v = -1.070 + 2.983s -1.813s2
This gives the value at the 2-year point of continuing for paths 1, 3, 4, 6, and 7 of 0.0369,
0.0461, 0.1176, 0.1520, and 0.1565, respectively. From Table 26.4 the value of exercising

Table 26.5 Cash flows if exercise only possible at 3-year point.

Pmh t=1 t=2 t=3
0.00 1) .00Ml C5 Q (D

OO\lQ\kJ1-I>UJl\J

0.00
0.00
0.00
0.00
0.00
0.00
0.00 ¢DC>@fDC>C5C> QQQQQQ©©

D
D

.00
D
D

C5611!-)(“3C-BC.)
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Table 26.6 Cash flows if exercise only possible at 2- and 3-year point

Path t:l 11:2 t:3

OO\lO\KJ1-I>UJl\-Jl—‘

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.13
0.00
0.33
0.26
0.00

0.00
0.00
0.07
0.00
0.00
0.00
0.00
0.00

-' - T -- - . .. .........._.-N.,, - 4- ~- - '. . .1 _*_k "

is 0.02, 0.03, 0.13, 0.33, and 0.26. This means that we should exercise at the 2-year point
for paths 4, 6, and 7. Table 26.6 summarizes the cash flows assuming exercise at either
the 2-year point or the 3-year point for the eight paths.

Consider next the paths that are in the money at the l-year point. These are paths 1,
4, 6, 7, and 8. From Table 26.4 the values of S for the paths are 1.09, 0.93, 0.76, 0.92,
and 0.88, respectively. From Table 26.6, the corresponding continuation values
discountedback to t: 1 are 0.00, 0.13e_O'06X1, 0.33e"°-06*‘, 0.26e'°-06>“, and 0.00,
respectively. The least-squares relationship is

v = 2.038 - 3.335s +1.356s2 6
This gives the value of continuing at the 1-year point for paths 1, 4, 6, 7, 8 as 0.0139,
0.1092, 0.2866, 0.1175, and 0.1533, respectively. From Table 26.4 the value of exercising
is 0.01, 0.17, 0.34, 0.18, and 0.22, respectively. This means that we should exercise at the
l-year point for paths 4, 6, 7, and 8. Table 26.7 summarizes the cash flows assuming
that early exercise is possible at all three times. The value of the option is determined by
discounting each cash flow back to time zero at the risk-free rate and calculating the
mean of the results. It is

§(0.07@"°~°6><3 + 0.17@"°~°6><‘ 4- 0.34@*°~°6X‘ + 0.18@"°~°6X1 + 0.22@"°5°6X1) = 0.1144
If

.94

Since this is greater than 0.10, it is not optimal to exercise the option immediately.

Table 26.7 Cash flows from option.

Pmh t:1 i=2 t:3

OO\10'\U1-Ii-L»Jl\J>—*

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.07
0.17 0.00 0.00
0.00 0.00 0.00
0.34’ 0.00 0.00
0.18 0.00 0.00
0.22 0.005 0.00
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This method can be extended in a number of ways. If the option can be exercised at
any time we can approximate its value by considering a large number of exercise points
(just as a binomial tree does). The relationship between V and S can be assumed to be
more complicated. For example we could assume that V is a cubic rather than a
quadratic function of S. The method can be used where the early exercise decision
depends on several state variables. A functional form for the relationship between V
and the variables is assumed and the parameters are estimated using the least-squares
approach, as in the example just considered.

The Exercise Boundary Parameterization Approach
A number of researchers, such as Andersen, have proposed an alternative approach
where the early exercise boundary is parameterized and the optimal values of the
parameters are determined iteratively by starting at the end of the life of the option
and working backward.28 To illustrate the approach, we continue with the put option
example and assume that the eight paths shown in Table 26.4 have been sampled. In
this case, the early exercise boundary at time t can be parameterized by a critical value
of S, S *(t). If the asset price at time t is below S *(t) we exercise at time t; if it is above
S *(t) we do not exercise at time t. The value of S *(3) is 1.10. If the stock price is above
1.10 when t : 3 (the end of the option’s life) we do not exercise; if it is below 1.10 we
exercise. We now consider the determination of S *(2).

Suppose that we choose a value of S *(2) less than 0.77. The option is not exercised at
the 2-year point for any of the paths. The value of the option at the 2-year point for the
eight paths is then 0.00, 0.00, 0.07e_°'°6"1, 0g.18e'°-06>“, 0.00, 0.20e"°'°6"1, 0.09e_°'°6"1,
and 0.00, respectively. The average of these is 0.0636. Suppose next that S *(2) = 0.77.
The value of the option at the 2-year point for the eight paths is then 0.00, 0.00,
0.07e‘°'°6"1, 0.18e'°'°6"1, 0.00, 0.33, 0.09e_°'°6"1, and 0.00, respectively. The average
of these is 0.0813. Similarly when S*(2) equals 0.84, 0.97, 1.07, and 1.08, the average
value of the option at the 2-year point is 0.1032, 0.0982, 0.0938, and 0.0963, respectively.
This analysis shows that the optimal value of S*(2) (i.e., the one that maximizes the
average value of the option) is 0.84. (More precisely, it is optimal to choose
0.84 < S*(2) < 0.97.) When we choose this optimal value for S*(2), the value of the
option at the 2-year point for the eight paths is 0.00, 0.00, 0.0659, 0.1695, 0.00, 0.33, 0.26,
and 0.00, respectively. The average value is 0.1032.

We now move on to calculate S *(1). If S *(l) < 0.76 the option is not éxercised at the
l-year point for any of the paths and the value at the option at the 1-year point is
0.1032e“°'°6"1 = 0.0972. If S*(l) : 0.76, the value of the option for each of the eight
paths at the 1-year point is 0.00, 0.00, 0.0659e'°-06>“, 0.1695e‘°"06"1, 0.0, 0.34,
0.26e”°'°6"1, and 0.00, respectively. The average value of the option is 0.1008. Similarly
when S*(l) equals 0.88, 0.92, 0.93, and 1.09 the average value of the option is 0.1283,
0.1202, 0.1215, and 0.1228, respectively. The analysis therefore shows that the optimal
value of S*(l) is 0.88. (More precisely, it is optimal to choose 0.88 < S*(l) < 0.92.) The
value of the option at time zero with no early exercise is 0.1283e"°'°6"1 = 0.1208. This is
greater than the value of 0.10 obtained by exercising at time zero.

In practice, tens of thousands of simulations are carried out to determine the early
exercise boundary in the way we have described. Once the early exercise boundary has

28 See L. Andersen, “A Simple Approach to the Pricing of Bermudan Swaptions in the Multifactor LIBOR
Market Model,” Journal of Computational Finance, 3, 2 (Winter 2000): 1-32.
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been obtained, the paths for the variables are discarded and a new Monte Carlo
simulation using the early exercise boundary is carried out to value the option. Our
American put option example is simple in that we know that the early exercise
boundary at a time can be defined entirely in terms of the value of the stock price at
that time. In more complicated situations it is necessary to make assumptions about
how the early exercise boundary should be parameterized.

Upper Bounds
The two approaches we have outlined tend to underprice American-style options
because they assume a suboptimal early exercise boundary. This has led Andersen
and Broadie to propose a procedure that provides an upper bound to the price.29 This
procedure can be used in conjunction with any algorithm that generates a lower bound
and pinpoints the true value of an American-style option more precisely than the
algorithm does by itself.

SUMMARY

A number of models have been developed to fit the volatility smiles that are observed in
practice. The constant elasticity ofvariance model leads to a volatility smile similar to that
observed for equity options. The jump-diffusion model leads to a volatility smile similar
to that observed for currency options. Variance-gamma and stochastic volatility models
are more flexible in that they can lead to either the type of volatility smile observed for
equity options or the type of volatility smile observed for currency options. The implied
volatility function model provides even more flexibility than this. It is designed to provide
an exact fit to any pattern of European option prices observed in the market.

The natural technique to use for valuing path-dependent options is Monte Carlo
simulation. This has the disadvantage that it is fairly slow and unable to handle
American-style derivatives easily. Luckily, trees can be used to value many types of
path-dependent derivatives. The approach is to choose representative values for the
underlying path function at each node of the tree and calculate the value of the derivative
for each of these values as we roll back through the tree. /

The binomial tree methodology can be extended to value convertible bonds. Extra
branches corresponding to a default by the company are added to the tree. The roll-back
calculations then reflect the holder’s option to convert and the issuer’s option to call.

Trees can be used to value many types of barrier options, but the convergence of the
option value to the correct value as the number of time steps is increased tends to be
slow. One approach for improving convergence is to arrange the geometry of the tree so
that nodes always lie on the barriers. Another is to use an interpolation scheme to
adjust for the fact that the barrier being assumed by the tree is different from the true
barrier. A third is to design the tree so that it provides a finer representation of
movements in the underlying asset price near the barrier.

One way of valuing options dependent on the prices of two correlated assets is to
apply a transformation to the asset price to create two new uncorrelated variables.

29 See L. Andersen and M. Broadie, “A Primal--Dual Simulation Algorithm for Pricing Multi-Dimensional
American Options,” Management Science, 50, 9 (2004), 1222-34.
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These two variables are each modeled with trees and the trees are then combined to
form a single three-dimensional tree. At each node of the tree, the inverse of the
transformation gives the asset prices. A second approach is to arrange the positions
of nodes on the three-dimensional tree to reflect the correlation. A third approach is to
start with a tree that assumes no correlation between the variables and then adjust the
probabilities on the tree to reflect the correlation.

Monte Carlo simulation is not naturally suited to valuing American-style options, but
there are two ways it can be adapted to handle them. The first uses a least-squares analysis
to relate the value of continuing (i.e, not exercising) to the values of relevant variables.
The second involves parameterizing the early exercise boundary and determining it
iteratively by working back from the end of the life of the option to the beginning.
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Practice Questions (Answers in Solutions Manual)

26.1
26.2.

26.3

26.4

26.5

26.6

Confirm that the CEV model formulas satisfy put-call parity.
Use Monte Carlo simulation to show that Merton’s value for a European option is
correct when r : 0.05, q = 0, A = 0.3, k = 0.5, o = 0.25, and S0 = 30.
Confirm that Merton’s jump-diffusion model satisfies put-call parity when the jump size
is lognormal. O
Suppose that the volatility of an asset will be 20% from month 0 to month 6, 22% from
month 6 to month 12, and 24% from month 12 to month 24. What volatility should be
used inBlack-Scholes-Merton to value a 2-year option‘?
Consider the case of Merton’s jump-diffusion modelwhere jumps always reduce the
asset price to zero. Assume that the average number of jumps per year is A. Show
that the price of a European call option is the same as in a world with no jumps
except that the risk-free rate is r+}t rather than r. Does the possibility of jumps
increase or reduce the value of the call option in this case? (Hint: Value the option
assuming no jumps and assuming one or more jumps. The probability of no jumps in
time T is e7”).
At time 0 the price of a non-dividend-paying stock is S0. Suppose that the time interval
between 0 and T is divided into two subintervals of length t1 and t2. During the first
subinterval, the risk-free interest rate and volatility are r1 and or] , respectively. During the
second subinterval, they are 7'2 and 02, respectively. Assume that the world is risk neutral.
(a) Use the results in Chapter 14 to determine the stock price distribution at time T in

t€I'IT1S Of 7'1, F2, 0'1, 0'2, I1, I2, and S0.

(b) Suppose that F is the average interest rate between time zero and T and that V is the
average variance rate between times zero and T. What is the stock price distribution as
a function of T in terms of F, 17, T, and S0?

(c) What are the results corresponding to (a) and (b) when there are three subintervals
with different interest rates and volatilities‘?

(d) Show that if the risk-free rate, r, and the volatility, or, are known functions of time, the
stock price distribution at time T in a risk-neutral world is

 lnST~<j>[lnS0+(F-%\7)T, VT]
where F is the average value of r, I7 is equal to the average value of 02, and S0 is the
stock price today and ¢(m, v) is a normal distribution with mean m and variance v.
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26.7

26.8

26.9

26.10.

26.11
26.12.

26.13

26.14.
26.15

26.16

26.17
26.18
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Write down the equations for simulating the path followed by the asset price in the
stochastic volatility model in equations (26.2) and (26.3).
“The IVF model does not necessarily get the evolution of the volatility surface correct.”
Explain this statement.
“When interest rates are constant the IVF model correctly values any derivative whose
payoff depends on the value of the underlying asset at only one time.” Explain why.
Use a three-time-step tree to value an American floating lookback call option on a
currency when the initial exchange rate is 1.6, the domestic risk-free rate is 5% per
annum, the foreign risk-free interest rate is 8% per annum, the exchange rate volatility is
15%, and the time to maturity is 18 months. Use the approach in Section 26.5.
What happens to the variance-gamma model as the parameter v tends to zero?
Use a three-time-step tree to value an American put option on the geometric average of
the price of a non-dividend-paying stock when the stock price is $40, the strike price is
$40, the risk-free interest rate is 10% per annum, the volatility is 35% per annum, and
the time to maturity is three months. The geometric average is measured from today
until the option matures.
Can the approach for valuing path-dependent options in Section 26.5 be used for a 2-year
American-style option that provides a payofl equal to max(S“, — K, 0), where Save is the
average asset price over the three months preceding exercise? Explain your answer.
Verify that the 6.492 number in Figure 26.4 is correct.
Examine the early exercise policy for the eight paths considered in the example in
Section 26.8. What is the difference between the early exercise policy given by the least
squares approach and the exercise boundary parameterization approach? Which gives a
higher option price for the paths sampled?
Consider a European put option on a non-dividend paying stock when the stock price is
$100, the strike price is $110, the risk-free rate is 5% per annum, and the time to
maturity is one year. Suppose that the average variance rate during the life of an option
has a 0.20 probability of being 0.06, a 0.5 probability of being 0.09, and a 0.3 -probability
of being 0.12. The volatility is uncorrelated with the stock price. Estimate the value of
the option. Use DerivaGem.
When there are two barriers how can a tree be designed so that nodes lie on both barriers‘?
Consider an 18-month zero-coupon bond with a face value of $100 that can be converted
into five shares of the company’s stock at any time during its life. Suppose that the
current share price is $20, no dividends are paid on the stock, the risk-free rate for all
maturities is 6% per annum with continuous compounding, and the share price volatility
is 25 % per annum. Assume that the default intensity is 3% per year and the recovery
rate is 35 %. The bond is callable at $110. Use a three-time-step tree to calculate the value
of the bond. What is the value of the conversion option (net of the issuer’s call option)?

Further Questions

26.19. A new European-style floating lookback call option on a stock index has a maturity of 9
months. The current level of the index is 400, the risk-free rate is 6% per annum, the
dividend yield on the index is 4% per annum, and the volatility of the index is 20%. Use
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26.20.

26.21

26.22

26.23

629

the approach in Section 26.5 to value the option and compare your answer to the result
given by DerivaGem using the analytic valuation formula.
Suppose that the volatilities used to price a 6-month currency option are as in Table 19.2.
Assume that the domestic and foreign risk-free rates are 5% per annum and the current
exchange rate is 1.00. Consider a bull spread that consists of a long position in a
6-month call option with strike price 1.05 and a short position in a 6-montl1 call option
with a strike price 1.10.

What is the value of the spread‘?
What single volatility if used for both options gives the correct value of the bull
spread‘? (Use the DerivaGem Application Builder in conjunction with Goal Seek or
Solver.)
Does your answer support the assertion at the beginning of the chapter that the
correct volatility to use when pricing exotic options can be counterintuitive‘?
Does the IVF model give the correct price for the bull spread?

(8)
(b)

(<1)

(<1)
Repeat the analysis in Section 26.8 for the put option example on the assumption that
the strike price is 1.13. Use both the least squares approach and the exercise boundary
parameterization approach.
Consider the situation in Merton’s jump-diffusion model where the underlying asset is a
non-dividend-paying stock. The average frequency of jumps is one per year. The average
percentage jump size is 2% and the standard deviation of the logarithm of the
percentage jump size is 20%. The stock price is 100, the risk-free rate is 5%, the
volatility, o provided by the diffusion part of the process is 15%, and the time to
maturity is six months. Use the DerivaGem Application Builder to calculate an implied
volatility when the strike price is 80, 90, 100, 110, and 120. What does the volatility smile
or skew that you obtain imply about the probability distribution of the stock price.
A 3-year convertible bond with a face value of $100 has been issued by company ABC. It
pays a co upon of $5 at the end of each year. It can be converted into ABC’s equity at the
end of the first year or at the end of the second year. At the end of the first year, it can be
exchanged for 3.6 shares immediately after the coupon date. At the end of the second
year, it can be exchanged for 3.5 shares immediately after the coupon date. The current
stock price is $25 and the stock price volatility is 25%. No dividends are paid on the
stock. The risk-free interest rate is 5% with continuous compounding. The yield on
bonds issued by ABC is 7% with continuous compounding and the recovery rate is 30%.

Use a three-step tree to calculate the value of the bond.
How much is the conversion option worth?
What difference does it make to the value of the bond and the value of the
conversion option if the bond is callable any time within the first 2 years for $115?

(d) Explain how your analysis would change if there were a dividend payment of $1 on
the equity at the 6-month, 18-month, and 30-month points. Detailed calculations are
not required.

(Hint: Use equation (23.2) to estimate the average default intensity.)

(£1)
(b)
(C)
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Up to now interest rates have been assumed to be constant when valuing options. In
this chapter, this assumption is relaxed in preparation for valuing interest rate deriva-
tives in Chapters 28 to 32.

The risk-neutral valuation principle states that a derivative can be valued by (a) cal-
culating the expected payoff on the assumption that the expected return from the
underlying asset equals the risk-free interest rate and (b) discounting the expected payoff
at the risk-free interest rate. When interest rates are constant, risk-neutral valuation
provides a well-defined and unambiguous valuation tool. When interest rates are
stochastic, it is less clear-cut. What does it mean to assume that the expected return
on the underlying asset equals to the risk-free rate‘? Does it mean (a) that each day the
expected return is the one-day risk-free rate, or (b) that each year the expected return is
the l-year risk-free rate, or (c) that over a 5-year period the expected return is the 5-year
rate at the beginning of the period? What does it mean to discount expected payofls at
the risk-free rate? Can we, for example, discount an expected payoff realized in year 5 at
today’s 5-year risk-free rate?  

In this chapter we explain the theoretical underpinnings of risk-neutral valuation
when interest rates are stochastic and show that there are many different risk-neutral
worlds that can be assumed in any given situation. We first define a parameter known as
the market price of risk and show that the excess return over the risk-fnee interest rate
earned by any derivative in a short period of time is linearly related to the market prices
of risk of the underlying stochastic variables. What we will refer to as the traditional
risk-neutral world assumes that all market prices of risk are zero, but we will find that
other assumptions about the market price of risk are useful in some situations.

Martingales and measures are critical to a full understanding of risk neutral valua-
tion. A martingale is a zero-drift stochastic process. A measure is the unit in which we
value security prices. A key result in this chapter will be the equivalent martingale
measure result. This states that if we use the price of a traded security as the unit of
measurement then there is some market price of risk for which all security prices follow
martingales.

This chapter illustrates the power of the equivalent martingale measure result by using
it to extend Black’s model (see Section 17.8) to the situation where interest rates are
stochastic and to value options to exchange one asset for another. Chapter 28 uses the
result to understand the standard market models for valuing interest rate derivatives,
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Chapter 29 uses it to value some nonstandard derivatives, and Chapter 31 uses it to
develop the LIBOR market model.

THE MARKET PRICE OF RISK

We start by considering the properties of derivatives dependent on the value of a single
variable 6. Assume that the process followed by 6 is

5; = m at + S612 (27.1)

where dz is a Wiener process. The parameters m and s are the expected growth rate in 6
and the volatility of 6‘, respectively. We assume that they depend only on 9 and time t.
The variable 0 need not be the price of an investment asset. It could be something as far
removed from financial markets as the temperature in the center of New Orleans.

Suppose that fl and fl are the prices of two derivatives dependent only on 6 and t.
These can be options or other instruments that provide a payofi" equal to some function
of 6 at some future time. Assume that during the time period under consideration fl
and f2 provide no income.1

Suppose that the processes followed by fl and fl are

d
‘-151’:/lildlf-l"O'1dZ
f1

and
d
J3 = ,u.2 dt + 02 dz
f2

where ul, /$2, ol, and 02 are functions of 6 and t. The “dz” in these processes must be
the same dz as in equation (27.1) because it is the only source of the uncertainty in the
prices of fl and fl.

The prices fl and f2 can be related using an analysis similar to the Black-Scholes
analysis described in Section 14.6. The discrete versions of the processes for fl and f2 are

Afl -'=l¢1f1At+<71f1AZ /(27-2)
* Afz = /.L2f2 At + 02f; AZ (27.3)

We can eliminate the Az by forming an instantaneously riskless portfolio consisting of
o2f2 of the first derivative and -ol fl of the second derivative. If TI is the value of the
portfolio, then

1'1 = (@'2f2)f1 — (<>'1f1)fz (27-4)

An = <T2f2 Afr "r <T1f1Af2

Substituting from equations (27.2) and (27.3), this becomes

and

An = (/J~1<T2f1f2 '" /12U1f1f2)Al (27-5)

1 The analysis can be extended to derivatives that provide income (see Problem 27.7).
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Because the portfolio is instantaneously riskless, it must earn the risk-free rate. Hence,

AH : rll At

Substituting into this equation from equations (27.4) and (27.5) gives

/$102 "" /12251 = "72 —' "71
or

”‘ _’..“2_’ (27.6)
0'] 0'2

Note that the left-hand side of equation (27.6) depends only on the parameters of the
process followed by fl and the right-hand side depends only on the parameters of the
process followed by f2. Define A as the value of each side in equation (27.6), so that

#1 — r /12 — r__:____=),
<71 <72

Dropping subscripts. equation (27.6) shows that if f is the price of a derivative dependent
only on 6 and t with

d
7i = /J. dt + odz (27.7)

then
1= A (27.8)

U

The parameter A is known as the market price of risk of 9. (In the context of portfolio
performance measurement, it is known as the Sharpe ratio.) It can be dependent on
both 9 and t, but it is not dependent on the nature of the derivative f. Our analysis
shows that, for no arbitrage, (/2 - r)/o must at any given time be the same for all
derivatives that are dependent only on 0 and t.  

The market price of risk of 0 measures the trade-offs between risk and return that are
made for securities dependent on 9. Equation (27.8) can be written

/J. — r = Ao (27.9)

The variable 0 can be loosely interpreted as the quantity of 6-risk present in f. On the
right-hand side of the equation, the quantity of 6-risk is multiplied by the price of
0-risk. The left-hand side is the expected return, in excess of the risk-free interest rate,
that is required to compensate for this risk. Equation (27.9) is analogous to the capital
asset pricing model, which relates the expected excess return on a stock to its risk. This
chapter will not be concerned with the measurement of the market price of risk. This
will be discussed in Chapter 34 when the evaluation of real options is considered.

It is natural to assume that 0, the coeflicient of dz, in equation (27.8) is the volatility
of f. In fact, o can be negative. This will be the case when f is negatively related the 8
(so that 8f/86 is negative). It is the absolute value |o| of o that is the volatility of f. One
way of understanding this is to note that the process for f has the same statistical
properties when we replace dz by -dz.

Chapter 5 distinguished between investment assets and consumption assets. An
investment asset is an asset that is bought or sold purely for investment purposes by a
significant number of investors. Consumption assets are held primarily for consumption.
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Equation (27.8) is true for all investment assets that provide no income and depend only
on 6’. If the variable H itself happens to be such an asset, then

m - r____..__-),
, s

But, in other circumstances, this relationship is not necessarily true.

Example 27.1
Consider a derivative whose price is positively related to the price of oil and
depends on no other stochastic variables. Suppose that it provides an expected
return of 12% per annum and has a volatility of 20% per annum. Assume that the
risk-free interest rate is 8% per annum. It follows that the market price of risk of
oil is

0.12 - 0.08
0.2 5 “ 0'2

Note that oil is a consumption asset rather than an investment asset, so its market
price of risk cannot be calculated from equation (27.8) by setting /2 equal to the
expected return from an investment in oil and 0 equal to the volatility of oil prices.

Example 27.2
Consider two securities, both of which are positively dependent on the 90-day
interest rate. Suppose that the first one has an expected return of 3% per annum
and a volatility of 20% per annum, and the second one has a volatility of 30 % per
annum. Assume that the instantaneous risk-free rate of interest is 6% per annum.
The market price of interest rate risk is, using the expected return and volatility
for the first security,  

0.03 -0.06
4- _- — .1

0.2 0 5

From a rearrangement of equation (27.9), the expected return from the second
security is, therefore,

0.06 - 0.15 >< 0.3 = 0.015
or 1.5% per annum.

Alternative Worlds
The process followed by derivative price f is

df=/.ifdt+ofdz

/

The value of ,u depends on the risk preferences of investors. In a world where the
market price of risk is zero, A equals zero. From equation (27.9) u : r, so that the
process followed by f is

df=rfdt+ofdz

We will refer to this as the traditional risk-neutral world.
Other assumptions about the market price of risk, A, enable other worlds that are

internally consistent to be defined. From equation (27.9),

8 ,a=r+Ao



634

27.2

 CHAPTER 27

so that
df=(r+Ao)fdt+ofdz (27.10)

The market price of risk of a variable determines the growth rates of all securities
dependent on the variable. As we move from one market price of risk to another, the
expected growth rates of security prices change, but their volatilities remain the same.
This is a general property of variables following diffusion processes and was illustrated
in Section 12.7. Choosing a particular market price of risk is also referred to as defining
the probability measure. Some value of the market price of risk corresponds to the “real
world” and the growth rates of security prices that are observed in practice.

SEVERAL STATE VARIABLES

Suppose that n variables, l9l, 92, . . . , -9,,, follow stochastic processes of the form

d9,-/(9; I ml + Si dZl'

for i = 1, 2, . . . , n, where the dz,- are Wiener processes. The parameters ml and s,- are
expected growth rates and volatilities and may be functions of the 6, and time.
Equation (13A.l0) in the appendix to Chapter 13 provides a version of It6’s lemma
that covers functions of several variables. It shows that the process for the price f of a
security that is dependent on the 69,- has n stochastic components. It can be written

A n

df/f = udt + Z U, dz, (27.12)
i:l

In this equation, /J. is the expected return from the security and oi dz, is the component
of the risk of this return attributable to 6,-. Both ti and the oi are potentially dependent
on the 6,- and time.

Technical Note 30 at Www.rotma_n.utoronto.ca/ "hu1l/TechnicalNotes shows that

ll

[L - r = Ell-0'; (27.13)
1

/

where Al is the market price of risk for 9,. This equation relates the expected excess return
that investors require on the security to the A, and 0,-. Equation (27.9) is the particular
case of this equation when n = 1. The term A,-oi on the right-hand side measures the
extent that the excess return required by investors on a security is affected by the
dependence of the security on 9;. If A,-o,~ : 0, there is no effect; if A,-oi > 0, investors
require a higher return to compensate them for the risk arising from 6,-; if A,-oi < 0, the
dependence of the security on 6, causes investors to require a lower return than would
otherwise be the case. The A,-oi < 0 situation occurs when the variable has the effect of
reducing rather than increasing the risks in the portfolio of a typical investor.

Example 27.3
A stock price depends on three underlying variables: the price of oil, the price of
gold, and the performance of a stock index. Suppose that the market prices of risk
for these variables are 0.2, -0.1, and 0.4, respectively. Suppose also that the ol in
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equation (27.12) corresponding to the three variables have been estimated as 0.05,
0.1, and 0.15, respectively. The excess return on the stock over the risk-free rate is

0.2 x 0.05 - 0.1 >< 0.1 +0.4 >< 0.15 = 0.06

or 6.0% per annum. If variables other than those considered affect the stock
price, this result is still true provided that the market price of risk for each of
these other variables is zero.

Equation (27.13) is closely related to arbitrage pricing theory, developed by Stephen
Ross in 1976.2 The continuous-time version of the capital asset pricing model (CAPM)
can be regarded as a particular case of the equation. CAPM argues that an investor
requires excess returns to compensate for any risk that is correlated to the risk in the
return from the stock market, but requires no excess return for other risks. Risks that
are correlated with the return from the stock market are referred to as systematic; other
risks are referred to as nonsystematic. If CA.PM is true, then A,- is proportional to the
correlation between changes in 6, and the return from the market. When 6,- is
uncorrelated with the return from the market, A, is zero. A

MARTINGALES

A martingale is a zero-drift stochastic process.3 A variable 6 follows a martingale if its
process has the form

d6 --: o'dz

where dz is a Wiener process. The variable or may itself be stochastic. It can depend on 6
and other stochastic variables. A martingale has the convenient property that its
expected value at any future time is equal to its value today. This means that

E(9T) = 90

where 60 and 6T denote the values of 6 at times zero and T, respectively. To understand
this result, note that over a very small time interval the change in 6 is normally
distributed with zero mean. The expected change in 6 over any very small time interval
is therefore zero. Thechange in 6 between time 0 and time T is the sum of its cjianges
over many small time intervals. It follows that the expected change in 6 between time 0
and time T must also be zero.

The Equivalent Martingale Measure Result
Suppose that f and g are the prices of traded securities dependent on a single source of
uncertainty. Assume that the securities provide no income during the time period under
consideration and define ¢ = f/g.4 The variable 4) is the relative price of f with respect
to g. It can be thought of as measuring the price of f in units of g rather than dollars.
The security price g is referred to as the numeraire.

2 See S.A. Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Economic Theory, 13
(December 1976): 343-62.‘ , '

3 More formally, a sequence of random variables X0, Xl, . . . is a martingale if E(X,- | X,-_l, X,~_2, , X0) = X,-_l,
for all i > 0, where E denotes expectation.

4 Problem 27.8 extends the analysis to situations where the securities provide income.
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The equivalent martingale measure result shows that, when there are no arbitrage
opportunities, ¢ is a martingale for some choice of the market price of risk. What is
more, for a given numeraire security g, the same choice of the market price of risk
makes ¢ a martingale for all securities f. This choice of the market price of risk is the
volatility of g. In other words, when the market price of risk is set equal to the volatility
of g, the ratio f/g is a martingale for all security prices f. (Note that the market price
of risk has the same dimension as volatility. Both are “per square root of time.” The
choice for the market price of risk is therefore valid.)

To prove this result, suppose that the volatilities of f and g are of and og. From
equation (27.10), in a world where the market price of risk is og,

df=(r+ogof)fdt+offdz

dg = (r + d§)g dt + (Igg dz
Using It6’s lemma gives

dln f = (r + ogof — oi;/2)dt + of dz

dlng =(r+o5/2)dt+ogdz
so that

d(lnf — ln g) = (ogof — 0;/2 — 03/2) dt + (of - og) dz
or

d(ln _ (Of Edgy dt+ (of — o'g)dz

It6’s lemma can be used to determine the process for f/g from the process for ln(f/g):

= (of — o'g)£ dz (27.14)
Q Q

This shows that f/g is a martingale and proves the equivalent martingale measure
result. We will refer to a world where the market price of risk is the volatility og of g as a
world that is forward risk neutral with respect to g.

Because f/g is a martingale in a world that is forward risk neutral with respect to g,
it follows from the result at the beginning of this section that

 E = E (I21)
Q0 g gr

or

QT

/"

where Eg denotes the expected value in a world that is forward risk neutral with respect
to g.

ALTERNATIVE CHOICES FOR THE NUMERAIRE

We now present a number of examples of the equivalent martingale measure result. The
first example shows that it is consistent with the traditional risk-neutral valuation result
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used in earlier chapters. The other examples prepare the way for the valuation of bond
options, interest rate caps, and swap options in Chapter 28.

Money Market Account as the Numeraire
The dollar money market account is a security that is worth $1 at time zero and earns
the instantaneous risk-free rate r at any given time.5 The variable r may be stochastic. If
we set g equal to the money market account, it grows at rate r so that

dg : rg dt (27.16)

The drift of g is stochastic, but the volatility of g is zero. It follows from the results in
Section 27.3 that f/g is a martingale in a world where the market price of risk is zero.
This is the world we defined earlier as the traditional risk-neutral world. From equa-
tion (27.15),

f0 = d0E(/31) (27.17)
QT

where E denotes expectations in the traditional risk-neutral world.
In this case, go = l and 2 T

efo rdt
67" =

so that equation (27.17) reduces to

fl, = 1_~°:(e'l<1T""fT) (27.18)
O1‘

fl, = E(@-’Tf,~) (27.19)
where F is the average value of r between time 0 and time T. This equation shows that
one way of valuing an interest rate derivative is to simulate the short-term interest rate r
in the traditional risk-neutral world. On each trial the expected payoff is calculated and
discounted at the average value of the short rate on the sampled path.

When the short-term interest rate r is assumed to be constant, equation (27.19)
reduces to

A f0 = @*”E<fT>
or the risk-neutral valuation relationship used in earlier chapters.

/

Zero-Coupon Bond Price as the Numeraire
Define P(t, T) as the price at time t of a zero-coupon bond that pays off $1 at time T.
We now explore the implications of setting g equal to P(t, T). Let ET denote expecta-
tions in a world that is forward risk neutral with respect to P(t, T). Because
gl~ = P(T, T) = 1 and gll = P(0, T), equation (27.15) gives

f0 = P(0l T)ET(fT) (27-20)

5 The money account is the limit as At approaches zero of the following security. For the first short period of
time of length At, it is invested at the initial At period rate; at time At, it is reinvested for a further period of
time At at the new At period rate; at time 2At, it is again reinvested for a further period of time At at the new
At period rate; and so on. The money market accounts in other currencies are defined analogously to the
dollar money market account.
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Notice the difference between equations (27.20) and (27.19). In equation (27.19), the
discounting is inside the expectations operator. In equation (27.20) the discounting, as
represented by the P(0, T) term, is outside the expectations operator. The use of P(t, T)
as the numeraire therefore considerably simplifies things for a security that provides a
payoff solely at time T. C

Consider any variable 6 that is not an interest rate.6 A forward contract on 6 with
maturity T is defined as a contract that pays off 6T — K at time T, where 6T is the value 6
at time T. Define f as the value of this forward contract. From equation (27.20),

f0 = P(0, T)lEr(9-1") " Kl

The forward price, F, of 6 is the value of K for which fll equals zero. It therefore
follows that

P(0. T)[Er(9r) - Fl = 0
O1

Equation (27.21) shows that the forward price of any variable (except an interest rate) is
its expected future spot price in a world that is forward risk neutral with respect to
P(t, T). Note the difference here between forward prices and futures prices. The
argument in Section 17.7 shows that the futures price of a variable is the expected
future spot price in the traditional risk-neutral world.

Equation (27.20) shows that any security that provides a payoff at time T can be
valued by calculating its expected payoff in a world that is forward risk neutral with
respect to a bond maturing at time T and discounting at the risk-free rate for maturity
T. Equation (27.21) shows that it is correct to assume that the expected value of the
underlying variables equal their forward values when computing the expected payofl.

Interest Rates When Zero-Coupon Bond Price is the Numeraire
For the next result, define R(t, T, T*) as the forward interest rate as seen at time t for the
period between T and T * expressed with a compounding period of T * - T. (For
example, if T* - T = 0.5, the interest rate is expressed with semiannual compounding;
if T* - T = 0.25, it is expressed with quarterly compounding; and so on.) The forward
price, as seen at time t, of a zero-coupon bond lasting between times T/and T* is

A P(t, T*)  
P(t, T)

A forward interest rate is defined differently from the forward value of most variables.
A forward interest rate is the interest rate implied by the corresponding forward bond
price. It follows that

1 l P(t, T*)
h [1+(T* - T)R(r.T.T*)1_ Po. T)

so t at ,, 1 P(t, T)
R , T, T _ -(t ) T* — T lP(r. T*) ll

6 The analysis given here does not apply to interest rates because forward contracts for interest rates are
defined dilferertly from forward contracts for other variables. A forward interest rate is the interest rate
implied by the corresponding forward bond price.
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Of

P( T -P(t,T*)
R“’T’ T*) :T*i- Tl ti P)(t T*) l

Setting
1 *f —-M1136, T) " P(t, T )1

and g = P(t, T*), the equivalent martingale measure result shows that R(t, T, T*) is a
martingale in a world that is forward risk neutral with respect to P(t, T*). This means
that

R(0, T, T*) = El~*[R(T, T, T*)] (27.22)
where ET». denotes expectations in a world that is forward risk neutral with respect
to P(t, T*).

The variable R(0, T, T*) is the forward interest rate between times T and T* as seen
at time 0, whereas R(T, T, T*) is the realized interest rate between times T and T *.
Equation (27.22) therefore shows that the forward interest rate between times T and T*
equals the expected future interest rate in a world that is forward risk neutral with
respect to la zero-coupon bond maturing at time T*. This result, when combined with
that in equation (27.20), will be critical to an understanding of the standard market
model for interest rate caps in the next chapter.

Annuity Factor as the Numeraire
For the next application of equivalent martingale measure arguments, consider a swap
starting at a future time T with payment dates at times Tl, T2, . . . , TN. Define T0 = T.
Assume that the principal underlying the swap is $1. Suppose that the forward swap
rate (i.e., the interest rate on the fixed side that makes the swap have a value of zero) is
s(t) at time t (t < T). The value of the fixed side of the swap is

s(t)A(t)
where

- N-l _

Am = {(71.1 - T.->P<t. T.-+1) ’
2 0

Chapter 7 showed that, when the principal is added to the payment on the last payment
date of a swap, the value of the floating side of the swap on the initiation date equals
the underlying principal. It follows that if $1 is added at time TN, the floating side is
worth $1 at time T0. (This is because, when the discount rate is the LIBOR/swap rate,
the present value of the payments on a LIBOR floating-rate bond equals the bond’s
principal.) The value of $1 received at time TN is P(t, TN). The value of $1 at time T0 is
P(t, T0). The value of the floating side at time t is, therefore,

P(t, To) - P(t, TN)

Equating the values of the fixed and floating sides gives

s(t)/l(t) = P(t, T0) - P(t, TN)
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Or

s(t) = p(l’ T°)A'(t;D“’ T”) (27.23)

The equivalent martingale measure result can be applied by setting f equal to
P(t, T0) - P(t, TN) and g equal to A(t). This leads to

s(t) = E,.l[s(T)] (27.24)

where EA denotes expectations in a world that is forward risk neutral with respect to A(t).
Therefore, in a world that is forward risk neutral with respect to A(t), the expected future
swap rate is the current swap rate.

For any security, f, the result in equation (27.15) shows that

f0 = A(O)EA <27-15)
This result, when combined with the result in equation (27.24), will be critical to an
understanding of the standard market model for European swap options in the next
chapter.

EXTENSION TO SEVERAL FACTORS

The results presented in Sections 27.3 and 27 .4 can be extended to cover the situation
when there are many independent factors.7 Assume that there are n independent factors
and that the processes for f and g in the traditional risk-neutral world are

df:rfdt+Z:of,,-fdzl
i=1

and

dg = rg dt + Z ogl,-gdz,
l i=1

It follows from Section 27.2 that other internally consistent worlds can /be defined by
setting

ll fl

df I [r+ XO'f,ifdZi

1 l t 1
and

fl fl

dg I [T + 2}\.l'O'g,i:|g + Z Ugig dZl'

i=1 i"-=1

where the A, (1 < Q n) are the n market prices of risk. One of these other worlds is the
real world. .

The definition of forward risk neutrality can be extended so that a world is forward
risk neutral with respect to g, where Al : cg’; for all i. It can be shown from It6’s
lemma, using the fact that the dz, are uncorrelated, that the process followed by f/g in

§-

7 The independence condition is not critical. If factors are not independent they can be orthogonalized.
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this world has zero drift (see Problem 27.12). The rest of the results in the last two
sections (from equation (27.15) onward) are therefore still true.

BLACK’S MODEL REVISITED

Section 17.8 explained that Black’s model is a popular tool for pricing European
options in terms of the forward or futures price of the underlying asset when. interest
rates are constant. We are now in a position to relax the constant interest rate
assumption and show that Black’s model can be used to price European options in
terms of the forward price of the underlying asset when interest rates are stochastic.

Consider a European call option on an asset with strike price K that lasts until time T.
From equation (27.20), the option’s price is given by

c = P(0, T)ET[max(ST - K, 0)] (27.26)

where ST is the asset price at time T and ET denotes expectations in a world that is
forward risk neutral with respect to P(t,,T). Define Fll and FT as the forward price of
the asset at time 0 and time T for a contract maturing at time T. Because ST = FT,

c = P(0, T)E-l~[max(FT - K, 0)]

Assume that FT is lognormal in the world being considered, with the standard deviation
of ln(FT) equal to on/T. This could be because the forward price follows a stochastic
process with constant volatility ol.-. The appendix at the end of Chapter 14 shows that

ET[max(Fl~ — K, 0)] = ET(FT)N(dl) - KN(d2) (27.27)
where

d _ 1nlET(FT)/Kl + air/2
1 _' . UFJ?

d 1nlET(FT)/Kl - air/2
2 _ Upfi

From equation (27.21), ET(FT) = ET(ST) = F0. Hence,
/

c = P(0, T)[FllN(dl) - KN(d2)] (27.28)
where

d lnin/K1 + air/2
1 '“ OF‘/‘T

ln[Fll/K] - air/2d2 _ -
oF\/T

Similarly,

where p is the price of a European put option on the asset with strike price K and time
to maturity T. This is Black’s model. It applies to both investment and consumption
assets a11d, as we have just shown, is true when interest rates are stochastic provided that
Fl, is the forward asset price. The-variable UF can be interpreted as the (constant)
volatility of the forward asset price.
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27.7

CHAPTER 2'7

OPTION TO EXCHANGE ONE ASSET FOR ANOTHER

Consider next an option to exchange an investment asset worth U for an investment
asset worth V. This has already been discussed in Section 25.13. Suppose that the
volatilities of U and V are ol, and ol, and the coeflicient of correlation between them is ,0.

Assume first that the assets provide no income and choose the numeraire security g to
be U. Setting f : V in equation (27.15) gives

vl, = UOEU (27.30)

where EU denotes expectations in a world that is forward risk neutral with respect to U.
The variable f in equation (27.15) can be set equal to the value of the option under

consideration, so that fT = max(VT — UT, 0). It follows that

max(V —U ,0)f0=v@EUl TUT T l
OT

fl) '-I U0 EU[1TlE1X<l/Z — 1,
Ur

The volatility of V/ U is 8 (see Problem 27.14), where

62 = olz; + oi?) — 2poUol,

From the appendix at the end of Chapter 14, equation (27.31) becomes

VT l
f0 = U0 EU F N(d1) " NW2)

T J
where

1 v “2T2dl_n(°/(ii)/l;“ / and d2=dl-d~/T
U

Substituting from equation (27.30) gives 1/

f0 = V0N(d1) - U0N(d2) (27-32)

This is the value of an option to exchange one asset for another when the assets provide
no income.

Problem 27.8 shows that, when f and g provide income at rate qf and qg, equa-
tion (27.15) becomes

f0 = 60@(qf_qg)TE~‘1
QT

This means that equations (27.30) and (27.31) become

EU : e(qu—qv)T 51
T 0



Martingales and Measures 643

27.8

and

fl, = e"q”TUllEUlmax(-‘-/Z- 1, 0)]
Ur

and equation (27.32) becomes

f0 = e"‘”Tv@N<d1> - e"‘"”"v@N<d2>
with dl and d2 being redefined as

1 __ *2
d1:11(V0/U0)+(i1o/Tqv+U/2)T and d2:__dl_6~/T

o

This is the result given in equation (25.5) for the value of an option to exchange one
asset for another.

CHANGE OF NUMERAIRE

In this section, we consider the impact of a change in numeraire on the process followed
by a market variable. Suppose first that the variable is the price of a traded security, f.
In a world where the market price of dz,- risk is A,-,

df Z [r‘l"' “l'" ZC'f,ifdZi

l l t 1O 0
i _-
.-_- .i

Similarly, when it is AI‘,

df = [r—l- Zigwfi,-lfdr+ Z0),-fdz,
l 1 t 1| n
i _-

The effect of moving from the first world to the second is therefore to increase the
expected growth rateof the price of any traded security f by /

I1

2(2)? ‘" 7\i)<7f,i
i=1

Consider next a variable v that is not the price of a traded security. As shown in
Technical Note 20 at WWW.r0tman.utoronto.ca/~hu11/'T‘echnica1N0tes, the expected
growth rate of v responds to a change in the market price of risk in the same way as the
expected growth rate of the prices of traded securities. It increases by

fl

Q. = Zr);-* - Alia... (27.33)
i=1

where o,,,,- is the ith component of the volatility of v.
When we move from a numeraire of g to a numeraire of h, A, = ogll and A;-" = oh’,-.

Define w = h /g and ow,,- as the ith component of the volatility of w. From It6’s lemma
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(see Problem 27.14),
Uw,i = 571,1 — Ug,i

so that equation (27.33) becomes

d, = Z aw, 0'0’; (27.34)
1 l=l

We will refer to w as the numeraire ratio. Equation (27.34) is equivalent to

ct, = povow (27.35)

where ol, is the total volatility of v, ow is the total volatility of w, and ,0 is the
instantaneous correlation between changes in v and w.8

This is a surprisingly simple result. The adjustment to the expected growth rate of a
variable v when we change from one numeraire to another is the instantaneous
covariance between the percentage change in v and the percentage change in the
numeraire ratio. This result will be used when timing and quanto adjustments are
considered in Chapter 29.

A particular case of the results in this section is when we move from the real world to
the traditional risk-neutral world (where all the market prices of risk are zero). From
equation (27.33), the growth rate of v changes by — Zfzl A,-ow-. This corresponds to the
result in equation (27.13) when v is the price of a traded security. We have shown that it
is also true when v is not the price of a traded security. In general, the way that we move
from one world to another for variables that are not the prices of traded securities are
the same as for those that are.

SUMMARY

The market price of risk of a variable defines the trade-offs between risk and return for
traded securities dependent on the variable. When there is one underlying variable, a
derivative’s excess return over the risk-free rate equals the market price of risk multiplied
by the derivative’s volatility. When there are many underlying variables, the excess return
is the sum of the market price of risk multiplied by the volatility for each variable.

A powerful tool in the valuation of derivatives is risk-neutral valuatfon. This was
introduced in Chapters 12 and 14. The principle of risk-neutral valuation shows that, if
we assume that the world is risk neutral when valuing derivatives, we get the right
answer-—not just in a risk-neutral world, but in all other worlds as well. In the
traditional risk-neutral world, the market price of risk of all variables is zero. This
chapter has extended the principle of risk-neutral valuation. It has shown that, when

8 To see this, note that the changes Av and Aw in v and w in a short period of time At are given by

AU I ' ' ' -l- 20],’; U€l"\/Al

Aw I - ' - "I" ZO'w,l' lU€l'\/All

Since the dz,- are uncorrelated, it follows that E(e,-e1-) : 0 when i ;é j. Also, from the definition of p, we have
pvovwow = E(Av Aw) - E(Av) E(Aw)

When terms of higher order than At are ignored this leads to

,05v<7w : 5 Uw,iUv,i
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interest rates are stochastic, there are many interesting and useful alternatives to the
traditional risk-neutral world.

A martingale is a zero drift stochastic process. Any variable following a martingale
has the simplifying property that its expected value at any future time equals its value
today. The equivalent martingale measure result shows that, if g is a security price, there
is a world in which the ratio f/g is a martingale for all security prices f. It turns out
that, by appropriately choosing the numeraire security g, the valuation of many interest
rate dependent derivatives can be simplified.

This chapter has used the equivalent martingale measure result to extend Black’s
model to the situation where interest rates are stochastic and to value an option to
exchange one asset for another. In Chapters 28 to 32, it will be useful in valuing interest
rate derivatives.
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Practice Questions (Answers in the Solutions Manual)

27.1

27.2.

27.3

27.4

27.5

How is the market“ price of risk defined for a variable that is not the price of an
investment asset?
Suppose that the market price of risk for gold is zero. If the storage costs are 1% per
annum and the risk-free rate of interest is 6% per annum, what is the expected growth
rate in the price of gold‘? Assume that gold provides no income.
Consider two securities both of which are dependent on the same market variable. The
expected returns from the securities are 8% and 12%. The volatility of the first security is
15%. The instantaneous risk-free rate is 4%. What is the volatility of the second security‘?
An oil company is set up solely for the purpose of exploring for oil in a certain small
area of Texas. Its value depends primarily on two stochastic variables: the price of oil
and the quantity of proven oil reserves. Discuss whether the market price of risk for the
second of these two variables is likely to be positive, negative, or zero.
Deduce the differential equation for a derivative dependent on the prices of two non-
dividend-paying traded securities by forming a riskless portfolio consisting of the
derivative and the two traded securities.
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27.6

27.7

27.8

27.9

27.10.

27.11

27.12.

27.13

CHAPTER 27

Suppose that an interest rate x follows the process
dx = a(xll — x)dt + cg/lfdz

where a, xll, and c are positive constants. Suppose further that the market price of risk
for x is A. What is the process for x in the traditional risk-neutral world?
Prove that, when the security f provides income at rate q, equation (27.9) becomes
,u + q — r = Ao. (Hint: Form a new security f * that provides no income by assuming
that all the income from f is reinvested in f.)
Show that when f and g provide income at rates qf and qg, respectively, equation (27.15)
becomes

fo = Q0@(qf_qg)TEg
\6T

(Hint: Form new securities f * and g* that provide no income by assuming that all the
income from f is reinvested in f and all the income in g is reinvested in g.)
“The expected future value of an interest rate in a risk-neutral world is greater than it is
in the real world.” What does this statement imply about the market price of risk for
(a) an interest rate and (b) a bond price. Do you think the statement is likely to be true‘?
Give reasons.
The variable S is an investment asset providing income at rate q measured in currency A.
It follows the process

dS = ,uSSdt + o5Sdz

in the real world. Defining new variables as necessary, give the process followed by S,
and the corresponding market price of risk, in:
(a) A world that is the traditional risk-neutral world for currency A
(b) A world that is the traditional risk-neutral world for currency B
(c) A world that is forward risk neutral with respect to a zero-coupon currency A bond

maturing at time T A
(d) A world that is forward risk neutral with respect to a zero coupon currency B bond

maturing at time T.
Explain the difference between the way a forward interest rate is defined and the way the
forward values of other variables such as stock prices, commodity prices, and exchange
rates are defined. /’
Prove the result in Section 27.5 that when s

ll n

df I lit‘-F ZO'f,ifdZl'

t 1 t l
and

_ n n

 dg = [F + ZA,d,_,l g dt + 20,’,-g dz,-
i=1 i=1

with the dz, uncorrelated, f/g is a martingale for A,- :og,,-. (Hint: Start by using
equation (l3A.1l) to get theprocesses for ln f and lng.)
Show that when w = h/g and h and g are each dependent on n Wiener processes, the ith
component of the volatility of w is the ith component of the volatility of h minus the ith
component of the volatility of g. (Hint: Start by using equation (l3A.11) to get the
processes for ln f and ln g.)
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Further Questions

27.14. A security’s price is positively dependent on two variables: the price of copper and the
yen/dollar exchange rate. Suppose that the market price of risk for these variables is 0.5
and 0.1, respectively. If the price of copper were held fixed, the volatility of the security
would be 8% per annum; if the yen/dollar exchange rate were held fixed, the volatility of
the security would be 12% per annum. The risk-free interest rate is 7% per annum. What
is the expected rate of return from the security? If the two variables are uncorrelated with
each other, what is the volatility of the security?

27.15. Suppose that the price of a zero-coupon bond maturing at time T follows the process
_ dP(t, T) = /,tPP(t, T) dt + oPP(t, T) dz

and the price of a derivative dependent on the bond follows the process
df=lu.ffdt+offdz

Assume only one source of uncertainty and that f provides no income.
(a) What is the forward price F of f for a contract maturing at time T?
(b) What is the process followed by F in a world that is forward risk neutral with respect

to P(t, T)?
(c) What is the process followed by F in the traditional risk-neutral world?
(d) What is the process followed by f in a world that is forward risk neutral with respect

to a bond maturing at time T*, where T* ¢ T? Assume that o"l3 is the volatility of this
bond.

27.16. Consider a variable that is not an interest rate:
(a) In what world is the futures price of the variable a martingale?
(b) In what world is the forward price of the variable a martingale?
(c) Defining variables as necessary, derive an expression for the diflerence between the

drift of the futures price and the drift of the forward price in the traditional risk-
neutral world.

(d) Show that your result is consistent with the points made in Section 5.8 about the
circumstances when the futures price is above the forward price.

/'
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Interest Rate
Derivatives:

The Standard
Market Models

Interest rate derivatives are instruments whose payoffs are dependent in some way on the
level of interest rates. In the 1980s and 1990s, the volume of trading in interest rate
derivatives in both the over-the-counter and exchange-traded markets increased rapidly.
Many new products were developed to meet particular needs of end users. A key
challenge for derivatives traders was to find good, robust procedures for pricing and
hedging these products. Interest rate derivatives are more diflicult to value than equity
and foreign exchange derivatives for the following reasons:

1. The behavior of an individual interest rate is more complicated than that of a
stock price or an exchange rate. F 1

2. For the valuation of many products it is necessary to develop a model describing
the behavior of the entire zero-coupon yield curve.

3. The volatilities of different points on the yield curve are diflerent. A
4. Interest rates are used for discounting the derivative as well as defining its payoff.

This chapter considers the three most popular over-the-counter interest rate option
products: bond options, interest rate caps/floors, and swap options. lt explains how
the products work and the standard market models used to value them.

BOND OPTIONS

A bond option is an option to buy or sell a particular bond by a particular date for a
particular price. In addition to trading in the over-the-counter market, bond options
are frequently embedded in bonds when they are issued to make them more attractive to
either the issuer or potential purchasers.

Embedded Bond Options
One example of a bond with an embedded bond option is a callable bond. This is a
bond that contains provisions allowing the issuing firm to buy back the bond at a
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predetermined price at certain times in the future. The holder of such a bond has sold
a call option to the issuer. The strike price or call price in the option is the
predetermined price that must be paid by the issuer to the holder. Callable bonds
cannot usually be called for the first few years of their life. (This is known as the lock-
out period.) After that, the call price is usually a decreasing function of time. For
example, in a 10-year callable bond, there might be no call privileges for the first
2 years. After that, the issuer might have the right to buy the bond back at a price of
110 in years 3 and 4 of its life, at a price of 107.5 in years 5 and 6, at a price of 106 in
years 7 and 8, and at a price of 103 in years 9 and 10. The value of the call option is
reflected in the quoted yields on bonds. Bonds with call features generally offer higher
yields than bonds with no call features.

Another type of bond with an embedded option is a puttable bond. This contains
provisions that allow the holder to demand early redemption at a predetermined price
at certain times in the future. The holder of such a bond has purchased a put option on
the bond as well as the bond itself. Because the put option increases the value of the
bond to the holder, bonds with put features provide lower yields than bonds with no
put features. A simple example of a puttable bond is a 10-year bond where the holder
has the right to be repaid at the end of 5 years. (This is sometimes referred to as a
retractable bond.)

Loan and deposit instruments also often contain embedded bond options. For
example, a 5-year fixed-rate deposit with a financial institution that can be redeemed
without penalty at any time contains an American put option on a bond. (The deposit
instrument is a bond that the investor has the right to put back to the financial
institution at its face value at any time.) Prepayment privileges on loans and mortgages
are similarly call options on bonds.  

Finally, a loan commitment made by a bank or other financial institution is a put
option on a bond. Consider, for example, the situation where a bank quotes a 5-year
interest rate of 5% per annum to a potential borrower and states that the rate is good
for the next 2 months. The client has, in effect, obtained the right to sell a 5-year bond
with a 5% coupon to the financial institution for its face value any time within the next
2 months. The option will be exercised if rates increase.

European Bond Options "
Many over-the-counter bond options and some embedded bond options are European.
The assumption made in the standard market model for valuing European bond
options is that the forward bond price has a constant volatility oll. This allows Black’s
model in Section 27.6 to be used. In equations (27.28) and (27.29), op is set equal to oll
and F0 is set equal to the forward bond price FB, so that

C = P(0, T)[Fl.,»N(dl) _ KN(d2)] (28.1)
P = P(0» T)[KN(-dz) - FBN(—d1)] (23-2)

where
1 F 1<+ 2T2

d1-'-'In( B/or )\/TUB / and d2:d1—"O'B\/T

B

with K the strike price of the bond option and T its time to maturity.
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From Section 5.5, FB can be calculated using the formula

 B0 - 1Fl, ._ TE?) (28.3)

where BO is the bond price at time zero and I is the present value of the coupons that
will be paid during the life of the option. In this formula, both the spot bond price and
the forward bond price are cash prices rather than quoted prices. The relationship
between, cash and quoted bond prices is explained in Section 6.1.

The strike price K in equations (28.1) and (28.2) should be the cash strike price. In
choosing the correct (value for K, the precise terms of the option are therefore
important. If the strike price is defined as the cash amount that is exchanged for the
bond when the option is exercised, K should be set equal to this strike price. If, as is
more common, the strike price is the quoted price applicable when the option is
exercised, K should be set equal to the strike price plus accrued interest at the expiration
date of the option. Traders refer to the quoted price of la bond as the clean price and the
cash price as the dirty price. 5  

Example 28. 1 1
~ Consider a 10-month European call option on a 9.75-year bond with a face

value of $1,000. (When the option matures, the bond will have 8 years and
ll months remaining.) Suppose that the current cash bond price is $960, the
strike price is $1,000, the 10-month risk-free interest rate is 10% per annum, and
the volatility of the forward bond price for a contract maturing in 10 months is
9% per annum. The bond pays a coupon of 10% per year (with payments made
semiannually). Coupon payments of $50 are expected in 3 months and 9 months.
(This means that the accrued interest is $25 and the quoted bond price is $935.)
We suppose that the 3-month and 9-month risk-free interest rates are 9.0% and
9.5% per annum, respectively. The present value of the coupon payments is,
therefore,

1 508-—0.25X().()9 + 50e—l).75X().095 Z '

or $95.45. The bond forward price is from equation (28.3) given by

Fl, = (960 - 95.4s)e°~‘*°~:“333 = 939.68 /
(a) If the strike price is the cash price that would be paid for the bond on exercise,

the parameters for equation (28.1) are FB = 939.68, K = 1000, P(0, T) =
e_0'1X(10/12) = 0.9200, o3 = 0.09, and T = 10/12. The price of the call option
is $9.49. .  2

(b) If the strike price is the quoted price that would be paid for the bond on
exercise, 1 month’s accrued interest must be added to K because the maturity
of the option is 1 month after a coupon date. This produces a value for K of

1,000 +100 x 0.08333 = 1,008.33

The values for the other parameters in equation (28.1) are unchanged (i.e.,
F3 = 939.68, P(0, T) = 0.9200, o3 = 0.09, and T = 0.8333). The price of the
option is $7.97. 3

Figure 28.1 shows how the standard deviation of the logarithm of a bond’s price
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Figure 28.1 Standard deviation of logarithm of bond price at future times.

A Standard deviation of
logarithm of bond price

->
BOI‘l(I Time

maturity
>1- ~-'-l- ; ‘= ¢¢'.-~';- " ‘Q - .:' ' T‘ I ‘= ‘- ‘-"‘

changes as we look further ahead. The standard deviation is zero today because there is
no uncertainty about the bond’s price today. It is also zero at the bond’s maturity
because we know that the bond’s price will equal its face value at maturity. Between
today and the maturity of the bond, the standard deviation first increases and then
decreases.

The volatility oll that should be used when a European option on the bond is valued is

Standard deviation of logarithm of bond price at maturity of option
\/Time to maturity of option

What happens when, for a particular underlying bond, the life of the option is increased?
Figure 28.2 shows a typical pattern for oB as a function of the life of the option, with ol,
declining as the life of the option increases.

Figure 28.2 Variation of forward bond price volatility ol; with life of option when
bond is kept fixed. 2 if
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Yield Volatilities
The volatilities that are quoted for bond options are often yield volatilities rather than
price volatilities. The duration concept, introduced in Chapter 4, is used by the market
to convert a quoted yield volatility into a price volatility. Suppose that D is the modified
duration of the bond underlying the option at the option maturity, as defined in
Chapter 4. The relationship between the change AFB in the forward bond price FB
and the change Ayl.- in the forward yield yl.- is

AF—‘1 ~ -DA».-FB
OI'

AFB Ayp

FB )’F

Volatility is a measure of the standard deviation of percentage changes in the value of a
variable. This equation therefore suggests that the volatility of the forward bond price
oB used in Black’s model can be approximately related to the volatility of the forward
bond yield oy by  

ol; = Dylloy (28.4)

where yo is the initial value of yT. When a yield volatility is quoted for a European bond
option, the implicit assumption is usually that it will be converted to a price volatility
using equation (28.4), and that this volatility will then be used in conjunction with
equation (28. 1) or (28.2) to obtain the option’s price. Suppose that the bond underlying a
call option will have a modified duration of 5 years at option maturity, the forward yield
is 8%, and the forward yield volatility quoted by a broker is 20%. This means that the
market price of the option corresponding to the broker quote is the price given by
equation (28.1) when the volatility variable oB is  

5 >< 0.08 >< 0.2 = 0.08 1

or 8% per annum. Figure 28.2 shows that forward bond volatilities depend on the
option considered. Forward yield volatilities as we have just defined them are more
constant. This is why traders prefer them. /

The Bond_Options worksheet of the software DerivaGem accompanying this book
can be used to price European bond options using Black’s model by selecting Black-
European as the Pricing Model. The user inputs a yield volatility, which is handled in
the way just described. The strike price can be the cash or quoted strike price.

Example 28.2
Consider a European put option on a 10-year bond with a principal of 100. The
coupon is 8% per year payable semiannually. The life of the option is 2.25 years
and the strike price of the option is 115. The forward yield volatility is 20%. The
zero curve is flat at 5% with continuous compounding. The DerivaGem software
accompanying this book shows that the quoted price of the bond is 122.82. The
price of the option when the strike price is a quoted price is $2.36. When the strike
price is a cash price, the price of the option is $1.74. (See Problem 28.16 for the
manual calculation.)



Interest Rate Derivatrves.' The Standard Market Models 653

28.2 INTEREST RATE CAPS AND FLOORS

A popular interest rate option offered by financial institutions in the over-the-counter
market is an interest rate cap. Interest rate caps can best be understood by first
considering a floating-rate note where the interest rate is reset periodically equal to
LIBOR. The time between resets is known as the tenor. Suppose the tenor is 3 months.
The interest rate on the note for the first 3 months is the initial 3-month LIBOR rate;
the interest rate for the next 3 months is set equal to the 3-month LIBOR rate prevailing
in the market at the 3-month point; and so on.

An interest rate cap is designed to provide insurance against the rate of interest on the
floating-rate note rising above a certain level. This level is known as the cap rate.
Suppose that the principal amount is $10 million, the tenor is 3 months, the life of the
cap is 5 years, and the cap rate is 4%. (Because the payments are made quarterly, this
cap rate is expressed with quarterly compounding.) The cap provides insurance against
the interest on the floating rate note rising above 4%.

For the moment we ignore day count issues and assume that there is exactly 0.25 year
between each payment date. (We will cover day count issues at the end of this section.)
Suppose that on a particular reset date the 3-month LIBOR interest rate is 5%. The
floating rate note would require  

0.25 x 0.05 x $10,000,000 == $125,000

of interest to be paid 3 months later. With a 3-month LIBOR rate of 4% the interest
payment would be

0.25 x 0.04 x $10,000,000 = $100,000

The cap therefore provides a payoff of $25,000. The payoff does not occur on the reset
date when the 5% is observed: it occurs 3 months later. This reflects the usual time lag
between an interest rate being observed and the corresponding payment being required.

At each reset date during the life of the cap, LIBOR is observed. If LIBOR is less than
4%, there is no payoff from the cap three months later. If LIBOR is greater than 4%, the
payoff is one quarter of the excess applied to the principal of $10 million. Note that caps
are usually defined so that the initial LIBOR rate, even if it is greater than the cap rate,
does not lead to a payoff on the first reset date. In our example, the cap lasts for 5./years.
There are, therefore, a total of 19 reset dates (at times 0.25, 0.50, 0.75, . . ., 4.75 years)
and 19 potential payoffs from the caps (at times 0.50, 0.75, 1.00, . . ., 5.00 years).

The Cap as a Portfolio of Interest Rate Options
Consider a cap with a total life of T, a principal of L, and a cap rate of RK. Suppose that
the reset dates are tl, t2, . . ., t,, and define t,,+l = T. Define Rk as the LIBOR interest rate
for the period between time tl, and t,,+l observed at time tl, (1 < k < n). The cap leads to a
payoff at time tk+l (k = 1, 2, . . . , n) of

L8,, max(Rk — RK, 0) (23-5)

where 8,, = tk+l - tl,.‘ Both Rk and RK are expressed with a compounding frequency
equal to the frequency of resets.

I Day count issues are discussed at the end of this section.
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Expression (28.5) is the payofl from a call option on the LIBOR rate observed at time tl,
with the payoff occurring at time tk+l. The cap is a portfolio of n such options. LIBOR
rates are observed at times tl, t2, t3, . . . , tn and the corresponding payoffs occur at
times t2, t3, t4, . . . , t,,+l. The n call options underlying the cap are known as caplets.

AT Cap as a Portfolio of Bond Options
An interest rate cap can also be characterized as a portfolio of put options on zero-
coupon bonds with payoffs on the puts occurring at the time they are calculated. The
payoff in expression (28.5) at time tk+l is equivalent to

L5
 maX(Rk — RK,

at time tl,. A few lines of algebra show that this reduces to

L(l + RK5k)L 2 .6max 1+Rk6k ,0] (8 )

The expression
L(l + RKdk)

1 + Rkdk

is the value at time tk of a zero-coupon bond that pays off L(l + RK8k) at time t,,+l. The
expression in (28.6) is therefore the payofl from a put option with maturity tk on a zero-
coupon bond with maturity tk+l when the face value of the bond is L(l + RKdk) and the
strike price is L. It follows that an interest rate cap can be regarded as a portfolio of
European put options on zero-coupon bonds.

Floors and Collars
Interest rate floors and interest rate collars (sometimes called floor-ceiling agreements)
are defined analogously to caps. Afloor provides a payoff when the interest rate on the
underlying floating-rate note falls below a certain rate. With the notation already
introduced, a floor provides a payoff at time tk+l (k = 1, 2, . . . , n) of

L5k maX(RK — Rk, _/

Analogously to an interest rate cap, an interest rate floor is a portfolio of put options on
interest rates or a portfolio of call options on zero-coupon bonds. Each of the
individual options comprising a floor is known as a floorlet. A collar is an instrument
designed to guarantee that the interest rate on the underlying LIBOR floating-rate note
always lies between two levels. A collar is a combination of a long position in a cap and
a short position in a floor. It is usually constructed so that the price of the cap is
initially equal to the price of the floor. The cost of entering into the collar is then zero.

Business Snapshot 28.1 gives the put-call parity relationship between caps and floors.

Valuation of Caps and Floors
As shown in equation (28.5), the caplet corresponding to the rate observed at time tl,
provides a payoff at time tk+l of

L8,, max(Rk - RK, 0)
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Under the standard market model, the value of the caplet is

L5/<P(0l tk+l)lFkN(dl) — R1<N(d2)l (23-7)
where '

d 111(F1</ Rx) "I" Uzi tk/2
I T U1»/E

1 -81 2d2_ n(Fk/5:)/E; ktk/ _dl _Uk~/TI;

Here, Fl, is the forward interest rate at time 0 for the period between time tk and tk+l , and
ok is the volatility of this forward interest rate. This is a natural extension of Black’s
model. The volatility ok is multiplied by ,/Z; because the interest rate Rk is observed at
time tk, but the discount factor P(0, tk+l) refects the fact that the payoff is at time tk+l , not
time tl,. The value of the corresponding floorlet is

L5kP(0» tk+1)lRKN("'42) - FkN(-d1)l (23-3)

Example 28.3
Consider a contract that caps the LIBOR interest rate on $10 million at 8% per
annum (with quarterly compounding) for 3 months starting in 1 year. This is a
caplet and could be one element of a cap. Suppose that the LIBOR/swap zero
curve is flat at 7% per annum with quarterly compounding and the volatility of
the 3-month forward rate underlying the caplet is 20% per annum. The continu-
ously compounded zero rate for all maturities is 6.9395%. In equation (28.7),
Fk -_—- 0.07, 8k = 0.25, L -—_— 10, RK : 0.08, tk : 1.0, tk+l = 1.25, P(0, tk+l) :
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e“0-069395“-25 : 0.9169, and ok : 0.20. Also,

1 0.07 0.08 +0.22 1 2dl_n( /02())X1 X / _ 0.5677
d2 = dl - 0.20 = -0.7677

A so that the caplet price (in $ millions) is  
0.25 x 10 x 0.9169[0.07N(-0.5677) - 0.08N(—0.7677)] = $0.005162

It is $5,162. This result can also be obtained using the DerivaGem software
accompanying this book.

Each caplet of a cap must be valued separately using equation (28.7). Similarly, each
floorlet of a floor must be valued separately using equation (28.8). One approach is to use
a different volatility for each caplet (or floorlet). The volatilities are then referred to as
spot volatilities. An alternative approach is to use the same volatility for all the caplets
(floorlets) comprising any particular cap (floor) but to vary this volatility according to
the life of the cap (floor). The volatilities used are then referred to asflat volatilities.2 The
volatilities quoted in the market are usually flat volatilities. However, many traders like to
estimate spot volatilities because this allows them to identify underpriced and overpriced
caplets (floorlets). The put (call) options on Eurodollar futures are very similar to caplets
(floorlets) and the spot volatilities used for caplets and floorlets on 3-month LIBOR are
frequently compared with those calculated from the prices of Eurodollar futures options.

Spot Volatilities vs. Flat Volatilities
Figure 28.3 shows a typical pattern for spot volatilities and flat volatilities as a function of
maturity. (In the case of a spot volatility, the maturity is the maturity of a caplet or
floorlet; in the case of a flat volatility, it is the maturity of a cap or floor.) The flat

“."""'_"""I'"I"iL";'fi.‘l"l‘€Y:‘1l5l‘3T"3?"fi§“'*.§,"J‘! 2711-7-Y> ‘H=!-\J 5-1.} -7.4".’ Y1-f>.'ZT_I1':f$2S£i'. ‘£’v}%% ?

Figu re 2 8 . 3 The volatility hump.

A Cap or floor
implied volatility

/

Spot vols

Flat vols
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>

" .- - ~ . . ". . ,_ , -"1 .2" ...“. ‘*1 ' '._ ._ -

2 Flat volatilities can be calculated from spot volatilities and vice versa (see Problem 28.20).
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Table 28.1 Typical broker implied flat volatility quotes for
US dollar caps and floors (% per annum).

Life Cap Cap
bid offer

Floor
bid

Floor
offer

1 year
2 years
3 years
4 years
5 years
7 years

10 years

18.00
23.25
24.00
23.75
23.50
21.75
20.00

20.00
24.25
25.00
24.75
24.50
22.75
21.00

18.00
23.75
24.50
24.25
24.00
22.00
20.25

20.00
24.75
25.50
25.25
25.00
23.00
21.25
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volatilities are akin to cumulative averages of the spot volatilities and therefore exhibit
less variability. As indicated by Figure 28.3, a “hump” in the volatilities is usually
observed. The peak of the hump is at about the 2- to 3-year point. This hump is observed
both when the volatilities are implied from option prices and when they are calculated
from historical data. There is no general agreement on the reason for the existence of the
hump. One possible explanation is as follows. Rates at the short end of the zero curve are
controlled by central banks. By contrast, 2- and 3-year interest rates are determined to a
large extent by the activities of traders. These traders may be overreacting to the changes
observed in the short rate and causing the volatility of these rates to be higher than the
volatlity of short rates. For maturities beyond 2 to 3 years, the mean reversion of interest
rates, which is discussed in Chapter 30, causes volatilities to decline.

Interdealer brokers provide tables of implied flat volatilities for caps and floors. The
instruments underlying the quotes are usually “at the money”. This is defined as the
situation where the cap/floor rate equalsthe swap rate for a swap that has the same
payment dates as the cap. Table 28.1 shows typical broker quotes for the US dollar
market. The tenor of the cap is 3 months and the cap life varies from 1 to 10 years. The
data exhibits the type of “hump” shown in Figure 28.3.

Theoretical justification for the Model , "
The extension of Black’s model used to value a caplet can be shown to be internally
consistent by considering a world that is forward risk neutral with respect to a zero-
coupon bond maturing at time tk+l. The analysis in Section 27.4 shows that:

1. The current value of any security is its expected value at time tk+l in this world
multiplied by the price of a zero-coupon bond maturing at time tk+l (see
equation (27.20)).

2. The expected value of an interest rate lasting between times tl, and tkll equals the
forward interest rate in this world (see equation (27.22)).

The first of these results shows that, with the notation introduced earlier, the price of a
caplet that provides a payoff at time tk+l is

two. tk+l)Ek+1lmaX(Rk - R... 0)1 (28.9)
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where Ek+l denotes expected value in a world that is forward risk neutral with respect to
a zero-coupon bond maturing at time tk+l. When the forward interest rate underlying the
cap (initially Fl) is assumed to have a constant volatility ok, Rk is lognormal in the world
we are considering, with the standard deviation of ln(Rk) equal to ok (/Q. From the
appendix at the end of Chapter 14, equation (28.9) becomes

L51<P(0l It+1)[Et+1(Rr)N(d1) — R1<N(d2)l
where

d _ IUIE/<+1(R/<)/RKI + “ilk/2
1 _ Um/E

_ 1nlEk+l(Rk)/RKI - air./2 _dz — UM/TI; — d1 — Us/Ft

The second result implies that
E/<+1(R/<) = F1.-

Together the results lead to the cap pricing model in equation (28.7). They show that we
can discount at the tk+l-maturity interest rate observed in the market today providing
we set the expected interest rate equal to the forward interest rate.

Use of DerivaGem
The software DerivaGem accompanying this book can be used to price interest rate
caps and floors using Black’s model. In the Cap_and_Swap_Option worksheet select
Cap/Floor as the Underlying Type and Black-European as the Pricing Model. The zero
curve is input using continuously compounded rates. The inputs include the start and
end date of the period covered by the cap, the flat volatility, and the cap settlement
frequency (i.e., the tenor). The software calculates the payment dates by working back
from the end of period covered by the cap to the beginning. The initial caplet/floorlet is
assumed to cover a period of length between 0.5 and 1.5 times a regular period.
Suppose, for example, that the period covered by the cap is 1.22 years to 2.80 years
and the settlement frequency is quarterly. There are six caplets covering the periods 2.55
to 2.80 years, 2.30 to 2.55 years, 2.05 to 2.30 years, 1.80 to 2.05 years, 1.55 to 1.80 years,
and 1.22 to 1.55 years. 6/'

The Impact of Day Count Conventions
The formulas we have presented so far in this section do not reflect day count
conventions (see Section 6.1 for an explanation of day count conventions). Suppose
that the cap rate RK is expressed with an actual/360 day count (as would be normal in
the United States). This means that the time interval 6k in the formulas should be
replaced by ak, the accrual fraction for the time period between tl, and tk+l. Suppose,
for example, that tl, is May 1 and tk+l is August 1. Under actual/360 there are 92 days
between these payment dates so that ak = 92/360 = 0.2556. The forward rate Fl, must
be expressed with an actual/360 day count. This means that we must set it by solving

Z P(0, i,,)
1+“"F" P(0t )1 k+l
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The impact of all this is much the same as calculating 8k on an actual/actual basis
converting RK from actual/360 to actual/actual, and calculating Fl on an actual/actual
basis by solving

' P(Ov tk)‘+FP=rn7”5\9k+l

EUROPEAN SWAP OPTIONS

Swap options, or swaptions, are options on interest rate swaps and are another popular
type of interest rate option. They give the holder the right to enter into a certain interest
rate swap at a certain time in the future. (The holder does not, of course, have to exercise
this right.) Many large financial institutions that offer interest rate swap contracts to their
corporate clients are also prepared to sell them swaptions or buy swaptions from them.
As shown in Business Snapshot 28.2, a swaption can be viewed as a type of bond option.

To give an example of how a swaption might be used, consider a company that knows
that in 6 months it will enter into a 5-year floating-rate loan agreement and knows that
it will wish to swap the floating interest payments for fixed interest payments to convert
the loan into a fixed-rate loan (see Chapter 7 for a discussion of how swaps can be used
in this way). At a cost, the company could enter into a swaption giving it the right to
receive 6-month LIBOR and pay a certain fixed rate of interest, say 8% per annum, for
a 5-year period starting in 6 months. If the fixed rate exchanged for floating on a regular
5-year swap in 6 months turns out to be less than 8% per annum, the company will
choose not to exercise the swaption and will enter into a swap agreement in the usual
way. However, if it turns out to be greater than 8% per annum, the company will
choose to exercise the swaption and will obtain a swap at more favorable terms than
those available in the market.

Swaptions, when used in the way just described, provide companies with a guarantee
that the fixed rate of interest they will pay on a loan at some future time will not exceed
some level. They are an alternative to forward swaps (sometimes called deferred swaps).
Forward swaps involve no up-front cost but have the disadvantage of obligating the
company to enter into a swap agreement. With a swaption, the company is able to benefit
from favorable interest rate movements while acquiring protection from unfavorable
interest rate movements. The diflerence between a swaption and a forward swap is
analogous to the diflerence between an option on a foreign currency and a forward
contract on the currency.

Valuation of European Swaptions
As explained in Chapter 7 the swap rate for a particular maturity at a particular time is
the (mid-market) fixed rate that would be exchanged for LIBOR in a newly issued swap
with that maturity. The model usually used to value a European option on a swap
assumes that the underlying swap rate at the maturity of the option is lognormal.
Consider a swaption where the holder has the right to pay a rate sK and receive LIBOR
on a swap that will last n years starting in T years. We suppose that there are m
payments per year under the swap and that the notional principal is L.

Chapter 7 showed that day count conventions may lead to the fixed payments under a
swap being slightly different on each payment date. For now we will ignore the effect of
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day count conventions and assume that each fixed payment on the swap is the fixed rate
times L/m. The impact of day count conventions is considered at the end of this section.

Suppose that the swap rate for an n-year swap starting at time T proves to be sT. By
comparing the cash flows on a swap where the fixed rate is sT to the cash flows on a swap
where the fixed rate is sK, it can be seen that the payoff from the swaption consists of a
series of cash flows equal to

. £max(sT — sK, 0)m

The cash flows are received m times per year for the n years of the life of the swap.
Suppose that the swap payment dates are T1, T2, . . . , Tm", measured in years from today.
(It is approximately true that T,- = T + i/m.) Each cash flow is the payoff from a call
option on sT with strike price sK. T

Whereas a cap is a portfolio of options on interest rates, a swaption is a single option
on the swap rate with repeated payoffs. The standard market model gives the value of a
swaption where the holder has the right to pay sK as ,

mn

2% Pm. T.~>[s0~<d1> - SKN(d2)]
l=l

where
dl _ ln(s0/sK) + o2T/2 pf

ow/T
_ 2dz _.ln(s0/sgi/To T/2 : dl _ U‘/T

so is the forward swap rate at time zero calculated as indicated in equation (27.23), and or
is the volatility of the forward swap rate (so that cm/T is the standard deviation of ln sT).

This is a natural extension of Black’s model. The volatility 0 is multiplied by \/T.
The P(0, T,-) term is the discount factor for the mn payoffs. Defining A as the value
of a contract that pays 1/m at times 7} (1 Q i < mn), the value of the swaption becomes

LA[SQN(d1) — SKN(d2)]

where
mn1

m izl
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If the swaption gives the holder the right to receive a fixed rate of sK instead of paying it,
the payoff from the swaption is  

L-—max(sK — sT, 0)
m

This is a put option on sT. As before, the payofis are received at times T, (1 < < mn).
The standard market model gives the value of the swaption as

LA[SKlV("-dz) -"' S0.N("d1)]

§

Example 28.4
Suppose that the LIBOR yield curve is flat at 6% per annum with continuous
compounding. Consider a swaption that gives the holder the right to pay 6.2% in
a 3-year swap starting in 5 years. The volatility of the forward swap rate is 20%.
Payments are made semiannually and the principal is $100 million. In this case,
A : %(e—0.06><5.5 +e—0.06x6+e—0.06><6.5 +e—0.06><7 +e—0.06><7.5 +e—0.06><8) :

A rate of 6% per annum with continuous compounding translates into 6.09%
with semiannual compounding. It follows that, in this example, s0 -= 0.0609,
sK = 0.062, T = 5, and 0 -—: 0.2, so that

10.6 .062 .22 52d1__“( 009/0 HO X / ._0.1s36 and d2=d1—-9.2x/§=—O.26360.2~/5
From equation (28.10), the value of the swaption (in $ millions) is

100 x 2.0035 >< [0.0609 x N(0.1836) — 0.062 x N(—0.2636)] = 2.07

or $2.07. (This is in agreement with the price given by DerivaGem.)

Broker Quotes  
Interdealer brokers provide tables of implied volatilities for European swaptions (i.e.,
values of 0 implied by market prices when equations (28.10) and (28.11) are used). The
instruments underlying the quotes are usually “at the money” in the sense that the
strike swap rate equals the forward swap rate. Table 28.2 shows typical broker quotes

/.,1
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Table 28.2 Typical broker quotes for US European swaptions
(mid-market volatilities percent per annum).

Expiration f Swap length (years)
1 2  3 4 5 7 10

1 month
3 months
6 months
l year
2 years
3 years
4 years
5 years
§¢»:':¢--yyx--lav?-1 (V _ ,,_._,._ ,. .4,» ‘_ _

17.75
19.50
20.00
22.50
22.00
21.50
20.75
20.00
~ -.~ :uv—\.'

'1 . .-. .‘

17.75
19.00
20.00
21.75
22.00
21.00
20.25
19.50

-..-‘ - 1.--_-7' I.-.~ lr'-'\; - -\

17.75
19.00
19.25
20.50
20.75
20.00
19.25
18.50

_'-.._~_.,. .. ._
-1. ;.

17.50
18.00
18.50
20.00
19.50
19.25
18.50
17.75
' "n; '

1 " __._'....7..s..--"1 \ ~

-
I
l
l
l
l
f
1

7.00
0

8.75
9.50
9.75
9.00
8.25
7.50

‘.1

.
1
f
§
l

l

.4

7.00
7.00
7.75
8.25
8.25
7.75

0
7.00

-
I
l
l
l
l
l
f

6.00
6.00
6.75
6.75
6.75
6.50

0
5.50
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provided for the US dollar market. The life of the option is shown on the vertical scale.
This varies from 1 month to 5 years. The life of the underlying swap at the maturity of
the option is shown on the horizontal scale. This varies from 1 to 10 years. The
volatilities in the l-year column of the table exhibit a hump similar to that discussed
for caps earlier. As we move to the columns corresponding to options on longer-lived
swaps, the hump persists but it becomes less pronounced.

Theoretical lustification for the Swaption Model
The extension of Black’s model used for swaptions can be shown to be internally
consistent by considering a world that is forward risk neutral with respect to the
annuity A. The analysis in Section 27.4 shows that:

1. The current value of any security is the current value of the annuity multiplied by
the expected value of

Security price at time T
Value of the annuity at time T

in this world (see equation (27.25)).
2. The expected value of the swap rate at time T in this world equals the forward

swap rate (see equation (27.24)).

The first result shows that the value of the swaption is

LAEA[max(sT — sK, 0)]

From the appendix to Chapter 14, this is

LA[EA ($r)N(d1) — SKN(d2)]
where

1n[EA(-ST)/SK] + <1’ T/2
rm/T

d2 _ ln[EA(sT)‘/3%]:— 0'2T/2 _ dl ax/-T /

d1_

The second result shows that EA(s;r) equals so. Taken together, the results lead to the
swap option pricing formula in equation (28.10). They show that interest rates can be
treated as constant for the purposes of discounting provided that the expected swap rate
is set equal to the forward swap rate.

The Impact of Day Count Conventions
The above formulas can be made more precise by considering day count conventions.
The fixed rate for the swap underlying the swap option is expressed with a day count
convention such as actual/365 or 30/360. Suppose that T0 = T and that, for the
applicable day count convention, the accrual fraction corresponding to the time period
between T,-_1 and T,- is a,-. (For example, if T,-_1 corresponds to March l and T,
corresponds to September 1 and the day count is actual/365, a,- : 184/365 = 0.5041.)
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The formulas that have been presented are then correct with the annuity factor A being
defined as

mn

A = ;a.P<0. T.)
As indicated by equation (27.23) the forward swap rate so is given by solving

s0A = P(0, T)— P(0, Tm”)  

GENERALIZATIQNS

We have presented three different versions of Black’s model: one for bond options, one
for caps, and one for swap options. Each of the models is internally consistent, but they
are not consistent with each other. For example, when future bond prices are log-
normal, future zero rates and swap rates are not lognormal; when future zero rates are
lognormal, future bond prices and swap rates are not lognormal.

The results can be generalized as follows:

1. Consider any instrument that provides a payoff at time T dependent on the value
of a bond observed at time T. Its current value is P(0, T) times the expected payoff
provided that expectations are calculated in a world where the expected price of
the bond equals its forward price.

2. Consider any instrument that provides a payoff at time T* dependent on the
interest rate observed at time T for the period between T and T *. Its current value
is P(0, T*) times the expected payoff provided that expectations are calculated in a
world where the expected value of the underlying interest rate equals the forward
interest rate.  
Consider any instrument that provides a payoff in the form of an annuity.
Suppose that the size of the annuity is determined at time T as a function of the
n-year swap rate at time T. Suppose also that annuity lasts for n years and
payment dates for the annuity are the same as those for the swap. The value of
the instrument is A times the expected payoff per year where (a) A is the current
value of the annuity when payments are at the rate $1 per year and (fa) expect-
ations are taken in a world where the expected future swap rate equals the
forward swap rate.

3.

The first of these results is a generalization of the European bond option model; the
second is a generalization of the cap/floor model; the third is a generalization of the
swaption model.

HEDGING INTEREST RATE DERIVATIVES

This section discusses how the material on Greek letters in Chapter 18 can be extended
to cover interest rate derivatives.

In the context of interest rate derivatives, delta risk is the risk associated with a shift
in the zero curve. Because there are many ways in which the zero curve can shift, many
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deltas can be calculated. Some alternatives are:

1. Calculate the impact of a l-basis-point parallel shift in the zero curve. This is
sometimes termed a DV0l.

2. Calculate the impact of small changes in the quotes for each of the instruments
3 used to construct the zero curve.
3. Divide the zero curve (or the forward curve) into a number of sections (or

buckets). Calculate the impact of shifting the rates in one bucket by l basis point,
keeping the rest of the initial term structure unchanged. (This is described in
Business Snapshot 6.3.)

4. Carry out a principal components analysis as outlined in Section 21.9. Calculate a
delta with respect to the changes in each of the first few factors. The first delta then
measures the impact of a small, approximately parallel, shift in the zero curve; the
second delta measures the impact of a small twist in the zero curve; and so on.

In practice, traders tend to prefer the second approach. They argue that the only way
the zero curve can change is if the quote for one of the instruments used to compute the
zero curve changes. They therefore feel that it makes sense to focus on the exposures
arising from changes in the prices of these instruments.

When several delta measures are calculated, there are many possible gamma measures.
Suppose that 10 instruments are used to compute the zero curve and that deltas are
calculated by considering the impact of changes in the quotes for each of these. Gamma
is a second partial derivative of the form 82I1/8x,-8x]-, where I1 is the portfolio value.
There are 10 choices for xi and 10 choices for x1- and a total of 55 different gamma
measures. This may be “information overload”. One approach is ignore cross-gammas
and focus on the 10 partial derivatives where i = j. Another is to calculate a single
gamma measure as the second partial derivative of the value of the portfolio with respect
to a parallel shift in the zero curve. A further possibility is to calculate gammas with
respect to the first two factors in a principal components analysis.

The vega of a portfolio of interest rate derivatives measures its exposure to volatility
changes. One approach is to calculate the impact on the portfolio of making the same
small change to the Blackvolatilities of all caps and European swap options. However,
this assumes that one factor drives all volatilities and may be too simplistic. A better
idea is to carry out a principal components analysis on the volatilities of caps and swap
options and calculate vega measures corresponding to the first 2 or 3 factors.

SUMMARY

Black’s model and its extensions provide a popular approach for valuing European-
style interest rate options. The essence of Black’s model is that the value of the variable
underlying the option is assumed to be lognormal at the maturity of the option. In the
case of a European bond option, Black’s model assumes that the underlying bond price
is lognormal at the option’s maturity. For a cap, the model assumes that the interest
rates underlying each of the constituent caplets are lognormally distributed. In the case
of a swap option, the model assumes that the underlying swap rate is lognormally
distributed. Each of these models is internally consistent, but they are not consistent
with each other.
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Black’s model involves calculating the expected payoff based on the assumption that
the expected value of a variable equals its forward value and then discounting the
expected payoff at the zero rate observed in the market today. This is the correct
procedure for the “plain vanilla” instruments we have considered in this chapter.
However, as we shall see in the next chapter, it is not correct in all situations.

FURTHER READING

Black, F., “The Pricing of Commodity Contracts,” Journal of Financial Economics, 3 (March
1976): 167-79. 5

Practice Questions (Answers in Solutions Manual)

28.1

28.2.
28.3

28.4.

28.5

28.6

28.7

28.8

28.9

28.10

A coinpany caps 3-month LIBOR at 10% per annum. The principal amount is
$20 million. On a reset date, 3-month LIBOR is 12% per annum. What payment would
this lead to under the cap? When would the payment be made‘?
Explain why a swap option can be regarded as a type of bond option.
Use the Black’s model to value a l-year European put option on a 10-year bond.
Assume that the current cash price of the bond is $125, the strike price is $110, the l-year
interest rate is 10% per annum, the bond’s forward price volatility is 8% per annum, and
the present value of the coupons to be paid during the life of the option is $10.
Explain carefully how you would use (a) spot volatilities and (b) flat volatilities to value
a 5-year cap. V
Calculate the price of an option that caps the 3-month rate, starting in 15 months’ time,
at 13% (quoted with quarterly compounding) on a principal amount of $1,000. The
forward interest rate for the period in question is 12% per annum (quoted with quarterly
compounding), the 18-month risk-free interest rate (continuously compounded) is 11.5%
per annum, and the volatility of the forward rate is 12% per annum.
A bank uses Black’s model to price European bond options. Suppose that an implied price
volatility for a 5-year option on a bond maturing in 10 years is used to price a 9-year
option on the bond. Would you expect the resultant price to be too high or tofi low‘?
Explain.
Calculate the value of a 4-year European call option on bond that will mature 5 years
from today using Black’s model. The 5-year cash bond price is $105, the cash price of a
4-year bond with the same coupon is $102, the strike price is $100, the 4-year risk-free
interest rate is 10% per annum with continuous compounding, and the volatility for the
bond price in 4 years is 2% per annum.
If the yield volatility for a 5-year put option on a bond maturing in 10 years time is
specified as 22%, how should the option be valued? Assume that, based on today’s
interest rates the modified duration of the bond at the maturity of the option will be
4.2 years and the forward yield on the bond is 7%.
What other instrument is the same as a 5-year zero-cost collar where the strike price of
the cap equals the strike price of the floor‘? What does the common strike price equal‘?
Derive a put—call parity relationship for European bond options.
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28.11

28.12

28.13

28.14.

28.15

28.16

28.17

28.18

28.19

28.20
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Derive a put»-call parity relationship for European swap options. 1
Explain why there is an arbitrage opportunity if the implied Black (flat) volatility of a
cap is different from that of a floor. Do the broker quotes in Table 28.1 present an
arbitrage opportunity‘?
When a bond’s price is lognormal can the bond’s yield be negative? Explain your answer.
What is the value of a European swap option that gives the holder the right to enter into
a 3-year annual-pay swap in 4 years where a fixed rate of 5% is paid and LIBOR is
received‘? The swap principal is $10 million. Assume that the yield curve is flat at 5% per
annum with annual compounding and the volatility of the swap rate is 20%. Compare
your answer with that given by DerivaGem.
Suppose that the yield R on a zero-coupon bond follows the process

dR = it dt + 0 dz '

where it and 0 are functions of R and t, and dz is a Wiener process. Use It6’s lemma to
show that the volatility of the zero-coupon bond price declines to zero as it approaches
maturity.

Carry out a manual calculation to verify the option prices in Example 28.2.
Suppose that the 1-year, 2-year, 3-year, 4-year, and 5-year zero rates are 6%, 6.4%,
6.7%, 6.9%, and 7%. The price of a 5-year semiannual cap with a principal of $100 at a
cap rate of 8% is $3. Use DerivaGem to determine:
(a) The 5-year flat volatility for caps and floors
(b) The floor rate in a zero-cost 5-year collar when the cap rate is 8%
Show that V1 + f = V2, where V1 is the value of a swaption to pay a fixed rate of sK and
receive LIBOR between times T1 and T2, f is the value of a forward swap to receive a
fixed rate of sK and pay LIBOR between times T1 and T2, and V2 is the value of a
swaption to receive a fixed rate of sKbetween times T1 and T2. Deduce that V1 = V2 when
sK equals the current forward swap rate.
Suppose that zero rates are as in Problem 28.17. Use DerivaGem to determine the value
of an option to pay a fixed rate of 6% and receive LIBOR on a 5-year swap starting in
1 year. Assume that the principal is $100 million, payments are exchanged semiannually,
and the swap rate volatility is 21%. /1
Describe how you would (a) calculate cap fiat volatilities from cap spot volatilities and
(b) calculate cap spot volatilities from cap fiat volatilities.

Further Questions 1

28.21 Consider an 8-month European put option on a Treasury bond that currently has 14.25
years to maturity. The current cash bond price is $910, the exercise price is $900, and the
volatility for the bond price is 10% per annum. A coupon of $35 will be paid by the
bond in 3 months. The risk-free interest rate is 8% for all maturities up to 1 year. Use
Black’s model to determine the price of the option. Consider both the case where the
strike price corresponds to the cash price of the bond and the case where it corresponds
to the quoted price.
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28.22. Calculate the price of a cap on the 90-day LIBOR rate in 9 months’ time when the
principal amount is $1,000. Use Black’s model and the following information:
(a) The quoted 9-month Eurodollar futures price = 92. (Ignore differences between

futures and forward rates.)
(b) The interest rate volatility implied by a 9-month Eurodollar option = 15% per

annum.
(c) The current 12-month interest rate with continuous compounding = 7.5% per

annum.
(d) The cap rate = 8% per annum. (Assume an actual/360 day count.)

28.23. Suppose that the LIBOR yield curve is flat at 8% with annual compounding. A swaption
gives the holder the right to receive 7.6% in a 5-year swap starting in 4 years. Payments
are made annually. The volatility of the forward swap rate is 25% per annum and the
principal is $1 million. Use Black’s model to price the swaption. Compare your answer
with that given by DerivaGem.

28.24. Use the DerivaGem software to value a 5-year collar that guarantees that the maximum
and minimum interest rates on a LIBOR-based loan (with quarterly resets) are 7% and
5%, respectively. The LIBOR zero curve (continuously compounded) is currently fiat at
6%. Use a flat volatility of 20%. Assume that the principal is $100.

28.25. Use the DerivaGem software to value a European swaption that gives you the right in
2 years to enter into a 5-year swap in which you pay a fixed rate of 6% and receive
floating. Cash flows are exchanged semiannually on the swap. The 1-year, 2-year, 5-year,
and 10-year zero-coupon interest rates (continuously compounded) are 5%, 6%, 6.5%,
and 7%, respectively. Assume a principal of $100 and a volatility of 15% per annum.
Give an example of how the swaption might be used by a corporation. What bond
option is equivalent to the swaption?

./'
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 Quanto
Adjustments

A popular two-step procedure for valuing a European-style derivative is: 1

1. Calculate the expected payoff by assuming that the expected value of each
4 underlying variable equals its forward value

2. Discount the expected payoff at the risk-free rate applicable for the time period
between the valuation date and the payoff date.

We first used this procedure when valuing FRAs and swaps. Chapter 4 shows that an
FRA can be valued by calculating the payoff on the assumption that the forward
interest rate will be realized and then discounting the payoff at the risk-free rate.
Similarly, Chapter 7 extends this, showing that swaps can be valued by calculating
cash flows on the assumption that forward rates will be realized and discounting the
cash flows at risk-free rates. Chapters 17 and 27 show that Black’s model provides a
general approach to valuing a wide range of European options and Black’s model is
an application of the two-step procedure. The models presented in Chapter 28 for bond
options, caps/floors, and swap options are all examples of the two-step procedure.

This raises the issue of whether it is always correct to value European;style interest
rate derivatives by using the two-step procedure. The answer is no! For nonstandard
interest rate derivatives, it is sometimes necessary to modify the two-step procedure so
that an adjustment is made to the forward value of the variable in the first step. This
chapter considers three types of adjustments: convexity adjustments, timing adjust-
ments, and quanto adjustments.

CONVEXITY ADIUSTMENTS

Consider first an instrument that provides a payoff dependent on a bond yield observed
at the time of the payoff.

Usually the forward value of a variable S is calculated with reference to a forward
contract that pays off ST — K at time T. It is the value of K that causes the contract to
have zero value. As discussed in Section 27.4, forward interest rates and forward yields
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are defined differently. A forward interest rate is the rate implied by a forward zero-
coupon bond. More generally, a forward bond yield is the yield implied by the forward
bond price.

Suppose that BT is the price of a bond at time T, yT is its yield, and the (bond pricing)
relationship between BT and yT is

Br = GUT)

Define F11 as the forward bond price at time zero for a transaction maturing at time T
and yo as the forward bond yield at time zero. The definition of a forward bond yield
means that

F0 = G()’0)

The function G is nonlinear. This means that, when the expected future bond price
equals the forward bond price (so that we are in a world that is forward risk neutral
with respect to a zero-coupon bond maturing at time T), the expected future bond yield
does not equal the forward bond yield.

This is illustrated in Figure 29.1, which shows the relationship between bond prices
and bond yields at time T. For simplicity, suppose that there are only three possible
bond prices, B1, B2, and B3 and that they are equally likely in a world that is forward
risk neutral with respect to P(t, T). Assume that the bond prices are equally spaced, so
that B2 — B1 = B3 — B2. The forward bond price is the expected bond price B2. The
bond prices translate into three equally likely bond yields: y1, yz, and y3. These are not
equally spaced. The variable y; is the forward bond yield because it is the yield
corresponding to the forward bond price- The expected bond yield is the average of
y1, yz, and y3 and is clearly greater than y2.

Consider a derivative that provides a payoff dependent on the bond yield at time T.
From equation (27.20), it can be valued by (a) calculating the expected payoff in a world
that is forward risk neutral with respect to a zero-coupon bond maturing at time T and
(b) discounting at the current risk-free rate for maturity T. We know that the expected
bond price equals the forward price in the world being considered. We therefore need to

"K72"I"§2"I7'_"T""I".'.Y '-1"-Cl :‘~‘!.X.="5?_‘-"'*¥.?l'.- \' .‘-1:." L.T...TT‘II.1L.Q.§,,."."'“I"7"?7l"I"I1' »'§‘.‘;Z'. ll‘I?!f.'I"J¢"..‘;;~£' _ 3 "LE 'i".l':'ifl.T.'S|.1.i1'Ii:'.‘ilZ~Y¢¢..'W_~!" .

Figure 29.1 Relationship between bond prices and bond yields at time T.
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know the value of the expected bond yield when the expected bond price equals the
forward bond price. The analysis in the appendix at the end of this chapter shows that
an approximate expression for the required expected bond yield is

Em) = Y0 - %y3@iT—‘é.—8~(‘§ (29.1)
where G’ and G” denote the first and second partial derivatives of G, ET denotes
expectations in a world that is forward risk neutral with respect to P(t, T), and 0, is the
forward yield volatility. It follows that the expected payoff can be discounted at the
current risk-free rate for maturity T provided the expected bond yield is assumed to be

//

_ 2 2 G (Y0)
I0 — %Y0UyTm

rather than yo. The difference between the expected bond yield and the forward bond
yield

_1 2 2TG//(Y0)
zyoay G'()’0)  

is known as a convexity adjustment. It corresponds to the difference between y2 and the
expected yield in Figure 29.1. (The convexity adjustment is positive because G'(y0) < 0
and G”(y0) > 0.)

Application 1: Interest Rates
For a first application of equation (29.1), consider an instrument that provides a cash
flow at time T equal to the interest rate between times T and T * applied to a principal of
L. (This example will be useful when we consider LIBOR-in-arrears swaps in Chapter
32.) Note that the interest rate applicable to the time period between times T and T* is
normally paid at time T*; here it is assumed that it is paid early, at time T.

The cash flow at time T is LRTr, where I = T* — T and RT is the zero-coupon interest
rate applicable to the period between T and T* (expressed with a compounding period
of r).1 The variable RT can be viewed as the yield at time T on a zero-coupon bond
maturing at time T*. The relationship between the price of this bond an/d its yield is

1G =i(r) 1+”
From equation (29.1),

2 2 G”(R0)E R :R -1R T?
Of

R1%of1tT
E R =R -—i 29.2T( T) 0+1 +110, < >

where R11 is the forward rate applicable to the period between T and T* and 011 is the
volatility of the forward rate.

1 As usual, for ease of exposition we assume actual/actual day counts in our examples.
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The value of the instrument is therefore

R1%o%1tTP0,TL R -—-( )T[0+l+R11t
Example 29.1

Consider a derivative that provides a payoff in 3 years equal to the 1-year zero-
coupon rate (annually compounded) at that time multiplied by $1000. Suppose
that the zero rate for all maturities is 10% per annum with annual compounding
and the volatility of the forward rate applicable to the time period between year 3
and year 4 is 20%. In this case, R0 : 0.10, UR : 0.20, T = 3, r = 1, and
P(0, 3) : 1/1.103 = 0.7513. The value of the derivative is

Z Z

0.7513><1000><1>< [0.10+0'l0 X020 “X31
1+0.l0xl

or $75.95. (This compares with a price of $75.13 when no convexity adjustment
is made.)

Application 2: Swap Rates
Consider next a derivative providing a payoff at time T equal to a swap rate observed at
that time. A swap rate is a par yield. For the purposes of calculating a convexity
adjustment we can make an approximation and assume that the N-year swap rate at
time T equals the yield at that time on an N-year bond with a coupon equal to today’s
forward swap rate. This enables equation (29.1) to be used.

Example 29.2
I Consider an instrument that provides a payoff in 3 years equal to the 3-year swap

rate at that time multiplied by $100. Suppose that payments are made annually on
the swap, the zero rate for all maturities is 12% per annum with annual com-
pounding, the volatility for the 3—year forward swap rate in 3 years (implied from
swap option prices) is 22%. When the swap rate is approximated as the yield on a
12% bond, the relevant function G(y) is /I

0.12 0.12 1.12G(y)_l + 2+ 3
+)’ (1+y) (1+y)

, 0.12 0.24 3.36
G (Y) “ it 2 3 4(1+r) (1+y) (1+r)

,, 0.24 0.72 13.44
G (Y) :5 3 T 4 T 5(1+r) (1+r) (1+r)

In this case the forward yield yo is 0.12, so that G'(y0):—2.4018 and
G”(y0) : 8.2546. From equation (29.1),

21.2546  ET(yT) : 0.12 +1 >< 0.122 >< 0.222 >< 3 >< : 0.1230
2.4018
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A forward swap rate of 0.1236 (= 12.36%) rather than 0.12 should therefore be
assumed when valuing the instrument. The instrument is worth I

 100><0.1236_8_80  
ru3

or $8.80. (This compares with a price of 8.54 obtained without any convexity
adjustment.) . .

TIMING ADIUSTMENTS

In this section consider the situation where a market variable V is observed at time T
and its valueis used to calculate a payoff that occurs at a later time T*. Define:

VT: Value of V at time T I
ET(VT): Expected value of VT in a world that is forward risk-neutral with respect to

P(t, T)
Expected value of VT in a world that is forward risk-neutral with respect to
P(t, T*). A A

ET*(l/T):

The numeraire ratio when we move from the P(t, T) numeraire to the P(t, T*) numeraire
(see Section 27.8) is 0 0

_ P(t, T*) B
W _ P(t, T) A

This is the forward price of a zero-coupon bond lasting between times T and T*.
Define: I

av: Volatility of V 1
aw: Volatility of W

pvwz Correlation between V and W.

From equation (27.35) the change of numeraire increases the growth rate of V by av,
where . /.

. (IV I DVWUVUW .

This result can be expressed in terms of the forward interest rate between times T and T *.
Define: 0 0

R: Forward interest rate for period between T and T*, expressed with a compound-
ing frequency of m I

011: Volatility of R. I

The relationship between W and R is

1W = ...(1+ R/m)'"<T "9  
The relationship between the volatility of W and the volatility of R can be calculated
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from It6’s lemma as
U 1 oRR(T* — T)

W T 1 + R/m
Hence equation (29.3) becomesz

__ PvR°'v<7RR(T* “ T)
(XV -- " " *

l+R/m

where p1/R : -pvw is the instantaneous correlation between V and R. As an approxi-
mation, it can be assumed that R remains constant at its initial value, R11, and that the
volatilities and correlation in this expression are constant to get, at time zero,

_ R r* - TtT..(vT)=ET(vT)@Xp[ "”R"“1‘:fI§(f/m H] (29.4)
Example 29.3

Consider a derivative that provides a payoff in 6 years equal to the value of a stock
index observed in 5 years. Suppose that 1,200 is the forward value of the stock
index for a contract maturing in 5 years. Suppose that the volatility of the index is
20%, the volatility of the forward interest rate between years 5 and 6 is 18%, and
the correlation between the two is —-0.4. Suppose further that the zero curve is flat
at 8% with annual compounding. The results just produced can be used with V
defined as the value of the index, T = 5, T* = 6, m = 1, R1) : 0.08, 101/R = -0.4,
av = 0.20, and 0R = 0.18, so that

-0.4 0.20 0.18 0.08 1ET*(VT) = ET(VT) exp‘: ~ X X - X X >< 5]1 + 0.08

or ET*(VT) = 1.00535ET(VT). From the arguments in Chapter 27, ET(VT) is the
forward price of the index, or 1,200.~It follows that ET*(VT) = 1,200 x 1.00535 =
1206.42. Using again the arguments in Chapter 27, it follows from equation (27.20)
that the value of the derivative is 1206.42 >< P(0, 6). In this case, P(0, 6) =
1/ 1.086 : 0.6302, so that the value of the derivative is 760.25.

Application 1 Revisited  
The analysis just given provides a different way of producing the result in Application 1
of Section 29.1. Using the notation from that application, RT is the interest rate between
T and T* and R11 as the forward rate for the period between time T and T*. From
equation (27.22),

ET*(RT) I‘-_

Applying equation (29.4) with V equal to R gives

O'%;ROT
ET*(RT) = ET(RT) @XP|:_ T17; T]

2 Variables R and W are negatively correlated. We can reflect this by setting ow : -—oR(T* —— T)/(1 + R/m),
which is a negative number, and setting p1/W = p1/R. Alternatively we can change the sign of ow so that it is
positive and set pvw := -p1/R. In either case, we end up with the same formula for av.
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where r = T* — T (note that m = 1/r). It follows that

R0 = Er(Rr) @X1i> —l
[ afikorr
‘_ 1 -l- ROT

OI 2
0 R TrEma = R.exp

Approximating the exponential function gives

R%,af1rT
E R =R AT( T) 0‘l‘1+R0T

This is the same result as equation (29.2).

QUANTOS
A quanto or cross-currency derivative is an instrument wh.ere two currencies are
involved. The payoff is defined in terms of a variable that is measured in one of the
currencies and the payoff is made in the other currency. One example of a quanto is the
CME futures contract on the Nikkei discussed in Business Snapshot 5.3. The market
variable underlying this contract is the Nikkei 225 index (which is measured in yen), but
the contract is settled in US dollars.

Consider a quanto that provides a payoff in currency X at time T. Assume that the
payoff depends on the value V of a variable that is observed in currency Y at time T.
Define:

PX-(t, T): Value at time t in currency X of a zero-coupon bond paying off 1 unit of
currency X at time T

P1/(t, T): Value at time t in currency Y of a zero-coupon bond paying off 1 unit of
currency Y at time T

VT: Value of V at time T
EX(VT): Expected value of VT in a world that is forward risk neutral with respect

to PX(t, T)
Expected value of VT in a world that is forward risk neutral/with respect
t0 P}/(I,

Erfvrli

The numeraire ratio when we move from the Py(t, T) numeraire to the PX(t, T)
numeraire is

W0) = S0)
where S(t) is the spot exchange rate (units of Y per unit of X) at time t. It follows from
this that the numeraire ratio W(t) is the forward exchange rate (units of Y per unit of X)
for a contract maturing at time T. Define:

aw Volatility of W 4
av: Volatility of V

pvw: Instantaneous correlation between V and W.
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From equation (27.35), the change of numeraire increases the growth rate of V by av,
where

‘Xv I PVWUVUW (29-5)

If it is assumed that the volatilities and correlation are constant, this means that

 EX<vT> = EY(vT>WW"v"WT
or as an approximation

Exfl/T) I E1/(VTX1 + /JVWUVUWT) (29-6)

This equation will be used for the valuation of what are known as diff swaps in
Chapter 32.

Example 29.4
Suppose that the current value of the Nikkei stock index is 15,000 yen, the l-year
dollar risk-free rate is 5%, the 1-year yen risk-free rate is 2%, and the Nikkei
dividend yield is 1%. The forward price of the Nikkei for a 1-year contract
denominated in yen can be calculated in the usual way from equation (5.8) as

15,000@<°-°2"“~°‘>><‘ = 15,150.75
Suppose that the volatility of the index is 20%, the volatility of the 1-year forward
yen per dollar exchange rate is 12%, and the correlation between the two is 0.3. In
this case Ey(VT) : 15,150.75, UF : 0.20, avv -: 0.12 and ,0: 0.3. From equa-
tion (29.6), the expected value of the Nikkei in a world that is forward risk neutral
with respect to a dollar bond maturing in 1 year is 4 4 5

 15,150.75@°'3><°~2><°~‘2><‘ = 15,260.23
This is the forward price of the Nikkei for a contract that provides a payoff in
dollars rather than yen. (As an approximation, it is also the futures price of such a
contract.) I

Using Traditional Risk-Neutral Measures
The forward risk-neutral measure works well when payoffs occur at only one time. In
other situations, it is often more appropriate to use the traditional risk-neutral measure.
Suppose the process followed by a variable V in the traditional currency-Y risk-neutral
world is known and we wish to estimate its process in the traditional currency-X risk-
neutral world. Define:

S: Spot exchange rate (units of Y per unit of X)
05: Volatility of S
av: Volatility of V

,0: Instantaneous correlation between S and V.

In this case, the change of numeraire is from the money market account in currency Y
to the money market account in currency X (with both money market accounts being
denominated in currency X). Define gx as the value of the money market account in
currency X and gv as the value of the money market account in currency Y. The
numeraire ratio is "

Qx S/Qr
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l Business Snapshot 29.1 Siegel’s Paradox

Consider two currencies, X and Y. Suppose that the interest rates in the two currencies,
rx and rv, are constant. Define S as the number of units of currency Y per unit of
currency X. As explained in Chapter 5, a currency is an asset that provides a yield at the
foreign risk-free rate. The traditional risk-neutral process for S is therefore I

» dS = (ry — rX)Sa't + aSSdz I
AI From Ito’s lemma, this implies that the process for 1/S is

 d(1/S):(rX - rY + @§><1/0 <4-<1S<1/swz  
This leads to what is known as Siegel’s paradox. Since the expected growth rate of S
is rv — rx in a risk-neutral world, symmetry suggests that the expected growth rate
of l/S should be rx — rv rather than rx — ry + a§. .

To understand Siegel’s paradox it is necessary to appreciate that the process we
have given for S is the risk-neutralprocess for S in a world where the numeraire is the
money market account in currency Y. The process for 1 /S, because it is deduced from
the process for S, therefore also assumes that this is the numeraire. Because 1 /S is the
number of units of X per unit of Y, to be symmetrical we should measure the process
for 1 /S in a world where the numeraire is the money market account in currency X.
Equation (29.7) shows that when we change the numeraire, from the money market
account in currency Y to the money market account in currency X, the growth rate of
a variable V increases by pavas, where p is the correlation between S and V. In this
case, V = l/S, so that p = —l and av = as. It follows that the change of numeraire
causes the growth rate of l/S to increase by —a§. This neutralizes the +o’§ in the

1: process given above for 1 /S. The process for 1/S in a world where the numeraire is
the money market account in currency X is therefore . -

d(l/S) = (rx - r1/)(l /s) at - aS(l /s) dz
This is symmetrical with the process we started with for S. The paradox has been

' .resolved.

The variables gX(t) and gv(t) have a stochastic drift but zero volatility as explained in
Section 27.4. From Ito’s lemma it follows that the volatility of the numefaire ratio is as.
The change of numeraire therefore involves increasing the expected growth rate of V by

pavas (29.7)

The market price of risk changes from zero to p05. An application of this result is to
Siegel’s paradox (see Business Snapshot 29.1).

Example 29.5
A 2-year American option provides a payoff of S — K pounds sterling where S is
the level of the S&P 500 at the time of exercise and K is the strike price. The
current level of the S&P 500 is 1,200. The risk-free interest rates in sterling and
dollars are both constant at 5% and 3%, respectively, the correlation between the
dollars/sterling exchange rate and the S&P 500 is 0.2, the volatility of the S&P 500



Convexity, Timing, and Quanta Adjustments 677

is 25%, and the volatility of the exchange rate is 12%. The dividend yield on the
S&P 500 is 1.5%.

This option can be valued by constructing a binomial tree for the S&P 500
using as the numeraire the money market account in the UK (i.e., using the
traditional risk-neutral world as seen from the perspective of a UK investor).
From equation (29.7), the change in numeraire from the US to UK money market
account leads to an increase in the expected growth rate in the S&P 500 of

0.2 >< 0.25 >< 0.12 : 0.006

or 0.6%. The growth rate of the S&P 500 using a US dollar numeraire is
3% —— 1.5% : 1.5%. The growth rate using the sterling numeraire is therefore
2.1%. The risk-free interest rate in sterling is 5%. The S&P 500 therefore behaves
like an asset providing a dividend yield of 5% -— 2.1% : 2.9% under the sterling
numeraire. Using the parameter values of S : 1,200, K : 1,200, r : 0.05,
q : 0.029, a : 0.25, and T : 2 with 100 time steps, DerivaGem estimates the
value of the option as £179.83.

SUMMARY

When valuing a derivative providing a payoff at a particular future time it is natural to
assume that the variables underlying the derivative equal their forward values and
discount at the rate of interest applicable from the valuation date to the payoff date.
This chapter has shown that this is not always the correct procedure.

When a payoff depends on a bond yield y observed at time T the expected yield
should be assumed to be higher than the forward yield as indicated by equation (29.1).
This result can be adapted for situations where a payoff depends on a swap rate. When
a variable is observed at time T but the payoff occurs at a later time T* the forward
value of the variable should be adjusted as indicated by equation (29.4). When a
variable is observed in one currency but leads to a payoff in another currency the
forward value of the variable should also be adjusted. In this case the adjustment is
shown in equation (29.6). if

These results will be used when nonstandard swaps are considered in Chapter 32.

FURTHER READING

Brotherton-Ratcliffe, R., and B. Iben, “Yield Curve Applications of Swap Products,” in
Advanced Strategies in Financial Risk Management (R. Schwartz and C. Smith, eds.). New
York Institute of Finance, 1993.

Jamshidian, F ., “Corralling Quantos,” Risk, March (1994): 71-75.

Reiner, E., “Quanto Mechanics,” Risk, March (1992), 59—63.
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Practice Questions (Answers in Solutions Manual)

29.1

29.2.

29.3

29.4

29.5

29.6

29.7

Explain how you would value a derivative that pays off 100R in 5 years, where R is the
l-year interest rate (annually compounded) observed in 4 years. What difference would it
make if the payoff were in (a) 4 years and (b) 6 years‘?

Explain whether any convexity or timing adjustments are necessary when:
(a) We wish to value a spread option that pays off every quarter the excess (if any) of the

5-year swap rate over the 3-month LIBOR rate applied to a principal of $100. The
payoff occurs 90 days after the rates are observed.

(b) We wish to value a derivative that pays off every quarter the 3-month LIBOR rate
minus the 3-month Treasury bill rate. The payoff occurs 90 days after the rates are
observed.

Suppose that in Example 28.3 of Section 28.2 the payoff occurs after 1 year (i.e., when
the interest rate is observed) rather than in 15 months. What difference does this make to
the inputs to Black’s model‘?
The yield curve is fiat at 10% per annum with annual compounding. Calculate the value
of an instrument where, in 5 years’ time, the 2-year swap rate (with annual compounding)
is received and a fixed rate of 10% is paid. Both are applied to a notional principal of
$100. Assume that the volatility of the swap rate is 20% per annum. Explain why the
value of the instrument is different from zero.

What difference does it make in Problem 29.4 if the swap rate is observed in 5 years, but
the exchange of payments takes place in (a) 6 years, and (b) 7 years? Assume that the
volatilities of all forward rates are 20%. Assume also that the forward swap rate for the
period between years 5 and 7 has a correlation of 0.8 with the forward interest rate
between years 5 and 6 and a correlation of 0.95 with the forward interest rate between
years 5 and 7.

The price of a bond at time T, measured in terms of its yield, is G(yT). Assume geometric
Brownian motion for the forward bond yield y in a world that is forward risk neutral
with respect to a bond maturing at time T. Suppose that the growth rate of the forward
bond yield is a and its volatility ay.
(a) Use Ito’s lemma to calculate the process for the forward bond price in terms of a,

ay, y, and G(y). 1/,
(b) The forward bond price should follow a martingale in the world considered. Use

this fact to calculate an expression for a.
(c) Show that the expression for a is, to a first approximation, consistent with

equation (29.1).
The variable S is an investment asset providing income at rate q measured in currency A.
It follows the process

dS = ,u.SSdt + a5Sdz

in the real world. Defining new variables as necessary, give the process followed by S,
and the corresponding market price of risk, in:
(a) A world that is the traditional risk-neutral world for currency A
(b) A world that is the traditional risk-neutral world for currency B
(c) A world that is forward risk neutral with respect to a zero-coupon currency A bond

maturing at time T
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(d) A world that is forward risk neutral with respect to a zero-coupon currency B bond
maturing at time T.

29.8. A call option provides a payoff at time T of max(ST — K, 0) yen, where ST is the dollar
price of gold at time T and K is the strike price. Assuming that the storage costs of gold
are zero and defining other variables as necessary, calculate the value of the contract.

29.9. Supposethat an index of Canadian stocks currently stands at 400. The Canadian dollar
is currently worth 0.70 US dollars. The risk-free interest rates in Canada and the US are
constant at 6% and 4%, respectively. The dividend yield on the index is 3%. Define Q as
the number of Canadian dollars per U.S dollar and S as the value of the index. The
volatility of S is 20%, the volatility of Q is 6%, and the correlation between S and Q is
0.4. Use DerivaGem to determine the value of a 2-year American-style call option on the
index if:
(a) It pays off in Canadian dollars the amount by which the index exceeds 400.
(b) It pays off in US dollars the amount by which the index exceeds 4-00.

Further Questions

29.10. Consider an instrument that will pay off S dollars in 2 years, where S is the value of the
Nikkei index. The index is currently 20,000. The yen/dollar exchange rate is 100 (yen per
dollar). The correlation between the exchange rate and the index is 0.3 and the dividend
yield on the index is 1% per annum. The volatility of the Nikkei index is 20% and the
volatility of the yen/dollar exchange rate is 12%. The interest rates (assumed constant) in
the US and Japan are 4% and 2%, respectively.
(a) What is the value of the instrument?
(b) Suppose that the exchange rate at some point during the life of the instrument is Q

and the level of the index is S. Show that a US investor can create a portfolio that
changes in value by approximately AS dollar when the index changes in value by
AS yen by investing S dollars in the Nikkei and shorting SQ yen.

(c) Confirm that this is correct by supposing that the "index changes from 20,000
to 20,050 and the exchange rate changes from 100 to 99.7.

(d) How would you delta hedge the instrument under consideration?
-r

29.11. Suppose that the LIBOR yield curve is flat at 8% (with continuous compounding). The
payoff from a derivative occurs in 4 years. It is equal to the 5-year rate minus the 2-year
rate at this time, applied to a principal of $100 with both rates being continuously
compounded. (The payoff can be positive or negative.) Calculate the value of the
derivative. Assume that the volatility for all rates is 25%. What difference does it make
if the payoff occurs in 5 years instead of 4 years? Assume all rates are perfectly
correlated.

29.12. Suppose that the payoff from a derivative will occur in 10 years and will equal the
3-year US dollar swap rate for a semiannual-pay swap observed at that time applied to
a certain principal. Assume that the yield curve is flat at 8% (semiannually com-
pounded) per annum in dollars and 3% (semiannually compounded) in yen. The
forward swap rate volatility is 18%, the volatility of the 10-year “yen per dollar”
forward exchange rate is 12%, and the correlation between this exchange rate and US
dollar interest rates IS 0.25.
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(a) What is the value of the derivative if the swap rate is applied to a principal of
$100 million so that the payoff is in dollars?

(b) What is its value of the derivative if the swap rate is applied to a principal of
100 million yen so that the payoff is in yen?

29.13. The payoff from a derivative will occur in 8 years. It will equal the average of the l-year
interest rates observed at times 5, 6, 7, and 8 years applied to a principal of $1,000. The
yield curve is fiat at 6% with annual compounding and the volatilities of all rates are
16%. Assume perfect correlation between all rates. What is the value of the derivative?

/'
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APPENDIX
PROOF OF THE CONVEXITY ADIUSTMENT FORMULA

This appendix calculates a convexity adjustment for forward bond yields. Suppose
that the payoff from a derivative at time T depends on a bond yield observed at that
time. Define:

yo: Forward bond yield observed today for a forward contract with maturity T
yT: Bond yield at time T
BT: Price of the bond at time T
ay: Volatility of the forward bond yield.

Suppose that
Br = Gfyrl

Expanding G(yT) in a Taylor series about yT = yo yields the following approximation:

BT -- G00 + 01 - ywoa + 050T - y0>2G"<y0>
where G’ and G" are the first and second partial derivatives of G. Taking expectations
in a world that is forward risk neutral with respect to a zero-coupon bond maturing at
time T gives

ET(BT) = G00) + Erfyr — r0)G'(r<>) + %Er[(rT —- v0)2]G"(r0)
where ET denotes expectations in this world. The expression G(y11) is by definition the
forward bond price. Also, because of the particular world we are working in, ET(BT)
equals the forward bond price. Hence ET(BT) -—= G(y11), so that

E101 - >»@>G'o0> + T151101 - v0)2lG"(r0) = 0
The expression ET[(yT - y11)2] is approximately a§y%T. Hence it is approximately true
that

G"(v )T Erfyrl = Y0 '- %)’0<TiT"é-,"(')j0Q;
/=

This shows that, to obtain the expected bond yield in a world that is forward risk
neutral with respect to a zero-coupon bond maturing at time T, the term

G"(v )_liy%U§T_.7___°_
G (Y0)

should be added to the forward bond yield. This is the result in equation (29.1). For an
alternative proof, see Problem 29.6.
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Interest Rate
’ Derivatives:

Models of the
Short Rate

The models for pricing interest rate options that we have presented so far make the
assumption that the probability distribution of an interest rate, a bond price, or some
other variable at a future point in time is lognormal. They are widely used for valuing
instruments such as caps, European bond options, and European swap options.
However, they have limitations. They do not provide a description of how interest rates
evolve through time. Consequently, they cannot be used for valuing interest rate
derivatives that are American-style or structured notes.

This chapter and the next discuss alternative approaches for overcoming these limita-
tions. These involve building what is known as a term structure model. This is a model
describing the evolution of all zero-coupon interest rates.1 This chapter focuses on term
structure models constructed by specifying the behavior of the short-term interest rate, r.

BACKGROUND

The short rate, r, at time t is the rate that applies to an infinitesimally sho;t period of time
at time t. It is sometimes referred to as the instantaneous short rate. Bond prices, option
prices, and other derivative prices depend only on the process followed by r in a risk-
neutral world. The process for r in the real world is irrelevant. As explained in Chapter 27,
the traditional risk-neutral world is a world where, in a very short time period between t
and t + At, investors earn on average r(t) At. All processes for r that will be considered in
this chapter, except where otherwise stated, are processes in this risk-neutral world.

From equation (27. 19), the value at time t of an interest rate derivative that provides a
payoff of fT at time T is

E1@""’*‘>fT1 (301)
where F is the average value of r in the time interval between t and T, and E denotes
expected value in the traditional risk-neutral world.

l Note that when a term structure model is used we do not need to make the convexity, timing, and quanto
adjustments discussed in the previous chapter.
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As usual, define P(t, T) as the price at time t of a zero-coupon bond that pays off $1 at
time T. From equation (30.1),

P(t, r) = r3:[@""<’"*‘>] (30.2)
If R(t, T) is the continuously compounded interest rate at time t for a term of T —— t,
then

P(t, r) -_= @"R<”T><T*’> (30.3)
so that

1R(t, T) : -T_—iln P(t, T) (30.4)
and, from equation (30.2),

1 A _— _R(t, T) -.1 -?———ln E[e “T ‘>1 (30.5)—t
This equation enables the term structure of interest rates at any given time to be
obtained from the value of r at that time and the risk-neutral process for r. It shows
that, once the process for r has been defined, everything about the initial zero curve and
its evolution through time can be determined.

EQUILIBRIUM MODELS

Equilibrium models usually start with assumptions about economic variables and
derive a process for the short rate, r. They then explore what the process for r implies
about bond prices and option prices.

In a one-factor equilibrium model, the process for r involves only one source of
uncertainty. Usually the risk-neutral process for the short rate is described by an It6
process of the form

dr —_- m(r) dt + s(r) dz

The instantaneous drift, m, and instantaneous standard deviation, s, are assumed to
be functions of r, but are independent of time. The assumption of a single factor is
not as restrictive as it. might appear. A one-factor model implies that all rates move in
the same direction over any short time interval, but not that they all move by the same
amount. The shape of the zero curve can therefore change with the passage of time.

This section considers three one-factor equilibrium models:

m(r) :: ur; s(r) = ar (Rendleman and Bartter model)
m(r) : a(b — r); s(r) = a (Vasicek model)
m(r) = a(b — r); s(r) : 0'0 (Cox, Ingersoll, and Ross model)

The Rendleman and Bartter Model
In Rendleman and Bartter’s model, the risk-neutral process for r isz

dr : urdt + ardz

2 See R. Rendleman and B. Bartter, “The Pricing of Options on Debt Securities,” Journal of Financial and
Quantitative Analysis, 15 (March 1980): 11—24.
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where l/L and a are constants. This means that r follows geometric Brownian motion. The
process for r is of the same type as that assumed for a stock price in Chapter 14. It can be
represented using a binomial tree similar to the one used for stocks in Chapter 12.3

The assumption that the short-term interest rate behaves like a stock price is a natural
starting point but is less than ideal. One important difference between interest rates and
stock prices is that interest rates appear to be pulled back to some long-run average level
over time. This phenomenon is known as mean reversion. When r is high, mean
reversion tends to cause it to have a negative drift; when r is low, mean reversion tends
to cause it to have a positive drift. Mean reversion is illustrated in Figure 30.1. The
Rendleman and Bartter model does not incorporate mean reversion. I

There are compelling economic arguments in favor of mean reversion. When rates are
high, the economy tends to slow down and there is low demand for funds from
borrowers. As a result, rates decline. When rates are low, there tends to be a high demand
for funds on the part of borrowers and rates tend to rise.

The Vasicek Model
In Vasicek’s model, the risk-neutral process for r is

dr = a(b — r)dt + adz

where a, b, and a are constants.4 This model incorporates mean reversion. The short
rate is pulled to a level b at rate a. Superimposed upon this “pull” is a normally
distributed stochastic term adz.

3 The way that the interest rate tree is used is explained later in the chapter.

4 See O.A. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of Financial
Economics, 5 (1977): 177-88.
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Vasicek shows that equation (30.2) can be used to obtain the following expression for
the price at time t of azero-coupon bond that pays $1 at time T:

P(t, T) = A(t, T)e'B("T)’(‘) (30.6)
In this equation r(t) is the value of r at time t,

1 __ e—-d(T—l)

B(t, T) -_ a (30.7)
and 0

A(t, T) = exp [(39 T) " T ’;2‘)(“2" " 0'2/2) . “Z322 772] (30.8)

When 6 = 0, B(t, T) = T -1 and A(t, T) = €Xp[o'2(T - r)3/6].

The Cox, Ingersoll, and Ross Model
Cox, Ingersoll, and Ross (CIR) have proposed an alternative model, wheres

dr = a(b - r) dt + afidz

This has the same mean-reverting drift as Vasicek, but the standard deviation of the
change in the short rate in a short period of time is proportional to x/F. This means
that, as the short-term interest rate increases, the standard deviation increases.

CIR show that, in their model, bond prices have the same general form as those in
Vasicek’s model,

P(t, T) = A(t, T)e"B("T)’(‘)
but the functions B(t, T) and A(t, T) are different:

2(@Y<’""‘> - 1)
B ,T -ff ) (r+a)(@"T“)—1)+2r

and

Alt’ T) T (r +a)(eY<T"‘> —~ 1) + Zvl
I [ 2)/e(a+)/)(T-t)/2 2ab/a2 f

with y = \/a2 + 2a2.

Properties of Vasicek and CIR
The A(t, T) and B(t, T) functions are different for Vasicek and CIR, but for both
models

P(t, T) = A(t, T)e"B(‘:T)’(‘)
so that

9-ii-(ttgl = -B(t, T)P(t, T) (30-9)

5 See J.C. Cox, J.E. Ingersoll, and S.A. Ross, “A Theory of the Term Structure of Interest Rates,”
Econometrica, 53 (1985): 385-407.
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Figure 30.2 Possible shapes of term structure in the Vasicek and CIR models.
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From equation (30.4), the zero rate at time t for a period of T - t is

I’ T T - r ’ T -- t ’ rR(t T) - 1 ln A(t T) + 1 B(t T) (t)

This shows that the entire term structure at time t can be determined as a function of
r(t) once a, b, and a have been chosen. The rate R(t, T) is linearly dependent on r(t).6
This means that the value of r(t) determines the level of the term structuré at time t. The
shape of the term structure at time t is independent of r(t), but does depend on t. As
shown in Figure 30.2, the shape at a particular time can be upward sloping, downward
sloping, or slightly “humped.”

In Chapter 4, we saw that the duration D of a bond or other instrument dependent
on interest rates, which has a price of Q, is defined so that

A Q— = —DAQ Y

where A Q is the change in Q for a small parallel shift in the yield curve equal to Ay. An

6 Some researchers have developed two-factor equilibrium models that give a richer set of possible
movements in the term structure than either Vasicek or CIR. See, for example, F .A. Longstaff and E.S.
Schwartz, “Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model,”
Journal of Finance, 47, 4 (September 1992): 1259-82.
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alternative duration measure D, which can be used in conjunction with Vasicek or CIR, is

AQ/Q : -15 Ar
or equivalently

8Q/8r = -15Q
When Q is the zero-coupon bond, P(t, T), equation (30.9) shows that T) : B(t, T).

Example 30.1 0
Consider a zero-coupon bond lasting 4 years. In this case, D = 4, so that a l0-basis-
point (0.1%) parallel shift in the term structure leads to a decrease of approximately
0.4% in the bond price. If Vasicek’s model is used with a : 0.1,

A 1__-0.lX4

D:B(0,4):( 31 )_3.29
This means that a 10-basis-point increase in the short rate leads to a decrease in
the bond price that is approximately 0.329%. The sensitivity of the bond price to
movements in the short rate is less than to parallel shifts in the zero curve because
of the impact of mean reversion.

ToWhen Q is a portfolio of n zero-coupon bonds, P(t, Ti) (1 <
principal of the ith bond, we have

< n), and c,- is the

A l 8Q l ” 8P(t, T,-) " c,-P(t, T,-) A
 I) Q8r Qgc’ 8r Q D’

where 15,- is the 13 for P(t, T,~). This shows that the 15 for a coupon-bearing bond can be
calculated as a weighted average of the l3’s for the underlying zero—coupon bonds,
similarly to the way the usual duration measure D is calculated (see Table 4.6).
A convexity measure for Vasicek and CIR can be defined similarly to the duration
measure (see Problem 30.22).

The expected growth rate of P(t, T) in the traditional risk-neutral world at time tis
r(t) because P(t, T) is the price of a traded security. Since P(t, T) is a function of r(t), the
coefficient of dz(t) in the process for P(t, T) can be calculated from Ito’s lemma as
0 8P(t, T)/8r(t) for Vasicek and ofi 8P(t, T)/8r(t) for CIR. Substituting from ecpiation
(30.9), the processes for P(t, T) in a risk-neutral world are therefore

Vasicek: dP(t, T) : r(t)P(t, T) - orB(t, T)P(t, T) dz(t)

CIR: dP(t, T) = r(t)P(t, T) - U,/}® B(t, T)P(t, T) ago)
To compare the term structure of interest rates given by Vasicek and CIR for a

particular value of r, it makes sense to use the same a and b. However, the Vasicek 0,
om, should be chosen to be approximately equal to the CIR 0, om, times For
example, if r is 4% and ova, :0.0l, an appropriate value for the 00,, would be
0.01/\/0.04 :1 0.05. Vasicek gives lower zero-coupon bond yields than CIR. Software
for experimenting with the models is at WWW.rotrr1an.ut0ronto.ca/~hu11/VasicekC‘IR.
Under Vasicek, r can become negative. This is not possible under CIR.7

7 In CIR, when interest rates get close to zero, the variability of interest rates becomes very small. In all
circumstances, negative interest rates are not possible. Zero interest rates are not possible when 2ab 2 o .
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Applications of Equilibrium Models
As will be discussed in the next section, when derivatives are being valued it is
important that the model used provides an exact fit to the current term structure of
interest rates. However, when a Monte Carlo simulation is being carried out over a long
period of time for the purposes of scenario analysis, the equilibrium models discussed
in this section can be useful tools. A pension fund or insurance company that is
interested in the value of its portfolio in 20 years is likely to feel that the precise shape
of the current term structure of interest rates has relatively little bearing on its risks.

Once one of the models we have discussed has been chosen, one approach is to
determine the parameters from past movements in the short-term interest rate. Data can
be collected on daily, weekly, or monthly changes in the short rate and parameters can
be determined using linear regression or the maximum-likelihood approach discussed in
Section 22.5. Another approach is to use the analytic results to provide as good a fit as
possible to the prices of bonds that trade in the market.

There is an important difference between the two approaches. The first approach
(fitting historical data) provides parameter estimates in the realworld. The second
approach (fitting bond prices) provides parameter estimates in the risk-neutral world.
When carrying out a scenario analysis, we are interested in modeling the behavior of the
short rate in the real world. However, we are also likely to be interested in knowing the
complete term structure of interest rates at different times during the life of the Monte
Carlo simulation. For this we need risk-neutral parameter estimates.

When we move from the real world to the risk-neutral world, the volatility of the
short rate does not change, but the drift does. To determine the change in the drift, it is
necessary to make an estimate of the market price of interest rate risk. Ahmad and
Wilmott do this by comparing the slope of the zero-coupon yield curve with the real-
world drift of the short-term interest rate.8 Their estimate of the long-term average
market price of interest rate risk for US interest rates is about -1.2. There is a
considerable variation in their estimate of the market price of interest rate risk through
time. During stressed market conditions, when the “fear factor” is high (for example,
during the 2007-2009 credit crisis), the market price of interest rate risk was found to be
a much larger negative number than -1.2.

Example 30.2 I
Suppose that the discrete version of Vasicek’s model 4/

Ar: a(b-—r)At+o'e\/tit g

is used to fit weekly data on a short-term interest rate over a period of 10 years for
the purposes of a Monte Carlo simulation. The model parameters can be estimated
by regressing Ar on r. Alternatively, maximum-likelihood methods can be used. If
r,- is the short-rate at the end of week i (0 < i < m), then the likelihood function is

h(U2At) In ~ ri—1 — a(b ~— F,-i)4fl2)
1.21 L o2At

where At : l/52. Suppose that the best-fit values of a, b, and 0 are a : 0.2,

8 See R. Ahmad and P. Wilmott, “The Market Price of Interest-Rate Risk: Measuring and Modeling Fear
and Greed in the Fixed-Income Markets,” Wilmott, January 2007, 64-70.
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b : 0.04, and 0 : 0.01. (These parameters indicate that the short rate reverts
to 4.0% with a reversion rate of 20%. The volatility of the short rate at any given
time is 1% divided by the short rate.) The short rate can then be simulated in the
real world.

To determine the risk-neutral process for r, we note that the proportional drift
of r is a(b — r)/r and its volatility is o/r. From the results in Chapter 27, the
proportional drift reduces by Ao/r when we move from the real world to the risk-
neutral world where A is the market price of interest rate risk. The process for r in
the risk-neutral world is therefore

dr : [a(b — r) — Ao']dt + odz
or

dr : [a(b* — r)] dt + odz
where

b* : b — A0/a

Given the Ahmad and Wilmott results, we might choose to set A : -1.2, so that
b* : 0.04 + 1.2 >< 0.01/0.2 = 0.1. Equations (30.6) to (30.8) (with b = b*) can
then be used to determine the complete term structure of interest rates at any
point during the Monte Carlo simulation.  

Example 30.3
The Cox—Ingersoll~Ross model

dr : a(b — r) dt + ox/rdz

can be used to value bonds of any maturity using the model’s analytic results.
Suppose that the values of a, b, and 0 that minimize the sum of the squared
differences between the market prices of a set of bonds and the prices given by the
model are a : 0.15, b : 0.06, and 0 = 0.05. These values of the parameters give a
best-fit risk-neutral process for the short-term interest rate. In this case, the pro-
portional drift in the short rate is a(b — r)/r and the volatility of the short rate
0/ From the results in Chapter 27, the proportional drift increases by A0/\/F
when we move from the risk-neutral world to the real world where A is the market
price of interest rate risk. The real-world process for r is therefore

dr : [a(b — r) + Aox/r]dt + ofidz

This can be used to simulate the process for the short rate in the real world.9 At
any given time longer rates can be determined using the risk-neutral process and
analytic results. As before, we might choose to set A = —1.2.

NO-ARBITRAGE MODELS

The disadvantage of the equilibrium models we have presented is that they do not
automatically fit today’s term structure of interest rates. By choosing the parameters
judiciously, they can be made to provide an approximate fit to many of the term
structures that are encountered in practice. But the fit is not an exact one. Most traders
1-M-1-ii-it-i—

9 In moving between the real world and the risk-neutral world for the Cox—Ingersoll—Ross model, it can be
convenient to assume that A is proportional to ,/F or l /\/F, so as to preserve the functional form for the drift.



CHAPTER 30

find this unsatisfactory. Not unreasonably, they argue that they can have very little
confidence in the price of a bond option when the model used does not price the
underlying bond correctly. A 1% error in the price of the underlying bondmay lead to
a 25% error in an option price. s 6 6

A no-arbitrage model is a model designed to be exactly consistent with today’s term
structure of interest rates. The essential difference between an equilibrium and a no-
arbitrage model is therefore as follows. In an equilibrium model, today’s termstructure
of interest rates is an output. In a no-arbitrage model, today’s term structure of interest
rates 1S an input.

In an equilibrium model, the drift of the short rate (i.e., the coefficient of dt) is not
usually a function of time. In a no-arbitrage model, the drift is, in general, dependent
on time. This is because the shape. of the initial zero curve governs the average path
taken by the short rate in the future in a no-arbitrage model. If the zero curve is steeply
upward-sloping for maturities between t1 and t2, then r has a positive drift between
these times; if itis steeply downward-sloping for these maturities, then r has fa negative
drift between these times. s s 6

It turns out that some equilibrium models can be converted to no-arbitrage models by
including a function of time in the drift of the short rate. We now consider the Ho—Lee,
Hull—White (one: and two-factor), Black—Derman—Toy, and Black—Karasinski models.

The H0-Lee Model g
Ho and Lee proposed the first no-arbitrage model of the term structure in a paper in
1986.10 They presented the model in the form of a binomial tree of bond prices with
two parameters: the short-rate standard deviation and the market price of risk of the
short rate. It has since been shown that the continuous-time limit of the model in a risk-
neutral world is s s s s

A dr = Q(t) dt + odz A A (30.10)

where 0, the instantaneous standard deviation of the short rate, is constant and 6l(t) is a
function of time chosen to ensure that the model fits the initial term structure. The
variable Q(t) defines the average direction that r moves at time t. This is independent of
the level of r. Ho and Lee’s parameter that concerns the market price of risk is
irrelevant when the model is used to price interest rate derivatives. /. .

The variable 6(t) can be calculated analytically (see Problem 30.13). It is g

 en) = iF,(0, 1:) + O'2I  (30.11)
where the F(0, t) is the instantaneous forward rate for a maturity tas seen at time zero and
the subscript t denotes a partial derivative with respect to t. As an approximation, 6(t)
equals Ft(0, t). This means that the average directionthat the short rate will be moving in
the future is approximately equal to the slope of the instantaneous forward curve. The
Ho—Lee model is illustrated in Figure 30.3. Superimposed onthe average movement in
the short rate is the normally distributed random outcome. 4 A

, In the Ho—Lee model, zero-coupon bonds and Europeanoptions on zero-coupon
bonds can be valued analytically. The expression for the price of a zero-coupon bond at

'0 See T. S. Y. Ho and S.-B; Lee, “Term Structure Movements and Pricing Interest Rate Contingent Claims,”
Journal of Finance, 41 (December 1986): 1011-29. g , ,
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Figure 30.3 The Ho-Lee model.
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time t in terms of the short rate is

P(t, T) = A(t, T)e"’(’)(T") (30.12)
where

In A(t, T) : ln + (T - t)F(0, 1:) _ %()'21f(T - Q2

In these equations, time zero is today. Times t and T are general times in the future with
T 2 t. The equations, therefore, define the price of a zero-coupon bond at a future time t
in terms of the short rate at time t and the prices of bonds today. The latter can be
calculated from today’s term structure.

The Hull~White (One-Factor) Model ”
In a paper published in 1990, Hull and White explored extensions of the Vasicek model
that provide an exact fit to the initial term structure.“ One version of the extended
Vasicek model that they consider is

dr : [6(t) - ar] dt + odz (30.13)
or

dr:a[€£Q—r] dt+odz
a

where a and o are constants. This is known as the Hull—White model. It can be
characterized as the Ho-Lee model with mean reversion at rate a. Alternatively, it

H See J. Hull and A. White, “Pricing Interest Rate Derivative Securities,” Review of Financial Studies, 3,
4 (1990): 573-92.
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can be characterized as the Vasicek model with a time-dependent reversion level. At
time t, the short rate reverts to 6(t)/a at rate a. The Ho-Lee model is a particular case of
the Hull-White model with a = 0.

The model has the same amount of analytic tractability as Ho-Lee. The 6(t) function
can be calculated from the initial term structure (see Problem 30.14):

I 6(t) : F,(0, t) + aF(0, t) + %g(1 - e72”) (30.14)

The last term in this equation is usually fairly small. If we ignore it, the equation implies
that the drift of the process for r at time t is F,(0, t) + a[F(0, t) - r]. This shows that, on
average, r follows the slope of the initial instantaneous forward rate curve. When it
deviates from that curve, it reverts back to it at rate a. The model is illustrated in
Figure 30.4.

Bond prices at time t in the Hull-White model are given by

P(t, T) = A(t, T)@"B<‘*T>’<‘> (30.15)
where

. 1 _ 6-“(Tr-I)
B(t, T) - a (30.16)

and

in A0: T) = In + B0 T)F(0, 0 - ;6i;a2<e""“T - e-“*)2(er - 1) (30.11)
Equations (30.15), (30.16), and (30.17) define the price of a zero-coupon bond at a

..= .-*-. .» ' “-1; -" 1; ‘ 1-~ "ti :':;-1" . ;.'r -.'i_1~'--.-_\':'m~'.-;::1r%~rr-;vi1 2-:=T.*.1;~'r '=*': '-*1;-F l""Tl-'.'-"l.‘L“7 -.3? i >1 r 1' 1 7 ~:t':*i:. .'*-*1 1‘-.= ~.

Figure 30.4 The Hull—White model.
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future time tin terms of the short rate at time t and the prices of bonds today. The latter
can be calculated from today’s term structure.

A method for representing the Hull-White model in the form of a trinomial tree is
given later in this chapter. This is useful when American options and other derivatives
that cannot be valued analytically are considered.

The Black-Derman-Toy Model
In 1990, Black, Derman, and Toy proposed a binomial-tree model for a lognormal
short-rate process.” Their procedure for building the binomial tree is explained in
Technical Note 23 at www.rotman.utoronto.ca/~hul1/Techr1icalNotes. It can be
shown that the stochastic process corresponding to the model is ,

d ln r : [i9(t) - a(t) ln r] dt + a(t) dz
with

where o’(t) is the derivative of o with respect to t. This model has the advantage over
Ho—Lee and Hull-White that the interest rate cannot become negative. The Wiener
process dz can cause ln(r) to be negative, but r itself is always positive. One disadvan-
tage of the model is that there are no analytic properties. A more serious disadvantage
is that the way the tree is constructed imposes a relationship between the volatility
parameter a(t) and the reversion rate parameter a(t). The reversion rate is positive only
if the volatility of the short rate is a decreasing function of time.

In practice, the most useful version of the model is when a(t) is constant. The
parameter a is then zero, so that there is no mean reversion and the model reduces to

dlnr :_8(t) dt + adz

This can be characterized as a lognormal version of the Ho-Lee model.

The Black-Karasinski Model
In 1991, Black and Karasinski developed an extension of the Black-Derman-Toy
model where the reversion rate and volatility are determined independently of each
other.” The most general version of the model is

d ln r = [a(t) - a(t) ln r] at + a(t) dz

The model is the same as Black-Derman-Toy model except that there is no relation
between a(t) and a(t). In practice, a(t) and a(t) are often assumed to be constant, so that
the model becomes

dln r : [l9(t) - a ln r] dt + adz (30118)

As in the case of all the models we are considering, the Q(t) function is determined to

'2 See F. Black, E. Derman, and W. Toy, “A One-Factor Model of Interest Rates and Its Application to
Treasury Bond Prices,” Financial Analysts Journal, January/February (1990): 33-39.

'3 See F. Black and P. Karasinski, “Bond and Option Pricing When Short Rates are Lognormal,” Financial
Analysts Journal, July/August (1991): 52-59.



694

30.4

CHAPTER 30

provide an exact fit to the initial term structure of interest rates. The model has no
analytic tractability, but later in this chapter we will describe a convenient way of
simultaneously determining Q(t) and representing the process for r in the form of a
trinoniial tree.

The Hull-White Two-Factor Model
Hull and White have developed a two-factor model:14

df(r) : [Q(t) + u — af(r)] dt + 01 dzl (30.19)

where f(r) is a function of r and u has an initial value of zero and follows the process

du : —bu dt + 02 dz;

As in the one-factor models just considered, the parameter i9(t) is chosen to make the
model consistent with the initial term structure. The stochastic variable u is a com-
ponent of the reversion level of f(r) and itself reverts to a level of zero at rate b. The
parameters a, b, 01, and 02 are constants and dzl and dz; are Wiener processes with
instantaneous correlation ,o.  

This model provides a richer pattern of term structure movements and a richer
pattern of volatilities than one-factor models of r. For more information on the
analytical properties of the model and the way a tree can be constructed for it, see
Technical Note l4 at wwW.rotrnan.utoronto.ca/~hu11/'T‘echnic:alNotes.

OPTIONS ON BONDS

Some of the models just presented allow options on zero-coupon bonds to be valued
analytically. For the Vasicek, Ho Lee, and Hull-White models, the price at time zero
of a call option that matures at time T on a zero-coupon bond maturing at time s is

LP(0, S)N(h) - KP(0, T)N(h - UP) (30.20)
where L is the principal of the bond, K is its strike price, and /

1 UPll: .16,. “P(0, T)K+ 2
The price of a put option on the bond is

KP(0, T)N(—h + op) —— LP(0, s)N(—h)

In the case of the Vasicek and Hull-White models 9

1 __ -2aT
UP : EU _ e—a(-*‘—T)] ‘L-

a ll 2a

'4 See J. Hull and A. White, “Numerical Procedures for Implementing Term Structure Models II: Two-
Factor Models,” Journal of Derivatives, 2, 2 (Winter 1994): 37-48.
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In the case of the Ho-Lee model,

UP = o(s — T)x/T

Equation (30.20) is essentially the same as Black’s model for pricing bond options in
Section 28.1. The forward bond price volatility is op/\/T and the standard deviation of
the logarithm of the bond price at time T is UP. As explained in Section 28.2, an interest
rate cap or floor can be expressed as a portfolio of options on zero-coupon bonds. It
can, therefore, be valued analytically using the equations just presented.  

There are also formulas for valuing options on zero-coupon bonds in the Cox,
Ingersoll, and Ross model, which we presented in Section 30.2. These involve integrals
of the noncentral chi-square distribution.

Options on Coupon-Bearing Bonds
In a one-factor model of r, all zero-coupon bonds move up in price when r decreases
and all zero-coupon bonds move down in price when r increases. As a result, a one-
factor model allows a European option on a coupon-bearing bond to be expressed as
the sum of European options on zero-coupon bonds. The procedure is as follows: .

1. Calculate r*, the critical value of r for which the price of the coupon-bearing bond
equals the strike price of the option on the bond at the option maturity T.

2. Calculate prices of European options with maturity T on the zero-coupon bonds
that comprise the coupon-bearing bond. The strike prices of the options equal the
values the zero-coupon bonds will have at time T when r : r*.

3. Set the price of the European option on the coupon-bearing bond equal to the
sum of the prices on the options on zero-coupon bonds calculated in Step 2. -

This allows options on coupon-bearing bonds to be valued for the Vasicek, Cox,
Ingersoll, and Ross, Ho-Lee, and Hull-White models. As explained in Business Snap-
shot 28.2, a European swap option can be viewed as an option on a coupon-bearing
bond. It can, therefore, be valued using this procedure. For more details on the procedure
and a numerical example, see Technical Note 15 at www.rotman.utoronto.ca/~hu11/
TechnicalNo1:es. I 4.

.1 '-r

VOLATILITY STRUCTURES

The models we have looked at give rise to different volatility environments. Figure 30.5
shows the volatility of the 3-month forward rate as a function of maturity for Ho-Lee,
Hull-White one-factor and Hull-White two-factor models. The term structure of
interest rates is assumed to be fiat.

For Ho-Lee the volatility of the 3-month forward rate is the same for all maturities.
In the one-factor Hull--White model the effect of mean reversion is to cause the
volatility of the 3-month forward rate to be a declining function of maturity. In the
Hull-White two-factor model when parameters are chosen appropriately, the volatility
of the 3-month forward rate has a “humped” look. The latter is consistent with
empirical evidence and implied cap volatilities discussed in Section 28.2.
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Figure 30.5 Volatility of 3-month forward rate as a function of maturity for (a) the
Ho-Lee model, (b) the Hull-White one-factor model, and (c) the Hull—White two-
factor model (when parameters are chosen appropriately).
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INTEREST RATE TREES

An interest rate tree is a discrete-time representation of the stochastic process for the
short rate in much the same way as a stock price tree is a discrete-time representation of
the process followed by a stock price. If the time step on the tree is At, the rates on the
tree are the continuously compounded At-period rates. The usual assumption when a
tree is constructed is that the At-period rate, R, follows the same stochastic process as
the instantaneous rate, r, in the corresponding continuous-time model. The main
difference between interest rate trees and stock price trees is in the way that discounting
is done. In a stock price tree, the discount rate is usually assumed to be the same at each
node (or a function of time). In an interest rate tree, the discount rate varies from node
to node.

It often proves to be convenient to use a trinomial rather than a binomial tree for
interest rates. The main advantage of a trinomial tree is that it provides an extra degree
of freedom, making it easier for the tree to represent features of the interest rate process
such as mean reversion. As mentioned in Section 20.8, using a trinomial tree is
equivalent to using the explicit finite difference method.

Illustration of Use of Trinomial Trees
To illustrate how trinomial interest rate trees are used to value derivatives consider the7

simple example shown in Figure 30.6. This is a two-step tree with each time step equal
to 1 year in length so that At :1 year. Assume that the up, middle, and down
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. 1 - - . ' E

Figure 30.6 Example of the use of trinomial interest rate trees. Upper number at each
node is rate; lower number is value of instrument. E 14,7
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probabilities are 0.25, 0.50, and 0.25, respectively, at each node. The assumed At-period
rate is shown as the upper number at each node.“

The tree is used to value a derivative that provides a payoff at the end of the second
time step of

max[l00(R - 0.11), 0]

where R is the At-period rate. The calculated value of this derivative is the lower
number at each node. At the final nodes, the value of the derivative equals the payoff.
For example, at node E, the value is 100 >< (0.14 - 0.11) = 3. At earlier nodes, the value
of the derivative is calculated using the rollback procedure explained in Chapters 12
and 20. At node B, the 1-year interest rate is 12%. This is used for discounting to obtain
the value of the derivative at node B from its values at nodes E, F, and G as

[0.25 >< 3 + 0.5 X 1+ 0.25 >< 0]@"°~‘2><‘ = 1.11
At node C, the l-year interest rate is 10%. This is used for discounting to obtain the
value of the derivative at node C as

(0.25 >< 1 + 0.5 >< 0 + 0.25 >< 0)@r°-1*‘ = 0.23
At the initial node, A, the interest rate is also 10% and the value of the derivative is

(0.25 >< 1.11+ 0.5 >< 0.23 + 0.25 >< 0)@"°~1*1 = 0.35

Nonstandard Branching
It sometimes proves convenient to modify the standard trinomial branching pattern that
is used at all nodes in Figure 30.6. Three alternative branching possibilities are shown in

'5 We explain later how the probabilities and rates on an interest rate tree are determined.
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Figure 30.7 Alternative branching methods in a trinomial tree.
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Figure 30.7. The usual branching is shown in Figure 30.7a. It is “up one/straight along/
down one”. One alternative to this is “up two/up one/straight along”, as shown in
Figure 30.7b. This proves useful for incorporating mean reversion when interest rates are
very low. A third branching pattern shown in Figure 30.7c is “straight along/down one/
down two”. This is useful for incorporating mean reversion when interest rates are very
high. The use of diflerent branching patterns is illustrated in the following section.

A GENERAL TREE-BUILDING PROCEDURE

Hull and White have proposed a robust two-stage procedure for constructing trinomial
trees to represent a wide range of one-factor models.“ This section first explains how
the procedure can be used for the Hull-White model in equation (30.13) and then
shows how it can be extended to represent other models, such as Black-Karasinski.

First Stage
The Hull-White model for the instantaneous short rate r is

» dr : [6(t) — ar] dt + adz
./

We suppose that the time step on the tree is constant and equal to At.”
Assume that the At rate, R, follows the same process as r.

dR = [Q(t) — aR] dt + odz

Clearly, this is reasonable in the limit as At tends to zero. The first stage in building a
tree for this model is to construct a tree for a variable R* that is initially zero and
follows the process

dR* : -aR* dt + adz

16 See J. Hull and A. White, “Numerical Procedures for Implementing Term Structure Models I: Single-
Factor Models,”./'ournal of Derivatives, 2, 1 (1994): 7-16; and J. Hull and A. White, “Using Hull-White
Interest Rate Trees,” Journal of Derivatives, (Spring 1996): 26-36.

17 See Technicrl Note 16 at www.rotman.utoronto.ca/~hu11/TechnicalNotes for a discussion of how
nonconstant time steps can be used.
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Figure 30.8 Tree for R* in Hull-White model (first stage).
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R*(%) 0.000 1.732 0.000 -1.732 3.464 1.732 0.000 -1.732 -3.464
pu 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pm 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pd 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
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This process is symmetrical about R* : 0. The variable R*(t + At) - R*(t) is normally
distributed. If terms of higher order than At are ignored, the expected value of
R*(t + At) - R*(t) is —aR*(t)At and the variance of R*(t + At) - R*(t) is O'2Al.

The spacing between interest rates on the tree, AR, is set as

AR = o\/3At

This proves to be a good choice of AR from the viewpoint of error minimization.
The objective of the first stage of the procedure is to build a tree similar to that shown

in Figure 30.8 for R*. To do this, it is first necessary to resolve which of the three
branching methods shown in Figure 30.7 will apply at each node. This will determine
the overall geometry of the tree. Once this is done, the branching probabilities must also
be calculated.

Define (i, j ) as the node where t : i At and R* : jAR. (The variable i is a positive
integer and j is a positive or negative integer.) The branching method used at a node must
lead to the probabilities on all three branches being positive. Most of the time, the
branching shown in Figure 30.7a is appropriate. When a > 0, it is necessary to switch
from the branching in Figure 30.7a to the branching in Figure 30.7c for a sufficiently large
j . Similarly, it is necessary to switch from the branching in Figure 30.7a to the branching
in Figure 30.7b when j is sufiiciently negative. Define jmax as the value of j where we
switch from the Figure 30.7a branching to the Figure 30.7c branching and jmin as the
value of j where we switch from the Figure 30.7a branching to the Figure 30.7b
branching. Hull and White show that probabilities are always positive if jmax is set equal
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to the smallest integer greater than 0.184/ (a At) and jmin is set equal to —jmdx.18 Define
p,,, pm, and pd as the probabilities of the highest, middle, and lowest branches emanating
from the node. The probabilities are chosen to match the expected change and variance
of the change in R* over the next time interval At. The probabilities must also sum to
unity. This leads to three equations in the three probabilities.

As already mentioned, the mean change in R* in time At is -aR*At and the variance
of the change is o2At. At node (i, j ), R* = jAr. If the branching has the form shown in
Figure 30.7a, the pd, pm, and pd at node (i, j ) must satisfy the following three equations
to match the mean and standard deviation:

pdAR - pdAR : -ajAR At

p,,AR2 + pdAR2 = (fin: + a2j2AR2At2
Pu + pm + pd :1

Using AR : o\/3At, the solution to these equations is

pd : — %(a2j2At2 — ajAt)

G\'—*UJI\JO\'—*
++

l\J'—‘ /5

pm---$fAF
pd=— — a2j2At2+ajAt)

=- 6l2]2Al +a]At)

= - -a2j2At2 - 2ajAt
pd =- - a2j2At2 + 3ajAt)

Similarly, if the branching has the form shown in Figure 30.7b, the probabilities are
~ . 2 .

pu T

“ti5

O\\lO\'—‘
+=»-+

[\)|—A[\)|—n/_\/\

Finally, if the branching has the form shown in Figure 30.70, the probabilities are
2pd = a2j2At - 3ajAt)

pm : -—-a2j2At2+2ajAt

C7\'—‘O\\l
+~»-+

l\J'—‘l\J>-' /\/Q\1%: -2fAP—anw)a ./

To illustrate the first stage of the tree construction, suppose that o : 0.01, a = 0.1,
and At = 1 year. In this case, AR = 0.01\/3 = 0.0173, jmdx is set equal to the smallest
integer greater than 0.184/0.1, and jmin = -jmax. This means that jmdx = 2 and
jmin = -2 and the tree is as shown in Figure 30.8. The probabilities on the branches
emanating from each node are shown below the tree and are calculated using the
equations above for pd, pm, and pd.

Note that the probabilities at each node in Figure 30.8 depend only on j. For
example, the probabilities at node B are the same as the probabilities at node F.
Furthermore, the tree is symmetrical. The probabilities at node D are the mirror image
of the probabilities at node B.

'8 The probabilities are positive for any value of jmdx between 0.184/(a At) and 0.816/(a At) and for any
value of jmin between -0.184/(a At) and -0.816/(a At). Changing the branching at the first possible node
proves to be computationally most efficient.
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Second Stage I
The second stage in the tree construction is to convert the tree for R* into a tree for R.
This is accomplished by displacing the nodes on the R*-tree so that the initial term
structure of interest rates is exactly matched. Define

<10) = R0) - R*(l)

The oi(t)’s that apply as the time step At on the tree becomes infinitesimally small can be
calculated analytically from equation (30.14).l9 However, we want a tree with a finite At
to match the term structure exactly. We therefore use an iterative procedure to
determine the oi’s.

Define G5,; as a(i At), the value of R at time i At on the R-tree minus the corresponding
value of R* at time i At on the r*-tree. Define Q,-, 1- as the present value of a security that
pays off $1 if node (i, j) is reached and zero otherwise. The oi, and Q,’ - can be calculated1
using forward induction in such a way that the initial term structure is matched exactly.

Illustration of Second Stage
Suppose that the continuously compounded zero rates in the example in Figure 30.8 are
as shown in Table 30.1. The value of Q0,0 is 1.0. The value of a0 is chosen to give the
right price for a zero-coupon bond maturing at time At. That is, a0 is set equal to the
initial At-period interest rate. Because At = 1 in this example, 0:0 : 0.03824. This
defines the position of the initial node on the R-tree in Figure 30.9. The next step is
to calculate the values of QM, QL0, and Q1,_1. There is a probability of 0.1667 that the
(1, 1) node is reached and the discount rate for the first time step is 3.82%. The value of
Q1’, is tl161‘6IO1‘€ 0.i66T@"°~°382 = 0.1604. Similarly, Q1’, = 0.6417 and Q,,_, -_= 0.1604.

Once QM, QL0, and Q1,_1 have been calculated, a1 can be determined. It is chosen to
give the right price for a zero-coupon bond maturing at time 2At. Because AR = 0.01732
and At : 1, the price of this bond as seen at node B is e'(°‘1 +0-0173.2). Similarly, the price as

Table 30.1 Zero rates for example in
Figures 30.8 and ‘30.9. /

Maturity Rate (%)

0.5 3.430
1.0 3.824
1.5 4.183
2.0 4.512
2.5 4.812
3.0 5.086

 1

'9 To estimate the instantaneous a(t) analytically, we note that
dR : [0(t) - aR]dt + odz and dR* : -aR* dt + adz

so that dot : [Q(t) - aa(t)]a't. Using equation (30.14), it can be seen that the solution to this is

' U2 -at 2a(t): F(0,t)+Zl5(1-e ).
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Figure 30.9 Tree for R in Hull-White model (the secondstage).

E

‘ — ‘T -L

/'77’
B

A- >9 ,-

I

Node: A B C D E F G H I

R(%) 3.324 6.937 5.205 3.473 9.716 7.984
pd 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217
pm 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566
pd 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217

6.252
0.1667
0.6666
0.1667

4.520
0.2217
0.6566
0.1217

2.788
0.0867
0.0266
0.8867
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seen at node C is e—°‘1 and the price as seen at node D is e"("‘1—°-91732). The price as seen at
the initial node A is therefore ‘

Que-(61+0.01732) + Qwe-6, + Q1716-(6,-0.01732) (3021)

From the initial term structure, this bond price should be e'O'04512X2 : 0.9137. Sub-
stituting for the Q’s in equation (30.21) 9

//'

0.i604@"<“1+°~°”32> + 0.64i7@"°‘1 + 0.l604e'(“‘_°'°l732) = 0.9137
O1"

@"“1(0.i604@"°~°"32 + 0.6417 + 0.i604@°~"”32) = 0.9137
OI

= - 0 9137 = 0.05205
0.i604@r°~°‘m + 0.6417 + 0.i604@°~°”32

Oi] ln[ j

This means that the central node at time At in the tree for R corresponds to an interest
rate of 5.205% (see Figure 30.9).

The next step is to calculate Q21, Q2,1, Q10, Q2,_1, and Q2,_2. The calculations can
be shortened by using previously determined Q values. Consider Q2,1 as an example.
This is the value of a security that pays off $1 if node F is reached and zero otherwise.
Node F can be reached only from nodes B and C. The interest rates at these nodes are
6.937% and 5.205%, respectively. The probabilities associated with the B-F and C—F
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branches are 0.6566 and 0.1667. The value at node B of a security that pays $1 at node F
is therefore 0.6566e"0~06937. The value at node C is O.1667e"0~05205. The variable QM is
0.6566e"0-06937 times the present value of $1 received at node B plus 0.1667e”0~05205 times
the present value of $1 received at node C; that is,

Q2’, = 0.6566@'°~°69” >< 0.1604 + 0.1667@'°~°52°5 >< 0.6417 = 0.1998
Similarly, Q22 I Q20 I Q2’_1 I and Q2’_2 I

The next step in producing the R-tree in Figure 30.9 is to calculate 0&2. After that, the
Q1]-’s can then be computed. The variable 043 can then be calculated, and so on.

Formulas for ot’s and Q’s T
To express the approach more formally, suppose that the Q,-, 1- have been determined for
i é m (m 2 0). The next step is to determine ozm so that the tree correctly prices a zero-
coupon bond maturing at (m + 1) At. The interest rate at node (m, j) is am + j AR, so
that the price of a zero-coupon bond maturing at time (m -1- 1)At is given by

nm

P,,,+,= Z QM-@Xp[-(am+ jAR)At] (30.22)
j:“”m

where nm is the number of nodes on each side of the central node at time m At. The
solution to this equation is

t n —jARAt_ ln Z]-1’Z__nm Qmaje — ln P,.,,+1
am T A:

Once am has been determined, the Q,-’ 1- for i = m + 1 can be calculated using

Qm+1, ,~ = Z Qm,kq(k’ 1) €Xpi_(am + /<AR>Ar1
k

where q(k, j) is the probability of moving from node (m, k) to node (m + 1, j) and the
summation is taken over all values of k for which this is nonzero.

Extension to Other Models
The procedure that has just been outlined can be extended to more general models of
the form

df(r) = [a(t) - df(r)] dz + G dz (30.23)
where f is a montonic function of r. This family of models has the property that they
can fit any term structure.”
 i—

20 Not all no-arbitrage models have this property. For example, the extended-CIR model, considered by Cox,
Ingersoll, and Ross (1985) and Hull and White (1990), which has the form

dr : [Q(t) — ar] dt + om/rdz

cannot fit yield curves where the forward rate declines sharply. This is because the process is not well defined
when 6(t) is negative.
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As before, we assume that the At period rate, R, follows the same process as r:

df(R) := [Q(t) - af(R)]dt + adz

We start by setting x : f(R), so that

dx = [Q(t) - ax] dt + adz

The first stage is to build a tree for a variable x* that follows the same process as x
except that 6’(t) : 0 and the initial value is zero. The procedure here is identical to the
procedure already outlined for building a tree such as that in Figure 30.8.

As in Figure 30.9, the nodes at time i At are then displaced by an amount 01,- to provide
an exact fit to the initial term structure. The equations for determining a,- and Q,-J
inductively are slightly different from those for the f(R) = R case. The value of Q at the
first node, QM, is set equal to 1. Suppose that the Q,-, 1- have been determined for i < m
(m 2 0). The next step is to determine am so that the tree correctly prices an (m + 1)At
zero-coupon bond. Define g as the inverse function of f so that the At-period interest
rate at the jth node at time m At is

Q(<¥m + j AX)
The price of a zero-coupon bond maturing at time (m + 1)At is given by

nm A

P...+1= ‘Z Qm,jeXpi_g(am +jAx)Ar1 <30-24>
./:"nm

l§“£’3§i¥R§l"'~'!'2"!"|l.”L'.a £131?!"-.» :-W-‘-’-IF‘?-9?}? *9?HE;'<1‘*EZE3KS‘T K€.TU' J&$$ K€ Qfui; ‘El;

Figure 30.10 Tree for lognormal model.
E

J

i.
. D -A , *

Node: A B c D E F G H 1
x -3.373 -2.875 -3.181 -3.487 -2.430 -2.736 -3.042 -3.349 -3.655
R("/0) 3.430 5.642 4.154 3.058 8.803 6.481 4.772 3.513 2.587
pa 0.1667 0.1177 0.1667 0.2277 0.8609 0.1177 0.1667 0.2277 0.0809
Pm. 0.6666 0.6546 0.6666 0.6546 0.0582 0.6546 0.6666 0.6546 0.0582
pd 0.1667 0.2277 0.1667 0.1177 0.0809 0.2277 0.1667 0.1177 0.8609
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This equation can be solved using a numerical procedure such as Newton-Raphson.
The value oiO of Ot when in : 0, is f(R(0)).

Once otm has been determined, the Q,-, 1- for i : m + 1 can be calculated using

Qm+1,,- = Z Qm,kq(k’ 1)eXpl-go... + k Ax)A0
k

where q(k, j) is the probability of moving from node (m, k) to node (m + 1, j) and the
summation is taken over all values of k where this is nonzero.

Figure 30.10 shows the results of applying the procedure to the Black—Karasinski
model in equation (30.18): '

d ln(r) -: [Q(t) - a ln(r)] dt + odz

when a : 0.22, 0 : 0.25, At : 0.5, and the zero rates are as in Table 30.1.

Choosing f(r)
Setting f(r) = r leads to the Hull-White model in equation (30.13); setting f(r) : ln(r)
leads to the Black—Karasinksi model in equation (30.18). In most circumstances these
two models appear to perform about the same in fitting market data on actively traded
instruments such as caps and European swap options. The main advantage of the
f(r) = r model is its analytic tractability. Its main disadvantage is that negative interest
rates are possible. In many circumstances, the probability of negative interest rates
occurring under the model is very small, but some analysts are reluctant to use a model
where there is any chance at all of negative interest rates. The f(r) : ln r model has no
analytic tractability, but has the advantage that interest rates are always positive.
Another advantage is that traders naturally think in terms of o’s arising from a
lognormal model rather than cr’s arising from a normal model.

There is a problem in choosing a satisfactory model for countries with low interest
rates. The normal model is unsatisfactory because, when the initial short rate is low, the
probability of negative interest rates in the future is no longer negligible. The lognormal
model is unsatisfactory because the volatility of rates (i.e., the 0 parameter in the
lognormal model) is usually much greater when rates are low than when they are high.
(For example, a volatility of 100% might be appropriate when the short rate is very low,
while 20% might be appropriate when it is 4% or more.) A model that appears to work
well is one where f(r) is chosen as a continuous function that is proportional to lnr
when r is very low and proportional to r otherwise.21

Using Analytic Results in Conjunction with Trees
When a tree is constructed for the f(r) : r version of the Hull—White model, the
analytic results in Section 30.3 can be used to provide the complete term structure
and European option prices at each node. It is important to recognize that the interest
rate on the tree is the At-period rate R. It is not the instantaneous short rate r.

From equations (30.15), (30.16), and (30.17) it can be shown (see Problem 30.21) that

P(t, T) = A(t, T)e"é(”T)R (30.25)

2‘ See J. Hull and A. White “Taking Rates to the Limit,”Risk, December (1997); 16s~69.
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where
A P(0, T) B(t, T) P(0, t + At)1 A ,T _1 A 1n it ) H P(0, t) B(t,t—|—At) H P(0, t)

2

_Z_a(1 - e'2“‘)B(i, T)[B(t, T) _ B(t, t + At)] (30.26)

80, T) ... B(f(t"+T2m At (30.27)

(In the case of the Ho-Lee model, we set l§(t, T) — T - t in these equations.)
Bond prices should therefore be calculated with equation (30.25), and not with

equation (30.15).

Example 30. 1
Suppose zero rates are as in Table 30.2. The rates for maturities between those
indicated are generated using linear interpolation.

Consider a 3-year (: 3 >< 365 days) European put option on a zero-coupon
bond that will pay 100 in 9 years (= 9 >< 365 days). Interest rates are assumed
to follow the Hull-White (f(r) = r) model. The strike price is 63, a := 0.1, and
or : 0.01. A 3-year tree is constructed and zero-coupon bond prices are calculated
analytically at the final nodes as just described. As shown in Table 30.3, the results
from the tree are consistent with the analytic price of the option.

This example provides a good test of the implementation of the model because
the gradient of the zero curve changes sharply immediately after the expiration of
the option. Small errors in the construction and use of the tree are liable to have a
big effect on the option values obtained. (The example is used in Sample Applica-
tion G of the DerivaGem Applications software.)

7 7/‘T " - " " ‘.f..'..lIT.... ..'..F..'.T...!.'. ...... .1-.:..7.€'I.T.:1.'.T.f..:.. II ~1' -- Ti" Y ti.’ Er‘ “ .'=‘ 1"‘?! '1".11'.~~'. ‘-5*;=i.._x;1iTa1!1‘iT'?T-.'-‘ '”' --1 6"-C -‘ "'5' ' I 1 "'\Ii‘ .-"L 3 .‘-""1" ' ' -9-?

Table 30.2 Zero curve with all rates continuously compounded, actual/365.

Maturity Days Rate (%)

3 days
1 month
2 months
3 months
6 months
1 year
2 years
3 years
4 years
5 years
6 years
7 years
8 years
9 years

10 years

3
31
62
94

185
367
731

1,096
1,461
1,826
2,194
2,558
2,922
3,287
3,653

. < . - .

5.01772
4,98284
4.97234
4.96157
4.99058
5.09389
5.79733
6.30595
6.73464
6.94816
7.08807
7.27527
7.30852
7.39790
7.49015
.......................................... ..
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Table 30.3 Value of a three-year put option on a
nine-year zero-coupon bond with a strike price of 63:
a : 0.1 and o : 0.01; zero curve as in Table 30.2.

Steps  Tree Analytic

lC' 1.8468 1.8393
3C1 1.8172 1.8393
5C1 1.8057 1.8393

l0C1 1.8128 1.8393
20C’ 1.8090 1.8393
500 1.8091 1.8393

Tree for American Bond Options
The DerivaGem software accompanying this book implements the normal and
the lognormal model for valuing European and American bond options, caps/floors,
and European swap options. Figure 30.11 shows the tree produced by the software
when it is used to value a 1.5-year American call option on a 10-year bond using four
time steps and the lognormal (Black-Karasinski) model. The parameters used in the
lognormal model are a = 5% and o : 20%. The underlying bond lasts 10 years, has a
principal of 100, and pays a coupon of 5% per annum semiannually. The yield curve is
flat at 5% per annum. The strike price is 105. As explained in Section 28.1 the strike
price can be a cash strike price or a quoted strike price. In this case it is a quoted strike
price. The bond price shown on the tree is the cash bond price. The accrued interest at
each node is shown below the tree. The cash strike price is calculated as the quoted
strike price plus accrued interest. The quoted bond price is the cash bond price minus
accrued interest. The payofl from the option is the cash bond price minus the cash strike
price. Equivalently it is the quoted bond price minus the quoted strike price.  

The tree gives the price of the option as 0.672. A much larger tree with 100 time steps
gives the price of the option as 0.703. Note that the price of the 10-year bond cannot be
computed analytically when the lognormal model is assumed. It is computed numerically
by rolling back through a much larger tree than that shown. /.

CALIBRATION

Up to now, we have assumed that the volatility parameters a and o are known. We now
discuss how they are determined. This is known as calibrating the model.

The volatility parameters are determined from market data on actively traded options
(e.g., broker quotes on caps and swap options such as those in Tables 28.1 and 28.2).
These will be referred to as the calibrating instruments. The first stage is to choose a
“goodness-of-fit” measure. Suppose there are n calibrating instruments. A popular
goodness-of-fit measure is H

Zn/.~ - v.)2
i=1

where U,- is the market price of the i th calibrating instrument and V,; is the price given by
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Figure 30.11 Tree, produced by DerivaGem, for valuing an American bond option

At each node:
Upper value = Cash Bond Price
Middle value = Option Price T1_—1_3fi
Lower value = dt-period Rate
Shaded values are as a result of early exercise 1 

 _

Strike price - 105 7919393

94.69

Time step, dt = 0.3750 years, 136.88 days
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the model for this instrument. The objective of calibration is to choosé the model
parameters so that this goodness-of-fit measure is minimized.

The number of volatility parameters should not be greater than the number of
calibrating instruments. If a and 0 are constant, there are only two volatility parameters.
The models can be extended so that a or 0, or both, are functions of time. Step functions
can be used. Suppose, for example, that a is constant and 0 is a function of time. We
might choose times tl, t2, . . . , t,, and assume a(t) : 00 for t < tl, a(t) : oi for
t,- < t < t,-+1 (1 < i < n - 1), and a(t) : 0,, for t > tn. There would then be a total of
n + 2 volatility parameters: a, 00, 01, . . . , and on.

The minimization of the goodness-of-fit measure can be accomplished using the
Levenberg-Marquardt procedure.” When a or 0, or both, are functions of time, a
penalty function is often added to the goodness-of-fit measure so that the functions are

22 For a good description of this procedure, see W. H. Press, B.P. Flannery, S.A. Teukolsky, and W.T.
Vetterling, Numerical Recipes in C : The A rt of Scientific Computing. Cambridge University Press, 1988.
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30.9

“well behaved”. In the example just mentioned, where 0 is a step function, an
appropriate objective function is

n n n-1

Z“/It _ V02 + Z w1,z(<Ti — 91-112 + Z w2,z(<7i-1 + Ui+l 7' 20232
i=1 i=1 i:l

The second term provides a penalty for large changes in or between one step and the
next. The third term provides a penalty for high curvature in 0. Appropriate values for
wk, and w2,,- are based on experimentation and are chosen to provide a reasonable level
of smoothness in the or function.

The calibrating instruments chosen should be as similar as possible to the instrument
being valued. Suppose, for example, that the model is to be used to value a Bermudan-
style swap option that lasts 10 years and can be exercised on any payment date between
year 5 and year 9 into a swap maturing 10 years from today. The most relevant
calibrating instruments are 5 >< 5, 6 >< 4, 7 >< 3, 8 >< 2, and 9 >< 1 European swap options.
(An n >< m European swap option is an n-year option to enter into a swap lasting for
m years beyond the maturity of the option.)

The advantage of making a or 0, or both, functions of time is that the models can be
fitted more precisely to the prices of instruments that trade actively in the market. The
disadvantage is that the volatility structure becomes nonstationary. The volatility term
structuregiven by the model in the future is liable to be quite different from that existing
in the market today.”

A somewhat different approach to calibration is to use all available calibrating
instruments to calculate “global-best-fit” a and 0 parameters. The parameter a is held
fixed at its best-fit value. The model can then be used in the same way as Black-
Scholes-Merton. There is a one-to-one relationship between options prices and the 0
parameter. The model can be used to convert tables such as Tables 28.1 and 28.2 into
tables of implied o’s.24 These tables can be used to assess the 0 most appropriate for
pricing the instrument under consideration.

HEDGING USING A ONE-FACTOR MODEL

Section 28.5 outlined some general approaches to hedging a portfolio of interest rate
derivatives. These approaches can be used with the term structure models in this
chapter. The calculation of deltas, gammas, and vegas involves making small changes
to either the zero curve or the volatility environment and recomputing the value of the
portfolio.

Note that, although one factor is often assumed when pricing interest rate derivatives,
it is not appropriate to assume only one factor when hedging. For example, the deltas
calculated should allow for many different movements in the yield curve, not just those
that are possible under the model chosen. The practice of taking account of changes that
Z-Mill;

23 For a discussion of the implementation of a model where a and 0 are functions of time, see Technical Note 16
at www.rotman.utoronto.ca/~hu11/TechnicalNotes.

24 Note that in a term structure model the implied a’s are not the same as the implied volatilities calculated
from Black’s model in Tables 28.1 and 28.2. The procedure for computing implied o’s is as follows. The Black
volatilities are converted to prices using Black’s model. An iterative procedure is then used to imply the 0
parameter in the term structure model from the price.
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cannot happen under the model considered, as well as those that can, is known as
outside model hedging and is standard practice for traders.25 The reality is that relatively
simple one-factor models if used carefully usually give reasonable prices for instruments,
but good hedging procedures must explicitly or implicitly assume many factors.

SUMMARY

The traditional models of the term structure used in finance are known as equilibrium
models. These are useful for understanding potential relationships between variables in
the economy, but have the disadvantage that the initial term structure is an output from
the model rather than an input to it. When valuing derivatives, it is important that the
model used be consistent with the initial term structure observed in the market.
No-arbitrage models are designed to have this property. They take the initial term
structure as given and define how it can evolve.

This chapter has provided a description of a number of one-factor no-arbitrage
models of the short rate. These are robust and can be used in conjunction with any set
of initial zero rates. The simplest model is the Ho-Lee model. This has the advantage
that it is analytically tractable. Its chief disadvantage is that it implies that all rates are
equally variable at all times. The Hull-White model is a version of the Ho-Lee model
that includes mean reversion. It allows a richer description of the volatility environment
while preserving its analytic tractability. Lognormal one-factor models avoid the
possibility of negative interest rates, but have no analytic tractability.
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Practice Questions (Answers in Solutions Manual)

30.1
30.2.

30.3

30.4
30.5

30.6

30.7

30.8

30.9

30.10

What is the difference between an equilibrium model and a no-arbitrage model?
Suppose that the short rate is currently 4% and its standard deviation is 1% per annum.
What happens to the standard deviation when the short rate increases to 8% in
(a) Vasicek’s model; (b) Rendleman and Bartter’s model; and (c) the Cox, Ingersoll, and
Ross model‘?
If a stock price were mean reverting or followed a path-dependent process there would
be market inefficiency. Why is there not a market inefficiency when the short-term
interest rate does so?
Explain the difference between a one-factor and a two-factor interest rate model.
Can the approach described in Section 30.4 for decomposing an option on a coupon-
bearing bond into a portfolio of options on zero-coupon bonds be used in conjunction
with a two-factor model‘? Explain your answer.
Suppose that a = 0.1 and b = 0.1 in both the Vasicek and the Cox, Ingersoll, Ross
model. In both models, the initial short rate is 10% and the initial standard deviation of
the short-rate change in a short time At is 0.02\/At. Compare the prices given by the
models for a zero-coupon bond that matures in year 10.
Suppose that a : 0.1, b : 0.08, and o : 0.015 in Vasicek’s model, with the initial value
of the short rate being 5%. Calculate the price of a 1-year European call opti/on on a
zero-coupon bond with a principal of $100 that matures in 3 years when the strike price
is $87.
Repeat Problem 30.7 valuing a European put option with a strike of $87. What is the
put-call parity relationship between the prices of European call and put options? Show
that the put and call option prices satisfy put-call parity in this case.
Suppose that a =0.05, b = 0.08, and o = 0.015 in Vasicek’s model with the initial
short-term interest rate being 6%. Calculate the price of a 2.1-year European call
option on a bond that will mature in 3 years. Suppose that the bond pays a coupon of
5% semiannually. The principal of the bond is 100 and the strike price of the option is
99. The strike price is the cash price (not the quoted price) that will be paid for the
bond.
Use the answer to Problem 30.9 and put-call parity arguments to calculate the price of a
put option that has the same terms as the call option in Problem 30.9.
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30.11

30.12.

30.13

30.14.

30.15

30.16

30.17

30.18

30.19

30.20

30.21

30.22

30.23

CHAPTER 30

In the Hull-White model, a :0.08 and o:0.01. Calculate the price of a 1-year
European call option on a zero-coupon bond that will mature in 5 years when the
term structure is flat at 10%, the principal of the bond is $100, and the strike price
is $68.
Suppose that a = 0.05 and 0 : 0.015 in the Hull-White model with the initial term
structure being flat at 6% with semiannual compounding. Calculate the price of a
2.1-year European call option on a bond that will mature in 3 years. Suppose that the
bond pays a coupon of 5% per annum semiannually. The principal of the bond is 100
and the strike price of the option is 99. The strike price is the cash price (not the quoted
price) that will be paid for the bond.
Use a change of numeraire argument to show that the relationship between the futures
rate and forward rate for the Ho—Lee model is as shown in Section 6.3. Use the
relationship to verify the expression for 6(t) given for the Ho-Lee model in equa-
tion (30.11). (Hint: The futures price is a martingale when the market price of risk is
zero. The forward price is a martingale when the market price of risk is a zero-coupon
bond maturing at the same time as the forward contract.)
Use a similar approach to that in Problem 30.13 to derive the relationship between the
futures rate and the forward rate for the Hull-White model. Use the relationship to
verify the expression for 6(t) given for the Hull—White model in equation (30.14).

Suppose a = 0.05, o = 0.015, and the term structure is flat at 10%. Construct a trinomial
tree for the Hull-White model where there are two time steps, each 1 year in length.
Calculate the price of a 2-year zero-coupon bond from the tree in Figure 30.6.
Calculate the price of a 2-year zero-coupon bond from the tree in Figure 30.9 and verify
that it agrees with the initial term structure.
Calculate the price of an 18-month zero-coupon bond from the tree in Figure 30.10 and
verify that it agrees with the initial term structure.
What does the calibration of a one-factor term structure model involve‘? A.
Use the DerivaGem software to value 1 >< 4, 2 >< 3, 3 >< 2, and 4 >< 1 European swap
options to receive fixed and pay floating. Assume that the 1-, 2-, 3-, 4-, and 5-year
interest rates are'6%, 5.5%, 6%, 6.5%, and 7%, respectively. The payment frequency on
the swap is semiannual and the fixed rate is 6% per annum with semiannual compound-
ing. Use the Hull-White model with a = 3% and o : 1%. Calculate the volatility
implied by Black’s model for each option.
Prove equations (30.25), (30.26), and (30.27).

(a) What is the second partial derivative of P(t, T) with respect to r in the Vasicek and
CIR models.

(b) In Section 30.2, D is presented as an alternative to the standard duration measure D.
What is a similar alternative C to the convexity measure in Section 4.9?

(c) What is C for P(t, T)? How would you calculate C for a coupon-bearing bond?
(d) Give a Taylor series expansion for AP(t, T) in terms of Ar and (Ar)2 for Vasicek

and CIR.
Suppose that short rate r is 4% and its real-world process is

dr : 0.1[0.05 - r]dt + 0.01 dz
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while the risk-neutral process is

dr : 0.1[0.11- r]dt + 0.01 dz

(a) What is the market price of interest rate risk?
(b) What is the expected return and volatility for a 5-year zero-coupon bond in the risk-

neutral world?
(c) What is the expected return and volatility for the 5-year zero-coupon bond in the real

world?

Further Questions

30.24.

30.25

30.26

30.27

Construct a trinomial tree for the Ho-Lee model where 0 : 0.02. Suppose that the the
initial zero-coupon interest rate for a maturities of 0.5, 1.0, and 1.5 years are 7.5%, 8%,
and 8.5%. Use two time steps, each 6 months long. Calculate the value of a zero-coupon
bond with a face value of $100 and a remaining life of 6 months at the ends of the final
nodes of the tree. Use the tree to value a 1-year European put option with a strike price
of 95 on the bond. Compare the price given by your tree with the analytic price given by
DerivaGem.

A trader wishes to compute the price of a 1-year American call option on a 5-year bond
with a face value of 100. The bond pays a coupon of 6% semiannually and the (quoted)
strike price of the option is $100. The continuously compounded zero rates for
maturities of 6 months, 1 year, 2 years, 3 years, 4 years, and 5 years are 4.5%, 5%,
5.5%, 5.8%, 6.1%, and 6.3%. The best-fit reversion rate for either the normal or the
lognormal model has been estimated as 5%.

A 1-year European call option with a (quoted) strike price of 100 on the bond is actively
traded. Its market price is $0.50. The trader decides to use this option for calibration. Use
the DerivaGem software with 10 time steps to answer the following questions:
(a) Assuming a normal model, imply the o parameter from the price of the European

opuon.
(b) Use the 0 parameter to calculate the price of the option when it is American.
(c) Repeat (a) and (b) for the lognormal model. Show that the model used does not

significantly affect the price obtained providing it is calibrated to the known Eiiropean
price.

(d) Display the tree for the normal model and calculate the probability of a negative
interest rate occurring.

(e) Display the tree for the lognormal model and verify that the option price is correctly
calculated at the node where, with the notation of Section 30.7, i : 9 and j : -1.

Use the DerivaGem software to value 1 >< 4, 2 >< 3, 3 >< 2, and 4 >< 1 European swap
options to receive floating and pay fixed. Assume that the 1-, 2-, 3-, 3-, and 5-year
interest rates are 3%, 3.5%, 3.8%, 4.0%, and 4.1%, respectively. The payment frequency
on the swap is semiannual and the fixed rate is 4% per annum with semiannual
compounding. Use the lognormal model with a : 5%, o : 15%, and 50 time steps.
Calculate the volatility implied by Black’s model for each option.

Verify that the DerivaGe1n software gives Figure 30.11 for the example considered. Use
the software to calculate the price of the American bond option for the lognormal and
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30.28

30.29

CHAPTER 30

normal models when the strike price is 95, 100, and 105. In the case of the normal model,
assume that a = 5% and o = 1%. Discuss the results in the context of the heaviness of
the tails arguments of Chapter 18.
Modify Sample Application G in the DerivaGem Application Builder software to test
the convergence of the price of the trinomial tree when it is used to price a 2-year call
option on a 5-year bond with a face value of 100. Suppose that the strike price (quoted)
is 100, the coupon rate is 7% with coupons being paid twice a year. Assume that the zero
curve is as in Table 30.2. Compare results for the following cases:
(a) Option is European; normal model with o = 0.01 and a = 0.05
(b) Option is European; lognormal model with o = 0.15 and a : 0.05
(c) Option is American; normal model with o : 0.01 and a : 0.05
(d) Option is American; lognormal model with o : 0.15 and a - 0.05.
Suppose that the (CIR) process for short-rate movement in the risk-neutral world is

dr = a(b - r)dt + o\/Fdz

and the market price of interest rate risk is A.
(a) What is the real world process for r?
(b) What is the expected return and volatility for a 10-year bond in the risk-neutral world?
(c) What is the expected return and volatility from a 10-year bond in the real world?

./'
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Derivatives:
HJM and LMM

The interest rate models discussed in Chapter 30 are widely used for pricing instruments
when the simpler models in Chapter 28 are inappropriate. They are easy to implement
and, if used carefully, can ensure that most nonstandard interest rate derivatives are
priced consistently with actively traded instruments such as interest rate caps, European
swap options, and European bond options. Two limitations of the models are:

1. Most involve only one factor (i.e., one source of uncertainty). .
2. They do not give the user complete freedom in choosing the volatility structure.

By making the parameters a and o functions of time, an analyst can use the models so
that they fit the volatilities observed in the market today, but as mentioned in Section 30.8
the volatility term structure is then nonstationary. The volatility structure in the future is
liable to be quite different from that observed in the market today.

This chapter discusses some general approaches to building term structure models
that give the user more flexibility in specifying the volatility environment and allow
several factors to be used. The models require much more computation time than the
models in Chapter 30. As a result, they are often used for research and development
rather than routine pricing.

This chapter also covers the agency mortgage-backed security market in the, United
States and describes how some of the ideas presented in the chapter can be used to price
instruments in that market.

THE HEATH, IARROW, AND MORTON MODEL

In 1990 David Heath, Bob Jarrow, and Andy Morton (HJM) published an important
paper describing the no-arbitrage conditions that must be satisfied by a model of the
yield curve.' To describe their model, we will use the following notation:

P(t, T): Price at time t of a zero-coupon bond with principal $1 maturing at
time T

I See D. Heath, R.A. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of Interest Rates:
A New Methodology,” Econometrica, 60, l (1992): 77-105.
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S2,: Vector of past and present values of interest rates and bond prices at
time t that are relevant for determining bond price volatilities at that time

v(t, T, o,); Volatility of P(t, T)
f(t, T1, T2) : Forward rate as seen at time t for the period between time T1 and

I T2 I I I

3 F(t, T): Instantaneous forward rate as seen at time t for a contract maturing at
5 time T 5 5 T T

r(t): Short-term risk-free interest rate at time t 0
a'z(t): Wiener process driving term structure movements.

Processes for Zero-Coupon Bond Prices and Forward Rates
We start by assuming there is just one factor and will use the traditional risk-neutral
world. A zero-coupon bond is a traded security providing no income. Its return in the
traditional risk-neutral world must therefore be r. This means that its stochastic process
has the form . . 9 A

a'P(t, T) : r(t)P(t, T) a't + v(t, T, §2,)P(t, T) dz(t) (31.1)

As the argument S2, indicates, the zero-coupon bond’s volatility v can be, in the most
general form of the model, any well-behaved function of past and present interest rates
and bond prices. Because a bond’s price volatility declines to zero at maturity, we must
havez

v(t, t, 82,) = 0

From equation (4.5), the forward rate f(t, T1, T2) can be relatedto zero-coupon bond
prices as follows:

From equation (31.1) and It6’s lemma, 9 g

T T‘ t,T,s2 2' T
dln[P(t, T1)] =g r(t) v( 12 I) a't+v(t, T1, Qt)dz(t)

and A A A ./

dln[P(t, T2)] = 3(8) "(L T3’ Q92’ dt+ 60, T2, o,)az(i)

so that from equation (31.2) 1

2 2

df(t, T1, T2) _ W’ T2’ __";:’)T" Q‘) at + "(L T1’ _ git’ T2’ Q‘) 81.».-(t) (31.3)

Equation (31.3) shows that the risk-neutral process for f depends solely on the v’s. It
depends on r and the P’s only to the extent that the v’s themselves depend on these
variables.
 ii-

2 The v(t, t, S2,) = 0 condition is equivalent to the assumption that all discount bonds have finite drifts at all
times. If the volatility of the bond does not decline to zero at maturity, an infinite drift may be necessary to
ensure that the bond’s price equals its face value at maturity.



Interest Rate Derivatives: H_7M and LMM 717

When we put T1 : T and T2 : T + AT in equation (31.3) and then take limits as AT
tends to zero, f(t, T1, T2) becomes F(t, T), the coefficient of dz(t) becomes -vT(t, T, S2,),
and the coefficient of dt becomes

800. T. 9 >211%: ,T ’ -v(r.T.9.)vT<t.T.Q.>
where the subscript to v denotes a partial derivative. It follows that

dF(t, T) = 0(t, T, §2,) 0T(t, T, s2,)dt — 0T(t, T, §2,)a'z(t) (31.4)

Once the function v(t, T, K2,) has been specified, the risk-neutral processes for the
F(t, T)’s are known.

Equation (31.4) shows that there is a link between the drift and standard deviation of
an instantaneous forward rate. This is the key HJM result. Integrating v,,(t,t, S2,)
between T = t and t : T leads to

(‘T

6(t, T, o,) - 6(i, t, o,) = J 6,(i, t, o,)ae
I

Because v(t, t, S2,) = 0, this becomes

T
v(t, T, Qt) = J v,(t, t, Qt) dt

I

If m(t, T, Qt) and s(t, T, Qt) are the instantaneous drift and standard deviation of
F(t, T), so that

dF(t, T) = m(t, T, o,)dt + s(t, T, $2,) dz
then it follows from equation (31.4) that

T
m(t, T, K2,) : s(t, T, §2,)J s(t, t, Qt) dt (31.5)

I
/.1

This is the HJM result.
The process for the short rate r in the general HJM model is non-Markov. This

means that the process for r at a future time t depends on the path followed by r
between now and time t as well as on the the value of r at time t.3 This is the key
problem in implementing a general HJM model. Monte Carlo simulation has to be
used. It is difficult to use a tree to represent term structure movements because the tree
is usually nonrecombining. Assuming the model has one factor and the tree is binomial
as in Figure 31.1, there are 2” nodes after n time steps (when n : 30, 2” is about
1 billion).

The HJM model in equation (31.4) is deceptively complex. A particular forward rate
F(t, T) is Markov in most applications of the model and can be represented by a
recombining tree. However, the same tree cannot be used for all forward rates.

3 For more details, see Technical Note 17 at WWW.rotma11.utoro11to.ca/~hu11/Tech11icalNotes.



718

31.2

CHAPT;ij§.}'?i * Z

Figure 31 .1 A nonrecombining tree such as that arising from the general HJM model.
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Extension to Several Factors
The HJM result can be extended to the situation where there are several independent
factors. Suppose

dF(t, T) = m(t, T, §2,)dt + Zeke, T, o,)az,,
/<

A similar analysis to that just given (see Problem 31.2) shows that

T
m(t, T, S2,) := Zsk(t, T, §2,)J sk(t, t, Qt) dt (31.6)

k t

THE 1113011 MARKET MODEL /
One drawback of the HJM model is that it is expressed in terms of instantaneous
forward rates and these are not directly observable in the market. Another related
drawback is that it is difficult to calibrate the model to prices of actively traded
instruments. This has led Brace, Gatarek, and Musiela (BGM), Jamshidian, and
Miltersen, Sandmann, and Sondermann to propose an alternative.4 It is known as
the LIBOR market model (LMM) or the BGM model and it is expressed in terms of the
forward rates that traders are used to working with.

4 See A. Brace, D. Gatarek, and M. Musiela “The Market Model of Interest Rate Dynamics,” Mathematical
Finance 7, 2 (1997): 127-55; F. Jamshidian, “LIBOR and Swap Market Models and Measures,” Finance and
Stochastics, 1 (1997): 293-330; and K. Miltersen, K. Sandmann, and D. Sondermann, “Closed Form
Solutions for Term Structure Derivatives with LogNormal Interest Rate,” Journal of Finance, 52, 1 (March
1997): 409-30.
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The Model
Define t0 : 0 and let t1 , t2, . . . be the reset times for caps that trade in the market today. In
the United States, the most popular caps have quarterly resets, so that it is approximately
true that t1 : 0.25, t2 : 0.5, t3 : 0.75, and so on. Define 8k : tk+1 - tk, and

Fk(t): Forward rate between times tk and tk+1 as seen at time t, expressed with a
compounding period of 8k and an actual/actual day count

m(t): Index for the next reset date at time t; this means that m(t) is the smallest
integer such that t .< tmm

§k(t): Volatility of Fk(t) at time t.

Initially, we will assume that there is only one factor.
As shown in Section 27.4, in a world that is forward risk neutral with respect to

P(t, tk+1), Fk(t) is a martingale and follows the process

dF1<(t) = 4“/<(F)F1<(l) dz (31-7)
where dz is a Wiener process.

The process for P(t, tk) has the form

f dP(t, tk) __
~ ~ ~ -l- v (t) dzP(t, tk) "

where vk(t) is negative because bond prices and interest rates are negatively related.
In practice, it is often most convenient to value interest rate derivatives by working

in a world that is always forward risk neutral with respect to a bond maturing at the
next reset date. We refer to this as a rolling forward risk-neutral world.5 In this world
we can discount from time tk+1 to time tk using the zero rate observed at time tk for a
maturity tk+1. We do not have to worry about what happens to interest rates between
times tk and tk+1. .

At time t the rolling forward risk-neutral world is a world that is forward risk neutral
with respect to the bond price, P(t, tmm). Equation (31.7) gives the process followed by
Fk(t) in a world that is forward risk neutral with respect to P(t, tk+1). From Section 27.8,
it follows that the process followed by Fk(t) in the rolling forward risk-neutral world is

dFi(t) = €i(t)lvm(i)(I) — vi+1(t)lF1<(i) df + 5/.(t)F/<(I) dz (31-3)
The relationship between forward rates and bond prices is

P(t, t,-)
P(t, 0+1)

Of
ln P(t, t,-) - ln P(t, t,~+1) : ln[1 + 5,-F,-(t)]

= 1+ 8iFi(t)

It6’s lemma can be used to calculate the process followed by both the left-hand side and
—12- 

5 In the terminology of Section 27.4, this world corresponds to using a “rolling CD” as the numeraire. A
rolling CD (certificate of deposit) is one where we start with $1, buy a bond maturing at time tl, reinvest the
proceeds at time tl in a bond maturing at time t2, reinvest the proceeds at time t2 in a bond maturing at time
t3, and so on. (Strictly speaking, the interest rate trees we constructed in Chapter 30 are in a rolling forward
risk-neutral world rather than the traditional risk-neutral world.) The numeraire is a CD rolled over at the
end of each time step.
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the right-hand side of this equation. Equating the coefficients of dz gives6

0.0) - v.-.10) = (31.9)
so that from equation (31.8) the process followed by Fk(t) in the rolling forward risk-
neutral world is

dF<t>_ k 5.-F.-(r)z;.~<t)t(r) ,?’<(5_i;(t) 1+5iFi(t") -ai+t,.(i)a. (31.10)

The H]M result in equation (31.4) is the limiting case of this as the 5, ‘tend to zero (see
Problem 31.7).

Forward Rate Volatilities
The model can be simplified by assuming that ;'k(t) is a function only of the number of
whole accrual periods between the next reset date and time tk. Define A, asthe value
of 4',-<(t) when there are i such accrual periods. This means that §k(t) : Ak_,,,(,) is a step
function.  

The A ,- can (at least in theory) be estimated from the volatilities used to value caplets in
Black’s model (i.e., from the spot volatilities in Figure 28.3).7 Suppose that ok is the Black
volatility for the caplet that corresponds to the period between times tk and tk+1.
Equating variances, we must have

k

6,20. = Z A,E_,- 8,-_, (31.11)
i=1

This equation can be used to obtain the A’s iteratively.

Example 31.1
Assume that the 5, are all equal and the Black caplet spot volatilities for the first
three caplets are 24%, 22%, and 20%. This means that A0 : 24%. Since

A3 + A? = 2 >< 0.222 ”
A1 is 19.80%. Also, since

A3+A%+A§ =3 X0202
A2 is 15.23%.

Example 31.2
Consider the data in Table 31.1 on caplet volatilities ok. These exhibit the hump
discussed in Section 28.2. The A’s are shown in the second row. Notice that the
hump in the A’s is more pronounced than the hump in the o’s.

6 Since the v’s and §’s have opposite signs, the bond price volatility becomes larger (in absolute terms) as the
time to maturity increases. This is as expected.

7 In practice the A’s are determined using a least-squares calibration that we will discuss later.
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Table 31.1 Volatility data; accrual period = 1 year.

Year, k: I 2 5’ 4 5 6 7 8 9 IO

ok (%): 15.50 18.25 17.91 17.74 17.27 16.79 16.30 16.01 15.76 15.54
Ak_1(%): 15.50 20.64 17.21 17.22 15.25 14.15 12.98 13.81 13.60 13.40
. ' .= _‘*" ' '_| - ' -7, ' e ._ -.- -. < ‘ **r- -- ¢~ ;_-_,--\ _ -L .'-1 .— ~- - -.- - <1 ---_-1» -' ' - -“ 1 - T - ‘ — -'— A - -- - . ...... ...,~......4-..-......».~..~,.. .1 4 J- .» . A . 4 4 >1-..-.1‘-. ‘ . .- _.‘:=r_ AL‘; _.- = T~-_-»-0 - "-

lmplementation of the Model
The LIBOR market model can be implemented using Monte Carlo simulation.
Expressed in terms of the A,-’s, equation (31.10) is

--= " "" "’ dt+Ak dz (31.12)dFk(t) i 8-F-(t)A-__ (,,A,,_ (,,
F10) ,1,,.,, 1+8.-F.~<0 ‘mt’

I\so that from Ito’s lemma p

k 8iFi(t)Ai—m( )Ak-m() (Alt-m( ))2
dln Fka) : l:i=ZmTt) 1 + 5iF€i(t) I I 2 I I dt + Ak_m(t) dz (31113)

If, as an approximation, we assume in the calculation of the drift of ln Fk(t) that
F,-(t) = F,-(tj) for tj < t < tj-+1, then

k 5iFi(t ')Ai- '-1A/<- '-1 All-'-1
F/<(tj+1) = Fk(tj) 9XP[( Z 11+ 5_;,_(tj) J 2] )5; + Ak-j-l€\/57:‘

l l

(31.14)
where 6 is a random sample from a normal distribution with mean equal to zero and
standard deviation equal to one. In the Monte Carlo simulation, this equation is used
to calculate forward rates at time t1 from those at time zero; it is then used to calculate
forward rates at time t2 from those at time t1; and so on.

Extension to Several Factors
The LIBOR market model can be extended to incorporate several independent factors.
Suppose that there are p factors and {M is the component of the volatility of Fk(t)
attributable to the qth factor. Equation (31.10) becomes (see Problem 31.11)

k . . P .

k z:m(t) qr-l

Define AW as the qth component of the volatility when there are i accrual periods
between the next reset date and the maturity of the forward contract. Equation (31.14)
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then becomes

k 5iFi(tj) 219:1 70- "-1 A/<- "-1 q 230:1 A-1%-'-1 P
X €Xp . 1q_l_ J q 2 J 61) + 61% )\'k_.l'_1v¢l €5l\[_g.lT:|

(31.16)

Fk(tj+1) I F/<(Fj)

where the sq are random samples from a normal distribution with mean equal to zero
and standard deviation equal to one.

The approximation that the drift of a forward rate remains constant within each
accrual period allows us to jump from one reset date to the next in the simulation. This
is convenient because as already mentioned the rolling forward risk-n.eutral world
allows us to discount from one reset date to the next. Suppose that we wish to simulate
a zero curve for N accrual periods. On each trial we start with the forward rates at time
zero. These are F0(0), F1(0), . . . , FN_1(0) and are calculated from the initial zero curve.
Equation (31.16) is used to calculate F](t1), F2(t1),..., FN_1(t1). Equation (31.16) is
then used again to calculate F2(t2), F3(t2), . . ., FN_1(t2), and so on, until FN_1(tN_1) is
obtained. Note that as we move through time the zero curve gets shorter and shorter.
For example, suppose each accrual period is 3 months and N : 40. We start with a
10-year zero curve. At the 6-year point (at time t24), the simulation gives us information
on a 4-year zero curve.

The drift approximation that we have used (i.e., F,-(t) : F,-(t1-) for tj < t < tJ-+1) can
be tested by valuing caplets using equation (31.16) and comparing the prices to those
given by Black’s model. The value of Fk(tk) is the realized rate for the time period
between tk and tk+1 and enables the caplet payoff at time tk+1 to be calculated. This
payoff is discounted back to time zero, one accrual period at a time. The caplet value is
the average of the discounted payoffs. The results of this type of analysis show that the
cap values from Monte Carlo simulation are not significantly different from those given
by Black’s model. This is true even when the accrual periods are 1 year in length and a

l'.‘("72'¢'Sl-"<"9'1“‘Z4?{I'1"I""I""""l-'“"7?'?I"t““I'Z2“§1"‘!‘2'I‘L'?‘“"'".“t""'I'I"f"‘fiI‘l')I"';'l'LIX‘ i".-I -xi-0.-1'» 1- '-0+.‘ '.:='|m't"'=.1.~"I"':1. 1 1'1." . ;¢::-12:1 :.~. ' .

Table 31.2 Valuation of ratchet caplets.
/

Caplet start One Two Three
time (years) factor factors factors

h194 (I195
M207 Cu209

Cu20l 2205
Ck194 x198 .205
CL187 x193 01
CMISO x189 .193
C2172 L180 Cu188
CMI67 x174 Cu182
Chl60 CM168 Cu175

10 [M153 (L162 Ch169
\OOO\lO\L11-l>-U~>I\J1—*

C><D [\)1—\ ©\O \IO\

cficficficficficfirficfi

<D@C>C>

l\->I\.>

1—~ Q
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Table 31.3 Valuation of sticky caplets.

Caplet start One Two Three
time (years) factor factors factors

0.196 0.194 0.195
0.336 0.334 0.336
0.412 0.413 0.418
0.458 0.462 0.472
0.484 0.492 0.506
0.498 0.512 0.524
0.502 0.520 0.533
0.501 0.537
0.497 1.523 0.537

10 0.488 0.534
1 ., 1 ._ _ 1 ...........11 . 1 . .

\OOO\IO'\U1-I>~b->l\J>-‘

@<D@ U1U1*—*l\J \OOJ

very large number of trials is used.8 This suggests that the drift approximation is
innocuous in most situations. I

Ratchet Caps, Sticky Caps, and Flexi Caps
The LIBOR market model can be used to value some types of nonstandard caps.
Consider ratchet caps and sticky caps. These incorporate rules for determining how the
cap rate for each caplet is set. In a ratchet cap it equals the LIBOR rate at the previous
reset date plus a spread. In a sticky cap it equals the previous capped rate plus a spread.
Suppose that the cap rate at time t1- is KJ-, the LIBOR rate at time t1- is RJ-, and the
spread is s. In a ratchet cap, K]-+1 = Rj +.s. In a sticky cap, K]-+1 =: min(Rj, K]-) + s.

Tables 31.2 and 31.3 provide valuations of a ratchet cap and sticky cap using the
LIBOR market model with one, two, and three factors. The principal is $100. The term
structure is assumed to be flat at 5% per annum and the caplet volatilities are as in
Table 31.1. The interest rate is reset annually. The spread is 25 basis points. Tables 31.4
and 31.5 show how the volatility was split into components when two- and three,-factor

1_ . , , . . 1 _ 1 . ..., . .. , _ ._ - ,- 1 - \kU . - 4- . 4-» - - .- -- _ ~ _ - ‘ ..--- ,--, .- ,-1-.__ , -- ---4,-_, -.._=--- V
1- " -- . - ~ - '- - —- " . ....11_1....-.....»....:.,,.. - -- ----- - -~ -_ 1- - ' - . 1 A - ._-.- _._ — ' 11_. - - '

Table 31.4 Volatility components in two-factor model.

Year, k: I 2 3 4 5 6 7 8 9 10

Ak_1,1(°/6): 14.10 19.52 16.78 17.11 15.25 14.06 12.65 13.06 12.36 11.63
26,111,; (%): -6.45 -6.70 -3.84 -1.96 0.00 1.61 2.89 4.48 5.65 6.65

Total
volatility (%): 15.50 20.64 17.21 17.22 15.25 14.15 12.98 13.81 13.60 13.40

8 See J. C. Hull and A. White, “Forward Rate Volatilities, Swap Rate Volatilities, and the Implementation of
the LIBOR Market Model,” Journal of Fixed Income, 10, 2 (September 2000): 46-62. The only exception is
when the cap volatilities are very high.
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Table 31.5 Volatility components in a three-factor model.

Year, k: I 2 3 4 5 6 7 8 9 10

Ak_1,1(%): 13.65 19.28 16.72 16.98 14.85 13.95 12.61 12.90 11.97 10.97
Ak_1,2 (%): -6.62 -7.02 -4.06 -2.06 0.00 1.69 3.06 4.70 5.81 6.66
Ak_1,3 (%): 3.19 2.25 0.00 -1.98 -3.47 -1.63 0.00 1.51 2.80 3.84

Total
volatility (%): 15.50 20.64 17.21 17.22 15.25 14.15 12.98 13.81 13.60 13.40

models were used. The results are based on 100,000 Monte Carlo simulations incorpor-
ating the antithetic variable technique described in Section 20.7. The standard error of
each price is about 0.001.

A third type of nonstandard cap is a flexi cap. This is like a regular cap except that
there is a limit on the total number of caplets that can be exercised. Consider an annual-
pay flexi cap when the principal is $100, the term structure is flat at 5%, and the cap
volatilities are as in Tables 31.1, 31.4, and 31.5. Suppose that all in-the-money caplets
are exercised up to a maximum of five. With one, two, and three factors, the LIBOR
market model gives the price of the instrument as 3.43, 3.58, and 3.61, respectively (see
Problem 31.15 for other types of flexi caps).

The pricing of a plain vanilla cap depends only on the total volatility and is
independent of the number of factors. This is because the price of a plain vanilla caplet
depends on the behavior of only one forward rate. The prices of caplets in the
nonstandard instruments we have looked at are different in that they depend on the
joint probability distribution of several different forward rates. As a result they do
depend on the number of factors.  

Valuing European Swap Options  
As shown by Hull and White, there is an analytic approximation for valuing European
swap options in the LIBOR market model.9 Let T0 be the maturity of the swap option
and assume that the payment dates for the swap are T1, T2, . ./.~, TN. Define
ti : T,~+1 - T,-. From equation (27.23), the swap rate at time t is given by

s(t) I P(t, T0) - P(t, TN)
ZZZ‘ 6-P0. T41)

It is also true that
P(t, T,-) : 1
P(t, TO) F01 + 1,-o,-(Ir)

9 See J . C. Hull and A. White, “Forward Rate Volatilities, Swap Rate Volatilities, and the Implementation of
the LIBOR Market Model,” Journal of Fixed Income, 10, 2 (September 2000): 46-62. Other analytic
approximations have been suggested by A. Brace, D. Gatarek, and M. Musiela “The Market Model of
Interest Rate Dynamics,” Mathematical Finance, 7, 2 (I997): 127-55 and L. Andersen and J. Andreasen,
“Volatility Skews and Extensions of -the LIBOR Market Model,” Applied Mathematical Finance, 7, 1 (March
2000), 1-32.
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for l Q i < N, where GJ-(t) is the forward rate at time t for the period between T]-
and T]-+1. These two equations together define a relationship between s(t) and the GJ-(t).
Applying Ito’s lemma (see Problem 31.12), the variance V(t) of the swap rate s(t) is
given by

V(t) _ T/<.5k.q(t)G/<(1))’/<(t)ii2 (31.17)

1. — 5;’ k:0 1 + T1<G1<(1)

where

W) Z l;[_§-V;;T)‘[1 + 1,-G,<r>1 21% T.» H§:jT,-Llii + 1,-<1,-<01
ll,-:0 [1 + T1Gj(‘)l" 1 Z,-=0 ‘Pi lpl,-=1-+1l1 + T151111]

and ,8]-,q(t) is the qth component of the volatility of GJ-(t). We approximate V(t) by
setting GJ-(t) :: Gj(0) for all j and t. The swap volatility that is substituted into the
standard market model for valuing a swaption is then

/ 1 To
1 ?fi1z=0V(t)dL

%0 F0 T1<,51<,q(t)G/<(O))’1<(O)]2dt (31.18)
= /< 0

OI‘

*5

M~=t=O I 1 + T1<G1<(O)

In the situation where the length of the accrual period for the swap underlying the
swaption is the same as the length of the accrual period for a cap, ,Bk,q(t) is the qth
component of volatility of a cap forward rate when the time to maturity is Tk — t. This
can be looked up in a table such as Table 31.5

The accrual periods for the swaps underlying broker quotes for European swap
options do not always match the accrual periods for the caps and floors underlying
broker quotes. For example, in the United States, the benchmark caps and floors have
quarterly resets, while the swaps underlying the benchmark European swap options
have semiannual resets. Fortunately, the valuation result for European swap options
can be extended to the situation where each swap accrual period includes M subperiods
that could be accrual periods in a typical cap. Define rm, as the length of the mth
subperiod in the jth accrual period so that

E
Ms Q‘ETj:

Define GJ-’,,,,(t) as the forward rate observed at time t for the r1-,," accrual period. Because

M
1 + I,-Gm = flu + r,~,,..<;,-,,..<r>1

m=l

the analysis leading to equation (31.18) can be modified so that the volatility of s(t) is
obtained in terms or’ the volatilities of the GJ-,m(t) rather than the volatilities of the GJ-(t).
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The swap volatility to be substituted into the standard market model for valuing a swap
option proves to be (see Problem 31.13)

1 T "1 M m ,.,, G m 0 0 2_J ° ZZT/<, ,5/<, 4(1) /<, ( )1’/<( 1:] dt (3119)
TO t—0 _ k_,,_ m_1 1 + 7:k,m Gk,m(O)

Here ,8Lm,q(t) is the qth component of the volatility of GJ-,m(t). It is the qth component
of the volatility of a cap forward rate when the time to maturity is from t to the
beginning of the mth subperiod in the (Tj, T]-+1) swap accrual period.

The expressions in equations (31.18) and (31.19) for the swap volatility do involve the
approximations that GJ-(t) == GJ-(0) and GJ-,,,,(t) = GJ-,m(0). Hull and White compared
the prices of European swap options calculated using equations (31.18) and (31.19) with
the prices calculated from a Monte Carlo simulation and found the two to be very
close. Once the LIBOR market model has been calibrated, equations (31.18) and (31.19)
therefore provide a quick way of valuing European swap options. Analysts can
determine whether European swap options are overpriced or underpriced relative to
caps. As we will see shortly, they can also use the results to calibrate the model to the
market prices of swap options.

Q

M~
Ii]

Z

Calibrating the Model
The variable A 1- is the volatility at time t of the forward rate F1- for the period between tk
and tk+1 when there are j whole accrual periods between t and tk. To calibrate the
LIBOR market model, it is necessary to determine the A1- and how they are split into
)1]-,q. The A’s are usually determined from current market data, whereas the split into Xs
is determined from historical data.

Consider first the determination of the Xs from the A’s. A principal components
analysis (see Section 21.9) on forward rate data can be used. The model is

TLME 5 I-Q IQ
X

where M is the total number of factors (which equals the number of diff/erent forward
rates), AF1- is the change in the j th forward rate F1-, am is the factor loading for the jth
forward rate and the qth factor, xq is the factor score for the qth factor. Define sq as the
standard deviation of the qth factor score. If the number of factors used in the LIBOR
market model, p, is equal to the total number of factors, M, it is correct to set

)‘J3q : “1.61 Sq

for 1 < j,q < M. When p < M, the km must be scaled so that

_ / P 2

km : ‘J Sq “M (31.20)
V 25:1 S5 “liq

This involves setting
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Consider next the estimation of the A’s_. Equation (31.11) provides one way that they
can be theoretically determined so that they are consistent with caplet prices. In
practice, this is not usually used because it often leads to wild swings in the A’s and
sometimes there is no set of A’s exactly consistent with cap quotes. A commonly used
calibration procedure is similar to that described for one-factor models in Section 30.8.
Suppose that U,~ is the market price of the ith calibrating instrument (typically a cap or
European swaption) and V, is the model price. The A’s are chosen to minimize

Z111. — vif + P
where P is a penalty function chosen to ensure that the A’s are “well behaved.”
Similarly to Section 30.8, P might have the form 1

P = X w1,i(Ai+1 * A192 '1‘ Z w2,i(Ai+l + Ai-1 _ 2/\z)2

When the calibrating instrument is a European swaption, formulas (31.18) and (31.19)
make the minimization feasible using the Levenberg—Marquardt procedure. Equa-
tion (31.20) is used to determine the Xs from the A’s.  .

Volatility Skews  
Brokers provide quotes on caps that are not at the money as well as on caps that are at
the money. In some markets a volatility skew is observed, that is, the quoted (Black)
volatility for a cap or a floor is a declining function of the strike price. This can be
handled using the CEV model. (See Section 26.1 for the application of the CEV model
to equities.) The model is

P
dF,(¢) Z: . . . + Z §,-,q(t)F,-(t)°‘ dz, (31.21)

q=l

where or is a constant (0 < ct < 1). It turns out that this model can be handled very
similarly to the lognormal model. Caps and floors can be valued analytically using the
cumulative noncentral X2 distribution. There are similar analytic approximations to
those given above for the prices of European swap options“) /i

Bermudan Swap Options
A popular interest rate derivative is a Bermudan swap option. This is a swap option
that can be exercised on some or all of the payment dates of the underlying swap.
Bermudan swap options are difficult to value using the LIBOR market model because
the LIBOR market model relies on Monte Carlo simulation and it is diflicult to
evaluate early exercise decisions when Monte Carlo simulation is used. Fortunately,
the procedures described in Section 26.8 can be used. Longstalf and Schwartz apply the
least-squares approach when there are a large number of factors. The value of not
- 

10 For details, see L. Andersen and J . Andreasen, “Volatility Skews and Extensions of the LIBOR Market
Model,” Applied Mathematical Finance, 7, 1 (2000): 1-32; J . C. Hull and A. White, “Forward Rate
Volatilities, Swap Rate Volatilities, and the Implementation of the LIBOR Market Model,” Journal ofFixed
Income, 10, 2 (September 2000): 46-62.
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exercising on a particular payment date is assumed to be a polynomial function of the
values of the factors.“ Andersen shows that the optimal early exercise boundary
approach can be used. He experiments with a number of ways of parameterizing the
early exercise boundary and finds that good results are obtained when the early exercise
decision is assumed to depend only on the intrinsic value of the option.l2. Most traders
value Bermudan options using one of the one-factor no-arbitrage models discussed in
Chapter 30. However, the accuracy of one-factor models for pricing Bermudan swap
options has been a controversial issue.”

AGENCY MORTGAGE-BACKED SECURITIES

One application of the models presented in this chapter is to the agency mortgage-
backed security (agency MBS) market in the United States.

An agency MBS is similar to the ABS considered in Chapter 8 except that payments
are guaranteed by a government-related agency such as the Government National
Mortgage Association (GNMA) or the Federal National Mortgage Association
(FNMA) so that investors are protected against defaults. This makes an agency MBS
sound like a regular fixed-income security issued by the government. In fact, there is a
critical difference between an agency MBS and a regular fixed-income investment. This
difference is that the mortgages in an agency MBS pool have prepayment privileges.
These prepayment privileges can be quite valuable to the householder. In the United
States, mortgages typically last for 30 years and can be prepaid at any time. This means
that the householder has a 30-year American-style option to put the mortgage back to
the lender at its face value.

Prepayments on mortgages occur for a variety of reasons. Sometimes interest rates fall
and the owner of the house decides to refinance at a lower rate. On other occasions, a
mortgage is prepaid simply because the house is being sold. A critical element in valuing
an agency MBS is the determination of what is known as the prepaymentfunction. This is
a function describing expected prepayments on the underlying pool of mortgages at a
time t in terms of the yield curve at time t and other relevant variables.

A prepayment function is very unreliable as a predictor of actual prepayment
experience for an individual mortgage. When many similar mortgage loans are com-
bined in the same pool, there is a “law of large numbers” efi"ect ,at work and
prepayments can be predicted more accurately from an analysis of historical data. As
mentioned, prepayments are not always motivated by pure interest rate considerations.
Nevertheless, there is a tendency for prepayments to be more likely when interest rates
are low than when they are high. This means that investors require a higher rate of
interest on an agency MBS than on other fixed-income securities to compensate for the
prepayment options they have written.

1' See F.A. Longstaff and E.S. Schwartz, “Valuing American Options by Simulation: A Simple Least
Squares Approach,” Review of Financial Studies, 14, 1 (2001): 113-47.

'2 L. Andersen, “A Simple Approach to the Pricing of Bermudan Swaptions in the Multifactor LIBOR
Market Model,” Journal of Computational Finance, 3, 2 (Winter 2000): 5-32.

'3 For opposing viewpoints, see “Factor Dependence of Bermudan Swaptions: Fact or Fiction,” by L.
Andersen and J . Andreasen, and “Throwing Away a Billion Dollars: The Cost of Suboptimal Exercise
Strategies in the Swaption Market,” by F. A. Longstaff, P. Santa-Clara, and E. S. Schwartz. Both articles are
in Journal of Financial Economics, 62, 1 (October 2001).
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Collateralized Mortgage Obligations
The simplest type of agency MBS is referred to as a pass-through. All investors receive
the same return and bear the same prepayment risk. Not all mortgage-backed securities
work in this way. In a collateralized mortgage obligation (CMO) the investors are
divided into a number of classes and rules are developed for determining how principal
repayments are channeled to different classes. A CMO creates classes of securities that
bear different amounts of prepayment risk in the same way that the ABS considered in
Chapter 8 creates classes of securities bearing different amounts of credit risk.

As an example of a CMO, consider an agency MBS where investors are divided into
three classes: class A, class B, and class C. All the principal repayments (both those that
are scheduled and those that are prepayments) are channeled to class A investors until
investors in this class have been completely paid off. Principal repayments are then
channeled to class B investors until these investors have been completely paid off.
Finally, principal repayments are channeled to class C investors. In this situation,
class A investors bear the most prepayment risk. The class A securities can be expected
to last for a shorter time than the class B securities, and these, in turn, can be expected
to last less long than the class C securities.

The objective of this type of structure is to create classes of securities that are more
attractive to institutional investors than those created by a simpler pass-through MBS.
The prepayment risks assumed by the different classes depend on the par value in each
class. For example, class C bears very little prepayment risk if the par values in classes
A, B, and C are 400, 300, and 100, respectively. Class C bears rather more prepayment
risk in the situation where the par values in the classes are 100, 200, and 500.

The creators of mortgage-backed securities have created many more exotic structures
than the one we have just described. Business Snapshot 31.1 gives an example.

Valuing Agency Mortgage-Backed Securities
Agency MBSs are usually valued using Monte Carlo simulation. Either the HJM or
LIBOR market models can be used to simulate the behavior of interest rates month by
month throughout the life of an agency MBS. Consider what happens on one simula-
tion trial. Each month, expected prepayments are calculated from the current yield
curve and the history of yield curve movements. These prepayments (l6t€I'IT/11116 the
expected cash flows to the holder of the agency MBS and the cash flows are discounted
to time zero to obtain a sample value for the agency MBS. An estimate of the value of
the agency MBS is the average of the sample values over many simulation trials.

Option-Adjusted Spread
In addition to calculating theoretical prices for mortgage-backed securities and other
bonds with embedded options, traders also like to compute what is known as the
option-aajusted spread (OAS). This is a measure of the spread over the yields on
government Treasury bonds provided by the instrument when all options have been
taken into account.

An input to any term structure model is the initial zero-coupon yield curve. Usually
this is the LIBOR zero curve. However, to calculate an OAS for an instrument, it is first
priced using the zero-coupon government Treasury curve. The price of the instrument
given by the model is compared to the price in the market. A series of iterations is then
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Business Snapshot 31.1 IOs and POs

In what is known as a stripped MBS, principal payments are separated from interest
payments. All principal payments are channeled to one class of security, known as a
principal only (PO).Al1 interest payments are channeled to another class of security
known as an interest torilyi (IO). Both IOs and POs are risky investments. As
prepayment rates increase, a PO becomes” more valuable and an IO becomes less
valuable. As prepayment rates decrease, the-reverse happens. In a PO, a fixed amount
of principal is returned to the investor, but the timing is uncertain. A high rate of
prepayments on the underlying pool ‘leads to the principal being received early (which
is, of course, good news for the holder of the PO). A low rate of prepayments on the
underlying pool delays the return of the principal and reduces the yield provided by
the PO. In the case of an IO, the total of the cash flows received by the investor is
uncertain. The higher the rate of prepayments, the lower the total cash flows received
by the investor, and vice versa. _

.......................................................................................... ------------------------- 'f>‘§','|',............. ......... V ........................................................ ............................................................... i .-.-.-.-:v;-:-.-;-;-.-:-;-»».-.-;-;-.<-.-:-;-:-:-:-:-.-:-;---------------. -:-;-.-:1:

used to determine the parallel shift to the input Treasury curve that causes the model
price to be equal to the market price. This parallel shift is the OAS.

To illustrate the nature of the calculations, suppose that the market price is $102.00
and that the price calculated using the Treasury curve is $103.27. As a first trial we
might choose to try a 60-basis-point parallel shift to the Treasury zero curve. Suppose
that this gives a price of $101.20 for the instrument. This is less than the market price of
$102.00 and means that a parallel shift somewhere between 0 and 60 basis points will
lead to the model price being equal to the market price. We could uselinear interpola-
tion to calculate

103.27 - 102.00
60 X10327 - 101.20 I 3681

or 36.81 basis points as the next trial shift. Suppose that this gives a price of $101.95.
This indicates that the OAS is slightly less than 36.81 basis points. Linear interpolation
suggests that the next trial shift be  

' 103.27 -102.00
3631 X 103.27 - 101.95 " 3541 1”

or 35.41 basis points; and so on.

SUMMARY

The HJM and LMM models provide approaches to valuing interest rate derivatives that
give the user complete freedom in choosing the volatility term structure. The LMM
model has two key advantages over the HJM model. First, it is developed in terms of
the forward rates that determine the pricing of caps, rather than in terms of instant-
aneous forward rates. Second, it is relatively easy to calibrate to the price of caps or
European swap options. The HJM and LMM models both have the disadvantage that
they cannot be represented asrecombining trees. In practice, this means that they must
be implemented using Monte Carlo simulation.
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The agency mortgage-backed security market in the United States has given birth to
many exotic interest rate derivatives: CMOs, IOs, POs, and so on. These instruments
provide cash flows to the holder that depend on the prepayments on a pool of
mortgages. These prepayments depend on, among other things, the level of interest
rates. Because they are heavily path dependent, agency mortgage-backed securities
usually have to be valued using Monte Carlo simulation. These are, therefore, ideal
candidates for applications of the HJM and LMM models.
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Practice Questions (Answers in Solutions Manual)

31.1. Explain the difference between a Markov and a non-Markov model of the short rate.
31.2. Prove the relationship between the drift and volatility of the forward rate for the

multifactor version of HJM in equation (31.6).



732 CHAPTER 31

31.3. “When the forward rate volatility s(t, T) in HJM is constant, the Ho-Lee model results.”
Verify that this is true by showing that HJM gives a process for bond prices that is
consistent with the Ho-Lee model in Chapter 30.

31.4. “When the forwardrate volatility, s(t, T), in HJM is oe"’(T'”, the Hull-White model
results.” Verify that this is true by showing that HJM gives a process for bond prices that
is consistent with the Hull-White model in Chapter 30.

31.5. What is the advantage of LMM over HJM?
31.6. Provide an intuitive explanation of why a ratchet cap increases in value as the number of

factors increase.
31.7. Show that equation (31.10) reduces to (31.4) as the 8, tend to zero.
31.8. Explain why a sticky cap is more expensive than a similar ratchet cap.
31.9. Explain why IOs and POs have opposite sensitivities to the rate of prepayments.

31.10. “An option adjusted spread is analogous to the yield on a bond.” Explain this statement.
31.11. Prove equation (31.15).
31.12. Prove the formula for the variance V(T) of the swap rate in equation (31.17).
31.13. Prove equation (31.19).

Further Questions  

31.14. In an annual-pay cap, the Black volatilities for caplets with maturities 1, 2, 3, and
5 years are 18%, 20%, 22%, and 20%, respectively. Estimate the volatility of a 1-year
forward rate in the LIBOR Market Model when the time to maturity is (a) 0 to 1 year,
(b) 1 to 2 years, (c) 2 to 3 years, and (cl) 3 to 5 years. Assume that the zero curve is flat
at 5% per annum (annually compounded). Use DerivaGem to estimate flat volatilities
for 2-, 3-, 4-, 5-, and 6-year caps.

31.15. In the flexi cap considered in Section 31.2 the holder is obligated to exercise the first
N in-the-money caplets. After that no further caplets can be exercised. (In the example,
N = 5.) Two other ways that flexi caps are sometimes defined are:
(a) The holder can choose whether any caplet is exercised, but there is a limit of N on

the total number of caplets that can be exercised. /
(b) Once the holder chooses to exercise a caplet all subsequent in-the-money caplets

must be exercised up to a maximum of N.
Discuss the problems in valuing these types of flexi caps. Of the three types of flexi
caps, which would you expect to be most expensive‘? Which would you expect to be
least expensive?
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32.1

Swaps have been central to the success of over-the-counter derivatives markets. They
have proved to be very flexible instruments for managing risk. Based on the range of
different contracts that now trade and the total volume of business transacted each year,
swaps are arguably one of the most successful innovations in financial markets ever.

Chapter 7 discussed how plain vanilla interest rate swaps can be valued. The standard
approach can be summarized as: “Assume forward rates will be realized.” The steps are
as follows: :

1. Calculate the swap’s net cash flows on the assumption that LIBOR rates in the
future equal the forward rates calculated from today’s LIBOR/swap zero curve.

2. Set the value of the swap equal to the present value of the net cash flows using the
LIBOR/swap zero curve for discounting.

This chapter describes a number of nonstandard swaps. Some can be valued using the
“assume forward rates will be realized” approach; some require the application of the
convexity, timing, and quanto adjustments we encountered in Chapters 29; some
contain embedded options that must be valued using the procedures described in
Chapters 28, 30, and 31.

./

VARIATIONS ON THE VANILLA DEAL

Many interest rate swaps involve relatively minor variations to the plain vanilla
structure discussed in Chapter 7. In some swaps the notional principal changes with
time in a predetermined way. Swaps where the notional principal is an increasing
function of time are known as step-up swaps. Swaps where the notional principal is a
decreasing function of time are known as amortizing swaps. Step-up swaps could be
useful for a construction company that intends to borrow increasing amounts of
money at floating rates to finance a particular project and wants to swap to fixed-rate
funding. An amortizing swap could be used by a company that has fixed-rate
borrowings with a certain prepayment schedule and wants to swap to borrowings at
a floating rate.

733
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The principal can be different on the two sides of a swap. Also the frequency of
payments can be different. Business Snapshot 32.1 illustrates this by showing a hypo-
thetical swap between Microsoft and Goldman Sachs where the notional principal is
$120 million on the floating side and $100 million on fixed side. Payments are made
every month on the floating side and every 6 months on the fixed side. These type of
variations to the basic plain vanilla structure do not affect the valuation/I methodology.
The “assume forward rates are realized” approach can still be used.

The floating reference rate for a swap is not always LIBOR. In some swaps for
instance, it is the commercial paper (CP) rate. A basis swap involves exchanging cash
flows calculated using one floating reference rate for cash flows calculated using
another floating reference rate. An example would be a swap where the 3-month
CP rate plus 10 basis points is exchanged for 3-month LIBOR with both being applied
to a principal of $100 million. A basis swap could be used for risk management by a
financial institution whose assets and liabilities are dependent on different floating
reference rates.

Swaps where the floating reference rate is not LIBOR can be valued using the
“assume forward rates are realized” approach. A zero curve other than LIBOR is
necessary to calculate future cash flows on the assumption that forward rates are
realized. The cash flows are discounted at LIBOR.
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Business Snapshot 32.2 Hypothetical Confirmation for Compounding Swap

Trade date:
Effective date:
Holiday calendar:
Business day convention (all dates)
Termination date:

Fixed amounts
Fixed-rate payer:
Fixed-rate notional principal:
Fixed rate:
Fixed-rate day count convention:
Fixed-rate payment date:
Fixed-rate compounding:
Fixed-rate compounding dates

Floating amounts
Floating-rate payer:
Floating-rate notional principal:
Floating rate:

Floating-rate day count convention
Floating-rate payment date:
Floating-ra te compounding:

Floating-rate compounding dates:

COMPOUNDING SWAPS

5-January, 2010 A
l 1-January, 2010 ‘
US -
T“Following business day
ll-January, 20157

Microsoft
USD 100 million
6% per annum
Actual/365 2
ll-January, 2015
Applicable at 6.3%
Each 11-July and ll-January
commencing ll-July, 2010, up to
and including ll-July, 2014

Goldman Sachs
USD 100 million 2
USD 6-month LIBOR
plus 20 basis points
Actual/360
11-January, 2015 ‘
Applicable at LIBOR. g
plus 10 basis points 3 _
Each ll.-July andi] l-January I
commencing ll-July, 2010, up to
and including ll-July, 2014

/

Another variation on the plain vanilla swap is a compounding swap. A hypothetical
confirmation for a compounding swap is in Business Snapshot 32.2. In this example
there is only one payment date for both the floating-rate payments and the fixed-rate
payments. This is at the end of the life of the swap. The floating rate of interest is
LIBOR plus 20 basis points. Instead of being paid, the interest is compounded forward
until the end of the life of the swap at a rate of LIBOR plus 10 basis points. The fixed
rate of interest is 6%. Instead of being paid this interest is compounded forward at a
fixed rate of interest of 6.3% until the end of the swap.

The “assume forward rates are realized” approach can be used at least approximately
for valuing a compounding swap such as that in Business Snapshot 32.2. It is straight-
forward to deal with the fixed side of the swap because the payment that will be made at
maturity is known with certainty. The “assume forward rates are realized” approach for
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the floating side is justifiable because there exist a series of forward rate agreements
(FRAs) where the floating-rate cash flows are exchanged for the values they would have
if each floating rate equaled the corresponding forward rate.1

Example 32.1
A compounding swap with annual resets has a life of 3 years. A fixed rate is paid
and a floating rate is received. The fixed interest rate is 4% and the floating interest
rate is 12-month LIBOR. The fixed side compounds at 3.9% and the floating side
compounds at 12-month LIBOR minus 20 basis points. The LIBOR zero curve is
flat at 5% with annual compounding and the notional principal is $100 million.

On the fixed side, interest of $4 million is earned at the end of the first year.
This compounds to 4 x 1.039 = $4.156 million at the end of the second year.
A second interest amount of $4 million is added at the end of the second year
bringing the total compounded forward amount to $8.156 million. This com-
pounds to 8.156 >< 1.039 = $8.474 million by the end of the third year when there
is the third interest amount of $4 million. The cash flow at the end of the third
year on the fixed side of the swap is therefore $12.474 million.

On the floating side we assume all future interest rates equal the corresponding
forward LIBOR rates. Given the LIBOR zero curve, this means that all future
interest rates are assumed to be 5% with annual compounding. The interest calcu-
lated at the end of the first year is $5 million. Compounding this forward at 4.8%
(forward LIBOR minus 20 basis points) gives 5 >< 1.048 = $5.24 million at the end
of the second year. Adding in the interest, the compounded forward amount is
$10.24 million. Compounding forward to the end of the third year, we get
10.24 >< 1.048 = $l0.731 million. Adding in the final interest gives $15.73l million.

The swap can be valued by assuming that it leads to an inflow of $l5.73l million
and an outflow of $l2.474 million at the end of year 3. The value of the swap is
therefore

15.731 — 12.474 _ 2.814
1.053

or $2.814 million. (This analysis ignores day count issues and makes the approx-
imation indicated in footnote 1.)  

./‘

CURRENCY SWAPS

Currency swaps were introduced in Chapter 7. They enable an interest rate exposure in
one currency to be swapped for an interest rate exposure in another currency. Usually
two principals are specified, one in each currency. The principals are exchanged at both
the beginning and the end of the life of the swap as described in Section 7.8.

Suppose that the currencies involved in a currency swap are US dollars (USD) and
British pounds (GBP). In a fixed-for-fixed currency swap, a fixed rate of interest is
specified in each currency. The payments on one side are determined by applying the

1 See Technical Note 18 at www.rotma_n.utoron1;o.ca/~hu11/Technica_1Notes for the details. The “assume
forward rates are realized” approach works exactly if the spread used for compounding, sc, is zero or if it is
applied so that Q at time t compounds to Q(l + Rr)(l + sit) at time t+ r, where R is LIBOR. If, as is more
usual, it compounds to Q[l + (R + s¢)1.')], then there is a small approximation.
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fixed rate of interest in USD to the USD principal; the payments on the other side are
determined by applying the fixed rate of interest in GBP to the GBP principal. Section 7.9
discussed the valuation of this type of swap.

Another popular type of currency swap is floating-for-floating. In this, the payments
on one side are determined by applying USD LIBOR (possibly with a spread added) to
the USD principal; similarly the payments on the other side are determined by applying
GBP LIBOR (possibly with a spread added) to the GBP principal. A third type of swap
is a cross-currency interest rate swap where a floating rate in one currency is exchanged
for a fixed rate in another currency.

Floating-for-floating and cross-currency interest rate swaps can be valued using the
“assume forward rates are realized” rule. Future LIBOR rates in each currency are
assumed to equal today’s forward rates. This enables the cash flows in the currencies to
be determined. The USD cash flows are discounted at the USD LIBOR zero rate. The
GBP cash flows are discounted at the GBP LIBOR zero rate. The current exchange rate
is then used to translate the two present values to a common currency.

An adjustment to this procedure is sometimes made to reflect the realities of the
market. In theory, a new floating-for-floating swap should involve exchanging LIBOR
in one currency for LIBOR in another currency (with no spreads added). In practice,
macroeconomic effects give rise to spreads. Financial institutions often adjust the
discount rates they use to allow for this. As an example, suppose that market conditions
are such that USD LIBOR is exchanged for Japanese yen (JPY) LIBOR minus 20 basis
points in new floating-for-floating swaps of all maturities. In its valuations a US
financial institution would discount USD cash flows at USD LIBOR and it would
discount JPY cash flows at JPY LIBOR minus 20 basis points.2 It would do this in all
swaps that involved both JPY and USD cash flows.

MORE COMPLEX SWAPS

We now move on to consider some examples of swaps wherethe simple rule “assume
forward rates will be realized” does not work. In each case, it must be assumed that an
adjusted forward rate, rather than the actual forward rate, is realized. This section
builds on the discussion in Chapter 29. 2"’

LIBOR-in-Arrears Swap
A plain vanilla interest rate swap is designed so that the floating rate of interest
observed on one payment date is paid on the next payment date. An alternative
instrument that is sometimes traded is a LIBOR-in-arrears swap. In this, the floating
rate paid on a payment date equals the rate observed on the payment date itself.

Suppose that the reset dates in the swap are t,» for i == 0, 1, . . . , n, with r,- = t,-+1 — t,-.
Define R, as the LIBOR rate for the period between t,- and t,~+1, F,- as the forward value
of R,-, and oi as the volatility of this forward rate. (The value of oi is typically implied
from caplet prices.) In a LIBOR-in-arrears swap the payment on the floating side at
time t,- is based on R, rather than R,~_1. As explained in Section 29.1, it is necessary to
§ 

2 This adjustment is ad hoe, but, if it is not made, traders make an immediate profit or loss every time they
trade a new JPY/USD floating-for-floating swap.
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make a convexity adjustment to the forward rate when the payment is valued. The
valuation should be based on the assumption that the floating rate paid is

F -24¢ 321
1+ 1+ Fifi ( )

and not F,-.

Example 32.2
In a LIBOR-in-arrears swap, the principal is $100 million. A fixed rate of 5% is
received annually and LIBOR is paid. Payments are exchanged at the ends of
years 1, 2, 3, 4, and 5. The yield curve is flat at 5% per annum (measured with
annual compounding). All caplet volatilities are 22% per annum.

The forward rate for each floating payment is 5%. If this were a regular swap
rather than an in-arrears swap, its value would (ignoring day count conventions,
etc.) be exactly zero. Because it is an in-arrears swap, convexity adjustments must
be made. In equation (32.1), F,- : 0.05, oi : 0.22, and 1:, : 1 for all i. The con-
vexity adjustment changes the rate assumed at time ti from 0.05 to

00¥X02?X1Xt(x05 '== .05 (too 115.T 1+005X1 O "T O L
The floating rates for the payments at the ends of years 1, 2, 3, 4, and 5 should
therefore be assumed to be 5.0115%, 5.0230%, 5.0345%, 5.0460%, and 5.0575%,
respectively. The net exchange on the first payment date is equivalent to a cash
outflow of 0.0l15% of $100 million or $11,500. Equivalent net cash flows for
other exchanges are calculated similarly. The value of the swap is

11,500 23,000 34,500 46,000 57,500
1.05 1.052 1.053 1.054 1.055

or —$l44,5l4.

CMS and CMT Swaps
A constant maturity swap (CMS) is an interest rate swap where the floating rate equals
the swap rate for a swap with a certain life. For example, the floating payments on a CMS
swap might be made every 6 months at a rate equal to the 5-year swap rate; Usually there
is a lag so that the payment on a particular payment date is equal to the swap rate
observed on the previous payment date. Suppose that rates are set at times to, tl, t2, . . . ,
payments are made at times tl, t2, t3, . . . , and L is the notional principal. The floating
payment at time t,-+1 is

I,-LS;

where ti = t,-+1 — ti and S, is the swap rate at time t,-.
Suppose that y,- is the forward value of the swap rate S,-. To value the payment at

time t,-+1, it turns out to be correct to make a convexity/timing adjustment to the
forward swap rate, so that the realized swap rate is assumed to be

G1’ . . .F. . , . .t.yi _ _%y%O_§,I_ti z/(yr) yztz ‘lplO'_),l0'F,l 1.

Gi(yi) 1 + Fflz

rather that y,-. In this equation, oyai is the volatility of the forward swap rate, F, is the
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current forward interest rate between times ti and ti-+1, UF’i is the volatility of this
forward rate, and pi is the correlation between the forward swap rate and the forward
interest rate. G,-(x) is the price at time ti of a bond as a function of its yield x. The bond
pays coupons at rate yi and has the same life and payment frequency as the swap from
which the CMS rate is calculated. Gi-(x) and Gi'(x) are the first and second partial
derivatives of Gi with respect to x. The volatilities oyii can be implied from swaptions;
the volatilities oi; i can be implied from caplet prices; the correlation pi can be estimated
from historical data.

Equation (32.2) involves a convexity and a timing adjustment. The term

G’~’(r-)
*'%)’I<Ti,itz “£7-L"

Gi()’i)

is an adjustment similar the one in Example 29.2 of Section 29.1. It is based on the
assumption that the swap rate Si leads to only one payment at time ti rather than to an
annuity of payments. The term

i ytTtFtPt<7y,t<7F,i1t
1 + Firi

is similar to the one in Section 29.2 and is an adjustment for the fact that the payment
calculated from Si is made at time ti+i rather than ti.

Example 32.3
In a 6-year CMS swap, the 5-year swap rate is received and a fixed rate of 5% is
paid on a notional principal of $100 million. The exchange of payments is semi-
annual (both on the underlying 5-year swap and on the CMS swap itself). The
exchange on a payment date is determined from the swap rate on the previous
payment date. The term structure is flat at 5% per annum with semiannual
compounding. All options on five-year swaps have a 15% implied volatility and
all caplets with a 6-month tenor have a 20% implied volatility. The correlation
between each cap rate and each swap rate is 0.7.

In this case, yi = 0.05, rry,i- = 0.15, ti = 0.5, Fi = 0.05, O'F,i' = 0.20, and pi -= 0.7
for all i. Also,

._l"15/'\

!\’ £11 I-11 ©C \

Gm T 1+ x/2)"+(1+ x/2)“)
so that G;-(yi-) = -437.603 and Gi'(y,-) -: 2261.23. Equation (32.2) gives the total
convexity/timing adjustment as 0.000ll97ti-, or 1.197 basis points per year until
the swap rate is observed. For example, for the purposes of valuing the CMS
swap, the 5-year swap rate in 4 years’ time should be assumed to be 5.0479%
rather than 5% and the net cash flow received at the 4.5-year point should be
assumed to be 0.5 >< 0.000479 >< 100,000,000 = $23,940. Other net cash flows are
calculated similarly. Taking their present value, we find the value of the swap to
be $159,811.

A constant maturity Treasury swap (CMT swap) works similarly to a CMS swap except
that the floating rate is the yield on a Treasury bond with a specified life. The analysis of
a CMT swap is essentially the same as that for a CMS swap with Si defined as the par
yield on a Treasury bond with the specified life.
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Differential Swaps
A dififerential swap, sometimes referred to as a dijjfswap, is an interest rate swap where a
floating interest rate is observed in one currency and applied to a principal in another
currency. Suppose that the LIBOR rate for the period between ti and ti-+1 in currency Y
is applied to a principal in currency X with the payment taking place at time ti-+1. Define
Vi as the forward interest rate between ti and ti-+1 in currency Y and Wi as the forward
exchange rate for a contract with maturity ti-+1 (expressed as the number of units of
currency Y that equal one unit of currency X). If the LIBOR rate in currency Y were
applied to a principal in currency Y, the cash flow at time ti-+1 would be valued on the
assumption that the LIBOR rate at time ti equals Vi. From the analysis in Section 29.3,
a quanto adjustment is necessary when it is applied to a principal in currency X. It is
correct to value the cash flow on the assumption that the LIBOR rate equals

Vi + VtPz<Tw,t0'v,itt (32-3)

where oi/ii is the volatility of Vi, oW_i is the volatility of Wi, and pi is the correlation
between Vi and Wi.

Example 32.4
Zero rates in both the US and Britain are flat at 5% per annum with annual
compounding. In a 3-year diff swap agreement with annual payments, USD
12-month LIBOR is received and sterling 12-month LIBOR is paid with both
being applied to a principal of 10 million pounds sterling. The volatility of all
1-year forward rates in the US is estimated to be 20%, the volatility of the forward
USD/sterling exchange rate (dollars per pound) is 12% for all maturities, and the
correlation between the two is 0.4.

In this case, Vi = 0.05, pi = 0.4, owii = 0.12, oi/ii : 0.2. The floating-rate cash
flows dependent on the 1-year USD rate observed at time ti should therefore be
calculated on the assumption that the rate will be 1

0.05 + 0.05 >< 0.4 x 0.12 x 0.2 >< ti : 0.05 + 0.00048ti

This means that the net cash flows from the swap at times 1, 2, and 3 years should
be assumed to be 0, 4,800, and 9,600 pounds sterling for the purposes of valua-
tion. The value of the swap is therefore /=

 0 4 s00 9 600_ ’ ’ =12 47105+1052+1053 ’6
or 12,647 pounds sterling.

EQUITY SWAPS
In an equity swap, one party promises to pay the return on an equity index on a
notional pri11cipal, while the other promises to pay a fixed or floating return on a
notional principal. Equity swaps enable a fund managers to increase or reduce their
exposure to an index without buying and selling stock. An equity swap is a convenient
way of packaging a series of forward contracts on an index to meet the needs of the
market.
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The equity index ‘is usually a total return index where dividends are reinvesi/ed in the
stocks comprising the index. An example of an equity swap is in Business Snapshot 32.3.
In this, the 6-month return on the S&P 500 is exchanged for LIBOR. The principal on
either side of the swap is $100 million and payments are made every 6 months.

For an equity-for-floating swap such as that in Business Snapshot 32.3 the value at
the start of its life is zero. This is because a financial institution can arrange to costlessly
replicate the cash flows to one side by borrowing the principal on each payment date at
LIBOR and investing it in the index until the next payment date with any dividends
being reinvested. A similar argument shows that the swap is always worth zero
immediately after a payment date.

Between payment dates the equity cash flow and the LIBOR cash flow at the next
payment date must be valued. The LIBOR cash flow was fixed at the last reset date and so
can be valued easily. The value of the equity cash flow is LE/E0, where L is the principal,
E is the current value of the equity index, and E0 is its value at the last payment date.3

3 See Technical Note 19 at www.rotman.utoronto.ca/~hu11/Technica1Notes for a more detailed discussion.
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SWAPS WITH EMBEDDED OPTIONS

Some swaps contain embedded options. In this section we consider some commonly
encountered examples.

Accrual Swaps
Accrual swaps are swaps where the interest on one side accrues only when the floating
reference rate is within a certain range. Sometimes the range remains fixed during the
entire life of the swap; sometimes it is reset periodically.

As a simple example of an accrual swap, consider a deal where a fixed rate Q is
exchanged for 3-month LIBOR every quarter and the fixed rate accrues only on days
when 3-month LIBOR is below 8% per annum. Suppose that the principal is L. In a
normal swap the fixed-rate payer would pay QLni /n2 on each payment date where ni is
the number of days in the preceding quarter and n2 is the number of days in the year.
(This assumes that the day count is actual/actual.) In an accrual swap, this is changed to
QLn3/n2, where n3 is the number of days in the preceding quarter that the 3-month
LIBOR was below 8%. The fixed-rate payer saves QL/n2 on each day when 3-month
LIBOR is above 8%.4 The fixed-rate payer’s position can therefore be considered
equivalent to a regular swap plus a series of binary options, one for each day of the
life of the swap. The binary options pay off QL/ni when the 3-month LIBOR is
above 8%. I

To generalize, suppose that the LIBOR cutoff rate (8% in the case just considered) is
R K and that payments are exchanged every r years. Consider day i during the life of the
swap and suppose that ti is the time until day i. Suppose that the 'c-year LIBOR rate on
day i is Ri so that interest accrues when Ri < RK. Define Fi as the forward value of Ri
and oi as the volatility of Fi. (The latter is estimated from spot caplet volatilities.) Using
the usual lognormal assumption, the probability that LIBOR is greater than RK in a
world that is forward risk neutral with respect to a zero-coupon bond maturing at time
ti + r is N(d2), where I

d __1n(Fi/RK)"Ui2h'/2
 2"  oi./E

/~
The payofl from the binary option is realized at the swap payment date following day i.
Suppose that this is at time si. The probability that LIBOR is greater than RK in a
world that is forward risk neutral with respect to a zero-coupon bond maturing at
time si is given by N(d§"), where df is calculated using the same formula as dz, but
with a small timing adjustment to Fi reflecting the diflerence between time ti + r and
time si.

The value of the binary option corresponding to day i is

gPo. s.>N<d;>
"2

The total value of the binary options is obtained by summing this expression for every

4 The usual convention is that, if a day is a holiday, the applicable rate is assumed to be the rate on the
immediately preceding business day.
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day in the life of the swap. The timing adjustment (causing di to be replaced by d§) is so
small that, in practice, it is frequently ignored.

Cancelable Swap  
A cancelable swap is a plain vanilla interest rate swap where one side has the option to
terminate on one or more payment dates. Terminating a swap is the same as entering
into the offsetting (opposite) swap. Consider a swap between Microsoft and Goldman
Sachs. If Microsoft has the option to cancel, it can regard the swap as a regular swap
plus a long position in an option to enter into the offsetting swap. If Goldman Sachs
has the cancelation option, Microsoft has a regular swap plus a short position in an
option to enter into the swap.

If there is only one termination date, a cancelable swap is the same as a regular swap
plus a position in a European swaption. Consider, for example, a 10-year swap where
Microsoft will receive 6% and pay LIBOR. Suppose that Microsoft has the option to
terminate at the end of 6 years. The swap is a regular 10-year swap to receive 6% and
pay LIBOR plus long position in a 6-year European option to enter into a 4-year swap
where 6% is paid and LIBOR is received. (The latter is referred to as a 6 >< 4 European
swaption.) The standard market model for valuing European swaptions is described in
Chapter 28.

When the swap can be terminated on a number of different payment dates, it is a
regular swap plus a Bermudan-style swaption. Consider, for example, the situation
where Microsoft has entered into a 5-year swap with semiannual payments where 6% is
received and LIBOR is paid. Suppose that the counterparty has the option to terminate
the swap on payment dates between year 2 and year 5. The swap is a regular swap plus at
short position in a Bermudan-style swaption, where the Bermudan-style swaption is an
option to enter into a swap that matures in 5 years and involves a fixed payment at 6%
being received and a floating payment at LIBOR being paid. The swaption can be
exercised on any payment date between "year 2 and year 5. Methods for valuing
Bermudan swaptions are discussed in Chapters 30 and 31.

Cancelable Compounding Swaps  
Sometimes compounding swaps can be terminated on specified payment date/s. On
termination, the floating-rate payer pays the compounded value of the floating amounts
up to the time of termination and the fixed-rate payer pays the compounded value of
the fixed payments up to the time of termination.

Some tricks can be used to value cancelable compounding swaps. Suppose first that
the floating rate is LIBOR and it is compounded at LIBOR. Assume that the principal
amount of the swap is paid on both the fixed and floating sides of the swap at the end of
its life. This is similar to moving from Table 7.1 to Table 7.2 for a vanilla swap. It does
not change the value of the swap and has the effect of ensuring that the value of the
floating side is always equals the notional principal on a payment date. To make the
cancelation decision, we need only look at the fixed side. We construct an interest rate
tree as outlined in Chapter 30. We roll back through the tree in the usual way valuing
the fixed side. At each node where the swap can be canceled, we test whether it is
optimal to keep the swap or cancel it. Canceling the swap in eflect sets the fixed side
equal to par. If we are paying fixed and receiving floating, our objective is to minimize
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the value of the fixed side; if we are receiving fixed and paying floating, our objective is
to maximize the value of the fixed side.

When the floating side is LIBOR plus a spread compounded at LIBOR, the cash
flows corresponding to the spread rate of interest can be subtracted from the fixed side
instead of adding them to the floating side. The option can then be valued as in the case
where there is no spread.

Whens the compounding is at LIBOR plus a spread, an approximate approach is as
follows:

1. Calculate the value of the floating side of the swap at each cancelation date
assuming forward rates are realized.

2. Calculate the value of the floating side of the swap at each cancelation date
assuming that the floating rate is LIBOR and it is compounded at LIBOR.

3. Define the excess of step 1 over step 2 as the “value of spreads” on a cancelation date.
4. Treat the option in the way described above. In deciding whether to exercise the

cancelation option, subtract the value of the spreads from the values calculated for
the fixed side.

OTHER SWAPS  
This chapter has discussed just afew of the swap structures in the market. In practice, the
range of different contracts that trade is limited only by the imagination of financial
engineers and the appetite of corporate treasurers for innovative risk management tools.

A swap that was very popular in the United States in the mid-1990s is an index
amortizing rate swap (also called an indexedprincipal swap). In this, the principal reduces
in a way dependent on the level of interest rates. The lower the interest rate, the greater the
reduction in the principal. The fixed side of an indexed amortizing swap was originally
designed to mirror approximately the return obtained by an investor on an agency
mortgage-backed security after prepayment options are taken into account. The swap
therefore exchanged the return on the mortgage-backed security for a floating-rate return.

Commodity swaps are now becoming increasingly popular. A company that consumes
100,000 barrels of oil per year could agree to pay $8 million each year for the next 10 years
and to receive in return 100,000S, where S is the market price of oil per‘ barrel. The
agreement would in effect lock in the company’s oil cost at $80 per barrel. An oil
producer might agree to the opposite exchange, thereby locking in the price it realized
for its oil at $80 per barrel. Energy derivatives such as this will be discussed in Chapter 33.

A number of other types of swaps are discussed elsewhere in this book. For example,
asset swaps are discussed in Chapter 23, total return swaps and various types of credit
default swaps are covered in Chapter 24, and volatility and variance swaps are analyzed
in Chapter 25.

Bizarre Deals
Some swaps have payofls that are calculated in quite bizarre ways. An example is a deal
entered into between Procter and Gamble and Bankers Trust in 1993 (see Business
yi- 

5 This approach ls not perfectly accurate in that it assumes that the decision to exercise the cancelation
option is not influenced by future payments being compounded at a rate different from LIBOR.
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Business Snapshot 32.4 Procter and Gamble’s Bizarre Deal i

A particularly bizarre swap is the so-called “5/30” swap entered into between Bankers
Trust (BT) and Procter and Gamble (P&G) on November 2, 1993. This was a 5-year
swap with semiannual payments. The notional principal was $200 million.:BT‘,paid
P&Gi5.30% per annum. P&G paid BT the average 30-day CP (commercial_"paper)
rate minus 75 basisipoints plus a spread. The average commercial paptef rate was

. - . . ‘

calculated by j taking observations on the 30-day commercial paper rate ieach lday
1 during the preceding accrual period and averaging them. 1 . -3 3 5.

The spread was zero for the first payment date (May 2, 1994). For the remaining
nine payment dates, it was . _ , i

. 5-year _CMT% 3 .P . - 2 - 3 -.98 i 578% ) ( 0 year TSY price)
max0 i - (10.0

In this, 5-year CMT is the constant. maturity Treasury yield (i.e., the yield on ai5-year
Treasury note, as reported by the US Federal Reserve). The 30-year TSY “price is the
midpoint of the bid and offer cash bond prices forthe 6.25% Treasuryi-bond
maturing on August 2023. Note that the spreadcalculated-from~the for1n‘u,la-tisjla?
decimal interest rate. It isnot measured in basis points. ‘If the formula gives‘ 0.,,'1*a"n:d  
the CP rate is.6%; the rate paid by P&G is 15.25%. i e it 2,;
7 P&G were hoping that the spread would be zero and the deal would e1f‘1_‘ablié‘it to
exchange fixed-rate ‘funding at 5.30% for funding at 75 basisipoints
"commercial paper rate. Iriifact, interest rateisroseijsharplyl ineafly

I fell, and the iswapproved very, very expensive (see.Problem 732.10). is 5

Snapshot 32.4). The details of this transaction are in the public domain because it later
became the subject of litigation.6 .

SUMMARY .
./'

Swaps have proved to be very versatile financial instruments. Many swaps can be valued
by (a) assuming that LIBOR (or some other floating reference rate) will equal its
forward value and (b) discounting the resulting cash flows at the LIBOR/swap rate.
These include plain vanilla interest swaps, most types of currency swaps, swaps where
the principal changes in a predetermined way, swaps where the payment dates are
different on each side, and compounding swaps.

Some swaps require adjustments to the forward rates when they are valued. These
adjustments are termed convexity, timing, or quanto adjustments. Among the swaps that
require adjustments are LIBOR-in-arrears, CMS/CMT, and differential swaps.

Equity swaps involve the return on an equity index being exchanged for a fixed or
floating rate of interest. They are usually designed so that they are worth zero immediately
after a payment date, but they may have nonzero values between payment dates.

6 See D. J . Smith, “Aggressive Corporate Finance: A Close Look at the Procter and Gamble-Bankers Trust
Leveraged Swap,” Journal of Derivatives 4, 4 (Summer 1997): 67-79.
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Some swaps involve embedded options. An accrual swap is a regular swap plus a
large portfolio of binary options (one for each day of the life of the swap). A cancelable
swap is a regular swap plus a Bermudan swaption.

FURTHER READING

Chance, D., and Rich, D., “The Pricing of Equity Swap and Swaptions,” Journal of Derivatives
5, 4 (Summer 1998): 19-31.

Smith D. J ., “Aggressive Corporate Finance: A Close Look at the Procter and Gamble-Bankers
Trust Leveraged Swap,” Journal of Derivatives, 4, 4 (Summer 1997): 67-79.

Practice Questions (Answers in Solutions Manual)

32.1

32.2

32.3

32.4.

32.5

32.6

32.7

32.8

Calculate all the fixed cash flows and their exact timing for the swap in Business
Snapshot 32.1. Assume that the day count conventions are applied using target payment
dates rather than actual payment dates.

Suppose that a swap specifies that a fixed rate is exchanged for twice the LIBOR rate.
Can the swap be valued using the “assume forward rates are realized” rule?
What is the value of a 2-year fixed-for-floating compound swap where the principal is
$100 million and payments are made semiannually. Fixed interest is received and floating
is paid? The fixed rate is 8% and it is compounded at 8.3% (both semiannually
compounded). The floating rate is LIBOR plus 10 basis points and it is compounded at
LIBOR plus 20 basis points. The LIBOR zero curve is flat at 8% with semiannual
compounding.
What is the value of a 5-year swap where LIBOR is paid in the usual way and in return
LIBOR compounded at LIBOR is received on the other side? The principal on both
sides is $100 million. Payment dates on the pay side and compounding dates on the
receive side areevery 6 months and the yield curve is flat at 5% with semiannual
compounding. /i
Explain carefully why a bank might choose to discount cash flows on a currency swap at
a rate slightly different from LIBOR.
Calculate the total convexity/timing adjustment in Example 32.3 of Section 32.4 if all
cap volatilities are 18% instead of 20% and volatilities for all options on 5-year swaps
are 13% instead of 15%. What should the 5-year swap rate in 3 years’ time be assumed
for the purpose of valuing the swap? What is the value of the swap‘?
Explain why a plain vanilla interest rate swap and the compounding swap in Section 32.2
can be valued using the “assume forward rates are realized” rule, but a LIBOR-in-
arrears swap in Section 32.4 cannot.
In the accrual swap discussed in the text, the fixed side accrues only when the floating
reference rate lies below a certain level. Discuss how the analysis can be extended to cope
with a situation where the fixed side accrues only when the floating reference rate is
above one level and below another.
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Further Questions

32.9. LIBOR zero rates are flat at 5% in the United States and flat at 10% in Australia (both
annually compounded). In a 4-year swap Australian LIBOR is received and 9% is paid
with both being applied to a USD principal of $10 million. Payments are exchanged
annually. The volatility of all 1-year forward rates in Australia is estimated to be 25 % ,
the volatility of the forward USD/AUD exchange rate (AUD per USD) is 15% for all
maturities, and the correlation between the two is 0.3. What is the value of the swap?

32.10. Estimate the interest rate paid by P&G on the 5/30 swapin Section 32.7 if (a) the CP rate
is 6.5% and the Treasury yield curve is flat at 6% and (b) the CP rate is 7.5% and the
Treasury yield curve is flat at 7% with semiannual compounding.

32.11. Suppose that you are trading a LIBOR-in-arrears swap with an unsophisticated counter-
party who does not make convexity adjustments. To take advantage of the situation,
should you be paying fixed or receiving fixed? How should you try to structure the swap
as far as its life and payment frequencies‘?

Consider the situation where the yield curve is flat at 10% per an11um with annual
compounding. All cap volatilities are 18%. Estimate the difference between the way a
sophisticated trader and an unsophisticated trader would value a LIBOR-in-arrears
swap where payments are made annually and the life of the swap is (a) 5 years, (b) 10
years, and (c) 20 years. Assume a notional principal of $1 million.

32.12. Suppose that the LIBOR zero rate is flat at 5% with annual compounding. In a 5-year
swap, company X pays a fixed rate of 6% and receives LIBOR. The volatility of the
2-year swap rate in 3 years is 20%.
(a) What is the value of the swap?
(b) Use DerivaGem to calculate the value of the swap if company X has the option to

cancel after 3 years.
(c) Use DerivaGem to calculate the value of the swap if the counterparty has the option

to cancel after 3 years.
(d) What is the value of the swap if either side can cancel at the end of 3 years?

/
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Derivatives

The variable underlying a derivative is sometimes simply referred to as the underlying.
Earlier parts of this book have focused on situations where the underlying is a stock
price, a stock index, an exchange rate, a bond price, an interest rate, or the loss from a
credit event. In this chapter, we consider a variety of other underlyings.

The first part of the chapter is concerned with situations where the underlying is a
commodity. Chapter 2 discussed futures contracts on commodities and Chapter 17
discussed how European and American options on commodity futures contracts can
be valued. As a European futures option has the same payoff as a European spot
option when the futures contract matures at the same time as the option, the model
used to value European futures options (Black’s model) can also be used to value
European spot options. However, American spot options and other more complicated
derivatives dependent on the spot price of a commodity require more sophisticated
models. A feature of commodity prices is that they often exhibit mean reversion
(similarly to interest rates) and are also sometimes subject to jumps. Some of the
models developed for interest rates can be adapted to apply to commodities.

The second part of the chapter considers weather and insurance derivatives. A
distinctive feature of these derivatives is that they depend on variables with no systematic
risk. For example, the expected value of the temperature at a certain lohation or the
losses experienced due to hurricanes can reasonably be assumed to be the same in a risk-
neutral world and the real world. This means that historical data is potentially more
useful for valuing these types of derivatives than for some others.

AGRICULTURAL COMMODITIES

Agricultural commodities include products that are grown (or created from products
that are grown) such as corn, wheat, soybeans, cocoa, coffee, sugar, cotton, and frozen
orange juice. They also include products related to livestock such as cattle, hogs, and
pork bellies. The prices of agricultural commodities, like all commodities, is determined
by supply and demand. The United States Department of Agriculture publishes reports
on inventories and production. One statistic that is watched for commodities such as
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corn and wheat is the stocks-to-use ratio. This is the ratio of the year-end inventory to
the year’s usage. Typically it is between 20% and 40%. It has an impact on price
volatility. As the ratio for a commodity becomes lower, the commodity’s price becomes
more sensitive to supply changes, so that the volatility increases.

There are reasons for supposing some level of mean reversion in agricultural prices.
As prices decline, farmers find it less attractive to produce the commodity and supply
decreases creating upward pressure on the price. Similarly, as the price of an agricul-
tural commodity increases, farmers are more likely to devote resources to producing the
commodity creating downward pressure on the price.

Prices of agricultural commodities tend to be seasonal, as storage is expensive and
there is a limit to the length of time for which a product can be stored. Weather plays a
key role in determining the price of many agricultural products. Frosts can decimate the
Brazilian coffee crop, a hurricane in Florida is likely to have a big effect on the price of
frozen orange juice, and so on. The volatility of the price of a commodity that is grown
tends to be highest at pre-harvest times and then declines when the size of the crop is
known. During the growing season, the price process for an agricultural commodity is
liable to exhibit jumps because of the weather.

Many of the commodities that are grown and traded are used to feed livestock. (For
example, the corn futures contract that is traded by the CME Group refers to the corn
that is used to feed animals.) The price of livestock, and when slaughtering takes place,
is liable to be dependent on the price of these commodities, which are in turn influenced
by the weather.

METALS

Another important commodity category is metals. This includes gold, silver, platinum,
palladium, copper, tin, lead, zinc, nickel, and aluminum. Metals have quite different
characteristics from agricultural commodities. Their prices are unaffected by the
weather and are not seasonal. They are extracted from the ground. They are divisible
and are relatively easy to store. Some metals, such as copper, are used almost entirely in
the manufacture of goods and should be classified as consumption assets. As explained
in Section 5.1, others, such as gold and silver, are held purely for investment as/well as
for consumption and should be classified as investment assets.

As in the case of agricultural commodities, analysts monitor inventory levels to
determine short-term price volatility. Exchange rate volatility may also contribute to
volatility as the country where the metal is extracted is often different from the country
in whose currency the price is quoted. In the long term, the price of a metal is
determined by trends in the extent to which a metal is used in different production
processes and new sources of the metal that are found. Changes in exploration and
extraction methods, geopolitics, cartels, and environmental regulation also have an
impact. I

One potential source of supply for a metal is recycling. A metal might be used to
create a product and, over the following 20 years, 10% of the metal might come back on
the market as a result of a recycling process. .

Metals that are investment assets are not usually assumed to follow mean-reverting
processes because a mean-reverting process would give rise to an arbitrage opportunity
for the investor. For metals that are consumption assets, there may be some mean
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reversion. As the price of a metal increases, it is likely to become less attractive to use
the metal in some production processes and more economically viable to extract the
metal from difficult locations. As a result there will be downward pressure on the price.
Similarly, as the price decreases, it is likely to become more attractive to use the metal in
some production processes and less economically viable to extract the metal from
difficult locations. As a result, there will be upward pressure on the price.

ENERGY PRODUCTS

Energy products are among the most important and actively traded commodities.
A wide range of energy derivatives trade in both the over-the-counter market and on
exchanges. Here we consider oil, natural gas, and electricity. There are reasons for
supposing that all three follow mean reverting processes. As the price of a source of
energy rises, it is likely to be consumed less and and produced more. This creates a
downward pressure on prices. As the price of a source of energy declines, it is likely to
be consumed more, but production is likely to be less economically viable. This creates
upward pressure on the price.

Crude Oil
The crude oil market is the largest commodity market in the world, with global demand
amounting to about 80 million barrels daily. Ten-year fixed-price supply contracts have
been commonplace in the over-the-counter market for many years. These are swaps
where oil at a fixed price is exchanged for oil at a floating price.

There are many grades of crude oil, reflecting variations in the gravity and the sulfur
content. Two important benchmarks for pricing are Brent crude oil (which is sourced
from the North Sea) and West Texas Intermediate (WTI) crude oil. Crude oil is refined
into products such as gasoline, heating oil, fuel oil, and kerosene. I

In the over-the-counter market, virtually any derivative that is available on common
stocks or stock indices is now available with oil as the underlying asset. Swaps, forward
contracts, and options are popular. Contracts sometimes require settlement in cash and
sometimes require settlement by physical delivery (i.e., by delivery of oil).

Exchange-traded contracts are also popular. The CME Group and Intefcontinental-
Exchange (ICE) trade a number of oil futures and oil futures options contracts. Some of
the futures contracts are settled in cash; others are settled by physical delivery. For
example, the Brent. crude oil futures traded on ICE have a cash settlement option; the
light sweet crude oil futures traded on CME Group require physical delivery. In both
cases, the amount of oil underlying one contract is 1,000 barrels. The CME Group also
trades popular contracts on two refined products: heating oil and gasoline. In both
cases, one contract is for the delivery of 42,000 gallons.

Natural Gas
The natural gas industry throughout the world went through a period of deregulation
and the elimination of government monopolies in the 1980s and 1990s. The supplier of
natural gas is now not necessarily the same company as the producer of the gas.
Suppliers are faced with the problem of meeting daily demand.
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A typical over-the-counter contract is for the delivery of a specified amount of
natural gas at a roughly uniform rate over a 1-month period. Forward contracts,
options, and swaps are available in the over-the-counter market. The seller of natural
gas is usually responsible for moving the gas through pipelines to the specified
location.

The CME Group trades a contract for the delivery of 10,000 million British thermal
units of natural gas. The contract, if not closed out, requires physical delivery to be
made during the delivery month at a roughly uniform rate to a particular hub in
Louisiana. ICE trades a similar contract in London.

Natural gas is a popular source of energy for heating buildings. It is also used to
produce electricity, which in turn is used for air-conditioning. As a result, demand for
natural gas is seasonal and dependent on the weather.

Electricity
Electricity is an unusual commodity because it cannot easily be stored.1 The maximum
supply of electricity in a region at any moment is determined by the maximum capacity
of all the electricity-producing plants in the region. In the United States there are
140 regions known as control areas. Demand and supply are first matched within a
control area, and any excess power is sold to other control areas. It is this excess power
that constitutes the wholesale market for electricity. The ability of one control area to
sell power to another control area depends on the transmission capacity of the lines
between the two areas. Transmission from one area to another involves a transmission
cost, charged by the owner of the line, and there are generally some transmission or
energy losses.

A major use of electricity is for air-conditioning systems. As a result the demand for
electricity, and therefore its price, is much greater in the summer months than in the
winter months. The nonstorability of electricity causes occasional very large movements
in the spot price. Heat waves have been known to increase the spot price by as much as
l,000% for short periods of time.

Like natural gas, electricity has been through a period of deregulation and the
elimination of government monopolies. This has been accompanied by the development
of an electricity derivatives market. The CME Group now trades a futures contract on
the price of electricity, and there is an active over-the-counter market in forward
contracts, options, and swaps. A typical contract (exchange-traded or over-the-counter)
allows one side to receive a specified number of megawatt hours for a specified price at a
specified location during a particular month. In a 5 >< 8 contract, power is received for
five days a week (Monday to Friday) during the off-peak period (11 p.m. to 7 a.m.) for
the specified month. In a 5 >< 16 contract, power is received five days a week during the
on-peak period (7 a.m. to 11 p.m.) for the specified month. In a 7 >< 24 contract, it is
received around the clock every day during the month. Option contracts have either
daily exercise or monthly exercise. In the case of daily exercise, the option holder can
choose on each day of the month (by giving one day’s notice) whether to receive the
specified amount of power at the specified strike price. When there is monthly exercise a

1 Electricity producers with spare capacity sometimes use it to pump water to the top of their hydroelectric
plants so that it can be used to produce electricity at a later time. This is the closest they can get to storing this
commodity.
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single decision on whether to receive power for the whole month at the specified strike
price is made at the beginning of the month.

An interesting contract in electricity and natural gas markets is what is known as a
swing option or take-and-pay option. In this contract a minimum and maximum for the
amount of power that must be purchased at a certain price by the option holder is
specified for each day during a month and for the month in total. The option holder
can change (or swing) the rate at which the power is purchased during the month, but
usually there is a limit on the total number of changes that can be made.

MODELING COMMODITY PRICES

To value derivatives, we are often interested in modeling the spot price of a commodity
in the traditional risk-neutral world. From Section 17.7, the expected future price of the
commodity in this world is the futures price.

A Simple Process
A simple process for a commodity price can be constructed by assuming that the expected
growth rate in the commodity price is dependent solely on time and the volatility of the
commodity price is constant. The risk-neutral process for the commodity price S then
has the form 2

g = ,tt(t)dt + adz (33.1)
and

r(t) = F[S(t)] = s(0)al>““""
where F(t) is the futures price for a contract with maturity t and F denotes expected
value in a risk-neutral world. It follows that

ln F(t) = ln S(0) + Jt,u(r)dr
0

Differentiating both sides with respect to time gives
/

8 no = 51111 Fen
Example 33.1

Suppose that the futures prices of live cattle at the end of July 2008 are (in cents
per pound) as follows:

August 2008 62.20
October 2008 60.60
December 2008 62.70
February 2009 63.37
April 2009 64.42
June 2009 64.40

These can be used to estimate the expected growth rate in live cattle prices in a
risk-neutral world. For example, when the model in equation (33.1) is used, the
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expected growth rate in live cattle prices between October and December 2008, in
a risk-neutral world is

ln -—-— :0.034
62.70
60.60

or 3.4% per 2 months with continuous compounding. On an annualized basis,
this is 20.4% per annum.

Example 33.2
Suppose that the futures prices of live cattle are as in Example 33.1. A certain
breeding decision would involve an investment of $100,000 now and expenditures
of $20,000 in 3 months, 6 months, and 9 months. The result is expected to be that
an extra cattle will be available for sale at the end of the year. There are two major
uncertainties: the number of pounds of extra cattle that will be available for sale
and the price per pound. The expected number of pounds is 300,000. The expected
price of cattle in 1 year in a risk-neutral world is, from Example 33.1, 64.40 cents
per pound. Assuming that the risk-free rate of interest is 10% per annum, the value
of the investment (in thousands of dollars) is

i __ 20e—O.lX0.25 __ 206-—0.lX0.50 __ 206-0.lX0.75 + X 0.6446-—0.lXl :_

This assumes that any uncertainty about the extra amount of cattle that will be
available for sale has zero systematic risk and that there is no correlation between
the amount of cattle that will be available for sale and the price.

Mean Reversion
As already discussed, most commodity prices follow mean-reverting processes. They
tend to get pulled back to a central value. A more realistic process than equation (33.1)
for the risk-neutral process followed by the commodity price S is

a ln s = [a(t) - a ln s] at + adz (33.2)
This incorporates mean reversion and is analogous to the lognormal process assumed
for the short-term interest rate in Chapter 30. Note that this process is sointimes written

/’dS .
-S; = [8*(t) —aln S]dt+adz

From Ito’s lemma, this is equivalent to the process in equation (33.2) when 6*(t) :
6(t) + %o2.

The trinomial tree methodology in Section 30.7 can be adapted to construct a tree for
S and determine the value of 6(t) in equation (33.2) such that F(t) : E[S(t)]. We will
illustrate the procedure by building a three-step tree for the situation where the current
spot price is $20 and the 1-year, 2-year, and 3-year futures prices are $22, $23, and $24,
respectively. Suppose that a :- 0.1 and a : 0.2 in equation (33.2). We first define a
variable X that is initially zero and follows the process

dX : —aX dt + adz (33.3)

Using the procedure in Section 30.7, a trinomial tree can be constructed for X . This is
shown in Figure 33.1.
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The variable ln S follows the same process as X except for a time-dependent drift.
Analogously to Section 30.7, the tree for X can be converted to a tree for lnS by
displacing the positions of nodes. This tree is shown in Figure 33.2. The initial node
corresponds to a price of 20, so the displacement for that node is ln 20. Suppose that the
displacement of the nodes at 1 year is ai. The values of the X at the three nodes at the
1-year point are +0.3464, 0, and —0.3464. The corresponding values of lnS are
0.3464+ai, ai, and -0.3464 +071. The values of S are therefore e0-3464+"‘1, e°‘1, and
e"°-3464+°‘1, respectively. We require the expected value of S to equal the futures price.
This means that

0.1667@°~3‘*6‘*‘"°‘1 + 0.66662“ + 0.1667@"°-3464+“1 = 22

The solution to this is ai = 3.071. The values of S at the l-year point are therefore
30.49, 21.56, and 15.25.

At the 2-year point, we first calculate the probabilities of nodes E, F, G, H, and I being
reached from the probabilities of nodes B, C, and D being reached. The probability of
reaching node F is the probability of reaching node B times the probability of moving
from B to F plus the probability of reaching node C times the probability of moving from
C to F. This is

0.1667 >< 0.6566 + 0.6666 >< 0.1667 : 0.2206

Similarly the probabilities of reaching nodes E, G, H, and I are 0.0203, 0.5183, 0.2206,
and 0.0203, respectively. The amount a2 by which the nodes at time 2 years are

;aV>r:‘- -i ¢.-- -I; -‘Iv-‘V; _’_V ‘-i--~. _'V - --i‘-,, . f~1 aa . .. . . . --._ , _ ,‘ ‘T'_L__.i. .‘ __: ,< , . _,-_ L- . .i
_ . . - L.‘ . . .. .- . v _ 1. . _ _ 4 - '- .- _ . _.-'_¢-_!'s-,..: .

Figu re 33 .1 Tree for X . Constructing this tree is the first stage in constructing a tree for
the spot price of a commodity, S. Here pi), pm, and pd are the probabilities of “up”,
“middle”, and “down” movements from a node.

E J
0.6928 \ 0.6928

B 4QK
A 1. 3/

0.0000 . 0.0000 0.0000

MI M_0.s4e4 -Q;-0.3464

. / N
-0.6928

Node-: -A B ‘C1 —D -F. G H I-

piii 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pm: 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pii: 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
..,,,,.....,..._....._,,.,. . ~ ~ 7.,’ it _ ‘_ , ,__ 1 _ _ _ ,. - - 4
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Figure 33.2 Tree for spot price of a commodity: pa, pm, and pd are the probabilities of
“up”, “middle”, and “down” movements from a node.

E .1
\

A L @
M M4!;
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pmi 0.6666 0.6566
pd: 0.1667 0.2217

0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867

_ . _ ,-....-».... V’ V‘ > _ 5 _ _ , ,__ D __ , _ V _ 7 _ _ _ __ _ _ ,
_ _ . - . \ ~ __ . , .-— , a ' , A .._ -. _ - - '4a . V. . . __ _ . ,

displaced must satisfy

0.0203@°~6928+“1 + 0.2206@°~3464+“1 + 0.51s3@“1
+ 0.2206e—-0.3464+Ot2 + 0.0203e—().6928+0t2 I

The solution to this is a2 : 3.099. This means that the values of S at the 2-year point
are 44.35, 31.37, 22.18, 15.69, and 11.10, respectively.

A similar calculation can be carried out at time 3 years. Figure 33.2 shows the
resulting tree for S.

Example 33.3  6/
Suppose that the tree in Figure 33.2 is used to price a 3-year American put option
on the spot price of the commodity with a strike price of 20 when the interest rate
(continuously compounded) is 3°/6 per year. Rolling back through the tree in the
usual way, we obtain Figure 33.3 showing that the value of the option is $1.48.
The option is exercised early at nodes D, H, and I. To obtain a more accurate
value, a tree with many more time steps would be used. The futures prices would
be interpolated to obtain futures prices for maturities corresponding to the end of
every time step on this more detailed tree.

Interpolation and Seasonality
When a large number of time steps are used, it is necessary to interpolate between
futures prices to obtain a futures price at the end of each time step. When there is
seasonality, the interpolation procedure should reflect this. Suppose there are monthly
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Figure 33.3 Valuation of an American put option with a strike price of $20 using the
tree in Figure 33.2.

at
AE1? L

 890

Node: A B C D E F G H I

pu: 0.1667 0.1217 0.1667 0.2217 0.8867 0.1217 0.1667 0.2217 0.0867
pm: 0.6666 0.6566 0.6666 0.6566 0.0266 0.6566 0.6666 0.6566 0.0266
pd: 0.1667 0.2217 0.1667 0.1217 0.0867 0.2217 0.1667 0.1217 0.8867
fr‘ '“_.."~ -' - ..< ’ ," 1‘ - " “" “ 1 '

time steps. One simple way of incorporating seasonality is to collect monthly historical
data on the spot price and calculate the 12-month moving average of the price.
A percentage seasonal factor can then be estimated as the average of the ratio of the
spot price for the month to the 12-month moving average of spot prices that is centered
(approximately) on the month. A

The percentage seasonal factors are then used to deseasonalize the futures prices
that are known. Monthly deseasonalized futures are then calculated using interpola-
tion. These futures prices are then seasonalized using the percentage seasonal factors
and the tree is built. Suppose, for example, that the futures prices are observed in the
market for September and December as 40 and 44, respectively, and/' we want to
calculate a futures prices for October and November. Suppose further that the
percentage seasonality factors for September, October, November, and December
are calculated from historical data as 0.95, 0.85, 0.8 and 1.1, respectively. The
deseasonalized futures prices are 40/0.95 : 42.1 for September and 44/ 1.1 = 40 for
December. The interpolated deseasonalized futures prices are 41.4 and 40.7 for
October and November, respectively. The seasonalized futures prices that would be
used in tree construction for October and November are 41.4 >< 0.85 : 35.2 and
40.7 >< 0.8 = 32.6, respectively.

As has been mentioned, the volatility of a commodity sometimes shows seasonality.
For example, the prices of some agricultural commodities are more volatile during the
growing season because of weather uncertainty. Volatility can be monitored using the
methods discussed in Chapter 22, and a percentage seasonal factor for volatility can
be estimated. The parameter .0 can then be replaced by a(t) in equations (33.2)
and (33.3). A procedure that can be used to construct a trinomial tree for the situation
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where the volatility is a function of time is discussed in Technical Notes 9 and 16 at
www.rotma_n.utoronto.ca/~hu11/TechnicalNotes.

lumps
Some commmodities, such as electricity and natural gas, exhibit price jumps because of
weather-related demand shocks. Other commodities, particularly those that are agri-
cultural, are liable to exhibit price jumps because of weather-related supply shocks.
Jumps can be incorporated into equation (33.2) so that the process for the spot price
becomes

dlnS= [Q(t)-—alnS]dt+o'dz+dp

where dp is the Poisson process generating the percentage jumps. This is similar to
Merton’s mixed jump-diffusion model for stock prices, which is described in
Section 26.1. Once the jump frequency and jump size probability distribution have
been chosen, the average increase in the commodity price at a future time t that is as a
result of jumps can be calculated. To determine 9(t), the trinomial tree method can be
used with the futures prices for maturity t reduced by this increase. Monte Carlo
simulation can be used to implement the model, as explained in Sections 20.6 and 26.1.

Other Models
More-sophisticated models are sometimes used for oil prices. If y is the convenience
yield, then the proportional drift of the spot price is r — y, where r is the short-term
risk-free rate and a natural process to assume for the spot price is

dS  
-5-‘—:(r—y)dt+o'1 dZ1

Gibson and Schwartz suggest that the convenience yield y be modeled as a mean-
reverting process:2

dy = k(a — y)dt + 0'2 dz;

where k and oz are constants and a'z2 is a Wiener process, which is correlated with the
Wiener process dzl. To provide an exact fit to futures prices, oz can be made a function
of time.

Eydeland and Geman propose a stochastic volatility for gas and electricity prices.3
This is

dS ,
—S—=-a(o—-lnS)dt+x/Vdzl

dV = ad - t/)4: + e~/V dz2
where a, b, c, a’, and e are constants, and dz] and dz; are correlated Wiener processes.
Later Geman proposed a model for oil where the reversion level I2 is also stochastic.4

2 See R. Gibson and E.-S. Schwartz, “Stochastic Convenience Yield and the Pricing of Oil Contingent
Claims,” Journal of Finance, 45 (1990): 959-76.

3 A. Eydeland and H. Geman, “Pricing Power Derivatives,” Risk, September 1998.

4 H. Geman, “Scarcity and Price Volatility in Oil Markets,” EDF Trading Technical Report, 2000.
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WEATHER DERIVATIVES

Many companies are in the position where their performance is liable to be adversely
affected by the weather.5 It makes sense for these companies to consider hedging their
weather risk in much the same way as they hedge foreign exchange or interest rate risks.

The first over-the-counter weather derivatives were introduced in 1997. To tinder-
stand how they work, we explain two variables:

HDD: Heating degree days
CDD: Cooling degree days

A day’s HDD is defined as
HDD : max(0, 65 — A)

and a day’s CDD is defined as

CDD = max(0, A — 65)

where A is the average of the highest and lowest temperature during the day at a
specified weather station, measured in degrees Fahrenheit. For example, if the max-
imum temperature during a day (midnight to midnight) is 68° Fahrenheit and the
minimum temperature is 44° Fahrenheit, A : 56. The daily HDD is then 9 and the
daily CDD is 0.

A typical over-the-counter product is a forward or option contract providing a payoff
dependent on the cumulative HDD or CDD during a month. For example, a deriva-
tives dealer could in January 2011 sell a client a call option on the cumulative HDD
during February 2012 at the Chicago O’Hare Airport weather station with a strike price
of 700 and a payment rate of $10,000 per degree day. If the actual cumulative HDD is
820, the payoff is $1.2 million. Often contracts include a payment cap. If the payment
cap in our example is $1.5 million, the contract is the equivalent of a bull spread (see
Chapter ll). The client has a long call option on cumulative HDD with a strike price of
700 and a short call option with a strike price of 850.

A day’s HDD is a measure of the volume of energy required for heating during the
day. A day’s CDD is a measure of the volume of energy required for cooling during the
day. Most weather derivative contracts are entered into by energy producers and
consumers. But retailers, supermarket chains, food and drink manufacturers, health
service companies, agriculture companies, and companies in the leisure industry are
also potential users of weather derivatives. The Weather Risk Management Association
(www.wrma.org) has been formed to serve the interests of the weather risk manage-
ment industry.

In September 1999 the Chicago Mercantile Exchange (CME) began trading weather
futures and European options on weather futures. The contracts are on the cumulative
HDD and CDD for a month observed at a weather station. The contracts are settled in
cash just after the end of the month once the HDD and CDD are known. One futures
contract is on $20 times the cumulative HDD or CDD for the month. The CME now
offers weather futures and options on 42 cities throughout the world. It also offers
futures and options on hurricanes, frost, and snowfall.

5 The US Department of Energy has estimated that one-seventh of the US economy is subject to weather risk.
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33.6 INSURANCE DERIVATIVES

When derivative contracts are used for hedging purposes, they have many of the same
characteristics as insurance contracts. Both types of contracts are designed to provide
protection against adverse events. It is not surprising that many insurance companies
have subsidiaries that trade derivatives and that many of the activities of insurance
companies are becoming very similar to those of investment banks.

Traditionally the insurance industry has hedged its exposure to catastrophic (CAT)
risks such as hurricanes and earthquakes using a practice known as reinsurance.
Reinsurance contracts can take a number of forms. Suppose that an insurance company
has an exposure of $100 million to earthquakes in California and wants to limit this to
$30 million. One alternative is to enter into annual reinsurance contracts that cover on a
pro rata basis 70% of its exposure. If California earthquake claims in a particular year
total $50 million, the costs to the company would then be only $15 million. Another
more popular alternative, involving lower reinsurance premiums, is to buy a series of
reinsurance contracts covering what are known as excess cost layers. The first layer
might provide indemnification for losses between $30 million and $40 million; the next
layer might cover losses between $40 million and $50 million; and so on. Each
reinsurance contract is known as an excess-of-loss reinsurance contract. The reinsurer
has written a bull spread on the total losses. It is long acall option with a strike price
equal to the lower end of the layer and short a call option with a strike price equal to the
upper end of the layer.6

The principal providers of CAT reinsurance have traditionally been reinsurance
companies and Lloyds syndicates (which are unlimited liability syndicates of wealthy
individuals). In recent years the industry has come to the conclusion that its reinsurance
needs have outstripped what can be provided from these traditional sources. It has
searched for new ways in which capital markets can provide reinsurance. One of the
events that caused the industry to rethink its practices was Hurricane Andrew in 1992,
which caused about $15 billion of insurance costs in Florida. This exceeded the total of
relevant insurance premiums received in Florida during the previous seven years. If
Hurricane Andrew had hit Miami, it is estimated that insured losses would have
exceeded $40 billion. Hurricane Andrew and other catastrophes have led to increases
in insurance/reinsurance premiums. K

The over-the-counter market has come up with a number of products that are
alternatives to traditional reinsurance. The most popular is a CAT bond. This is a bond
issued by a subsidiary of an insurance company that pays a higher-than-normal interest
rate. In exchange for the extra interest the holder of the bond agrees to provide an excess-
of-loss reinsurance contract. Depending on the terms of the CAT bond, the interest or
principal (or both) can be used to meet claims. In the example considered above where
an insurance company wants protection for California earthquake losses between
$30 million and $40 million, the insurance company could issue CAT bonds with a
total principal of $10 million. In the event that the insurance company’s California
earthquake losses exceeded $30 million, bondholders would lose some or all of their
principal. As an alternative the insurance company could cover this excess cost layer by
making a much bigger bond issue where only the bondholders’ interest is at risk.

6 Reinsurance is also sometimes ofiered in the form of a lump sum if a certain loss level is reached. The
reinsurer is then writing a cash-or-nothing binary call option on the losses.
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PRICING WEATHER AND INSURANCE DERIVATIVES

One distinctive feature of weather and insurance derivatives is that there is no systematic
risk (i.e., risk that is priced by the market) in their payoffs. This means that estimates
made from historical data (real-world estimates) can also be assumed to apply to the
risk.-neutral world. Weather and insurance derivatives can therefore be priced by

1. Using historical data to estimate the expected payoff
2. Discounting the estimated expected payoff at the risk-free rate.

Another key feature of weather and insurance derivatives is the way uncertainty about
the underlying variables grows with time. For a stock price, uncertainty grows roughly
as the square root of time. Our uncertainty about a stock price in 4 years (as measured
by the standard deviation of the logarithm of the price) is approximately twice that in 1
year. For a commodity price, mean reversion kicks in, but our uncertainty about a
commodity’s price in 4 years is still considerably greater than our uncertainty in 1 year.
For weather, the growth of uncertainty with time is much less marked. Our uncertainty
about the February HDD at a certain location in 4 years is usually only a litt.le greater
than our uncertainty about the February HDD at the same location in 1 year.
Similarly, our uncertainty about earthquake losses for a period starting in 4 years is
usually only a little greater than our uncertainty about earthquake losses for a similar
period starting in 1 year.

Consider the valuation of an option on the cumulative HDD. We could collect 50
years of historical data and estimate a probability distribution for the HDD. This could
be fitted to a lognormal or other probability distribution and the expected payofi on the
option calculated. This would then be discounted at the risk-free rate to give the value
of the option. The analysis could be refined by analyzing trends in the historical data
and incorporating weather forecasts produced by meteorologists.

Example 33.4
Consider a call option on the cumulative HDD in February 2013 at the Chicago
O’Hare Airport weather station with a strike price of 700 and a payment rate of
$10,000 per degree day. Suppose that the HDD is estimated from historical data to
have a lognormal distribution with the mean HDD equal to 710 and the standard
deviation of the natural logarithm of HDD equal to 0.07. From equation (l4A.1),
the expected payoff is

10,000 >< [7l0N(d1) — 700N(d2)]
where

ln(710/700)+0.072 2(1, _ 0 O7 / _ 0.2376
1 710 700 -0.072 2d2: n( / 037 / =0.1676

or $250,900. If the risk-free interest rate is 3°/6 and the option is being valued in
February»20l2 (one year from maturity) the value of the option is

250,900 >< 6-0-03>“ =243,400
or $243,400.
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We might want to adjust the the probability distribution of HDD for tempera-
ture trends. Suppose that a linear regression shows that the cumulative HDD for
February is decreasing at the rate of 0.5 per year (perhaps because of global
warming), so that the estimate of the mean HDD in February 2013 is only 697.
Keeping the estimate of the standard deviation of the natural logarithm of the
payoff the same, this would reduce the value of the expected payoff to $180,400
and the value of the option to $175,100.

Finally, suppose that long-range weather forecasters consider it likely that
February 2013 will be particularly mild. The estimate of the expected HDD might
then be reduced even further making the option even less valuable.

In the insurance area, Litzenberger er al. have shown that there are (as one would
expect) no statistically significant correlation between the returns from CAT bonds and
stock market returns.7 This confirms that there is no systematic risk and that valuations
can be based on the actuarial data collected by insurance companies.

CAT bonds typically give a high probability of an above-normal rate of interest and a
low probability of a big loss. Why would investors be interested in such instruments‘?
The answer is that the expected return (taking account of possible losses) is higher than
the return that can be earned on risk-free investments. However, the risk in CAT bonds
can (at least in theory) be completely diversified away in a large portfolio. CAT bonds
therefore have the potential to improve risk—return trade-offs.

HOW AN ENERGY PRODUCER CAN HEDGE RISKS

There are two components to the risks facing an energy producer. One is the risk
associated with the market price for the energy (the price risk); the other is risk
associated with the amount of energy that will be bought (the volume risk). Although
prices do adjust to reflect volumes, there is a less-than-perfect relationship between the
two, and energy producers have to take both into account when developing a hedging
strategy. The price risk can be hedged using the energy derivative contracts. The volume
risks can be hedged using the weather derivatives. Define:

Y: Profit for a month /I
P: Average energy prices for the month
T: Relevant temperature variable (HDD or CDD) for the month.

An energy producer can use historical data to obtain a best-fit linear regression
relationship of the form

Y:-a+bP+cT+e

where 6 is the error term. The energy producer can then hedge risks for the month by
taking a position of —b in energy forwards or futures and a position of —c in weather
forwards or futures. The relationship ca11 also be used to analyze the effectiveness of
alternative option strategies.
 i

7 R.H. Litzenberger, D.R. Beaglehole, and.C.E. Reynolds, “Assessing Catastrophe Reinsurance-Linked
Securities as a New Asset Class,” Journal of Portfolio Management, Winter 1996: 76486.
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SUMMARY

When there are risks to be managed, derivatives markets have been very innovative in
developing products to meet the needs of the market.

There are a number of different types of commodity derivatives. The underlyings
include agricultural products that are grown, livestock, metals, and energy products.
The models used to value them usually incorporate mean reversion. Sometimes
seasonality is modeled explicitly and jumps are incorporated. Energy derivatives with
oil, natural gas, and electricity as the underlying are particularly important and have
been the subject of models that are as sophisticated as the most sophisticated models
used for stock prices, exchange rates, and interest rates.

In the weather derivatives market, two measures, HDD and CDD, have been
developed to describe temperature during a month. These are used to define payoffs
on both exchange-traded and over-the-counter derivatives. No doubt, as the weather
derivatives market develops, contracts on rainfall, snow, and other weather-related
variables will become more common.

Insurance derivatives are an alternative to traditional reinsurance as a way for
insurance companies to manage the risk of a catastrophic event such as a hurricane
or an earthquake. We may see other sorts of insurance, such as life and automobile
insurance, being traded in a similar way in the future.

Weather and insurance derivatives have the property that the underlying variables
have no systematic risk. This means that the derivatives can be valued by estimating
expected payoffs using historical data and discounting the expected payoff at the risk-
free rate.
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Practice Questions (Answers in Solutions Manual)

33.1.
33.2.
33.3.

33.4.

33.5.
33.6.

33.7.

33.8.

33.9.

33.10.

33.11.
33.12.

33.13.
33.14.

What is meant by HDD and CDD?
How is a typical natural gas forward contract structured?
Distinguish between the historical data and the risk-neutral approach to valuing a
derivative. Under what circumstance do they give the same answer.
Suppose that each day during July the minimum temperature is 68° Fahrenheit and the
maximum temperature is 82° Fahrenheit. What is the payoff from a call option on the
cumulative CDD during July with a strike of 250 and a payment rate of $5,000 per
degree-day?
Why is the price of electricity more volatile than that of other energy sources?
Why is the historical data approach appropriate for pricing a weather derivatives
contract and a CAT bond?
“HDD and CDD can be regarded as payoffs from options on temperature.” Explain this
statement.
Suppose that you have 50 years of temperature data at your disposal. Explain carefully
the analyses you would carry out to value a forward contract on the cumulative CDD
for a particular month.  

/I .
Would you expect the volatility of the 1-year forward price of oil to be greater than or
less than the volatility of the spot price? Explain your answer.
What are the characteristics of an energy source where the price has a very high volatility
and a very high rate of mean reversion? Give an example of such an energy source.
How can an energy producer use derivatives markets to hedge risks?
Explain how a 5 >< 8 option contract for May 2009 on electricity with daily exercise
works. Explain how a 5 >< 8 option contract for May 2009 on electricity with monthly
exercise works. Which is worth more?
Explain how CAT bonds work.
Consider two bonds that have the same coupon, time to maturity, and price. One is a
B-rated corporate bond. The other is a CAT bond. An analysis based on historical data
shows that the expected losses on the two bonds in each year of their life is the same.
Which bond would you advise a portfolio manager to buy and why?
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Further Questions

33.15. An insurance company’s losses of a particular type are to a reasonable approximation
normally distributed with a mean of $150 million and a standard deviation of $50 million.
(Assume no difference between losses in a risk-neutral world and losses in the real world.)
The 1-year risk-free rate is 5%. Estimate the cost of the following:
(a) A contract that will pay in 1 year’s time 60% of the insurance company’s costs on a

pro rata basis
._ (b) A contract that pays $100 million in 1 year’s time if losses exceed $200 million.

33.16. How is the tree in Figure 33.2 modified if the 1- and 2-year futures prices are $21 and $22
instead of $22 and $23, respectively. How does this affect the value of the American
option in Example 33.3.

/
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Up to now we have been almost entirely concerned with the valuation of financial
assets. In this chapter we explore how the ideas we have developed can be extended to
assess capital investment opportunities in real assets such as land, buildings, plant, and
equipment. Often there are options embedded in these investment opportunities (the
option to expand the investment, the option to abandon the investment, the option to
defer the investment, and so on.) These options are very difficult to value using
traditional capital investment appraisal techniques. The approach known as real options
attempts to deal with this problem using option pricing theory.

The chapter starts by explaining the traditional approach to evaluating investments in
real assets and shows how difficult it is to correctly value embedded options when this
approach is used. It then explains how the risk-neutral valuation approach can be
extended to handle the valuation of real assets and presents a number of examples
illustrating the application of the approach in different situations.

CAPITAL INVESTMENT APPRAISAL

The traditional approach to valuing a potential capital investment project is known as
the “net present value” (NPV) approach. The NPV of a project is the present’va1ue of
its expected future incremental cash flows. The discount rate used to calculate the
present value is a “risk-adjusted” discount rate, chosen to reflect the risk of the project.
As the riskiness of the project increases, the discount rate also increases.

As an example, consider an investment that costs $100 million and will last 5 years.
The expected cash inflow in each year (in the real world) is estimated to be $25 million.
If the risk-adjusted discount rate is 12°/6 (with continuous compounding), the net
present value of the investment is (in millions of dollars)

+ 258-0.l2Xl + 25e—O.l2X2 + 25e—0.l2X3 + 25e—0.l2X4 + 25e—0.l2X5 I

A negative NPV, such as the one we have just calculated, indicates that the project will
reduce the value of the company to its shareholders and should not be undertaken.
A positive NPV would indicate that the project should be undertaken because it will
increase shareholder wealth.

765
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The risk-adjusted discount rate should be the return required by the company, or the
company’s shareholders, on the investment. This can be calculated in a number of ways.
One approach often recommended involves the capital asset pricing model (see the
appendix to Chapter 3). The steps are as follows:

1. Take a sample of companies whose main line of business is the same as that of the
6 project being contemplated.

2. Calculate the betas of the companies and average them to obtain a proxy beta for
the project.

3. Set the required rate of return equal to the risk-free rate plus the proxy beta times
the excess return of the market portfolio over the risk-free rate.

One problem with the traditional NPV approach is that many projects contain
embedded options. Consider, for example, a company that is considering building a
plant to manufacture a new product. Often the company hasthe option to abandon the
project if things do not work out well. It may also have the option to expand the plant if
demand for the output exceeds expectations. These options usually have quite diflerent
risk characteristics from the base project and require different discount rates.

To understand the problem here, return to the example at the beginning of Chapter 12.
This involved a stock whose current price is $20. In three months the price will be either
$22 or $18. Risk-neutral valuation shows that the value of a three-month call option on
the stock with a strike price of 21 is 0.633. Footnote 1 of Chapter 12 shows that if the
expected return required by investors on the stock in the real world is 16% then the
expected return required on the call option is 42.6%. A similar analysis shows that if the
option is a put rather than a call the expected return required on the option is -52.5‘/6.
These analyses mean that if the traditional NPV approach were used to value the call
option the correct discount rate would be 42.6% , and if it were used to value a put option
the correct discount rate would be —52.5°/6. There is no easy way of estimating these
discount rates. (We know them only because we are able to value the options another
way.) Similarly, there is no easy way of estimating the risk-adjusted discount rates
appropriate for cash flows when they arise from abandonment, expansion, and other
options. This is the motivation for exploring whether the risk-neutral valuation principle
can be applied to options on real assets as well as to options on financial assets.

Another problem with the traditional NPV approach lies in the estimation of the
appropriate risk-adjusted discount rate for the base project (i.e., the prbject without
embedded options). The companies that are used to estimate a proxy beta for the
project in the three-step procedure above have expansion options and abandonment
options of their own. Their betas reflect these options and may not therefore be
appropriate for estimating a beta for the base project.

EXTENSION OF THE RISK-NEUTRAL VALUATION FRAMEWORK

In Section 27.1 the market price of risk for a variable 6 was defined as

it = ‘ii (34.1)
o

where r is the risk-free rate, ,u is the return on a traded security dependent only on 6,
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and 0 is its volatility. As shown in Section 27.1, the market price of risk, 2», does not
depend on the particular traded security chosen.

Suppose that a real asset depends on several variables 6) (i : 1, 2, . . .). Let mi and s,~
be the expected growth rate and volatility of 6,» so that

d6-
?l:l7’lidIf'l“S'l'dZl'

where z,- is a Wiener process. Define )t,- as the market price of risk of 49,-. As explained in
Section 27.9, risk-neutral valuation can be extended to show that any asset dependent
on the 6,» can be valued byl

1. Reducing the expected growth rate of each 6, from m,- to mi — }t,~s,-
2. Discounting cash flows at the risk-free rate.

Example 34.1
The cost of renting commercial real estate in a certain city is quoted as the
amount that would be paid per square foot per year in a new 5-year rental
agreement. The current cost is $30 per square foot. The expected growth rate
of the cost is 12% per annum, its volatility is 20% per annum, and its market
price of risk is 0.3. A company has the opportunity to pay $1 million now for
the option to rent 100,000 square feet at $35 per square foot for a 5-year period
starting in 2 years. The risk-free rate is 5% per annum (assumed constant).
Define V as the quoted cost per square foot of oflice space in 2 years. Assume
that rent is paid annually in advance. The payoff from the option is

l00,000A max(V — 35, 0)

where A is an annuity factor given by
A I 1 X e—0.05><l +1 X e~0.(l5X2 X e--0.05X3 +1 X 6-0.05X4 I

The expected payoff in a risk-neutral world is therefore '

100,000 >< 4.5355 >< E[max(V - 35, 0)] = 453,550 >< E[max(V - 35, 0)]
where E denotes expectations in a risk-neutral world. Using the result in equa-
tion (14.4.1), this is /

453,550[E(V)N(d1) - 351v(a2)]
where

dl _ ln[E(V)/305]24:/£1.22 >< 2/2 and dz _1n[E(v)/30512:/2.22 >< 2/2

The expected growth rate in the cost of commercial real estate in a risk-neutral
world is m - ks, where in is the real-world growth rate, s is the volatility, and A is
the market price of risk. In this case, m : 0.12, s : 0.2, and A : 0.3, so that the

' To see that this is consistent with regular risk-neutral valuation, suppose that 6,- is the price of a non-
dividend-paying stock. Since this is the price of a traded security, equation (34. 1) implies that (mi - r)/s,- = A,-,
or m,~ — }t,-s,- : r. The expected growth-rate adjustment is therefore the same as setting the return on the stock
equal to the risk-free rate. For a proof of the more general result, see Technical Note 20 at:

Www.rotma_n.utoronto . ca/~hu11/TechnicalNotes.
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expected risk-neutral growth rate is 0.06, or 6%, per year. It follows that
E(V) : 30e0-06x23: 33.82. Substituting this in the expression above gives the
expected payoff in a risk-neutral world as $1.5015 million. Discounting at the
risk-free rate the value of the option is 1.5015e"0-05x2 : $1.3586 million. This
shows that it is worth paying $1 million for the option.

ESTIMATING THE MARKET PRICE OF RISK

The real-options approach to evaluating an investment avoids the need to estimate risk-
adjusted discount rates in the way described in Section 34.1, but it does require market
price of risk parameters for all stochastic variables. When historical data are available
for a particular variable, its market price of risk can be estimated using the capital asset
pricing model. To show how this is done, we consider an investment asset dependent
solely on the variable and define:

u: Expected return of the investment asset
0: Volatility of the return of the investment asset
X: Market price of risk of the variable
,0: Instantaneous correlation between the percentage changes in the variable and

returns on a broad index of stock market prices
um: Expected return on broad index of stock market prices
om: Volatility of return on the broad index of stock market prices

r: Short-term risk-free rate

Because the investment asset is dependent solely on the market variable, the instant-
aneous correlation between its return and the broad index of stock market prices is
also p. From the continuous-time version of the capital asset pricing model,

p(l

l'L_r:5_(l~'l*ni_r)
g m

From equation (34.1), another expression for ‘ll: - r is

F l/L — r : A0 I/I
It follows that

a A:£fl%—@ rum

This equation can be used to estimate A.

Example 34.2
A historical analysis of company’s sales, quarter by quarter, show that percentage
changes in sales have a correlation of 0.3 with returns on the S&P 500 index. The
volatility of the S&P 500 is 20% per annum and based on historical data the
expected excess return of the S&P 500 over the risk-free rate is 5%. Equation (34.2)
estimates the market price of risk for the company’s sales as

- °°X005=00n
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When no historical data are available for the particular variable under consideration,
other similar variables can sometimes be used as proxies. For example, if a plant is
being constructed to manufacture a new product, data can be collected on the sales of
other similar products. The correlation of the new product with the market index can
then be assumed to be the same as that of these other products. In some cases, the
estimate of ,0 in equation (34.2) must be based on subjective judgment. If an analyst is
convinced that a particular variable is unrelated to the performance of a market index,
its market price of risk should be set to zero.

For some variables, it is not necessary to estimate the market price of risk because
the process followed by a variable in a risk-neutral world can be estimated directly. For
example, if the variable is the price of an investment asset, its total return in a risk-
neutral world is the risk-free rate. If the variable is the short-term interest rate r,
Chapter 30 shows how a risk-neutral process can be estimated from the initial term
structure of interest rates.

For commodities, futures prices can be used to estimate the risk-neutral process, as
discussed in Chapter 33. Example 33.2 provides a simple application of the real options
approach by using futures prices to evaluate an investment involving the breeding of
cattle.

APPLICATION TO THE VALUATION OF A BUSINESS

Traditional methods of business valuation, such as applying a price/earnings multiplier
to current earnings, do not work well for new businesses. Typically a company’s
earnings are negative during its early years as it attempts to gain market share and
establish relationships with customers. The company must be valued by estimating
future earnings and cash flows under different scenarios.

The real options approach can be useful in this situation. A model relating the
company’s future cash flows to variables such as the sales growth rates, variable costs as
a percent of sales, fixed costs, and so on, is developed. For key variables, a risk-neutral
stochastic process is estimated as outlined in the previous two sections. A Monte Carlo
simulation is then carried out to generate alternative scenarios for the net cash flows per
year in a risk-neutralworld. It is likely that under some of these scenarios the company
does very well and under others it becomes bankrupt and ceases operatioifs. (The
simulation must have a built in rule for determining when bankruptcy happens.) The
value of the company is the present value of the expected cash flow in each year using
the risk-free rate for discounting. Business Snapshot 34.1 gives an example of the
application of the approach to Amazon.com.

EVALUATING OPTIONS IN AN INVESTMENT OPPORTUNITY

As already mentioned, most investment projects involve options. These options can add
considerable value to the project and are often either ignored or valued incorrectly.
Examples of the options embedded in projects are:

1. Abandonment options. This is an option to sell or close down a project. It is an
American put option on the project’s value. The strike price of the option is the
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Business Snapshot 34.1 Valuing Amazon.com

One of the earliest published attempts to value a company using the real options
approach was Schwartz and Moon (2000), who considered Amazon.com at the end
of 1999. They assumed the following stochastic processes for the company’s sales
revenue R and its revenue growth rate u:

. (JR 1.—k- = udt -1- ot(t)dz|

- 3 d/4 = K01 — /1-)4! + t1(t)d-Z2 ‘
They assumed that the two Wiener processes dz; and dz; were uncorrelated and made
reasonable assumptions about a(t), r;(t.), K, and I/.7. based on available data.
iThey assumed the cost of goods sold would be 75% of sales, other variable

expenses would be 19% of sales, and fixed expenses would be $75 million per
quarter. The initial sales level was $356 million, the initial tax loss carry forward
was $559 million. and the tax rate was assumed to be 35%. The market price of risk
for R was estimated from historical data using the approach described in the previous
section. The market price of risk for u was assumed to be zero.

The time horizon for the analysis was 25 years and the terminal value of the
company was assumed to be ten times pretax operating profit. The initial cash
position was $906 million and the company was assumed to go bankrupt if the cash
balance became negative. -

Different future scenarios were generated in a risk-neutral world using Monte Carlo
simulation.’ The evaluation of the scenarios involved taking account of the possible
exercise convertible bonds and the possible exercise of employee stock options. The
value of the company. to the "share holders was calculated as the present value of the net
clash flowsdiscounted at the ~risk-free rate] . _ O 1 _ j f . F '

'Us'ing.these assumptions,'_Schwartz and Moon provided an estimate of the/value
of A_niazon.com’s sliaresiat the end of "1999 equal to $12.42. The market priceat the
time was $76.125: (although it declined sharply in 2000). "One of -the key‘ advantages
of the -real-options approach is that it identifies the key assumptions. Schwartz and
Moon foundj that the estimated share value was very sensitive to n(t), the volatility
of the growth? rate. This was an -important source of optionality. A small increasein
17(t). leads to more optionality and a big increase in the value of Amazonfcom
shares. 6 ' F

I

:1

liquidation (or resale) value of the project less any closing-down costs. When the
liquidation value is low, the strike price can be negative. Abandonment options
mitigate the impact of very poor investment outcomes and increase the initial
valuation of a project. * *

2. Expansion options. This is the option to make further investments and increase the
output if conditions are favorable. It is an American call option on the value of
additional capacity. The strike price of the call option is the cost of creating this
additional capacity discounted to the time of option exercise. The strike price often
depends on the initial investment. If management initially choose to build capacity
in excess of the expected level of output, the strike price can be relatively small.
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3. Contraction options. This is the option to reduce the scale of a project’s operation.
It is an American put option on the value of the lost capacity. The strike price is
the present value of the future expenditures saved as seen at the time of exercise of
the option.

4. Options to defer. One of the most important options open to a manager is the
option to defer a project. This is an American call option on the value of the
project.

5. Options to extend. Sometimes it is possible to extend the life of an asset by paying
a fixed amount. This is a European call option on the asset’s future value.

Example
As an example of the evaluation of an investment with embedded options, consider a
company that has to decide whether to invest $15 million to extract 6 million units of a
commodity from a certain source at the rate of 2 million units per year for 3 years. The
fixed costs of operating the equipment are $6 million per year and the variable costs are
$17 per unit of the commodity extracted. We assume that the risk-free interest rate is
10% per annum for all maturities, that the spot price of the commodity is $20, and that
the 1-, 2-, and 3-year futures prices are $22, $23, and $24, respectively.

Evaluation with No Embedded Options
First consider the case where the project has no embedded options. The expected prices
of the commodity in 1, 2, and 3 years’ time in a risk-neutral world are $22, $23, and $24,
respectively. The expected payofl from the project (in millions of dollars) in a risk-neutral
world can be calculated from the cost data as 4.0, 6.0, and 8.0 in years 1, 2, and 3,
respectively. The value of the project is therefore

-15.0 + 4.0@"°~“<1 + 6.0@"°-1” + s.0@‘“><3 = -0.54
This analysis indicates that the project should not be undertaken because it would
reduce shareholder wealth by 0.54 million.

Use of a Tree . 3/
We now assume that the spot price of the commodity follows the process

d ln S : [6(t) - a ln S] dt + adz (34.3)

where a = 0.1 and o : 0.2. In Section 33.4, we showed how a tree can be constructed
for commodity prices using the same example as the one considered here. The tree is
shown in Figure 34.1 (which is the same as Figure 33.2). The process represented by the
tree is consistent with the process assumed for S, the assumed values of a and 0, and the
assumed 1-, 2-, and 3-year futures prices.

We do not need to use a tree to value the project when there are no embedded
options. (We have already shown that the base value of the project without options is
-0.54.) However, before we move on to consider options, it will be instructive, as well
as useful for future calculations, for us to use the tree to value the project in the absence
of embedded options and verify that we get the same answer as that obtained earlier.
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Figure 34.1 Tree for spot price of a commodity: pd, pm, and pd are the probabilities of
“up”, “middle”, and “down” movements from a node.
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Figure 34.2 shows the value of the project at each node of Figure 34.1. Consider, for
example, node H. There is a 0.2217 probability that the commodity price at the end of
the third year is 22.85, so that the third-year profit is 2 >< 22.85 — 2 >< 17 - 6 : 5.70.
Similarly, there is a 0.6566 probability that the commodity price at the end of the third
year is 16.16, so that the profit is -7.68 and there is a 0.1217 probability that the
commodity price at the end of the third year is 11.43, so that the profit is -17.14. The
value of the project at node H in Figure 34.2 is therefore

[0.2217 >< 5.70 + 0.6566 >< (2-7.68) + 0.1217 >< (-1"/.14)]@—°~1><1 = -5.31
_ 7% _

As another example, consider node C. There is a 0.1667 chance of moving to node F
where the commodity price is 31.37. The second year cash flow is then

2><3-1.37-2><17—6=22.74 .

The value of subsequent cash flows at node F is 21.42. The total value of the project if
we move to node F is therefore 21.42 + 22.74 : 44.16. Similarly the total value of the
project if we move to nodes G and H are 10.35 and -13.93, respectively. The value of
the project at node C is therefore -

[0.1667 >< 44.16 + 0.6666 >< 10.35 + 0.1667 >< (-13.93)]@r°~‘*‘ = 10.30 1
Figure 34.2 shows that the value of the project at the initial node A is 14.46. When the
initial investment is taken into account the value of the project is therefore -0.54. This
is in agreement with our earlier calculations.
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Figure 34.2 Valuation of base project with no embedded options: pd, pm, and pd are
the probabilities of “up”, “middle”, and “down” movements from a node.
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Option to Abandon
Suppose now that the company has the option to abandon the project at any time. We
suppose that there is no salvage value an.d no further payments are required once the
project has been abandoned. Abandonment is an American put option with a strike
price of zero and is valued in Figure 34.3. The put option should not be exercised at
nodes E, F, and G because the value of the project is positive at these nodes. It should
be exercised at nodes H and I. The value of the put option is 5.31 and 13.49 at nodes H
and I, respectively. Rolling back through the tree, the value of the abandonm/ent put
option at node D if it is not exercised is

(0.1217 >< 13.49 + 0.6566 >< 5.31+ 0.2217 >< 0)e"°-‘X1 = 4.64
The value of exercising the put option at node D is 9.65. This is greater than 4.64, and
so the put should be exercised at node D. The value of the put option at node C is

[0.1667 >< 0 + 0.6666 >< 0 + 0.1667 >< (5.31)]@"°~‘X1 = 0.30
and the value at node A is

(0.1667 >< 0 + 0.6666 >< 0.80 + 0.1667 >< 9.65)@““"><1 = 1.94
The abandonment option is therefore worth $1.94 million. It increases the value of the
project from -$0.54 million to +$1.40mil1ion. A project that was previously unattractive
now has a positive value to shareholders.
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Figure 34.3 Valuation of option to abandon the project: pd, pm, and pd are the
probabilities of “up”, “middle”, and “down” movements from a node.
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Option to Expand
Suppose next that the company has no abandonment option. Instead it has the option at
any time to increase the scale of the project by 20%. The cost of doing this is $2 million.
Production increases from 2.0 to 2.4 million units per year. Variable costs remain $17 per
unit and fixed costs increase by 20% from $6.0 million to $7.2 million. This is an
American call option to buy 20% of the base project in Figure 34.2 for $2 million.
The option is valued in Figure 34.4. At node E, the option should be exercised. The
payoff is 0.2 >< 42.24 — 2 : 6.45. At node F, it should also be exercised for a payoff of
0.2 >< 21.42 — 2 : 2.28. At nodes G, H, and I, the option should not be exercised. At
node B, exercising is worth more than waiting and the option is worth 0.2 >< 38.32 - 2 :
5.66. At node C, if the option is not exercised, it is worth

(0.1667 X 2.23 + 0.6666 >< 0.00 + 0.1667 >< 0.00)@"°~‘*‘ = 0.34
If the option is exercised, it is worth 0.2 >< 10.80 - 2 : 0.16. The option should there-
fore not be exercised at node C. At node A, if not exercised, the option is worth

(0.1667 >< 5.66 + 0.6666 >< 0.34 + 0.1667 >< 0.00)@"°~"<‘ = 1.06
If the option is exercised it is worth 0.2 >< 14.46 — 2 : 0.89. Early exercise is therefore
not optimal at node A. In this case, the option increases the value of the project from
-0.54 to +0.52. Again we find that a project that previously had a negative value now
has a positive value.



Real Options

. . 5/\,. ,,,.-1,.

775

Figure 34.4 Valuation of option to expand the project: pd, pm, and pd are the
probabilities of “up”, “middle”, and “down” movements from a node.
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The expansion option in Figure 34.4 is relatively easy to value because, once the
option has been exercised, all subsequent cash inflows and outflows increase by 20%. In
the case where fixed costs remain the same or increase by less than 20%, it is necessary
to keep track of more information at the nodes of Figure 34.4. Specifically, we need to
record the following in order to calculate the payoff from exercising the option:

1. The present value of subsequent fixed costs
2. The present value of subsequent revenues net of variable costs.

Multiple Options " "’*
When a project has two or more options, they are typically not independent. The value of
having both option A and option B, for example, is generally not the sum of the values of
the two options. To illustrate this, suppose that the company we have been considering
has both abandonment and expansion options. The project cannot be expanded if it has
already been abandoned. Moreover, the value of the put option to abandon depends on
whether the project has been expanded.2

These interactions between the options in our example can be handled by defining
four states at each node:

1. Not already abandoned; not already expanded
2. Not already abandoned; already expanded

2 As it happens, the two options do not interact in Figures 34.3 and 34.4. However, the interactions between
the options would become an issue if a larger tree with smaller time steps were built.
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3. Already abandoned; not already expanded
4. Already abandoned; already expanded.

When we roll back through the tree we calculate the combined value of the options at
each node for all four alternatives. This approach to valuing path-dependent options is
discussed in more detail in Section 26.5.

Several Stochastic Variables
When there are several stochastic variables, the value of the base project is usually
determined by Monte Carlo simulation. The valuation of the project’s embedded
options is then more diflicult because a Monte Carlo simulation works from the
beginning to the end of a project. When we reach a certain point, we do not have
information on the present value of the project’s future cash flows. However, the
techniques mentioned in Section 26.8 for valuing American options using Monte Carlo
simulation can sometimes be used.

As an illustration of this point, Schwartz and Moon (2000) explain how their
Amazon.com analysis outlined in Business Snapshot 34.1 could be extended to take
account of the option to abandon (i.e. the option to declare bankruptcy) when the value
of future cash flows is negative.° At each time step, a polynomial relationship between the
value of not abandoning and variables such as the current revenue, revenue growth rate,
volatilities, cash balances, and loss carry forwards is assumed. Each simulation trial
provides an observation for obtaining a least-squares estimate of the relationship at each
time. This is the Longstaff and Schwartz approach of Section 26.8.4

SUMMARY

This chapter has investigated how the ideas developed earlier in the book can be
applied to the valuation of real assets and options on real assets. It has shown how
the risk-neutral valuation principle can be used to value a project dependent on any set
of variables. The expected growth rate of each variable is adjusted to reflect its market
price of risk. The value of the asset is then the present value of its expected cash flows
discounted at the risk-free rate.  

Risk-neutral valuation provides an internally consistent approach to capital invest-
ment appraisal. It also makes it possible to value the options that are embedded in
many of the projects that are encountered in practice. This chapter has illustrated the
approach by applying it to the valuation of Amazon.com at the end of 1999 and the
valuation of a project involving the extraction of a commodity.

FURTHER READING

Amran, M., and N. Kulatilaka, Real Options, Boston, MA: Harvard Business School Press,
1999.

3 The analysis in Section 34.4 assumed that bankruptcy occurs when the cash balance falls below zero, but
this is not necessarily optimal for Amazon.com.

4 F.A. Longstaff and E. S. Schwartz, “Valuing American Options by Simulation: A Simple Least-Squares
Approach,” Review of Financial Studies, 14, l (Spring 2001): 113-47.



Real Options Q 777

Copeland, T., T. Koller, and J. Murrin, Valuation: Measuring and Managing the Value of
Companies, 3rd edn. New York: Wiley, 2000.

Copeland, T., and V. Antikarov, Real Options: A Practitioners Guide, New York: Texere, 2003.
Schwartz, E. S., and M. Moon, “Rational Pricing of Internet Companies,” Financial Analysts

Journal, May/June (2000): 62-75.
Trigeorgis, L., Real Options: lllanagerial Flexibility and Strategy in Resource Allocation,

Cambridge, MA: MIT Press, 1996.

Practice Questions (Answers in Solutions Manual)

34.1

34.2.

34.3

34.4

34.5

34.6

34.7

Explain the difference between the net present value approach and the risk-neutral
valuation approach for valuing a new capital investment opportunity. What are the
advantages of the risk-neutral valuation approach for valuing real options?
The market price of risk for copper is 0.5, the volatility of copper prices is 20% per
annum, the spot price is 80 cents per pound, and the 6-month futures price is 75 cents
per pound. What is the expected percentage growth rate in copper prices over the next
6 months? I
Consider a commodity with constant volatility 0 and an expected growth rate that is a
function solely of time. Show that, in the traditional risk-neutral world,

ln sd ~ ¢[(ln F(T) ~ %o2T, o2T]
where ST is the value of the commodity at time T, F(t) is the futures price at time 0 for a
contract maturing at time st, and ¢(m, v) is a normal distribution with mean m and
V8.I'18.I1C€ 1).

Derive a relationship between the convenience yield of a commodity and its market price
of risk.
The correlation between a company’s gross revenue and the market index is 0.2. The
excess return of the market over the risk-free rate is 6% and the volatility of the market
index is 18%. What is the market price of risk for the company’s revenue?
A company can buy an option for the delivery of 1 million units of a commodity in 3 years
at $25 per unit. The 3-year futures price is $24. The risk-free interest rate is 5% per
annum with continuous compounding and the volatility of the futures price is 20% per
annum. How much is the option worth?
A driver entering into a car lease agreement can obtain the right to buy the car in 4 years
for $10,000. The current value of the car is $30,000. The value of the car, S, is expected
to follow the process dS : uSdt + oS dz, where it : -0.25, o = 0.15, and dz is a Wiener
process. The market price of risk for the car price is estimated to be -0.1. What is the
value of the option? Assume that the risk-free rate for all maturities is 6%.

Further Questions

34.8. Suppose that the spot price, 6-month futures price, and 12-month futures price for wheat
are 250, 260, and 270 cents per bushel, respectively. Suppose that the price of wheat
follows the process in equation (34.3) with a : 0.05 and 0 : 0.15. Construct a two-time-
step tree for the price of wheat in a risk-neutral world.



778

4.9.

CHAPTER 34

A farmer has a project that involves an expenditure of $10,000 and a further
expenditure of $90,000 in 6 months. It will increase wheat that is harvested and sold by
40,000 bushels in 1 year. What is the value of the project? Suppose that the farmer can
abandon the project in 6 months and avoid paying the $90,000 cost at that time. What is
the value of the abandonment option? Assume a risk-free rate of 5% with continuous
compounding. I
In the example considered in Section 34.5:
(a) What is the value of the abandonment option if it costs $3 million rather than zero?
(b) What is the value of the expansion option if it costs $5 million rather than $2 million?

/'
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Mishaps and What

35.1

We Can Learn
from Them

Since the mid-1980s there have been some spectacular losses in derivatives markets. The
biggest losses have come from the trading of products created from residential mortgages
in the US and were discussed in Chapter 8. Some of the other losses made by financial
institutions are listed in Business Snapshot 35.1, and some of those made by nonfinancial
organizations in Business Snapshot 35.2. What is remarkable about these lists is the
number of situations where huge losses arose from the activities of a single employee. In
1995, Nick Leeson’s trading brought a 200-year-old British bank, Barings, to its knees; in
1994, Robert Citron’s trading led to Orange County, a municipality in California, losing
about $2 billion. Joseph Jett’s trading for Kidder Peabody lost $350 million. John
Rusnak’s losses of $700 million for Allied Irish Bank came to light in 2002. In 2006 the
hedge fund Amaranth lost $6 billion because of trading risks taken by Brian Hunter. In
2008, Jerdme Kerviel lost over $7 billion trading equity index futures for Societe
Générale. The huge losses at Daiwa, Shell, and Sumitomo were also each the result
of the activities of a single individual.

The losses should not be viewed as an indictment of the whole derivatives industry.
The derivatives market is a vast multitrillion dollar market that by most measures has
been outstandingly successful and has served the needs of its users well. To quote from
Alan Greenspan (May 2003):

The use of a growing array of derivatives and the related application of more sophisticated
methods for measuring and managing risk are key factors underpinning the enhanced
resilience of our largest financial intermediaries.

The events listed in Business Snapshots 35.1 and 35.2 represent a tiny proportion of the
total trades (both in number and value). Nevertheless, it is worth considering carefully
the lessons that can be learned from them.

LESSONS FOR ALL USERS OF DERIVATIVES

First, we consider the lessons appropriate to all users of derivatives, whether they are
financial or nonfinancial companies.

779



| Nick Leeson, in Singapore, who made big bets on the future direction of the Nikkei 225
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Business Snapshot 35.1 Big Losses by Financial Institutions

Allied Irish ban/-:
This bank lost" about $700 million from speculative activities of one of its foreign
exchange traders, John Rusnak, that lasted a number of years. Rusnak managed to
cover up his losses by creating fictitious option trades.

Amaranth ~ 5 . I

This hedge fund lost $6 billion in 2006 betting on the future direction of natural gas
prices. . _ , I

Barings

This 200-year-old Britishbank was destroyed in 1995 by the activities of one trader,

using futures and options. The total loss was close to $1 billion.

Daiwa Bank
A trader working in New York for this Japanese bank lost more than $1 billion in
the 1990s.

Enron ’s counterparties h .
Enron managed to conceal its true situation from its shareholders with some creative
contracts. Several financial institutions that allegedly helped Enron do this have
settled shareholder lawsuits for over $1 billion.

Kidder Peabody (see page]06)
The activities of a single trader, Joseph Jett, led to this New York investment dealer
losing $350 million trading US govermnent securities. The loss arose because of a
mistake in the way the company’s computer system calculated profits. '

Long-Term Capital Management (see page 31)

This hedge fund lost about $4 billion in I998 as a result of Russia’s default on its debt
and the resultant flight to quality. The New York Federal Reserve organized an
orderly liquidation “of thefund by arranging for 14 banks to invest in the fund.

Midland Bank H 1 I I
3 . ’ -

This British bank lost°$500 million in the early 1990s largely because of a wrong bet .
on the ‘direction of interest rates. It was later taken over by the Hong Kong and
Shanghai bank. . i

Societe’ Générale (see page 17)
Jerome Kerviel lost over $7 billion speculating on the future direction of equity:
indices in January 2008.

Subprime Mortgage Losses (see Chapter 8)
In 2007 investors lost confidence in the structured products created from US

I subprime mortgages. This led to a “credit crunch” and losses of tens of billions of
institutions such as UBS, Merill Lynch, and Citigroup.
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I

I
I

Define Risk Limits
It is essential that all companies define in a clear and unambiguous way limits to the
financial risks that can be taken. They should then set up procedures for ensuring that
the limits are obeyed. Ideally, overall risk limits should be set at board level. These
should then be converted to limits applicable to the individuals responsible for
managing particular risks. Daily reports should indicate the gain or loss that will be
experienced for particular movements in market variables. These should be checked
against the actual gains and losses that are experienced to ensure that the valuation
procedures underlying the reports are accurate.

It is particularly important that companies monitor risks carefully when derivatives
are used. This is because, as we saw in Chapter 1, derivatives can be used for hedging,
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speculation, and arbitrage. Without close monitoring, it is impossible to knowwhether
a derivatives trader has switched from being a hedger to a speculator or switched from
being an arbitrageur to being a speculator. Barings and Societe Générale are classic
examples of what can go wrong. Nick Leeson’s mandate at Barings and Jeréme
Kerviel’s at Societe Générale were to carry out low-risk arbitrage trades. They both
switched from being arbitrageurs to taking huge bets on the future direction of stock
indices. Systems at their banks were so inadequate that nobody knew the full extent of
what they were doing.

The argument here is not that no risks should be taken. A treasurer working for a
corporation, or a trader in a financial institution, or a fund manager should be allowed
to take positions on the future direction of relevant market variables. But the sizes of
the positions that can be taken should be limited and the systems in place should
accurately report the risks being taken.

Take the Risk Limits Seriously
What happens if an individual exceeds risk limits and makes a profit? This is a tricky
issue for senior management. It is tempting to ignore violations of risk limits when
profits result. However, this is shortsighted. It leads to a culture where risk limits are
not taken seriously, and it paves the way for a disaster. In some of the situations listed
in Business Snapshots 35.1 and 35.2, the companies had become complacent about
the risks they were taking because they had taken similar risks in previous years and
made profits. .

The classic example here is Orange County. Robert Citron’s activities in 1991-93 had
been very profitable for Orange County, and the municipality had come to rely on his
trading for additional funding. People chose to ignore the risks he was taking because
he had produced profits. Unfortunately, the losses made in 1994 far exceeded the profits
from previous years.

The penalties for exceeding riskilimits should be just as great when profits result as
when losses result. Otherwise, traders who make losses are liable to keep increasing
their bets in the hope that eventually a profit will result and all will be forgiven.

Do Not Assume You Can Outguess the Market
/i

Some traders are quite possibly better than others. But no trader gets it right all the
time. A trader who correctly predicts the direction in which market variables will move
60% of the time is doing well. If a trader has an outstanding track record (as Robert
Citron did in the early 1990s), it is likely to be a result of luck rather than superior
trading skill.

Suppose that a financial institution employs 16 traders and one of those traders
makes profits in every quarter of a year. Should the trader receive a good bonus?
Should the trader’s risk limits be increased? The answer to the first question is that
inevitably the trader will receive a good bonus. The answer to the second question
should be no. The chance of making a profit in four consecutive quarters from
random trading is 0.54 or 1 in 16. This means that just by chance one of the
16 traders will “get it right” every single quarter of the year. It should not be
assumed that the trader’s luck will continue and the trader’s risk limits should not
be increased.
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35.2

Do Not Underestimate the Benefits of Diversification
When a trader appears good at predicting a particular market variable, there is a
tendency to increase the trader’s limits. We have just argued that this is a bad idea
because it is quite likely that the trader has been lucky rather than clever. However, let
us suppose that a fund is really convinced that the trader has special talents. How
undiversified should it allow itself to become in order to take advantage of the trader’s
special skills? The answer is that the benefits from diversification are huge, and it is
unlikely that any trader is so good that it is worth foregoing these benefits to speculate
heavily on just one market variable.

An example will illustrate the point here. Suppose that there are 20 stocks, each of
which have an expected return of 10% per annum and a standard deviation of returns
of 30%. The correlation between the returns from any two of the stocks is 0.2. By
dividing an investment equally among the 20 stocks, an investor has an expected return
of 10% per annum and standard deviation of returns of 14.7%. Diversification enables
the investor to reduce risks by over half. Another way of expressing this is that
diversification enables an investor to double the expected return per unit of risk taken.
The investor would have to be extremely good at stock picking to get a better risk-return
tradeoff by investing in just one stock.

Carry out Scenario Analyses and Stress Tests
The calculation of risk measures such as VaR should always be accompanied by
scenario analyses and stress testing to obtain an understanding of what can go wrong.
These were mentioned in Chapter 21. They are very important. Human beings have an
unfortunate tendency to anchor on one or two scenarios when evaluating decisions. In
1993 and 1994, for example, Procter & Gamble and Gibson Greetings may have been so
convinced that interest rates would remain low that they ignored the possibility of a
100-basis-point increase in their decision making.

It is important to be creative in the way scenarios are generated and to use the
judgment of experienced managers. One approach is to look at 10 or 20 years of data
and choose the most extreme events as scenarios. Sometimes there is a shortage of
data on a key variable. It is then sensible to choose a similar variable for which much
more data is available and use historical daily percentage changes in that variable as a
proxy for possible daily percentage changes in the key variable. For example, if there
is little data on the prices of bonds issued by a particular country, historical data on
prices of bonds issued by other similar countries can be used to develop possible
scenarios.

LESSONS FOR FINANCIAL INSTITUTIONS

We now move on to consider lessons that are primarily relevant to financial institutions.

Monitor Traders Carefully
In trading rooms there is a tendency to regard high-perforining traders as “untouch-
able” and to not subject their activities to the same scrutiny as other traders. Apparently
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Joseph Jett, Kidder Peabody’s star trader of Treasury instruments, was often “too busy”
to answer questions and discuss his positions with the company’s risk managers.

It is important that all traders-particularly those making high profits-be fully
accountable. It is important for the financial institution to know whether the high
profits are being made by taking unreasonably high risks. It is also important to check
that the financial institution’s computer systems and pricing models are correct and are
not being manipulated in some way.

Separate the Front, Middle, and Back Office
The front ofiice in a financial institution consists of the traders who are executing trades,
taking positions, and so forth. The middle ofiice consists of risk managers who are
monitoring the risks being taken. The back ofiice is where the record keeping and
accounting takes place. Some of the worst derivatives disasters have occurred because
these functions were not kept separate. Nick Leeson controlled both the front and back
oflice for Barings in Singapore and was, as a result, able to conceal the disastrous
nature of his trades from his superiors in London for some time. Jéréme Kerviel had
worked in Societe Génera1e’s back oflice before becoming a trader and took advantage
of his knowledge of its systems to hide his positions.

Do Not Blindly Trust Models
Some of the large losses incurred by financial institutions arose because of the models
and computer systems being used. We discussed how Kidder Peabody was misled by
its own systems on page 106.

If large profits are reported when relatively simple trading strategies are followed,
there is a good chance that the models underlying the calculation of the profits are
wrong. Similarly, if a financial institution appears to be particularly competitive on its
quotes for a particular type of deal, there is a good chance that it is using a different
model from other market participants, and it should analyze what is going on carefully.
To the head of a trading room, getting too much business of a certain type can be just
as worrisome as getting too little business of that type.

I

/

Be Conservative in Recognizing Inception Profits
When a financial institution sells a highly exotic instrument to a nonfinancial corpora-
tion, the valuation can be highly dependent on the underlying model. For example,
instruments with long-dated embedded interest rate options can be highly dependent on
the interest rate model used. In these circumstances, a phrase used to describe the daily
marking to market of the deal is marking to model. This is because there are no market
prices for similar deals that can be used as a benchmark.

Suppose that a financial institution manages to sell an instrument to a client for
$10 million more than it is worth—or at least $10 million more than its model says it is
worth. The $10 million is known as an inception profit. When should it be recognized?
There appears to be quite a variation in what different investment banks do. Some
recognize the $10 million immediately, whereas others are much more conservative and
recognize it slowly over the life of the deal.



Derivatives Mishaps and What We Can Learn from Them 785

Recognizing inception profits immediately is very dangerous. It encourages traders to
use aggressive models, take their bonuses, and leave before the model and the value of
the deal come under close scrutiny. It is much better to recognize inception profits
slowly, so that traders have the motivation to investigate the impact of several different
models and several different sets of assumptions before committing themselves to a deal.

Do Not Sell Clients Inappropriate Products.
It is tempting to sell corporate clients inappropriate products, particularly when they
appear to have an appetite for the underlying risks. But this is shortsighted. The most
dramatic example of this is the activities of Bankers Trust (BT) in the period leading up
to the spring of 1994. Many of BT’s clients were persuaded to buy high-risk and totally
inappropriate products. A typical product (e.g., the 5/30 swap discussed on page 745)
would give the client a good chance of saving a few basis points on its borrowings and a
small chance of costing a large amount of money. The products worked well for BT’s
clients in 1992 and 1993, but blew up in 1994 when interest rates rose sharply. The bad
publicity that followed hurt BT greatly. The years it had spent building up trust among
corporate clients and developing an enviable reputation for innovation in derivatives
were largely lost as a result of the activities of a few overly aggressive salesmen. BT was
forced to pay large amounts of money to its clients to settle lawsuits out of court. It was
taken over by Deutsche Bank in 1999.

Do Not Ignore Liquidity Risk
Financial engineers usually base the pricing of exotic instruments and other instru-
ments that trade relatively infrequently on the prices of actively traded instruments. For
example:

1. A financial engineer often calculatesa zero curve from actively traded government
bonds (known as on-the-run bonds) and uses it to price bonds that trade less
frequently (ofl"-the-run bonds).

2. A financial engineer often implies the volatility of an asset from actively traded
options and uses it to price less actively traded options.

3. A financial engineer often implies information about the behavior of interest rates
from actively traded interest rate caps and swap options and uses it to price
products that are highly structured.

These practices are not unreasonable. However, it is dangerous to assume that less
actively traded instruments can always be traded at close to their theoretical price.
When financial markets experience a shock of one sort or another there is often a
“flight to quality.” Liquidity becomes very important to investors, and illiquid instru-
ments often sell at a big discount to their theoretical values. This happened in 2007
following the jolt to credit markets caused by lack of confidence in securities backed by
subprime mortgages.

Another example of losses arising from liquidity risk is provided by Long-Term
Capital Management (LTCM), which was discussed in Business Snapshot 2.2. This
hedge fund followed a strategy known as convergence arbitrage. It attempted to identify
two securities (or portfolios of securities) that should in theory sell for the same price. If
the market price of one security was less that of the other, it would buy that security



CHAPTER 35

and sell the other. The strategy is based on the idea that if two securities have the same
theoretical price their market prices should eventually be the same.

In the summer of 1998 LTCM made a huge loss. This was largely because a default
by Russia on its debt caused a flight to quality. LTCM tended to be long illiquid
instruments and short the corresponding liquid instruments (for example, it was long
ofll-the-run bonds and short on-the-run bonds). The spreads between the prices of
illiquid instruments and the corresponding liquid instruments widened sharply after
the Russian default. LTCM was highly leveraged. It experienced huge losses and there
were margin calls on its positions that it found diflicult to meet.

The LTCM story reinforces the importance of carrying out scenario analyses and
stress testing to look at what can happen in the worst of all worlds. LTCM could have
tried to examine other times in history when there have been extreme flights to quality
to quantify the liquidity risks it was facing.

Beware When Everyone ls Following the Same Trading Strategy  
It sometimes happens that many market participants are following essentially the same
trading strategy. This creates a dangerous environment where there are liable to be big
market moves, unstable markets, and large losses for the market participants.

We gave one example of this in Chapter 18 when discussing portfolio insurance and
the market crash of October 1987. In the months leading up to the crash, increasing
numbers of portfolio managers were attempting to insure their portfolios by creating
synthetic put options. They bought stocks or stock index futures after a rise in the
market and sold them after a fall. This created an unstable market. A relatively small
decline in stock prices could lead to a wave of selling by portfolio insurers. The latter
would lead to a further decline in the market, which could give rise to another wave of
selling, and so on. There is little doubt that without portfolio insurance the crash of
October 1987 would have been much less severe.

Another example is provided by LTCM in 1998. Its position was made more diflicult
by the fact that many other hedge funds were following similar convergence arbitrage
strategies. After the Russian default and the flight to quality, LTCM tried to liquidate
part of its portfolio to meet margin calls. Unfortunately, other hedge funds were facing
similar problems to LTCM and trying to do similar trades. This exacerbated the
situation, causing liquidity spreads to be even higher than they would otherwise have
been and reinforcing the flight to quality. Consider, for example, LTCM’s position in US
Treasury bonds. It was long the illiquid off-the-run bonds and short the liquid on-the-run
bonds. When a flight to quality caused spreads between yields on the two types of bonds
to widen, LTCM had to liquidate its positions by selling off-the—run bonds and buying
on-the-run bonds. Other large hedge funds were doing the same. As a result, the price of
on-the-run bonds rose relative to off-the-run bonds and the spread between the two
yields widened even more than it had done already.

A further example is provided by the activities of British insurance companies in the
late 1990s. These insurance companies had entered into many contracts promising that
the rate of interest applicable to an annuity received by an individual on retirement
would be the greater of the market rate and a guaranteed rate. At about the same time,
all insurance companies decided to hedge part of their risks on these contracts by
buying long-dated swap options from financial institutions. The financial institutions
they dealt with hedged their risks by buying huge numbers of long-dated sterling
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bonds. As a result, bond prices rose and long sterling rates declined. More bonds had
to be bought to maintain the dynamic hedge, long sterling rates declined further, and
so on. Financial institutions lost money and, because long rates declined, insurance
companies found themselves in a worse position on the risks that they had chosen not
to hedge.

The chief lesson to be learned from these stories is that it is important to see the big
picture of what is going on in financial markets and to understand the risks inherent in
situations where many market participants are following the same trading strategy.

Short-Term Funding Can Create Liquidity Problems
The interest rate risks when a bank funds long-term assets with short-term liabilities are
now well understood (see Section 4.10). Banks are usually careful to hedge these risks
with interest rate swaps or other derivatives.

The liquidity risks when a financial institution funds long-term assets (or other long-
term needs) with short-term liabilities are in many ways more serious than the interest
rate risks, but received less attention until the onset of the credit crisis in 2007. The
problem is that, when the market (rightly or wrongly) loses confidence in a financial
institution, the financial institution will find it impossible to roll over its liabilities. In
the normal course of events, a financial institution might issue 1-month commercial
paper on July 1, repay it on August 1 with a new issue of 1-month commercial paper,
repay the new issue on September 1 with yet another issue of 1-month commercial
paper, and so on. When there is a loss of confidence, new commercial paper cannot be
issued and there is an immediate liquidity problem.

The credit crisis created an loss of confidence in many financial institutions, particularly
those heavily involved in mortgage lending or those thought to have big positions in the
tranches created from subprime mortgages. Northern Rock, a mortgage lender in the
UK, was one of the first casualties of the crisis (see Business Snapshot 4.3). It financed
much of its mortgage lending with short-term commercial paper. When investors lost
confidence in the real-estate market, the commercial paper could not be rolled over. As
mentioned in Business Snapshot 1.1, Lehman also financed much of its long-term needs
with short-term paper. When there was concern about its health, the short-term paper
could not be rolled over, accelerating the company’s bankruptcy. The companies that
were in the business of creating the products discussed in Chapter 8 from subprime
mortgages also experienced liquidity problems because their (long-term) needs to finance
their inventories of mortgages that were awaiting securitization were usually financed
with short-term paper.

One of the results of the credit crisis is that a bank’s supervisors now monitor its
liquidity as well as its capital adequacy.

Market Transparency Is Important
One of the lessons from the credit crunch of 2007 is that market transparency is
-important. During the period leading up to 2007, investors traded highly structured
products without any real knowledge of the underlying assets. All they knew was the
credit rating of the security being traded. With hindsight, we can say that investors should
have demanded more information about the underlying assets and should have more
carefully assessed the risks they were taking-but it is easy to be wise after the event!
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The subprime meltdown of August 2007 caused investors to lose confidence in all
structured products and withdraw from that market. This led to a market breakdown
where tranches of structured products could only be sold at prices well below their
theoretical values. There was a flight to quality and credit spreads increased. If there
had been market transparency so that investors understood the asset-backed securities
they were buying, there would still have been subprime losses, but the flight to quality
and disruptions to the market would have been less pronounced.

Manage Incentives
A key lesson from the credit crisis of 2007 and 2008 is the importance of incentives. The
bonus systems in banks tend to emphasize short-term performance. Some financial
institutions have switched to systems where bonuses are based on performance over a
longer window than one year (for example, five years). This has obvious advantages. It
discourages traders from doing trades that will look good in the short run, but may
“blow up” in a few years.

When loans are securitized, it is important to align the interests of the party
originating the loan with the party who bears the ultimate risk so that the originator
does not have an incentive to misrepresent the loan. One way of doing this is for
regulators to require the originator of a loan portfolio to keep a stake in all the tranches
and other instruments that are created from the portfolio.

Never Ignore Risk Management
When times are good (or appear to be good), there is a tendency to assume that nothing
can go wrong and ignore the output from stress tests and other analyses carried out by
the risk management group. There are many stories of risk managers not being listened
to in the period leading up to the credit crisis of 2007. The comment of Chuck Prince,
CEO of Citigroup, in July 2007 (just before the credit crisis) provides an example of
exactly the wrong attitude to risk management:

When the music stops, in terms of liquidity, things will be complicated. But as long as the
music is playing, you’ve got to get up and dance. We’re still dancing.

Mr. Prince lost his job later in the year and Citigroup’s losses from the credit crisis were
over $50 billion. '

/'

LESSONS FOR NONFINANCIAL CORPORATIONS

We now consider lessons primarily applicable to nonfinancial corporations.

Make Sure You Fully Understand the Trades You Are Doing
Corporations should never undertake a trade or a trading strategy that they do not fully
understand. This is a somewhat obvious point, but it is surprising how often a trader
working for a nonfinancial corporation will, after a big loss, admit to not knowing what
was really going on and claim to have been misled by investment bankers. Robert Citron,
the treasurer of Orange County did this. So did the traders working for Hammersmith
and Fulham, who in spite of their huge positions were surprisingly uninformed about
how the swaps and other interest rate derivatives they traded really worked.
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If a senior manager in a corporation does not understand a trade proposed by a
subordinate, the trade should not be approved. A simple rule of thumb is that if a trade
and the rationale for entering into it are so complicated that they cannot be understood
by the manager, it is almost certainly inappropriate for the corporation. The trades
undertaken by Procter & Gamble and Gibson Greetings would have been vetoed using
this criterion.

One way of ensuring that you fully understand a financial instrument is to value it. If a
corporation does not have the in-house capability to value an instrument, it should not
trade it. In practice, corporations often rely on their derivatives dealers for valuation
advice. This is dangerous, as Procter & Gamble and Gibson Greetings found out. When
they wanted to unwind their deals, they found they were facing prices produced by
Bankers Trust’s proprietary models, which they had no way of checking.

Make Sure a Hedger Does Not Become a Speculator
One of the unfortunate facts of life is that hedging is relatively dull, whereas speculation
is exciting. When a company hires a trader to manage foreign exchange, commodity
price, or interest rate risk, there is a danger that the following might happen. At first,
the trader does the job diligently and earns the confidence of top management. He or
she assesses the company’s exposures and hedges them. As time goes by, the trader
becomes convinced that he or she can outguess the market. Slowly the trader becomes a
speculator. At first things go well, but then a loss is made. To recover the loss, the
trader doubles up the bets. Further losses are made-and so on. The result is likely to
be a disaster.

As mentioned earlier, clear limits to the risks that can be taken should be set by
senior management. Controls should be put in place to ensure that the limits are
obeyed. The trading strategy for a corporation should start with an analysis of the
risks facing the corporation in foreign exchange, interest rate, commodity markets, and
so on. A decision should then be taken on how the risks are to be reduced to acceptable
levels. It is a clear sign that something is wrong within a corporation if the trading
strategy is not derived in a very direct way from the company’s exposures.

Be Cautious about Making the Treasury Department a Profit Center
In the last 20 years there has been a tendency to make the treasury department within a
corporation a profit center. This appears to have much to recommend it. The treasurer
is motivated to reduce financing costs and manage risks as profitably as possible. The
problem is that the potential for the treasurer to make profits is limited. When raising
funds and investing surplus cash, the treasurer is facing an efficient market. The
treasurer can usually improve the bottom line only by taking additional risks. The
company’s hedging program gives the treasurer some scope for making shrewd deci-
sions that increase profits. But it should be remembered that the goal of a hedging
program is to reduce risks, not to increase expected profits. As pointed out in Chapter 3,
the decision to hedge will lead to a worse outcome than the decision not to hedge
roughly 50% of the time. The danger of making the treasury department a profit center
is that the treasurer is motivated to become a speculator. This is liable to lead to the
type of outcome experienced by Orange County, Procter & Gamble, or Gibson
Greetings.
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SUMMARY

The huge losses experienced from the use of derivatives have made many treasurers very
wary. Following some of the losses, some nonfinancial corporations have announced
plans to reduce or even eliminate their use of derivatives. This is unfortunate because
derivatives provide treasurers with very efficient ways to manage risks.

The stories behind the losses emphasize the point, made as early as Chapter 1, that
derivatives can be used for either hedging or speculation; that is, they can be used either
to reduce risks or to take risks. Most losses occurred because derivatives were used
inappropriately. Employees who had an implicit or explicit mandate to hedge their
company’s risks decided instead to speculate.

The key lesson to be learned from the losses is the importance of internal controls.
Senior management within a company should issue a clear and unambiguous policy
statement about how derivatives are to be used and the extent to which it is permissible
for employees to take positions on movements in market variables. Management should
then institute controls to ensure that the policy is carried out. It is a recipe for disaster
to give individuals authority to trade derivatives without a close monitoring of the risks
being taken.
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We conclude this book by discussing the role of derivatives markets in developing
countries.

Derivatives have become very important tools for transferring risks from one entity to
another. It is not surprising that derivatives markets are growing fast in many develop-
ing countries. This chapter focuses on what is happening in Chinaand India. These are
two countries whose economies are expected to play dominant roles in the 21st century.
China’s population in 2009 is estimated to be about 1.3 billion, while that of India is
about 1.2 billion. (By contrast, the population of the United States is only about
0.3 billion.) The world’s population is about 6.8 billion, so China and India between
them account for about 37% of the world’s population. India is expected to overtake
China as the world’s most populous nation by 2030.

There can be little doubt that China and India will have a huge impact on the
development of derivatives markets throughout the world in the years to come. Other
countries will also be important players. For example, Brazil, the fifth most populous
country in the world, has been very successful in developing its derivatives markets.
Its premier exchange, BM&FBOVESPA (www.bmfbovespa.com.br) is highly regarded.

CH|NA’S MARKETS

The way derivatives markets are regulated plays an important role in their growth. Too
much regulation can stunt growth; not enough is liable to lead to a lack of confidence in
the markets and make individuals and corporations less willing to trade.

In China, the China Securities Regulatory Commission (CSRC: www.csrc.gov.cn),
the China Bank Regulatory Commission (CBRC: www.cbrc.gov.cn) and the People’s
Bank of China (PBC: www.pbc.gov.cn) are all involved in derivatives regulation. The
CBRC issued new rules concerning derivatives in February 2004. This eased many of
the restrictions that had previously been in place on the trading of derivatives. The
new rules outlined the approval processes that would permit financial institutions to
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trade derivatives and the risk management procedures that the institutions would be
required to observe. The derivatives that can be traded include forwards, futures,
swaps, options, and structured products. The underlyings include foreign exchange
and interest rates. The rules allowed financial institutions to enter into derivatives
transactions for both hedging and profit-making purposes. This was an important
change for the market’s potential for growth. Until 2004, financial institutions were
allowed to enter into derivatives transactions only for hedging purposes. As explained
in Chapter l, the main reason why derivatives markets have grown so fast in the
Western world is that they can be used for three different purposes: hedging, spec-
ulation, and arbitrage. S

Prior to 2004, there were some mishaps. For example, Guangdong International
Trust and Investment Corporation went bankrupt in 1998. It had been a major player in
derivatives markets and structured products, but the legal foundation for what it was
doing was questionable. During the bankruptcy proceedings, the Chinese courts took
the view that the financial institution did not have the authority to enter into its
contracts and declared all the contracts null and void. The 2004 rules give much clearer
guidelines than before on who can trade derivatives and what they can be used for. The
rules allow foreign banks to deal directly with Chinese entities, rather than by going
through a Chinese financial institution.  

China’s ofiicial currency is the yuan (also known as the renminbi, RMB, or CNY).
The Chinese government has indicated that one of its goals is to make the yuan fully
convertible. Convertibility means that the exchange rate between the yuan and other
major currencies such as the euro and the US dollar will be determined by supply and
demand in the same way that other exchange rates between the major currencies of the
world are determined. At present the government restricts movements in the exchange
rate between the yuan and the US dollar from day to day and many economists think
that the yuan is currently undervalued against the US dollar, with the result that
China’s exports have a competitive edge and China’s trade surplus is boosted.

There are a number of exchanges in China that trade futures contracts. The Shanghai
Futures Exchange (SHFE: www.shfe.com.cn) trades futures contracts on copper, alu-
minum, natural rubber, fuel oil, gold, zinc, and steel. The Dalian Commodity Exchange
(DCE: wWW.dce.com.cn) trades futures contracts on soybean, soybean meal, soybean
oil, corn, linear -low-density polyethylene, polyvinyl chloride (PVC), and palm olein
(which is a product obtained from the fractionation of palm oil). In 2008 it/became the
world’s second largest agricultural futures exchange (after the Chicago Board of Trade).
The Zhengzhou Commodity Exchange (ZCE: www.zce.cn) trades futures contracts on
wheat, cotton, sugar, pure terephthalic acid (a chemical used in the manufacture of
clothing and plastic bottles), canola, rice and green beans.

On September 8, 2006, several exchanges (including the three futures exchanges that
have just been mentioned) founded the China Financial Futures Exchange (CFFEX:
www.cffex.com.cn). In January 2010, regulators finally approved the launch of a
CSI 300 index futures. The CSI index tracks the daily price performance of 300 stocks
listed on the Shanghai Stock Exchange (SSE: WWW.sse.com.cn) or Shenzhen Stock
Exchanges (SZSE: www.szse.cn). The index was launched in 2004 and was set equal
to 1,000 on December 31, 2004. In China, as in many other countries, it has proved
more difficult to obtain regulatory approval for the trading of index futures than for
commodity futures. This is because they require cash settlement. Regulators are
reluctant to approve contracts requiring cash settlement because they consider them
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closer to gambling than contracts that are settled by physical delivery of the under-
lying. (Arguably this is not rational because, as explained in Chapter 2, the vast
majority of futures contracts are closed out before maturity and therefore effectively
settled in cash.) The trading of options on exchanges in China is not as well developed
as the trading of futures.

The contracts traded in China’s over-the-counter market include forward and swap
contracts on foreign exchange, interest rate swaps, and bond forwards. Convertible
bonds have been popular. For example, China’s second-largest telecommunications
equipment maker, ZTE, announced in January 2008 that it was offering 4 billion yuan
($555 million) of convertible bonds with detachable warrants. The five-year bonds have
a coupon of between 0.8 and 1.5 percent. The warrants are exercisable during a 10-day
period two years after listing. Some products involving securitizations have traded.
There have been asset-backed securities, mortgage-backed securities, and the occasional
collateralized debt obligation.

Foreign banks have been active in China and have offered complex derivatives
involving commodity prices, interest rates, and exchange rates. Unfortunately, some
Chinese companies have taken huge losses on these derivatives. For example, Citic
Pacific lost $1.9 billion on derivatives involving the Australian dollar exchange rate and
Air China lost $1.1 billion on oil derivatives. China’s regulators took steps to ban
speculative derivatives contracts and curtailed the operations of foreign banks in 2009.
There has even been speculation that state-owned companies in China will be instructed
to default on their derivatives obligations.

|NDlA’S MARKETS

Equity derivatives have a long history in India. Options of various kinds called teji (call
options), mandi (put options), and fatak (straddles) traded in unorganized markets as
early as 1900 in Mumbai. However, derivatives markets suffered a set back in 1956
when the Securities Control and Regulation Act (SCRA) banned what was considered
to be undesirable speculation in securities and again in 1969 when “forward trading
contracts” were banned.

The Indian currency is the rupee. In theory, this is freely convertible. In pra/ctice, the
Reserve Bank of India (RBI: www.rbi.org.in) intervenes to control the exchange rate
against the US dollar. (This is sometimes referred to as a dirty or managed float.) In
addition, foreign nationals are forbidden from importing or exporting rupees and the
extent to which Indian citizens can do this is limited. However, India is moving towards
full convertibility.

Securities trading in India is regulated by the Securities and Exchange Board of India
(SEBI: www.sebi.gov.in), which was set up in 1988. An important step toward the
development of derivatives trading in India was the Securities Laws (Amendment)
Ordinance of 1995, which lifted the prohibition on the trading of options. This led
the SEBI in 1998 to set up committees to consider how derivatives should be introduced
and how risks should be contained. This led to a legal framework, enacted in December
1999, within which derivatives such as options and futures are regarded as securities
and can be traded. The trading of stock index futures started in June 2000, and later
other products, such as stock index options, stock options, and single stock futures,
were allowed.
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Since 2000, derivatives trading in India has developed quite fast. Both the National
Stock Exchange in Mumbai (NSE: wwW.nseindia.com) and the Bombay Stock
Exchange (BSE: WWw.bseindia.com) trade index futures, stock futures, index options,
and stock options. There are a large number of smaller exchanges trading futures and
options. The exchanges use sophisticated technology and are fully electronic. The
over-the-counter market is active in India, particularly in interest rate and swap
products.

OTHER DEVELOPING COUNTRIES

Derivatives markets are progressing well in many other developing countries, such as
Brazil, Korea, Malaysia, Mexico, Poland, and South Africa. Derivatives are sophisti-
cated instruments and it is necessary for a country’s financial markets to reach a
reasonable level of development before derivatives can be successful. There are a
number of key conditions for the growth of derivatives. It is important for the
government to set up a regulatory structure that protects investors from fraud and
leaves them feeling sure that their contracts will be honored. However, the government
should not impose too many restrictions on the way derivatives can be used because
speculators and arbitrageurs are important for the liquidity of the market. There must
be a sound financial and legal system within the country. Volatility is not bad for
derivatives markets. (Indeed without volatility there would be little interest in many
derivative products.) But derivatives are unlikely to thrive unless the economy of the
country is reasonably stable and there is a good payments system. Stock markets, bond
markets, and money markets should be reasonably well developed. (After all, stocks,
bonds, and money market instruments are the underlyings for many derivatives.)
Ideally the currency should be freely convertible and there should be no restrictions
on the flow of the currency in and. out of the country. Moreover, there should be
enough swaps, bonds, and money market instruments trading for a risk-free zero-
coupon yield curve to be estimated. A final very important condition is that there
should be enough well educated individuals who understand the products and how they
can be valued.

An intriguing’ idea for developing countries is the possibility of derivatives trans-
actions between national governments. If country X exports oil to codntry Y and
country Y exports building materials to company X, they are both subject to risks
relating to the prices of their exports. It might make sense for them to enter into a swap
that effectively fixes prices for several years into the future. This example can be
extended so that it applies to groups of countries that trade with each other.1

SUMMARY

The economies of many developing countries are growing very fast. Indeed, the phrase
“developing country” may no longer be an appropriate way of describing them in a
decade or two. Although the trading of derivatives occasionally gets out of control

1 This idea, which has been proposed -by Robert Merton, is of course not just appropriate for developing
countries.
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(see Chapter 35), there can be no question that derivatives markets have played an
important role in allowing risks to be managed in developed countries. There is no
reason to suppose that the same will not in the future be true in every country of the
world. Several developing countries have laid the foundations for a mature derivatives
market by creating appropriate legal, financial, and regulatory frameworks. In a few
decades, it is likely that the derivatives markets of countries like China, India, and Brazil
will be as important as, if not more important than, those of the United States and
Western European countries.
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Glossary of Terms

ABS See Asset-Backed Security.
ABS CDO Instrument where tranches are created from the tranches of ABSs.
Accrual Swap An interest rate swap where interest on one side accrues only when a

certain condition is met.
Accrued Interest The interest earned on a bond since the last coupon payment date.
Adaptive Mesh Model A model developed by Figlewski and Gao that grafts a high-

resolution tree on to a low-resolution tree so that there is more detailed modeling of
the asset price in critical regions.

Agency Costs Costs arising from a situation where the agent (e.g., manager) is not
motivated to act in the best interests of the principal (e.g., shareholder).

American Option An option that can be exercised at any time during its life.
Amortizing Swap A swap where the notional principal decreases in a predetermined

way as time passes.
Analytic Result Result where answer is in the form of an equation.
Arbitrage A trading strategy that takes advantage of two or more securities being

 mispriced relative to each other. /
Arbitrageur An individual engaging in arbitrage.
Asian Option An option with a payoff dependent on the average price of the under-

lying asset during a specified period.
Ask Price The price that a dealer is offering to sell an asset.
Asked Price See Ask Price.

Asset-Backed Security Security created from a portfolio of loans, bonds, credit card
receivables, or other assets.

Asset-or-Nothing Call Option An option that provides a payoff equal to the asset
price if the asset price is above the strike price and zero otherwise.

Asset-or-Nothing Put Option An option that provides a payoff equal to the asset
price if the asset price is below the strike price and zero otherwise.

Asset Swap Exchanges the coupon on a bond for LIBOR plus a spread.
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As-You-Like-It Option See Chooser Option.
At-the-Money Option An option in which the strike price equals the price of the

underlying asset.
Average Price Call Option An option giving a payoff equal to the greater of zero and

the amount by which the average price of the asset exceeds the strike price.
Average Price Put Option An option giving a payoff equal to the greater of zero and

the amount by which the strike price exceeds the average price of the asset.
Average Strike Option An option that provides a payoff dependent on the difference

between the final asset price and the average asset price.
Backdating Practice (often illegal) of marking a document with a date that precedes

the current date.
Back Testing Testing a value-at-risk or other model using historical data.
Backwards Induction A procedure for working from the end of a tree to its beginning

in order to value an option.
Barrier Option An option whose payoff depends on whether the path of the under-

lying asset has reached a barrier (i.e., a certain predetermined level).
Base Correlation Correlation that leads to the price of a 0% to X % CDO tranche

being consistent with the market for a particular value of X .
Basel Committee Committee responsible for regulation of banks internationally.
Basis The difference between the spot price and the futures price of a commodity.
Basis Point When used to describe an interest rate, a basis point is one hundredth of

one percent (= 0.01%)
Basis Risk The risk to a hedger arising from uncertainty about the basis at a future

time.
Basis Swap A swap where cash flows determined by one floating reference rate are

exchanged for cash flows determined by another floating reference rate.  
Basket Credit Default Swap Credit default swap where there are several reference

entities.
Basket Option .An option that provides a payoff dependent on the value of a portfolio

of assets. /r
Bear Spread A short position in a put option with strike price K1 combined with a

long position in a put option with strike price K2 where K2 > K1. (A bear spread can
also be created with call options.)

Bermudan Option An option that can be exercised on specified dates during its life.
Beta A measure of the systematic risk of an asset.
Bid-Ask Spread The amount by which the ask price exceeds the bid price.
Bid-Offer Spread See Bid-Ask Spread.
Bid Price The price that a dealer is prepared to pay for an asset.
Binary Credit Default Swap Instrument where there is a fixed dollar payoff in the

event of a default by a particular company.
Binary Option Option with a discontinuous payoff, e.g., a cash-or-nothing option or

an asset-or-nothing option.
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Binomial Model A model where the price of an asset is monitored over successive
short periods of time. In each short period it is assumed that only two price
movements are possible.

Binomial Tree A tree that represents how an asset price can evolve u.nder the binomial
model.

Bivariate Normal Distribution A distribution for two correlated variables, each of
which is normal.

Black’s Approximation An approximate procedure developed by Fischer Black for
valuing a call option on a dividend-paying stock.

Black’s Model An extension of the Black-Scholes model for valuing European
options on futures contracts. As described in Chapter 26, it is used extensively in
practice to value European options when the distribution of the asset price at
maturity is assumed to be lognormal.

Black-Scholes-Merton Model A model for pricing European options on stocks,
developed by Fischer Black, Myron Scholes, and Robert Merton.

Bond Option An option where a bond is the underlying asset.
Bond Yield Discount rate which, when applied to all the cash flows of a bond, causes

the present value of the cash flows to equal the bond’s market price.
Bootstrap Method A procedure for calculating the zero-coupon yield curve from

market data.
Boston Option See Deferred Payment Option.
Box Spread A combination of a bull spread created from calls and a bear spread

created from puts.
Break Forward See Deferred Payment Option.
Brownian Motion See Wiener Process.  
Bull Spread A long position in a call with strike price K1 combined with a short

position in a call with strike price K2, where K2 > K1. (A bull spread can also be
created with put options.)

Butterfly Spread A position that is created by taking a long position in a call with
strike price K1, a long position in a call with strike price K3, and a short position in
two calls with strike price K2, where K3 > K2 > K1 and K2 == 0.5(K1 + K3).
(A butterfly spread can also be created with put options.)

Calendar Spread A position that is created by taking a long position in a call option
that matures at one time and a short position in a similar call option that matures at a
different time. (A calendar spread can also be created using put options.)

Calibration Method for implying a model’s parameters from the prices of actively
traded options.

Callable Bond A bond containing provisions that allow the issuer to buy it back at a
predetermined price at certain times during its life.

Call Option An option to buy an asset at a certain price by a certain date.
Cancelable Swap Swap that can be canceled by one side on prespecified dates.
Cap See Interest Rate Cap.
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Cap Rate The rate determining payoffs in an interest rate cap.
Capital Asset Pricing Model A model relating the expected return on an asset to its

beta.
Caplet One component of an interest rate cap.
Case-Shiller Index Index of house prices in the United States.
Cash Flow Mapping A procedure for representing an instrument as a portfolio of

zero-coupon bonds for the purpose of calculating value at risk.
Cash-or-Nothing Call Option An option that provides a fixed predetermined payoff if

the final asset price is above the strike price and zero otherwise.
Cash-or-Nothing Put Option An option that provides a fixed predetermined payoff if

the final asset price is below the strike price and zero otherwise.
Cash Settlement Procedure for settling a futures contract in cash rather than by

delivering the underlying asset.
CAT Bond Bond where the interest and, possibly, the principal paid are reduced if a

particular category of “catastrophic” insurance claims exceed a certain amount.
CDD Cooling degree days. The maximum of zero and the amount by which the daily

average temperature is greater than 65° Fahrenheit. The average temperature is the
average of the highest and lowest temperatures (midnight to midnight).

CDO See Collateralized Debt Obligation.
CDO Squared An instrument in which the default risks in a portfolio of CDO

tranches are allocated to new securities.
CDX NA IG Portfolio of 125 North American companies.
Central Clearing Party A clearing house used for over-the-counter contracts.
Cheapest-to-Deliver Bond The bond that is cheapest to deliver in the Chicago Board

of Trade bond futures contract.  
Cholesky Decomposition A method of sampling from a multivariate normal dis-

tribution.
Chooser Option An option where the holder has the right to choose whether it is a

call or a put at some point during its life. f
Class of Options See Option Class.
Clean Price of Bond The quoted price of a bond. The cash price paid for the bond

(or dirty price) is calculated by adding the accrued interest to the clean price.
Clearing House A firm that guarantees the performance of the parties in a derivatives

transaction (also referred to as a clearing corporation).
Clearing Margin A margin posted by a member of a clearinghouse.
Cliquet Option A series of call or put options with rules for determining strike prices.

Typically, one option starts when the previous one terminates.
CMO Collateralized Mortgage Obligation.
Collar See Interest Rate Collar.
Collateralization A system for posting collateral by one or both parties in a derivatives

transaction.
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Collateralized Debt Obligation A way of packaging credit risk. Several classes of
securities (known as tranches) are created from a portfolio of bonds and there are
rules for determining how the cost of defaults are allocated to classes.

Collateralized Mortgage Obligation (CMO) A mortgage-backed security where in-
vestors are divided into classes and there are rules for determining how principal
repayments are channeled to the classes.

Combination A position involving both calls and puts on the same underlying asset.

Commodity Futures Trading Commission A body that regulates trading in futures
contracts in the United States.

Commodity Swap A swap where cash flows depend on the price of a commodity.

Compound Correlation Correlation implied from the market price of a CDO tranche.
Compound Option An option on an option.
Compounding Frequency This defines how an interest rate is measured.
Compounding Swap Swap where interest compounds instead of being paid.
Conditional Value at Risk (C-VaR) Expected loss during N days conditional on being

in the (100 — X)% tail of the distribution of profits/losses. The variable N is the time
horizon and X % is the confidence level.

Confirmation Contract confirming verbal agreement between two parties to a trade in
the over-the-counter market.

Constant Elasticity of Variance (CEV)-Model Model where the variance of the change
in a variable in a short period of time is proportional to the value of the variable.

Constant Maturity Swap (CMS) A swap where a swap rate is exchanged for either a
fixed rate or a floating rate on each payment date.

Constant Maturity Treasury Swap A swap where the yield on a Treasury bond is
exchanged for either a fixed rate or a floating rate on each payment date.

Consumption Asset An asset held for consumption rather than investment.
Contango A situation where the futures price is above the expected future spot price

(also often used torefer to the situation where the futures price is above the current
spot price).  . s/1

Continuous Compounding A way of quoting interest rates. It is the limit as the
assumed compounding interval is made smaller and smaller.

Control Variate Technique A technique that can sometimes be used for improving the
accuracy of a numerical procedure.

Convenience Yield A measure of the benefits from ownership of an asset that are not
obtained by the holder of a long futures contract on the asset.

Conversion Factor A factor used to determine the number of bonds that must be
delivered in the Chicago Board of Trade bond futures contract.

Convertible Bond A corporate bond that can be converted into a predetermined
amount of the company’s equity at certain times during its life.

Convexity A measure of the curvature in the relationship between bond prices and
bond yields.
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Convexity Adjustment An overworked term. For example, it can refer to the adjust-
ment necessary to convert a futures interest rate to a forward interest rate. It can also
refer to the adjustment to a forward rate that is sometimes necessary when Black’s
model is used.

Copula A way of defining the correlation between variables with known distributions.
Cornish-Fisher Expansion An approximate relationship between the fractiles of a

probability distribution and its moments.
Cost of Carry The storage costs plus the cost of financing an asset minus the income

earned on the asset.
Counterparty The opposite side in a financial transaction.
Coupon Interest payment made on a bond.
Covariance Measure of the linear relationship between two variables (equals the

correlation between the variables times the product of their standard deviations).
Covariance Matrix See Variance—Covariance Matrix.
Covered Call A short position in a call option on an asset combined with a long

position in the asset.
Crashophobia Fear of a stock market crash that some people claim causes the market

to increase the price of deep-out-of-the-money put options.
Credit Contagion The tendency of a default by one company to lead to defaults by

other companies.
Credit Default Swap An instrument that gives the holder the right to sell a bond for

its face value in the event of a default by the issuer.
Credit Derivative A derivative whose payoff depends on the creditworthiness of one

or more companies or countries.
Credit Index Index that tracks thecost of buying protection for each company in a

portfolio (e.g., CDX NA IG and iTraxx Europe).
Credit Rating A measure of the creditworthiness of a bond issue.  
Credit Ratings Transition Matrix A table showing the probability that a company will

move from one credit rating to another during a certain period of time.
Credit Risk The risk that a loss will be experienced because of a default by the

counterparty in a derivatives transaction.
Credit Spread Option Option whose payoff depends on the spread between the yields

earned on two assets.
Credit Value Adjustment Adjustment to value of derivatives outstanding with a

counterparty to reflect the counterparty’s default risk.
Credit Value at Risk The credit loss that will not be exceeded at some specified

confidence level.
CreditMetrics A procedure for calculating credit value at risk.

Cross Hedging Hedging an exposure to the price of one asset with a contract on
another asset.

Cumulative Distribution Function The probability that a variable will be less than x
as a function of x.
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Currency Swap A swap where interest and principal in one currency are exchanged
for interest and principal in another currency.

CVA See Credit Value Adjustment.
Day Count A convention for quoting interest rates.

Day Trade A trade that is entered into and closed out on the same day.
Default Correlation Measures the tendency of two companies to default at about the

same time.
Default Intensity See Hazard Rate.
Default Probability Density Measures the unconditional probability of default in a

future short period of time.
Deferred Payment Option An option where the price paid is deferred until the end of

the option’s life.
Deferred Swap An agreement to enter into a swap at some time in the future (also

called a forward swap).
Delivery Price Price agreed to (possibly some time in the past) in a forward contract.
Delta The rate of change of the price of a derivative with the price of the underlying

asset.
Delta Hedging A hedging scheme that is designed to make the price of a portfolio of

derivatives insensitive to small changes in the price of the underlying asset.
Delta-Neutral Portfolio A portfolio with a delta of zero so that there is no sensitivity

to small changes in the price of the underlying asset. 2
DerivaGem The software accompanying this book. .
Derivative An instrument whose price depends on, or is derived from, the price of

another asset.
Deterministic Variable A variable whose future value is known.
Diagonal Spread A position in two calls where both the strike prices and times to

maturity are different. (A diagonal spread can also be created with put options.)
Differential Swap A swap where a floating rate in one currency is exchanged for a

floating rate in another currency and both rates are applied to the same principal.
Diffusion Process Model where value of asset changes continuously (no jumps).
Dirty Price of Bond Cash price of bond.
Discount Bond See Zero-Coupon Bond.
Discount Instrument An instrument, such as a Treasury bill, that provides no

coupons
Diversification Reducing risk by dividing a portfolio between many different assets.

Dividend A cash payment made to the owner of a stock.

Dividend Yield The dividend as a percentage of the stock price.

Dollar Duration The product of a bond’s modified duration and the bond price.

Down-and-In Option An option that comes into existence when the price of the
underlying asset declines to a prespecified level.
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Down-and-Out Option An option that ceases to exist when the price of the under-
lying asset declines to a prespecified level.

Downgrade Trigger A clause in a contract that states that the contract will be
terminated with a cash settlement if the credit rating of one side falls below a certain
level.

Drift Rate The average increase per unit of time in a stochastic variable. 2
Duration A measure of the average life a bond. It is also an approximation to the ratio

of the proportional change in the bond price to the absolute change in its yield.
Duration Matching A procedure for matching the durations of assets and liabilities in

a financial institution.
DV01 The dollar value of a l-basis-point increase in all interest rates.
Dynamic Hedging A procedure for hedging an option position by periodically

changing the position held in the underlying asset. The objective is usually to
maintain a delta-neutral position.

Early Exercise Exercise prior to the maturity date.
Efficient Market Hypothesis A hypothesis that asset prices reflect relevant informa-

tion.
Electronic Trading System of trading where a computer is used to match buyers and

sellers.
Embedded Option An option that is an inseparable part of another instrument.
Empirical Research Research based on historical market data.
Employee Stock Option A stock option issued by company on its own stock and

given to its employees as part of their remuneration.
Equilibrium Model A model for the behavior of interest rates derived from a model of

the economy. A .
Equity Swap A swap where the return on an equity portfolio is exchanged for either a

fixed or a floating rate of interest.
Equity Tranche The tranche that first absorbs losses.
Eurocurrency A currency that is outside the formal control of the issping country’s

monetary authorities.
Eurodollar A dollar held in a bank outside the United States.
Eurodollar Futures Contract A futures contract written on a Eurodollar deposit.
Eurodollar Interest Rate The interest rate on a Eurodollar deposit.
European Option An option that can be exercised only at the end of its life.
EWMA Exponentially weighted moving average.

Exchange Option An option to exchange one asset for another.
Ex-dividend Date When a dividend is declared, an ex-dividend date is specified.

Investors who own shares of the stock just before the ex-dividend date receive the
dividend.

Exercise Limit Maximum number of option contracts that can be exercised within a
five-day period.
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Exercise Multiple Ratio of stock price to strike price at time of exercise for employee
stock option.

Exercise Price The price at which the underlying asset may be bought or sold in an
option contract (also called the strike price).

Exotic Option A nonstandard option.
Expectations Theory The theory that forward interest rates equal expected future spot

interest rates.
Expected Shortfall See Conditional Value at Risk.
Expected Value of a Variable The average value of the variable obtained by weighting

the alternative values by their probabilities.
Expiration Date The end of life of a contract.
Explicit Finite Difference Method A method for valuing a derivative by solving the

underlying differential equation. The value of the derivative at time t is related to
three values at time t+ At. It is essentially the same as the trinomial tree method.

Exponentially Weighted Moving Average Model A model where exponential weight-
ing is used to provide forecasts for a variable from historical data. It is sometimes
applied to variances and covariances in value at risk calculations.

Exponential Weighting A weighting scheme where the weight given to an observation
depends on how recent it is. The weight given to an observation i time periods ago is
A times the weight given to an observation i — 1 time periods ago where A < 1.

Exposure The maximum loss from default by a counterparty. 2 5
Extendable Bond A bond whose life can be extended at the option of the holder.
Extendable Swap A swap whose life can be extended at the option of one side to the

contract.
Factor Source of uncertainty. c
Factor analysis An analysis aimed at finding a small number of factors that describe

most of the variation in a large number of correlated variables (similar to a principal
components analysis).

FAS 123 Accounting standard in United States relating to employee stock options.
FAS 133 Accounting standard in United States relating to instruments Lised for

hedging.
FASB Financial Accounting Standards Board.
FICO A credit score developed by Fair Isaac Corporation.
Financial Intermediary A bank or other financial institution that facilitates the flow of

funds between different entities in the economy.
Finite Difference Method A method for solving a differential equation.
Flat Volatility The name given to volatility used to price a cap when the same volatility

is used for each caplet.
Flex Option An option traded on an exchange with terms that are different from the

standard options traded by the exchange.
Flexi Cap Interest rate cap where there is a limit on the total number of caplets that

can be exercised.
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Floor See Interest Rate Floor.
Floor-Ceiling Agreement See Collar.
Floorlet One component of a floor.
Floor Rate The rate in an interest rate floor agreement.
Foreign Currency Option An option on a foreign exchange rate.
Forward Contract A contract that obligates the holder to buy or sell an asset for a

predetermined delivery price at a predetermined future time.
Forward Exchange Rate The forward price of one unit of a foreign currency.
Forward Interest Rate The interest rate for a future period of time implied by the rates

prevailing in the market today.
Forward Price The delivery price in a forward contract that causes the contract to be

worth zero.
Forward Rate Rate of interest for a period of time in the future implied by today’s

zero rates.
Forward Rate Agreement (FRA) Agreement that a certain interest rate will apply to a

certain principal amount for a certain time period in the future.
Forward Risk-Neutral World A world is forward risk-neutral with respect to a certain

asset when the market price of risk equals the volatility of that asset.
Forward Start Option An option designed so that it will be at-the-money at some

time in the future.
Forward Swap See Deferred Swap.
Futures Commission Merchants Futures traders who are following instructions from

clients.  
Futures Contract A contract that obligates the holder to buy or sell an asset at a

predetermined delivery price during a specified future time period. The contract is
settled daily.  

Futures Option An option on a futures contract.
Futures Price The delivery price currently applicable to a futures contract.
Futures-Style Option Futures contract on the payoff from an option. /
Gamma The rate of change of delta with respect to the asset price.
Gamma-Neutral Portfolio A portfolio with a gamma of zero.
Gap Option European call or put option where there are two strike prices. One

determines whether the option is exercised. The other determines the payoff.
GARCH Model A model for forecasting volatility where the variance rate follows a

mean-reverting process.  
Gaussian Copula Model A model for defining a correlation structure between two or

more variables. In some credit derivatives models, it is used to define a correlation
structure for times to default.

Gaussian Quadrature Procedure for integrating over a normal distribution.
Generalized Wiener Process A stochastic process where the change in a variable in

time t has a normal distribution with mean and variance both proportional to t.
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Geometric Average The nth root of the product of n numbers.
Geometric Brownian Motion A stochastic process often assumed for asset prices

where the logarithm of the underlying variable follows a generalized Wiener process.

Girsanov’s Theorem Result showing that when we change the measure (e.g., move
from real world to risk-neutral world) the expected return of a variable changes but
the volatility remains the same.

Greeks Hedge parameters such as delta, gamma, vega, theta, and rho.
Haircut Discount applied to the value of an asset for collateral purposes.

Hazard Rate Measures probability of default in a short period of time conditional on
no earlier default.

HDD Heating degree days. The maximum of zero and the amount by which the daily
average temperature is less than 65° Fahrenheit. The average temperature is the
average of the highest and lowest temperatures (midnight to midnight).

Hedge A trade designed to reduce risk.
Hedge Funds Funds that are subject to less regulation and fewer restrictions than

mutual funds. They can take short positions and use derivatives, but they cannot
publicly offer their securities.

Hedger An individual who enters into hedging trades.
Hedge Ratio The ratio of the size of a position in a hedging instrument to the size of

the position being hedged.  

Historical Simulation A simulation based on historical data.
Historic Volatility A volatility estimated from historical data.
Holiday Calendar Calendar defining which days are holidays for the purposes of

determining payment dates in a swap.
IMM Dates Third Wednesday in March, June, September, and December.

Implicit Finite Difference Method A method for valuing a derivative by solving the
underlying differential equation. The value of the derivative at time t+ At is related
to three values attime t.

Implied Correlation Correlation number implied from the price of a credit rferivative
using the Gaussian copula or similar model.

Implied Distribution A distribution for a future asset price implied from option
prices.

Implied Tree A tree describing the movements of an asset price that is constructed to
be consistent with observed option prices.

Implied Volatility Volatility implied from an option price using the Black—Scholes or
a similar model.

Implied Volatility Function (IVF) Model Model designed so that it matches the market
prices of all European options.

Inception Profit Profit created by selling a derivative for more than its theoretical
value.

Index Amortizing Swap See indexed principal swap.
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Index Arbitrage An arbitrage involving a position in the stocks comprising a stock
index and a position in a futures contract on the stock index.

Index Futures A futures contract on a stock index or other index.
Index Option An option contract on a stock index or other index.
Indexed Principal Swap A swap where the principal declines over time. The reduction

in the principal on a payment date depends on the level of interest rates.

Initial Margin The cash required from a futures trader at the time of the trade.

Instantaneous Forward Rate Forward rate for a very short period of time in the
future.

Interest Rate Cap An option that provides a payoff when a specified interest rate is
above a certain level. The interest rate is a floating rate that is reset periodically.

Interest Rate Collar A combination of an interest-rate cap and an interest rate floor.

Interest Rate Derivative A derivative whose payoffs are dependent on future interest
rates.

Interest Rate Floor An option that provides a payofl when an interest rate is below a
certain level. The interest rate is a floating rate that is reset periodically.

Interest Rate Option An option where the payoff is dependent on the level of interest
rates.

Interest Rate Swap An exchange of a fixed rate of interest on a certain notional
principal for a floating rate of interest on the same notional principal.

International Swaps and Derivatives Association Trade Association for over-the-
counter derivatives and developer of master agreements used in over-the-counter
contracts.

In-the-Money Option Either (a) a call option where the asset price is greater than the
strike price or (b) a put option where the asset price is less than the strike price.

Intrinsic Value For a call option, this is the greater of the excess of the asset price over
the strike price and zero. For a put option, it is the greater of the excess of the strike
price over the asset price and zero.

Inverted Market A market where futures prices decrease with maturity,
Investment Asset An asset held by at least some individuals for investment purposes.
IO Interest Only. A mortgage-backed security where the holder receives only interest

cash flows on the underlying mortgage pool.
ISDA See International Swaps and Derivatives Association.
Ito Process A stochastic process where the change in a variable during each short

period of time of length At has a normal distribution. The mean and variance of the
distribution are proportional to At and are not necessarily constant.

It6’s Lemma A result that enables the stochastic process for a function of a variable to
be calculated from the stochastic process for the variable itself.

ITraxx Europe Portfolio of 125 investment-grade European companies.
lump-Diffusion Model Model where asset price has jumps superimposed on to a

diffusion process such as geometric Brownian motion.
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lump Process Stochastic process for a variable involving jumps in the value of the
variable.

Kurtosis A measure of the fatness of the tails of a distribution.
LEAPS Long-term equity anticipation securities. These are relatively long-term options

on individual stocks or stock indices.
LIBID London interbank bid rate. The rate bid by banks on Eurocurrency deposits

(i.e., the rate at which a bank is willing to borrow from other banks).
LIBOR London interbank offered rate. The rate offered by banks on Eurocurrency

deposits (i.e., the rate at which a bank is willing to lend to other banks).
LIBOR Curve LIBOR zero-coupon interest rates as a function of maturity.
LIBOR-in-Arrears Swap Swap where the interest paid on a date is determined by the

interest rate observed on that date (not by the interest rate observed on the previous
payment date).

Limit Move The maximum price move permitted by the exchange in a single trading
SCSSIOH.

Limit Order An order that can be executed only at a specified price or one more
favorable to the investor.  

Liquidity Preference Theory A theory leading to the conclusion that forward interest
rates are above expected future spot interest rates.

Liquidity Premium The amount that forward interest rates exceed expected future
spot interest rates.

Liquidity Risk Risk that it will not be possible to sell a holding of a particular
instrument at its theoretical price. Also, the risk that a company will not be able
to borrow money to fund its assets.

Locals Individuals on the floor of an exchange who trade for their own account rather
than for someone else.

Lognormal Distribution A variable has a lognormal distribution when the logarithm
of the variable has a normal distribution.

Long Hedge A hedge involving a long futures position.
Long Position A position involving the purchase of an asset. 2/
Lookback Option An option whose payoff is dependent on the maximum or min-

imum of the asset price achieved during a certain period.
Low Discrepancy Sequence See Quasi-random Sequence.
Maintenance Margin When the balance in a trader’s margin account falls below the

maintenance margin level, the trader receives a margin call requiring the account to
be topped up to the initial margin level.

Margin The cash balance (or security deposit) required from a futures or options
trader.

Margin Call A request for extra margin when the balance in the margin account falls
below the maintenance margin level.

Market Maker A trader who is willing to quote both bid and offer prices for an asset.
Market Model A model 1nost commonly used by traders.
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Market Price of Risk A measure of the trade-offs investors make between risk and
return.

Market Segmentation Theory A theory that short interest rates are determined
independently of long interest rates by the market.

Marking to Market The practice of revaluing an instrument to reflect the current
S values of the relevant market variables.

Markov Process A stochastic process where the behavior of the variable over a short
period of time depends solely on the value of the variable at the beginning of the
period, not on its past history.

Martingale A zero drift stochastic process.
Maturity Date The end of the life of a contract.
Maximum Likelihood Method A method for choosing the values of parameters by

maximizing the probability of a set of observations occurring.
Mean Reversion The tendency of a market variable (such as an interest rate) to revert

back to some long-run average level.
Measure Sometimes also called a probability measure, it defines the market price

of risk.
Mezzanine Tranche Tranche which experiences losses after equity tranche but before

senior tranches.
Modified Duration A modification to the standard duration measure so that it more

accurately describes the relationship between proportional changes in a bond price
and actual changes in its yield. The modification takes account of the compounding
frequency with which the yield is quoted.

Money Market Account An investment that is initially equal to $1 and, at time t,
increases at the very short-term risk-free interest rate prevailing at that time.

Monte Carlo Simulation A procedure for randomly sampling changes in market
variables in order to value a derivative. Y

Mortgage-Backed Security A security that entitles the owner to a share in the cash
flows realized from a pool of mortgages.

Naked Position A short position in a call option that is not combined with a long
position in the underlying asset.

Netting The ability to offset contracts with positive and negative values in the event of
a default by a counterparty.

Newton-Raphson Method An iterative procedure for solving nonlinear equations.
NINIA Term used to describe a person with a poor credit risk: no income, no job, no

assets.
No-Arbitrage Assumption The assumption that there are no arbitrage opportunities

in market prices.
No-Arbitrage Interest Rate Model A model for the behavior of interest rates that is

exactly consistent with the initial term structure of interest rates.
Nonstationa.ry Model A model where the volatility parameters are a function of time.
Nonsystematic Risk Risk that can be diversified away.
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Normal Backwardation A situation where the futures price is below the expected
future spot price.

Normal Distribution The standard bell-shaped distribution of statistics.
Normal Market A market where futures prices increase with maturity.
Notional Principal The principal used to calculate payments in an interest rate swap.

The principal is “notional” because it is neither paid nor received.
Numeraire Defines the units in which security prices are measured. For example, if

the price of IBM is the numeraire, all security prices are measured relative to IBM. If
IBM is $80 and a particular security price is $50, the security price is 0.625 when
IBM is the numeraire.

Numerical Procedure A method of valuing an option when no formula is available.
OCC Options Clearing Corporation. See Clearinghouse.
Offer Price See Ask Price.
OIS See Overnight Indexed Swap.
Open Interest The total number of long positions outstanding in a futures contract

(equals the total number of short positions).
Open Outcry System of trading where traders meet on the floor of the exchange
Option The right to buy or sell an asset.
Option-Adjusted Spread The spread over the Treasury curve that makes the theoret-

ical price of an interest rate derivative equal to the market price.
Option Class All options of the same type (call or put) on a particular stock.
Option Series All options of a certain class with the same strike price and expiration

date.
Order Book Official See Board Broker. S
Out-of-the-Money Option Either (a) a call option where the asset price is less than

the strike price or (b) a put option where the asset price is greater than the strike
price. r

Overnight Indexed Swap Swap where a fixed rate for a period (e.g., l month) is
exchanged for the geometric average of the overnight rates during the period.

Over-the-Counter Market A market where traders deal by phone. The traders are
usually financial institutions, corporations, and fund managers.

Package A derivative that is a portfolio of standard calls and puts, possibly combined
with a position in forward contracts and the asset itself.

Par Value The principal amount of a bond.
Par Yield The coupon on a bond that makes its price equal the principal.
Parallel Shift A movement in the yield curve where each point on the curve changes by

the same amount.
Parisian Option Barrier option where the asset has to be above or below the barrier

for a period of time for the option to be knocked in or out.
Path-Dependent Option An option whose payoff depends on the whole path followed

by the underlying variable—-not just its final value.



Glossary of Terms

Payoff The cash realized by the holder of an option or other derivative at the end of its
life.

PD Probability of default.
Plain Vanilla A term used to describe a standard deal.
P-‘Measure Real-world measure.
PO Principal Only. A mortgage-backed security where the holder receives only

principal cash flows on the underlying mortgage pool.
Poisson Process A process describing a situation where events happen at random. The

probability of an event in time At is A At, where A is the intensity of the process.
Portfolio Immunization Making a portfolio relatively insensitive to interest rates.
Portfolio Insurance Entering into trades to ensure that the value of a portfolio will

not fall below a certain level.
Position Limit The maximum position a trader (or group of traders acting together) is

allowed to hold.
Premium The price of an option.
Prepayment function A function estimating the prepayment of principal on a port-

folio of mortgages in terms of other variables. '
Principal The par or face value of a debt instrument.
Principal Components Analysis An analysis aimed at finding a small number of

factors that describe most of the variation in a large number of correlated variables
(similar to a factor analysis).

Principal Protected Note A product where the return earned depends on the perfor-
mance of a risky asset but is guaranteed to be nonnegative, so that the investor’s
principal is preserved. ,

Program Trading A procedure where trades are automatically generated by a com-
puter and transmitted to the trading floor of an exchange.  

Protective Put A put option combined with a long position in the underlying asset.
Pull-to-Par The reversion of a bond’s price to its par value at maturity.
Put-Call Parity The relationship between the price of a European call option and the

price of a European put option when they have the same strike price’ and maturity
date.

Put Option An option to sell an asset for a certain price by a certain date.
Puttable Bond A bond where the holder has the right to sell it back to the issuer at

certain predetermined times for a predetermined price.
Puttable Swap A swap where one side has the right to terminate early.
Q-Measure Risk-neutral measure.
Quanto A derivative where the payoff is defined by variables associated with one

currency but is paid in another currency.
Quasi-random Sequences A sequences of numbers used in a Monte Carlo simulation

that are representative of alternative outcomes rather than random.
Ra.ir|bow Option An option whose payoff is dependent on two or more underlying

variables.
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Range Forward Contract The combination of a long call and short put or the
combination of a short call and long put.

Ratchet Cap Interest rate cap where the cap rate applicable to an accrual period
equals the rate for the previous accrual period plus a spread.

Real Option Option involving real (as opposed to financial) assets. Real assets include
land, plant, and machinery. _

Rebalancing The process of adjusting a trading position periodically. Usually the
purpose is to maintain delta neutrality.

Recovery Rate Amount recovered in the event of a default as a percent of the face
value. 5

Reference Entity Company for which default protection is bought in a credit default
swap.

Repo Repurchase agreement. A procedure for borrowing money by selling securities
to a counterparty and agreeing to buy them back later at a slightly higher price.

Repo Rate The rate of interest in a repo transaction.
Reset Date The date in a swap or cap or floor when the floating rate for the next

period is set.  
Reversion Level The level to which the value of a market variable (e.g., an interest

rate) tends to revert.
Rho Rate of change of the price of a derivative with the interest rate.  
Rights Issue An issue to existing shareholders of a security giving them the right to

buy new shares at a certain price.
Risk-Free Rate The rate of interest that can be earned without assuming any risks.
Risk-Neutral Valuation The valuation of an option or other derivative assuming the

world is risk neutral. Risk-neutral valuation gives the correct price for a derivative in
all worlds, not just in a risk-neutral world.

Risk-Neutral World A world where investors are assumed to require no extra return
on average for bearing risks.

Roll Back See Backwards Induction.
Scalper A trader who holds positions for a very short period of time.
Scenario Analysis An analysis of the effects of possible alternative future movements

in market variables on the value of a portfolio.
SEC Securities and Exchange Commission.
Securitization Procedure for distributing the risks in a portfolio of assets.
Settlement Price The average of the prices that a contract trades for immediately

before the bell signaling the close of trading for a day. It is used in mark-to-market
calculations.

Sharpe Ratio Ratio of excess return over risk-free rate to standard deviation of the
excess return.

Short Hedge A hedge where a short futures position is taken.
Short Position A position assumed when traders sell shares they do not own.
Short Rate The interest rate applying for a very short period of time.
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Short Selling Selling in the market shares that have been borrowed from another
investor.

Short-Term Risk-Free Rate See Short Rate.
Shout Option An option where the holder has the right to lock in a minimum value

for the payoff at one time during its life.
Simulation See Monte Carlo Simulation. -
Specialist An individual responsible for managing limit orders on some exchanges.

The specialist does not make the information on outstanding limit orders available to
other traders.

Speculator An individual who is taking a position in the market. Usually the
individual is betting that the price of an asset will go up or that the price of an
asset will go down.

Spot Interest Rate See Zero-Coupon Interest Rate.
Spot Price The price for immediate delivery.
Spot Volatilities The volatilities used to price a cap when a different volatility is used

for each caplet.
Spread Option An option where the payoff is dependent on the difference between

two market variables.
Spread Transaction A position in two or more options of the same type.
Stack and Roll Procedure where short-term futures contracts are rolled forward so

that long-term hedges are created. F t
Static Hedge A hedge that does not have to be changed once it is initiated.
Static Options Replication A procedure for hedging a portfolio that involves finding

another portfolio of approximately equal value on some boundary.
Step-up Swap A swap where the principal increases over time in a predetermined way.
Sticky Cap Interest rate cap where the cap rate applicable to an accrual period equals

the capped rate for the previous accrual period plus a spread. P
Stochastic Process An equation describing the probabilistic behavior of a stochastic

variable. -
Stochastic Variable A variable whose future value is uncertain. 5”
Stock Dividend A dividend paid in the form of additional shares.
Stock Index An index monitoring the value of a portfolio of stocks.
Stock Index Futures Futures on a stock index.
Stock Index Option An option on a stock index.
Stock Option Option on a stock.
Stock Split The conversion of each existing share into more than one new share.
Storage Costs The costs of storing a commodity.
Straddle A long position in a call and a put with the same strike price.
Strangle A long position in a call and a put with different strike prices.
Strap A long position in two call options and one put option with the same strike

price.
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Stressed VaR Value at risk calculated using historical simulation from a period of
stressed market conditions.

Stress Testing Testing of the impact of extreme market moves on the value of a
portfolio.

Strike Price The price at which the asset may be bought or sold in an option contract
(also called the exercise price).

Strip A long position in one call option and two put options with the same strike
price.

Strip Bonds Zero-coupon bonds created by selling the coupons on Treasury bonds
separately from the principal.

Subprime Mortgage Mortgage granted to borrower with a poor credit history or no
credit history. .

Swap An agreement to exchange cash flows in the future according to a prearranged
formula. 5

Swap Rate The fixed rate in an interest rate swap that causes the swap to have a value
of zero.

Swaption An option to enter into an interest rate swap where a specified fixed rate is
exchanged for floating.

Swing Option Energy option in which the rate of consumption must be between a
minimum and maximum level. There is usually a limit on the number of times the
option holder can change the rate at which the energy is consumed. »

Synthetic CDO A CDO created by selling credit default swaps.
Synthetic Option An option created by trading the underlying asset.
Systematic Risk Risk that cannot be diversified away.
Systemic Risk Risk that a default by one financial institution will lead to defaults by

other financial instutions.
Tailing the Hedge A procedure for adjusting the number of futures contracts used for

hedging to reflect daily settlement.
Tail Loss See Conditional Value at Risk.  
Take-and-Pay Option See Swing Option.
TED Spread The difference between 3-month LIBOR and the 3-month T-Bill rate.
Term Structure of Interest Rates The relationship between interest rates and their

maturities.

./'

Terminal Value The value at maturity.
Theta The rate of change of the price of an option or other derivative with the passage

of time.
Time Decay See Theta.
Time Value The value of an option arising from the time left to maturity (equals an

option’s price minus its intrinsic value).

Timing Adjustment Adjustment made to the forward value of a variable to allow for
the timing of a payoff from a derivative.
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Total Return Swap A swap where the return on an asset such as a bond is exchanged
for LIBOR plus a spread. The return on the asset includes income such as coupons
and the change in value of the asset.

Tranche One of several securities that have different risk attributes. Examples are the
tranches of a CDO or CMO.

Transaction Costs The cost of carrying out a trade (commissions plus the difference
between the price obtained and the midpoint of the bid-offer spread).

Treasury Bill A short-term non-coupon-bearing instrument issued by the government
to finance its debt.

Treasury Bond A long-term coupon-bearing instrument issued by the government to
finance it debt.

Treasury Bond Futures A futures contract on Treasury bonds.
Treasury Note See Treasury Bond. (Treasury notes have maturities of less than

10 years.)
Treasury Note Futures A futures contract on Treasury notes.
Tree Representation of the evolution of the value of a market variable for the

purposes of valuing an option or other derivative.
Trinomial Tree A tree where there are three branches emanating from each node. It is

used in the same way as a binomial tree for valuing derivatives.
Triple Witching Hour A term given to the time when stock index futures, stock index

options, and options on stock index futures all expire together.
Underlying Variable A variable on which the priceof an option or other derivative

depends.
Unsystematic Risk See Nonsystematic Risk.
Up-and-In Option An option that comes into existence when the price of the under-

lying asset increases to a prespecified level.
Up-and-Out Option An option that ceases to exist when the price of the underlying

asset increases to a prespecified level.
Uptick An increase in price.
Value at Risk A loss that will not be exceeded at some specified confidence level.
Variance-Covariance Matrix A matrix showing variances of, and covariances be-

tween, a number of different market variables.
Variance-Gamma Model A pure jump model where small jumps occur often and

large jumps occur infrequently.
Variance Rate The square of volatility.
Variance Reduction Procedures Procedures for reducing the error in a Monte Carlo

simulation.
Variance Swap Swap where the realized variance rate during a period is exchanged

for a fixed variance rate. Both are applied to a notional principal.
Variation Margin An extra margin required to bring the balance in a margin account

up to the initial margin when there is a margin call.
Vega The rate of change in the price of an option or other derivative with volatility.
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Vega-Neutral Portfolio A portfolio with a vega of zero.
Vesting Period Period during which an option cannot be exercised.
VIX Index Index of the volatility of the S&P 500.
Volatility A measure of the uncertainty of the return realized on an asset.
Volatility Skew A term used to describe the volatility smile when it is nonsymmetrical.
Volatility Smile The variation of implied volatility with strike price.
Volatility Surface A table showing the variation of implied volatilities with strike price

and time to maturity.
Volatility Swap Swap where the realized volatility during a period is exchanged for a

fixed volatility. Both percentage volatilities are applied to a notional principal.
Volatility Term Structure The variation of implied volatility with time to maturity.
Warrant An option issued by a company or a financial institution. Call warrants are

frequently issued by companies on their own stock.
Waterfall Rules determining how cash flows from the underlying portfolio are dis-

tributed to tranches.
Weather Derivative Derivative where the payoff depends on the weather.
Wiener Process A stochastic process where the change in a variable during each short

period of time of length At has a normal distribution with a mean equal to zero and
a variance equal to At.

Wild Card Play The right to deliver on a futures contract at the closing price for a
period of time after the close of trading.

Writing an Option Selling an option.
Yield A return provided by an instrument.
Yield Curve See Term Structure.
Zero-Coupon Bond A bond that provides no coupons.
Zero-Coupon Interest Rate The interest rate that would be earned on a bond that

provides no coupons.
Zero-Coupon Yield Curve A plot of the zero-coupon interest rate against time to

maturity. /
Zero Curve See Zero-Coupon Yield Curve.
Zero Rate See Zero-Coupon Interest Rate.



DerivaGem Software

»

There are a number of new features of DerivaGem. The software has been simplified by
eliminating the *.dll files. Source code is included with the functions, and functions are
now accessible to Mac and Linux users. CDSs and CDOs can now be valued.

Getting Started  
The most diflicult part of using software is getting started. Here is a step-by-step guide
to valuing an option using DerivaGem Version 2.01.

1. Put the disk that comes with this book into the CD/DVD drive on your
computer. Open the Excel file DG201.xls

2. If you are using Oflice 2007, click on Options at the top of your screen (above the
F column) and then click Enable this content. If you are not fusing Office 2007,
make sure that the security for macros is set at medium or low. (You can do this
by clicking Tools, followed by Macros, followed by Security.)

3. Click on the Equity_FX_Ina'ex_Futures worksheet tab at the bottom of the page.
4. Choose Currency as the Underlying Type and Binomial American as the Option

Type. Click on the Put button. Leave Imply Volatility unchecked.
5. You are now all set to value an American put option on a currency. There are six

inputs: exchange rate, volatility, domestic risk-free rate, foreign riskffree rate rate,
time to expiration (years), exercise price, and time steps. Input these in cells D6,
D7, D8, D9, D19, D20, and D21 as 1.61, 12%, 8%, 9%, 1.0, 1.60, and 4,
respectively.

6. Hit Enter on your keyboard and click on Calculate. You will see the price of the
option in cell D25 as 0.07099 and the Greek letters in cells D26 to D30. The
screen you should have produced is shown on the following page.

7. Click on Display Tree. You will see the binomial tree used to calculate the option.
This is Figure 20.6 in Chapter 20.

Next Steps
You should now have no difliculty valuing other types of option on other underlyings
with this worksheet. To imply a volatility, check the Imply Volatility box and input the
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option price in cell D25. Hit Enter and click on Calculate. The implied volatility is
displayed in cell D7.

Many different charts can be displayed. To display a chart, you must first choose the
variable you require on the vertical axis, the variable you require on the horizontal axis,
and the range of values to be considered on the horizontal axis. Following that, you
should hit Enter on your keyboard and click on Draw Graph.

Other points to note about this worksheet are:

' 1. For European and American equity options, up to 10 dividends on the underlying
stock can be input in a table that pops up. Enter the time of each dividend
(measured in years from today) in the first column and the amount of the dividend
in the second column. Dividends must be entered in chronological order.

2. Up to 500 time steps can be used for the valuation of American options, but only
a maximum of 10 time steps can be displayed.

P 3. Greek letters for all options other than standard calls and puts are calculated by
4 perturbing the inputs, not by using analytic formulas.
4. For an Asian option the Current Average is the average price since inception. For

a new deal (with zero time to inception), the current average is irrelevant.
5. In the case of a lookback option, Minimum to Date is used when a call is valued

and Maximum to Date is used when a put is valued. For a new deal, these should
be set equal to the current price of the underlying asset.

6. Interest rates are continuously compounded.

Bond Options
The general operation of the Bond_Options worksheet is similar to that of the
Equity__FX__Ina'ex_Futures worksheet. The alternative models are Black’s model (see
Section 28.1), the normal model of -the short rate (see equation (30.13)), and the
lognormal model of the short rate (see equation (30.18)). The first model can be applied
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only to European options. The other two can be applied to European or American
options. The coupon is the rate paid per year and the frequency of payments can be
selected as Quarterly, Semi-Annual or Annual. The zero-coupon yield curve is entered
in the table labeled Term Structure. Enter maturities (measured in years) in the first
column and the corresponding continuously compounded rates in the second column.
The maturities must be in chronological order. DerivaGem assumes a piecewise linear
zero curve similar to that in Figure 4.1. The strike price can be quoted (clean) or cash
(dirty) (see Section 28.1). The quoted bond price, which is calculated by the software,
and the strike price, which is input, are per $100 of principal.

Caps and Swaptions
The general operation of the Caps_and Swap_0ptions worksheet is similar to that of
the Equity_FX_Index_Futures worksheet. The worksheet is used to value interest rate
caps/floors and swap options. Black’s model for caps and floors is explained in Section
28.2 and Black’s model for European swap options is explained in Section 28.3. The
normal and lognormal short-rate models are in equations (30.13) and (30.18), respec-
tively. The term structure of interest rates is entered in the same way as for bond
options. The frequency of payments can be selected as Monthly, Quarterly, Semi-
Annual, or Annual. The software calculates payment dates by working backward from
the end of the life of the instrument. The initial accrual period for a cap/floor may be
a nonstandard length between 0.5 and 1.5 times a normal accrual period.

CDSs    
The CDS worksheet is used to calculate hazard rates from CDS spreads and vice versa.
Users must input a term structure of interest rates (continuously compounded) and
either a term structure of CDS spreads or a term structure of hazard rates. The initial
hazard rate applies from time zero to the time specified; the second hazard rate applies
from the time corresponding to the first hazard rate to the time corresponding to the
second hazard rate; and so on. The hazard rates are continuously compounded, so that
a hazard rate h(t) at time t means that the probability of default between times t and
t+ At, conditional on no earlier default, is h(t) At. The calculations are carried out
assuming that default can occur only at points midway between payment dates. This
corresponds to the calculations for the example in Section 23.2 (the hazard rate in that
example is 2% with annual compounding or 2.02% with continuous compounding).

CDOs I
The CDO worksheet calculates quotes for the tranches of CDOs from tranche correla-
tions input by the user. The attachment points and detachment points for tranches are
input by the user. The quotes can be in basis points or involve an upfront payment. In
the latter case, the spread in basis points is fixed and the upfront payment, as a percent
of the tranche principal, is either input or implied. (For example, the fixed spread for
the equity tranche of iTraxx Europe or CDX NA IG is 500 basis points.) The number
of integration points (see equation (24.12)) defines the accuracy of calculations and can
be left as 10 for most purposes (the maximum is 30). The software displays the expected
loss as a percent of the tranche principal (ExpLoss) and the present value of expected
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payments (PVPmts) at the rate of 10,000 basis points per year. The spread and upfront
payment are

ExpLoss * 10,000/PVPmts and ExpLoss — (Spread * PVPmts/10,000)

respectively. The worksheet can be used to imply either tranche (compound) correla-
tions or base correlations from quotes input by the user. For base correlations to be
calculated, it is necessary for the first attachment point to be 0% and the detachment
point for one tranche to be the attachment point for the next tranche.

How Greek Letters Are Defined
In the Equity__FX_Ina’ex_Futures worksheet, the Greek letters are defined as follows:

Delta: Change in option price per dollar increase in underlying asset
Gamma: Change in delta per dollar increase in underlying asset

Vega: Change in option price per 1% increase in volatility (e.g., volatility increases
from 20% to 21%)

Rho: Change in option price per 1% increase in interest rate (e.g., interest
increases from 5% to 6%)

Theta: Change in option price per calendar day passing.

In the Bond_Options and Caps_and_Swap_0ptions worksheets, the Greek letters are
defined as follows:

DV0l: Change in option price per 1-basis-point upward parallel shift in the zero
curve 2

Gamma01: Change in DV01 per 1-basis-point upward parallel shift in the zero curve,
multiplied by 100

Vega: Change in option price when volatility parameter increases by 1% (e.g.,
volatility increases from 20% to 21%).

The Applications, Builder
-/II

Once you are familiar with the Options calculator (DG201.xls), you may want to start
using the Application Builder. This consists of most of the functions underlying the
Options Calculator with source code. It enables you to compile tables of option values,
create your own charts, or develop applications. Excel users should load DG201
functions.xls and Open Office users should load Open Office DG201 functions.ods.
Below are some sample applications that have been developed. They are in DG201
applications.xls and Open Office DG201 applications.ods. If any reader wishes to
distribute other applications to colleagues, I would be pleased to do this (with full
acknowledgements) via my website and the next release of the software.

A. Binomial Convergence. This investigates the convergence of the binomial model
in Chapters 12 and 20.

B. Greek Letters. This provides charts showing the Greek letters in Chapter 18.
C. Delta Hedge. This investigates the performance of delta hedging as in Tables 18.2

and 18.3.
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D. Delta and Gamma Hedge. This investigates the performance of delta plus gamma
hedging for a position in a binary option.

E. Value and Risk. This calculates Value at Risk for a portfolio using three different
approaches.

F. Barrier Replication. This carries out calculations for static options replication (see
3 Section 25.16).

G. Trinomial Convergence. This investigates the convergence of a trinomial tree
model.

Note that E, F, and G are not included in the Open Oflice version of the software.

./'



Major Exchanges Trading
Futures and Options

r. . 1 Q: M  '. Q 1 1 1 . u 1——|-Al ii iii 1 ii: 1 1 — pi, 1 1 mini

Australian Securities Exchange (ASX) www.asx.com.au
BM&FBOVESPA (BMF) www.bmfbovcspa.com.br
Bombay Stock Exchange (BSE) www.bseindia.com
Boston Options Exchange (BOX) www.bostonoptions.com
Bursa Malaysia (BM) www.bursamalaysia.com
Chicago Board Options Exchange (CBOE) www.cboc.com
China Financial Futures Exchange (CFFEX) www.cffex.com.cn
CME Group www.cmegroup.com
Dalian Commodity Exchange (DCE) www.dce.com.cn
Eurex www.eurexchange.com
Hong Kong Futures Exchange (HKFE) www.hkex.com.hk
IntercontinentalExchange (ICE) www.theice.com
International Securities Exchange (ISE) www.iseoptions.com
Kansas City Board of Trade (KCBT) www.kcbt.com
London Metal Exchange (LME) www.lme.co.uk
MEFF Renta Fija and Variable, Spain www.meff.es
Mexican Derivatives Exchange (MEXDER) www.mexder.com
Minneapolis Grain Exchange (MGE) www.mgex.com
Montreal Exchange (ME) www.m-x.ca
NASDAQ OMX www.nasdaqomx.com
National Stock Exchange, Mumbai (NSE) www.nseindia.com
NYSE Euronext www.nyse.com
Osaka Securities Exchange (OSE) www.ose.or.jp
Shanghai Futures Exchange (SHFE) www.shfe.com.cn
Singapore Exchange (SGX) www.sgx.com
Tokyo Grain Exchange (TGE) www.tge.or.jp
Tokyo Financial Exchange (TFX)  www.tfx.co.jp
Zhengzhou Commodity Exchange (ZCE) www.zce.cn
I —" _ 1 i i‘ '. —'; i ._ _— — I l I .— Z i I I7 7 I I — i I" j |' i I I_ l

There has been a great deal of consolidation of derivatives exchanges, nationally and inter-
nationally, in the last few years. The Chicago Board of Trade and the Chicago Mercantile
Exchnage have merged to form the CME Group, which also includes the New York Mercantile
Exchange (NYMEX). Euronext and the NYSE have merged to form NYSE Euronext, which
now owns the American Stock Exchange (AMEX), the Pacific Exchange (PXS), the London
International Financial Futures Exchange (LIFFE), and two French exchanges. The Australian
Stock Exchange and the Sydney Futures Exchange (SFE) have merged to form the Australian
Securities Exchange (ASX). The IntercontinentalExchange (ICE) has acquired the New York
Board of Trade (NYBOT), the International Petroleum Exchange (IPE), and the Winnipeg
Commodity Exchange (WCE). Eurex, which is jointly operated by Deutsche Borse AG and SIX
Swiss Exchange, has acquired the International Securities Exchange (ISE). No doubt the
consolidation has been largely driven by economies of scale that lead to lower trading costs.
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Table for N(x) When x é 0
This table shows values of N(x) for x < 0. The table should be used with interpolation. For example,

N(—0.l234) = N(—0.l2) - 0.34[N(—O.12)— 1v(-0.13)]
: 0.4522 — 0.34 >< (0.4522 — 0.4483)
= 0.4509
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Table for N(x) W hen x Z 0
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first-to-default basket credit default swap,
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kth-to-default basket credit default swap,

558
role of correlation, 561-562
valuation, 566

Basket option, 587, 798
Bear spread, 240-241, 798
Bearish calendar spread, 245
Bermudan option, 575, 798
Bermudan swap option, 727-728
Beta, 62-65, 346-347, 798

changing, 64-65
BGM model, see Brace-Gatarek-Musiela

model.
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Bid-ask spread, 798
Bid-offer spread, 153, 203, 203, 798
Bid price, 798
Binary credit default swap, 554, 798
Binary option, 581-582, 798
Binomial correlation measure, 537
Binomial model, 253-273, 427-428, 799
Binomial tree, 253-273, 427-446, 799
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442-445

American options, 263-264, 430-433
control variate technique, 440-442
defined, 253-254
delta and, 264-265
deriving the Black-Scholes-Merton

formula from, 276-279
dividend-paying stocks, 437-440
employee stock options, 338
European options examples, 253-257
futures option, 367-369
matching volatility, 265-267
no-arbitrage argument, 253-257
non-dividend-paying stock, 427-434
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269-272, 435-437
risk-neutral valuation and, 257-259
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269-270, 437
time-dependent interest rates and, 445-446
two-step, 259-264
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Black’s approximation, 799
American call option, 322-323

Black-Derman-Toy model, 693
Black’s model, 370-372, 641, 663, 799

bond options and, 649-652
caps and floors and, 654-658
forward risk-neutral valuation and, 641
generalization of, 663
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641
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foreign currency options, 411-413
jump in asset price anticipated, 419-420

Black-Scholes-Merton model, 299-324, 799
and Monte Carlo simulation, 448-449
cumulative normal distribution function, 315
delta and, 381-382
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differential equation, 307-311
dividend, 320-323 /»
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stock, 313-316
expected return, 302-303
implied volatility, 318-320. See also

Volatility smile.
known dividend yield, 350-352
pricing formulas, 313
risk-neutral valuation and, 311-313, 314
volatility, 303-307, 409-421

BM&F Bovespa, 21
Board order, 37
Bond option, 648-652, 799

embedded, 648-649
European, 649-652
forward risk-neutral valuation and Black’s

model, 641
on coupon-bearing bonds, 695
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Cox, Ingersoll, Ross, 687
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Vasicek, 687

Bond, pricing, 80-82
Bond valuation

Cox, Ross, Rubinstein model, 685
general short-rate model, 683
Vasicek model, 684-685
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Bond yield volatilities, 652
Bootstrap method, 82-84, 799
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350-351, 366-367
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Brace-Gatarek-Musiela model, 718-728
Brazil, 791, 794
Break forward, 575, 799
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Bull spread, 238-239, 799
Bullish calendar spread, 245
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Business valuation, 769
Butterfly spread, 242-243, 249, 424-425, 799
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Calendar spread, 244-245, 799
Calibrating instruments, 707
Calibration, 707-709, 726-727, 799
Call option, 7, 194-195, 799
Callable bond, 648-649, 799
Cancelable compounding swaps, 743
Cancelable forward, 575
Cancelable swap, 743, 799
Cap, interest rate, 653-656, 799. See also

Interest rate caps and floors.
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ratchet cap, 723, 812
sticky cap, 723, 813

Capital asset pricing model, 62-65, 122, 635,
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Cash-or-nothing put option, 582, 800
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Cash settlement, 36-37, 800
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CDD, see Cooling degree days.
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CDS, see Credit default swap.
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Changing the measure/numeraire, 267,
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Cheapest-to-deliver bond, 800

credit default swap, 551
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Chicago Board Options Exchange (CBOE), 2,
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Chooser option, 578-579, 800
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price.
Clearing house, 800

futures, 29-30
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OTC markets, 32-33
swaps, 172, 550

Clearing margin, 30, 800
Cliquet options, 577, 800
CME Group, 2, 7, 22
CMO, see Collateralized mortgage obligation.
Collar, interest rate, 654, 800
Collateralization, 31, 535-536, 800
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relation to market price of risk, 632,

768-769
cash, 560
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natural gas, 750-751 Correlated stochastic processes, 290-291
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Compound option, 577-578, 801 Covered position, 378
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Conversion ratio, 608 default correlation and, 536-540
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Cross-currency swap, 174, 737
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Crude oil derivatives, 750
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Cumulative normal distribution function, 315
Currency forward and futures, 114-117
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valuation, Black-Scholes-Merton, 355-356
volatility smile, 41 1-413
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comparative-advantage argument, 166- 168
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valuation of, 168-171

Curvature, 389 A
CVA, see Credit value adjustment.
Cylinder option, 575

Daiwa Bank, 779
Daily settlement, 27
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reduced form models, 537-538
structural models, 537-538

Default intensity, 522, 803  
Default probabilities, historical, 522-523
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Default risk, 521-543
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Deferred payment option, 575, 803
Deferred swap, 659, 803
Delivery, 24, 25, 36-37, 121
Delivery price, 803
Delta, 264-265, 380-387, 398, 417-418, 803
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European options, 382-383
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forward contract, 398-399
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Developing countries, 791-795
Diagonal spread, 245-246, 803
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on futures, 370
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Diffusion model, 600 V
Diffusion process, 803 /
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price.
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Discount broker, 204
Discount instrument, 803
Discount rate, Treasury bill, 131
Discrete-time stochastic process, 280, 287-289
Discrete variable, 280
Discretionary order, 38
Diversification, 480-481, 783, 803
Dividend, 320-323, 437-440, 803

American call option valuation, using
Black-Scholes-Merton model, 321 -323

binomial model for stocks paying
dividends, 437-440
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Dollar duration, 92, 803
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options, 345
Down-and-in call, 579
Down-and-in option, 803
Down-and-in put, 580
Down-and-out call, 579
Down-and-out option, 804
Down-and-out put, 580
Downgrade trigger, 536, 537, 804
Drift rate, 284, 804
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bond portfolio, 92
modified, 91
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Energy derivatives, 750-752
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for an investment asset that provides no
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Forward rate agreement (FRA), 86-89,
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Front office, 784
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HDD, see Heating degree days.
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Implied tree model, 607, 807
Implied volatility, 318-320, 807
Implied volatility function (IVF) model,
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rate.
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