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Preface

There are many different emphases and approaches to presenting the basics of
mathematical finance. My objective in this book is to do two things: the first is
to impart to the reader a conceptual understanding of the basic ideas in mathemat-
ical finance. The second is to show the reader how these ideas are translated into
practicalities.

There is an aphorism that goes "Don't think of the problem, think of the solu-
tion." I believe that this aphorism is often taken too much to heart when presenting
mathematical material: the solution is often presented without stating the problem.
We therefore spend a couple of chapters going over the basic ideas of finance. In
particular, we first introduce the concept of risk in order to give the reader an un-
derstanding of why risk is important before proving the surprising and fundamental
result that ignoring risk is the key to pricing many products, which comes later in
the book.

There are at least three approaches to mathematical finance, trees, PDEs and
martingales. Rather than plump for one of these, we try to examine each prob-
lem from the viewpoint of each one and attempt to use the multiple approaches to
emphasize the underlying ideas.

Mathematical finance is a burgeoning field and no book can cover everything,
nor should it try to do so. My guiding principle has been to include what I think
a good quant ought to know. Inevitably many topics are not covered in depth or at
all. Where possible, I have tried to indicate other textbooks which cover the topics
and where not possible the original papers. Let me stress at this point, that this is
a text book not a research letter so the absence of a reference does not mean that
I believe a result is new. However, on the more cutting-edge topics I have tried to
indicate the original papers. If any reader is offended by the lack of a reference my
apologies and please let me know for the second edition. Three books which are
very strong on references are [42], [79] and [96].

xiv
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After introducing risk, we move on in Chapter 2 to the concept of arbitrage
which is the fundamental idea of modern derivatives pricing theory. The principle
of no arbitrage is then used to develop model-free bounds on option prices, and to
show that there exist certain relationships between option prices.

To pass beyond bounds to definite prices requires the introduction of a model of
how asset prices change. Although a fundamental assumption is the random char-
acter of asset price movements, one must model the nature of this randomness in
order to develop pricing models. In Chapter 3, we introduce the simplest of models:
the binomial tree. The binomial tree is an essentially discrete model which posits
that in each time period the asset moves up or down by a fixed amount. We ana-
lyze pricing on binomial trees from various points of view including replication,
risk-neutral pricing and hedging. We examine the surprising result that the proba-
bilities underlying the asset's movements have little effect on the price of options.
We then see how this discrete model can be used as an approximation to a continu-
ous model, and we deduce the Black-Scholes formula for the price of a call option
via a limiting argument.

Having developed the Black-Scholes formula, we then discuss in Chapter 4 its
flaws and how these flaws affect its use in practice. This chapter is very much a
foretaste for chapters near the end of the book where we study alternative models
of price evolution which try to compensate for the shortcomings of the Black-
Scholes model.

In Chapter 5, we step up a mathematical gear and introduce the Ito calculus. With
this calculus we introduce the geometric Brownian motion model of stock price
evolution and deduce the Black-Scholes equation. We then show how the Black-
Scholes equation can be reduced to the heat equation. This yields a derivation of
the Black-Scholes formula.

In Chapter 6, we step up another mathematical gear and this is the most math-
ematically demanding chapter. We introduce the concept of a martingale in both
continuous and discrete time, and use martingales to examine the concept of risk-
neutral pricing. We commence by showing that option prices determine synthetic
probabilities in the context of a single time horizon model. We then move on to
study discrete pricing in martingale terms. Having motivated the definitions us-
ing the discrete case, we move on to the continuous case, and show how martin-
gales can be used to develop arbitrage-free prices in the continuous framework.
We show that the Black-Scholes PDE can be found as a consequence of the mar-
tingale method. We then move on to studying changes of numeraire and market
completeness.

After the rigours of Chapter 6, we shift back to the practical in Chapter 7. In this
chapter, we examine how the price of European option can be developed using the
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various possible pricing approaches. In particular, we discuss analytic formulas,
trees, Monte Carlo, numeric integration, PDEs and replication.

In Chapter 8, we study the pricing of the simplest of exotic options, the continu-
ous barrier option, and develop analytic formulas for its price in the Black-Scholes
world using both PDE and martingale techniques. As part of the study, we examine
the concept of change of measure and the reflection principle.

In Chapter 9, we commence the study of non-vanilla options by analyzing the
pricing of path-dependent exotic options depending on the value of the underlying
at a finite number of times. We concentrate on Asian options and discrete barrier
options for concreteness. We discuss pricing using Monte Carlo and PDE methods.
We also look at the computation of Greeks by Monte Carlo.

In Chapter 10, we study the use of static replication as a tool for pricing and
hedging. Under a variety of assumptions, we examine the replication of continuous
barrier options, discrete barrier options, and general path-dependent exotic options.

In Chapter 11, we extend the theory to cope with several sources of uncertainty
and develop pricing models which can cope with derivatives whose price depends
on the price behaviour of several assets. As applications of the theory, we study the
pricing of Margrabe options and quanto options.

We look at how to introduce early optionality in Chapter 12. We discuss the use
of tree and PDE methods before looking at the difficulties involved in pricing using
Monte Carlo. We develop methods for both lower and upper bounds using Monte
Carlo.

We shift our emphasis in Chapter 13 to look at the pricing of simple interest rate
derivatives. We introduce forward-rate agreements and swaps, and their optional
analogues the caplet and the swaption. We develop pricing formulas under simple
assumptions.

In Chapter 14, we study the pricing of exotic interest rate derivatives using the
LIBOR market model. Our study includes both calibration and implementation.
This chapter draws on a lot of what has gone before, and we finish up with an
examination of the pricing of Bermudan swaptions by Monte Carlo.

We commence our study of alternative pricing models in Chapter 15. Here we
analyze the Merton jump-diffusion model and develop a pricing formula. We also
discuss the additional issues raised by pricing in a model that does not allow perfect
hedging.

We continue our study of alternative models in Chapter 16 where we introduce
stochastic volatility. We develop pricing approaches using PDE and Monte Carlo
techniques for vanilla and exotic options.

In Chapter 17, we introduce the Variance Gamma model and use it to study the
pricing of vanilla and exotic options.

To round off the main part of the book, we finish with a chapter on the
philosophical and practical issues inherent in using sophisticated models to price
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exotic options. We look at the relationship between models and smile dynamics,
and compare these dynamics to those found in the market. We also see that for
certain products there are features which are crucial to capture.

Preface to the Second Edition

It is now four years since the first edition appeared, and almost six since the main
draft was finished. Perhaps, the biggest change during those years is the plethora
of books on financial mathematics that have been published. When I commenced
writing Concepts there was only a handful, and it was clear that there was room
for a fresh approach which motivated me to write the book. Now every reasonable
approach has been tackled at least once, and often several times. Yet Concepts has
continued to be successful, perhaps because of its unique blend of mathematics and
practicality.

Whilst the discipline of financial mathematics has advanced greatly in six years,
the basics that an incomer to the field needs to know have not changed hugely.
The main difference is that banks have much higher expectations of entry-level
candidates. In 1999, demonstration of strong mathematics skills and the ability to
derive the Black-Scholes equation was enough to get a job; now many candidates
have Masters in Financial Engineering, sometimes as well as PhDs in other fields.
Yet the material covered here plus programming skills is still sufficient to land that
first job.

For that reason, in this edition, there has been a conscious decision not to in-
clude new topics. Instead, the emphasis has been placed on clarifying old topics,
introducing extra references to new material and books, and on the exercises. In
particular, following feedback from my students at the University of Melbourne,
over fifty new exercises have been added and detailed solutions have been included
for these. In addition, full solutions have been included for most exercises in the
early chapters where previously only hints had been given.

New topics have instead been relegated to a sequel More Mathematical Finance
which will, I hope, appear in the not too distant future. It will adopt a similar style
but go into more details on advanced topics.

The web site for this book continues to be
www.markjoshi.com/concepts

There is now a bulletin board there: I encourage you to visit this and ask questions
about mathematical finance as explained in this and other books.

Mark Joshi
Melbourne, January 2008
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1

Risk

1.1 What is risk?

It is arguable that risk is the key concept in modern finance. Every transaction
can be viewed as the buying or selling of risk. The success of an organization is
determined by how much return it can achieve for a given level of risk. Before we
can justify these statements, we need to achieve some understanding of what risk is.

In a typical pure mathematical ploy, let us start by trying to understand the ab-
sence of risk. A riskless asset is an asset which has a precisely determined future
value. Do such assets exist? The fundamental example is that of a government
bond. We can buy a government bond for say a £100 today and know that we
will receive say £5 a year, (called a coupon payment), until a pre-determined date,
when we receive our £100 back. Is this asset truly riskless? There is of course a
possibility that the government will renege on its promise to pay. (This is known
as defaulting.) But if we pick the right government this possibility is sufficiently
remote that we can for practical purposes neglect it. If this seems unreasonable,
consider that if the British, American or German government reached such straits,
the world's financial system would be in such a mess that there would be precious
few banks left to employ financial mathematicians. In fact, the existence of such
riskless assets is so fundamental both to financial mathematics and to the modern
finance industry, that the fiscal policy of the American and British governments
of running budget surpluses, and therefore reducing the number of bonds they
have issued, caused great consternation. The reader who is tempted to chuckle at
the predicament of the finance industry should consider that financial institutions
fund pensions by buying long-maturity government bonds and using the interest
coupons to pay the pension. The shortage of long-maturity bonds therefore makes
pensions harder to fund and ultimately results in smaller pensions.

We can now define a risky asset to be an asset which is not riskless. That is it is an
asset of uncertain future value; risk can be regarded as a synonym for uncertainty.
The most basic example of such an asset is a share of a public limited company and

1



2 Risk

we shall return to this example again and again. However, it is important to realize
that almost anything except a riskless government bond is such an asset. For exam-
ple, we could hold foreign currency and be exposed to the risk that the exchange
rate will change against us, or we could buy a flat in London and be exposed to the
possibility that there is a property crash, as occurred in the early 1990s.

The sharp reader will have noted that the definition in the paragraph is not quite
right, in that an investor would not actually care about the riskiness of an asset if
the worst possible future value of the asset was greater than today's value.

However, we have to be slightly careful about what we mean by value here.
Unless there is no inflation, £1 a year from now will buy less than £1 today. This
means that £1 a year from now is effectively worth less than £1 today. In addition,
even in a non-inflationary world, most people prefer jam today to jam tomorrow
and so would not be happy to receive the same amount of money back in a year
with no compensation. A better view of riskiness is that the asset can return less
than the same amount invested in a riskless government bond for the same period.
A good example of such an asset is the premium bond. In the United Kingdom, one
can buy a government bond, called a premium bond, redeemable at any time which
pays no coupon but instead the holder gets a free entry in a prize draw paying up to
a million pounds a month. This seems too good to be true at first, but the issue is,
of course, that the bond is not very different from investing some money and using
the interest to buy lottery tickets. That said, the expected winnings for the amount
of interest foregone is much better for premium bonds than for lottery tickets. The
investor is effectively buying risk.

1.2 Market efficiency

Before we can understand why risk is so important we first have to understand the
concept of market efficiency, which underlies most of financial mathematics and
modern economics. This concept roughly states that in a free market, all available
information about an asset is already included in its price. Therefore there is no
such thing as a good buy - the only value an asset has is its market value and it is
meaningless to attempt to think otherwise.

Is this hypothesis correct? To see that it cannot be wholly so, consider the apoc-
ryphal story of the two economists who see a ten dollar bill lying in the gutter. The
first one goes to pick it up but the second one tells him not to be silly as if it were
real, someone else would have already picked it up. However, the true moral of this
story is that market efficiency only works if someone does not believe in it - the
first person who does not believe in market efficiency picks up the ten dollar bill
and thereafter it is no longer lying in the gutter. Warren Buffett is the most famous
example of a non-believer who has very effectively made a lot of money through
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his disbelief. He has largely done so by buying shares in companies he believes
are undervalued by the market. Indeed, until Bill Gates overtook him he was the
richest man in the world, and he made his money by beating the market.

So although market efficiency is not wholly correct, there are enough people
attempting to be the next Buffett, for it to be sufficiently correct that we can work
under the assumption that it is true. What does this mean for us? Well, the first
thing it means is that it is pointless to for us to try to predict the future price of a
share by looking at graphs of its past prices. All this information is already encoded
in the share price. This is sometimes called the Markov property, and is also called
the weak efficiency of markets as it's a consequence of the strong form mentioned
above.

It is interesting to note that the modem white-collar crime of insider trading is
really based on the principle of market efficiency. Insider trading is trading based
on knowledge which is not publicly available and therefore not included in the
share price. For example an employee of a company might know that the company
was about to announce unexpectedly large losses or profits which would move the
share price in an obvious direction, and take advantage in advance. The perception
of this as a crime rather than a natural action is fairly recent, and is based on the
ubiquity of the concept of market efficiency.

Given that all assets are correctly priced by the market, how can we distinguish
one from another? Part of the information the market has about an asset is its riski-
ness. Thus the riskiness is already included in the price, and since it will reduce the
price, the value of the asset without taking into account its riskiness must be higher
than that of a less risky asset. This means that in a year from now we can expect
the risky asset to be worth more than the less risky one. So increased riskiness
means greater returns, but only on average - it also means a greater chance of
losing money. From this point of view, an asset's price reflects the value it is likely
to have in the future reduced by a factor depending upon its riskiness.

To illustrate these ideas, let us consider a simple game. Suppose we toss a coin,
if it comes up heads I give you £3, if it comes up tails you give me £1. Unless beset
by moral qualms, you would consider this game a very good deal and play it - your
expected winnings would be

1 1

2 2

and your maximum losses would only be 1. Suppose we play a slightly different
game, I pay you £13 on heads, you pay me £1 ]. on tails. Your expected winnings are
still £l but are you still so keen to play? If not why not? If you are still keen, let's
take the payment on heads to be £103, and on tails to be £1.01. At some point, when
the stakes become high enough you will stop regarding the game as a good deal.
The point where you stop depends upon personal risk preferences; the stopping
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point is where the expected gains stop outweighing your aversion to the possibility
of losing money.

Now suppose the game is changed a little again. The sum you lose is paid to
me today and we toss a coin a year from now. If the coin comes up heads, I return
your money to you and pay you my losses, otherwise I keep your money. What
has changed? During the year in between, I have put the money on deposit with
a bank and earned some interest. If you were not playing the game you could
have done so also. The amount of return you would want from the risky game
would increase to express the interest foregone. And since you could have made
money from the interest payment without taking any risks, you will demand that the
expected winnings be greater than the amount of interest you could have earned.

The moral is that there is no such thing as a guaranteed high return. The reader
would be well-advised to remember this the next time he sees a guaranteed high
return in a newspaper or Internet advertisement.

Let's return to the concept of weak market efficiency. This says that all the past
movements of an asset's market price is already expressed by today's price. At this
point, the prospects of a financial mathematician could be regarded as being pretty
bleak. Why? This tells us that trying to predict the future price from past data is a
waste of time - there is no periodicity nor trends to be read. The only mathematical
information is today's price which tells us very little. In that case, why is financial
mathematics a burgeoning field? The job of a financial mathematician is not to
predict prices but instead to relate the movements of price in one asset to that of
another. These price movements are viewed as being driven by information arriving
in the market and since that information is by definition unknown until it arrives,
we can view it as being random.

The key point in mathematical finance is to use market instruments which are
affected by the same information in such a way as to cancel out randomness. This
process is called hedging. The objective of mathematical finance is to understand
how to do this and to understand the consequences.

1.3 The most important assets

We have been discussing an asset rather vaguely so let's look at the basic assets in
finance from the point of view of risk.

1.3.1 Bonds

The simplest asset, already mentioned, is a government bond issued by a reliable
government. Typically, the government issues a bond of, say, thirty years in length,
which pays every year a sum called the coupon and gives the investor his original
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investment back at the end of the thirty years. The original investment is called the
principal. The day the investor gets the principal back is called the date of maturity,
when the bond is said to mature. In the meantime, each year the investor receives
interest payments to compensate him for the fact the government has his money.
From a mathematical point of view however the coupons just confuse things, so
mathematicians typically study zero-coupon bonds although they are in fact rather
rare. A zero-coupon bond is a bond which pays no interest but instead just returns
the investor his investment on the date of maturity. Why would anyone buy such a
bond? Suppose the principal is one dollar. The point is that the investor does not pay
a dollar for the bond, but instead pays a smaller amount which if it was invested in
interest-paying bonds would give a dollar in total (including the compound interest)
at maturity.

The interesting thing about the riskless bond is that there is some risk in it. Not
in the possibility of default, but instead in the possibility that interest rates might
change in the meantime. At the time of writing, interest rates are quite low by his-
torical standards so an investor might be wary of buying a bond with a long time to
maturity: he has locked in today's interest rate and if rates go up he loses out. Of
course, if rates go down he gains. There are well-established markets in the major
government bonds so our investor need not hold his bond until maturity instead he
can just sell it in the market. But what price will he get? If interest rates have gone
up, the market price will be less than he paid for it as other investors will want the
fixed sum on maturity to reflect how much money they could have got it by invest-
ing the money in a newly issued riskless bond. Thus as well as the interest rate re-
flected by the coupon payment, the price of a bond reflects today's interest rates and
indeed reflects today's expectations of future interest rates. The effective interest
rate implied by the market price is called the yield of the bond and this can be very
different from the coupon. Since the yield of a bond reflects expectations of future
rates, bonds of different maturities can have different yields implied by the market.

As the date of maturity of a bond approaches, there is less and less uncertainty
left. The principal of the bond is known and will be paid on the date of maturity, and
the interest rate is unlikely to move much in a short period of time so there is less
and less uncertainty as the maturity date gets closer and closer. A bond of longer
maturity will be exposed to more uncertainty, that is risk, than one of short maturity.
We can therefore expect long-dated bonds to have higher yields to compensate
investors for this additional risk. This is generally, but not always, true. Indeed
at the time of writing, gilts (gilts is the financial jargon term for UK government
bonds) display a hump: the yields first rise and then decrease. See Figure 1.1. Recall
that the yield also reflects expectations of future rates so one explanation is that the
market expects UK interest rates to rise in the short term, but to decrease in the
long term. An alternative and probably more correct explanation is that there is
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Fig. 1.1. The yields on UK government bonds (gilts) in October 2001 as a
function of years.

currently a shortage of long-dated bonds which drives their prices up and hence
their yields down.

1.3.2 Stocks and shares

Probably the most ubiquitous sort of traded asset is the share or stock in a company,
(share and stock are equivalent terms.) While the reader is almost certainly familiar
to some extent with shares, it is worth examining precisely what that term means.
The holder of a share of a company owns a fraction of that company. Companies
traded on the stock exchange typically have plc after their name reflecting the fact
that they are public limited companies. Public just means that anyone can buy
shares in them. Limited means that they are of limited liability; the owners of such
a company have no liability for its debts if it goes bankrupt. The importance of
this fact should not be underestimated. In the author's opinion the existence of lim-
ited liability companies is the foundation of modem capitalism. Why? Because it
reduces the riskiness of investing in a company by capping the total losses to be
the amount invested. If the company is sued for a billion dollars and goes bankrupt,
you the shareholder are not liable. If you could be liable would you still buy
shares?

To emphasize this point, consider the `Names' at Lloyds. The Lloyds insurance
market worked in the following way. A person would agree to set aside at least
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£100, 000 against claims by people insured in the Lloyds' market, in return for
which they would receive a lucrative stream of insurance premiums. The £100, 000
could also be happily invested in other assets allowing the Name to do particularly
well. The Name got a very high rate of return but high returns equal high risk.
Indeed, the particular feature of the Lloyds market which made investing very dif-
ferent from buying shares in an insurance company was that a Name had unlimited
liability. Not only could he lose the £100, 000, he could lose everything includ-
ing his house and his shirt. And in a particularly bad year that is precisely what
happened. Perhaps the most interesting aspect of this story is how surprised many
Names were; somehow they had failed to appreciate the connection between risk
and return.

We have seen that the holder of a share owns part of a company and the sole
risk he bears is that the value may drop to zero. The share may bring the investor
money in two ways. The first is simply that the value of the share may go up,
the other is that the company will generally pay dividends that is payments, often
annual, to shareholders dispensing the profits of the company. As one might expect,
the total return to shareholders on average is much greater than the rate received on
depositing the money in a riskless bond or a bank account to compensate for the
danger that the company will go under or just not do very well.

1.3.3 The corporate bond

Another asset commonly traded in the markets 'is the corporate bond. This lies
somewhere between a share and a government bond. A company wishing a loan
issues bonds in the market paying some coupon in interest. The coupon is gener-
ally higher than that of a riskless bond. The investor's risk is that the company may
default on its payments as it has gone bankrupt in the meantime. However, bond-
holders have more claim on the company's assets than shareholders so the riskiness
is reduced. The main disadvantage of a bond is that if the company share price
soars the bondholder does not gain at all. Thus both the returns and the riskiness
of bonds are lower than those of shares. In order to entice investors to buy bonds,
companies sometimes issue convertible bonds, that is, bonds that can be converted
into shares if the investor so chooses. This allows the investor the upsides of both
bonds and shares - of course, typically the coupon or yield on such a bond would
generally be less than that of an ordinary bond.

1.3.4 Positivity

All the assets discussed so far have one similarity, they all carry rights without
liabilities. This has an important consequence for the mathematician: their values
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are always positive. In an extreme case, the value could become zero on bankruptcy
but the important point is that they will never be negative. There are plenty of
market instruments that do not share this property, and we shall encounter many of
them in this book.

1.3.5 The risk paradigm outside the markets

It is important to realize that the concept of risk is inherent in all investment de-
cisions not just those of what to purchase in the financial markets. For example,
suppose a company wishes to invest in a new plant to produce a new product. It
will estimate the amount of return it will receive on the invested capital. What level
of return should it demand? Well to answer that question it needs to assess the risk-
iness of the project and it should demand the same return as a market instrument of
comparable riskiness. Otherwise, it would do better just to buy the relevant market
instrument and forget about the plant.

1.4 Risk diversification and hedging

We have treated all risks as being equal but some are better than others. In partic-
ular, some risks can be effectively eliminated by judicious trading. There are two
main ways to proceed: hedging and diversification.

Consider a contract that pays £100 if a coin flip is heads and zero otherwise.
From what we have said so far, we would expect this to trade for less than £50
depending on the risk aversion of investors. We can also consider the complemen-
tary contract that pays £100 if the same coin flip is tails. We also expect this to be
worth less than £50. However, if both these contracts are trading in the market, we
can buy both and be guaranteed £100 whatever happens. The risk has disappeared
and since we do not expect to be able to make riskless profits, we conclude that
the original contracts were worth £50 after all. We have a paradox, after arguing at
great length that such a contract would have to be worth less than £50, we conclude
that we were wrong and that it is worth £50. What has changed? The addition of
a second contract has removed the risk. This process is called hedging. As long as
only one of the contracts is tradable, its value is less than £50 but as soon as both
are, the risk stops being unhedgeable and the risk premium disappears.

A related concept is that of diversification. Suppose we can bet a very small
amount on a very large number of independent coin tosses. We therefore divide
our portfolio into N bets each paying 100/N on heads. Our average pay-out will
still be £50 but as N gets larger the variance gets smaller and smaller. The risk has
therefore been effectively eliminated and we cannot expect the individual contracts
to trade for less than 50 pounds.
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The lesson of this example is that the market will only compensate investors for
taking risks that are not diversifiable. Undiversifiable risk is known as systemic risk.
The job of an investor is therefore to achieve the maximum amount of systemic risk
for a given level of riskiness by diversifying his portfolio.

One paradoxical side-effect of investors' need to diversify is the increasing de-
mand for products that express purity of risk. An investor who feels he is over-
exposed to one sort of risk will want to buy other sorts to offset it. Derivatives are
one way to manipulate an investor's risk profile.

1.5 The use of options

Given that risk is inherent to all financial decision making, a bank or company will
want to manage its risk carefully. In particular, it may want to buy certain sorts of
financial instruments to increase or decrease a certain type of risk. This is where
options and related products enter the picture. These products can be used to reduce
risk or to increase it. Whether they are a good or a bad thing depends purely on the
way they are used.

To give an example before we start making definitions, consider an American
company which exports to Japan. The Japanese importer pays the company in yen
but the company prefers dollars. The company estimates that it will receive be-
tween one and two billion yen next year, which it will need to exchange for dol-
lars. The variability of the exchange rate between dollar and yen means that the
company is exposed to some extra risk which it would prefer to avoid, One solu-
tion is to enter a forward contract. This is a contract to exchange a fixed amount
of yen for dollars at a fixed future date at today's exchange rate (modified slightly
to take account of interest rates). The company's problem is that it does not know
precisely how many yen it will wish to sell so it cannot remove (or hedge) all the
risk. One solution would be to enter a forward contract for a billion yen, since it
is sure it will need to sell at least that much and treat the rest separately. To deal
with the rest of the yen which is a variable amount between zero and one billion,
the company could buy an option.

What is an option? An option is typically an instrument which gives the holder
the right to buy or sell a quantity of some fixed asset during a specified period of
time at a price fixed today. The important point is that unlike a forward contract
there is no obligation to buy or sell. The option carries rights but not obligations,
and therefore will have always have a positive value before the time of expiry.

In this case, the company could therefore buy an option to sell a billion yen
at today's price a year from now. Buying the option would, of course, cost the
company a fee but it would cap the amount of losses it might make if the exchange
rate moved in the wrong direction, thus reducing the company's risk. The important
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thing to realize is that the company will not decide whether to use the option on
the basis of how many yen it needs to convert but instead on the basis of whether
the market price is higher or lower than the price which the option guarantees. Any
excess yen can always be sold in the market.

The financial derivatives market is full of jargon. An option to buy is called a call
option. An option to sell is called a put option. (The easiest way to remember which
is which is that C is close to B for buy in the alphabet.) Using an option is called ex-
ercising it. The price which is guaranteed by the option is called the strike price and
the option is said to have been struck at that price. There are many different sorts of
rules for when the option can be exercised. The simplest sort is the European option
which can be exercised on one specified date in the future. An American option
can be exercised on any day before a specified date in the future. Note that since an
American option carries all the same rights as a European option and more on top,
it will always be worth at least at much as a European option and generally more.
One thing we will demonstrate later in the book is the surprising result that under
certain quite natural circumstances American and European call options have the
same value. The options we have mentioned so far are very much the beginning
of the list, and the list of possible options goes on and on, growing every day. The
options we have mentioned above are generally called vanilla options to express
the fact that they are standardized and less interesting than exotic options. Banks
sometimes have different teams of mathematicians for the pricing of vanilla op-
tions and of exotics. Many exotic options are not really options in the sense that
the holder does not get a choice but instead receives a payoff, which is possibly
negative, dependent on the behaviour of some asset. This asset is generally called
the underlying. The generic term for all instruments whose value is defined in terms
of the behaviour of some other asset is derivatives. This name expresses the idea
that their value is derivative of the behaviour of the price of the underlying.

Ultimately, an option is a powerful instrument to change one's exposure to risk.
The big difference between buying an option on a stock and buying the stock is
that if the stock price moves the wrong way the option will be valueless whereas
the stock will not, but on the other hand if the stock moves the right way, the
option holder will have made much more money for the amount of money spent
than the stock holder. One attraction of speculating using options is that the maxi-
mum downside is the loss of the initial premium, whereas the up-side is unlimited.
Of course, it is important to appreciate that for the option seller the position is
reversed.

Another way an investor could use an option to reduce risk is as follows. Suppose
he holds a large number of stocks which he knows he might need to sell a year from
now, but he is worried about a crash in the meantime. Whilst he knows that he can
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always wait for the market to come back up in the long term he may need to sell
straight after the crash which would lose him a lot of money. This investor could
buy a put option on his stock guaranteeing him a price, thus capping his risk for
the cost of the premium today. This approach is particularly employed by fund
managers who are worried about performance targets in the short term.

Currently, one of the greatest growth areas is in credit derivatives. The simplest
example is a contract where company 'A' pays company `B' a regular premium
until a company `C' defaults on some of its debts. Upon default company `B' pays
`A' a payment fixed in advance. More generally the size of the payment on default
could be based on how much company `C' defaults on its debts. Why is this useful?
The bank `A' may have made a large loan to company `C' which it feels represents
too high level of risk and in particular, undiversified risk. It can use the credit
derivative to reduce this risk without affecting its business relationship with `C'
either by refusing the loan or trying to sell on the loan which would be difficult in
any case. In order to fund the derivative, `A' could then write a credit derivative on
another company `D' to which it has no exposure. The bank has thus reduced its
overall risk at no cost to itself, by diversifying risks using credit derivatives. This
then allows the bank to charge company `C' a lower rate of interest, thus reducing
the cost of capital for `C' and allowing it to function more profitably which of
course then allows the company to undercut its rivals by charging less. Thus the
development in banking feeds into better value for consumers.

Another example is an airline company which is heavily exposed to the price of
aviation fuel and thus effectively the price of oil. A couple of years ago, crude oil
was very cheap by historical standards and trading around eight dollars a barrel. A
general shortage drove the price up to around thirty dollars a barrel, and airlines
really felt the pain of the increased costs. However, a smart airline could have
used derivative contracts to lock in the price of oil, and become immune to price
changes. Indeed, Ryanair have just announced a very successful year and attribute
part of their success to the hedging of oil prices.

As the popularity of derivatives grows, they are traded on wider and wider prod-
ucts. One current growth area is weather derivatives. The holder of a weather
derivative receives a pay-off based on the temperature on certain days or the amount
of rainfall. For example, a City of London wine bar, Corney and Barrow, noticed
that its profitability was largely dependent how many sunny Thursdays and Fridays
there were in July and August. On such days, traders after a hard day's work would
come and sit in the sun and guzzle beer.' Corney and Barrow therefore bought a
weather derivative which would pay them a sum of money each Thursday or Friday
which was not hot. Their profits are therefore no longer dependent on the whims

1 Why they drink beer in a wine bar has never been fully explained.
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of the weather. Their average profits are, of course, the same as before but there
is less variation i.e. less risk, which allows better financial planning and makes the
business more valuable.

At this point, the reader may feel the line between insurance and derivatives is
becoming a little blurred and indeed it is. The principal difference between deriva-
tive products and insurance is that derivative products are hedgeable. That is the
seller can reduce his risk by holding the underlying asset or a similar asset, or sell-
ing another derivative product to another client which cancels out much of the risk.
For example, a farmer or a wine-bar might want sunny weather, but a company pay-
ing a fortune for air-conditioning will want cool weather. The derivative products
they would purchase to reduce risk would cancel each other. A second difference
is that derivatives are always specified in terms of the occurrence of events rather
than in terms of loss. If a farmer bought a derivative against too little rain or too
much, he would receive the pay-off according to how much rain fell rather than
according to how much damage his crops suffered.

From the point of view of risk, we can regard an option as an attempt to encap-
sulate a specific piece of risk. As the option is purer in its risk, its value is more
sensitive to market changes, and therefore the amounts to be gained and lost on
options are much larger. However, it would be a mistake to view an option as a
risky asset which only the foolhardy would buy. The purpose of an option is to
allow the buyer to guard against certain events and thus reduce his risk. The best
metaphor for an option is to regard it as concentrated acid - handled carefully a
very important tool, but used carelessly very dangerous.

1.6 Classifying market participants

There are many different reasons to participate in the markets, but we can make a
broad classification according to their attitudes towards risk.

The hedger uses market instruments to reduce his risks.
The speculator uses market instruments to increase his risks - remember more

risk equals more return.
The arbitrageur tries to spot discrepancies in the pricing of risks. By selling one

risk and buying it elsewhere at a different price, he tries to make profits without
risks.

The role of a bank is a mixture of speculator and arbitrageur. Every time it makes
a loan, it is speculating that the return on the loan will outweigh the credit risks
taken on. Its better access to the markets also allows it to sell products to companies
at a margin above what it can buy them for. This is essentially a form of arbitrage.

Private investors are, from this point of view, speculators. They buy risky prod-
ucts such as shares in order to increase their returns.
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Companies, in general, are hedgers. They are exposed to the market because
they need to buy and sell commodities, or exchange currency. They wish to reduce
these risks, and they can do so by the use of derivatives. Indeed, it has now become
expected that they do so, and stock analysts will include in their reports critiques
of a companies hedging strategies. Some companies even use options because of
analysts' criticisms of their failure to do so.

The reader has no doubt heard of various cases where the use of options has
led to vast sums of money being lost. These cases tend to occur in two ways, the
first is that a trader has explicitly chosen to break the rules set him, and taken on
much riskier positions than he has been set by his bank. Leeson's behaviour at
Barings is the classic example of this. He made bigger and bigger bets to try and
recoup his losses. The risk managers were not doing their jobs properly and failed
to notice what he was doing. Eventually, everything went horribly wrong and the
bank crashed.

The second sort of case is where a company which should be using derivatives to
hedge its positions starts to use them to speculate instead. In particular, companies
have a tendency to overhedge, that is they buy so many derivative contracts that
instead of hedging their risks they cancel out all their risk, and in addition create
an exposure in the opposite direction. Sometimes they even start selling options
instead of buying them. This is really just speculation. For example, Ashanti, the
gold mining company, `hedged' its exposure to falls in the gold price in such a way
that they lost a huge amount of money when the price of gold increased. This was
seen as a sign by many gold mining companies that hedging is bad, but it was not.
It was simply a sign that hedging should be for hedging not speculation.

This book is mainly about the bank's role as arbitrageur. The ability to spot
market mispricings of derivative products depends upon some complicated mathe-
matics which is the topic of this book.

1.7 Key points

Risk is key to investment decisions as the only way to make money is by taking
risky positions.
Market efficiency means that all information is already encoded in the price of
an asset so we cannot foretell stock prices.
The risk premium is the amount of money we receive for taking on a risk.
Hedging is the process of taking positions in different assets which reduce the
total risk.
Diversifiable risk does not receive a risk premium as it can be hedged away.
A bond is an asset that pays a regular coupon and returns the principal at its
maturity.
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A stock or share is a fraction of the ownership of a company. It is of limited
liability and so carries rights without obligations.
A forward contract is the right and obligation to buy an asset at an agreed day in
the future at a price agreed today.
A call option is the right but not the obligation to buy an asset at an agreed day
in the future at a price agreed today.
A put option is the right but not the obligation to sell an asset at an agreed day in
the future at a price agreed today.

1.8 Further reading

A lot of learning about finance is about getting a good feel for how the market and
its participants behave. I list a few books which are good background material and
enjoyable reads.

Against the Gods: the Remarkable Sto;y of Risk, by P. L. Bernstein, [17], a his-
tory of risk management from ancient times
The Great Crash, by J. K. Galbraith, [57], an account of the causes and aftermath
of the stock-market crash of 1929.
Wriston: Walter Wriston, Citibank, and the Rise and Fall ofAmerican Financial
Supremacy, by P. L. Zweig, [143], a biography of the former head of Citibank.
It's really a history of the evolution of modern banking.
Buffett: the Making of an American Capitalist, by Roger Lowenstein, [105], a
biography of Warren Buffett, it gives a fair amount of insight into how he made
so much money simply by investing.
F.I.A.S.C.O. by F. Partnoy, [119], described by the Head of the Financial Services
Authority as a "nasty little book," it should not be taken too seriously but does
give some insight into what goes on in the markets.
The New Financial Capitalists by G. Baker and G. D. Smith, [10], an account of
the modern revolution in corporate finance and how it changed the way compa-
nies are run.

1.9 Exercises

Exercise 1.1 Suppose an asset pays £1 if a roll of a fair die is 6 and zero otherwise.
How much would you expect it to trade for?

Exercise 1.2 Suppose we have six assets, E1, ... , E6, which pay off according to
the roll of a fair die. If the die roll is equal to the asset's index it pays one and zero
otherwise. How much would you expect each asset to trade for? How much will
the sum of all the assets trade for?
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Exercise 1.3 If bond yields increase, what happens to bond prices?

Exercise 1.4 A gilt and a corporate bond have the same principal and the same
coupons and coupon dates. How will their prices compare?

Exercise 1.5 A bond can be converted into a share of the issuer one year from
now. How will its price compare to the price of a bond with the same principal and
coupons which is not convertible?
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Pricing methodologies and arbitrage

2.1 Some possible methodologies

In the previous chapter, we introduced the concept of risk and examined its rela-
tionship to various products including options. In this chapter, we want to examine
how to price options and more general `derivative' products. Recall that a deriva-
tive product is a product whose value is determined by the behaviour of another
asset, generally called the underlying, and thus any option is a derivative. The
interesting thing about pricing derivatives is that their price is closely related to
that of the underlying asset, and we can expect to find relationships between their
prices. The objective of mathematical finance is to find these relationships. It is not
immediately obvious where to start. Let's work our way through various possible
approaches in one special case.

We want to price an option to buy a particular stock for £1 five years from now.
The stock's price today is £0.95.

A first approach might be to study the stock and estimate its growth potential
(affected by its riskiness of course.) Suppose we think the stock will be worth £3
at the option's expiry date. We could say, well since we expect the option holder
to make £(3 - 1) = £2, we should charge him £2. Of course, we would charge less
than £2 in order to take account of the fact that we could invest the premium for five
years, and therefore would charge the amount of money it would take to have £2
in five years by investing in a five-year riskless bond. A more sophisticated version
of this pricing model would be estimate the future distribution of the stock price
and take the average value of the option under this distribution. For example, we
might estimate that there's a 10% chance of the stock being worthless, and hence
the option being worthless. Another 10% chance of the stock being worth less than
£1 and the option being valueless. Say a 10% chance of the stock being around £2
and the option worth £1 and so on. We can then average the pay-offs and obtain
an expected value for the option. We then discount this, as above, to compute the
amount of money we need to invest today to match the expected pay-off.

16
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To see the flaws in this approach, suppose we have sold such an option for £1.5.
Instead of investing the money in a riskless five year bond, we just buy the stock
today for £0.95. If the stock is below £1 in five years, then the option will not be
exercised and we have made (150 - 95) = 55 pence plus the stock price on the date
of expiry. If the stock is above 100 pence we sell it to the option buyer for £1 and
we have made (55 + 100) = 155 pence. Thus, whatever happens we have made at
least £0.55. We therefore have a riskless profit. This example shows that the cost
of a call option should never be more than today's value of the stock, since the
seller can then use the option's premium to buy the stock today, and cover himself
in all possible outcomes. This is totally independent of any opinions about future
movements.

The issue here is that the seller has adopted a hedging strategy. His strategy
is to buy the underlying stock immediately. An alternative pricing methodology
might be to estimate the expected loss to the seller under every possible hedging
strategy. And having done so, adopt the strategy that minimizes the expected loss.
Alternatively, we could adopt a strategy that minimizes the maximum possible loss.
We should emphasize at this point that the hedging strategy can be dynamic: that is,
the option seller can buy and sell the underlying according to its price movements
during the life of the option.

Let's consider a new hedging strategy. The option will only be exercised at ex-
piry if the value of the stock is above £1. The stock price is initially below this
level. When the stock price crosses £1 we buy the stock, and if the stock price
crosses £1 again we sell it. If it then crosses £1 again, we buy again and so on. If
the stock price is below £1 at the end, we hold no stock and have no liability. If we
assume interest rates are zero for simplicity, any money spent buying the stock on
upcrosses will have been regained on selling on downcrosses, so we have lost noth-
ing. If the stock price is above £1 on expiry, we sell the stock to the option holder
for £1, and this repays us the £1 we used to buy the stock. Hence we can hedge the
option for free, but the option holder will have paid us a positive amount for buying
it. We pocket his premium and have done rather than well. Where is the flaw?

The flaw is that when the stock price is at £1, it is equally likely to go up as
down; the fact that the stock price has just come from say £0.99 does not mean it
will be £1.01 next: it could just as well be £0.99, so how do we know whether to
buy or sell at £l?

Let's modify the strategy to be buy at £1.01 and sell at £0.99. Our strategy is
now well-defined and appears almost as good. However there's a difference if we
always buy at £1.01 and sell at £0.99 we lose £0.02 every time the stock crosses
the interval. This means that the cost of hedging the option under this hedging
strategy would depend upon the number of times the option crosses the intervals.
Our expected loss would therefore depend on the expected number of crossings.
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Interestingly, if our stock has a high growth component it is less likely to cross
the interval many times since it will quickly have a price far away from £1. Stocks
which have high growth should have cheaper options. This is a little paradoxical
as we expect an investor to be keener to buy a call option if the stock price is
likely to be much higher than the strike price. One answer lies in the connection
between risk and return. A stock which is expected to have very high growth will
also be very risky. We can therefore expect the stock price of a risky stock to bob
up and down a lot, so we can expect it to cross the interval more often and thus
the expected cost of hedging will be higher. Another answer is that there are better
ways of pricing and we shall soon encounter them.

While this hedging strategy appears quite good, one downside of it is that there is
no upper limit to the hedging cost. If the option seller was unlucky the stock could
cross the interval thousands of times which would be much costly than the strategy
of just buying the stock today. This raises another issue, what does the seller wish
to achieve from his hedging strategy? Some possibilities are:

(i) Make a good return on average.
(ii) Cap the total amount that can be lost.

(iii) Minimize the variance (i.e. the riskiness) of the outcome.
(iv) Invest an amount today that will always precisely cover the cost of the option's

pay-off at expiry.
(v) Avoid mispricing any risk.

The first objective is really that of a speculator. The others are those of hedgers
and arbitrageurs. The purpose of financial mathematics is to achieve objectives (ii)
through (v). This `stop loss' strategy is better at (i) than at (ii) through (v).

2.2 Delta hedging

Under certain assumptions, which are arguably dubious, on the behaviour of the
stock, it can be shown that there is a mathematically correct price, and an optimal
hedging strategy which guarantees that the option's value at expiry will always be
covered precisely by the option's premium at purchase. To see how this works,
suppose that the value of the option is known and depends on the time to expiry
of the option and the current value of the stock. The assumption of knowing the
value may seem a little circular but this approach can be made rigorous. The value
of the option will depend on other things such as interest rates but assume that
these are fixed throughout. If we know the value of the option for any stock price,
then we also know the rate of change of the option price with respect to the stock
price. In mathematical terms, we know the derivative with respect to the stock
price. We buy an amount of stock equal to this rate of change. Then the rate of
change of our total portfolio, which is the amount of stock minus one option, will
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be zero. (This may involve buying a fractional amount of stock but that is no big
deal from a mathematical point of view.) We have effectively removed all risk
from the portfolio. Of course, as soon the stock price changes, the rate of change
changes too, and the amount of stock needed to be held changes also. This hedging
strategy is called Delta hedging. If one assumes that the rehedging can be carried
out continuously, then it can be shown that it leads to a riskless portfolio, that is a
portfolio of totally predictable value, which allows the option always to be hedged
and this yields a correct price. This price is called the Black-Scholes price and the
argument which led to it is the starting point of all modern mathematical finance.

The curious thing about the Black-Scholes price is that there is an alternative
way of arriving at the same price which goes as follows. We estimate the future
distribution of the stock price in terms of how risky it is, but we take the average
expected price to be the same as could be achieved by holding a riskless bond.
That is we assume that the stock buyers are not risk-averse but instead are risk
neutral, that is they do not demand a discounting of the price to take account of
risk. This is a little paradoxical after everything we have said so far about the
importance of risk. Note that the model does not actually require the stock holders
to be risk-neutral, it simply says that it is valid to price as if they were. The point
is that the option seller having hedged his risk precisely, holds a riskless asset
which should therefore grow at the same rate as a riskless bond. Since all risk has
been removed we no longer have to worry about the effect of risk on pricing, and
we can simplify things by assuming that investors are risk-neutral. Surprisingly,
of all the pricing methodologies we have encountered, it is risk-neutral pricing
that is the most pervasive in the markets. The reason is essentially that in certain
circumstances it gives a price which can be shown to be necessarily correct in a
truly real and practical sense. However, the paradigm has now become so standard
that it is often used without any real justification.

2.3 What is arbitrage?

We shall return to the Black-Scholes price and risk-neutrality in later chapters and
give a fuller mathematical treatment of them. Before doing so we need to under-
stand the concept of arbitrage which is another fundamental concept in mathemati-
cal finance, and in particular, is a way of guaranteeing a correct price in certain cir-
cumstances. Arbitrage basically expresses the concept that one cannot make money
for nothing. It is sometimes called the `no free lunch' principle.

Arbitrage is probably simplest to explain in the context of foreign exchange.
Suppose a £1 is worth $1.5 and a $1 is worth 100 yen, which is approximately true
at the time of writing. How many yen is a pound worth? It has to be worth exactly
150 yen. If it is worth more than 150 yen, we sell pounds for yen, sell yen for
dollars and sell dollars for pounds. We end up with more pounds than we started
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with. We keep on doing this for as long as we can. If £1 is worth less than 150 yen,
we do the same thing but go round the triangle in the opposite direction, and make
money in the same way. This process is called taking advantage of an arbitrage
opportunity. The important point is that this process will cause the opportunity so
disappear. This is closely related to the concept of market efficiency.

In particular, in the case where it is worth more than 150 yen, the action of
buying yen will drive the pound/yen rate down and buying dollars will drive the
yen/dollar rate down and so on. Thus the arbitrage opportunity will be short-lived.
In the real financial. markets, arbitrage opportunities can exist but they will gen-
erally be very small and disappear quickly, as someone will always be ready to
pounce when they appear. In the mathematical theory of markets, it is therefore
customary to assume that there is no arbitrage. Another way of looking at this, is
that the mathematician's job is to find the possible prices in an arbitrage-free mar-
ket. If the observed prices are not in agreement then there is an arbitrage opportu-
nity to be exploited. Whilst the foreign exchange arbitrage was easy to spot, more
complicated instruments may imply the existence of arbitrage opportunities which
are anything but obvious, and that is why the banks employ their mathematicians.

Mathematical bankers generally search for the arbitrage opportunities under
some assumptions. Whilst all of these assumptions can be criticised, they pro-
vide a good starting point for modelling. The objective is more to come up with
a good model than a perfect description. There is a certain similarity to physics
here. Newtonian physics makes certain assumptions about the nature of space and
time which are demonstrably wrong. However, bridges are built with Newtonian
physics and they do not fall down (or at least not very often.) The reason is that
Newtonian physics provides a good approximation in the everyday world which
only breaks down in the small subatomic world and the huge astronomical scale.
Similarly, the models of mathematical finance provide good approximations under
what one might call `normal' conditions, but they may perform less well in ex-
tremities. However, just as in physics, the fact that models are not universally valid
actually keeps people in work.

2.4 The assumptions of mathematical finance

What assumptions do mathematicians generally make?

2.4.1 Not moving the market

The first is the assumption that our actions do not affect the market price. That
is we can buy or sell any amount without affecting the price. The whole point
of free markets is that this is not true - if demand increases then prices increase,
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encouraging more production; and if demand decreases then prices decrease, dis-
couraging production. Thus our actions can affect the market price but as long as
we are trading in small quantities the effects will be negligible.

2.4.2 Liquidity

The second is the assumption of liquidity. This says that we can at any time buy
or sell as much as we wish at the market price whenever we want. This is more
valid in some markets than others. For example, in the major foreign currency
markets and in the large company markets this is basically true. However, in the
bond markets and the small companies market this is not the case. Note that the
speculators and traders in the banks are actually providing a public service - their
frenetic buying and selling increases the liquidity of markets thus ensuring that the
ordinary investor can buy or sell at anytime he wishes, rather than being forced to
wait until a counteiparty can be found.

2.4.3 Shorting

The third is the assumption that one can go `short' at will. That is, one can have
negative amounts of an asset by selling assets one does not hold. Whilst there are
some restrictions on short-selling assets in the market, it is allowed. The opposite
of going `short,' holding an asset, is sometimes called being `long' in it. Similarly,
buying an asset is called `going long.'

2.4.4 Fractional quantities

The fourth assumption is the ability to purchase fractional quantities of assets.
Whilst one can clearly not do this in the markets, when one is dealing in quan-
tities of millions, which trading banks generally do, this is not so unreasonable -
the smallest unit one can hold is a millionth of the typical amount held, so any error
is pretty small in comparison.

2.4.5 No transaction costs

The fifth assumption is that there are no transaction costs. That is one can buy and
sell assets without any costs. In the market, there are two typical ways to incur
transaction costs. The first is just that doing something costs money. The second is
that typically buy and sell prices differ slightly (or in the case of high street foreign
exchange differ greatly.) This is called the bid-offer spread. The size of the bid-
offer spread is closely related to liquidity, in a very liquid market it will be tiny but
in less liquid markets it can be a substantial proportion of the asset's value. Taking
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transaction costs into account is currently an active area of research; we will work
in a world without transaction costs. Note that the bid-offer spread is how banks
make money. They will buy or sell from you as you wish, when you wish. The
difference between the price you trade at, and the `true' price, half-way between
the bid and offer prices, is their fee for this service.

2.4.6 Models

There are other assumptions which are made in certain models. These are generally
related to how the asset prices changes over time and we will introduce them as
necessary. At this point, after such a long list of disputable assumptions the reader
may start to feel. that our models are a long way from reality and wonder what
use they are. However, we must emphasize that our purpose is to build a model
which will have the functions of providing a reasonable, but not perfect, price and
of helping the bank understand its exposure to risks. One can view mathematical
finance as an arms race, each,bank is continually attempting to build more accurate
models than its competitors in order to make money from trading, and to achieve
the maximum return for a given level of risk.

2.5 An example of arbitrage-free pricing

Within the context of our assumptions, we now look at a few examples of arbitrage-
free pricing. Suppose a company wishes to enter into a contract to exchange a
fixed number of dollars, say one million, for yen one year from now. This is called
a forward contract. Note that the company has no choice once it has entered the
contract - this is not an option. How do we set the exchange rate? One could
attempt to estimate the exchange rate in a year, and use this to price this contract.
Alternatively, we could try to decompose the trade into instruments we already
know the price of. We can do this by selling a zero coupon riskless bond in dollars
today, which matures in a year with value one million dollars which corresponds
precisely to the payment we get in a year. The money we get in exchange for the
bond today is one million divided by 1 + r where r is the yield of the bond. We
exchange that money at today's exchange rate and use the proceeds to buy a zero
coupon bond maturing in a year in yen, which will of course grow according to
the yield, d. The value of this bond upon maturity will therefore be one million
divided by 1 + r, multiplied by the exchange rate and then multiplied by 1 +'d and
it is precisely this amount which we give the company in exchange for one million
dollars in a year from now. In conclusion, if today's exchange rate is K, then the
forward. exchange rate for a year in advance is

K'_KI+dl+r
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The important point to realize here is that any other rate leads to an arbitrage
opportunity, because we can synthesize this product precisely at this exchange rate.
In particular, if there is an alternative rate L available in the market we can make
unlimited amounts of money by entering forward contracts at the rate L, and then
hedging them using bonds as we have indicated above. Of course, whether we enter
forward contracts buying or selling yen will depend on whether L is bigger or less
than K. In conclusion, L must be equal to K' not because we believe the exchange
rate in a year will be L, but because any other value leads to an arbitrage.

This example really contained two different and very important concepts as well
as illustrating arbitrage. The first is that of replication. If we can decompose an
instrument into other instruments then we can price it simply by stringing those
instruments together, any other price will lead to an arbitrage. A first approach
to any pricing problem should therefore always be to attempt to decompose an
instrument. A curious side effect of this idea has been the growth of primitive
building block instruments which strip out just one aspect of an instrument. For
example, a corporate bond pays a premium above riskless bonds because of the
risk of default. Thus one could regard a corporate bond as a riskless bond plus a
risky asset which pays out an annual coupon and demands a payment in the event
that the issuer defaults. This risky asset is now traded in its own right and is called
a credit default swap. Note that it can be synthesized by going long a corporate
bond and short a riskless bond.

We can use similar replication and arbitrage arguments to price a forward con-
tract on any asset. Indeed to price a forward contract on a stock, provided it does
not pay a dividend, we can use the same argument just by setting the foreign in-
terest rate to zero. If we want to include the stock's dividend in the model, we
pick the foreign interest rate to reflect the rate at which the stock pays dividends.
This approximation is, of course, not quite right, as generally, though not always,
a stock will pay its dividend in cash rather than stock, which is what the model
suggests. Nevertheless this approximation is commonly used in option pricing, the
big advantage being that it allows us to use the same arguments simultaneously for
both stocks and foreign exchange. It's important to realize that the forward price of
the stock is not the same as the expected future value. Indeed the argument shows
that the forward price of the stock just grows at the same rate as a riskless bond
and so it is a risk-neutral price, that is the future price if investors did not expect
compensation for additional risk. We will see this phenomenon in more general
contexts - arbitrage implies that a perfectly-hedged contract will be valued as if
investors were risk-neutral.

Another simple contract we can price this way is a forwar d-rate agreement, gen-
erally called a FRA. A forward-rate agreement is simply an agreement to take some
money on deposit, or to borrow some money, at an interest rate fixed today for a
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fixed period of time starting at a specified future time. For example, a company
may be paid for some goods on a known future date, and will buy some other
goods on a fixed date after that. The company wishes to make plans on the basis
of this and so enters a FRA, thus ensuring that there is no interest-rate risk. How
would the bank decide at what rate to offer the FRA? The FRA is easily synthe-
sized by going long and short the appropriate bonds. If the FRA starts at time to,
we go short a bond expiring at time to to bring the money back to the present - thus
multiplying the sum deposited by (I + ro)-'0 where ro is the yield of the to bond.
To take the money forward to time ti, the end of the deposit period, we go long
bonds maturing at time ti with yield ri and thus multiply the sum by (1 + rr)''.
In conclusion, in return for the £1 deposit at the start of the FRA, the company
receives

X = (1 + ro)-to(l + t.r)ri

at the end. One can then convert this into an equivalent compounding annual inter-
est rate, 1'2, by solving

(1+1.2)11-'0=X.

2.6 The time value of money

The second important aspect of pricing the forward contract is the concept of time
value of money. Jam today is better than jam tomorrow - an investor will prefer a
pound in his pocket today to a pound in his pocket one year from now. In effect,
a pound a year from now is therefore worth less than a pound today. The interest
paid on a riskless loan expresses this. We can quantify precisely how much less by
using risk-free bonds. A zero-coupon bond with principal £1 maturing in a year is
precisely the same as receiving the sum of £1 in a year. We can therefore change
the timing of a cashflow through the use of zero-coupon bonds. (A cashflow is a
flow of money that occurs at some time.) If we are to receive a definite cashflow of
LX at time T, then that is the same as being given X zero-coupon bonds today, and
we can convert it into a cashflow today by simply selling X zero-coupon bonds of
maturity T. The two cashflows at time 7' will then cancel each other. If the market
value of a T-maturity bond is P(T), then £X at time 7' is equivalent to £XP (T )
today. Similarly a cashflow of £Y today is worth Y/P(T) pounds at time T.

The conversion of sums through time is therefore dependent on the market value
of zero-coupon bonds. It is generally easier, though sometimes misleading, to think
in terms of interest rates. The cost of bonds is generally quoted in terms of yield,
that is, the effective annually compounded interest rate which would give the same
value on maturity. If the yield is r which could be a number written as 0.05, or
more often as 5%, and the bond runs for T years then £1 invested in it today will
be worth £(1 + r) after a year and because of compounding £(l. + after two
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years and so. In particular, after 7' years, it will be worth £(l + r)T . Similarly, £1
in T years from now will be worth £(1 +).)-T today. To see this, consider that we
can take out a loan of £(1-i- r)-T today with the knowledge that we can pay off the
loan with the £1 when it arrives. In these formulas, it is important to realize that r
and T are not as independent as they look: r is the yield of a bond which matures
at time T, and bonds of different maturities may have different yields. Clearly, if
we know that the price of a bond maturing at time T is P (T), then there will be a
unique r such that

P(T)(1 +r)T = 1, (2.1.)

and this number will be the yield of the bond. This definition of yield is often
called the annualized yield. Note that one consequence of (2.1) is that yields go
down when prices go up and vice-versa.

Whilst annualized yield is convenient for quoting in the markets, it is cumber-
some to work with mathematically since a year is a rather arbitrary time scale, and
mathematicians prefer to be able to break up time into smaller and smaller time
pieces. Suppose we divide a year into n pieces of equal length and over each piece
we receive r times the length of the piece as an interest payment, and the interest is
compounded. If we start with £1 after T years we have the sum of £(1 + L )T". We
can make the compounding period shorter and shorter by letting n go to infinity. It
is an elementary theorem of mathematical analysis that the limit is

eT

In mathematical finance, it is this form of interest-rate that is used when pricing
equity and foreign-exchange (FX) options. The quantity r is then called the short
rate or continuously compounding rate as it's the interest rate for investing over
very short periods of time. When working with foreign exchange or with dividend-
paying stocks there will be a corresponding interest rate on the asset, or dividends
on the stock. This rate is generally called the dividend rate and denoted d. We
typically model the dividend on the stock as a scrip dividend. This means that
rather than receiving a cash sum as a dividend payment, we receive extra units of
stock. (Since the dividend is not precisely divisible by the stock price, the amount
left over is paid in cash, but we ignore these issues as the effects are tiny for large
holdings.) Thus if we take a dividend rate of d and we start with one stock or unit
of currency, we will have edr units at time t.

Each zero-coupon bond will therefore imply a different rate r over the period of
its life given by the value r such that

e'TP(T)=1.
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Much of the time, we will assume that there is a single unique r reflecting constant
interest rates. This means that a sum of £1 invested today in riskless bonds will
always be worth £e"' at time T. This investment is often called the money-market
account or the cash bond. It reflects the notion that one is continuously buying a
very short-dated bond, letting it mature and then reinvesting in another short-dated
bond. For clarity, we reproduce our forward price argument in a more mathematical
fashion using continuously compounding rates.

Theorem 2.1 If a liquid asset trades today at So with dividend rate d and the
continuously compounding interest rate is r then a forward contract to buy the
asset for K with expiry T is worth

e`T (e("-d)T So - K).

In particular; the contract will have zero value if and only if

K =
So

Proof We first show that if
K = So, (2.2)

then the forward contract has zero value.
Suppose we have sold the forward contract. At time zero, we set up a portfolio

consisting of -e-dT So pounds and a-dT assets. We can do this at zero cost. At time
T, we will hold one asset, since the asset grows by ed T , and be short £e(''-d )T So
because of interest charges.

The forward contract turns our single asset into £e(''-d )T So by construction. This
cancels the negative pounds in our portfolio and we hold nothing.

Thus whatever the price of the asset at time T, we have no holdings. This means
that we have precisely hedged the forward contract at zero cost, so the contract
must be worth zero or there would be an arbitrage.

If we have a forward contract struck at K', we can decompose it as a forward
contract struck at K, with K as above, and the right to receive £(K - K') at time T.
The right to receive £(K - K') is the same as holding K - K' zero-coupon bonds.
Note that if K < K', we are really borrowing K' - K zero-coupon bonds.

The forward contract struck at K has zero value so the value of the contract must
be the value of the zero-coupon bonds, that is

e'T (K - K') = (eGr-d)T So - K)(2.3)
and we are done.

The second part of the theorem motivates a definition. The forward price of a stock
for a contract at time T is e(' -d)T So.
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2.7 Mathematically defining arbitrage

We have seen that arbitrage can price various simple contracts precisely in a way
that allows for no doubt in the price, and the price is independent of our views on
how asset prices will evolve. The great revolution in modern finance is based on
the observation that such arguments can be extended to cover the pricing of vanilla
options, and that is the topic of the rest of this book.

Before proceeding to the valuation of options, we discuss the concept of arbi-
trage a little more. How can we make a more rigorous definition capturing our
notion of no money for nothing?

Definition 2.1 A portfolio is said to be an arbitrage portfolio, if today it is of non-
positive value, and in the future it has zero probability of being of negative value,
and a non-zero probability of being of positive value.

For now, we will ignore the probabilities in the statement of arbitrage and simply
regard an arbitrage portfolio as one that is of zero cost to set up, has non-negative
value in the future, and may be of positive value in the future. By creating such a
portfolio, an investor would receive at no cost the possibility of receiving money in
the future. The no-arbitrage principle outlaws the existence of portfolios of negative
value that are guaranteed to be of non-negative value in the future, since such a
portfolio, with enough added cash, would have zero value, hence would define an
arbitrage. An important consequence of the no-arbitrage principle is the following
monotonicity theorem,

Theorem 2.2 If portfolios A and B are such that in every possible state of the
market at time T, portfolio A is worth at least as much as portfolio B, then at any
time t < T portfolio A is worth at least as much as portfolio B. If in addition,
portfolio A is worth more than portfolio B in some states of the world, then at any
time t < T, portfolio A is worth more than portfolio B.

Proof The proof of this theorem follows simply by applying the no-arbitrage prin-
ciple to a portfolio C constituted by being long portfolio A and short portfolio B.
Portfolio C then has non-negative value in all world states at time T as its value
is just the value of portfolio A minus that of portfolio B, and so must be of non-
negative value at time t or we would have something of negative value that would
always be of non-negative value at time T. If A can be worth more than B at time
T then C can have positive value at time T, and C must have positive value at time
t, or there would be the possibility of making money from a portfolio of zero cost
with no risk. But C having positive value is the same as saying that A is worth
more than B and our theorem follows.
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Whilst the monotonicity theorem is easy to state and prove, it is at the heart of most
arguments in mathematical finance. An easy corollary is

Theorem 2.3 A vanilla call or put option always has positive value before expity.

Proof To prove the theorem, simply let portfolio A be the option and let portfolio
B be empty. Then at the expiry time, A is either worth a positive quantity if it is
advantageous to exercise the option, or zero otherwise. We therefore have that A is
worth more than portfolio B in some world states, and at least as much in all world
states. The monotonicity theorem then says that at all previous times A is worth
more than B, that is the option has positive value.

Another consequence of the monotonicity theorem is that there can only be one
riskless asset of a given maturity.

Theorem 2.4 If P and Q are riskless zero-coupon bonds with the same maturity
time, T, then they are of equal value at all previous times.

Proof Suppose both bonds P and Q are guaranteed to be worth exactly £1 at time
T. Then Q is worth as much as P in all possible worlds at time T, so Q is worth
at least as much as P in all possible worlds at all previous times. By symmetry, we
conclude that P is also worth as much as Q, and thus that P and Q have the same
price in all possible worlds at all times.

If instead of paying £1, Q paid £A, then considering holding A units of the bond
P, and applying the monotonicity theorem, we conclude that Q is worth A P in all
possible worlds at all previous times.

A third simple consequence of the monotonicity theorem is

Theorem 2.5 If two portfolios, P and Q, are of equal value today and if at some
future time, T, P is worth more than Q in some world states, then Q is worth more
than P in some world states.

Proof If two portfolios, P and Q, are worth the same today, and if at some fu-
ture time in some possible world state, P would be worth more than Q then there
must be a world state at that time in which Q is worth less than P. Otherwise, the
monotonicity theorem would imply that P was worth more than Q today.

Whilst these examples of the monotonicity theorem have been very simple and
are easily understood, the theorem becomes more subtle and more useful when ap-
plied to dynamically changing self-financing portfolios. A dynamic self-financing
portfolio is a portfolio in which a certain sum of money is initially invested, and no
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money is either extracted or added thereafter, but the buying and selling of stocks
and bonds at the prevailing market price, according to a strategy depending on
the world state, is allowed. The money raised from such buying and selling is kept
within the portfolio via conversion into riskless bonds. We shall see that the pricing
of options is based on such arguments,

For a very simple example of this, consider portfolio A to contain one American
call option struck at K and expiring at time T, and portfolio B to contain one
European call option also struck at K. For portfolio A our `dynamic' rule is "do
not exercise before expiry." At expiry, portfolios A and B are then of equal value in
all possible worlds. We conclude that portfolio A with this rule is worth the same
as portfolio B in all worlds at all previous times. Since we are not constrained
to follow this rule, we conclude that an American option is always worth at least
as much as a European one with the same expiry and strike. There was of course
nothing special about a call option in this argument, and it holds equally for put
options. This example demonstrates the simple point that adding extra rights to an
option can only increase its value, as the holder can always ignore them if he sees
fit. We shall see below that extra rights can be worthless - in a strict arbitrage sense,
they add no value to certain options.

The concept of arbitrage has become so ubiquitous that it is often used in senses
that are not strictly correct. For example, at the time of writing, NatWest made an
offer for Legal and General shares at an offer price of 210p a share. The share price
for Legal and General reacted to this information by immediately jumping to about
200p. So there was an `arbitrage opportunity' to purchase Legal and General shares
for 200p and sell them for 210p to NatWest. Many `arbitrage houses' therefore
bought lots of Legal and General shares and financed the purchase by short-selling
NatWest. However there was a good reason for the market's pricing the shares
at 200p - there was a still a possibility that the deal would fall through. Indeed,
Bank of Scotland launched a bid for NatWest and urged the shareholders to reject
the Legal and General merger. The NatWest share price jumped up, the Legal and
General one fell and the arbitrage houses had their fingers badly burnt. (The final
outcome was that the Royal Bank of Scotland launched a second bid, and took over
NatWest.) The real point here is that there was not an arbitrage opportunity in the
strict sense, only in the weaker sense of a likely profit.

2.8 Using arbitrage to bound option prices

In this section, we study bounds on option prices which do not involve any assump-
tions on the way the assets move. Instead we prove upper and lower bounds on
prices, and prove relationships between the prices of differing options. Recall that
a European call option on an asset is the right to buy the asset for a fixed price K
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at some fixed time, T, in the future. A rational investor who owns the option will
exercise the option if and only if the market price of the asset, S, is more than K
at time T, in which case he makes S - K. Otherwise the option expires worthless.
Hence at expiry the option is worth precisely

(S-K)+=max(S-K,0).

This means that instead of thinking of the call option as the right to buy the stock
for K, we can think of it as an asset that pays the sum (S - K)+ at time T. The
function (S - K)+ is then called the option's pay-off. Similarly, a put option will
have the pay-off

(K - S)+ = max(K - S, 0).

Whilst these two pay-offs are the most common ones, there is nothing to stop us
considering an option that has any pay-off; that is, the pay-off could be an arbitrary
function of S and K.

If we hold a call option and sell a put option both struck at K, what is our pay-
off? If S > K it is S -K, and if S < K it is -(K - S) which is of course S -K. This
means that if we hold the portfolio of plus one call and minus one put, we always
receive S - K. A forward contract struck at K will also have pay-off S - K. This
means that the price of a call option minus the price of a put option must equal
the price of a forward contract, if all are set at the same strike. Otherwise, one can
make money by selling the more expensive of the two contracts and buying the
cheaper, thereby having a contract of negative cost that is guaranteed to be of zero
value at maturity. We conclude

Theorem 2.6 (Put-call parity) If a call option, of price C, a put option, of price P,
and a forward contract, of price F, have the same strike and expiry then

C - P = F.

Put-call parity is very useful as it means that if we can price a forward contract and
one of the call or the put, we can immediately deduce the price of the other. This
has both mathematical and practical advantages. For example, the value of a put
is never more than K at exercise time, whereas the value of a call can be arbitrar-
ily large, which makes some mathematical convergence arguments involving calls
tricky, but these can be simply avoided by invoking put-call parity.

An option is said to be in-the-money if it would be worth something at expiry
provided the underlying's price did not change, and out-of-the money otherwise. An
option at the cross-over point is said to be at-the-money. From the practical point of
view, it is generally much quicker to compute the value of out-of-the money options
than in-the-money ones as the value, being much smaller, means that sums will



2.8 Using arbitrage to bound option prices 31

converge faster. One therefore simply values whichever of the call or put is out-of-
the money and then deduces the value of the other. Indeed, many markets will only
quote the value of out-of-the money options leaving the cost of in-the-money op-
tions to be deduced. Note that our argument has not depended in any way on the na-
ture of the asset, or any assumptions about how its price will evolve. There is some
inconsistency in the markets as to the definition of at-the-money. We have defined
at-the-money in terms of the spot price; that is, the price of the asset today, but it is
often defined in terms of the forward price. Sometimes an option is said to be struck
at-the-forward. There is a certain mathematical appeal in working with the forward,
in that the at-the-forward price is where the forward contract's value changes sign,
and therefore it is the point where call and put options have equal value.

This result has an interesting consequence. It means that our views on where the
future value of the asset price is likely to be at expiry, cannot affect the price of a
call or put option struck at the forward. For if we believe the spot is more likely
to finish in-the-money, and therefore conclude that the call ought to be worth more
than the put, we have a contradiction, since we know that the call and put must
have the same value. This observation is a central point of mathematical finance:

Our views on the mean of the stock price at expiry of an option
do not affect the price of an option.

As well as relating the prices of calls and puts to each other, we can prove bounds
on the prices of options. Recall that we argued above that a call option could never
be worth more than the current spot value of the stock, since the option can be
hedged by buying the stock today. This means that we have an upper bound on the
price. In fact, we can prove

Theorem 2.7 At time t, let Cr be the price of a call option on a non-dividend-
paying stock, Sr, with expiry T and strike K. Let Zr be the price of a zero-coupon
bond with maturity T. We have

so > Co > So - KZo. (2.4)

Proof We reprove the upper bound for completeness. At expiry, the stock is worth
ST and the option is worth ST - K, so at that time the call option is always worth
less than the stock. It therefore follows from the monotonicity theorem that the
option is worth less than the stock at time 0. That is

so > Co.

To prove the lower bound, consider the portfolio consisting of one option, and
K zero-coupon bonds which mature at time T. At the time of the option's maturity,
we have the option and K pounds. If the stock price, ST, is greater than K, we can
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exercise the option and spend the K pounds to buy the stock. Our portfolio is then
worth ST . Otherwise, we do not exercise the option and our portfolio is worth K.

At time T, our portfolio is therefore worth

max(ST, K) = (ST - K)+ + K;

it is always worth as much as the stock and in some circumstances is worth more.
This means that at all previous times the portfolio must be worth more than the
stock, as it carries all the same benefits (remember the stock is not dividend-
paying) and at time T is worth at least as much. We deduce, using the monotonicity
theorem, that

Co + KZo > So, (2.5)

which is equivalent to

Co > So - KZo (2.6)

If we make the assumption that interest rates are non-negative then we have
Zo < 1, and

Co> So - K.

This relation is very important as it implies that before expiry a European call op-
tion on a non-dividend-paying stock is always worth more than its intrinsic value,
i.e. the value that would be obtained by exercising it today, if that were possible.

An important consequence of this is that if we consider an American call option
on a non-dividend-paying stock, we can deduce that it has the same value as a
European call option. To see this, observe that the American option carries all the
rights that a European option does and more, so must be worth at least as much,
which means that it is always worth more than its intrinsic value, before expiry.
One should therefore never exercise an American call option before expiry. But if
one is never going to use the additional rights, they are worthless and an American
call option on a non-dividend-paying stock is worth the same amount as a European
call option. We therefore have

Theorem 2.8 If interest-rates are non-negative, then a European call option and an
American call option, on the same non-dividend-paying stock with the same strike
and maturity, are of equal value.

Note that if one had purchased the American call option to hedge a particular risk,
and therefore needed to exercise it at some earlier time, the thing to do would be
to sell the option in the market rather than to exercise it, as this is guaranteed to
raise more money. Arguably, it is preferable to sell American call options rather
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than European ones as there is always the possibility that the buyer will exercise it
early, thereby costing the seller less than the European one. However, this is more
in the realms of psychology than mathematics, as we have shown that the rational
investor would not exercise early.

An immediate corollary is

Theorem 2.9 Let S be a non-dividend-paying stock. Let Ci and C2 be European
call options on S struck at K with expiries T1 and T2, with

T1 < T2.

If interest rates are non-negative then C2 is worth at least as much as C1.

Proof Consider an American call option, A, which expires at time T2; it has the
same value as C2 by our argument above. However, it can also be exercised at time
T1 so it carries all the rights of C1. Thus A must be worth at least as much as C1.
Consequently, we have that C2 is worth at least as much C1. Since the times T1 and
T2 were arbitrary, this shows that for options with the same strikes, the value is an
increasing function of expiry date.

If we make a mild assumption that option prices are time-homogeneous, we can
say more. By time-homogeneous, we mean that if the stock price does not change
then, for a given strike, the cost of buying an option only depends on the difference
of the current time t and the expiry time, T and not on t and T individually. An
option expiring in 18 months from now will cost the same a year hence as an
otherwise identical 6-month option does today. This implies that if the stock price
does not change then an option we buy today expiring at time T, will at time
t < T, be worth the same as an option bought today expiring at time T - t. Since
T - t < T, we conclude that the option will be worth less at time t than it is today.
Thus time-homogeneity implies that the value of a European call option on a non-
dividend-paying stock is a decreasing function of time for a fixed stock price. We
illustrate this time-dependence in Figure 2.1.

What does the assumption of time-homogeneity mean financially? It essentially
says that the future is not qualitatively different from the present. A model which is
not time-homogeneous should generally be regarded with suspicion, as it implies
that the future will be different from the present. Of course, we are not saying that
in general the future will be precisely the same as the present but that the model
should not imply a specific different form of behaviour without good reason. A
good reason would be, for example, the formation of a currency union. An option
to buy francs for marks would have had a rather lower price if the exercise time
was after the formation of the euro than if it was before.
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Fig. 2.1. The Black-Scholes value of a call option struck at-the-money as a
function of time with spot fixed.

We prove by a simple no-arbitrage argument that the difference in price of two
call options of different strikes but the same expiry is less than their difference in
strikes. In particular, suppose the two options, C1 and C2, expire at time T and
have strikes K1 and K2, respectively. We take K1 < K2. At expiry, we necessarily
have that C1 is worth more than C2 as it allows us to buy a stock for less money.
This means that at all previous times, we know that C1 is worth more than C2 to
avoid the possibility of arbitrage.

However, a portfolio consisting of C2 and K2 - K1 zero-coupon bonds will be
worth, at time T,

(K2 - K1) + max(S - K2, 0),

which is greater than the pay-off of C1: max(S - K1, 0). We therefore have, if
Z(t, T) is the value of the bond, that at all previous times

C2 <C1 <C2+(K2-K1)Z(t,T). (2.7)

If we let K2 tend to K1, then the price of C2 must converge to that of C1, which
means that the price of an option is a continuous function of strike. (In fact, we
have that it is a Lipshitz-continuous function with constant Z(t, T). See
Figure 2.2.)

An alternate approach to proving this result is to show that put option prices are
an increasing function of strike and to invoke put-call parity. However, this would
only apply if we were considering options on a tradable asset, whereas our results
hold regardless of the tradability of the underlying.
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Fig. 2.2. The portfolios required to prove that call option prices are Lipshitz-
continuous and a decreasing function of strike.

We have shown that call option prices of fixed maturity are a strictly decreas-
ing function of strike, and that the prices cannot decrease too rapidly. What other
properties can we prove? A much less obvious property is convexity. Recall that a
function is convex if the line between any points on the graph lies on or above the
graph. This is equivalent to saying that if C(K) denotes a call option struck at K,
and K1 < K2, we have

OC(K1) + (1 - O)C(K2) > C(OK1 + (1 - O)K2), for 0 < 0 < 1. (2.8)

Fixing K1, K2 and 0, consider the portfolio consisting of 0 call options struck at
K1, 1 - 0 call options struck at K2 and -1 call option struck at OK1 + (1 - 0)K2.
As the final pay-off of the call option is convex for any fixed value of the un-
derlying (see Figure 2.3), we have from (2.8) that our portfolio is always of non-
negative value at expiry. This means that at all previous times the portfolio must
be of non-negative value, or there would be an arbitrage opportunity. The port-
folio being of non-negative value is equivalent to (2.8) and we are done. We il-
lustrate the portfolio constructed in this argument in Figure 2.5, and the result in
Figure 2.4.

Note that in this argument the only crucial point was that the final pay-off of
the call option was a convex function of strike for any fixed value of spot. The
argument therefore carries over immediately to any instrument with a convex pay-
off, and in particular we have that put option prices are also a convex function of
strike. (This could also be proven using put-call parity provided the instrument was
tradable.)
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Fig. 2.3. The chord to the final pay-off as a function of strike lies above the graph.

5-I

0-
70 80 90 100

Strike

110 120 130

Fig. 2.4. The chord to the value of a call option as a function of strike lies above
the graph.

To summarize, we have proven

Theorem 2.10 Let S be an indeterminate quantity. Let C(K, T) denote the price
of a call option on S of strike K and expiiy T. We then have

(i) C(K, T) is a decreasing function of K,
(ii) C(K, T) is a (Lipsh.itz-) continuous function of K withLipshitz constant Z(T),

(iii) C(K, T) is a convex function of K.
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Fig. 2.5. The final pay-off of the portfolio used to prove convexity. This pay-off
is generally called the butterfly.

If S is a non-dividend-paying stock, we also have that C(K, T) is an increasing
function of T.

Note that for the first three properties, we made no assumptions on the nature of
S. It could be a non-dividend-paying stock but it could be a lot of other things too,
for example the temperature on a given day or an exchange rate. Note that the first
and second properties are conditions on the first derivative of C when it exists. The
third condition is equivalent to C having a non-negative second derivative when it
is differentiable.

Theorem 2.7 was a bound on the 'price of a call option; we can prove similar
bounds for any option with a single pay-off time by using holdings of the underly-
ing instrument and a riskless bond. The fundamental idea is that we want to create
a portfolio which dominates the pay-off in the sense of being worth more at expiry
than the option whatever the value of spot is. We therefore search for the cheapest
portfolio of stocks and bonds which dominates the option pay-off at expiry, and for
the most expensive portfolio which is dominated by it at expiry.

As a portfolio consisting of a stocks and 0 zero-coupon bonds is a linear func-
tion (or to be more precise an affine function), we are really trying to find the clos-
est straight lines above and below the pay-off. Thus Theorem 2.7 is the observation
that

f (S) = S > (S - K)+, (2.9)

and that

g(S) = S - K <(S-K)+. (2.10)
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Of course, when S < K P, we have the better lower bound of the zero function.
For example, suppose we have a digital call option struck at K on a non-dividend-

paying stock which will pay 1 if the stock finishes above K, and zero otherwise.
Our pay-off is therefore

H(S - K),

where H(t) is the Heaviside function which is 1 for t > 0 and 0 otherwise.
We want to find the set of dominating portfolios. It is clear geometrically that

the two critical points are 0 and K; if the Heaviside function is dominated at those
two points by an upwards sloping line, it will be dominated for all S > 0.

If the portfolio is a stocks and /3 zero-coupon bonds then domination at zero is
achieved if t6 > 0 for any a. Domination at K is achieved if

aK+$>1.

The initial value of our portfolio is

aS+f3P,

(2.11)

where P is the cost of a zero-coupon bond expiring at time T. If we take the
solution which passes through the two crucial points, then we get a = K-1 and
,B = 0. (See Figure 2.6.) This portfolio will have set-up cost SK-1. If the stock
price is greater than K we have not achieved much as the set-up cost will be greater
than 1 which is the maximum pay-off of the option.

2.5

1.5

0.5

Digital Call
-Dominating Portfolio

V I

0 50 100 150 200

Spot

Fig. 2.6. A multiple of the stock dominates the pay-off of a digital call option.
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An alternative upper bound is attained by taking fi = I and a = 0. This gives an
upper bound for the digital option equal to P. We conclude that the digital option
must be worth less than

min(P, SK-1).

We would also like a lower bound on the option price. Since the pay-off is always
zero or more, clearly zero is a lower bound. In fact, this lower bound is optimal -
try to prove this.

2.9 Conclusion

We have seen that, by making some quite mild assumptions on the market, no-
arbitrage arguments lead to bounds on the value of options and forward contracts
which are not immediately obvious, The bounds we have proven involve static
portfolios; that is, we set up a portfolio at time zero and do not change it until the
maturity of the option. These bounds are sometimes called rational bounds as they
hold without taking any view on the behaviour of the underlying. To prove sharper
bounds, we will need to carry out dynamic trading strategies which will involve
trading en route. To justify these strategies we will need to make assumptions about
the underlying's behaviour - we will have to quantify not the asset's trends but
instead the nature of its randomness.

2.10 Key points

An arbitrage is an opportunity to make money for nothing. An arbitrage portfolio
is a portfolio of zero value which may be of positive value in the future, and will
never be of negative value.
A hedging strategy is a method of reducing the uncertainty in the value of the
pay-off of an option by trading in the underlying.
Rational bounds on the price of an option are arbitrage bounds which can be
proven without making assumptions on the future behaviour of the asset.
The short rate is the interest rate we obtain if we continuously reinvest cash. This
is sometimes called the cash bond or the money-market account.
A portfolio replicates an option if whatever happens, it has the same value as
the pay-off of the option at the expiry of the option. If a portfolio replicates the
option then the option's value is the price of setting up the portfolio.

2.11 Further reading
The basic model-free inequalities, known as rational bounds, were proved by
Merton. His book Continuous Time Finance, [112], is a collection of his papers
including the original proofs, and is well worth acquiring.
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Cochrane's Asset Pricing, [39], is an account of pricing methodologies for as-
sets including alternatives to no-arbitrage when no-arbitrage pricing is too weak to
provide effective bounds.

2.12 Exercises

Exercise 2.1 If a dollar is 120 yen and £1 is $1.4, what can we say about the
pound/yen exchange rate?

Exercise 2.2 Each of the following products pays a function of the spot price, S, of
a non-dividend-paying stock one year from now. If there are no interest rates and
spot is 100, give optimal upper and lower bounds on their prices today.

(i) The pay-off is l between 110 and 130 and zero otherwise;
(ii) The pay-off is S - 80;

(iii) The pay-off is zero below 80, increases linearly from zero at 80 to 20 at 120
and then is constant at 20 above 120;

(iv) The pay-off is (S - 100)2.

Exercise 2.3 Let P be a digital put struck at K1 and C be a digital call struck at
K2. (A digital put pays 1 if spot is below the strike at expiry, and a digital call pays
I if spot is above the strike.) What can we say about the prices of C and P in each
of the following cases?

(i) K1 = K2;
(ii) K1 < K2;

(iii) K1 > K2.

Exercise 2.4 If interest rates increase how will the forward price of an asset change?
How will the value of a forward contract change?

Exercise 2.5 Suppose no-arbitrage bounds for an option price show that the price
lies between L1 and L2 in a world without transaction costs. What can we say
about the bounds if we take transaction costs into account?

Exercise 2.6 Show that if interest rates are zero and call option prices are a dif-
ferentiable function of strike then the derivative of the prices with respect to strike
must lie between -1 and 0. What if interest rates are non-zero?

Exercise 2.7 Let D(K) pay (S - K)2 if S > K, and zero otherwise. Show that if
D(K) is a differentiable function of K then the third derivative of D with respect
to K is non-negative.
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Exercise 2.8 Show that if the current spot price is So, and the continuous com-
pounding rate is r then a call and a put both struck at Soe1T and expiring at time T
are of equal value.

Exercise 2.9 Prove that zero is the optimal lower bound for a digital call option.

Exercise 2.10 Interest rates are non-negative. An asset is worth 100 today and in
the future the value is constant, except at random times when the asset's value
drops by a random amount. Construct an arbitrage.

Exercise 2.11 Let S, be the price of a non-dividend-paying stock. Suppose deriva-
tives A and B pay functions f and g of the stock price at expiry. Suppose that we
have

f(x) < a +,Bx +Yg(x)

What can we say about the relative prices of A and B today?

Exercise 2.12 Asset A pays I if the stock price over the next year is at some point
above 100. Asset B pays 1 if the stock price is above 100 a year from now. What
can we say about the relative prices of A and B?

Exercise 2.13 Formulate analogues to Theorem 2.7 and Theorem 2.10 for put op-
tions.

Exercise 2.14 Suppose it costs aX to buy or sell a shares. What forward prices for
a stock are non-arbitrageable?

Exercise 2.15 Let S be a non-dividend-paying stock. The riskless bond has value
ert. A contract pays S,2 - S,, at time t2. Show that this contract can be replicated
by trading in the stock and riskless bond, and gives its price today.

Exercise 2.16 For each of the following pairs of prices of non-dividend paying
stock, S, and 1-year riskless zero-coupon bond, Z, with principal 1,

S=100,Z=1,
S=90,Z=1,
S=100,2=0.9,
S=110,Z=1,

find optimal rational bounds on the following 1-year contracts

(i) a digital call struck at 100
(ii) a digital put struck at 100
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(iii) a portfolio of 0.5 digital calls struck at 90 and one call option struck at 110
(iv) a portfolio of 0.5 digital calls struck at 90 and one digital call option struck

at 110

Exercise 2.17 For each of the following pairs of prices of non-dividend paying
unlimited liability stock, S, and 1-year riskless zero-coupon bond, Z, with
principal 1,

5=100,2=1,
S=90,Z=1,
S=100,Z=0.9,
S=110,Z=1,

find optimal rational bounds on the following 1-year contracts

(i) a digital call struck at 100
(ii) a digital put struck at 100
(iii) a portfolio of 0.5 digital calls struck at 90 and one call option struck at 110
(iv) a portfolio of 0.5 digital calls struck at 90 and one digital call option struck

at 110

Exercise 2.18 For each of the following pairs of prices of risky 1-year zero-coupon
bond, S, with principal 1, and 1-year riskless zero-coupon bond, Z, with
principal 1,

S=0.8,Z=1,
S=0.9,Z=1,
S=0.6,Z=0.9,
S=0.7,Z=1,

find optimal rational bounds on the following 1-year contracts

(i) a digital call on S struck at 0.9
(ii) a digital put struck at 0.9

(iii) a portfolio of 0.5 digital calls struck at 0.5 and 1 call option struck at 0.75
(iv) a portfolio of 0.5 digital calls struck at 0.6 and 1 digital call option struck at

0.8

Exercise 2.19 Let K1 < K2, let P(T, K) be the price of a put option struck at K
with maturity T. Show that, in the case of no-arbitrage,

P(T, K1) < K2P(T, K2).
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Exercise 2.20 Let S. be the price of a non-dividend paying stock. Let the price of
a bond be e", A derivative pays

at time T. What is its price today?

Exercise 2.21 Assume the interest rate is zero. Let S, be the price of a non-dividend
paying stock, A derivative, D, pays f(ST) at time T. Show that the optimal model-
free lower bound for D is always less than or equal to f (So). Formulate and prove
an analogous result for upper bounds.

Exercise 2.22 Prove that, if Sr is a non-dividend paying stock, then C(K, T) is an
increasing function of T.

Exercise 2.23 Prove that, if r = d = 0, then the price of a put option with fixed
strike is an increasing function of time to maturity.
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Trees and option pricing

3.1 A two-world universe

In this chapter, we start the pricing of vanilla options using the concept of a tree.
We commence with a highly stylized situation and gradually extend our model to
make it more accurate. We start by considering an option on an asset which can
only take two values in the future. For concreteness, suppose we have an asset
which is worth 100 today, and will be worth either 110 or 90 tomorrow. Suppose
we are a bank and someone wishes to purchase a call option today. Suppose the
option is struck at 100. We assume that interest rates are zero for simplicity.

The option buyer will exercise the option if and only if the stock price is greater
than the strike price, that is he will exercise the option only if the stock price is 110
and then will make 10. If the stock price is 90, he does not exercise and thus he
makes nothing. This means that in the first state of the world, the bank is down 10
and the other it is down nothing. We conclude that the value of the option must be
between zero and 10p.

In one state of the world, which we henceforth call `A', the option is worth 10 and
the stock 110, whereas in the other, `B', the option is worth zero and the stock 90.

We, the bank, wish to hedge our risk. The simplest hedging strategy would be
to buy the stock if the option was going to be worth 110 tomorrow and do nothing
otherwise. However, this requires foretelling the future, and if we could do that
there would be plenty of arbitrage opportunities! We require a hedging strategy in-
dependent of the future - another way of saying this is that we must make a decision
on the basis of the information available today. To make this concept precise'we
will require a notion of information: a topic to which we will return in Chapter 6.

3.1.1 Pricing in a one-step tree by hedging

Without foreknowledge, we must buy a fixed number, 8, of stocks today. Denoting
the stock price by S and the option's value by Opt, our portfolio can be written

SS - Opt.

44
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Fig. 3.1. A one-step, two-state model. Time goes from left to right.

In state of the world A, the portfolio will be worth

1103-10

and in state of the world B, it will be worth

908.

To hedge our risk means to remove all uncertainty; that is, our portfolio should be
worth the same in either state of the world. To achieve this, we need to choose 8 so
that

1105 - 10 = 905.

That is

8 = 1/2.

Assuming it makes sense to hold half a share, we buy half a share today to
hedge our risk, and whatever happens our portfolio is worth 90/2 = 45 tomorrow.
Since we are assuming no interest rates and our portfolio is riskless, this means that
the portfolio must be worth precisely 45 today also. The crucial point here is that
the no-arbitrage condition enforces the prices. The portfolio agrees with 45 riskless
bonds in every state of the world tomorrow, so it must have the same value as
45 riskless bonds today. That is it must be worth 45 today.

Today's share price is 100 so our portfolio is worth, (100/2) - Opt, which must
be equal to 45. This implies that our option is worth 5 and that 5 is the only
arbitrage-free price.

3.1.2 Risk-neutral valuation

A notable point about the above argument is that probabilities appeared nowhere.
The argument remains valid regardless of what the probability of an up-jump is.
If the reader thinks `Ah, but what if the probability of an up-jump is 1?' we observe
that a probability of 1 would lead to a simple arbitrage opportunity - the value
of the stock tomorrow cannot grow faster than the risk-free interest rate. Other-
wise, one could borrow at the risk-free rate and use the money to buy a stock and
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achieve a certain profit. Thus in an arbitrage-free world a probability of 1 is not
possible.

The only role of probabilities is thus to ensure that both world states are possible.
Suppose we did try a probabilistic approach. In particular, suppose that world

A occurred with probability p, and world B occurred with probability 1 - p. The
expected value of our stock tomorrow would then be

l lop + 90(1 - p)

and the expected value of our option would be

lOp + 0(1 - p) = lOp.

The only probability which gives the same answer as our arbitrage-free argument
is

p = 1/2.

This gives an expected value to the stock of 100, which is the same as today's
price and since we have taken interest rates to be zero, the same as a risk-free bond
of value 100 today. Hence, if we wish to use a probabilistic approach, we must
assume that investors are risk-neutral; that is, they do not require a premium for the
riskiness of the stock over a risk-free bond. Of course, we do not actually believe
the investors are risk-neutral - this is a mathematical sleight of hand to make the
probabilistic approach give the correct answer.

Note the important point that in fact p will be bigger than 1/2 because of
risk-aversion, and the expected value of the option will therefore be greater than
the guaranteed arbitrage-free price. The ability to hedge has removed the risk
premium.

Lest we think the above argument was an artefact caused by the particular num-
bers chosen, or by the particular sort of option, let's consider an option (really a
derivative) that pays a + f in world A and a in world B. If we sell one option today
and buy 8 stocks today then our portfolio is worth

1108-a-
in world state A tomorrow and

908 - a

in world state B. In order to hedge all risk, we therefore need

1108 - ,6 = 908.

This is, of course, solved by taking 8 = ,6/20 and our portfolio is worth 4.5,6 - a
tomorrow whichever world state occurs.
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Fig. 3.2. A more general one-step, two-state model. Time goes from left to right.

Our portfolio today is worth 5,6 - Opt which must equal the portfolio's value
tomorrow. Solving for Opt we get

Opt=a+0.5/3.

Let's compare this price with the risk-neutral price. As before, risk-neutral pric-
ing means that the world states both occur with probability 1/2. The risk-neutral
expected value of the option is therefore

0.5(a+,6)+0.5a=a+0.5,6,

which agrees with the arbitrage-free price. Note how much easier the risk-neutral
argument is.

In this two-state model, we can price any option by picking a and /3 appropri-
ately. We have deduced this price by showing that it is both the unique arbitrage-
free price and the price implied by risk-neutral pricing.

Why does risk-neutral pricing work? Once we have picked p, and set the value
of Opt to its risk-neutral value, we have, denoting the riskless bond by B,
that

E(B) = B0, (3.1)

IE(S) = so, (3.2)

E(Opt) = Opto. (3.3)

In other words, every market instrument's value today is equal to its risk-neutral
expected value tomorrow. As expectation is linear, this will be true of any combi-
nation of market instruments. i.e. if a portfolio is of zero value today, it must have
expected value zero tomorrow. This means that either the portfolio will always be
worth zero tomorrow, or, if it can be worth a positive amount, it is also possible for
it to be worth a negative amount. If it were the case that the portfolio could be posi-
tive and never negative, the expectation would not be zero and so we know that this
is not case for our portfolio, which means that it is not an arbitrage portfolio. This
argument shows that if the probability of an up-move is the risk-neutral probability,
and the price of the option is its expectation using that probability, then there can
be no arbitrage.
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What if the probability of an up-move is not the risk-neutral probability?
Arbitrage is still impossible with the risk-neutral price as the definition of arbi-
trage only uses zero and non-zero probabilities. This means that if an arbitrage
exists for some value of p between 0 and 1, it exists for all values of p between 0
and 1. Conversely, if there are no arbitrages for some value of p then there are no
arbitrages for all values of p.

We have therefore proved that the risk-neutral price for an option in this two-
state interest-rate-free world is an arbitrage-free price. It is important to realize
that the risk-neutral argument and the hedging argument are actually arguments
in opposite directions. The risk-neutral argument showed that a certain price was
arbitrage-free it did not prove that no other prices were arbitrage-free. The hedging
argument showed that all prices except one were arbitrageable. It did not prove that
the remaining price could not be arbitraged.

Thus the risk-neutral price gives a lower bound on the set of arbitrage-free prices,
and the hedging arguments gives an upper bound. Importantly, in this two-state
model, the upper and lower bound agree, and we are left with a unique price which
is arbitrage-free.

3.1.3 Pricing by replication

There is an interesting third alternative interpretation of this price. It is the price
guaranteed to cover the cost of replicating the option in all possible worlds. In the
last chapter, we showed that if a portfolio dominated the option, in the sense of
being worth at least as much at the option in all possible worlds at the time of
expiry, then the option can be worth no more than the portfolio today. Similarly, if
the portfolio is dominated by the option in all possible worlds, the option must be
worth at least as much today. Thus if a portfolio is worth the same as the option in
both states of the world tomorrow, it must have the same value as the option today.

In our two-state model, there will be a unique portfolio which matches the
option's pay-off in the two worlds, and the price must therefore agree with that
portfolio's value. To see this, observe that any combination of stock and bond, has
a pay-off which is a straight line as a function of the stock price. This line will
have slope equal to the number of stocks held, and its value when the stock price is
zero will be the number of bonds held. There is a unique straight line through any
two points, and so there will be a unique portfolio which agrees with the option's
payoff in both of the possible world states.

We illustrate this point by returning to the option which paid a + j in state A and
in state B. We have sold the option, and receive a fee for doing so. Our argument

above said that we must buy $/20 stocks to hedge our risk, and this will cost

100 x 20 = 5,8.
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We therefore borrow £4.5,8 - a, and combine this with the fee to purchase ,B/20
stocks. In state A, our portfolio consisting of the stocks and the loan, which is a
liability and therefore of negative value, will be worth

110x,8/20-4.5/6+a=,6-j-a,

and in state B it will be worth

90x/3/20-4.5/6+a=a.

In both states, our portfolio's final value is equal to the option's payoff. We have
thus created a portfolio which precisely replicates the option's payoff and perfectly
hedged our risk. The fact that the portfolio and the option agree in all world states
tomorrow, thus guarantees that their prices must agree today. The price of an option
is therefore the sum of money, which, by being invested appropriately today, is
guaranteed to match the value of the option's payoff in all states tomorrow.

Note that one interpretation of the hedging argument is that we are using the
option and stock to replicate the bond. In the replication argument, we use the
stock and bond to replicate the option. Note also that one could equally well use
the option and bond to replicate the stock.

3.2 A three-state model

We have found a price for an asset that takes one of two possible values in the
future, and have given three different interpretations of the price thus found. How-
ever, an asset that takes precisely one of two prices tomorrow is hard to find, so our
model is too primitive to be useful. How can we improve it? One naive approach
might be simply to attempt the same argument with more possible world states.
To illustrate the problems with this, suppose there is an additional world state `C'
where the stock takes value 100, and as before we wish to price a call option with
strike 100.

If we buy y stocks today and sell one option, then our portfolio will be worth

110y - 10, 100y, 90y,

in world states A, C and B, respectively. As we have only one variable to play with,
we cannot make these three quantities equal. In particular, if the last two are equal,
then y is zero and the first is -10, so we have not hedged at all. If we ignore C and
hedge for world states A and B, then we obtain the hedge implied by the two-state
model that is y = 1/2. The portfolio is then worth 45, 50, 45, in states A, C, and
B respectively. Whilst the portfolio is no longer risk-free, we do know it must be
worth at least 45 tomorrow and could be worth more so it must be worth more than
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Fig. 3.3. A one-step, three-state model. Time goes from left to right.

45 today. This implies that

50 - Opt > 45.

The price of our option is therefore less than 5. However, this is only an upper
bound not a necessary price.

The difference here is that if we set up the replicating portfolio from the two-
world case, it dominates the pay-off rather than reproduces it.

Suppose we try risk-neutral valuation. In order for the expected value of the
stock tomorrow to equal the price today, we must have that the probability of state
A equals that of state B. Unlike before however, this can be achieved by any prob-
ability, p, between 0 and 1/2 as the excess probability is mopped up by state C
which thus has probability 1 - 2p, which must of course be non-negative. The
expected value of the option is now just 10p which ranges between zero and five,
yielding the same bounds on the option price as the hedging argument.

Our hedging argument has shown that only prices between zero and five can be
non-arbitrageable, whilst the risk-neutral argument shows that prices between zero
and five are not arbitrageable. We therefore conclude that the set of arbitrage-free
prices for the option is the set of prices between zero and five.

The three-world universe is an example of an incomplete market, that is, a market
where portfolios cannot be arranged to give precisely the desired pay-off, and it is
characteristic of incomplete markets that the price of an option can only be shown
to lie in an interval rather than being forced to take a precise value. The market
price of such an option would then be determined within the range of possible
prices by the risk-preferences of traders in the market rather than mathematics. ,

3.3 Multiple time steps

3.3.1 More realism

At this point, option pricing is not looking very successful - clearly we will want
to price options on assets that can have more than two values in the future. The
solution to this problem is to catch the stock moving between the points. If we
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Fig. 3.4. A two-step tree. Time goes from left to right,

assume that stock prices move continuously, which is a reasonable though dis-
putable assumption, we can do this.

We previously considered an asset which went up or down 10 after one day. We
can make this model finer by letting the asset go up or down 5 after each half day.
The asset is therefore of price 100 today and can take prices 105 or 95 after half a
day. If it takes price 105 after half a day, then it can take 110 or 100 after a day, and
if it takes price 95, then it takes price 90 or 100.

We denote the states 110, 100, 90 as A, C and B respectively. The half-day states
105 and 95, we denote by D and E respectively. These are illustrated in Figure 3.4.

3.3.2 Pricing in a two-step model by hedging

To compute the value of our call option, we now compute backwards. We know the
value of our call option in each of the final states as before. We price it after half a
day.

If the price after half a day is 95, we are in state E and the pricing is easy, since
whatever happens in the second half day the option will have zero value. Thus we
conclude the price in this world state is zero.

At D, we apply the same scheme as in the one-step two-state case. We can use
either risk-neutral valuation or a hedging argument. We do the hedging argument
first. If we hold 8 assets then the value of our assets minus the option in states A
and C will be

1105 - 10 and 1008

respectively. These two numbers are equal if and only if 8 = 1. The portfolio is
then worth 100 in both world states at the final time, and therefore must be worth
precisely 100 after half a day in state D. The portfolio is one stock minus one
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option; this says that

105 - Opt(D) = 100, (3.4)

and hence that Opt(D) = 5.
On day zero, we have to hedge the possibilities D and E. In state D, the asset is

worth 105 and the option is worth 5. In state E, the asset is worth 95 and the option
nothing. To be hedged, we hold e assets, and our portfolio will be worth

105E - 5 and 95E

in states D and E respectively. For these to be equal, that is for us to be hedged, we
must have e = 1/2. The portfolio will then be worth 47.5 in both states D and E,
and so must be worth 47.5 today. This means that

0.5 x 100 - Opt(0) = 47.5,

that is Opt(0) = 2.5.

3.3.3 A two-step model and risk-neutral valuation

Whilst the hedging argument guarantees us a mathematically correct price, it is
rather cumbersome to carry out. The risk-neutral price, whilst harder to justify,
is much easier to actually use and will always agree with the hedging price. We
compute as follows.

At D a risk-neutral asset will move up or down with probability 1/2, as this is
the only probability that makes the expected value 105. The option is therefore
worth (10 + 0)/2 = 5 in state D. In state E, the expectation is zero whatever the
probability is, and the value of the option is therefore zero.

Initially, the risk-neutral probabilities must be 1/2 again to get the expectation to
be 100. We can therefore deduce, using risk-neutral valuation again, that the initial
value of the call option must be

1
2(0 + 5) = 2.5,

which, of course, agrees with the hedging price.
Note that an alternative way to compute this price is first to work out the risk-

neutral probability of the stock arriving at each final node, and then compute the
expectation of the final pay-off using these probabilities. In particular, the proba-
bility of attaining state A is 1/4, as it requires two up-moves. The expectation of
the final pay-off is therefore

10/4=2.5,

which of course agrees with the arbitrage-free price above.
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Fig. 3.5. A two-step tree with the option values filled in. Time goes from left to right.

We have demonstrated that it is possible to hedge an option precisely in a two
time-step model. This hedging guarantees a unique arbitrage-free price for the op-
tion, and this price agrees with the price obtained by assuming that investors are
risk-neutral. The prices are illustrated in Figure 3.5.

The only important qualitative feature of the above argument was that at each
time-step the asset could only move to two possible new values. This meant that
by using only the asset, we could hedge the option totally. The number of time-
steps was not important: one could do as many time-steps as one liked, provided
the feature of having only two immediately succeeding states was retained.

Note that the third interpretation of the price is still valid in the two time-step
model. The price of the option is the amount of money we need to invest today
in order to match the pay-off of the option whatever happens. At each point, we
hold the amount of assets suggested by the hedging and keep the rest (which is
possibly negative) in riskless bonds, that is, cash in our interest-rate-free world. As
the amount of assets held to hedge varies with the step, the investment is dynamic -
the number of assets held is a function of time and asset price.

3.4 Many time steps

There is nothing magical about two steps. As long as each node has precisely two
daughter nodes at the next step, the same arguments will work, no matter how
many steps there are. The general structure of the set of nodes is called a tree. As
in the two-step case, one always starts at the final time, where the value of the
option is just its payoff, and work backwards so that when computing at a node,
one always knows the value of the option at both the daughter nodes. Thus all
our arguments work and there is a unique arbitrage-free price for the option. As
before, we can choose how to compute. In particular, we can iterate back through
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Fig. 3.6. A four-step tree. Time goes from left to right.

the tree computing the value of the option in each of the nodes in the second last
layer, and then the third last and so on. Alternatively, we can string the risk-neutral
probabilities together to get the probability that the spot lands at each node in the
final layer and then take an expectation against them. In Figure 3.6, we give an
example of a tree with four steps.

If we are in a zero-interest-rate world, then at each node in the tree the risk-
neutral probabilities will, as in the one-step world, be 0.5 in order to ensure that
the expectation at the next time-step is equal to the current value. This means that
we can easily compute the probability of spot landing at each of the final nodes.

To land at 110, we must have 4 up-moves so the probability is

1 _ 1

24 16

To land at 105, we must have exactly 3 up-moves and one down-move (in any
order) so the probability is

C4 1 1

1

24 =
4

To land at 100, we must have exactly 2 up-moves and 2 down-moves (in any order)
so the probability is

C4 1 3

2
24=g

To land at 95, we must have exactly 1 up-move and 3 down-moves (in any order)
so the probability is

4 1 1

1 24 - 4'

To land at 90, we must have exactly 0 up-moves and 4 down-moves so the
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probability is
1 _ 1

24 16'

The value of a call option is then its expectation with these probabilities. Thus a
call option struck at 100 is worth

(110-100)16+(105-100)4
1610

8
(3.5)

Whilst a call option struck at 95 is worth

(110-95) 16 +(105-95) 1 +(100-95) 3 = g6. (3.6)
4 8

More generally, suppose spot is S, we have N steps and at each step the spot
goes up or down by x. Let Sj be the value of spot after j up-moves and N - j
down-moves. Thus

Sj =S+jx-(N- j)x = S + (2j - N)x.

The probability in the final layer that spot has value Sj is equal to

(N) 2N
1

as there are (N) ways to reach that node. The value of a derivative that pays f (S)

after N steps will be

N (N)
y 7f (S + (2j - N)x),

as it is the sum of the value of the derivative in each node times the probability that
that node is achieved. We want to understand what happens as N goes to infinity.
To do so, we will have to let the trees change with N in such a way that some
properties are preserved.

3.5 A normal model

By creating a tree with more and more steps, that is by taking smaller and smaller
time-steps, we can get finer and finer gradations at the final stage and thus hope-
fully a more accurate price. However, we have to be a little careful about how we
do this in order to get the prices to converge to a meaningful value. Which limit-
ing price we obtain will depend on how we make the trees finer - this essentially
comes down to assumptions we make about the random process the asset price
follows.
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As a warm-up, we consider how, for a very simple model, a limiting price can
be obtained. In particular, we take a model in which the expected price at expiry
is equal to today's price, interest rates are zero, and in every time-step the asset
moves up or down by the same amount with equal probabilities. Let's suppose
that the asset's value today is So, the exercise time of the option is T, the mean
value of the asset at time T is So, and the variance of the asset price at time T is
a2T.

If we divide the time interval from time 0 to time T into k equal steps, then at
each step we will want a mean change of 0 and a variance of a 2T l k, since for
independent random variables the mean and variance just add.

At each step, we therefore have that the asset moves up or down by

ak = a
Tkc

,

with probability 0.5. Note that this gives the correct variance for each step.
As we have chosen a model in which the asset's average growth rate is zero

and interest rates are zero, the risk-neutral probabilities are equal to the real-world
probabilities, that is, 0.5. Let Zj denote a sequence of independent random vari-
ables which take the values 1 and -1 each with probability 0.5. After k steps the
asset will be distributed as

k

So +akZl.
1=1

For any fixed value of k, we can apply risk-neutral valuation (or equivalently
the hedging argument) to obtain the unique arbitrage-free price which is implied
by this k-step process. We have done this by backward propagation through the
tree; we could equally well string the probabilities together in a forward direction
to obtain the probability of ending at a given final value at maturity, and then take
the expectation of the option value against this resultant risk-neutral probability
density. For k steps, we would then obtain for the price of an option that pays
f (ST) at time T the expression

(f (So + ak

We want to understand what happens to this expression as we let k tend to
infinity.

As k increases, our tree becomes finer and finer but the variance of the expression
ak _1 r Z1 remains equal to a2T and it retains the mean 0.

Recall the Central Limit theorem (see for example [63] Section 5.10 or
Appendix C)
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Theorem 3.1 Let X1, X2, ... , be a sequence of independent identically-distributed
random variables with finite means µ and finite non-zero variances a2, and let

Sn=X1+X2+...+X,,.

Then the distribution of
S -nA

no 2

converges to that of a Gaussian random variable of mean 0 and variance 1 as n
tends to infinity.

In our case this means that

k

ZI
k 1=1

converges to a Gaussian distribution of mean 0 and variance 1. We denote such a
Gaussian distribution by N(0, 1).

Thus the distribution of the asset price converges to that of

So + o,I-T-N(0, 1),

and the price of the option converges to
r

E(.f (So + or I-T-N(0, 1)) =
2n J

f (So + o' ,\I-T-x)e dx. (3.7)

For certain pay-offs, such as that of a call option, this integral can be evaluated
explicitly.

Unfortunately, our simple model is a little too simple. If the modelled asset is a
stock then we know that the price can never be negative. However, having the final
price distributed as a normal distribution implies a positive probability of negative
value which we know is impossible. Also, the absolute movements in price of a
stock depend on its value. For example, for a stock with price 1000, a movement
of 30 is minor whereas for a stock of value 100 it is large, and for a stock of
value 30, it is huge. Furthermore, if a company's shares are valued at 1000 and
the company decides to do a ten-for-one split, that is it replaces each share by ten
new ones, then each new share will be worth 100, and we expect the new shares to
move a tenth as much as the old ones.

It is therefore better to think in terms of percentage movements; so rather than
our stock moving up or down 30, we instead let it move up or down 3%. One easy
way to do this is to work with the log of the share price instead of with the price
itself. As the log of a product is the sum of the logs, we can model percentage
changes by adding terms to the logs. As the exponential function is inverse to the
log function, and the exponential of any number, positive or negative, is positive,
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modelling changes to the log function guarantees that the share price remains pos-
itive. We can apply the same tree methodology with some slight modifications to
obtain a process for the log of the stock price and a risk-neutral price for the option.
The limiting distribution for the stock price in both the unadjusted and risk-neutral
processes will then be log-normal; that is, the log follows a normal process. We
will also have to take into account the fact that the real-world behaviour will en-
compass a risk premium and so the real-world behaviour will be different from the
risk-neutral behaviour. In particular, the mean real-world value will not be today's
value even when there are no interest rates.

3.6 Putting interest rates in

Before proceeding to the study of the limiting case for an asset whose log follows
a normal process, we look at how to put interest rates back in. Suppose the con-
tinuous compounding interest rate is r. At time zero, we then have that the riskless
bond is worth 1 and at time At it is worth e'°t

Our stock is worth So today and either S+ or S_, with S_ < S+, at time At. We
must have that

S_ < Soer°t < S+. (3.8)

Otherwise, we can construct an arbitrage just by considering the portfolio consist-
ing of the difference of the two assets.

As in the interest-rate free world, given a derivative that pays f (S) at time At, we
can construct a portfolio which precisely replicates it by considering a multiple of
the stock and a multiple of the bond. However, rather than repeating that argument
we look at the risk-neutral valuation approach.

We need to find the probability that makes the stock grow on average at the
risk-free rate. In other words, we must find p such that

IE(S°t) = pS+ + (1 - p)S_ = Soe'°t, (3.9)

or

p(S+ - S_) = Soe' °t - S_. (3.10)

We thus deduce that
_ Soe''°t - S_

3 11p . )(
_S S

It follows from (3.8) that p lies strictly between zero and one.
We previously justified risk-neutral valuation by saying that the expectation

value of every possible portfolio was equal to today's value, so no portfolio could
be an arbitrage portfolio; a portfolio of zero value today with possible positive value
tomorrow and no possibility of negative value would not have zero expectation.
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Let IERN denote expectation with the risk-neutral probability p. The bond no
longer satisfies

ERrr(Bot) = Bo

as the left side equals e' At and right side is equal to 1. It is therefore not possible
to make the same argument.

We can rescue the argument by thinking in terms of discounted prices. Instead
of requiring that every portfolio should have expectation equal to today's value, we
require that its expectation should be equal to the asset's value invested at the risk-
free growth rate, or equivalently that its discounted expectation is equal to today's
value. We thus want

ERN (
Bot) = Bo , (3.12)

for every asset. This equation is trivially satisfied for the bond and we have the
chosen the risk-neutral probability so that it is satisfied by construction for the
stock. This leaves us with the option we wish to price. We define Opto to satisfy
(3.12):

AAt

Opto = )ERN (BAt) = e "otERN(f(S)), (3.13)

where f is the option's pay-off.
If we now set up a portfolio which contains multiples of the stock, option and

bond with initial value zero, then the expected value of its ratio with the bond, using
the risk-neutral probability, at time At will be zero too. As the bond's value does
not depend on the value of the asset, this means that the portfolio's risk-neutral
expectation must be zero also. This again implies that it cannot be an arbitrage
portfolio by the same argument. If it could be positive but never negative then its
risk-neutral expectation could not be zero and so it would not be of zero value
today.

In conclusion, we can find an arbitrage-free price in a one-step two-state world
with interest rates by setting

Opto =
e-rot(Pf (S+) + (1 - P).f (S-)),

with p given by (3.11).
Whilst we have arrived at this price via risk-neutral valuation, we could equally

proceed via hedging or replication arguments. In a many-step tree, hedging and
replication arguments require rebalancing the portfolio at every time-step so as
we let the number of steps go to infinity, we will have to rebalance the portfolio
continuously. Thus to replicate the option, we will have to invest a sum of money
at time zero in stocks and bonds, and then continuously switch money between the
stock and the bond depending upon how the stock price moves.
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3.7 A log-normal model

3.7.1 The real world behaviour

Taking the results of the last two sections into account we now study a model in
which the log of the asset price moves up and down by fixed increments instead of
one in which the asset price does. We do so partially as an overture for the more
technical results of Chapters 5 and 6 which deduce the same final price for a call
option by using quite different techniques.

Thus suppose that we want to know the price of an option that pays off at time T
and we divide time into N steps. We want to keep the mean and variance of the log
of the stock price at time T fixed as we vary N. Thus suppose we take the mean
change of the log at time T to be µT and the variance of the log to be o-2 T. In each
small time-step of length At = T/N, this means we want mean µAt and variance
a2At since mean and variance add for independent variables. We shall call a the
volatility of the asset as it reflects how much the asset wobbles up and down. We
call p the drift as it expresses how much the asset drifts upwards. We will expect
µ to be bigger than r, since the stock should grow more quickly than a riskless
bond in compensation for its riskiness. We can say that the stock carries a risk
premium.

We therefore take

log S jot = log St j_I)ot + At + OtZ j, (3.14)

where Z j takes the values 1 and -1 each with probability 1/2. It is easy to check
that the mean and variance of Z j are 0 and 1 respectively. This immediately implies
that the mean and variance of the change in log S across the time step are µAt and
a2 At as desired. Adding the terms for each j together, we have for a given value
of N that

N-1
log ST=log So +µT+Q Ot Zj. (3.15)

j=0

We can rewrite the final term as

1 N-1aJT
Y"

Zj.
j=0

It follows from the Central Limit theorem, just as in our normal model, that as
N goes to infinity the random variable

N1
Y, Zj,
j=0

becomes distributed like a normal random variable of mean 0 and variance 1. Thus
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as N tends to infinity, log ST becomes distributed like

log So + µT + QVN(0, 1),

and so the distribution of ST is that of

SpeµT +ar-,1_T_N(0,1)
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We shall then say that ST is log-normally distributed, as its log is normally dis-
tributed.

3.7.2 The risk-neutral world behaviour

For pricing options, the real-world distribution of the asset is not so important. We
already saw that the probability of up and down moves does not affect the price,
and instead it is the distribution of the asset under risk-neutral probabilities that
matters. Thus to price options we need to find out the final distribution of the asset
price if we use the risk-neutral probabilities at each step. This means that we need
to understand what the probabilities of up and down moves at each step are, and
understand how they behave as N tends to infinity.

We can use (3.11) to compute the probabilities across each step. We know that
S1 Or is given by

SjAr = S(j_1)Areµ0rf0'Ar

Using (3.11), we have that p j, the risk-neutral probability at step j, is given by

Sj-1e'-At - Sj_ieµtr-Q Or

Sj-1eµ0r+0rAt - Sj-leAAt-v or'

where we have denoted S(j -1)Or by Sj _ 1. We cancel through to remove S j_ 1. We
deduce that the probability p j is independent of j and is equal to

erOt - eAAt_ or
p eµor+o or _ eµot or ' (3.16)

We are ultimately interested in what happens as the number of steps gets large, or
equivalently what happens as the step-size goes to zero. If we cancel through by
eµ°t we obtain

p=
e("-µ)At - e_a Ar

e° Or - e-v 'r
We need to learn how to manipulate expansions to go further. Recall

2 3

eY=1+x+ 2 + 3 +

(3.17)
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We shall say

if there exists C such that

e-a Dr = 1 - Q Ot + Q20t/2 + 0(Ot3/2).

If f (x) = 0(xN) then so does -f. We have
2

ex=l+x+x +0(x3).
2!

We shall use
1

= 1 + 0(xN).

Note that O(xN) denotes different quantities on the two sides of the equation here.
For general discussion of the properties of 0, see Appendix D.

We compute

ea or = 1 + 6 -At + or 2L\t/2 + 0(Ot3/2)

so

Hence

which implies

1
-At-112(1 + 0(ot)),

2Q

We also need to understand the numerator: first note

e(? -w)ot = 1 + (r - p)Ot + 0(Ot),

and

ea of - e-o or = 20 Ot + O (At'/'),
= 2cr Kt(1 + 0(Ot)),

= _At -1/2 + 0(Ot1/2).

Trees and option pricing

f (x) = 0(xN)

If(x)I < CIxIN.

1

ea Ot - e-a Ot IT
1

Or2

-e of = -1 + a At -
2

At + 0(At3/2).

Using these expressions we get

1
Q At + (r - µ - 2U2)Ot + 0(At3/2). (3.18)
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Multiplying the expansions, we obtain

r-lL-2Q2
12P = 2 1 At + Cl(ot).

It is interesting to note that this equals
2

if and only if

1
2µ = r - 26.

63

This would mean that there was no risk premium in the real-world measure.
The probabilities of up and down moves are no longer

2

but instead are adjusted
to take account of the difference between the mean rate of growth of the stock and
the growth rate of the riskless bond. However, even if they are both zero we still
get extra terms. These arise from the fact that

1

(ec"IrAl + e orl 1;

and we therefore need a probability adjustment to make the expectation of the stock
value equal to the bond's future value.

We want to study the behaviour as N, the number of steps, goes to infinity; just
as we did with the real-world probabilities, we can write

N
log ST = log So + µT + a j - E Z j , (3.19)

j=1

where now 2j denotes a random variable taking the value 1 with probability p,
otherwise it takes the value -1. Life is a little more complicated now as the defi-
nition of the random variable 2j depends on the probability p, which depends on
the step-size and hence on the number of steps N.

What properties does 2j have? Its mean is no longer zero but is equal to

(r__a2)Q()1)

instead. It immediately follows that the mean value of log ST is

log So + (r - I a2) T + O(N-1/2),

using the fact that At = TIN. We therefore have that the mean value of log ST will
converge to

l o g
2

o ' ,

as N goes to infinity.
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On the other hand, the variance of Zj is equal to

2_ 10r2
1 - v2 = 1 -

(r_- µ 2At + O(Ot3/2). (3.20)
a

The variance of the sum of N of these is

_ 1,2)2
N -

(,, - µ 2T
+ O(N-1/2) = N + 0(1).

We then have to multiply by 6 T /N , which will change the variance by a factor
of or2TIN. So the variance becomes

a2T + 0(N-1).

The limiting distribution therefore has variance

o'2T.

Thus, as N goes to infinity, log ST converges to a distribution with the same
mean and variance as

log So + I I' - 2I a2) T + QVN(0, 1)

with N (0, 1) a normal distribution with mean 0 and variance 1. In fact, by applying
a suitably modified version of the Central Limit Theorem one can prove that this
actually is the limiting distribution and hence not only is the real-world distribution
of ST log-normal but the risk-neutral distribution is too. However, the risk-neutral
distribution has a shifted mean to take account of the absence of risk premia. We
do not carry out the technical details as they are not particularly illuminating and
we will undertake other more rigorous arguments in Chapters 5 and 6.

In fact, it is easy to show (exercise!) that

E(eu'1TN(0,1)) = e - 2T , (3.21)

which implies that

E(ST) = E(Soe(''-zQ2)T+oV_T_N(0.1)) = Soe'T .

Note that the real-world drift of the stock it has disappeared. The drift plays no
part in derivatives pricing. Our pay-off is the expected value of the option's pay-off
in a risk-neutral world in which risk premia play no part.

Since we know that the option price is just the risk-neutral expectation of the
option pay-off suitably discounted, we can now value any option by integrating its
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pay-off function against the log-normal distribution. Thus for a call option with
expiry T and strike K, we obtain

K)+).

With a little effort (see Section 6.8 for the details) this leads to the famous Black-
Scholes formula,

C(S, K, a, r, T) = SN(d1) - Ke-' T N(d2) (3.22)

where

log (K) + (r + (-1)j 1 IU2) T
(3.23),

1/ 16

and N denotes the cumulative normal function, that is,

N(x) _
1

f e-!S2ds. (3.24)
2 J

-00

There is a similar formula for put options which can be deduced immediately
from the call option formula by using put-call parity:

P(S, K, a, r, T) = -SN(-d1) + Ke-',T N(-d2). (3.25)

One could also derive this formula directly by using a similar argument.
As the Black-Scholes formula is a little opaque we plot the value of a call option

as a function of volatility in Figures 3.7, 3.8 and 3.9. Since the call option price

0

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Volatility

Fig. 3.7. The value of a one-year at-the-money call option as a function of volatil-
ity. Note how linear this graph is.
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6-I
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Fig. 3.8. The value of a one-year out-of-the-money call option as a function of
volatility.
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Fig. 3.9. The value of a one-year in-the-money call option as a function of volatility.

mus ` obey the rational bounds of the last chapter, no matter how low the volatility
goes, the option is worth more than the intrinsic value, which explains the shape of
the graph in Figure 3.9.

The remarkable fact about the at-the-money call option is that it is an almost lin-
ear function of volatility, and very neatly expresses the market's view on volatility.
In fact, we can derive a simple approximation for at-the-money options. (Here we
use at-the-money to mean that the strike of the contract is the forward price of the
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stock.) Thus if K = SerT, the call option is worth

S
//(N(a%/) _N(_cr/i)).

Now by Taylor's theorem, we have

N(x) = N(O) + N'(O)x + 2 N"(0) + 0(x3). (3.26)

Substituting and observing that even terms cancel, we see that the call option is
worth

S (N'(O)crsft +0 (a3T)).

As N'(0) = 2= , this means that if 6 is small, we have the approximation

For mental calculation, we use

0.4Sa,1_T_.

Note that as we are at-the-money, the formula applies equally to puts as well as
calls, by put-call parity.

Example 3.1 If spot is 100, volatility is 10%, strike is 100, expiry is three months
and there are no interest rates, price a call option which expires in three months.
The approximation gives

0.4 x 100 x 0.1 x 0.5 = 2.

Using instead the Black-Scholes formula, we obtain

1.995.

The error is less than 1%.

We have deduced an arbitrage-free price for a call option via risk-neutral val-
uation. We will study in detail a different approach using a hedging argument in
Chapter 5. We know that for trees, hedging and replication arguments both yield
the same price as risk-neutral evaluation so we can expect the same thing to happen
in the limit. What hedge will we need to hold? One method of finding the hedge
is to compute it for a given value of At and then let At go to zero. However, it is
easier if we just think about what the hedge is supposed to achieve.

When we use a hedging argument, we replicate the riskless bond by holding a
mixture of stock and option. We therefore wish our portfolio value to be immune
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to small changes in the stock value in the limit. If we are short one call option and
long A stocks then our portfolio is worth

-C(S, t) + AS.

For a fixed value of A the rate of change of this with respect to S is

ac
as(s't)+A.

The only value of A which will make the rate of change zero is therefore

as
(s, t).

Thus we should always hedge by holding A stocks. This process is called Delta
hedging. As A depends on S and t, this certainly means that the hedge will need
to change continuously.

3.8 Consequences

Whilst we have used the tree methodology to deduce the Black-Scholes formula,
we should note that other pricing methods are a natural consequence of our ar-
guments. We sketch these briefly here as a foretaste of later chapters. The first is
simply that rather than trying to pass to the limit in our trees, we can simply pick
a sufficiently fine tree and then apply the argument above to compute the option's
value. Whilst there is little point for a vanilla European call in doing this, this argu-
ment will work for any pay-off function including ones for which we cannot solve
the integral analytically - though we could always compute it numerically. More
generally, there are various sorts of exotic options which can be tackled by tree
methods. Recall that an American option is an option that can be exercised at any
point up to its time of maturity, i.e. it can be exercised early. Since it carries all the
same rights as a European option, it must clearly be worth as much. In general, not
surprisingly it is worth more, though not if it is a call on a non-dividend-paying
stock. To value such an option using a tree, we can work backwards as before, the
only difference being that at each node we have two different methods of valua-
tion. The first is the arbitrage-free method outlined above, which corresponds tb
not ;exercising the option. The other is the intrinsic value obtained by exercising
at that time - that is, just the difference between the strike and share price. As we
can assume that our investor will maximize his assets, we take the maximum of the
two. Working backwards, we can compute the price all the way back to the start as
before. Note that the arbitrage-free price computed at each node takes into account
not just the intrinsic value of exercising at that time but also the possible intrinsic
value obtainable by exercising at any future time.
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Another sort of option we can value with a tree is a knock-out or barrier option.
This is an option that has a pay-off at some fixed time in the future, unless the share
price drops below a given price, the barrier, at any time. We can then adapt our tree
by setting the value at all nodes corresponding to prices below the knock-out barrier
to zero and then compute in the usual arbitrage-free manner. In practice, we might
want to adapt our trees slightly to ensure numerical stability at the barrier.

In applying these tree methods to price an option, we want to have some idea of
how accurate our price actually is. Typically some idea can be achieved by evalu-
ating the price for various numbers of time steps and seeing how the price changes.
When increasing the number of steps no longer affects the price significantly, we
can regard the tree as converged and take that price. Alternatively, we can use an-
other pricing method and compare prices. If they agree, then the prices are probably
correct.

A second method we can use is Monte Carlo simulation. The price of a European
option is just the expectation of the option's pay-off under the risk-neutral log-
normal distribution. We can therefore value the option simply by repeatedly
drawing a share price from the risk-neutral log-normal distribution and averaging
the resultant option pay-offs. The law of large numbers, see Appendix C, tells us
that this will eventually converge to the correct price. The worth of this technique is
not so much to value ordinary European options, but to price exotic options where
alternative methods are not obviously applicable. We would then have to simulate
the entire path, approximating it in little time-steps and then computing the final
value of the option along the path. Note however that if the option involves some
choice on the part of the holder, there is still an issue of deciding what decision the
holder would make - for example, in the case of an American option, when should
the holder exercise.

A third method is to observe that the Black-Scholes price satisfies a certain par-
tial differential equation known as the Black-Scholes equation. Let C(S, t) denote
the price at time t of an option struck at K with expiry T when the stock price is
S; then straightforward differentiation shows that C satisfies

ac ac 1 or 2s2 a2C

at +' S S 2 aS2 -' (3.27)

with the boundary condition that CT is equal to the pay-off of the call option. As
this equation is linear and holds for any call option, it must hold for any linear
combination of call options. Any option pay-off can be approximated arbitrarily
well (in a certain sense) by call option pay-offs so it follows that the price of any
option with pay-off depending on spot at time T can be priced by solving the
Black-Scholes equation with appropriate boundary conditions.
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3.9 Summary

In this chapter, we started with a simple model of stock price evolution in which an
asset moves up or down by a fixed amount only; we showed in this simple case that
the principle of no arbitrage guaranteed a single unique price for an option which
did not in any way depend on the probability that the stock price took a particular
value. We saw that there were multiple ways to arrive at the arbitrage-free price
including hedging, replication and risk-neutral evaluation.

This model was extended to be more accurate by stringing together copies of
the one-step model, and these extended models still resulted in single prices which
were guaranteed by no-arbitrage arguments.

We then went on to construct a continuous-time model by letting the size of a
time-step converge to zero; this resulted in a final risk-neutral distribution for the
stock price which did not depend on the original mean of the stock price. The price
of a call option was then obtained as a discounted expectation of the call option's
pay-off using this distribution. This option price did not depend in any way on the
mean value of the stock price but instead the mean of the risk-neutral distribution
was precisely the future value of a risk-free bond with the same initial value.

The price on a tree of any number of steps was enforced by the principle of no-
arbitrage which applied because at each step and point in the tree, the option could
be hedged in such a way to ensure that any other option value would lead to an
arbitrage. The price therefore depended on a rebalancing of the portfolio at every
time-step. Thus in the limit, the option price was enforced by continuously trading
in the underlying asset.

3.10 Key points

For a one-step tree with two branches, every option has a unique price.
The probability of an up-move does not affect the price of an option in a one-step
tree.
A one-step three-branch tree does not lead to a unique price for an option.
A no-arbitrage price for an option can be found by hedging, replication and risk-
neutral evaluation.
Replication and hedging arguments show that certain prices are not arbitrage-
free, but do not guarantee that the remaining prices are arbitrage-free.
Ris;--neutral valuation arguments show that certain prices are arbitrage-free but
do not show that no other prices are arbitrage-free.
Any tree in which each node has two daughter nodes leads to a unique price for
an option.
The price of an option in a multi-step tree can be found by stringing the proba-
bilities forward to find the probability of attaining each node in the final layer.
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The price of an option in a multi-step tree can also be found by backwards iter-
ation, i.e. by computing the option price at each node in each layer by starting
with the last layer and iterating backwards.
By fixing the mean and variance over a time interval, and letting the step-size
go to zero, we can deduce a model in which the final distribution of the stock is
log-normal.
When pricing options with the limiting process obtained from trees, the real-
world drift of the stock plays no role.
The Black-Scholes price of a call option can be obtained by taking the dis-
counted expected pay-off in a risk-neutral world.

3.11 Further reading
The approach we have developed here is due to Cox, Ross & Rubinstein, [42], and
was not the method originally used by Black & Scholes to deduce their famous
formula. We will study the method originally used by Black & Scholes in
Chapter 5.

A good account of the tree approach covering similar ground can be found in
Baxter & Rennie, [13].

We return to the tree approach at a more theoretical level in Chapter 6. We also
return to the practical aspects of pricing on trees at various points in the book, in
particular we look at how trees are used in practice in Chapter 7.

3.12 Exercises

Exercise 3.1 Assets A and B are worth 100 today. Asset A will be worth 110
tomorrow with probability 0.9 and 90 otherwise. Asset B will be worth 110 with
probability 0.5 and 90 otherwise. Asset C is worth 1 both today and tomorrow.
How will the prices of call options on A and B struck at 100 compare?

Exercise 3.2 A stock is worth 200 today and either 190 or 220 tomorrow. There
are no interest rates. Price call options struck at 190, 200 and 220.

Exercise 3.3 A stock is worth 100 today. There are no interest rates. It will be worth
one of 90, 100 and 110 tomorrow. If the call option stuck at 100 is worth 2, give
optimal no-arbitrage bounds on a call option struck at 105.

Exercise 3.4 A stock is worth 100 today. There are no interest rates. It will be
worth one of 85, 95, 105 and 115 tomorrow. Give optimal no-arbitrage bounds on
a call option struck at 100. If the call option struck at 100 is worth 5, give optimal
no-arbitrage bounds on a call option struck at 110.
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Exercise 3.5 There are no interest rates. An asset is worth zero today and goes up
or down by 1 each day. Find the price of a call option struck at zero as a function
of the number of steps to expiry.

Exercise 3.6 A stock is worth 100. Each month its value increases or decreases
by precisely 10. The riskless bond is worth e't at time t years with r equal to 5%.
Price a four-month European put option struck at 110. Do the American case too.

Exercise 3.7 A stock is worth 50 today. Interest rates are zero. It is worth 40 or 70
tomorrow. What risk-neutral probabilities should be used to price an option?

Exercise 3.8 A stock is worth 50 today. Interest rates are zero. It is worth 40, 55 or
70 tomorrow. What are the possible risk-neutral probabilities?

Exercise 3.9 Suppose A is worth 100 today and worth 90 or 110 tomorrow. Asset
B is worth 100 today and worth 80 or 120 tomorrow. Asset B is worth 80 if and
only if A is worth 90. There is no riskless bond. Price a call option on A struck
at 100.

Exercise 3.10 For a log-normal Black-Scholes model with spot equals 100, volatil-
ity 10%, and interest rates 5%, price a call option struck at 100 with a one-year
expiry, using the Black-Scholes formula.

Exercise 3.11 Prove that the price of an American option implied by a tree will
always be as much as the price of a European option with the same parameters
priced on the same tree.

Exercise 3.12 Prove that the price of a barrier option implied by a tree will always
be less than the price of a vanilla option with the same parameters priced on the
same tree.

Exercise 3.13 Show that

Exercise 3.14 Let

1E (e°N(°' 1)) = e
1,2

.

.f (x) =2+x+x2+()(x3),
g(x) = 1 + 2x2 + (9(x3),

h(x) = x312 + x2.

Compute all the ratios and products of these functions up to 0(x3).
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Practicalities

4.1 Introduction

In the last chapter, we developed a model for stock price movements and used this
to deduce a unique necessary arbitrage-free price. One might think this was the end
of the story for vanilla call and put options - what else is there to say? Note that
one consequence of the last chapter's arguments is that by investing the cost of an
option, one can reproduce precisely the value of the option at pay-off. Given that
this is true, why bother to buy options at all? Instead of purchasing the option, why
not just carry out this dynamic replication strategy? In this chapter, we attempt to
answer these questions and look at the practicalities of option hedging.

The first thing to observe is that even if our model holds for a bank with its easy
access to the markets, it does not follow that it will hold for a general individual,
and so one could view buying an option as outsourcing the hedging strategy to
an institution better suited to carrying it out. There is also an economy of scale -
hedging many options together is not much harder than hedging one as all the Delta
hedges will add together and possibly even cancel each other.

4.2 Trading volatility

More fundamentally, it is important to realize that no model is perfect and it will
never describe the market perfectly. Where are the imperfections in our model?
Given certain parameters, our model produces a price. These parameters are strike,
time to maturity, interest rates, current stock price and volatility. One of these pa-
rameters is vastly different from the others: all except volatility are either specified
by the option contract or are observable in the market. A consequence of this is
that if you call a trader and ask for a price on an option, he will not quote you a
sum of money, instead he will quote a volatility, or vol, as traders typically say.
Actually he will quote two vols, the price to buy and the price to sell. The vol
used to price is often called the implied volatility as it is the volatility implied by
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the price. A market maker is expected to quote two prices or two vols, which are
close together so the purchaser can be sure that he is not being cheated. An element
of psychology comes in at this point, as the market maker tries to guess whether
the purchaser wishes to buy or sell and slants his prices accordingly. Note that the
difference between the two quoted prices is where the bank makes its profits. The
true price is somewhere in between, so whichever the customer chooses, the bank
makes a small profit.

How does the trader estimate volatility? We can measure, and therefore use, the
volatility of an asset over any period in the past for which we have market data. The
problem is which past period? We could, for example, use a thirty-day average. Al-
though the Black-Scholes model is based on an assumption of constant volatility
it is really the average volatility that is important, or more precisely the root-mean-
square volatility. A major news event will cause rapid movements in an asset's
price and thus a spike in the volatility. We would use a higher value of volatility
in the pricing formula if a major news event occurred in the last thirty days than if
one did not. This is undesirable because we would end up quoting a much lower
vol thirty-one days after a major news event than thirty days after one, despite the
fact that very little has changed. One solution to this problem is to use a weighted
average with the weight ascribed to a given day decaying as it gets further in the
past.

A more subtle issue is that it is not the past volatility that matters. It is the volatil-
ity that occurs during the life of the option which will cause hedging costs and the
option should be priced thereby. The trader therefore has to estimate the future
volatility. This could be based on market prices, past performance and anticipation
of future news. It is important to realize that announcements are often expected in
advance, and the information they contain will either push the asset up or down.
The market knows that the asset price will move but cannot discount the informa-
tion as it does not know whether it is good or bad. The options trader on the other
hand does not care whether the information is good or bad, all he cares about is
whether the asset price will move. Thus the anticipation of an announcement will
drive estimated vols up.

The trading of options is therefore really about the trading of vol, and the options
trader is taking views on the future behaviour of volatility rather than the movement
of the underlying asset.

4.3 Smiles

If we collect data on estimated vols from the prices of options and compare these
to historical vols, two facts stand out. The first is that vols implied by the market
prices of options are higher than historical vols. The second is that two different
options on the same underlying with the same expiry date can imply different vols.
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Fig. 4.1. Some possible smiles.

Indeed, if one plots the implied volatility as a function of the strike of an option,
one obtains a curve which is roughly smile-shaped. The qualitative nature of the
curve will vary according to the nature of the underlying but it is very rarely the
flat horizontal line which the model would predict. We show some possible smiles
in Figure 4.1.

At this point, we would seem to have an arbitrage opportunity. Either the option
with higher implied vol is overpriced or the option with lower implied vol is under-
priced. We ought to be able to make some money from selling the one with high
vol and buying the one with low vol. However, such smiles are a persistent feature
of the markets and do not disappear with time, so the arbitrage opportunity is likely
to be illusory.

How does the smile arise? Suppose a market maker spends his day buying and
selling vanilla options. Each time a client calls him, he quotes a vol for buying and
a vol for selling, with a little gap between them. If the first client buys from him
then he wants the second client to sell. For if he sells to the first client for $11 and
buys from the second from $10, then he has made a riskless profit of $1; he will
have to carry out no hedging, and he will be perfectly immune to market changes.
He therefore slants his prices to encourage the second client to do the opposite of
the first. If more and more clients buy then the price will get higher and higher. If
more and more sell, then the price will get lower. Eventually the price will settle
down when the number of buyers and sellers are similar.

The crucial point is that the buying and selling behaviour will be different for
different values of strike which will drive the volatilities in different directions for
the different strikes. Whilst one can hedge options for different strikes by each



76 Practicalities

other, one is no longer perfectly hedged in a model-free sense, and one is taking on
some risk on the basis of the imperfections in the model.

Thus the smile expresses the market's view of the imperfections of the Black-
Scholes model. There are two obvious criticisms of the model; the first is that the
model requires a certain hedging strategy to be carried out which is not practi-
cal, and the second is that stock and foreign exchange prices are simply not log-
normally distributed.

We address the hedging issues first. The model requires the option seller to hedge
his exposure by holding a units of the stock, S, at any time. This quantity is
known as the Delta of the option and the hedging strategy is known as Delta-
hedging. Therefore, as the stock moves up and down, the option seller has to con-
tinuously change his holding to remain Delta-hedged. In the real world this is not
practical, as it takes time execute a trade. Thus it is impossible to rehedge truly
continuously. As a consequence, the seller will never be perfectly hedged. Another
problem is that executing a trade costs money: transaction costs may be low but
they will never be non-existent. The more trades made, the more transaction costs
mount up and increase the costs of hedging the option.

One interesting feature of the log-normal model of asset prices is that the total
amount of wobble is infinite. What is meant by wobble? If we do not let down-
moves cancel up-moves but instead measure the total distance the asset has moved
during the lifetime of a contract, we obtain infinity. (The wobble is really the vari-
ation of the function.) This means that the model requires an infinite amount of
rehedging, and thus if we allow transaction costs, the cost of rehedging will be in-
finite and we are clearly worse off than if we had never hedged at all. The solution
is, of course, to hedge discretely rather than continuously. We only rehedge when
the hedge required by our model is more than a chosen distance from the hedge
we currently hold. Whilst this is effective, we are no longer in the world of perfect
hedging and a single necessary price.

One simplification to the trader's position arises from the fact that he will have
bought and sold many different options' contracts on the same underlying. Each
one of these has a Delta and since the model is linear, the trader can hedge them all
simply by adding their Deltas together. Note that the Deltas of long and short posi-
tions will have opposite signs and so if the portfolio is a mixture of such positions,
the Deltas will at least partially cancel each other. It is only a short conceptual dis-
tance now to start thinking about using options to hedge options. Whilst there is
not a great deal of point to this if our objective is to Delta-hedge, the use of options
allows us more sophisticated methods of hedging.

Recall that the purpose of the Delta-hedge was to eliminate risk from the port-
folio, by making the derivative of the portfolio with respect to the stock price zero.
A portfolio whose price has zero derivative at a point will still change in value if the
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Fig. 4.2. The changes in value of a call option Delta-hedged with spot and strike
equal to 100.

asset moves a short distance from that point. However, if the distance is small, the
change in value will be proportional to its square, whereas for a non-Delta-hedged
portfolio the change will be linear in the distance. As the square of a small number
is even smaller, this means the change for small movements is tiny.

If we allow ourselves to use options to hedge, we can do better. The second
derivative can also be matched and the portfolio's change in value for small changes
in price of the underlying will now be proportional to the cube of the change, which
is much smaller again. The second derivative with respect to the spot is called the
Gamma and the process we have discussed is called Gamma-hedging. We illustrate
the value changes of hedged portfolios in Figures 4.2, 4.3 and 4.4.

4.4 The Greeks

In the Black-Scholes model, we need to make the distinction between variables and
parameters. The spot price is the only variable: it is the only term which is supposed
to change within the model. The other terms are parameters: they affect the price
but do not change within the model. However, we must remember that the Black-
Scholes model is just a model, and the real world is rather different: traders often
hedge their exposure to other quantities. Note that we can compute the derivative
of the price of a portfolio with respect to any of the underlying parameters, and, as
with the stock price, we can buy options which match that derivative. In general,
if we wish to hedge k of the parameters, we will need k - 1 different options to
carry out the hedging, and we will need to construct the portfolio so as to match all
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Fig. 4.4. The changes in value of a Gamma-hedged call option with spot equal to
100 and strike 110. Hedging option struck at 100.

the parameters at once by solving a system of linear equations. If it seems circular
to hedge options with options, one should think in terms of hedging complicated
options with less complicated ones. The complicated option could be an exotic or
simply a far out-of-the-money vanilla option.

The derivatives with respect to the various quantities are denoted by Greek let-
ters with initials corresponding to the quantity differentiated, and the derivatives
are collectively known as the Greeks. In addition, to Delta and Gamma which we

Practicalities
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have already met, we have Greeks for each of the parameters. See Figures 4.5, 4.6
for illustrations of the Delta and Gamma. The derivative with respect to the short
rate, r, is called Rho. The derivative with respect to time, t, is called Theta. The
derivative with respect to volatility is known as Vega or, by purists, Kappa, on the
not unreasonable grounds that Vega is not a letter in the Greek alphabet. Vega is a
very important Greek as the Black-Scholes assumption of constant deterministic
volatility is manifestly false, and the trader will wish to reduce his exposure to
unexpected changes in volatility. This is called Vega-hedging.

Typically, the options trader will monitor all his Greeks but not necessarily con-
tinually rehedge them all. Instead he will take a view on which ones are important,
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and on which risks he wishes to hedge. Equally importantly, he will have a view on
which Greeks he does not wish to hedge. This expresses the trader's opinions about
which direction market parameters will move, and on which parameters the trader
has a firm opinion that he wishes to place money on. For example, if the trader
believes that the volatility will increase in the near future, he will go long Vega,
that is he will ensure that the derivative of his portfolio with respect to volatility is
positive. If he believes that vol will decrease he will go short Vega.

The Greeks are also important for the risk manager; he assesses the value of the
bank's portfolio and tries to estimate the probability of the bank losing a lot of
money. The Greeks describe to first order, via Taylor's theorem, the effect of vary-
ing the parameters. If F(S, t, r, a) is the value of an option, we have to first order,

F(S-J-8S, t+8t, r+8r, a+Sa) = F(S, t, r, a)+SS
aF

St aF +Sr a Sa
as
(4.1)

Thus for small market changes the Greeks will tell us the portfolio's new value
fairly accurately.

The Delta The Delta is the most fundamental Greek. Note from Figure 4.5, how
it increases from zero to one as a function of spot. The Gamma of a call option is
always positive so its Delta is always an increasing function of spot. At expiry, a
call option has pay-off

(S - K)+;

for S < K the pay-off has Delta equal to zero. For S > K, it has Delta equal to 1.
This means that as expiry approaches, the Delta becomes more and more similar in
shape to this binary-valued function. Just before expiry it will be almost zero for S
more than a little below K and then it will rapidly increase to almost 1 just above
K. See Figure 4.7.

Differentiating the Black-Scholes formula, one easily obtains a formula for the
Delta of a call option in a Black-Scholes world:

A =
ac
as

(S, t) = N(di), (4.2)

where
dl = log(S/K) + (r + 2a2)(T - t)

(4.3)a T-t
The Jamma The Gamma is the derivative of the Delta with respect to spot, or the
second derivative of the price. In the Black-Scholes model, it is always positive for
calls and puts. The easiest way to see this is by the formula

2

I aS2(S,t)= Sa
N(di)

t,

a
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Fig. 4.7. The convergence of the Delta of a call option.

where N'(x) = e-22/ 27[. An immediate consequence of this is

Theorem 4.1 The Black-Scholes price of a call option is a convex function of
spot.

This theorem follows immediately from the fact that any function with strictly
positive second derivative is convex. Note that calls and puts have the same Gamma
by put-call parity since a forward contract has zero Gamma.

The Gamma is important in that it expresses how much hedging will cost in a
small time interval. In particular, if the Gamma of our portfolio is positive, then we
will make money by Delta-hedging and if negative we will lose money. If we have
sold a call option then we are short Gamma and the procedure of hedging will cost
us money over the life of the option. If we are long Gamma then, over the lifetime
of the option, our hedging makes us money realizing the option's value. To see
why this is the case, we expand the Taylor series of the portfolio value, P(S, t), as
a function of S, we have

z

P(S + AS, t) = P(S, t) + aS (S, t)AS +
2 aS2

(S, t)OS2 O(OS3). (4.5)

If the portfolio is Delta-neutral then the main term is

1 a2p

a as2 (s, t)AS2,

and thus the stock's price variations up and down will cause money to be lost or
gained according to the sign of the Gamma.

We saw that as maturity approaches the Delta of a call option behaves more and
more like a step function equal to 0 below the strike and 1 above it. This means that



82 Practicalities

0.25

0.2

m 0.15
E
E
m

0.1

0.05

0

80 85 90 95 100 105 110 115 120

Spot

-0.01
--.0.05
-0.1
-0.4

Fig. 4.8. The Gamma of a call option struck at 100 as a function of spot for
varying expiries.

the Delta is going from almost 0 to almost 1 in a shorter and shorter interval. Its
derivative, the Gamma, must therefore become more and more spiked as maturity
approaches. Away from the strike it becomes zero, but at the strike it becomes more
and more peaked.

The Vega The Delta and Gamma are Greeks with respect to the spot price, which
is expected to move within the model. The Vega, on the other hand, is the derivative
with respect to the volatility which is a parameter of the model. As we observed
above, the volatility is an uncertain parameter and the trading of vanilla options is
largely about correctly estimating it. The Vega expresses the position the trader is
taking on volatility: a positive Vega expresses the opinion that volatilities will go
up, and a negative Vega the opinion that they will go down.

The Vega of a call option is given by

ac - S T - tN'(d1), (4.6)
au

with dl as in (4.3). As a forward is insensitive to volatility, it follows from put-call
parity that the Vega of a put will equal the Vega of the call with the same strike.
Note that for a call or put, the Vega is always positive. An immediate consequence
is that the map from volatilities to prices is injective - if two volatilities give the
same price then they are equal. This is part of the reason that the practice of quoting
volatilities instead of prices is popular.

Another important aspect of the Vega is that it gives a natural measure of the
uncertainty of the price. Since volatilities are estimated rather than measured, the
change in price for changing vol by 1% gives us a good measure of the size of
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Fig. 4.9. The Vega of a call option.
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the range the correct price may lie in. The Vega is therefore a good proxy for the
bid-offer spread. Note that the size of the Vega can be quite different from the
size of the price. For example, a deeply in-the-money put option close to expiry
will have very low Vega, as, regardless of volatility, its value will simply be the
intrinsic value of the option. An at-the-money put, despite being worth a lot less,
will have much higher Vega as the volatility has a real effect on the option's value.

If we consider a digital call option or digital put option instead of a vanilla call or
put, then the Vega need no longer be positive. A digital call pays one if spot is above
the strike, and zero otherwise; similarly for a digital put. Indeed, if we consider the
portfolio consisting of a digital call and a digital put with the same strike, then the
portfolio replicates a zero-coupon bond which has a value independent of volatility.
This means that the Vega of a digital put is the negative of the Vega of a digital call,
and so we can expect one of them to be negative for any parameter values (unless
both are zero).

When a digital option is in-the-money, volatility is bad as it increases the (risk-
neutral) probability that the option will finish out-of-the-money without any ben-
efits, so we roughly obtain negative Vega in-the-money and positive Vega out-of-
the-money.

Example 4.1 Assume we are in the Black-Scholes model with the following
parameters

S 100
vol 0.1

r 0.05
d 0
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We find from our computer that two options have the following characteristics:

option A B

pay-off digital put put
maturity 1 1

strike 100 110

price 0.310 6.809
Delta -0.034 -0.657

Gamma 0.002 0.037
Vega 1.886 36.781

How much stock and B would you hold to hedge a long position in A if you were:

(i) Delta hedging;
(ii) Delta and Gamma hedging;

(iii) Delta and Vega hedging.

Solution

(i) To Delta hedge, we simply take the amount of stock that gives a Delta of zero.
In ti.is case, it is 0.034.

(ii) To Gamma hedge, we use B to cancel the Gammas and then use the stock to
cancel the residual Delta. The ratio of the Gammas is 0.05128, and so we hold
-0.05128 units of B. The residual Delta is then

-0.034 + 0.05128 x -0.657 = -0.00062.

We therefore hold 0.00062 units of stock.
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(iii) Since A and B have the same expiry, the ratio of their Vegas is the same as the
ratio of their Gammas, so a portfolio will be Gamma-hedged if and only if it
is Vega-hedged.

Note a trader would not hedge a digital put in this manner but the general
technique is useful.

O

4.5 Alternative models

We have seen that the impossibility of perfect hedging takes us away from the
Black-Scholes world of perfect arbitrage-free pricing; however there are other
criticisms of the Black-Scholes world. The most important of these is simply that
stock prices and foreign exchange prices are not log-normally distributed. This fail-
ure is manifested in a number of fashions. As we mentioned above, volatility is not
even deterministic, let alone constant. Stock and FX prices often do not move con-
tinuously: rather they jump. For example, a market crash or a sudden devaluation
will move the price quickly with no opportunities for a rehedge. A more subtle
criticism is that the logs of asset price changes have fat tails.

If one computes the mean and variance of the movements of the logs, and plots
the actual distribution against the normal with the same mean and variance, one
finds that the density is greater for large (positive and negative) values. Since the
variance is the same this means the distribution is peaked higher in the middle, and
is lower in the middle ranges. In statistical language the fourth moment, or kurtosis,
of the actual distribution is higher. We illustrate this effect in Figure 4.11.

{ .... ................ ..............
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Fig. 4.11. A fat-tailed distribution and a Gaussian with the same mean and variance.
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How can the financial mathematician cope with these problems? More sophisti-
cated models are needed. We briefly survey some of these and discuss some of the
issues.

4.5.1 Jumps
A very real flaw in the Black-Scholes model is its assumption that the asset price
is a continuous function. This is particularly the case with options on equities.
The stock market periodically undergoes corrections which involve a rapid down-
ward movement in stock prices. The most famous of these corrections are the
crashes of 1929 and 1987. During such crashes, market conditions are anything
but normal and continuously rehedging a portfolio as it slides is simply not prac-
tical. Indeed it has been suggested that the 1987 crash was exacerbated by deriva-
tives traders trying desperately to sell their hedges in order to remain Delta-hedged
as the market tumbled. Conversely, one use of options is the purchase of put op-
tions by fund managers to insure against crashes by guaranteeing a price they
can sell at. In 1987, there was also a large number of fund managers who had
decided that they did not need to buy options, because they could replicate the
options themselves - the necessary trading became impossible when the market
crashed.

We therefore wish to permit in our model the possibility of a sharp downward
move during which rehedging is not permitted. For simplicity, we restrict the jumps
to be of a particular size, that is we always move the log of the stock price by a
fixed amount. For example, we could model jumps which reflect a loss of 25% of
the stock's value. As we are assuming the jumps occur too quickly to allow rehedg-
ing, this means that in our tree, at each node, we have to allow three possible moves:
one a small amount up, a second a small amount down and a third corresponding
to the jump down. The problem is that, as we saw before, with three nodes there is
no longer a unique arbitrage-free price. Instead one has a continuum of possi-
ble prices. How can we choose one? A conservative choice would be to take the
price which would allow the option's payoff to be met in all possible worlds. That
price would of course be the maximum arbitrage-free price.

A second approach would be to attempt to apply risk-neutral valuation. We saw
before that a Tiique price is still not guaranteed as there are many ways of dis-
tributing the probabilities between the three nodes which are consistent with risk-
neutrality. One solution is to assume that the market price jumps occur with the
real-world probability, and adjust the probabilities of the small moves to obtain the
unique risk-neutral probabilities consistent with it. Whilst this certainly allows us
to obtain an arbitrage-free price, it is only an, not the arbitrage-free price. Models
of this sort are known as jump-diffusion models, a description which expresses the
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mixture of an underlying diffusive time process consisting of small moves with that
of a jumpy process.

Risk-neutral valuation has become such a paradigm in mathematical finance that
the continuous-time analogues of such arguments are regularly used in the finan-
cial literature. Part of the issue here is the distinction between risk-neutral and
real-world parameters. Given a model, one can produce a black box which takes as
inputs certain parameters such as strike, time-to-expiry, spot, volatility and proba-
bility of a jump, and outputs a price. One can then start tweaking the unobservable
parameters, such as volatility and jump probability, until the price agrees with the
market price. Or more generally, one would tweak until prices agreed with all the
prices observable in the market. If it proves impossible to find such parameters,
one is left with two possibilities: either the model is wrong or the market is wrong.
One has to be very confident to be sure of the second and to trade accordingly.

If one has obtained a fit, what do the parameters mean? They do not necessar-
ily reflect anything about the movement of stock prices and are therefore often
referred to as being risk-neutral, although market-calibrated would be a more ac-
curate term. The question which now arises is "what is the good of models?" The
perfect reproduction of market prices, whilst seemingly impressive, does not actu-
ally tell us very much; after all we already knew the market prices so producing a
model that tells us what they are is not overly impressive.

One possible use is to attempt to derive the prices of more complicated, exotic
options. Given that our model prices vanilla options correctly, it may be possible to
use it to price exotic options either by decomposing them into vanilla options or by
using dynamic hedging strategies. These dynamic hedging strategies may involve
trading vanilla options and therefore require a good understanding not only of the
vanilla options' current prices but also of their expected values at future times. The
model can then be used to infer these-future prices. However if we were to do so,
we would have to be reasonably sure that our model is consistent with pricing at
future times as well as the present. For example, some models can be used to fit
prices well today but are rather time-inhomogeneous in that they imply that the
smile in the future will have a rather different shape that it does today. Given that
smiles have persisted in their present form for a number of years, this seems an
unreasonable prediction and such models should be treated with care. In general,
such models tend to perform poorly in that the hedges have to be rebalanced more
often than models which predict sensible future behaviour.

The jump-diffusion model certainly has some validity, in that stock prices are
jumpy and that the volatility smiles of equity options are certainly skewed, reflect-
ing the fact that stock prices are much more likely to jump down than up. One could
also see this as a reflection of market supply and demand: many fund managers
want to buy out-of-the-money put options to protect themselves against the risk of
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a crash, thereby driving the cost of such options up. We discuss the mathematics of
such models in Chapter 15.

4.5.2 Stochastic volatility

A further source of uncertainty in modelling stock prices is volatility. As we men-
tioned above, stock price distributions tend to have fat tails. One way of modelling
this is to make volatility a function of the stock price. As the stock price moves
farther away from the initial value, volatility increases making it more likely for
the stock price to get even farther away, thus achieving fat tails. The main draw-
back of this approach is that it results in future smiles that are rather different from
present ones. To see this, suppose our original smile had its low point at the current
value, which we will take to be 100 for simplicity. We therefore make volatility a
function of spot with its lowest value also at 100. The problem is that when the
spot moves to 200, the volatility still has its lowest point at 100 rather than at 200,
so the shape of the smile has changed and the stock is in a qualitatively different
universe. Such a smile is said to be sticky as opposed to a floating smile which is
always qualitatively the same.

A more subtle model would be to make the volatility a random quantity itself.
We developed a random process for stock prices movements based on constant
volatilities in the last chapter. We could also make the volatility follow such a
random process and then feed the random volatility parameter back into the model.
This would mean that at each stage of our tree, there would first have to be a random
draw reflecting the up or down move of the volatility which would determine the
magnitude but not the direction of the stock's move, and then a second random
draw deciding whether the move would be up or down. The problem left is then
that at each time segment the stock can take four possible new values instead of
two, and we are back in a world where perfect hedging no longer exists. A risk-
neutral price can be developed but should we believe it? These models are known
as stochastic-volatility models, and we discuss them in Chapter 16.

4.5.3 Random time

Another subtle idea is to make time itself a random process. While this may seem
a little artificial, if we think in terms of the variation of the rate of arrival of the
information whi drives asset movements, then this is not so unreasonable. A
small value for the random time will reflect a boring year and a large value an
exciting one. Such Variance Gamma models can provide good fits to asset price
movements. The process arrived at for the stock is then a series of small jumps.
The main problem is that, as before, the extra source of randomness removes the
possibility of perfect arbitrage-free pricing. We discuss Variance Gamma models
in Chapter 17.
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4.5.4 Which model?

Which of the above improved approaches is correct? Probably a mixture of all of
them is the most accurate model of stock price movements. Which is most useful?
This will depend on what sort of option the modeller wishes to hedge; in practice
the trader might use multiple models to compare prices and then decides accord-
ingly. The appropriateness of the model will also depend upon the nature of the
underlying asset - jumps are a fact of life for stocks but are not so common in
foreign exchange markets between major currencies.

The common problem with the more sophisticated models was the impossibility
of perfect hedging. How can we cope with this? One solution is to try to divide (in
a theoretical rather than practical sense) the asset into two pieces, one of which is
hedgeable and the other being totally unhedgeable. The hedgeable portion can then
be priced perfectly using risk-neutral or arbitrage-free arguments, as was possible
in the simple Black-Scholes world.

The unhedgeable portion is more problematic. It is a risky asset that cannot be
hedged. To price it, we have to return to our notions of risk and try to estimate
its distribution and then decide how much we are willing to pay for that piece of
risk. Since different options can depend on the same underlying, we then have the
opportunity to observe the cost of that piece of risk for different options and see
whether it varies. If not there is a possibility to hedge one option with another and
make a profit. Our no-arbitrage arguments therefore imply that a given piece of risk
should have a unique price and this price is referred to as the market price of risk.

One consequence of the fact that the price depends on the market price of risk
and the impossibility of hedging is that there is considerable resistance in the mar-
kets to models incorporating jumps. The great attraction of the Black-Scholes
model was that the market price of risk did not enter, and there was a mathemati-
cally correct price. The derivatives community is reluctant to give this up despite
strong empirical evidence that jumps occur. This is, however, a bit ostrich-like: to
use a model because we like its implications rather than because we believe its
accuracy is a dangerous path to follow.

Note that most of the alternative models had the property that no-arbitrage ar-
guments did not guarantee a single price. Equivalently there is no method of dy-
namically reinvesting to replicate an option's payoff with a sum invested today.
The markets implied by such models are said to be incomplete and there is a the-
ory of no-arbitrage pricing in incomplete markets, which obtains bounds instead of
unique prices.

The issues surrounding the pricing of derivatives in a non-Black-Scholes world
are still very current and the ideas presented here reflect the debates that are cur-
rently going on rather than represent the `correct' model. A trading bank will typ-
ically have a team of research quantitative analysts working purely on the pricing
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of vanilla options in order to better understand these issues, to which we return in
Chapter 18.

4.6 Transaction costs

Although transaction costs are a reality, they tend not to be modelled explicitly
when developing pricing models. There is a simple reason for this: transaction
costs can never create arbitrages. In other words, if a price cannot be arbitraged in
a world free of transaction costs, it cannot be arbitraged in a world with them either.

The proof of this result is very simple. Suppose a price is arbitrageable in the
world with transaction costs. Then we can set up a portfolio taking into account
transaction costs at zero or negative cost today, which will be of non-negative and
possibly positive value in the future. If we neglect to take into account transaction
costs then the initial set-up cost of the portfolio will be even lower and thus still be
negative or zero. The final value of the portfolio will however be at least as high
as there will be no cash drain from any transaction costs during the portfolio's life.
We therefore conclude that the portfolio is also an arbitrage portfolio in a world
free of transaction costs.

Thus the existence of arbitrage in the world with transaction costs implies arbi-
trage in a world free of them.

A second reason they tend to be neglected is that hedging is carried out on a
portfolio basis. This results in many transactions that would be necessary to hedge
a single option, not being necessary because they cancel out with other positions.
The precise transaction costs added by a single new trade are therefore a function
of the existing positions, and could be effectively negative if a trade offsets existing
ones.

4.7 Key points

The buying and selling of vanilla options is really about the trading of volatility.
The imperfection of models leads to the smile - the practice of using different
volatilities to price options at different strikes.
The derivatives of the price of a portfolio with respect to various parameters are
known as the Greeks, and are denoted by Greek letters.
The derivative with respect to the spot is the Delta.
The second derivative with respect to the spot is the Gamma.
The derivative with respect to the volatility is the Vega.
The derivative with respect to time is the Theta.
The derivative with respect to interest rates is the Rho.
The Gamma expresses the amount of money we expect to make or lose from
dynamic hedging.
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A possible source of smiles is jumps.
Another possible source of smiles is stochastic volatility.
In an incomplete market unique prices are no longer guaranteed.

4.8 Further reading
Many of the reasons for smiles, and the whys and wherefores of alternative models
are discussed at length in Volatility and Correlation by Riccardo Rebonato, [125].
We return to some of the issues in Chapters 15, 16, 17 and 18.

One model for transaction costs is that of Leland, [99], which leads to a Black-
Scholes price with a modified volatility. Models for more general cases have been
developed by Whalley & Wilmott; see [139] for further discussion and references
therein. A rather demoralizing result is due to Soner, Shreve & Cvitanic, [134],
who show that if one wishes to be sure of covering the pay-off of a call option at
expiry in Black-Scholes world with transaction costs, the best strategy is to buy
the stock today and do no further trading. This is the strategy we used to deduce
the rational bounds of Chapter 2.

4.9 Exercises

Exercise 4.1 Show that a portfolio of vanilla options with the same expiry is
gamma-neutral if and only if it is Vega-neutral. Does this result hold if the expiries
are not all the same?

Exercise 4.2 How does the graph of the Vega of a call option vary as a function of
time to expiry?

Exercise 4.3 If a digital call and a digital put have the same expiry and strike, what
relations will their Greeks satisfy?

Exercise 4.4 If a derivative has a negative Vega and volatility increases what hap-
pens to the price?

Exercise 4.5 A portfolio consisting of a short position in a call option and a long
position in a stock is Delta-neutral. Suppose the stock price jumps; how will the
value of the portfolio change if the option is priced according to the Black-Scholes
formula before and after the jump?

Exercise 4.6 Derive simple approximations for at-the-money Vega and Theta.

Exercise 4.7 Show that call and put options with the same strike and expiry have
the same Vega. Do this without using the Black-Scholes formula.
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Exercise 4.8 In the Black-Scholes model, we have the following parameters:

S 100

K 110

r 0.05
sigma 0.1Ti

For a call option, we have

value 2.174
Delta 0.343
Vega 36.78

Gamma 0.0367

Find the value, Delta, Vega and Gamma of a put option with the same strike.

Exercise 4.9 In the Black-Scholes model, we have the following parameters:

S 100

K 90

r 0.05

sigma 0.1Ti
For a call option, we have

value 14.629
Delta 0.946
Vega 11.028

Gamma 0.011

Repeat Example 4.1 to find the value, Delta, Vega and Gamma of a put option
with the same strike.

Exercise 4.10 In the Black-Scholes model, we have the following parameters:

S 100

K 95

r 0.05

sigma 0.1Ti
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For a put option, we have

value 0.772
Delta -0.144
Vega 22.676

Gamma 0.023

Find the value, Delta, Vega and Gamma of a call option with the same strike.

Exercise 4.11 In the Black-Scholes model, we have the following parameters:

S 100

K 102

r 0.05
sigma 0.1Ti

For a digital put option, we have

value 0.381
Delta -0.037
Vega 1.294

Gamma 0.00129

Find the value, Delta, Vega and Gamma of a digital call option with the same
strike.

Exercise 4.12 We are in the Black-Scholes model with the following parameters:

S 100

vol 0.1

r 0.05

d 0

We find from our computer that two options have the following characteristics:

option A B

pay-off call call
maturity 1 2

strike 100 110

price 6.805 2.174

Delta 0.709 0.343
Gamma 0.034 0.037

Vega 34.294 36.781
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What amounts of stock and of option B would you hold to hedge a short position
in option A if:

(i) Delta hedging;
(ii) Delta and Gamma hedging;

(iii) Delta and Vega hedging.

Exercise 4.13 We are in the Black-Scholes model with the following parameters:

S 100
vol 0.1

r 0.05
d 0

We find from our computer that two options have the following characteristics:

option A B
pay-off call put

maturity 1 1

strike 100 110

price 6.805 6.809
Delta 0.709 -0.657

Gamma 0.034 0.037
Vega 34.294 36.781

What amounts of stock and option B would you hold to hedge a long position in
option A if:

(i) Delta hedging;
(ii) Delta and Gamma hedging;

(iii) Delta and Vega hedging.

Exercise 4.14 We are in the Black-Scholes model with the following parameters:

S 100
vol 0.1

r 0.05
d 0
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We find from our computer that two contracts have the following characteristics:

option A B

pay-off digital call put
maturity 1 1

strike 100 110

price 0.641 6.809
Delta 0.034 -0.657

Gamma -0.002 0.037
Vega -1.886 36.781

What amounts of stock and option B would you hold to hedge a long position in
option A if:

(i) Delta hedging;
(ii) Delta and Gamma hedging;

(iii) Delta and Vega hedging.

Exercise 4.15 We are in the Black-Scholes model with the following parameters:

S 100

vol 0.1

r 0.05
d 0

We find from our computer that two contracts have the following characteristics:

option A B

pay-off digital call put
maturity 1 2

strike 102 100

price 0.570 1.896

Delta 0.037 -0.218
Gamma -0.001 0.021

Vega -1.294 41.692

What amounts of stock and option B would you hold to hedge a long position in
option A if:

(i) Delta hedging;
(ii) Delta and Gamma hedging;

(iii) Delta and Vega hedging.
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Exercise 4.16 A market crash occurs. After the crash, option-implied vols jump
upwards, and the stock price has dropped 30%. For each of the following investors,
what can you say about their profit and loss on the day of the crash?

a person holding a long put position and Delta hedging;
a person holding a long call position and not hedging;
a person holding a long call position and Delta hedging;
a person holding a short call position and Delta hedging.

Exercise 4.17 Sketch roughly the Delta of a put option struck at 100 with no inter-
est rates for the following maturities: 0.01, 0.1, 1, 10.

Exercise 4.18 Sketch roughly the Gamma of a put option struck at 100 with no
interest rates for the following maturities: 0.01, 0.1, 1, 10.

Exercise 4.19 If the stock price is 100. Sketch roughly:

(a) the change in value of a Delta-hedged long put option struck at 100;
(b) the change in value of a Delta-hedged long call option struck at 110;
(c) the change in value of a Delta-hedged short call option struck at 110.

(Plot the change in stock price on the x axis, and the change in portfolio value on
the y axis.)
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The Ito calculus

5.1 Introduction

We have so far avoided doing any hard mathematics; our objective was to develop
the conceptual ideas of mathematical finance in order to provide a motivational
framework. However, the time has come where we must start to develop the more
complicated tools necessary to manipulate the formulas of mathematical finance.
There are two quite different but related approaches to derivatives pricing. The
first is to use stochastic calculus to develop a partial differential equation for op-
tion prices, and the second is to construct synthetic probability measures which
allow option prices to be expressed as expectations. In this chapter, we develop the
necessary mathematics to carry out the first of these approaches. For background
probability results we refer the author to [63]. For a more rigorous treatment, see
[118]. We discuss further reading at the end of the chapter.

5.2 Brownian motion

One of the fundamental tools in option pricing is the theory of stochastic calcu-
lus. This theory allows the manipulation of the random processes described in
Chapter 3 much as the ordinary differential calculus allows the manipulation of
functions. Indeed, Black & Scholes used the Ito calculus to derive their famous
equation, and it was several years later that Cox, Ross & Rubinstein developed the
more intuitive tree approach. To develop the Ito calculus in a wholly rigorous fash-
ion is quite involved as there are many technical issues, and we therefore skirt over
some of them in order to concentrate on the ideas.

To try to motivate better the definitions made in this chapter, we examine in
more detail the random processes developed in Chapter 3. There, we divided a
time interval into k pieces, and in each piece let the variable move randomly. The
move consisted of a fixed deterministic part and a random part consisting of an up
or down move. The random variable for each piece was the same. The size of the
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pieces was then shrunk to zero and the random variables changed in such a way as
to make the mean and variance remain constant.

The resultant distribution at the end of our time-frame corresponded to a random
variable which was normally distributed with the given mean, A, and variance, a2,
and is usually written as N(p, a2), or t + orN(0, 1). However, there is nothing
special about the end of our interval, and if instead we sum only the variables
associated to pieces in the first half of the interval, we obtain the same distribution
but with mean µ/2, and variance Q2/2 instead. Or more generally, if our initial
interval is [0, T] and we consider the subinterval [a, b] we obtain a random variable
with mean

and variance
2

a2(b - a) 6(b - a)1/2
T ( T1/2 )

If we now change notation slightly and take the mean to be AT, and the variance
to be a2T, we can construct a collection of random variables, Xt, for t < T, by
taking Xt to be the random variable associated to the interval [0, t]. We then have
that Xt has mean At and variance cr2t and is normally distributed. We can view Xt
as a particle which starts at the origin and is displaced the distance Xt at time t.
Note for s < t we have that Xt - X, has the distribution of the random variable
associated to the interval [s, t] that is, it is normal with mean µ(t - s) and variance
or2(t - s).

Each of the small steps we added together was independent of all the others.
This means that the steps that go into making Xt - X, are independent of those
that going into making X5.

It is also independent of the value of Xs, since the random variables we summed
were independent of each other. Note that the distribution of Xt given the value
of X, is that determined by that of Xt - X, and so the behaviour of Xt is totally
unaffected by the values of the random variables X, for r less than s. This is called
the Markov property.

To summarize, we have constructed a collection of random variables Xt such
that Xt - Xs is normally distributed with mean (t - s)µ and variance (t - s)a2.
Such a collection, of random variables is called a Brownian motion as it models
well the random movement of small particles suspended in a fluid. This random
motion is caused by jostling by smaller particles, and was first observed by the
botanist Robert Brown when observing pollen through a microscope'. Note that

t Whilst this process is named after a physical phenomenon, financial mathematicians love to point out that it
was first studied mathematically in connection with the movement of stock prices, (Bachelier 1900).
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Time

Fig. 5.1. Some paths from a Brownian motion.

the standard deviation of the random variables is a(t - s)1!2. This suggests that
spreading out happens at a rate that grows with the square root of time. Note how
the Markov property expresses very neatly the weak efficiency of markets. The past
path of the stock price has no effect on future movements.

Brownian motion has lots of strange properties. If we trace the path followed
by a particle moving under a Brownian motion, we find that it is infinitely jagged.
It is continuous everywhere and differentiable nowhere. We also find that it has
an infinite first variation - the total amount of change in the path is infinite. This
means that if one changed all the down movements into up movements, the path
would go off to infinity instantly. If it hits a value, then it hits it again an infinite
number of times in an arbitrarily short interval afterwards. To be precise these prop-
erties do not always hold, but only with probability 1. They are said to hold almost
surely.

We emphasize that an event occurring with probability 1 is not quite the same
as a certain event. For example, consider a uniform random variable, X, on the
interval [0, 1]. The probability that X lies in an interval [a, b] with 0 < a < b < 1
is b - a. The probability that X takes on any particular value, x, must therefore
be zero, as the probability that X lies in the interval [x - E, x + E] is 2E for any
E > 0. Yet the random variable must take on some value. So an event of probability
zero always occurs. The point is that there is an uncountable infinity of such zero-
probability events, and if one takes an uncountable union of sets, probabilities can
do strange things.

We make a clear mathematical definition of Brownian motion.
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Definition 5.1 We shall say a sequence of random variables, Wt, for t > 0, is a
Brownian motion if W0 = 0, and for every t and s, with s < t, we have that

Wt - WS (5.1)

is distributed as a normal distribution with variance t - s, and the distribution of
Wt - Ws is independent of the behaviour of W, for r < s.

It is important to realize that the condition that the distribution is normal of vari-
ance t - s for every t and s and independent of the path up to time s, is much
stronger than requiring Wt to be normally distributed with variance t for every t.
For example, if we let

Zt = -,It-Y, (5.2)

where Y is the same draw from a normal distribution for all t, then we have that Zt
is normally distributed with variance t. However, the paths of Zt are straight lines.
The distribution of Zt - ZS is a normal of variance (.\It - IS)2, and the value of
Zt - ZS is wholly determined by the value of Zs.

5.3 Quadratic variation'

To gain an understanding of how jagged the paths of a Brownian motion are, it is
instructive to compute its quadratic variation. The quadratic variation of a function

f :[0,T]-> 18

is defined to be the total of the square of all its up and down moves. This means
that we take a partition, 0, of the interval [0, T], thus,

and define its length via

l(0) = max(ti+1 - ti).

The quadratic variation for the partition, 0, is then

12-1

Q(0) = E(f (ti+,) - f (tt))2 > 0.
i=O

(5.3)

1 This section can be skipped on a first reading.
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The quadratic variation of the function is then the limit of this as the length of the
partition goes to zero.

For a continuously differentiable function, the quadratic variation is always zero.
To see this, observe that there exists some M such that If '(x) I < M for all x E
[0, T], and by the mean-value theorem

f (t,+1) - f (ti) = f'(x)(ti+i - t,)

for some x E (ti, ti+i) So

(f (t,+1) - f (t,))2 < M2(t,+1 - t,)2.

For a partition A, we therefore have

(f(ti+i) - f(ti))2 < M2(t,+1- ti)l(o).

Summing over i, we conclude

0 < Q(S) < M2Tl(0), (5.4)

and this will go to zero as l(0) goes to zero.
What happens with a Brownian motion? We will not attempt to answer the ques-

tion in full, but instead we compute the expectation and variance for a partition
with equal-sized steps. Let

ati=-, fori=0,...,n,
n

and let

n-1
2

i=0

Since expectation is linear, we get

n-1 T
E° (X,) JE((Wt;+i -

Wt )2) = n- = T.
n

i=O
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For the variance, we need to compute IE(X2). We shall use the fact that if Z is
N(0, 1) then IE(Z4) = 3. We have

IE(X2)11

n-i 2

_E° ((w1+1 - Wtr)2
((i=O

= E ((Wt.,. - Wr )2 E ((Wt;+l

n-1

-Wtj)2)+EIE((Wt;+, -Wr,)4),
i=O

T2 T2
N2 +3n N2,

t#i
2

=T2+27-.
n2

The variance of Xn is therefore

T2
2n2

and this will go to zero as n tends to infinity.
The quadratic variation of a Brownian motion is therefore effectively T. This is

vastly different from a differentiable function, and it expresses just how much more
jagged Brownian motion paths are.

5.4 Stochastic processes

Whilst Brownian motion is extremely interesting in its own right, it does not make
the best model for stock movements since the probability of negative prices is
always non-zero. To see this, one simply observes that the Gaussian distribution
is non-zero everywhere. We will therefore want to think of the log of the stock
as being normally distributed. As our option price will be a function of the stock
price, we want to deduce the distribution of the option price from the distribution of
the stock price. Our objective is therefore to develop a class of processes which ig
closed under simple operations. In particular, our principal objective is to achieve
a class of processes which is invariant under composition with smooth functions;
that is, we want f (X) to be a member of the class if X is, for any smooth function
f. Moreover, we want to be able to compute the process for f (X).

For more general processes, we might wish to let p and a vary with time or even
depend on Xt. The simplest generalization one could try would be to let it and or
be piecewise constant functions of time.
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Suppose we want to know how Xt - X,s is distributed. Suppose the interval [s, t]
is divided into [s, t1], [t1, t2], ..., [tk_l, tk], [tk, t] in such a way that on each of
these subintervals, µ and or are constant. Putting

t0 = s, tk+1 = t,

let p j and a j denote the values of µ and or on the interval [t j , t j +l ] . We can then
write

Xt - XS = (Xt - Xtk) + (Xtk - Xtk-1) + ... + (Xt2 - Xt1) + (Xt1 - XS).

Using the fact that s and or are constant on the interval [ti, ti+i], we have that
Xti}1 - Xt; is normally distributed, with mean, equal to µi(ti+i - ti) and variance
equal to a?(ti+1 - t1).

The sum of two independent normally distributed random variables is also nor-
mally distributed, with mean equal to the sum of the means, and variance equal to
the sum of the variances. (This is a very special property of the Gaussian distribu-
tion.) We therefore have that Xt2 - Xto is normally distributed with mean

1-to(tl - to) + µ1(t2 - t1)

and variance

U0 2(t, - to) + Ui (t2 - t1).

We deduce, using induction, that Xtk+1 - Xto has mean equal to

k

Y, iLj(tj+l - tj),
j=0

and variance equal to

k

a (tj+1 - ti).
j=0

Thus for piecewise constant µ and a we get a mean which is the integral of µ
and a variance which is the integral of a2. Since every continuous function can be
uniformly approximated by piecewise constant functions, it is reasonable to simply
define for arbitrary continuous functions it and a, that Xt - X, for all t and s with
s < t, should be normally distributed with mean equal to

t
/'

J µ(r)dr
S
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and variance equal to
/t'

J or2 (r)dr.
s

This definition is consistent because of the additive property of normal distributions
mentioned above. In particular, we obtain the same distribution for Xt - X, if we
write it as (Xt - Xt,) + (Xt, - X,.).

If we take a to be identically zero we obtain

rt

Xt - X,. =
J

l,c(r)dr;

S

that is, Xt is just the integral of µ(t), or, equivalently that p. is the derivative of
X. We can interpret this as saying that our attempts to understand the processes
implied by more general µ and or are really an attempt to generalize calculus to
cope with random variables. The reader will recall that in ordinary calculus the
function f is said to have derivative equal to f(x) at the point x if

o
f (x + h) - f (x) _ f'(x)

h

An equivalent way to say this is that,

f (x + h) - f (x) - f'(x)h = o(h).

(A function, g, is said to be o(h) if it converges to zero faster than h, i.e. g(h)/h
converges to zero as h tends to zero.) We recall from high school calculus that one
way of looking at this equation is to say that near x, f is well approximated by
f (x) + f'(x)h. Thus the derivative of f provides a good approximation to f. (In
fact, it is the best linear approximation near x.)

We wish to do something similar for random variables. We therefore examine
the behaviour of Xt+14 - Xt as h tends to zero. We can write

.(r) = A(t) + e(r),
a2(r) = a2(t) + .f (r)

where e and f vanish at r = t. We then have that

t+/i

Xt+h - Xt = hµ(t) + J e(r)dr + h112a(t)N(0, 1) + g(t, h)N(O, 1), (5.5)

t

where g(t, h) = (ha(t)e + ftt+h f (r)dr)112 - h1/2a(t). The important thing here is
that the second and fourth terms are small as h goes to zero. To see this, note that
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the second term is o(h) since e(t) = 0 and e is continuous because µ is. Moreover,
we can rewrite g as

r+z 1/2

h1/2a(t) ((i+ h-1 a(t)-2 f f (r)dr - 1
r

Recall the binomial expansion which says that for x small

(1 + X)112 = 1 + Zx + 0(x2), (5.6)

where 0(x2) means that the error is less than Cx2 for x small and some number C.
Let

t+h

Elz =
h-1 a(t)-2

J
.f (r)dr.

t

Since f (0) = 0, and f is continuous, we have that Eh = 0(1), i.e.

Ei -+ 0 as h-->- 0.

Using the binomial expansion,

g = I a(t)h1/2E1i + a(t)h1/20(6 ).

The variance of g times N(0, 1) will certainly be o(h) as it will be divisible by hE1,.
We deduce that

Xt+17 - Xt - hp(t) - h112a(t)N(0, 1),

is a random variable with mean and variance that are both o(h).
We may want to have several random processes all of which are driven by the

same random information. We therefore will want the random part of the change,
N(0, 1), to be the same for each of them. The crucial example to have in mind is a
stock and an option upon it. Changes in the value of the stock will also affect the
value of the option. We can achieve this property by requiring the random incre-
ments to come from a Brownian motion, and by requiring that the same Brownian
motion drive all the random processes. Recall that

Wt+h - Wt = h112N(0, 1), (5.7)

in a distributional sense. With this in mind, we define

Definition 5.2 Let Wt be a Brownian motion. We shall say that the family X of
random variables Xt satisfies the stochastic differential equation,

dXt = µ(t, Xt)dt + a(t, Xt)dWt, (5.8)
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if for any t, we have that

Xr+h - Xt - h s(t, Xt) - a(t, Xr)(Wt+h - Wt)

is a random variable with mean and variance which are o(h).

We shall call such a family of random variables an Ito process or sometimes just a
stochastic process. Note that if a is identically zero, we have that

Xt+h - Xt - h s(t, Xt) (5.9)

is of mean and variance o(h). We have thus essentially recovered the differential
equation

dXt
dt µ(t, Xt). (5.10)

The essential aspect of this definition is that if we know X0 and that Xt sat-
isfies the stochastic differential equation, (5.8), then Xt is fully determined. In
other terms, the stochastic differential equation has a unique solution. An impor-
tant corollary of this is that µ and a together with Xo are the only quantities we
need to know in order to define a stochastic process. Equally important is the issue
of existence - it is not immediately obvious that a family Xt satisfying a given
stochastic differential equation exists. Fortunately, under reasonable assumptions
on li and or, solutions do exist and are unique. Unfortunately, developing the nec-
essary mathematics is beyond the scope of this book.

5.5 Ito's lemma

One of the most important tools for manipulating ordinary differential equations
is the chain rule. The chain rule allows us to take the derivative of a function of
another function, and simply states that if

dXt = lt(Xt, t)dt

then

d(f(Xt)) = .f'(Xt)lt(Xt, t)dt.

When f is also a function of t, we obtain

d(f(Xt, t)) _ (ax(Xt, t)µ(X,, t) + ar (Xt, t) dt.

Our objective is to develop a generalization of the chain rule which holds for func-
tions of random processes.

An obvious first guess is that if

dXt = p (Xt, t)dt + Q(Xt, t)dWt, (5.11)
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then

d(f(Xt)) = f'(Xt)dXt = .f'(Xt)l-a(Xt, t)dt + f'(Xt)o(Xt, t)dWt. (5.12)

Unfortunately, this first guess is wrong. To see this, consider the simple function

f (x) = x2

applied to Brownian motion. Since f'(x) = 2x, we would obtain

d (Wt) = 2WtdWt .

(5.13)

(5.14)

This means that the stochastic differential equation for Wt would have no drift:
up-moves are as likely as down-moves. However, we know that Wt has mean zero
and variance t. As the mean is zero, the expected value of the square is just the
variance. So the expected value of Wr is t.

This suggests that there is a missing drift term: Wr is drifting away from the
origin at a constant rate of 1. A guess for the stochastic differential equation is
therefore

d(WW) = dt + 2WtdWt. (5.15)

Our objective in this section is to understand where the dt comes from.
Let's examine the behaviour of

W2 -W2t+h t

for h small. We can write

2 2
Wt+h - Wt = (Wt+h - Wt)(Wt+h + Wt)

= 2Wt(Wt+h - Wt) + (Wt+h - Wt)2. (5.16)

The first term is what we expect from 2WtdWt. The second term is new. As Wt+h -
Wt has variance h and mean zero, we conclude that (Wt+h - Wt)2 has mean h. In
other words,

(Wt+h - Wt)2 - h

has mean zero. Our definition of a stochastic differential equation (SDE) requires
us to find terms p. and a such that

(W2 2
t+h - Wt) - µh - 6(Wt+h - Wt)

has both mean and variance which are o(h). Our candidates are

µ = 1, (5.17)

a = 2Wt. (5.18)
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Our computation above shows that this expression above evaluates to
2

which we have already shown to have mean zero. It remains to show that this term
has small variance. We can write

Wr+h - Wt = h112Z,

with Z a standard normal Gaussian variable. (It would actually be a different iden-
tically distributed variable for each h but this is unimportant.) We deduce that

((Wr+h - Wr)2 - h)2 = (h Z2 - h)2 = h2(Z2 - 1).

The variance is therefore

h2Var(Z2 - 1),
which is certainly o(h). In conclusion, we have shown that Wr is such that

d (Wr) = dt + 2WrdWt. (5.19)

Our objective in the rest of this section is to generalize this argument to apply
to any smooth function of any solution of a stochastic differential equation. As we
defined SDEs in terms of Xt+h - Xt for h small, we look at f (Xt+h) - f (Xr). The
key to examining this difference is Taylor's theorem. Taylor's theorem expresses
the local behaviour of a function in terms of its derivatives. It implies that if f is
smooth function then for y close to z, we have

2

f(y) - (f(z) + (y - z)f'(z) + (y
2 z) Cly -

z13,

for some constant C. Note that we have gone one step further than the definition
of the derivative of a function; we have the best parabolic approximation instead
of the best linear approximation. Taylor's theorem will apply equally well when y
and z are stochastic.

Let Xt satisfy (5.8). If we put y = Xr+h, z = Xt, we deduce that

"
.f (Xt+h) - .f (Xr) = .f'(Xt)(Xt+h - Xr) +

f
2

t) (Xr+h - Xr)2 + e, (5.20)f
where I e(X r+h , X01 < C I X t+h - X. Recalling the definition of a stochastic
differential equation, we have that Xt+h - Xt is equal to

lt(Xr, t)h + h'12a(Xt, t)N(0, 1)

plus an error term. Remember in what follows that the N(0, 1) term comes from
the Brownian motion and we can always substitute

h-1/2(Wr+h - Wt)

for it.
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If we now substitute into (5.20), we obtain for the right-hand side,

fr(Xr)p(Xr, t)h + h1,2a'(Xr, t)fr(Xr)N(0, 1)
+ f //(Xr)(µ(Xr,

t)h + h1,2Q(Xr, t)N(0, 1))2 (5.21)
2

plus error terms, which are all of mean and variance at least o(h). If we now expand
the square, it can be rewritten as

hv2 + ho- 2(N(0, 1)2 - 1) + 2h3/2µaN(0, 1) + h2µ2, (5.22)

where we have dropped the dependence of a and µ on Xr and t for tidiness. The
last two terms are trivially of o(h) in both mean and variance. Recall that the normal
distribution is of mean 0 and variance 1, so the definition of variance implies that
the mean value of N(0, 1)2 - 1 is zero. This means that the second term has mean
zero and the coefficient of h guarantees it has variance which is o(h). We conclude,
modulo terms that are of mean and variance o(h), that

r1

f(Xr+h) - f(Xt) = fr(Xr)A(Xr, t)h +
f (Xr)Q(Xr, t)2h

2

+h112a-(Xr, t)fr(Xr)N(0, 1), (5.23)

plus terms of mean and variance o(h). Substituting h-112(Wr+j, - Wt) for N(0, 1),
we conclude that f (Xr) satisfies the stochastic differential equation

d(f(Xr)) = (f'(Xt)i(Xt, t) + f
(Xr)o.(Xr, t)2 dt +Q(Xr, t)fr(Xr)dWr.

(5.24)

This is the chain rule for stochastic calculus and is almost the same as the chain
rule for ordinary calculus, except that the additional term involving the second
derivative appears in the dt term. This rule is known as Ito's lemma and the extra
term is sometimes called the Ito term.

If we allow f to be a function of time as well as x a simple extension of the
argument above yields

2

d(f M, t)) _ ((x
8t r, t) + 7x M, t)lC(Xr, t) + 2 7x2

Q(Xr, t)2 I dt

+ o-(Xt, t)

ax

(Xt, t)dWW. (5.25)

Ito's lemma is the fundamental tool in stochastic calculus and in its applications
to finance. It is probably most easily remembered as follows.
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Theorem 5.1 (Ito's Lemma) Let Xt be an Ito process satisfying

dXt = µ(Xt, t)dt + a(Xt, t)dWW, (5.26)

and let f (x, t) be a twice-differentiable function; then we have that f (Xt, t) is an
Ito process, and that

d(f (Xt, t)) =
at

(Xt, t)dXt + f'(Xt, t)dX + 2 f"(Xt, t)dXr (5.27)

where dX, is defined by

dt2 = 0, (5.28)

dtdWt = 0, (5.29)

dWr = dt. (5.30)

Note that the final multiplication rule is the crucial one which gives the extra term.
A similar argument gives us a rule when we have several Ito processes based on

the same Brownian motion.

Theorem 5.2 (Ito's Lemma) Let Xfj) be an Ito process for each j satisfying

dXt = jt (t, Xt)dt + Q; (t, Xt)dWt, (5.31)

and let f (t, x1, ... , be a twice-differentiable function; then we have that
f (t, Xr1), Xr2), ..., Xrn)) is an Ito process, and that

11 nof o 1
a2 fj) k)dXd X 1) 32)(5

++E(f (t, )) =,
rIat ;-1 ax; 2 j k-1 ax;xkr

where dXij)dXrk) is defined by

.

dt2 = 0, (5.33)

dtdWt = 0, (5.34)

dWr = dt. (5.35)

Note that all our Ito processes here are defined by the same Brownian motion. Later
on we will want to consider stocks driven by different Brownian motions.

One important consequence of Ito's lemma is a product rule for Ito processes;'if
we let f (x, y) = xy, then we have

Proposition 5.1 If Xt and Yt are Ito processes then

d(XtYt) = XtdYt + YtdXt + dXtdYt. (5.36)

Note that this generalizes the Leibniz rule from ordinary calculus by involving a
third term.
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Fig. 5.2. Some paths for a stock following a log-normal process.

5.6 Applying Ito's lemma

As this may all have been a bit abstract, we now do some concrete examples. A
standard model for the evolution of stock prices is geometric Brownian motion,
that is

dSr = µSrdt + QStdWW, (5.37)

with A and or both constant. This is often written as

dSr =µdt+adWr. (5.38)
St

The idea here is that movements in a 'stock's value ought to be proportional to its
current value, as it is percentage movements that matter not absolute ones. We give
some example paths in Figure 5.2. For example, for a stock worth $1000 losing $10
is inconsequential, whereas for one worth $20 losing $10 has lost half its value.
The term µ is called the drift of the stock since it expresses the trend of the stock's
movements, and a is called the volatility of the stock as it expresses how much
the price wobbles up and down, or equivalently how risky it is. Since investors
generally expect greater yields in return for greater uncertainty, we expect that the
drift will be higher for stocks with high volatility. If our risk-free money market
account follows the process

dBt = rBrdt, (5.39)

which is equivalent to Bt = Boe't, then the difference p. - r expresses the size of
the risk premium. It is the amount of extra growth investors demand to compensate
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for extra risk introduced by the Brownian motion. Since we expect the premium to
increase with volatility the ratio

(5.40)

is often useful, and is called the market price of risk. We stress that A is only the
market price of this specific piece of risk and other unrelated pieces of risk may
well have different market prices. One might, however, use the market price of risk
as a guide to which stocks are good value in the sense of giving good returns at low
risk. (Note that this ignores the difference between diversifiable risk and systemic
risk discussed in Chapter 1.)

There can be only one growth rate for portfolios which have no random part; for
suppose we have that

dBt = rBtdt, (5.41)

dB' = r'Brdt, (5.42)

with r < r'. Without loss of generality, we suppose Bo = Bo = 1 (otherwise, take
a linear multiple). The portfolio consisting of B' - B will have zero value initially
and value

e' I t - e' t > 0

for all t > 0. The portfolio therefore constitutes an arbitrage and we conclude that
no-arbitrage requires that r is equal to r'.

This model is often called the log-normal model of stock price evolution as the
log of the stock price follows a normal distribution. To see this, we use Ito's lemma
and some stochastic calculus; suppose we put St = e1't or Yt = log St, what SDE
does Yt satisfy? By Ito's lemma

dYt = d(log St) _ (log St)'µStdt + (log St)'QStdWt +
2I

2 (log St)"Q2St dt. (5.43)

As log S' = St 1 and log St" _ -St 2, we obtain

dYt =
(µ

- Zor 2) dt + adWt. (5.44)

We conclude that log S is a simple Brownian motion with drift. Recalling our
derivations above, we have that

Yt - Yo = (/_t - L
2

0, 2) t + Q,VtN(0, 1). (5.45)

Now, as St = eyt , we conclude that

St - S0e(l,- 12)t+v,,1t-N(0, 1) (5.46)
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We have thus solved the stochastic differential equation (5.38). Unfortunately, this
is one of the very few stochastic differential equations that have explicit solutions.
In general, one can only write down facts about the solution. Fortunately, we shall
not need the solutions of other SDEs, and in fact most of our work shall consist
of manipulating stochastic differential equations in such a way as to eliminate ran-
domness; that is, we turn stochastic differential equations into partial differential
equations by mixing quantities judiciously in such a way as to eliminate the dWt
term that is the source of the randomness.

If we wish to interpret these ideas in terms of the market, we can regard dWt
as modelling the arrival of information which may be good or bad and therefore
drives the stock price up or down. An option on a stock will be driven by the
same information and therefore its stochastic differential equation will be driven by
the same d Wt, so if we combine the option and the stock judiciously we ought to
be able to eliminate the randomness. This observation is at the heart of the Black-
Scholes approach to pricing options.

Before proceeding to the derivation of the Black-Scholes equation, we look at a
further example of the application of Ito's lemma. Suppose our stock movements
were not strictly proportional to level but instead obeyed a power law:

dSt = Sr sdt + St adWt, (5.47)

with P * 0, 1. Such a process is called a constant elasticity of variance process or a
CEV process. In order to solve the SDE we would like to make the process constant
coefficient. If we take d(f (s)) for some smooth function f then the volatility term
of the new process will be, from Ito's lemma,

f'(S)SPQ.

For the volatility term to be constant coefficient, we need

f'(S) = S-P. (5.48)

Thus, we let
S1-,a

f(S)= (5 49).

Note that
f//(S) = _p5-P-1. (5.50)

Applying Ito's lemma, we have

d(f (S)) _ (stu - dt + QdW. (5.51)
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For general or and a this will be constant coefficient only if a and ,B are 1 - that
is, we are back in the log-normal case which we had already ruled out. (We had
assumed as well that they were not zero which would also give us a constant coef-
ficient process.)

This example illustrates the fact that solving SDEs is difficult; the existence of
two interacting terms generally makes it impossible to simplify via a change of
coordinates.

Example 5.1 Suppose the stocks Xt and Yt follow geometric Brownian motion
with the same underlying Brownian motion. Show that XtYt also follows a geo-
metric Brownian motion and compute its drift and volatility.

Solution Write

dXt = aXtdt + QXtdWt,

dYt = ,BYtdt + vYtdWt.

We compute

d(XtYt) = XtdYt + YtdXt + dXt.dYt,

= XtYt (,Bdt + vdWt + adt + a'dWt + avdt),

=XtYt((a+,3+av)dt+(a+v)dWt).

The drift is therefore

a+,B+av,

and the volatility is

5.7 An informal derivation of the Black-Scholes equation

Suppose we wish to price a call option, C, on a stock, S, with expiry T and strike
K. We assume that S follows a geometric Brow.iian motion with drift µ and volatil-
ity a. We take the risk-free money-market account to be continuously compounding
at a rate r. The value of C at a time t < T will depend on the value of S and the
value of t, so we write C(S, t). Note that writing C as C(S, t) implicitly assumes
that there is a unique well-defined price for the option. We shall eventually justify
this assumption.
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All other parameters are fixed throughout so we need not explicitly consider
dependence upon them. We can apply Ito's lemma to deduce the stochastic differ-
ential equation for C(S, t):

dC = Cdt + as (S, t)dS + 2
as22

(S, t)dS2. (5.52)

Expanding dS, we obtain
z

dC = (_(s , t) + µS
as

(S, t) + 2a2Sz
aS2

(S, t)) dt + QS
ac
-(S, t)dWt.

(5.53)

This equation contains, of course, the derivatives of C with respect to t and S and
if we know them, then simply by integrating we can find the original function.
Nevertheless, we can manipulate it in a useful way. If we consider the portfolio
consisting of the option and a stocks, we obtain from (5.53)

((sd(C + aS) = a , t) + (S, t) + Za2S2
a2sz

(S, t) + alts) dt

(ac 1
+QS

as
+ a) dWt. (5.54)

If we set a equal to - as (S, t), we obtain

2

d(C + as) ((s , t) + 1 U2S2 Sz (S, t)) dt; (5.55)

actually we do not obtain this, as we are ignoring the derivative of a which we
cannot do - we will present a more rigorous argument in the next section. The
financial reason for we can ignore this term is that we are interested in changes
in value that arise from market changes, rather than from changes in our holdings.
Our choice of a means that we are carrying out Delta-hedging: we now have a
portfolio which is deterministic; that is, it has no random component. Since a risk-
free portfolio must grow at the risk-free rate, we conclude that the drift of C + aS
must be equal to r(C + aS). We therefore conclude that

aC 1 2 2a2C aCl
at

(S, t) + 2Q S
a Sz (S,

t)= r C - Sas J (5.56)

Upon rearranging we have

ac ac 1 2 2a2C

at
(S, t) + rSa +

26
S

aS2
(S, t) = rC. (5.57)

We have thus deduced that the value of a call option satisfies a second-order partial
differential equation. This equation is called the Black-Scholes equation after its
inventors.
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We do not yet have quite enough information to solve the equation since a
second-order linear partial differential equation has many solutions. However, we
certainly know what the value of our option will be at expiry, so for t = T we
have

C(S, T) = max(S - K, 0), (5.58)

since the option would be exercised if and only if S was bigger than K. Note that
it is only at this point that the fact that C is a call option comes in. We could apply
this analysis to any European contingent claim, i.e. a derivative which pays off a
function, f, of S at time T, simply by putting

C(S, T) = f (S). (5.59)

With this final condition, we have enough data to find a unique solution.

5.8 Justifying the derivation

Before proceeding to the solution, we prove that the solution to the equation is, in
fact, the unique arbitrage-free price for the option. The argument we have given
made a couple of dubious assumptions - a is a function of S so why can we ignore
its derivative? Also we assumed that C is a well-defined function of S and t which
is really part of what we are trying to prove.

We prove the validity by a replication argument. In particular, we show that if
C(S0, 0) is the solution of the Black-Scholes equation at time zero and with spot
equal to So, today's spot, then it is possible to execute a trading strategy which re-
sults in having precisely max(ST - K, 0) pounds at time T. This trading guarantees
that we have the option's pay-off no matter what happens in between and what the
value of ST is:

Once we have proven that we can do the replication, then the price of the op-
tion follows by an arbitrage argument. If the price of the option were greater than
C(So, 0) then one could find an arbitrage by selling the option and executing this
trading strategy to cover the cost of its exercise at time T. If the price of the option
were less than C(S0, 0), one would buy the option and execute the negative of the
trading strategy and once again make a risk-free profit no matter what happened:
we would realize an arbitrage opportunity.

To describe our trading strategy, we need the concept of a self-financing port-
folio. This is a portfolio which is set up at time 0, i.e. today, and to which no
cash is injected or extracted during the lifetime of the contract. However, selling
some assets to buy new assets is permitted. This means that all changes in value of
the portfolio come from the changes in value of the underlying assets. In our case,
we are interested in a portfolio of risk-free bonds and the underlying stock. If we
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write

P=aS+fB, (5.60)

then our self-financing condition becomes

dP = adS +,BdB, (5.61)

thus expressing the notion that all changes come from the changes in S and B
rather than from those in a and P. It is important to realize that equation (5.61) is
not just the linearity of differentiation as a and /3 will generally not be constants.
Indeed, we could let a and /3 at time t depend on the entire path of S up to time
t. We would not, however, let a and ,8 depend on the value of S after time t, as
this would involve in some sense seeing the future; we will return to this point in
the next chapter. In the derivation that follows we will take a and ,B to be functions
of S(t) and t only. Note that as the path of S is continuous, the value of S(t), and
hence a and /3 is determined in some sense by information from the past.

The self-financing condition expresses the simple financial idea that money is
neither added to nor subtracted from the portfolio. As we wish to execute trades
within the portfolio, but cannot add or subtract cash, there are clearly constraints
on the values the pair (a, /3) can take. If we increase a through trading, ,6 must
decrease and vice versa. This means that if we specify one of a and ,6 and the other
is then determined. Mathematically, we have

Theorem 5.3 Let S be a stock following geometric Brownian motion and let B
be the money-market account continuously compounding at rate r. Then given a
smooth function a(S, t) and an initial value Po then there is a unique smooth func-
tion f(S, t) such that

P=aS+,3B, (5.62)

is a self-financing portfolio with initial value Po.

We now have the tools to prove our main result that C(SO, 0) is the unique arbitrage-
free price of the option. Letting C(S, t) be the solution of the Black-Scholes equa-
tion, we set up a portfolio P with initial value C(SO, 0) and, following our heuristic
argument above, we set

ac
a(S, t) =

.as
Remember that this was the hedge that made the portfolio instantaneously risldess.
As we are now trying to replicate C rather than hedge a long position in C, the sign
of our hedge has changed.

We show that

P(S, t) = C(S, t) for 0 < t < T.
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In particular, it will follow that

P(S, T) = max(ST - K, 0)

which is another way of saying that the portfolio P will precisely reproduce the
option's pay-off as desired.

To show that P(S, t) = C(S, t), we consider the difference. This will initially be
zero, by construction, and we have

d(P(S, t) - C(S, t)) = dP - dC,

aSdS+P(t)dB- atdt

- ac dS - -
z-

dS2

ac 1 a2c 2S2 dtBd -dt
(5 63)./3(t)r t -

at aS2
Q- .

Recalling that P = ,3B + S as , and that by the Black-Scholes equation,

aC 1 2 2a2C

C

aC\C-S=+
S

aSr2a
at aS2

it follows that

d(P-C)=r(P-Sasl dt-r(C-Sasldt. (5.64)

We therefore find that \\

d(P - C) = r(P - C)dt. (5.65)

As we have the initial condition

(P - C)(S, 0) = 0, (5.66)

we conclude that the unique solution of this differential equation is identically zero.
To see this simply observe that zero is a solution and so by uniqueness is the only
solution. Thus we have that

P(S, t) = C(S, t) for O< t < T, (5.67)

as required.
We have shown that by investing C(S, 0) at time zero and carrying out Delta

hedging, we have precisely the value of the payoff of the option at time T, no
matter what happens. That is we have replicated the option's pay-off on a path by
path basis. It therefore follows that the option must be worth C(SO, 0) at time 0, and
indeed C(Sr, t) at any time in between, by the same argument. We stress once again
that there is nothing probabilistic in this conclusion - there is no sense in which we
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are pricing on average, we have eliminated all risk via our hedging strategy. Note
also that our derivation shows that the option has a unique well-defined price -
we have not assumed that the price exists other than in the heuristic part of our
derivation. Indeed, the fact that the option has a well-defined price depending only
on the variables S and t, and the parameters r and a is the most important aspect
of the result. The reason this is so important is that it is so unexpected; without
the possibility of perfect hedging one would expect a role for the investors' risk
preferences and hence the impossibility of a unique price.

We also emphasize that the price is independent of µ - the drift of the stock is
irrelevant. This means that two investors with totally different opinions of the value
of it can agree on the price of the option provided they agree on the volatility. This
surprising fact simply reflects the fact that the hedging strategy ensures that the
underlying drift of the stock is balanced against the drift of the option. The con-
ceptual reason that the drifts are balanced is that the drift reflects the risk premium
demanded by investors to account for an uncertainty and that uncertainty has been
hedged away.

5.9 Solving the Black-Scholes equation

We thus have a partial differential equation that the price of an option satisfies, and,
of course, we want to solve it. The surprising thing about the Black-Scholes equa-
tion is that it is fairly easy to write down the solution. Indeed the Black-Scholes
equation is really just the one-dimensional heat equation in disguise. To see this,
we can rewrite it as

aC ( 1 21 aC 1 2 (s)a 2

at + r - 26 S + 6 C = rC. (5.68)

Recalling that the stochastic differential equation for the stock S was much simpler
when expressed in terms of log S, we can try the same approach here. Let S = eZ,
that is Z = log S. The equation then becomes

ac (r_a21

)
1aC

2aZ + -a
aZ2

= rC, (5.69)
2

which is constant coefficient.
To simplify the equation further, consider that it is not really the current time

that will affect the price of an option but rather the amount of time to go. Putting
r = T - t, we obtain

2

at
- Cr - 262) ac - 262az = -rC. (5.70)
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As we are trying to price the value of a possible cash flow in the future, we can
write C = e-'' D, expressing the notion that we are discounting the possible future
cash flow D to the current time. We then obtain

aD 1 2 aD 1 2 a2D
rar -\ -26) aZ-26 aZ2=0. (5.71)

Next, we eliminate the first-order term. Now the mean value of Z at time t is
Z(0) + (r - ' a2)t. It is therefore reasonable to shift coordinates to take this into
account. We therefore let

1y=Z+ r-202 r

and our equation becomes

D = -o 2
a2

(5.72)

This is the one-dimensional heat-equation. Thus to solve the Black-Scholes equa-
tion we simply transform the boundary condition, solve the heat equation and trans-
form back. We leave this as an exercise for the enthusiastic reader and simply state
the solution for a call option

C(S, t) = SN(dl) - Ke-r(T-t)N(d2), (5.73)

with N(x) denoting the cumulative normal distribution, Zn f _X00 e-S2/2ds, and

dl _ log(S/K) + (r + IU2)(T - t)
o T

IT(5.74)

d2 _ log(S/K) + (r - ZQ2)(T - t)
(5.75)Q T-t

In Chapter 6, we give an alternative method of deriving the solution depending
upon probabilistic ideas which makes the provenance of the terms dl and d2 a lot
clearer.

That this is a solution can be verified by direct substitution. Under fairly mild
conditions, for example positivity or ex; onential boundedness, solutions of the
heat equation are unique, so we can be sure that this solution is the correct one.
Remember that the price of an option is always positive, since there is always
some possibility that it can make the holder some money in the future.

The fact that the Black-Scholes equation is the heat equation in disguise has
some interesting consequences. The solution operator for the heat equation is a
smoothing operator. This means that even for a complicated final pay-off with lots
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Fig. 5.3. The price of a call option struck at 100, with vol 30%, with times 0,
0.25, 0.5, 0.75 and 1 year remaining. As time to expiry goes to zero, the graphs
becomes progressively more like the final pay-off.

of spikes and jumps, the value of the derivative is always a smooth function of
(S, t) in the sense that it can be differentiated infinitely often.

An important property of heat flows is their asymmetry. If one attempts to flow
heat backwards in time, one does not obtain a solution of the heat equation. This
is unlike the wave equation which does not see the direction of time. The idea is
that heat flows destroy information - everything blurs together. This means that the
prices of options which satisfy the time-reversed heat equation, can only ever flow
backwards in time, i.e. we can price an option in the future, and as the expiry of
the option approaches, the solution becomes less blurred as it converges towards
the pay-off; see Figure 5.3.

The formula we have deduced for the price of a call option is, of course, the same
as the one that we deduced in Chapter 3; the two very different approaches lead to
the same answer. Of course, it would be worrying if they did not. The approach
in this chapter is much closer to that of the original paper by Black & Scholes,
whereas the tree approach was introduced later by Cox, Ross & Rubinstein. Both
techniques have their uses; one's choice depends on the specific properties of the
option being studied. When studying exotic options, we will examine the advan-
tages and disadvantages in several cases.

5.10 Dividend-paying assets

The equation we have derived is only valid for an option on a non-dividend pay-
ing stock. In practice, many stocks do pay dividends; moreover we may want to
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consider options on foreign currencies, since a foreign currency holding will grow
at the risk-free rate in that currency, currencies can also be considered to pay divi-
dends. We therefore need to bring this into our model. We will model the dividend
yield on a stock as if it were a currency; that is, the number of stocks held will
grow at a continuously compounding constant rate. In order to motivate what fol-
lows, let us examine a little more carefully what happens when we hedge a stock.
We hold at any given time as stocks. We know that as t T-, C converges to
max(S - K, 0) and, away from S = K, differentiating this implies that as con-
verges to 1 for S > K, and 0 for S < K. (For those worried about the interchange
of limits here, this follows from properties of the heat equation.)

At the pay-off time, the hedger therefore holds an empty portfolio if S is less
than K, and otherwise holds a portfolio consisting of one stock and -£K.

Ultimately, when carrying out a replicating strategy, our objective is to hold this
portfolio at the expiry time; how we achieve this portfolio is not important. In
particular, suppose that instead of hedging with the stock, we hedge with contracts
that involve payment for the stock today but delivery of the stock at time T. For a
non-dividend-paying stock, the cost of such a contract will be identical to that of a
stock. To see this, just observe that in any state of the world at time T, the contract
and the stock will have identical worth as both just involve the investor holding
precisely one stock. For a dividend-paying stock things are slightly different; the
investor who buys the stock at time t will hold ed(T-t) stocks at time T, whereas
the investor who buys the delivery contract at time t will hold just one stock at
time T. We therefore conclude that buying e-d(T-t) stocks today is equivalent to
buying one delivery contract. This means that the price of the delivery contract, Xt,
must be e-d(T-t)St. Note that as the delivery contracts are replicable by a trading
strategy, the fact that they do not exist in the market is irrelevant. All that matters
is the fact that they can be replicated.

What does this buy us? An option on Xt with expiry T must have the same value
as an option on St, since ST equals XT in all world states. The asset Xt is however
non-dividend-paying so we can apply the Black-Scholes analysis to it directly.
Note that Xt is described by the process

dXt = (µ + d)Xtdt + XtadWt, (5.76)

which is just geometric Brownian motion with a different drift. But the drift does
not affect the Black-Scholes price. We therefore conclude that the price of the
option C satisfies

2

a (t, X) + 2Q2X2 aX2 (t, X) + rX
ac

(t, X) - rC(t, X) = 0. (5.77)
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Transforming to an equation in S we obtain
2ac

(t S) + 1 0_2S2

a C
(t S) + (r - d)S

ac
(t, S) - rC(t, S) = 0. (5.78)

at 2 aS2 as

We can now solve this with the same boundary condition as before, or, more
simply, just substitute into the original solution of the Black-Scholes equation to
obtain

C(S, t) = Se-d(T-t)N(dl) - Ke-'i(T-t)N(d2)
(5.79)

where
log(S/K) + (r - d + 2Q2)(T - t)

dl = Q T - t
(5.80)

d2 = log(S/K) + (r - d - 10,2)(T - t)
Q T - t (5.81)

A similar analysis can be applied to options on commodities. The essential dif-
ference between money and commodities is that holdings of money grow as in-
terest is paid on them whereas holdings of commodities cost money just to hold
since warehousing must be paid for. This money is known as cost of carry and can
be represented very simply as a negative dividend. One therefore obtains the same
equations but with d = -q, where q is the cost of carry. In commodities markets,
it is sometimes very important to actually hold the physical asset in case one actu-
ally wants to use it. Commodities are therefore often modelled with an additional
positive dividend-type process called the convenience yield, y. One then simply
sets

d = y - q.

Note that d could be either positive or negative.
In our analysis of a dividend-paying asset, we hedged the option with contracts

involving payment today but delivery at the expiry of the option. We could equally
well have hedged with forward contracts, that is with contracts that involve pay-
ment and delivery at time T but with the size of the payment fixed today. This has
certain advantages and we will return to this point when we have developed more
theory.

5.11 Key points

In this chapter we have covered a lot of ground. We introduced the concept of an
Ito process and developed a calculus for manipulating them. We used that calculus
to deduce a necessary price for a call option and extended the model to cope with
dividend-paying assets.



124 The Ito calculus

A Brownian motion is a process Wt such that for any t > s, Wt - W. is normally
distributed with variance t - s and mean zero and is independent of Ws.
Stochastic calculus generalizes ordinary calculus by letting the derivative have a
random component coming from a Brownian motion.
Stochastic calculus deals with Ito processes, in which the random variable's
derivative has both a deterministic linear part and a random part which is nor-
mally distributed.
The fundamental tool of stochastic calculus is Ito's lemma which says that if

dXt = la(Xt, t)dt + o(Xt, t)dWt

then

z

df (Xt, t) = at
(Xt, t)dt +

ax (X t , t)dX t
+ 2 ax (X t, t)dXt ,

with the multiplication rules

dt2=0,
dtdWt = 0,

dWtdWt = dt.

A standard model for stock evolution is geometric Brownian motion:

dSt = St,adt + StadWt.

The SDE for geometric Brownian motion is solved by

S(t) =
S(0)e(µ-ZQZ)r+al-tN(o,l)

For a stock following geometric Brownian motion the quantity

µ - r
a

is called the market price of risk.
Risk can be eliminated by holding a portfolio in which the random parts of two
different assets cancel each other.
No-arbitrage implies that a portfolio from which risk has been eliminated must
grow at the riskless rate.
A self-financing portfolio is a portfolio ii. which assets are bought and sold but
no money is taken in or out.
A European option's payoff can replicated by a self-financing portfolio consist-
ing of dynamic trading in stock and riskless bond.
No-arbitrage guarantees that the price of a European option must satisfy the
Black-Scholes equation.
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5.12 Further reading

There are many books on stochastic calculus. One that is very popular and reason-
ably accessible is Stochastic Differential Equations: an Introduction with Applica-
tions, by Bernt Oksendal, [118].

A more rigorous book on stochastic calculus written for the pure mathematician
which requires hard work, but is worthwhile for those who are not willing to take
results on faith is Karatzas & Shreve's Brownian Motion and Stochastic Calculus,
[941.

The PDE approach to mathematical finance developed in this chapter has now
been superseded by the martingale approach we describe in the next chapter. How-
ever, the approach can be pushed quite a long way and two accessible books follow-
ing this approach are Wilmott, Howison & Dewynne, [140], and Wilmott, [139].

5.13 Exercises

Exercise 5.1 If

dXt = pXtdt + aXtdWt,

what process does Xr follow?

Exercise 5.2 If

dXt = µ(t, Xt)dt + a(Xt)dWt,

with a positive, show there exists a function f such that

d(f (Xt)) = v(t, Xt)dt + VdWt

where V is a constant. How unique is f ?

Exercise 5.3 Suppose St is the price of a non-dividend paying stock following
geometric Brownian motion. Let Ft for t < 1 be the forward price of the stock for
a contract expiring at time 1. What process does Fr follow?

Exercise 5.4 If St follows geometric Brownian motion, what process does S7'
follow?

Exercise 5.5 What sort of qualitative behaviour does a stock following a process
of the form

dSt = a(µ - St)dt + StadWt,

exhibit? What qualitative effects do altering µ and a have? What effects do they
have on the price of a call option?
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Exercise 5.6 Show that St is a solution of the Black-Scholes equation. Why should
this be so?

Exercise 5.7 Show that Aert is a solution of the Black-Scholes equation. Why
should this be so?

Exercise 5.8 Show that the solution of the Black-Scholes equation for a call option
is bounded by 0 and S.

Exercise 5.9 Show that if f (S, t) and g(S, t) are solutions of the Black-Scholes
equation and f (S, T) < g(S, T) for all S and some T then f < g fort < T.

Exercise 5.10 If

dXt = µ jdt + adWt

and µl < i 2, with Xo') = X(" show that for t > 0,

X(1) < X(2)t t

Exercise 5.11 Suppose an asset follows Brownian motion instead of geometric
Brownian motion. Find the analogue of the Black-Scholes equation.

Exercise 5.12 Suppose we have a call option on the square of the stock price. That
is the pay-off is (ST - K)+. What equation does the price of the call option at time
t satisfy? What is the solution to this equation?

Exercise 5.13 Compute the market price of risk in the following cases:

r=4%,a=10%, u=6%;
r= 2%, a= 20%, µ= 5%.

Exercise 5.14 (Hard!) Solve

dXt = a(f3 - Xt)dt + adWt.

(Hint: first think about when a = 0; then when ,B = 0. Then proceed to the general
situation.)

Exercise 5.15 Suppose were are in a Black-a Wholes world, and have a put option
on a non-dividend paying stock. What effect would a positive dividend rate have
on the price of the put?
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Risk neutrality and martingale measures

6.1 Plan

In this chapter, we introduce and study the theory of pricing using martingales.
This is a difficult and complicated topic with many aspects. Our plan of attack is
as follows:

We review pricing on trees from a slightly different viewpoint.
We show that under very slight assumptions vanilla option prices for a single time
horizon are given by an expectation under an appropriate probability density.
We show how to compute this density and observe that it implies that the stock
grows at rate r.
In the Black-Scholes model, this density is that implied by giving a stock a drift
equal to r instead of µ.
We return to multiple time horizons and view stochastic processes as the slow
revelation of a single path drawn in advance.
The concept of information is examined in this context, and defined using filtra-
tions.
In the discrete setting, we define expectations conditioned on information.
A martingale is defined to be a process such that its value is always equal to its
expected value.
It is shown that martingale pricing implies absence of arbitrage in the discrete
setting.
The basic properties of conditioning on information are surveyed in the continu-
ous setting.
Continuous martingales are identified to be processes with zero drift (up to tech-
nical conditions.)
Pricing with martingales in the continuous setting is introduced.
The Black-Scholes equation is derived using martingale techniques.
We study how to hedge using martingale techniques.

127
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The Black-Scholes model with time-dependent parameters is studied.
The concept of completeness, the perfect replication of all options, is introduced
and its connections with uniqueness of martingale measures are explored.
Numeraires are introduced and it is shown that the derivation of the Black-
Scholes formula can be greatly simplified by using the change of numeraire
technique.
We extend the martingale pricing theory to cover dividend-paying stocks.
We look at the implications of regarding the forward price as the underlying
instead of the stock.

6.2 Introduction

We have presented two different approaches to deriving the Black-Scholes equa-
tion. The first approach relied on approximating Brownian motion by a discrete
process in which the value at each node of a tree was determined by no-arbitrage
arguments. The second approach relied on deriving a partial differential equation
for the price of an option. Our purpose in this chapter is to derive a third, more
fundamental, approach that relies on the concept of a martingale measure which
we will introduce.

Let us assume there are no interest rates. Recall that when studying risk-neutral
valuation on trees, we saw that the method worked because once the risk-neutral
probabilities had been chosen, the expectation of every portfolio's value in the
future was equal to today's value. This meant that once a portfolio had been created
it could not have zero value today and positive value in the future with positive
probability without also having non-zero probability of negative value. This meant
that under the risk-neutral probabilities it was impossible for arbitrages to occur.
And as the existence of arbitrage only depends on the sets of non-zero probability,
the existence of arbitrage was only possible with real-world probabilities if it was
possible with risk-neutral ones and so could not occur.

In the tree, we required the probabilities to be risk-neutral at every point in the
tree: at any point in the tree all portfolios must have expectation equal to today's
value. Why do we need this property? Why is it not enough just to have that all
portfolios have expectation equal to today's value at the start. The reason is that we
have to be careful what we mean by a portfolio. If we include in our set of portfolios
all self-financing portfolios, then it is enougi. to require the property holds today,
as then we cannot be arbitraged by any trading strategy having put our expectation
condition on all possible portfolios that might arbitrage us. On the other hand, if we
only place our condition on static portfolios today, which is equivalent to placing
the condition on single assets, then we have made a much weaker condition, one
which is not sufficient.
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To see this, consider a simple example. There is a riskless bond of constant value
1 and an asset of initial value 0. On the first day, a coin is flipped, if the value comes
up heads the asset is worth 1, otherwise it is worth -1.On the second day the value
of the asset doubles.

The expected value of the asset at time 1 is zero, and at time 2 it is zero also.
This means that any static portfolio has value at time 2 equal to its value at time
zero, and we conclude that no static portfolio is an arbitrage.

However, if we are allowed to trade at time 1 the situation changes. We set up
an initially empty portfolio. If the coin comes up heads, then at time 1 we borrow
a bond and buy the asset, otherwise we do nothing. Our portfolio is then worth 1
at time 2 if the coin came up heads and zero otherwise. We have constructed an
arbitrage.

In this example, our self-financing portfolio did not have the property that its
future expectation was equal to today's value. This was caused by the fact that the
asset at time 1 did not have future expectation equal to its value at time 1.

In conclusion, if we want to avoid arbitrage via trading strategies then we need
to construct probabilities such that, if at any trading time and state of the world we
take the expectation of any asset's future value, then it will be equal to the value
it has in that state of the world at that trading time. This is called the martin gale
property.

For a tree, it is reasonably clear what this means: we simply go through each
node of the tree assigning probabilities so that the expected value at each node is
the expectation of its values on the next time slice. In continuous time, however, life
is much more complicated. If we can trade at any time then we need the expectation
property to hold at every time. We no longer have small time steps to work with,
and so we must consider many times at once. We must also think a little about what
we are assigning probabilities to: there is no longer any simple concept of up and
down moves.

Our purpose in this chapter is to explore all these issues and use them to develop
a powerful pricing theory. We start by examining the case of a single time horizon
in more detail.

6.3 The existence of risk-neutral measures

One of the surprising facts of mathematical finance is that option prices actually
define probability measures. These measures, however, do not make statements
about the probability distribution of the asset's future price movements, but instead
always imply a 'risk-neutral' evolution where the asset's rate of growth is the risk-
free interest rate. Here we show how one can construct this risk-neutral distribution
for a single maturity from option prices and examine how it relates to the option
prices.
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Fig. 6.1. The approximation of a double digital option by call options.

Suppose we can observe the price in the market for options of all strikes for a
single maturity T. Let OK be the price at time 0 of a call option struck at K on the
underlying S. Let BT be the price of a zero-coupon bond expiring at time T. We
consider the price ratios CK = OK/BT. In what follows, we implicitly assume that
there are no interest rates, that is BT =1. However, this is merely for clarity and all
the arguments work with little modification in the general case.

We know that CK must be a decreasing function of K in an arbitrage-free market.
We also know that any linear combination of different CK's which lead to a non-
negative final pay-off must be of positive value. Let DI denote an option which
pays 1 if spot ends in the interval I and zero otherwise. The interval could be of
the form (K1, K2) or [K1, K2]. We can approximate such options by a portfolio of
call options.

In particular, if we take LE = E-1(CK, _E - CK1 - CK2 + CK2+E), then we have
pay-off as follows

0 for ST < K1 - E, (6.1)

1 for ST E [K1, K2], (6.2)

0 for ST > e2 + E, (6.3)

and the pay-off varies linearly between 0 and 1 in the omitted intervals. See
Figure 6.1.

As the pay-off is at most 1, and can be 0, we conclude that the value of this
portfolio is between 0 and 1. The value must be a decreasing function of e as for



6.3 The existence of risk-neutral measures

E < E' we have for the pay-offs

LE(S, T) < LE'(S, T)

131

with strict inequality for some values of S. The value is thus a strictly decreasing
function of c and non-negative. If we let E tend to zero, it must therefore converge
to a non-negative number less than 1.

We certainly have

lim LE(So, 0) > D[K,,K2](SO, 0)-
6->O+

We can do a similar approximation for the interval (K1, K2), by taking the
portfolio

LE = E
1(CK,

- CKi+E - CK2-E + CK2)1 (6.4)

and letting E tend to zero. Plainly, one could also approximate [K1, K2) and
(K1, K2] similarly. Will these four options always have the same value? Clearly,
we have that LE(St, t) > LE(St, t) for all c > 0. This means that we have

lim LE(So, 0) >_ D[Kr,K2](So, 0) >- D(K,,K2)(SO, 0) ? lim LE(So, 0). (6.5)
E-*O+

Intuitively, we would expect these limits to be the same. If the probability of the
spot finishing on one of the two values K1 and K2 precisely is zero, then a portfolio
consisting of being long D[K,,K2] and short D(K,,K2) has zero value at time T except
on a set of zero probability.

Recall that an arbitrage portfolio is a portfolio of zero value which has non-
negative value with probability 1 and positive value with non-zero probability.
If D[K,,K2] and D(K,,K2) do not have the same value, we go long D(K,,K2), short
D[K,,K2] and put the proceeds in riskless bonds. At expiry time, our portfolio will
consist solely of the riskless bonds unless spot lands on K1 or K2 which is a zero
probability event. Thus an arbitrage would exist and we conclude that the two
options have the same value at time zero.

However, we still want to show that

lim LE(So, 0) = D[K,,K2](So, 0). (6.6)

In fact, no-arbitrage is too weak a condition to force equality. However, if the limit
were higher we could do extremely well by shorting the portfolio LE for a very
small e and buying the option D[Ki,K2]

We then make the sum LE(So, 0) - D[K,,K2](So, 0) which is of course greater
than

x = lim LE(So, 0) - D[Ki,K2](So, 0)
E-->O+
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So for any c greater than 0 we make at least x unless the final spot lands in either
of the intervals [K1 - E, K1) and (K2, K2 + E]. The probability that the final spot
lands in either of these intervals can be made arbitrarily small by taking c arbitrarily
small, and the maximum we can lose in that case is 1 - x. Note that the variance
of the difference portfolios will go to zero also. We can therefore make x by taking
on an arbitrarily small amount of risk.

This does not imply an arbitrage: for an arbitrage we have to make money with
no risk, here we are only making money with an arbitrarily small amount of risk.
We could call such a situation an arbitrarily good deal. A good model will not
allow such deals; we therefore need an extra condition to outlaw them.

Definition 6.1 We shall say that a market admits free lunches with vanishing risk
if there exists a sequence of portfolios 0 such that

(i) the expected value of 0,, is bounded below by x greater than zero independent
of n, for n large,

(ii) the set-up cost of / is less than or equal to zero for n large,
(iii) the variance of 0 tends to zero as n - oo.

If a market does not admit free lunches with vanishing risk, we shall say that it
satisfies the no free lunch with vanishing risk (NFLWVR) condition.

The NFLWVR condition is really a continuity condition on the pricing function;
it implies that if a sequence of portfolios approximates a portfolio arbitrarily well,
then the prices must converge to the limiting portfolio's price.

If we now impose the NFLWVR condition, we can conclude that

lim LE(So, 0) = D[Kj,K2](S0, 0) = D(KI,K2)(S0, 0) = lim LE(S0, 0). (6.7)
E >0+ E-*0+

Let P(I) denote the value of DI at (So, 0). We now know that we can deduce this
price from the price of the traded vanilla call options under the no-arbitrage and
NFLWVR conditions.

What properties do the prices P (I) have? Take a sequence of intervals

I = [a,,,

such that ao = 0 and a,, -->. oc as n --> oo; then if we consider a portfolio consistirg
of all these options it will pay 1 whatever happens. So the initial portfolio is of value
1 too. This means that

00

Y, P(I,,) = 1. (6.8)
=o

This is slightly suspect in that we have introduced a portfolio consisting of an
infinite number of options. However, if we consider the portfolio Q consisting
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of the first n options then we can use the NFLWVR condition to show that the
value of Q, must converge to 1 as n oo. To see this consider the portfolio, R,
consisting of Q and going short a zero-coupon bond of notional 1.

The expected value of R is the negative of the probability that the spot ends
above ai+1. This clearly goes to zero as n -+ oo. The variance of R, will be equal
to the expectation as the pay-off is zero or 1. If the value of Q does not converge to
1, then it must converge to x less than 1 since it is bounded above by 1 and increas-
ing with n. The setup cost of R is then at most x - 1. The sequence of portfolios
consisting of 1- x bonds together with R is now a free lunch with vanishing risk.

This means that under the NFLWVR assumption, we have assigned a number to
every interval between zero and 1 such that the infinite interval [0, oo) receives the
number 1. For disjoint intervals, A and B, we also have that

P(AUB)=P(A)+P(B).

We can regard P (I) as the probability that the stock is in the interval I, at time
T. However this is not a real-world probability but a synthetic probability - we can
regard it as the probability the market is choosing to price with. We can extend P
to any set which is a countable disjoint union of intervals (which includes any open
set) by summing the individual probabilities. These sums are bounded above by 1,
so they must converge.

Note that if the real-world probability that the stock landed in an interval I was
zero then the value of the digital DI must be zero also; otherwise, selling DI is an
arbitrage. Conversely, if the value of DI is zero then the real-world probability of
landing in the interval I must be zero or buying DI (for nothing) is an arbitrage.

This means that the two probability measures have the same sets of probability
zero. Whilst this relationship is quite weak, it is important and we will repeatedly
return to this property:

Definition 6.2 Given two probability measures P, Q, on a sample space Q which
assign probabilities to the same collections of events, F, then we shall say P and
Q are equivalent if they have the same sets of zero measure.

We have constructed a probability measure P from the option prices under some
mild assumptions. Suppose we are given P but not the option prices. Can we get
the option prices back? We prove that we can under the mild additional assumption
that P is given by the integral of a continuous density function, g. In practice, this
would generally be the case. Thus we have

b

P(I) = f g(x)dx. (6.9)

as
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First, by definition, P(I) was the price of an option paying 1 if spot is in the
interval I at time T and zero otherwise. We therefore certainly have the prices of
all the digital options.

We can use no-arbitrage to deduce the price of any option with a (measurable)
compactly supported pay-off, f - i.e. a pay-off which is zero outside a continuous
set and not too unreasonably behaved. We take f to be piecewise continuous for
simplicity. Thus suppose f is continuous on each of a finite set of intervals

In = (an,bn), (6.10)

is zero outside U [ab, bn], and has a continuous extension to [an, bn] for each n.
Thus it is allowed to jump at the end-points of intervals but cannot have worse
discontinuities.

We show that the value of an option paying f is its expectation under the mea-
sure P. We do so by showing that it can be approximated by digital options to
arbitrary accuracy. By linearity, it is enough to consider the case where f is con-
tinuous on the interval [a, b] and zero otherwise. (The values of f at a and b will
not affect the price as we have assumed the probability of spot finishing at a single
given point is zero.) The expectation of f will just be the integral

f f (x)g(x)dx.

As f is continuous on the compact interval [a, b], it is uniformly continuous,
(see for example [131].) That is, given E > 0, there exists 6 > 0 such that if x, y E
[a, b] and Ix - y I < 8, then If (x) - f (y) I < E. Uniformity means that 8 does not
depend on x and y.

Now suppose we take E > 0, and choose N such that N8 > b - a. We divide
the interval [a, b] into N pieces of equal size, J1, of length (b - a)/N. For x and
y inside one of these pieces, we have Ix - yI < 8 and thus I f (x) - f (y) I < E. For
each piece J1, we therefore have that

max f (x) - min f (x) < E. (6.11)

If we let

&(x) = max f (x) for x E J1. (6.12)
XEJj

1/rE(x) = min f (x) for x E Jt, (6.13)
XEJL

then at all points, we have
0<0E-*E <E, (6.14)

and

'YE C f _< 01 - (6.15)
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(The values at the ends of the intervals Tl are not well-defined but they are not
relevant as the value at a single point does not affect an integral nor an expectation
against a continuous density.)

Both 0E and *E are step functions by linearity, that is they are a linear combi-
nation of digital functions. The market price of options paying ¢E and *E must
therefore be equal to their expectations under P. We also have that the price of
an option paying f must be between the prices of options paying 0E and 'YE by
no-arbitrage and (6.15). The condition (6.15) also implies that the expectation of f
lies between the two expectations.

We also have by (6.14) that the difference in expectations (and therefore prices)
of options paying 0E and 1/rE is less than c(b - a).

To summarize we have shown that given any e > 0, both the price of an option
paying f and the expectation under P of the pay-off lie in a single fixed interval of
size at most c(b - a). As E was arbitrary this means that the price and expectation
must be equal.

We have thus proved

Lemma 6.1 If there are zero interest rates and the synthetic measure P is given
by the integral of a continuous function, then the price of a European option pay-
ing a compactly supported continuous function f of spot at time T is equal to its
expectation under P.

We want to extend this result to more general options such as forwards and call
options. Note that the pay-off of a put is already accounted for in the statement of
the lemma. To encompass such infinitely supported options, we need something
more than no-arbitrage as we can only approximate on finite sets. We therefore
use the NFLWVR condition. Note however that the probability of a stock lying
above 10100 is effectively zero, and so while we need to carry out this argument
for mathematical rigour, it is perfectly reasonable from a financial standpoint to
assume the stock price is constrained to lie in a bounded interval.

Thus suppose we have an option C paying f, a piecewise continuous function
of spot, at time T. Let C, denote the option paying f (S) if spot finished be-
low n at time T and zero otherwise. We know from our lemma that the price of
Cn is its expectation under P. Without loss of generality, let's suppose that f is
non-negative. (Just decompose as a difference of two non-negative functions.) We
then have that the value of C must increase with n as the pay-off can only improve.

The option C - C, then has a non-negative pay-off. As n gets large, the value
of C - Cn gets progressively smaller and the probability of C - C, paying off
goes to zero as the probability of spot ending above n will go to zero. This is true
in both the real-world measure and the synthetic measure. If our function f is
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unbounded, which it certainly is for call options, we need some decay conditions
on the probability measures to go further.

We assume that both real-world and synthetic probability measures are given by
rapidly decaying density functions h and g, and that the pay-off of f is polynomi-
ally bounded. By rapidly decaying, we mean that any polynomial times h or g is
bounded. These assumptions are an overkill; however they are satisfied by standard
models such as the Black-Scholes model, and the pay-off functions of all traded
options. In equation terms, our assumption is that for any k there exists D, such
that

0 < g(x) < D(1 +x)-k, (6.16)

0 < h(x) < D (I + x)-k, (6.17)

and there exists N such that

0 < f (x) < D'(1 + x)N. (6.18)

Without loss of generality, we can take D = D'. The expected value of C - C,,
under P is

00 00

f g(x)f (x)dx < D2f (1 + x)N-kdx. (6.19)

]t !1

Picking k sufficiently large ensures that this goes to zero as n goes to oo. The real-
world expectation goes to zero by the same argument, with g replaced by h. The
expected value of C under P is therefore the limit of the prices of C,,.

The real-world variance of the pay-off of C - C is equal to
00 00

fg(x)f(x)2dx < D3 f(1 + x)2N-kdx

n n

(6.20)

minus the square of the left hand side of (6.19). Both the terms clearly go to zero
as k tends to infinity.

The price of C,, must be less than that of C by no-arbitrage as C always pays at
least as much as Cn. By the same token, the price of Cn must be increasing. We
want to show that it converges to the price of C. By the uniqueness of limits this
would imply that the price of C equals the expected value of its pay-off under P.
Suppose the prices do not converge to the price of C; then they must converge to
a lower number, x. The sequence of portfolios, E,,, consisting of being short C
and long C,, then has the property of having variance going to zero, expected value
going to zero and with a set-up cost less than x minus the set-up cost of C for all n.
The set-up cost is therefore less than y < 0 for all n. It follows immediately from
the NFLWVR condition that such a sequence cannot exist. We conclude that the
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market prices of C do converge to the price of C, and deduce that the price of C
equals the expected value of its payoff under P.

Forwards and risk-neutrality

Suppose we apply pricing by expectation to a forward contract. If spot is So and
interest rates are zero, we have already seen that by buying the underlying today we
can enforce a no-arbitrage price of So - K for a forward struck at K. We therefore
deduce that

E(ST - K) = So - K, (6.21)

where E denotes expectation under P, and as K is constant, this implies that

LE(ST) = So. (6.22)

This means that our constructed probability measure contains no allowances for
risk-premia. The expected value of the asset is today's value. Such a measure is
said to be risk-neutral.

Thus the mild assumption that it is possible to buy the underlying today implies
that all the call options must be priced by a measure which is risk-neutral. Note that
if we had an option on something which was not tradable, for example a contract
paying off according to the temperature on a given day, then this argument would
no longer work and the pricing density could have any mean.

Computing the density directly

Our construction of the risk-neutral measure is somewhat opaque. We can use the
fact that the measure must price the call options correctly to deduce its value in a
much more transparent fashion. We must have

E((ST - K)+) = CK. (6.23)

If we make the mild assumption that the probability measure is given by a contin-
uous density p(s), then we can write this as

0r
CK =

J
(s - K)p(s)ds. (6.24)

K

This must hold valid for all K so if we differentiate with respect to K, we retain a
true relation, and we have

aCK

8K

00

f p(s)ds.
K

(6.25)
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If we differentiate again, we obtain

z

p(K) = aK2
.

(6.26)

(This will hold true in a distributional sense if p is not a continuous function.) This
is simple formula allows immediate computation of p from the call prices. Recall
that Theorem 2.10 stated that the call option price is a convex function of strike.
For a twice-differentiable function, convexity is equivalent to the second derivative
being non-negative, and so no-arbitrage brings us back to the fact that probability
densities are non-negative.

Putting interest rates back in

How do things change if we allow non-zero interest rates? As long as we take care
of discounting, there is little difference. The value of an option paying 1 at time T
will of course be the price of a zero-coupon bond (ZCB) maturing at time T. This
means that if we divide the interval into digital options then the total value of these
digitals will not be 1 but the price of the ZCB instead.

The solution is to assign to each interval a probability equal to the price of the
digital option associated to it, divided by the price of the ZCB. Let Z(t) denote the
price at time t of a zero-coupon bond expiring at time T. The probabilities then
add up to 1 and we have a synthetic density, p, as before. We can make similar
arguments for the pricing of options, and an option with pay-off f will have price
equal to

JPSfSdS.C(0) = Z(0) (6.27)

0

If our option is C, then using the fact that Z(T) = 1, we can write this as

C(0) = E (C(T)1
(6.28)

Z(0) Z(T)J)'

as C(T) will be equal to f (S). This simple formula is the most important equation
in mathematical finance so study it carefully! (Yes, even more important than the
Black-Scholes equation.) We will use it and variants of it time and time again.

We can also deduce an expression for p in terms of the derivatives of K, similar
to (6.26),

z

p(K) = Z(0)
a C

(6.29)

where C(K) is, as before, the price of a call option struck at K.
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The value of a forward contract struck at K is So - Z(0)K. We therefore have
that

So - Z(0)K
(6.30)= E (ST - K) ,Z(0)

using the fact that K is constant the forward contract is priced correctly if and
only if

IE(ST) = Z(0)-'SO. (6.31)

The average growth of the stock, in the synthetic measure, is therefore precisely
equal to the growth in value of a zero-coupon bond. Just as in the case of zero
interest rates, the fact that we can hedge a forward contract precisely guarantees
that the synthetic measure is risk-neutral, and the stock grows at the riskless rate
on average.

The risk-neutral density in the Black-Scholes world

If we return to the Black-Scholes world, we already know the price of a call option
on a stock with drift µ, volatility a and with risk-free rate r. We can therefore de-
duce the pricing measure implied by the Black-Scholes price just by differentiating
twice. However, recall that the Black-Scholes price does not contain µ so the risk-
neutral density must be independent of µ. As the differentiation is more tedious
than illuminating we do not carry it out. However, if we think back to chapter 4, the
answer becomes clear. We showed there that the price of an option expiring at
time T is equal to its discounted expectation when the log of the stock is given by
the distribution of

1r - 1 2) T + oVN(0, 1)

with N(0, 1) a standard normal distribution.
However, as we saw in Chapter 5, this is the same as the density obtained by

evolving an asset under the process

dS
S = rdt + adWt. (6.32)

We have therefore shown that the Black-Scholes price can be obtained for any
European option, simply by taking the expected discounted pay-off of the option
under the density obtained by letting the asset grow at the risk-free rate rather than
at the real-world rate /_t. This observation is the heart of the idea of risk-neutral
pricing and can be applied to any derivative asset not just European options.

To summarize, we have shown that a probability density for the evolution of the
stock at each time is implied by the observable call prices in the market and that



140 Risk neutrality and martin gale measures

this probability density is not the real-world density but instead a density which
implies no compensation for risk-taking. The price of any European option is then
its discounted expectation under this measure. In the specific case of the Black-
Scholes model the density is that implied by taking the growth rate of the stock to
be r instead of µ.

Why should this be the case? Essentially, the reason is that in the Black-Scholes
model, we can eliminate all risk by continuous trading. Once the risk has been elim-
inated, there can be no risk premium. We must therefore price everything without
a risk premium, that is as if everything grows at the risk-free rate.

Multiple time horizons

Now suppose that we know nothing about the price process of the asset but that
rather than just having the value of the call options for one maturity, we have them
for all maturities. We then have a synthetic density for each maturity. One might
be tempted to conclude that the densities are enough to give us a price process for
the asset, not the real world one of course but instead an implied risk-neutral one.
However, this is not the case. This is essentially because we only have information
about the assets distributions at single time frames. We have no information about
how the value of the asset at time T1 affects its value at time T2 for T2 > T1. A
derivative product affected by the values at both time T1 and T2 might give us some
of that information, but we do not have it from the call options.

We shall return to this point once we have developed more ideas on what a pro-
cess is and have learnt how to express the evolution across several time
spans.

6.4 The concept of information

We have developed two different approaches to the arbitrage pricing of options.
Both of these approaches led to a single unique price which was not affected by
the risk-preferences of the investor. We can regard either of these approaches as
being aspects of a single more fundamental one: risk-neutral pricing. As we know
that investors' risk-preferences do not affect the price, we may as well assume that
they have none, that is that they are risk-neutral. If all investors are risk-neutral
then a stock will grow at the same rate as a riskless bond, so stocks following a
geometric Brownian motion will have drift r rather than µ. We can now take a
naive expectation of the option's value with this growth rate for the stock. Rather
surprisingly, this leads to the Black-Scholes price. We therefore have a very pow-
erful alternative method for pricing options. Justifying this procedure requires an
excursion into some deep and powerful mathematics.



6.4 The concept of information 141

Before we can proceed to a better understanding of option pricing, we need a
better understanding of the nature of stochastic processes. In particular, we need to
think a little more deeply about what a stochastic process is. We have talked about
a continuous family of processes, Xt, such that X, - XS has a certain distribution.
As long as we only look at a finite number of values of t and s this is conceptually
fairly clear, but once we start looking at all values at once it as a lot less obvious
what these statements mean.

One way out is to take the view that each random variable Xt displays some
aspect of a single more fundamental variable. Instead of considering our asset price
or particle moving through time via the process Xt which gives us a random path,
we stand outside time and draw the entire path, cv, at once using a random variable.
The random variable X. is then the point cv(t). As time progresses, more of the path
cv is revealed.

We can think of the goddess of probability living in eternity outside the ephemeral
world of an options trader. She draws an entire stock price path from a jar contain-
ing all possible stock price paths. The god of time stops us from looking into the
future and slowly reveals the stock price path to us, second by second. The moral
is that although the stock price is determined in one go, we have to trade as if it
were not; we can only trade on the information available at the time of trading. Our
objective in this section is to make this idea mathematical.

The path cv will have to be drawn at random from the space of all paths or,
rather, all continuous paths. To do this will require a measure on the space of paths
to determine the distribution of cv. That is we will need a map from a set of subsets
of the space of continuous paths, C, to [0, 1] which makes it into a probability
space. The measure assigns to each subset the probability that the path is in that
subset. This therefore expresses the probability of certain events occurring. Subsets
could be

{cv : 0v(0) < cv(1)}

or

{w:w(1)>l}

or any condition on cv one likes. For technical reasons we shall not explore, it is
impossible to assign a probability to every subset of the space of paths but we
shall not worry too much about this. In any case, constructing sets which cannot be
assigned probabilities is actually quite hard work and so any set we come across
naturally will not be a problem. The important fact for us is that it is possible to
assign a probability measure to the space of continuous paths on the interval [0, T]
in such a way that for every t and s, Xt - XS is normally distributed with mean
0 and variance t - s. This measure is known as Wiener measure, and ensures that
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Brownian motion actually exists in a mathematical sense. One curious aspect of
the theory is that it is the existence of the measure that is important rather than its
precise values. We will often want to prove that the measure has certain properties,
but it is important to realize that we will never actually compute with it directly.

In this set-up, we should really think of Xt as being a function from the space
of paths to the real line. For Xt the function is very simple: it is just the evaluation
map

Bt : co H co(t). (6.33)

So Xt is a family of maps from C to R. The distribution of Xt is then given by

P(Xt E A) = P(c) e Ot-1(A)) = P((o c Ar), (6.34)

where At is the subset of the space of paths consisting of co such that co(t) E A,
that is Bt 1(A). Note that the measure on C wholly determines the distribution of
the random variables Xt, since the probability that Xt is in any set A is determined
by the measure on C.

The joint distributions of the random variables Xt are also determined by the
measure on C. We have that if A is a subset of R" then

P((Xtl, Xt2..... Xt,,) E A) = P((w(ti), ... , co(t)) E A) (6.35)

for any ti, t2, ... , t E [0, T]. In fact, the converse is also roughly true: if one
knows all the finite-dimensional distributions of the variables Xt, then this deter-
mines a measure on C. This, however, is a deep fact we cannot address here, and
is at the heart of the proof of existence of Wiener measure, that is the measure on
the space of paths which yields Brownian motion. We refer the reader to [94] for
discussion of these and other technical points in this chapter.

We have been discussing only the one-dimensional case, but if we were con-
sidering two assets then we would need to think of the path as being a path in
two-dimensional space and each random variable being the value of one of the
coordinates at time t. More generally, if we were considering a market then we
would need a dimension for each asset, and we might well need to consider paths
in a thousand-dimensional space with each stock described by a random variable
given by one of the coordinates. The market index would be a weighted average of
all the coordinates. Note that any reasonable function of the path co will define a
random variable. For example, the first time that the path co reaches 100 is a random
variable, as is co(1)/co(0).

For the following discussion, we return to the one-dimensional case. As we have
mentioned above, we need some concept of what information is available at a given
time. If we are observing the random variable Xt, then at time tl we know only
about the values of Xt for t < tl; this means that the events in the space of paths
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that are determined at time ti, are precisely those which are definable in terms of
ca(t) fort < t1.

What does this mean? Let A be a subset of the space of paths which is determined
at time t1, suppose a path co is in the set A. If we deform co by changing its values
after time tl, then it must still be in the set A as it implies precisely the same values
for Xt fort < tl.

This means that an event A is determined at time tl if A is invariant under the
operation of replacing a path co by another path co' such that

w(t) = cd (t)

for t < tl. The space of events determined at time t is denoted.fit . The set of these
spaces is called the filtration of information. Clearly, we have

tl C Tr2 for tl < t2. (6.36)

For example, the event {Xt > a} is in Ft, but is not in F,s for s < t. It is, of
course, in T,. for r > t. Thinking in terms of a stock, all this really says is that at
time t, we know the prices of the stock for times up to time t but not for times after
time t. We cannot hedge on the basis of whether the stock will finish in the money
but instead only on the basis of where it is today.

A closely related concept is that of a stopping time. We can define a random
time to be a function from the space of paths to the positive numbers. However,
we wish to distinguish those random times which are practical in the sense that
the information available at a given time determines whether the time has been
reached. A stopping time is a random variable which gives a random time with
the critical property that the information available at a time determines whether or
not the stopping time has been passed. Thus the first time t such that a stock price
reaches 100 is a stopping time, but the first time t such that the stock price is above
100 at time t + 1 is not a stopping time as it involves knowing information about a
time that has not yet been reached.

The technical definition is that the random time r is a stopping time if for any
t the event r < t is in the set J. This simply says that the event that time r has
passed at time t is in the set of information available at time t. We can write this as

{r < t} E .i7t (6.37)

for all t.
The concept of information is important for hedging strategies as our hedge at

time t should be based purely on the information available. We cannot hedge on
the basis of the future values. To illustrate this, recall from Chapter 1, the stop-loss
hedging strategy. The stock starts at 95 and moves continuously. We have sold a
call option struck at 100 and wish to hedge our risk. We assume zero interest rates.



144 Risk neutrality and n7artingale Measures

When the stock crosses 100 we buy a unit of stock with borrowed money and when
it crosses back down we sell the stock again paying off our loan. If the stock ends
in-the-money, we are holding the stock and the exercise price pays off our loan, if it
ends out-of-the-money then we hold nothing and owe nothing. So we have hedged
our risk at zero cost whatever happens.

The flaw in this argument is that it involves seeing the future. The first time that
the stock reaches 100 is a stopping time, but the first time that the stock crosses
100 is not. To see this observe that the concept of crossing is crucially dependent
on what happens next, the stock could just go to 100 and then go back down, as
easily as going to 100 and going on past it. Which of these happens is only known
a little time into the future.

The concept of a stopping time is also crucial when considering options with
American-style early exercise features. Recall that an American option is an option
that can be exercised at any time before expiry rather than only at expiry. The holder
is then faced with the problem of deciding what the optimal exercise time is. The
decision whether to exercise at time t must be made on the basis of information
available at time t so an exercise strategy is really just a stopping time.

To illustrate some of these ideas further, we return to the discrete setting. We
suppose our experiment consists of tossing a coin ten times, and after each coin
toss the value of the stock is the number of heads so far minus the number of tails
so far. We take our space of paths to be all the different possible strings of heads
and tails. This space has 210 = 1024 elements since order matters. We assign a
probability measure which makes all paths equally likely, thus each path occurs
with probability 1/ 1024.

The probability of the first coin toss being a heads is the probability of the event
that the first element of the string is heads. Now as precisely half of the paths start
with a heads and all strings are equally likely, the probability of the first path being
a heads is just 0.5, as we might expect. There is nothing special about the first
coin toss, and we equally have that half of the paths have any particular coin toss
being heads. We therefore conclude that the probability of any individual coin toss
being heads is 0.5. A little further thought shows that all the different tosses are
independent of each other; if the first toss is heads then we know the path is one of
the 512 paths which start with a heads but for each subsequent toss precisely half
the paths express a heads and so the probability is 0.5.

After each toss, the stock moves up or down one according to the coin toss. After
k tosses, the path of the stock up to time k tells us whether each of the first k coins
tosses were heads or tails. We can therefore make decisions at time k purely on the
values of the first k tosses as one might expect.

As up and down moves are equally likely, the stock, Xk, has an interesting prop-
erty. No matter what its current worth and no matter what time it is, its expected
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value at any future time is always its current value. This is called the martin gale
property. To express this notion mathematically requires the concept of condition-
ing on information. At time 0 we do not know what the value of Xk will be; however
we do know what information will be available at time k. The expected value of X,
for r > k at time k can only depend on the information available at time k, and so
we want to define it to be a random variable defined by the information available
at that time. Let me emphasize that the expectation of X,. at time k will itself be a
random variable. It will, however, be a random variable that depends on a smaller
amount of information than X,. does. In particular, it will be possible to determine
its value from information available at time k, whereas X,. is determined by infor-
mation only available at time r. We will denote this random variable E(X,. I.Fk).

What properties should this expectation have? The first is that the expectation
should only depend on information available at time k so the event

A = {w : E(X,. IFk) E I }

should be in Fk for any subset I of R. The second property is complementary
and expresses the idea that taking the expectation with respect to .Fk should throw
away just enough information to obtain a random variable determined by Fk and
no more. We therefore require that for any event, A, in .Tk, that the expectation of
E(X,. IFk) over the set A should be equal to the expectation of X,. over A. Since a
random variable is a function from the sample space of paths to the real numbers,
this says that the sum over paths, w, in A, weighted by probabilities of the function
X,. ((o) should equal the sum of E(X,. IFk) with the same weightings.

That is we require

p(w)X, (w) _ p(w)E(X, I.Tk)(w), (6.38)
COEA wEA

for all A in Fk. These two properties are enough to determine E(X,. I.Fk) uniquely.
Of course, we have written a sum here but in the continuous setting, we would have
an integral over a subset of the space of paths.

6.5 Discrete martingale pricing

We now specialize to the discrete setting as the concepts of martingale pricing are
less obscured by technical details in that case. We return to the continuous setting
later in the chapter. In fact, in the discrete setting there is an easy way to construct
IE(X,.IFk); this method works via decomposing every set in Fk into a union of
elementary sets. The elementary sets will have the properties that the intersection
of any two is empty and that every set in Fk is a union of them.

An elementary set will just be a set of paths which agree up to time k and as the
set has to be in .Fk, once one path is in a set, all paths which agree with it up to time
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k will have to be in it. Agreement up to time k is clearly an equivalence relation
on the set of paths, so we partition the entire sample space into a union of disjoint
subsets. As any set in Fk is defined purely in terms of properties of the path up to
time k, the elements of Tk will just be unions of these elementary sets.

We now define E(X,. I.Fk)(w) to be the expectation of X,. over the elementary set
containing w. As this expectation only depends on the first k steps in w it satisfies
our first property. It satisfies the second property for any elementary set by defini-
tion, and a simple summing shows that it satisfies that property in general simply
by decomposing the set into elementary sets.

Returning to our example, we have that

]E(X,. I I'k) = Xk. (6.39)

To see this, observe that for any path w the left-hand side will only depend on the
first k steps in to, and that for the remaining steps there will always be another
path with the heads and tails reversed that will cancel their values when taking the
expectation.

In general, we shall say that a process X j is a discrete martingale if for all k
and r such that r > k, equation (6.39) holds. An important point here is that it is
possible for a process Xj to satisfy

lE(X,-) = E(X,. I.Fo) = Xo, (6.40)

for all r, without being a martingale. For example, if we define Xo = 0, and let
X 1 take values 1 and -1 with equal probability, and then let X j = j X 1, then we
do not have a martingale. Indeed our sample space has only two paths which have
non-zero probability. The first is the ascending sequence (0, 1, 2, 3, 4, 5.... ), and
the second is its negative. We therefore have that

E(X21.i) = 2X1, (6.41)

rather than X1. The point here is that the expected value in the future is no longer
today's value at any time except zero.

The importance of martingales lies in their relationship with the condition of
no arbitrage. Suppose we are working in a zero interest-rate environment and that
every tradable asset is a martingale. Suppose additionally that we have a portfolio,
P, of zero value today and that it is possible with non-zero probability for it to
have positive value at time T in the future. We have that the expected value of the
portfolio at time T is equal to today's value, zero, by the martingale property. For
the expected value to be possibly positive and the expectation zero, there has to be
a positive probability of the portfolio being negative.

This means that an arbitrage is impossible as we have shown that a portfolio
which can take positive values with non-zero probability cannot be positive in all
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possible worlds. Recall that the definition of arbitrage allows us to ignore zero
probability events. It may be possible to set up a portfolio which is always non-
negative and which is positive on a non-empty set which occurs with probability
zero but we shall not regard such portfolios as true arbitrages. In any case, in the
discrete setting there is no real difference.

In one special case, we have seen that the martingale property leads to the impos-
sibility of arbitrage. However, this special case is not particularly useful because
there certainly will be interest rates. We therefore need to work with discounted
prices instead of real prices. If we are working with a constant interest rate, r,
which continuously compounds, then we can consider all asset prices to be multi-
plied by e-''t to discount the future prices to today. If we write Br to be the value
of £1 invested in a riskless bond which is continuously compounding, then we are
requiring XtlBt to be a martingale. The argument we gave above still works; if
a portfolio is of zero value and can be positive with positive probability tomor-
row then to get the expectation to be zero, there must be a positive probability of
negative value tomorrow. Hence, as before arbitrage is impossible.

This is still not particularly useful however, as we know that a risky asset will in
general grow faster than a riskless bond on average due to the risk aversion of mar-
ket participants. To get round this problem, we ask what the rate of growth means
for a stochastic process. The stochastic process is determined by a probability mea-
sure on the sample space which is the space of paths. However, the definition of an
arbitrage barely mentions the probability measure. All it says is that it is impossible
to set up a portfolio with zero value today which has a positive probability of being
of positive value in the future, and a zero probability of being of negative value.
The actual magnitude of the positive probability is not mentioned. In particular, it
could be very small or close to 1. A consequence of this is that if we take a second
probability measure, Q, and if it has the same space of events as the original mea-
sure, P, and the same set of events of probability zero then a portfolio creates an
arbitrage under Q if and only if it creates an arbitrage under P. Note how weak the
condition of arbitrage is from a probabilistic point of view; we can change the prob-
ability measure in a massive way and the condition of arbitrage does not notice.

We recall the definition of equivalent probability measures:

Definition 6.3 Two probability measures P and Q on a sample space S2 with event
spaces .'F and.P'Q are equivalent if Fp = .Fg , and for all events E in Fp, we have
that P (E) = 0 if and only if Q(E)=0.

One simple consequence is that for any event, E, P(E) = 1 if and only if Q(E) = 1.
This follows from considering the complementary event El which will be of prob-
ability 0 if and only if E is of probability 1.
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We can now broaden our result greatly: instead of requiring our asset prices
divided by the riskless bond to be martingales under the original, 'real-world',
measure, we can conclude that there is no arbitrage if there exists an equivalent
measure under which the discounted asset prices are all martingales. This condition
is weak enough to be useful. This new measure is called the risk-neutral measure,
or the martingale measure, as it implies that all assets grow at the same rate, that is
no risk premium is demanded for the risky assets.

To illustrate the condition, we return to a two-state model. The stock price S
takes value 100 today. Tomorrow it takes the value 120 with probability p and
100 with probability 1 - p. The bond B is worth 100 today and tomorrow takes
value 110 with probability 1. There are only two elements in our sample space,
the path (100, 120) which occurs with probability p and the path (100, 100) with
probability 1 - p.

The expected value of S1/B1 is therefore,

1 1

110
(120p + 100(1 - p)) =

110
(100 + 20p). (6.42)

As So/Bo is equal to 1, we conclude that S/B is a martingale with respect to the
probability measure obtained by taking p = 0.5. We can therefore conclude that
there is no arbitrage provided the original measure had the same null sets as the
p = 0.5 measure. This will be the case unless the original measure had p = 0 or
p = 1, in which case only one path could occur and the other defined a null set.
This is the result we want, as the probabilities 0 and 1 imply arbitrages. If p = 1
then the portfolio S - B defines an arbitrage, and if p = 0 then B - S defines one.
We thus see in this special case that an equivalent martingale measure exists if and
only if the original measure permits no arbitrage.

The reason this is so powerful is that it allows us to price options. Suppose we
have an option to buy at 110 on day one. That is, it is an asset worth 10 if the stock is
120 and zero otherwise. We want to find the price on day zero that causes no arbit-
rage. Suppose there is such a price, call it Co and denote the value on day one by C1.

Suppose a risk-neutral martingale measure for the three assets B, S and C exists.
We have already seen the existence and uniqueness for the pair B and S, so there is
only one possible candidate for the trio B, S and C, that is we must have p = 0.5.
If this is to be a martingale measure then we must have

- (6.43)Co = E
L 1Bo B

where the expectation is taken in the martingale measure, that is with p = 0.5. We
thus have

Co Bo]E [i]. (6.44)
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The value Co is thus -1f'-10'- (0.5 x 10 + 0.5 x 0) = 50. We have thus shown that for
a risk-neutral measure to exist, Co must have a specific computable value; our
computation also shows that this is the only case in which a risk-neutral measure
exists. Since we have shown that the existence of a risk-neutral measure implies the
absence of arbitrage, we conclude that we have computed an arbitrage-free price
for the option. The reader is encouraged to compare the price computed here with
that obtained from the arguments in Chapter 3.

As well as having computed an arbitrage-free price for the option, it is important
to consider whether we have computed the only arbitrage-free price for the option.
We have shown that the price computed is the only price that leads to the existence
of a risk-neutral measure. So our question is really whether the absence of arbitrage
implies that a risk-neutral measure exists. If it does we conclude that the computed
price is the unique arbitrage-free price for the option. Fortunately, a deep theorem
due to Harrison & Kreps, says precisely that the existence of a risk-neutral measure
in the discrete setting is equivalent to the absence of arbitrage.

Of course, a one-period two-branch model is not very useful for option pricing.
However, as we did in Chapter 3, we can now apply our techniques to multi-period
settings with a branching at each stage. This is really just a reinterpretation of the
arguments of Chapter 3 but is nonetheless useful. Thus suppose we have a tree of
asset prices and a riskless bond B. Suppose the tree has n periods. At each node
in the tree the stock can move up or down to the next node, each move having
some non-zero probability. Each move is independent of how the stock arrived at
that node. We let our sample space be the space of paths of the stock through the
tree. The probability of a given path in the sample space is just the product of
the probability that at each stage the stock moves up or down in the way the path
specifies. The probability of the path is therefore obtained by taking the product
of probabilities of the moves along'the path: this is implied by the independence
of the moves. As we have assumed that each move has non-zero probability this
means that each path has non-zero probability also, and thus that the only event of
probability zero is the empty event.

Since the asset price has to be a martingale under the risk-neutral measure, the
expected value at the next time has to be equal to the current price after division by
the riskless bond B. Thus if the price at a node N is SN, the price after an up-move
is SNL and after a down-move is SNd, then we must have that

N = p BNi( + (1 - p) Sd '
(6.45)

B

this clearly has a unique solution p provided SN 4 SNd, and the solution will be
between 0 and 1 if the discounted price at time t is between the discounted prices at
time t + 1. Note that if the discounted price were not in between the evolved prices,
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there would be an arbitrage opportunity, as the stock would have to be either worth
more than the riskless bond in all possible worlds, or worth less than the riskless
bond in all possible worlds.

Having computed the risk-neutral probability at each node, we can then assign
a probability to each path by stringing together the probabilities along the path.
As the risk-neutral probabilities are non-zero, the probability of every path is non-
zero, and the new measure is equivalent to the old. We wish to price our European
option which has a determined value at each node on the final layer. Let BT denote
the price of the riskless bond on the final layer. By construction, the probability
measure we have constructed on the tree is the unique martingale one, and we have
to assign the value, CN, at the node N at time t in such a way that we always have
that

CN = E (CT),
(6.46)

Bt BT

where the expectation is taken over paths passing through N. As the only indeter-
minate quantity in this equation is CN, it is directly determined and the option is
priced. To actually carry out the procedure in practice, we would compute the price
at each node in the second last layer by taking the risk-neutral expectation at the
nodes in the last layer, which would just be the weighted average

BT-i
(pCup + (1 - p)Cdown) (6.47)

BT

where p is the probability of an up move, and Cup and Cdown are the prices after up
and down moves. This process would then be iterated back to the start to give the
price today.

An important issue here is uniqueness; we have given a method of determining
an arbitrage-free price for the option. First construct a risk-neutral measure on the
space of paths of the stock and then price according to the risk-neutral expectation
of the option. To what extent is this price unique? If the risk-neutral measure is
unique then a unique price will be implied. The problem occurs when the risk-
neutral measure is not unique. In the examples above, we carefully stuck to the
case where there were precisely two branches emanating from each node as this
guaranteed uniqueness. However, if we allow more branches this is no longer the
case. We return to an example from Chapter 3; suppose on day zero the stock is
price 100 and on day one it can take the values 90, 100 or 110. For simplicity, we
take zero interest rates so the riskless bond is of value 1 on both days. A measure
will be determined by assigning the probability of an up move, pu, and a down
move pd. Under such a measure, we have that

E(Sl) = 11 0pu + 100(1 - pu - Pd) + 90pd, (6.48)
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this will be equal to 100 if and only if pu = Pd. We therefore have an infinity of
risk-neutral measures and consequently an infinity of possible prices for an option.
In particular, a call option struck at 100 will be worth (110 - 100) x p1, = 1Op,

We have seen previously that if an option can be replicated then the cost of set-
ting up the replicating portfolio is the only possible price for the option. However,
multiple risk-neutral measures suggest multiple prices so we deduce that there must
be a connection between the uniqueness of risk-neutral measures and the existence
of replicating portfolios. To illustrate this point, it is helpful to consider a very spe-
cific instrument which while unlikely to exist in the real world, is very useful from
a conceptual point of view. Suppose we have T time steps and on the final layer
there are k possible values of the stock price. Let the security 8j pay out one riskless
bond, BT, in state j at time T and zero in all other states. Such a security is known
as an Arrow-Debreu security and is essentially a delta function on a given state.

What is the price of this security? Well, we take the discounted risk-neutral
expectation

BTiERN(sjBT)_E°RN(sj); (6.49)

however the right-hand expectation is simply the probability that the stock is in
state j at time T, as an expectation is just the sum of values in states times the
probabilities of states. The price of the security 8 j at time 0 is just the probability
(in the risk-neutral measure) that the stock will end up in state j at time T. If it is
possible to replicate the security 8 j then this price will be determined by the setup
cost of the replicating portfolio and thus the risk-neutral probability is determined
by the replication. If all the Arrow-Debreu securities at time T are replicable then
we-can read off the probabilities of all the states at time T. That is we can read off
the distribution of the stock at time T in the risk-neutral measure. Thus the risk-
neutral measure is constrained by the prices of the Arrow-Debreu securities if they
are replicable.

Of course, knowing the final distribution of the stock price is not enough to
determine the risk-neutral measure completely. As the risk-neutral measure is a
measure on the space of paths, we consider a security associated to a path, co,
of discrete prices which pays a unit of riskless bond at time T if the path co is
realized and zero otherwise. Letting this security be 8", the price of this security
in a risk-neutral measure will simply be the probability of it occurring. Thus if it
is replicable, its price will be determined and then the risk-neutral probability of
occurrence is determined. Thus if all securities were replicable then all prices and
hence all probabilities would be determined. But in a discrete setting, if we know
the probability of each path then we know the probability of every subset of the set
of paths and hence we know the probability measure. Thus the probability measure
is fully determined and therefore unique if every possible security can be replicated.
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What do we mean by a security here? We really mean an asset that pays off at
some time an amount determined by the behaviour of the stock up to that time.
We are therefore really studying a claim which is contingent on the behaviour of
the stock. We will therefore often talk about contingent claims. A market in which
every possible contingent claim can be replicated is said to be complete.

Of course, the concept of completeness would not be useful unless natural ex-
amples were complete. The simplest example of a complete market is a binary tree.
We have already seen that any security paying off at a single time as a function of
the state at that time is replicable. This means that the Arrow-Debreu securities
are in particular replicable. In fact, in any discrete market we can build up a gen-
eral claim from Arrow-Debreu securities. Thus the replicability of Arrow-Debreu
securities implies the replicability of a general claim, and hence the uniqueness of
the risk-neutral measure.

How do we build up a general claim from Arrow-Debreu securities? It is enough
to consider a claim that pays a fixed sum in a single state at some time T conditional
on the realization of certain previous states, as any claim can be decomposed into a
sum of such claims. By linearity, we need only consider the case where the sum to
be paid is one unit of riskless bond. We prove the existence of such a decomposition
via induction. If the pay-off only depends on the value of the stock at the time of
payoff then we are back in the case of an Arrow-Debreu security. If a claim, C,
pays off at a time T depending upon being in a state j at that time, and upon being
in a subset E at time T - 1, then the first element of our decomposition is the
Arrow-Debreu security, A, that pays one bond in state j at time T. At time T - 1,
either a state in subset E is realized in which case C and A agree at both time T and
time T - 1, or a state outside E is realized in which case C is worth zero but A may
not be. However for each state outside E at time T - 1 there is an Arrow-Debreu
security which we can use to cancel the value of A to match the value of C. Note
that as the Arrow-Debreu security is replicable we know its value not just at time
0 but in any state - we simply roll the replicating portfolio forward to that state and
see what its value is. This will allow our replicating strategy to be dynamic.

Our replicating strategy for a two-stage claim is now clear. We buy the Arrow-
Debreu security A, and value it in every state outside E at time T - 1 and go short
multiples of Arrow-Debreu securities to cancel these values. At time T - a
state in E is realized, then all the securities other than A in the portfolio are of zero
value, and A is of the same value as C whatever happens at time T which means
that C has been replicated. If a state outside E is realized, then C is valueless and
A is not, but precisely one of the other securities pays off with negative the value of
A so we just sell A and we have an empty portfolio of zero value which replicates
C once again.



6.5 Discrete martingale pricing 153

Note that whilst we have talked of buying and selling Arrow-Debreu securi-
ties for this replication, we could equally well buy and sell the portfolios which
replicate them. Thus we do not need to assume the tradability of Arrow-Debreu
securities for these arguments to work, merely their replicability in terms of the
underlying.

For a three-period claim, D, that pays off at some state j at time T, depending
on states having been realized at times T - 1 and T - 2, we proceed similarly. Let
E1 be the set of states which must be realized at time T - 1 for the payoff to occur.
We can define a modified claim D' to pay off at time T in state j provided a state
in E1 is realized. The claim D' is replicable as we have shown that all two-period
securities are replicable. At time T - 2, D and D' agree in the set of states E2 and
disagree outside it. However, as in the two-period case, we are able to cancel the
values outside E2 by using linear multiples of Arrow-Debreu securities. Thus any
three-period claim is replicable.

The deduction of the N-period case from the N - 1-case is essentially the same
and we leave it to the reader to check the details. To conclude, we have shown that
the replicability of Arrow-Debreu securities implies that any claim is replicable.
We have also shown that the replicability of a general claim implies that there is at
most one risk-neutral measure. We conclude that for a binary tree, the risk-neutral
measure is unique.

The only example of a complete discrete market we have seen so far is the bi-
nary tree. There is a simple reason for this: we have been working with two assets -
the stock and the riskless bond, and with two assets we can only replicate values in
two arbitrary states. To see this regard the value of each asset tomorrow as a vector.
Each entry in the vector represents the value of the asset in some state. The possi-
ble values one can replicate will be the linear span of the assets' associated vectors.
With two assets, the replicable set will therefore be two-dimensional (assuming lin-
ear independence of the asset prices which for stock and bond will hold.) However
the dimensionality of the set of possible securities will be equal to the number of
branches. Thus the two sets will be equal if and only if the number of branches is
two.

Binary trees are neither as restrictive as they might first appear nor as necessary
as the above completeness argument might suggest. They are not as restrictive as
they might appear because one can always subdivide into lots of little time steps
which then give the same terminal distributions as we did in Chapter 3. They are
not as necessary as they might appear, in that they are really only important because
they provide a good approximation to the continuous case. If one justifies the mar-
ket completeness in the continuous case and one then passes to a discretization
of the risk-neutral measure, the completeness is not important as the measure is
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already determined. However, this is getting ahead of ourselves as we still need to
understand martingales in the continuous setting.

The reason binary trees are not the only complete discrete market is the avail-
ability of other hedging instruments. If we return to our simple example of a stock
that can take the values of 90, 100 and 110 tomorrow in a world with no interest
rates, where there are many risk-neutral measures, we can make the market com-
plete by adding one extra asset - the call option struck at 100. In a risk-neutral
measure such that the probability of an up-move is pu, we saw that the price of
this call option was 10p, so once we add it in as an extra tradable, the risk-neutral
measure is fixed by its price. We will, however, have to specify its price at every
node in a multi-step tree, not just its initial price and payoff. The price vectors of
the stock, bond and option are independent so all possible claims are replicable and
the market is complete. Of course, there is nothing special about the option struck
at 100: we could use any option struck between 80 and 120 as our new hedging in-
strument and then the prices of all other options would be determined. Why not use
an option struck outside the range 80 to 120? The option then loses its non-linearity
and can be replicated as a linear multiple of stock and bond which of course then
implies that it cannot be used to replicate any new options. The same arguments
will apply to any market in which the asset can move to three possible states. We
need simply take an option struck in between the two extreme states to make the
market complete.

We can similarly see that if we have k new possible states then we need k lin-
early independent instruments to hedge with. These observations are mainly of use
when we wish to hedge complicated options in incomplete markets. If we develop
a model of how vanilla options change in value, then we can use them to hedge the
exotic option perfectly although the market consisting of stock and bond is incom-
plete if the market consisting of stock, bond and all vanilla options is complete.

6.6 Continuous martingales and filtrations

We return to the continuous setting; however the discrete setting should be borne
carefully in mind remembering that a binary tree with a million nodes is a
good approximation to Brownian motion. The principal reason for the ubiquity'of
martingales in probability theory is that Brownian motion is a martingale; indeed
in a certain sense it is the archetypal continuous martingale.

We wish to carry out the same procedures in the continuous case that we did
in the discrete case. This will require us to identify the Ito processes which are
martingales and understand how to carry out a change of measure on the space of
paths. We will also need to comprehend the effect of a change of measure on an Ito
process.
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First, we revisit conditional expectations. We sketched out the definition of
IE(XI.JS) above. In what follows, it has four important properties and as long we
bear them in mind everything follows easily.

The first property is

E(X IYo) = ]E(X). (6.50)

This simply says that if we take a conditional expectation based on no information,
we get the ordinary expectation.

The second property is that if we have s < t and we first take the conditional
expectation at time t followed by the conditional expectation at time s then this is
the same as taking the conditional expectation at time s. This is called the Tower
Law. We can write the Tower Law as

E(E(X l-Ft) I F'S) _ E(XI.FS). (6.51)

An immediate consequence of the second property is that we now have a very
easy method of creating martingales. Recall that a martingale is a random process,
X,., such that

EM-IT,)=X" (6.52)

for any s < r. It is immediate from the Tower Law that if we put

Xr=E'(XIJ.), (6.53)

then X, is a martingale. This observation is the key to martingale pricing.
The third property of conditional expectations is that if we condition on infor-

mation which is independent of the value of the random variable then we get the
same value as conditioning on no information. What does it mean for the random
variable to be independent of the information? A heuristic definition we will use
is that if changing the path up to time s does not affect the value of the random
variable then the random variable is independent of .F's. So if X is independent of
.F's we have

E(X I F'S) _ ]E(X). (6.54)

Our last property is that if the random variable is determined by the information
in FS, then conditioning on that information will have no effect, and therefore

E(XI.7'S) = X.

As usual, we have glossed over a lot of technical points in this section and we refer
the reader to [94] for a fully rigorous discussion.
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6.7 Identifying continuous martingales

With the properties of conditional expectation established, we can now turn to iden-
tifying martingales. We first show that Brownian motion is a martingale, we need
to check that

IE(Wt I.F) = W,s (6.55)

for s less than t. We can write W, = Ws -I- (W, - Ws). Using the linearity of expec-
tation, we have

IE(Wt IJ) = IE(WS I ,F) + IE(W, - WS I.Fs). (6.56)

The first term on the right-hand side is clearly Ws since W, contains no information
not contained in T, It remains to show that

IE(W, - WS I.Fs)

is equal to zero. Recall that W, - Ws is distributed as a normal variable with mean
zero and variance equal to t - s. We defined the value of W, -WS to be independent
of the value of W, and the path up to time s, so when we condition on information
available at time s we are effectively conditioning on no information. This means
that the conditional expectation of W, - WS with respect to T, is simply the ordinary
expectation which is zero. Thus we conclude that W, is a martingale. It is important
to realize that nothing mysterious is happening here; all we are saying is that at any
time the expected future value of W, is its current value.

We wish to identify which processes, X,, of the form

dX, = µ(X,, t)dt + a(Xt, t)dWt (6.57)

are martingales. As we require IE(X, IT,s) = XS for all s and t, we in particular
require it for t = s + E with c very small. We have defined X, is such a way that

X, - XS = a(XS, s)(t - s) + Q(XS, s)(t - s)112N(O, 1) + error, (6.58)

where the error term is small for small t - s. Hence unless µ is zero there will be
a bias upwards or downwards preventing the martingale property.

We therefore require

dX, = Q(Xt, t)dW,, (6.59)

that is, we require the drift of the process to be zero. Subject to technical conditions,
this is equivalent to X, being a martingale. The technical conditions ensure that
the conditional expectation ]E(Xt I.F5) exists by stopping X, from blowing up too
quickly. When the expectation fails to exist but the process is essentially a martin-
gale, it is said to be a local martingale.
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6.8 Continuous martingale pricing

We have completed the first stage of martingale pricing - identifying the processes
which are martingales. We are interested in the case where the stock, St, is follow-
ing geometric Brownian motion and the bond, Bt, is continuously compounding at
the risk-free rate. Following the procedure in the discrete case, we want StlBt to
be a martingale. We have

dSt = AStdt + cStdWt, (6.60)

dBt = rBtdt (6.61)

and therefore
d (Stl

I
JJ

_dSt+S (ld (6.62)

with no additional Ito-type c

t\\ Bt //

ross t

t J
Bt Bt

erms since Bt is dete

,

rministic. Since

Bt = Boe' t ,

we have

d(Br _rBo le-rtdt = -rBr 'dt.

Thus

d (-) =(i (6.63)

This will be driftless if and only if t = r, that is, if and only if the stock grows at a
risk-neutral rate.

Therefore, as in the discrete case, the fact that investors are not in general risk-
neutral means that our discounted asset prices are not martingales in the 'real-
world' measure. We must therefore employ a change of measure to make the
discounted prices into martingales. This will, of course, be a change in the measure
on the space of paths which underlies the Brownian motion driving the stock-price
movements. Such a measure change must preserve probability 1 and probability
0 events. This means that the measure-changed paths will still be continuous and
infinitely jagged (i.e. they will still have infinite first variation and finite non-zero
second variation).

It turns out that a measure change on the space of Brownian paths is equivalent
to changing the drift of the Brownian motion process. In other words, by chang-
ing the measure we can make a Brownian motion have the drift of our choice.
The mathematics behind this is quite complex, and we do not attempt to address
the details here. However, I remark that the amazing thing about the measure of
Brownian motion is not that one may change the drift but the fact that one cannot
do anything else. We shall return to the issue of measure changes in Chapter 8
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where we will need more explicit knowledge of the measure change. Here we
quote

Theorem 6.1 Girsanov's Theorem: Let Wt be a Brownian motion with sample
space Q and measure P. If v is a reasonable function then there exists an equivalent
measure Q on S2 such that Wt = Wt - vt is a Brownian motion.

We can equivalently write this as

dWt = dWt - vdt, (6.64)

with Wt a Brownian motion. Roughly, what is happening here is that we are giving
extra weight to paths that move in a certain direction and less weight to paths that
move in the opposite way.

We can now apply Girsanov's theorem to (6.63) and we obtain

d= (µ-r)Sdt+QStdfVt+vastdt. (6.65)
Bt Bt Bt Bt

We solve for v to make the process driftless, that is we put

µ - rv=- ,

Q
(6.66)

which is of course just the negative of the market price of risk. Having made St/Bt
driftless, it is, under the mild technical conditions we are ignoring, a martingale.

We have shown that there exists a unique v which makes the discounted- stock-
price process driftless. This is equivalent to saying that there is a unique change of
measure on the space of paths which makes the discounted-stock-price process a
martingale.

We can proceed as in the discrete case to pricing via risk-neutral expectations,
and, because there is a unique martingale measure, we are guaranteed that the
prices are both unique and arbitrage-free. This is better than we did with the PDE
approach as that simply showed us the only possible arbitrage-free price, not that
the price was arbitrage-free. On the other hand, it did show us how to trade in such
a fashion as to enforce the arbitrage-free price, which our argument here has not.
We shall return to the issue of how to hedge but now show how to use martingale
pricing in a practical way.

We have changed measure to make the discounted-price process a martingale by
changing drift. In the new measure, we have

d
St

St dfVt, (6.67)
Bt Bt

or equivalently, recalling that dBt = rBtdt, that

dSt = rSdt + QSd17Vt. (6.68)
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Here we use the fact that as Br is purely deterministic, a change of probability
measure has absolutely no effect on it.

The interesting thing about (6.68) is that it is the evolution equation for a stock-
price under geometric Brownian motion with drift the risk-free rate. Our switch to
an equivalent martingale measure has the same effect as pretending investors are
risk-neutral - the market price of risk can be taken to be zero. To price an option
on S we simply take its discounted price to be a martingale under the risk-neutral
measure. Thus we define the price of an option 0 at time s to satisfy

Bs 1E
BT I_ S 1 (6.69)

where, for a vanilla option, T is the time of expiry. It is immediate from this def-
inition that Os/B, is a martingale. The value of Oo implied by (6.69) is therefore
necessarily arbitrage-free. As in the discrete case, the fact that Ot/Bt is a martin-
gale means that it cannot have a non-zero probability of increase without a non-zero
probability of decrease. This applies to all portfolios containing 0, S and B : a non-
zero possibility of increase implies a non-zero possibility of decrease and hence we
have no arbitrage.

How do we actually use (6.69)? For a call option with strike K, we know the
value of OT at expiry as a function of spot and we know the terminal distribution
of spot in the risk-neutral measure, so the expectation is directly evaluable, and we
have

In the risk-neutral world we have that

(6.70)

St = So exp rt 12cr2t + or -,It-N(0, 1) (6.71)

where N(0, 1) denotes a draw from a standard Gaussian distribution with mean 0
and variance 1. The value of our option is

l . (6.72)Bt E C \So exp Crt -
21

Q2t + o lt_N(0, 1) I - K)
\

Recalling that the density of N(0, 1) is
2n

e-12/2,
we can write this as

ert _,2 1e z (SoexP (rt - 2a,2t + cx J x - K dx. (6.73)
2n +

The integrand is non-zero if and only if

\
Soexp(rt - 1Q2t-I-0Vx I >K (6.74)
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which is of course equivalent to

rt - 2621 + or x > log(K/So). (6.75)

Thus the integral must be taken over

log(K/So) + 2or2t - 1-t
x > (6.76)

Q-,It-

Denote the right-hand side of this equation by 1. Our integral now has two terms;
the second simple term is just

00
e-''' rz

e z Kdx.
2n

(6.77)

1

The integral of the normal density from 1 to oo is equal to N(-l), which is its
integral from -oo to -l by evenness. The second term is therefore equal to

e_',rKN Clog(So/K) - 2Q2t + I
(6.78)

This leaves us with the first term,
00

e

n J
e-1z (SoexP (rt - 2a2t + A. (6.79)

1

Performing the change of variables x = x + this becomes

00
e-rr / xz

2n J
e- z Soe''`dx. (6.80)

Proceeding as for the second term, it follows that the price of a vanilla call option
is

SoN(dl) - Ke-'*tN(d2),

where

log(So/K) + (r + 2U2)t
d1 =

log(So/K) + (r - 20 2
d2 =

)t

or 'It

(6.81)

(6.82)

(6.83)

This is, of course, the solution to the Black-Scholes equation so our two quite
different methods result in the same price, which is a relief.
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6.9 Equivalence to the PDE method

One neat consequence of the martingale method is a very short easy derivation of
the Black-Scholes equation. In any case, we want to be sure that the prices obtained
by both methods are equal in general and not just for a vanilla call option. Let Ct
be a derivative product which we know will continue to exist for a small amount of
time. All we are assuming is that it is not going to transform into something else
by virtue of expiry or hitting a knock-out barrier or whatever.

Let Bt be the continuously compounding money market account. We then have
in the risk-neutral measure that Ct/Bt is a martingale. As the price of Ct is defined
in terms of a risk-neutral expectation, we can write Ct as a function of S and t only.
(Of course, it will depend parametrically on r and or, but they are constants.)

We can therefore apply Ito's lemma to C(S, t) to obtain

ac ac 1 a2C
;dC =

at
dt +

as
dS +

2 aS2
dS2 (6.84)

as dS = r Sdt + or Sd(-iW in the risk-neutral world, \we have

dC = + rs+ Q2S2 1 dt+6SdW. (6.85)

We can compute ///

c_ 1 ac aC a C \ sac
d (BC)

B (at + aS'^S +
2 aS2

a2S2 - rc) dt + or
B as

dW. (6.86)

However, in the risk-neutral world C/B is a martingale. It therefore has zero drift.
So, we obtain

ac ac 1 a2C

+ rs±
2s2

- rC = 0, (6.87)at as 2a2 °
which is of course the Black-Scholes equation.

Thus the two methods lead to the same PDE for a general option. For both meth-
ods, we will want to impose boundary conditions depending on the properties of the
option. For example, for a European option, it is simply that the value at time T is
equal to a prescribed function of spot. This is an initial condition in the PDE case,
and in the martingale case it is a profile over which to take an expectation. This
equivalence of methods reflects a deep theorem from PDE theory - the Feynman-
Kac theorem which states that certain diffusion equations can be solved by taking
expectations of diffusion processes. Indeed, one approach to mathematical finance
is to use the Feynman-Kac theorem to deduce the existence of risk-neutral mea-
sures from the Black-Scholes equation, [18].

We shall see many other examples of options which can be priced by both meth-
ods. For example, a knockout call option can never be exercised if spot falls below



162 Risk neutrality and martingale measures

a certain pre-specified value called the barrier. If the barrier is at B, then for the
PDE approach we have to impose an extra boundary equation on the level S = B,
which is that the option price vanishes there. In the martingale approach, we would
instead compute the joint distribution of the minimum of the stock price and the
terminal value of the stock price, and write the value as expectation against this
distribution. We discuss this example in detail in Chapter 8.

6.10 Hedging

The PDE method did not just show us how to find the arbitrage-free price, it also
showed us how to enforce that price. The enforcement came from a hedging strat-
egy that involved continuous trading in the underlying. In particular, the strategy
was to Delta hedge; that is for an option with price C(S, t) to hold as units of
the underlying at any time. This allowed us to construct the payoff of the option
precisely by starting with the initial value of the option units of cash. So far our
treatment of the martingale theory has not mentioned hedging, and we would be
laughed at by a trader who would not care about an arbitrage-free price unless it
could be enforced.

The key to hedging for the martingale approach is the martingale representation
theorem which roughly says that Brownian motion is the archetypal continuous
martingale. Any other martingale will have a rate of change which is some varying
multiple of that of the underlying Brownian motion. To state our theorem precisely

Theorem 6.2 Let Wt be a Brownian motion with associated filtration .F't. Suppose
that Mt is a continuous martingale with respect to Ft. Then there exists a pre-
dictable function 0 such that

dMt = gdWt. (6.88)

Of course, we need the meaning of predictable here. Predictable means that the
function's value for time s is always known from the behaviour of Wt for t < s.
So it can only depend on the path followed by Wt for t < s. In practice, for the
martingales we are interested in, (P will be even more benign. Indeed it will be
a continuous function of the form O(Wt, t), or equivalently O(St, t). Note that a
continuous function of this form is predictable because Wt is continuous. Knowing
its value for t < s fixes its value for t = s, as the continuity implies that it is the
limit of Wt as t tends to s from below.

The crucial point about the martingale representation theorem is that Mt is a
martingale with respect to the filtration generated by the Brownian motion. This
means that the information which determines the movement of Mt is contained in
the behaviour of Wt. It is therefore not so surprising that its instantaneous move-
ments have to be multiples of that of the underlying Brownian motion.
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If Ct is a derivative and Br is the money market account then

CrMt _ Bt

is a martingale in the risk-neutral measure, so there exists 0 such that

d (L) = gdW. (6.89)
r

We want to identify (P. In fact, we can compute it using Ito's lemma; we already
did this in equation (6.86). Taking the dWt term we have

d Ct = a St aCr
dWr. (6.90)

Br Br aSt

We also have

d
St =QSrdW,.

(6.91)
Br Bt

Combining the last two equations, we obtain

ct ac st
d (6 92)= (S t)d( )BBt

.as B .t, \ r

Since Br is deterministic, this immediately implies the random part of dCt is equal
to the product of aC/aS and the random part of dS. That is, we can Delta-hedge C
by holding aC/aS units of dS. We have thus recovered the idea of Delta-hedging
from the martingale theory.

The other part of the PDE theory was that not only could we hedge the instan-
taneous changes in value of C by holding units of S, but that we could synthesize
the value of C by setting up a self-financing portfolio consisting of units of S
and B, together with a trading strategy. How do we see this is in the martingale
world?

We start off with the amount of cash C (0, So) and we need to turn this into a self-
financing portfolio which will replicate the value of C at all times, no matter what
spot does. We have already decided that we ought to hold as (t, St) units of the
stock at time t if the spot is St, so we are left with C(t, St) - as (t, St)St units of
cash to hold bonds with. We do so. Thus our self-financing portfolio is to hold at
bonds and Pt stocks which is worth

a,B, + /3tSt

and

_ Ct ac St
ar

Br as
(t, Sr)Bt

ac
r =

as
(t, St)

(6.93)

(6.94)
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By construction, the value of this portfolio will be Cr. We need to check that the
portfolio is self-financing, that is, we need to prove that

dCr = ardBr + /3rdSt. (6.95)

From the variant of the Leiibnizproduct rulefor the Ito calculus, we have that

dCr = d
(Bt)

Ct Bt +
(Bt)

Cr dBr + d (Cr J dBr. (6.96)
Br//

The fact that Bt is deterministic makes the final term disappear. Thus we have

dCr =
Bt act d (i-) + Br dBr. (6.97)

Bt r

Using the determinism of Br

d

again, we obtain

(Stl = 1dSt - StdBr. (6.98)
Br Br Bt

Combining these, we have

dB+
CCr

B t
astdC = act dS (6 99)r r r,

Bt l
.

which is precisely the self-financing condition.
We have shown that the pay-off of an option is replicable by a self-financing port-

folio if we are working in a Black-Scholes world, and this once again guarantees
the arbitrage-free price.

6.11 Time-dependent parameters

In the perfect Black-Scholes world we have so far inhabited, volatility and interest
rates have always been constant. It is possible, and indeed quite reasonable, to make
them follow random processes in their own rights and later in the book we shall do
just that. However, the simplest generalization is just to let them be deterministic
functions of time. Thus suppose the volatility a(t) is not constant but that r is still
constant. What difference does this make to pricing an option?

We can follow through the entire Black-Scholes argument from Chapter 5 and
conclude that the Black-Scholes equation still holds - the only difference is that
a is a function. We have the same final boundary conditions for European options.
We therefore need to solve

2ac
(S, t) + rs

ac
(S, t) + 16(t)2s2 as

2
(s, t) = rC, (6.100)

at as z as
with the usual boundary conditions. It is not so clear how to proceed. We can reduce
to the heat equation but that would still leave us with a time-dependent coefficient.
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If instead we use the martingale approach, life becomes simple. Passing to the
risk-neutral measure, the spot follows the process

dS = rSdt + a(t)SdWt. (6.101)

We have that the log of the spot follows the process

d(log S) = I r - 1 a(t)2) dt + 6dWt. (6.102)

To evaluate the expectation IE(BT 1C(ST, T)), we need the distribution of ST, or
equivalently that of log ST. Remembering our definition of an Ito process from
Chapter 5 (see Section 5.4), we have that

f
flog

ST - log So rT - a(s)2ds +
J

Q(s)2ds N(0, 1), (6.103)

0 0

where N(0, 1) denotes, as usual, a draw from a normal distribution with mean 0
and variance 1.

If we let v denote the root-mean-square value of 6(t), across the interval [0, T
i.e.

T

Q =
T f a2(s)ds,

(6.104)

0

then we can write (6.103) as

log ST - logSo= Cr - 162)T +otN(0, 1). (6.105)

But this is the distribution at time T for the log of a geometric Brownian motion
with constant volatility 6. We therefore have immediately that the price of an op-
tion for a stock with variable volatility or (t) is given by the Black-Scholes formula
with volatility 6.

How do we hedge? We simply hold as stocks at a time, as in the constant volatil-
ity case. The only complication is what value of volatility to use. At any given time,
C(St, t) is the Black-Scholes price for an option with volatility given by the root-
mean-square volatility over the interval [t, T] - there was nothing special about
0 in the argument above. Differentiating with respect to S has no effect on the
root-mean-square volatility. Hence at time t our hedge is the Delta of the Black-
Scholes price with root-mean-square volatility over the period [t, T], and using
any other value for volatility will lead to an incorrect hedge and thus imperfect
replication.
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Example 6.1 A stock, S,, follows geometric Brownian with time-dependent volatil-
ity. We have So = 100, and r = 5%, and

17% fort <1,
15% forl<t<3,

aj (s) 13% for 3 < t < 5,
12% fort>5.

Find the implied volatility of a call option struck at 110 with the following maturi-
ties: 1, 3, 5 and 7.

Solution We compute

T
increment

of time sigma
increment

of variance
total

variance
implied

vol
1 1 17% 0.0289 0.0289 17.00%

3 2 15% 0.045 0.0739 15.70%

5 2 13% 0.0338 0.1077 14.68%

7 2 12% 0.0288 0.1365 13.96%

Note that interest rates and strike are irrelevant. O

6.12 Completeness and the uniqueness of the risk-neutral measure

Let's pause and recap what we have shown about martingale pricing. First, we
showed that the existence of a measure in which the ratio of any tradable asset to
the riskless bond is a martingale implies that there is no arbitrage. Second, we used
Girsanov's theorem to show that there existed a unique change of measure which
made the ratio of asset price to bond price a martingale. We then defined the price
of every other tradable to be the price implied by the expectation of its price ratio
in the risk-neutral measure. This made the price of every other tradable a martin-
gale which guaranteed the absence of arbitrage, and they had to take this price or
there would not exist any measure which made all asset price ratios martingales. Fi-
nally, we showed that every claim could be replicated by a self-financing portfolio
involving only the trading of the bond and the asset.

We thus have two ways of seeing the uniqueness of the price of an option: the
first is that the measure making the asset price to bond price ratio is unique - this in-
volves the fact from Girsanov's theorem that all measure changes are drift changes.
Thus if we believe the deep result that the existence of a risk-neutral measure is im-
plied by absence of arbitrage then the price of an option can be nothing other than
its discounted expectation in the risk-neutral measure.

The second way of seeing the uniqueness of the price is that we have shown that
the market is complete - every claim can be replicated by a self-financing trading
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strategy. Since the claim can be replicated, its value must be precisely the cost of
setting up a trading strategy or we clearly have an arbitrage.

We can hazard that there must be a connection between market completeness
and the uniqueness of the risk-neutral measure. We show that uniqueness of the
risk-neutral measure is implied by market completeness.

We first prove that the risk-neutral probability of any event is determined in a
complete market. Let A be an event that is determined at time T, that is we have
that A E .FT. We can define a contingent claim D that pays 1 unit of the money
market account at time T if the event A has occurred and 0 otherwise. The value
of D is then precisely the probability of A occurring in the risk-neutral measure.
If the market is complete then A can be replicated, and its value is determined by
the cost of setting up the self-financing portfolio. We therefore have that the value
of A is determined, and thus that for any risk-neutral measure the probability of
A occurring is determined. This means that the two risk-neutral measures are the
same and we conclude that the risk-neutral measure is unique.

Note that this argument, that completeness implies uniqueness of the risk-neutral
measure, did not depend on the fact we are working in a Black-Scholes world.
However, most alternative models are in fact incomplete, and there is then the is-
sue of which risk-neutral measure to choose. We have not proven the converse
result that uniqueness implies completeness which is true under certain additional
assumptions but beyond our scope. We refer the reader to the original papers of
Harrison & Kreps, and Harrison & Pliska, [68], [69, 70].

6.13 Changing numeraire

We have developed the martingale approach to pricing in the context of constant
deterministic interest rates. This meant we could take a riskless bond, B, such that

Br = Bo exp(rt)

as our unit of account, with which to do all our discounting. In practice, inter-
est rates are not even deterministic, let alone constant. However, by a slight shift
in viewpoint, one can see that option pricing can still be carried out in a simi-
lar fashion. The key to seeing this is the powerful technique known as change of
numeraire.

To understand this technique, we need to shift viewpoint a little. So far, we have
considered the prices of our two fundamental instruments as being denominated
in, say, dollars. But we cannot hold dollars, all we can do is exchange one of our
two instruments for dollars that are immediately used to buy the other instrument.
Dollars are therefore really quite superfluous. The only quantity that matters is the
exchange rate between stocks and bonds. We can write this exchange rate in two
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ways, of course: the number of bonds required to buy one stock, or the number of
stocks required to buy one bond.

What we have implicitly been doing when working in the risk-neutral measure
is pricing a stock in terms of riskless bonds, and making that exchange rate a mar-
tingale. However, we could equally well make the number of stocks, needed to buy
a bond, a martingale and work with that instead. With this exchange rate, the value
of a stock is always 1 and the value of the riskless(!) bond is stochastic.

In practical terms, we find a measure in which the price process of every instru-
ment, At, is such that

At

St

is a martingale instead of one in which At/Bt is a martingale. This approach is
called using the stock as numeraire or unit of account.

Let's reexamine our previous arguments. The riskless bond (or money market
account) had two important properties: it is always positive and it is always de-
terministic. It is only the first of these that is important: the second is an artifact
of using cash to denominate values. In fact, we do not even need to use a fixed
asset as numeraire: we could equally well use a self-financing portfolio provided
its value is always positive. Note that one side-effect here is that if a stock paid
dividends then the numeraire would need to include the dividends, either as cash
being used to buy bonds, or as a scrip dividend increasing the number of stocks in
the numeraire portfolio.

We therefore take a self-financing portfolio, N, of positive value and find a mea-
sure which is equivalent to the real-world measure and such that

At

Nt

is a martingale for the price processes, At, of all assets. Since the deflated price
process of every asset is a martingale, every self-financing trading strategy's de-
flated price process is also a martingale. The expectation of the deflated value of
any self-financing portfolio with zero initial value is therefore zero, and hence no
self-financing portfolio can be an arbitrage portfolio, since an arbitrage portfolio
would clearly have positive expected deflated value.

Example 6.2 Suppose in a simple Black-Scholes world we take the stock as
numeraire. In the real world, we have as usual

dS = aSdt + 6SdWt (6.106)

dB = rBdt. (6.107)
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The condition that S/S should be a martingale is, of course, vacuous as it is the
constant 1. However, we now have the new condition that B/S should be a martin-
gale which has replaced the previously vacuous martingale condition for BIB.

We compute via Ito's lemma:

dCB\ -dB - BdS+2S3BdS2,
(6.108)

which reduces to

/ \ _
d f B I = (1

+U2

S µ)Bdt -QBdW. (6.109)

This is a martingale if and only if p. = r + a 2. Invoking Girsanov's theorem we can
change the drift of S to be r + a2. We conclude that the dynamics of B and S in
the martingale measure associated to the numeraire S are

dS = (r + Q2)Sdt + QSdWt, (6.110)

dB = rBdt. (6.111)

Suppose we want to price a European option using this numeraire. Let the option,
C, pay f at time T. We have that

s p = E
CS(T)

1 E l f STT) (6.112)
T

We rewrite a call option's payoff as

STIST>K - KIST>K,

where IST>K is 1 for ST > K and 0 otherwise, and apply (6.112) to the first term.
That is, let D pay

STIST>K,

at time T. We then have

D(0)
= E

(D(T))
= E (IST>K) . (6.113)

The final expectation is just the probability that ST is greater than K in the
S-numeraire martingale measure. Using the solution of the SDE for a Brownian
motion with drift, this is equal to the probability that

Soe(' +a212)T+a,ITN(o,1) > K. (6.114)

A straightforward computation gives us the first term in the Black-Scholes
formula.
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To get the second term in the Black-Scholes formula, it is easier to use B as
numeraire. Note that this neatly explains the division of the Black-Scholes formula
into two terms with coefficients So and e-',T K. Note also that the computation of
the first term is made substantially easier by the use of the correct numeraire. O

For each complete market, we now have multiple martingales measure each one
associated to a choice of numeraire. How do they relate to each other? Let Es
denote probabilities in the stock measure and PB in the bond measure, similarly
for expectations.

We have, for an arbitrary derivative Dt,

/ \
o Es

(DT

/ and
B0

EB l BT I . (6.115)

So

or

SOEs
\DT J BoEB (BT )S

ES (DT

ST)

= EB (DT BT) .

Since Dr was an arbitrary derivative, and S. is never zero, we can write for an
arbitrary derivative Cr = DtSO/St,

ES (CT) = EB (DTI).
Give an event E determined at time T, let CT pay 1 if E occurs and 0 otherwise.

Let 1E be the indicator function of the event, so CT = 1E, and

ls(S)=ES(CT)=EB lESBo( I

So BT

The change of measure is therefore given by multiplying by a ratio of numeraire
values.

Using the stock as numeraire is often a convenient way to remove an annoying
factor of ST in pay-offs, since we have to divide by the stock price before taking the
expectation in equation (6.115). We will use this technique in Chapter 8 to reduce
the pricing of barrier options to the computation of probabilities.

Example 6.3 A stock, Sr, follows the Black-Scholes model. A derivative Dr pays
ST log ST at time T. Develop a formula for its price.

Solution If we use the bond as numeraire, we have to evaluate the formula

EB(ST log ST)
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With ST log-normal, this can be done but it is fiddly and annoying, since

EB(ST log ST) EB(ST)EB(log ST)

An alternative approach is to use the stock as numeraire; the value is then

SoEs(log ST)

with St following the process

dSt = (r + a2) Stdt + aStdWr,

in the stock measure. So

dlogSt = I r+ 02 f dt+adWt.

This means that

log ST = log So + rr + 2a2) T + a"ITZ,

with Z a standard normal variable. The expectation is clearly

log SO + +21 0-
2)T,

and the final result is

so Clog SO +r+1a2)T)

171

O

6.14 Dividend-paying assets

The PDE approach lets us deduce the Black-Scholes equation for an option on a
dividend-paying asset quite easily from the non-dividend-paying case. We simi-
larly wish to understand the behaviour of a dividend-paying asset in the martingale
measure.

We can use the same trick. Let St be the price of a dividend-paying stock which
grows with continuous dividend rate d, and such that the real-world price process
is geometric Brownian motion with drift µ and volatility a. We wish to know how
St behaves in the risk-neutral measure. Suppose we work over a finite time horizon
[0, T]. As before, we let Xt be the price of a contract which involves the delivery
of one unit of St at time T. The value of Xt at time t will be e-d(T -t)St.

Our equivalent martingale measure analysis applies directly to X t as it is a non-
dividend-paying asset. We therefore have that in the risk-neutral measure

dXt = rXtdt + aXtdWt.
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We simply compute the process for St:

dSt = d(Xte`t(T-t))

= dXte`t(T -t) - Xtde`t(T -t)dt

= (r - d)Stdt + cStdWt. (6.116)

Thus our process is simply adjusted so that the growth rate is r - d instead of r, to
compensate for the fact that the number of units of the asset held will be growing
at rate d.

We can now proceed as before. The price of an option will just be the discounted
risk-neutral expectation. Note that we have not changed the bond price process so
we will be discounting according to e-'T as before. We can now trace through the
derivation of the Black-Scholes price in Section 6.8 with the modified drift and the
result is an alternate derivation of the formula obtained in Section 5.10.

6.15 Working with the forward

We have so far regarded the underlying as the fundamental quantity, but one could
equally well replace it by the forward price at a vanilla option's time of expiry.
Thus suppose we have a call option expiring at time T with strike K. At time T,
we have that the forward price, FT (T), for transacting at time T is equal to the spot
price, ST. This means that the pay-off of the call option is equal to

max(FT(T) - K, 0) = (FT(T) - K)+.

We can therefore equally regard the call option as a derivative on the forward price
as on the spot price.

How would we price? If we have a constant continuously compounding interest
rate, r, and a dividend rate d, then the forward price at time t is equal to

FT(t) = e(r-d)(T-t)St.

Taking the riskless bond as numeraire, we have

dSt = (r - d)Stdt + QS,dW,, (6.117)

which immediately yields

dFT(t) = FT(t)adWt. (6.118)

This means that the forward price is driftless and is a martingale.
The value of our call option is equal to

e-rTE((FT(T) - K)+) = e-'TE((FT(0)e- z K)+) (6.119)
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where is X is an N(0, 1) variable. We can evaluate this expectation to get

e-'T (FT(O)N(hl) - KN(h2)), (6.120)

where

h1 =

T( a2) + (-1)(1-1) 2Tlog (
F

/
a

(6.121)

This expression is called the Black formula. It was originally derived in the context
of options on futures, [19]. Note that if we substitute the Sod'-a)(T) , for the forward
price, we immediately get back to the Black-Scholes formula.

However, the Black formula is in some ways neater. The discounting appears
purely in the global multiplier e-''T and the effects of interest rates and dividend
rates on the risk-neutral growth rate are carefully hidden in the forward price. The
Black formula is particularly important in the context of interest-rate derivatives
which are often naturally defined in terms of options on rates rather than options
on assets.

If we want to price options on stocks in a world with stochastic interest rates
(e.g. the real world) then the Black formula is very useful. With stochastic interest
rates the processes for the forward price and the spot price are no longer so simply
related, and instead will depend upon the process chosen for the interest rates and
the correlation between the interest rate process and the spot price process.

However, if instead of trying to produce the forward price process from the stock
price process, we regard the former as the fundamental quantity and forget about
the spot price then we can still price options. We therefore suppose that in the
real-world measure the forward price process is geometric Brownian motion with
some drift. The choice of numeraire is now a trickier issue since in a stochastic
interest rate world, we can choose any of a continuum of riskless bonds as the
numeraire. There is however a natural choice: there is one bond whose value we
can be absolutely sure of at time T, namely the zero-coupon bond with maturity T.
We denote the value of this bond at time t by P (t, T).

When working with the forward, we have to be more careful in certain ways. In
the spot world, we were working with the price of a tradable asset which means
that the ratio of the spot price to the numeraire must always be a martingale. This is
not so obvious for the forward price and indeed we saw above that in a special case
the forward price itself was the martingale rather than the ratio to the numeraire.
In order to understand the dynamics of the forward price, we need to work with
a closely related proxy: the forward contract. Recall that the forward contract is
the agreement to buy or sell the asset at a price K and it carries both right and
obligation. The forward price, by definition, is the strike which makes the con-
tract valueless. Suppose the contract is to buy at K and expires at time T, and the
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forward price is FT(t) at time T. We can enter into a second contract to sell for
FT(t) at time T. This means that at time T, we will receive and sell the asset so our
asset position does not change. We also receive £FT(t) and pay £K. This means
that a forward contract to buy, struck at K, is equivalent to the right to receive

£(FT(t) - K)

at time T. In other words the contract has the value

£(FT(t) - K)P(t, T).

The contract is a traded asset so the ratio of its value to the numeraire must be a
martingale in the numeraire's martingale measure. We therefore conclude that on
taking P(t, T) as numeraire, we have

(FT(t) - K)P(t, T)
P(t, T)

= FT(t) - K (6.122)

is a martingale for any K. In particular, FT(t) is a martingale. The martingale
measure associated to the bond P (T) is therefore sometimes called the forward
measure associated to time T.

As changes of measure can only change drift, and as FT (t) followed a geometric
Brownian motion, we conclude that in the forward measure

dFT(t) = FT(t)6dWt. (6.123)

We can now price our call option. We take P (T) as numeraire and conclude that
its value at time zero is equal to

E(FT(T) - K)+)P(0, T).

We can evaluate this expectation to get

P (0, T) (FT (0)N(h 1) - KN (h2)), (6.124)

with h j as above.
We now have a formula for the price of a call option in a world with stochastic

interest rates. Its principal input is the volatility of the forward price rather than
the volatility of the spot price. Whilst these are essentially the same when we work
with deterministic interest rates, there is no reason for this to be the case in general,
and indeed for long-dated options the volatility coming from interest rates may be
substantial. For further discussion of the philosophical aspects of these points, we
refer the reader to Chapter 1 of [125].

When working with the spot, we had a neat method for deriving the Black-
Scholes formula, Example 6.2, which involved dividing into two pieces and choos-
ing a different numeraire for each. In particular the payoff could be written as

STIST>K - KIST>K,
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and we then took St as numeraire for the first piece and the riskless bond as nu-
meraire for the second. The payoff can again be written as

FT(T)IFT(T)>K - KIFT(T)>K

We have to be slightly more careful now as we cannot take FT (T) as numeraire; it
is not the price of a traded asset. However, remembering that the payoff occurs at
time T, we can rewrite it as

FT(T)P(T, T)IFT(T)>K - KP(T, T)IFT(T)>K.

We therefore take FT(t)P(t, T) as numeraire for the first piece and P(t, T) as
numeraire for the second. Note that it is OK to take FT(t)P(t, T) as numeraire
since we showed above that it is the price of a forward contract struck at zero.

To evaluate the first piece, we need to find the process of FT(t) when FT(t)
P (t, T) is numeraire. As the ratio with P (t, T) must be a martingale, this means
that 1/F(t, T) must be a martingale. A quick application of Ito's rule, just as in
Example 6.2, shows that

dFT(t) =U2FT (t)dt + or FT(t)dWt. (6.125)

We therefore have that

d log FT(t) = 1 262dt + adWt, (6.126)

and the first term of the Black formula easily follows.
We shall return to the issue of working with the forward when we study interest

rate derivatives; there the forward is the natural underlying but it is not tradable,
and so we must proceed as we have in this section.

6.16 Key points

We have covered a lot of ground in this chapter; in particular we have introduced
the concept of an equivalent martingale measure and shown that it can be used for
pricing.

The set of call option prices at a single time horizon define a synthetic probability
measure such that their prices are equal to their discounted expectations under
this measure.
The synthetic probability measure has the property that the mean growth rate for
the stock is equal to that of the riskless bond.
The synthetic probability measure in the Black-Scholes world is given by taking
the growth rate of the'stock to be r.
A martingale is a random process such that its expectation is equal to its current
value at all times.



176 Risk neutrality and martingale measures

Two measures on a probability space are equivalent if they have the same sets of
zero probability.
An arbitrage exists under one probability measure if and only if it exists under
an equivalent probability measure.
There can be no arbitrage if every asset is a martingale.
We can price in an arbitrage-free fashion if we set every derivative equal to its
discounted future value at every time and world state.
An equivalent martingale measure is found in the Black-Scholes world by setting
the growth rate of the stock to be r.
Absence of arbitrage is effectively equivalent to the existence of an equivalent
martingale measure.
A market is complete if every contingent claim can be replicated.
A market is complete if and only if the equivalent martingale measure is unique.

6.17 Further reading

There is any number of books on martingales and risk-neutral pricing. We list a
few that the author has found helpful.

An accessible book on martingales is Oksendal, [118]. A fully rigorous and stan-
dard textbook for the pure mathematician is Karatzas & Shreve, [94]. The sequel,
[95], is a fully rigorous account of mathematical finance from a pure mathematical
viewpoint.

Baxter & Rennie, [13], is accessible and is wholly devoted to the martingale
pricing approach at a slightly more rigorous level than we have adopted here. A
more rigorous and wide-ranging book on financial mathematics from the martin-
gale point of view is Musiela & Rutowski, [114].

Bjork, [18], derives risk-neutral valuation from the PDE approach and is acces-
sible. It is very good at emphasizing the key ideas.

For the fundamental theorems on asset pricing see Harrison & Kreps, [68], and
Harrison & Pliska, [69, 70] and also [45]. The result that the payoff of a general
vanilla option could be written as an integral against the second derivative of call
option prices is due to Breeden & Litzenberger, [23].

6.18 Exercises

Exercise 6.1 If St follows geometric Brownian motion, what is the process for the
forward price of Sr at time T in the risk-neutral measure.

Exercise 6.2 Let Wt be a Brownian motion. Which of the following events are in
the filtration F,?
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(i) WS < 0.
(ii) W,. > Ws for r > s.

(iii) W'_1 < 0.
(iv) WS+1 > 0.

(v) WS > WS-1.
(vi) W,. < 1 for r < s.

(vii) W,. is increasing for r < s.

Exercise 6.3 Let Wt be a Brownian motion. Which of the following are stopping
times?

(i) The first time such that W. is at least 1.
(ii) The first time such that Wt_1 < 0 and W, > 0.

(iii) The first time such that W,+1 < 0 and W. > 0.
(iv) The first time that the path W, crosses the level 10.

Exercise 6.4 Let an asset follow a Brownian motion

dS=µdt+adW,

with µ and a constant. The constant interest rate is r. What process does S follow
in the risk-neutral measure? Develop a formula for the price of a call option and
for the price of a digital call option. What is the analogue of the Black-Scholes
equation for this asset?

Exercise 6.5 In general, how will increasing the dividend rate affect the price of a
call option?

Exercise 6.6 Suppose a stock follows geometric Brownian motion in a Black-
Scholes world. Develop an expression for the price of an option that pays S2 - K
if S2 > K and zero otherwise. What PDE will the option price satisfy?

Exercise 6.7 A non-dividend paying stock follows the process

dS = pSdt + a'SdW,.

Suppose we hedge a call option on S using the Black-Scholes Delta but with a
value of volatility a' not equal to a. What will happen?

Exercise 6.8 Price a derivative paying log ST on a non-dividend-paying stock fol-
lowing geometric Brownian motion.
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Exercise 6.9 A trigger call option forces the holder to buy a stock S at a price K
if the stock price is above H at the time of expiry. Develop an analytic formula for
the price of this option in a Black-Scholes world.

Exercise 6.10 A stock, St, follows geometric Brownian with time-dependent volatil-
ity. We have So = 100, and r = 5%, and

20% fort < 1/2,
QC(s)= 15% forl/2<t < 1,

10% forl <t.

Find the implied volatility of a call option struck at 110 with the following maturi-
ties: 0.5, 1, 1.5, 2.

Exercise 6.11 A stock, St, follows geometric Brownian with time-dependent volatil-
ity. We have So = 100, and r = 5%, and

10% fort < 1/2,
0-j(S) = 15% for 1/2 < t < 1,

20% for 1 < t.

Find the implied volatility of a call option struck at 110 with the following maturi-
ties: 0.5, 1, 1.5, 2.

Exercise 6.12 A stock, St, follows geometric Brownian with time-dependent volatil-
ity. We have So =100, and r = 0%. Call options struck at 100 with maturities 0.5, 1
and 2 have implied volatilities of 10%, 15% and 20%. Find a piecewise constant
volatility function that is consistent with these implied volatilities.

Exercise 6.13 A stock follows geometric Brownian motion with drift a and volatil-
ity o-, and there is a riskless bond with growth rate r. Give an expression for the
drift of a call option in terms of S, C, r, a, it and the partial derivatives of C in

the stock measure,
the risk-neutral measure.

Exercise 6.14 What is the process for a forward contract with expiry T struck at'K
in a Black-Scholes world?

Exercise 6.15 What is the process for a forward price with expiry T struck at K in
a Black-Scholes world?

Exercise 6.16 What is the process for a forward price which is always 3 months
into the future in a Black-Scholes world?
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Exercise 6.17 Let Y j be a sequence of independent identically distributed random
variables taking values ±1. Let the probability of +1 be p. A stock has the follow-
ing price process with Zo = 0,

k

Zk = EYj.
j=1

A riskless bond which is worth + 1 in all states also exists. In each of the following
cases either construct an arbitrage or show that none exists:

when you can trade at times 0 and 10 only;
when you can trade at any two times of your choice;
when you can trade any number of times.

Exercise 6.18 Let Yj be a sequence of independent identically distributed random
variables taking values +1. Let the probability of +1 be p. A stock has the follow-
ing price process with Wo = 0,

Wk = Wk-1 + Yk - Yk-1

(take Y_1 = 0). A riskless bond which is worth +1 in all states also exists. In each
of the following cases either construct an arbitrage or show that none exists:

when you can trade at times 0 and 10 only;
when you can trade at any two times of your choice;
when you can trade any number of times.

Exercise 6.19 A stock has the following price process with X0 = 0,

X j = jX1,
_ 1 with p = 0.75,

X1 -1 with p = 0.25,

for j = 0, 1, ..., 10. A riskless bond which is worth 1 in all states also exists. In
each of the following cases either construct an arbitrage or show that none exists:

when you can trade at times 0 and 10 only;
when you can trade at any two times of your choice;
when you can trade any number of times.

Exercise 6.20 Find the Black-Scholes price of an option paying

(ST - K)+

at time T.
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Exercise 6.21 Find the Black-Scholes price of an option paying

(K - ST)+

at time T.

Exercise 6.22 Let Wt be a Brownian motion, and let Ft be its filtration. Compute
the following when t > s:

lE(Wt 1 mss);

E(Wr IY');
]E(W41y).

What happens if s < t?

Exercise 6.23 A derivative pays (log ST)3 at time T. Develop a price in the Black-
Scholes world.

Exercise 6.24 If Wt is a Brownian motion, is Wt a martingale? Justify your answer.

Exercise 6.25 Give an example of a continuous time stochastic process, Xt, such
that

IE(Xt) = 0,

and X t is not a martingale.

Exercise 6.26 If S and B follow Black-Scholes assumptions, what is the drift of S
in the martingale measure associated to taking S + B as numeraire?



The practical pricing of a European option

7.1 Introduction

We have developed several techniques for pricing an option: trees, PDEs, risk-
neutral valuation and replication plus variants of each. The purpose of this chapter
is to look at the practicalities involved in using each one. We therefore study the
pricing of a derivative, C, on an underlying St which pays a function f (ST) at time
T. To keep the analysis simple, we shall assume that f is piecewise smooth, that is
it is an infinitely differentiable function except at a finite number of points, which
is true of all the market instruments known to the author. Our purpose is as much to
use the product C to illustrate issues which arise in the practical pricing of exotic
options, as to discuss the pricing of C.

We recall some simple examples which we have studied already. A forwar d con-
tract struck at K is defined by

f (ST) = ST - K. (7.1)

A call option struck at K is defined by

f(ST) = (ST - K)+ = max(ST - K, 0). (7.2)

A put option struck at K is defined by

f (ST) = (K - ST)+ = max(K - ST, 0). (7.3)

A digital call option struck at K pays

f (ST) = H(ST - K) (7.4)

at time T, where H(s) is 1 for s > 0 and 0 otherwise. Similarly a digital put option
is defined by

f (ST) = H(K - ST). (7.5)

181
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A power call option struck at K of order 1 pays

f (ST) = max((ST - K)', 0). (7.6)

Similarly for power put options.
A straddle pays

f(ST)=IST-KI.

7.2 Analytic formulae

We have already developed analytic formulae for the Black-Scholes price of vanilla
call and put options. We can similarly develop prices for digitals and power options.
Note that a digital is really a power option of power zero. The easy way to get the
digital price is to observe that

a

aK
max(ST - K, 0) = -H(ST - K), (7.7)

where H(x) is as above, and differentiation with respect to K commutes with the
solution operator for the Black-Scholes equation, or with taking the risk-neutral
expectation, so the price of a digital call is just the derivative of the call price with
respect to K. (I have swept some technical points under the carpet here but it can
be made rigorous.)

Alternatively, we can just evaluate the risk-neutral expectation directly. If C is
the digital call then the price at time zero is equal to

e-rTE(C(ST))

As C(ST) is the indicator function of the set ST > K, the expectation IE(C(ST))
is just the risk-neutral probability that ST is greater than K. We can work with the
log: we need the probability that log ST is greater than log K. As

we have that

d log St = (r - 262 ) dt + 6dWr, (7.8)

log ST = log So + (r - 262 ] T + 64N(0, 1), (7.9)

where N(0, 1) is a draw from a standard normal distribution. Thus we need the
probability that

log So + I r -
1
621 T + o-AT-N(0, 1) > log K. (7.10)
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This is the probability that

log(K/So) - (r - 262) T
N(0, 1) > (7.11)

Using the fact that N(-x), the probability that N(0, 1) is less than -x, is equal to
1 - N(x), we have that this probability is equal to N(d2) where

(r - 262) T + log(So/K)
d2 = (7.12)

6 AT_

We therefore conclude that the price of the digital call is

e_ TN(d2)

As the price of a digital call plus a digital put is a zero-coupon bond, we conclude
that the price of a digital put is

e-'T (1 - N(d2)) = e-7TN(_d2).

Note that we can obtain all the Greeks of the digitals by differentiating their prices.
We have deduced the prices of the digital options via risk-neutral expectations. An
alternative approach would be to take the Black-Scholes PDE, transform to the
heat equation and solve with the transformed boundary condition. We leave this to
the readers who like solving heat equations.

7.3 'Trees

Suppose we decide that we wish to price our European option with pay-off f (ST)
by using a tree. The key is to think of a risk-neutral tree; our objective is to com-
pute the risk-neutral expectation, so we want a process that approximates the risk-
neutral evolution well. The real-world tree was useful for justifying the risk-neutral
expectation, but it is not particularly useful for actually computing prices.

We first consider a binary tree. We have that the log of the stock price evolves
according to the process

d log Sf = (r_cf2)dt+adWt. (7.13)

We can discretize this by dividing the interval [0, T] into many small time steps of
length At. For concreteness suppose that we have N steps of size T/N.

At each step we discretize by

1
log S1 i =log S1 + r - 262) At -F- 6 AtXj, (7.14)
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where X j takes the values 1 and -1 with equal probability. As X j has mean 0 and
variance 1, this process will converge to Brownian motion as N tends to infinity;
this follows from the arguments in Chapter 3. If we take e` T E(f (SN)), we should
therefore obtain a good approximation to the price of the derivative.

The important thing about (7.14) is that Sj has only j + 1 possible values - an
up-move followed by a down-move is the same as a down-move followed by an
up-move. Following the procedure outlined in Chapter 3, we can now price the
option. We take the pay-off of the option at each of the possible nodes in the final
time step and store them. Then at the second last time step, the expectation at each
possible node is just the average of the values after the up- and down-moves. We
then just cascade back to get the expectation at time zero.

Of course, this is just an approximation to the price. We will want to know how
good an approximation it is: one approach is simply to compute the value for lots
of values of N and observe the trend. If the first four significant figures stop chang-
ing, then we can expect the price to be correct to four significant figures and so on.
Note that for N steps we have N(N - 1)/2 nodes. This is crucial in the tractability
of the method in that it means we have to do N2 calculations. If the drift of our
stochastic process was state-dependent, or the volatility was time-dependent, then
an up-move followed by a down-move would not be the same as a down-move
followed by an up-move, and we would have 2N nodes and therefore order 2N
computations to do. A non-recombining (or bushy) tree therefore quickly becomes
impossible to do in reasonable time. For time-dependent volatility, we could how-
ever, use the observation that the same price is attained with a constant volatility
equal to the root-mean-square of the volatility, and price with that volatility instead,
or alternatively rescale the time-step sizes to make all steps have the same variance.

One problem with binary trees is that the price, as a function of steps, tends
to display a zig-zag pattern. For example, suppose we wish to price a binary call
option struck at K, which is a tiny amount above Soexp(-2a2T), and suppose
there are no interest rates. The price of the option is then just the fraction of the
nodes in the final layer that are above the strike. If we have an even number of nodes
in the final layer then this will be precisely 2. However, if there is an odd number
then there will be one at Soexp(-20-2T) just below K, and if there are 2n + 1
nodes, the price will be n/(2n + 1). The price will therefore alternate between two
levels which are converging together. See Figures 7.1 and 7.2.

This alternation property can make binary trees slow to converge. One way out
is to look, at the average of the even and odd prices for which the alternations
cancel. Another alternative is to use a trinomial tree instead. Although we have
repeatedly shown that the use of three branches at each node does not lead to
no-arbitrage pricing, the trinomial tree is nevertheless very useful. The reason is
that we do not attempt to use it to justify the pricing methodology, but instead use
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Fig. 7.1. A European digital call option struck at 100, with spot 100, no interest
rates and one year to expiry, price plotted as a function of the number of steps on
a tree.
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Fig. 7.2. A European call option struck at 100, with spot 100, no interest rates
and one year expiry, price plotted as a function of the number of steps on a tree.
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it to approximate the evaluation of the risk-neutral expectation which has already
been proven to give the unique arbitrage-free price.

We still use (7.14) but now let Xi take three values: -a, 0, a. The crucial point
is that we want X j to still have mean 0 and variance 1. If we let both a and -a
have probability p then the mean is 0 and the variance is 2a2p. Thus if we take
a = and p = 4 , the variance is 1. Note that there are other solutions which we
could use instead if we wanted more control over the nodes' placements; this is an
important advantage of trinomial trees.
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Fig. 7.3. Call with parameters as in Figure 7.2. The trinomial price (dark line)
and successively averaged binomial price are plotted as a function of the number
of steps. The correct price is the flat line.

The tree will recombine as before; the number of nodes at step j will be 2j + 1
and so the total number of nodes will still be of order N2. We can now apply the
same approach as for the binary case. Compute the values of the payoff in the final
layer. For the second last layer at each node, we take the expectation obtained by
p times the up-node value plus p times the down-node value plus 1 - 2p times
the zero-node value. We then just iterate back as before. The fact that the central
line of the tree remains invariant across the number of steps means that the price of
the option is more stable with respect to the number of steps. See Figures 7.3, 7.4
and 7.5.

As well as wanting to compute the price of an option, we shall generally also
want to know its Greeks, as these are central to hedging the option. One method is
to simply bump the relevant parameter slightly, recompute the price and then divide
the difference by the amount of bumping of the parameter. Of course, one has to be
careful that the simulation had converged both in terms of size of the bump, and in
the number of steps. The number of steps for the Greek to converge may well be
greater than for the original product.

A good approximation to the Delta is to take the value of the option after the first
up- and down-moves and divide their difference by the distance between them. This
is fairly accurate but one has to be aware that there is a slight error from the fact that
the nodes are slightly forward in time. We discuss some other techniques which are
equally valid for trees, in Sections 7.4 and 7.5.

The most powerful application of trees is to the pricing of options with early
exercise features and we shall study this application in Chapter 12.
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Fig. 7.4. Call with parameters as in Figure 7.4 but interest rates now 5%. The
trinomial price (dark line) and successively averaged binomial price are plotted as
a function of the number of steps. The correct price is the flat line.
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Fig. 7.5. Digital call with parameters as in Figure 7.4. The binomial price and
successively-averaged binomial price (dark line) are plotted as a function of the
number of steps. The correct price is the flat line.

7.4 Numerical integration

We know that the price of the derivative C is given by

e-1T1° (f(ST)),
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so all we need to do is evaluate this expectation. If t(ST) is the density of ST in
the risk-neutral measure then

E(.f(ST)) = f .f(ST)(D (ST)dST. (7.15)

This is a simple Riemann integral and so can be evaluated numerically. Of course,
to do so we need the value of (D(ST)-

This is in fact quite easy to compute in the Black-Scholes model. The density
of a random variable is just the derivative of the cumulative distribution function.
Recall that the cumulative distribution F(x) is defined by

F(x) = IP(ST < x).

The price of a digital put option is therefore just e"T times F(K), where K is
strike. Thus to get the density we just differentiate the price of a digital put by K
and multiply by e'T. Putting K = ST, we obtain the Black-Scholes density

l )2)
1 1 log (STL 1' - 2a )T

('(ST)(x) = exp -2 (7.16)
2rrSTQ

Whilst this expression is not particularly nice, it is straightforward to evaluate, and
we can now apply any method of numerical integration to evaluate (7.15).

In case the reader is not familiar with (or more probably has forgotten how
to carry out) numerical integration, we sketch one simple method: the trapezium
method. If we wish to integrate a function g(x) over an interval [a, b] then we
divide the interval into N pieces of equal length. Thus we set

xj = a + N (b - a), (7.17)

for j = 0, . . . , N. Across each interval [xj, xj+l] we replace g(x) by the unique
linear (really affine) function, L j (x), such that L1(x) = g (xj) and L j (xj+l) _
g(xj+1). In fact,

Lj(x)=g(xj)+(x-xj)g(xj+1)-g(xj)
(7.18)

xj+1 - xj
As Lj (x) is linear, its integral, Ij, over [xj, xj+1] is trivial to compute analytically.
We therefore just compute the value of each Ij and sum. As N goes to infinity,
the value of the sum will converge to the true value of the integral. The rate of
convergence will depend on the amount of curvature of g(x), i.e. the size of g"(x),
as this expresses how bad the linear approximation is.

Our integral is over an infinite domain rather than a finite interval, so the cut off
has to be chosen at a suitably large value of b. As '(ST) is rapidly decaying this
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is not unreasonable, or we can perform a change of variables to change the infinite
interval into a finite one. We refer the reader to [123] for a discussion of many
different methods of implementing numerical integration.

It is worth noting that we can perform the integration in a different way that
avoids the need to know the value of 0(ST). We have that

ST = So exp r - 1
I a2) T + crITN(0, 1) . (7.19)

This means that we can equally well regard N(0, 1) as our fundamental underlying
variable to integrate against. This means that

E(f (ST)) = J f (Soexp ((r - 'U2) T -I- I I eXp ` 22jX2 J dx. (7.20)

The equivalence of these methods canbe seen by Ja/change of variables in the
integration.

It is unlikely that one would ever actually use numerical integration to evaluate
the price of a European option in a Black-Scholes world; however, when using
alternative models where no closed-form expression for the call price exists, but a
closed-form expression for the density is known, it can be very useful.

As well as evaluating the price, the trader will want to know the value of the
Greeks. There are a number of different ways of doing this. The simplest method
is simply to bump the input parameter and divide the change in value by the size
of the bump. This is handy when only the price function has been implemented.
It's also good for testing that alternative implementations of the Greeks are correct.
We would, however, prefer something more robust; the value of our option is of the
form

rT
e f (ST)'V(ST, So, r, d, a, T )dST. (7.21)

One approach is therefore to simply differentiate this formula and evaluate it. For
example for the Vega we obtain

-rT a (D
e f f(ST)a(D(ST,So,r,d,or,T)dST, (7.22)

and for the Delta

e-,T f f(ST)a o(ST, So, r, d, a, T)dST. (7.23)

Of course, one would still have to analytically compute the derivatives of (D.
For log-based evolutions, including the Black-Scholes setting, C takes a special

form. By a log-based evolution, I mean any evolution for which the distribution
of log ST - log So does not depend on the value of So. The probability density is
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then of the form * (1og ST - log So)d(log ST), ignoring the other parameters. This
means that we have a density function for ST of the form

1

(i),t)(ST, So) = g (7.24)

d (tog ST) = dST
ST

a(D _ 1 ,(ST
aSo Sg So

aST

(ST
Sod) - aST \Sog \So / s2g (SO

(7.25)

(7.26)

This means that we can express the derivative with respect to So in terms of
and its derivative with respect to ST. This is particularly useful because we can
then integrate by parts to shift the differentiation with respect to ST onto f. In
particular, we have

a _ a r ST 1.
(7.27)

aso - aST L So J

Integrating by parts, we conclude that the Delta of our option is

e
rT STf So .f'(ST)0 (ST, So)dST. (7.28)

We have to be slightly careful about interpreting (7.28) when f is not continuous.
For example, if the option is a digital call then f has a jump singularity at the strike
and the derivative of f is a delta function at the strike. (Just to make life confusing,
we have the Delta of an option, and a delta function which have absolutely noth-
ing in common except the name.) This means that we have to interpret (7.28) in
distributional terms. (Distributions here means generalized functions, not proba-
bility distributions to make life even more confusing.) For example, for integration
against a delta function, we just put ST = K in the rest of the integrand to obtain
the value; thus for a digital call the Delta is

e-''T So (D(K, So).

Alternatively, if the payoff, f, is not continuous, one can divide the integrand into
areas where f is continuous and perform the integration by parts individually. One
then obtains additional terms from the endpoints of the integral over each area,
which match the terms from delta functions.
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7.5 Monte Carlo

The Monte Carlo method is one of the most general techniques for the pricing
of options. The basic idea is very simple but the implementation issues can often
become very subtle. Monte Carlo is essentially the use of the law of large numbers
to evaluate the expectation IE(f (ST)).

Recall that the law of large numbers states that if Y, is a sequence of identically
distributed random variables which are independent, then we have

N

lim 1 E Yj = IE(Y1).
N--*oo N

j=1

In other words, our intuitive notion of expectation, the long run average, agrees
with the mathematical definition of expectation as an integral against a density
function. The law of large numbers is therefore a numerical method for evalu-
ating integrals! We just keep on drawing the random numbers, Yj, and keep a
running count of the average, this will eventually converge to any desired de-
gree of accuracy, and this tells us the value of the expectation to that degree of
accuracy.

We wish to find the value of IE(f (ST)). We know that the solution to the SDE
for ST is

((r 1

ST = So exp - 2o2 , T + cr,rTN(O, 1)) . (7.29)

Our procedure is therefore to draw a random N(0, 1) variable, plug it into (7.29)
and then take f (ST). We repeatedly do this, keeping note of the running sum and
the. average. The average will eventually converge to the expectation as desired. Un-
fortunately, the operative word here is eventually. The order of error is O(N-1/2)).

Thus to get high levels of accuracy one needs a lot of samples, sometimes millions.
As a Monte Carlo simulation is based on random numbers, the answer after n sam-
ples will be a random number depending upon precisely which random draws we
have made. If the variance of a single trial is V, it can be shown, using the Central
Limit theorem, that the result will be distributed approximately as

E(X) + fiN(O, 1).

The quantity V
n

is called the standard error.
One practical point here is how to synthesize Gaussian random variables. There

are a number of approaches. Most computer languages allow the generation of a
uniform random variable between 0 and 1, or a random integer between 0 and
some very large number. The second sort can be turned into the first by dividing
by the very large number. The issue is therefore how to turn a uniform random
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variable on the interval [0, 1] into an N(0, 1) random variable. There are a number
of approaches.

Let N(x) denote the cumulative normal function; then its right inverse function,
I (y), is called the inverse cumulative normal function. That is I has the property
that

N(I(y))=y
If r is a random draw from the uniform distribution of [0, 1], then I (y) is a draw
from N(0, 1),

P(I(r) < x) = IP(N(I (r)) < N(x)) = IP>(r < N(x)) = N(x), (7.30)

with the final equality coming from the definition of the uniform distribution. But
this shows that I (r) has cumulative distribution function N(x), which means that it
is an N(0, 1) random variable. This is very neat, except that it begs the question of
how to compute the function I. We give one method in Appendix B. Note that this
method would work for any sort of random variable for which one could compute
the inverse cumulative distribution function.

A simple method which gives a reasonable, but not great, approximation is to
simply add together 12 uniform variables and subtract 6. The results has correct
mean, variance and third moment. This method is worthwhile for quick tests but
not appropriate when real precision is required.

For the sort of option we are studying in this chapter, Monte Carlo simulation is
not a particularly great method. Its convergence is not very fast and a straightfor-
ward numerical integration is generally quicker. However, in later chapters where
we need to evolve many assets across many time steps it can become the optimal
method. Indeed, when studying the evolution of interest rates, it is an indispensable
tool.

Often Monte Carlo is the easiest method to implement. It therefore provides a
good test of other methods. A quantitative analyst will generally want to implement
any model in at least two different ways and not be happy until they agree. After
all, how else can he be sure his implementation is correct? It is often also very im-
portant when studying alternative models of stock price evolution for which other
methods can be hard to implement.

Variance reduction

As Monte Carlo simulation is slow to converge, a lot of research has gone into
methods for increasing the speed of convergence. This essentially comes down to
simulating the payoffs in such a way that their variance is reduced.

One simple method is anti-thetic sampling. With anti-thetic sampling one draws
samples in pairs. If x is normally distributed then so is -x. For every random draw
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two paths are therefore simulated one with x and one with -x. This ensures that the
mean of the draws is zero, and the symmetry of the normal distribution is achieved
by construction.

A method which meshes well with anti-thetic sampling is moment matching.
If we have decided how many samples we wish to take then we can rescale our
random numbers to ensure that their moments are correct. This requires two passes.
We first draw all the random numbers, computing all the moments we wish to
match. We then reset the random number generator to generate the same random
numbers, and draw them again but this time resealing them in such a way as to
make the final moments equal to those of the desired distribution. If we have used
anti-thetic sampling on a normal distribution then all the odd moments have already
been made zero by construction, so it is only the even moments which have to be
matched. For example, if the variance of our sample is V and we rescale every
random number by V-1/2, we obtain a sample with variance 1.

Another fairly easy method is importance sampling. If we know our payoff func-
tion f is zero outside an interval [a, b], then any draw which makes ST lie outside
[a, b] is wasted. We therefore only sample uniform distributions which cause ST
to lie in the interval [a, b] and multiply the result by the probability that ST lies in
[a, b]. How would we carry out this procedure? We have a deterministic function
map from the uniforms to the positive reals which turns a uniform random variable
into ST. We can invert this map to find the interval [x1, x2] which is mapped onto
[a, b]. The probability of ST lying in [a, b] is therefore x2 - x1.

To compute the expectation we therefore draw random variables from the uni-
form distribution on [0, 1], multiply by (x2 - x1) and add x1 to force them to lie in
[x1, x2]. This random variable is then turned into ST in the usual way and the pay-
off computed. We then average over many draws as usual and multiply the result
by (x2 - x1). Clearly the effectiveness of this method is dependent on the size of
x2 - x 1. If one wishes the price of an at-the-money option, it is unlikely to be much
help but for a far out-of-the-money option, it may help considerably.

One of the most powerful methods for improving Monte Carlo simulation is that
of low-discrepancy numbers. The important aspect of random numbers that makes
Monte Carlo simulation work is the fact that they eventually cover the unit interval
in an even manner. However, in the short term, they may cluster around certain
values which is why the simulation takes a long time to converge. Therefore, in-
stead of using random numbers, why not use a deterministic sequence of numbers
which does a very good job of covering the interval? Such a sequence is called a
low-discrepancy sequence. Note that the idea of using a deterministic sequence, is
not very strange, since any computer random number generator is actually one. It
is therefore just a question of taking the deterministic sequence which makes sim-
ulations converge the fastest. The great advantage of low-discrepancy sequences is
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that their rate of convergence is O(N-1) rather than O(N-112), which greatly in-
creases the competitiveness of Monte Carlo simulations. However, the techniques
for generating low-discrepancy sequences are outside our scope and we refer the
reader to [123] or [79]. Using low-discrepancy sequences to carry out Monte Carlo,
is sometimes called quasi-Monte Carlo.

The Greeks

As usual, as well as pricing the option, we want to compute its Greeks. The sim-
plest approach is to simply bump the parameter by c and run the simulation again.
The Greek is then the difference divided by E. However this has its problems. The
final answer in a Monte Carlo simulation is sensitive to which random numbers
have been used and there is no guarantee that the error will be in the same direc-
tion in both simulations. An additional error has therefore been introduced that will
magnify when divided by the small number E rendering the computation meaning-
less! One simple way to avoid this problem is to use the same random number
stream for both simulations. Remember there is no such thing as a truly random
number on a computer. Any biases then introduced are equal in the two simula-
tions and not magnified by E.

This technique works reasonably well for many options. However, it breaks
down when the payoff function is not benign. To see why, note that if we are using
the same random number streams for the two simulations, then we are really taking
the difference approximation to the derivative on a path-by-path basis. Thus if we
are computing the Delta in a Black-Scholes world, we are computing the meanl of

Xj = E-le-rT 2(_ f(Soe(7 v2)T+u ITW,) + f ((SO + E)e(

l (7.31)

for a sequence of normal variables Wj. If f were a Heaviside function, and the
option a digital call option, then the value of Xf would be zero except for the very
small number of paths where adding E to So made the option go from below the
strike to above the strike, and for those paths X would be very big: it would be
approximately E-1.

We therefore need a more subtle method when f is not continuous. Remember
that Monte Carlo is really just a method of numerical integration, so we can adapt
the techniques from Section 7.4. We observed there that differentiating with respect
to a parameter, including So, yielded an integral of the form

e r T f .f (ST)'p(So, r, d, T, ST.... )dST,

where is the derivative of the density 4) by the parameter, and ... denotes any
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other parameters. This integral is not immediately amenable to Monte Carlo sim-
ulation as there is no obvious density in it. However, we can reintroduce (D, and
evaluate

e-rT f
.f (ST) T (ST)D(ST)dST,

instead. We therefore take a random draw from the terminal distribution of ST
implied by c, plug it into e-''T f (ST) I (ST), and average over a large number of
draws. This method is sometimes called the likelihood ratio method, as we are
essentially reweighting the draws by the ratio '/(D, which is of course just the
derivative of log (D, with respect to the relevant parameter. Note that as we are using
the same density for pricing as for computing the Greeks, we actually only need to
run the Monte Carlo once; we can compute the price and Greeks simultaneously.

Another approach when computing Deltas for log-type evolutions is to use (7.28)
and evaluate

STe-TT T f'(ST)(D(ST, So)dST, (7.32)f so

by Monte Carlo. This is sometimes called the pathwise method. The main difficulty
with this method is how to interpret f'(ST) when f is discontinuous. Jump discon-
tinuities will give rise to delta functions in the derivative. We can therefore write
f = g + h, with g continuous and h piecewise constant. Then g' is well-behaved,
and its contribution to the Delta can now be evaluated by Monte Carlo. The deriva-
tive of h is a sum of Delta functions so the integral can be computed analytically
as a finite sum and we are done.

'For an f without jumps, if one runs a simulation of the pathwise method and
compares to the finite difference method, one finds that the convergence is al-
most identical. The reason is that if one lets c tend to zero in (7.31), one obtains
the Monte Carlo simulation for (7.32). Thus the main advantages of the pathwise
method are the ability to explicitly remove the delta functions, and the removal
of the small bias introduced by using finite differencing to evaluate the derivative
of f.

7.6 PDE methods

We have shown that the price of an option satisfies the Black-Scholes equation so
we can use this fact to price them. This comes down to solving the problem

ac 1 2 2 a2C ac
(7.33)at + 2 S

as2
+ r S

as
-rC = 0,

C(T, S) = f (S). (7.34)
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We saw in Section 5.9 that the Black-Scholes equation can be reduced to the heat
equation. This means that any technique used for solving the heat equation can
be used to solve the Black-Scholes equation. In particular, one can attempt to
solve analytically or to use numerical methods. However, evaluating the expec-
tation directly tends to be easier than analytically solving the Black-Scholes equa-
tion. However, one can also apply one's favourite numerical method. In general,
one attains better numerical stability if one works in log space but then there is
really very little difference, except in terminology, between a trinomial tree and a
finite difference method. We refer the reader who is interested in PDE approaches
to Wilmott's Derivatives, [139].

7.7 Replication

In fact, if one wishes to price a European option in a market with liquid calls and
puts, most of this chapter is useless. The reason is that the most important thing
is to price the contract in such a way as to make it compatible with the liquid
instruments, and the effective method of doing that is by replication. What does
compatible mean? The pricing method must price all the market-observable liquid
instruments to agree with their market prices.

For example, suppose we wish to price a digital call option struck at K. We
have a Black-Scholes formula but we have to choose a volatility. As market-traded
options typically display a volatility smile the choice is not so obvious. An obvious
choice is to use the volatility of a call option struck at K. This would however be
a mistake and leave us open to arbitrage. An alternative method of pricing is to
approximate the digital by vanilla options. In particular, we can create a portfolio
consisting of being long 1/2E call options struck at K - E, and short 1/2E call
options struck at K + E. This will approximate the digital very well and as 6 - 0+
will become the digital (see Section 6.3). The price this gives will be different from
the Black-Scholes formula with the implied volatility of the call at K plugged in.

To see this, we write a, the volatility, as a function of strike. Our approximating
portfolio is then worth

-C(K + , a(K + E)) +C(K - E, a(K - E))
26

The price of the digital should be the limit as E goes to zero. From Taylor's theorem,
we have

C(K+E,a(K+E)) =C(K - E,or(K -E))+2Ea (K - E,Q(K - E))

au ac
+ 2E

M a6
(K - E, Q(K - E)) + 0(E2). (7.35)
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Thus we conclude on letting E tend to zero that the price of the digital call is

(K,
ac

aQ
(K, Q(K))

au
M (K).

If we had just plugged the Black-Scholes implied volatility into the digital call
option formula, we would have only got the first term and not the second. The
error is therefore the Vega of the option times the slope of smile. The moral here is
that one should be very careful in interpreting implied volatilities. Indeed, to quote
Rebonato, [125],

The implied volatility is the wrong number to put in the
wrong formula to get the right price.

The point is that the implied volatility has been defined in such a way as to make
this tautologically true for call and puts, but not true for any other option.

We therefore conclude that the way to price any European option is to approx-
imate it as well as possible by vanilla options. In fact, if the payoff function f is
piecewise linear then it can synthesized precisely using call and puts. To see this
divide the positive real axis into a number of intervals, [x1, xj+l], such that on the
interior of each interval f is linear, with the possibility of a jump at xj. We can
first remove all the jumps arbitrarily accurately by approximating digital options
with calls as we saw above. The remaining function, fl, will now be linear on each
interval and continuous everywhere. Taking xo = 0, we can synthesize its payoff
on [xo, xl] by a number of zero-coupon bonds with expiry T with principal f (0)
and a set of forwards struck at 0 in volume equal to the gradient of f at 0. At x1,
if the gradient of f changes by a we simply add a call options struck at xl to the
portfolio where the number a is possibly negative. At each xj we then just add a
number of call options struck at xj,' where the number of call options is just the
change in gradient of f.

Having constructed this portfolio, we can value the derivative C just by taking
the value of the portfolio - if all the options in the model are traded then we just
observe their prices in the market and no further mathematics is required. If they
are not traded then we can interpolate their volatilities from those that are. We
have the added bonus that the Greeks of C are just the sum of the Greeks for the
approximating portfolio.

In practice, the way things work in the market is often the reverse of this in that
the trader wants exposure to a certain part of the smile and he therefore makes
prices on certain combinations of vanilla options that express his views on how the
smile will change. These views could be that the smile will flatten, or tighten, or
that the smile will tilt. The prices of these combination instruments are then used
to infer the shape of the smile.
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The techniques of this section are an example of static replication where an op-
tion is hedged by a portfolio which is set up once and not changed as opposed to the
dynamic replication of the Black-Scholes theory. In conclusion, static replication
is the best method of option pricing when it is available as it automatically takes
all smile effects into account. It also has the advantages that the Greeks are easy to
compute and that it does not depend upon continuous rehedging.

7.8 Key points

In this chapter, we have looked at a number of different approaches to pricing
an option with payoff depending on the value of the underlying at a single time
horizon with a view to applying the techniques to exotic options.

There are many approaches to evaluating the price of European option
including:

(i) analytic formulas;
(ii) PDE solving;

(iii) numeric integration;
(iv) Monte Carlo;
(v) replication.

Replication is the safest method of pricing as it automatically takes smile effects
into account.
Using the implied volatility to price options other than vanillas can lead to pricing
errors.
Monte Carlo pricing relies on the fact that the price of an option is its discounted
expected payoff in the risk-neutral measure.
The law of large numbers underlies Monte Carlo pricing techniques.
Formulas for Greeks can be deduced from the integral for the price via differen-
tiation under the integral sign and integration by parts.

7.9 Further reading

For lists of option-pricing formulas, see [66].
For discussion of various techniques and code for carrying out numerical inte-

gration (also known as quadrature) see Numerical Recipes in C++ [123]. Another
good source on implementing numerical methods is [36].

For further discussion of PDE methods see Wilmott, Howison & Dewynne, [140]
or Wilmott, [139].

A great deal of work has been done in recent years addressing the problem of the
rate of convergence of binomial trees and attempting to describe the asymptotics
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precisely. Diener & Diener, [49], and Walsh, [138], showed for vanilla call and put
options that the convergence is of order 1, and that the terms in the asymptotic
expansion are in powers of N1/2 with oscillating coefficients depending upon the
relationship between the strike of the option and the nodes of the tree (N is the
number of steps).

Attempts to remove these oscillations and achieve higher order convergence are
[98], [87] and [89]. It has also been suggested that truncating the tree can accelerate
convergence [9].

The best reference currently available on Monte Carlo simulation and derivatives
pricing is [59]. Another interesting reference is [52] which is a collection of papers
on various aspects of the topic. A good reference for the effective use of low-
discrepancy numbers is [79].

A book which is strong on the implementation of various models is [29].
The Monte Carlo techniques for computing Greeks discussed here were intro-

duced by Broadie & Glasserman, [26].
For a discussion of the issues involved in implementing tree models see [37].

7.10 Exercises

Exercise 7.1 Suppose we discretize Brownian motion by taking a trinomial tree.
What conditions (if any) on the probabilities and the branches will get the third
and fourth moments of one step to agree with those of Brownian motion across the
same time step?

Exercise 7.2 Show that the trapezium rule can be simplified by observing that the
integral across each step is equal to the size of the step multiplied by the average
of the values at the beginning and end of the step.

Exercise 7.3 How do we construct a random draw from the Cauchy distribution,
if we start with a draw from a uniform distribution? The Cauchy distribution has
density function

1 1

7r 1 + x2 .

Exercise 7.4 Prove that anti-thetic sampling makes all the odd moments of a sam-
ple of normals equal to zero.

Exercise 7.5 An option pays I ST - K 1. Decompose it into vanilla options.

Exercise 7.6 An option pays 90 - ST, for ST < 95. It pays -5 otherwise. Decom-
pose it into vanilla options.
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Exercise 7.7 Suppose two smiles have the same implied volatility at 100. One
smile is downwards sloping and the other one is upwards sloping. How will the
prices of digital calls struck at 100 compare?

Exercise 7.8 Prove that if a European derivative is replicated by a portfolio of
vanilla options then it has the same Greeks as that portfolio.

Exercise 7.9 Suppose f is twice-differentiable and f"(x) is non-zero. Show that

lim
f(x+h)- f(x -h)

2h

converges to f(x) faster than

lim
f (x + h) - f (x)

h-> 0+ h

Exercise 7.10 A normal random generator produces the following draws:

0.68, -0.31, -0.49, -0.19, -0.72, -0.16, -1.01, -1.60, 0.88, -0.97.

What would these draws become after anti-thetic sampling and second moment
matching?

Exercise 7.11 We have in the Black-Scholes model:

A derivative pays cos(Si) at time 1 if Sl is between 1 and 2. Find the price implied
by a 4-point trapezium rule numerical integration.

Exercise 7.12 Suppose we have a liquid market in call options for all strikes at
expiry T on each of stocks A and B. The implied vols of at-the-money call options
on A and B are the same. The smile of A is horizontal ATM and that of B is
downwards sloping. What can we say about the relative prices of digital calls struck
ATM onAandB?

Exercise 7.13 A Monte Carlo price of a derivative has a standard error of 0.01 after
10 seconds. How long would it take to get a standard error of 0.0001?

Give an expression for how long it would take to be 95% sure that the error is
less than 1E - 4.
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Exercise 7.14 A contract, D, pays 30% of the increase (if any) of a stock's value
in a year. If St follows Black-Scholes assumptions, give a formula in terms of the
Black-Scholes formula for the price of D.

Exercise 7.15 If D pays

0 for S < K1,
S - Ki

for S E [KI, K2],K2-K1
K3-S

f S [K K
K3 - K2

or 2, 3],E

0 for S > K3,

synthesize D using vanilla call and put options.

Exercise 7.16 The stock price St follows the process

dSt = jStdt + atStdWt,

and

dBt = rBtdt.

The stock pays dividends at rate d. An investment unit costs 1 dollar. At the end of
the year, it pays 1 dollar if St < So and Sl /So otherwise. Develop a price for this
instrument in terms of the Black-Scholes formula.
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Continuous barrier options

8.1 Introduction

One of the simplest and most commonly traded exotic options is the continuous
barrier option. This is an option with the ordinary call or put pay-off but the pay-off
is contingent on a second event. This second event is typically whether some level
has been crossed or not during the life of the option.

For example, a down-and-out call option struck at K and with barrier at B will
pay

(ST - K)+,

unless at any time, t < T, the value of spot passes below B. The option is said to
knock out when the spot passes below B, and it is said to be a knock-out option.
Similarly, the down-and-in call will pay

(ST - K)+,

provided that at some point during the life of the option spot passes below B. The
option is said to knock in when the barrier is crossed, this option is called a knock-in
option.

Clearly, precisely one of these two options will pay (S - K)+ at time T and the
other will pay zero. We therefore have the simple relationship that

knock-out + knock-in = knockless

We illustrate this in Figure 8.1. The relationship means that we need not study
the pricing of knock-in options since their values are immediately deducible from
those of knock-out options. As both in and out options have non-negative and pos-
sibly positive payoffs, we have that their values are always positive (before knock-
out) and always less than the value of the vanilla option. This is not surprising in
that they both carry fewer rights than a vanilla option and so must have smaller
value.

202
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---In
- Out
- -Vanilla

80 90 100 110

Spot

Fig. 8.1. The value of a down-and-out call, a down-and-in call and a vanilla call
with barrier at 90 and strike at 100.

We can have any combination of up/down, in/out and call/put that we like. The
most interesting combinations are those for which the barrier is in-the-money. For
example, an up-and-out call option with barrier at 120 and strike at 100, has an in-
teresting payoff profile. Below 100 the value is zero, from 100 to 120 the value
increases in a straight line to 20, and then above 120 it drops immediately to
zero.

At preceding times, the value of the option will increase until 120 is getting
close, and then as 120 looms up, the value will plummet to zero as the probability
of knocking-out dominates over the payoff. See figures 8.2 and 8.3.

Why buy a barrier option? For the purpose of hedging they are not particularly
useful (except as a component of the hedging of some complicated exotic.) How-
ever, they are cheaper than vanilla options, so if a speculator has very strong views
on how he believes an asset price will move then he can make more money by
purchasing an option which expresses those views precisely. For example, if the
speculator believes that the asset will greatly increase in value and will not go be-
low 90 in the mean time, he could purchase a down-and-out call with barrier at
90 saving a little on the option's premium. There are also sometimes regulatory
restrictions on the number of options a company or fund can hold or issue. The use
of barrier options allows the options to automatically disappear when they are too
far out-of-the-money.

A technical issue with continuous barrier options is the question of how to
agree what it means for the asset price to cross the barrier. The asset price is only
observable when a trade is actually made, and then there is the issue of recording
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25
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0

80 90 100 110

Spot

120 130 140

Fig. 8.2. The value of an up-and-out call option struck at 100 with barrier at 120
at expiry.

5

-10% vol
... 20% vol

2

80 90 100 110

Spot

120 130 140

Fig. 8.3. The value of a down-and-out put option struck at 110 with barrier at 90
and one year to expiry. Note that volatility is bad near the barrier and good away
from the barrier.

and checking all trades made to see whether they actually crossed the barrier. For
this reason, truly continuous barrier options are rare. Instead, the option price is
generally sampled on a daily basis. The option is therefore really a discrete barrier
option; however the continuous barrier is a very good approximation to the daily
sampled barrier.

In this chapter, we examine various methods of pricing continuous barrier op-
tions in a Black-Scholes world. As a part of the study of risk-neutral valuation, we
develop a better understanding of Girsanov's theorem.
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8.2 The PDE pricing of continuous barrier options

We focus on the case of a down-and-out option for concreteness. An up-and-out
option can be handled similarly, and as we observed above, the knock-in option
prices can be simply deduced.

Let the option be struck at K and have barrier at B. Suppose that the expiry is T
and that the asset follows a geometric Brownian motion in a perfect Black-Scholes
world. Away from the barrier, we can apply the arguments of either Chapter 5
or Chapter 6 to deduce that C must satisfy the Black-Scholes equation. The new
aspect is that as well as the terminal condition that the value must equal the payoff
(which may be truncated by the barrier), we also require the option to be of zero
value on the barrier.

We therefore now have a boundary value problem. Our option satisfies the fol-
lowing equations:

ac ac
1 2s2 a2C

8 1
at (S't)+'Sas + 2°

as2(S,t)=rC, ( )

C (S, T) _ .f (S), (8.2)

C(B, t) = 0. (8.3)

We now simply have to solve this equation. This is a little tricky. Suppose we copy
the approach of Section 5.9. If we do the first three changes of variables

Z = logs, (8.4)

z = T - t, (8.5)

C = e-"' D, (8.6)

then we obtain

aD

C

_ 1 ) aD 1 2 a2D

Jr
20_2

/J az 2or
aZ2 =°

What have the boundary conditions become? The barrier condition is now

(8.7)

D(log B, r) = 0, (8.8)

and the final condition is just

D(Z, 0) = .f (eZ). (8.9)

If we now continue the previous argument by putting

1
y=Z -} r-2Q2 r,
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we have a problem; the barrier has become a function of time. Indeed, we obtain

(log B+[r- (8.10)

when writing D as a function of y. Whilst we have reduced the problem to a diffu-
sion equation, we have done so at the cost of making the barrier level non-constant.

We therefore look for a different approach to eliminating the first-order term
which does not involve changing Z. Our approach is to multiply D by a function
which we will choose in such a way to eliminate the extra terms. In particular, we
try

D(Z, r) = e'Z+bTE(Z, r). (8.11)

Differentiating and substituting into

aE1aE

1 2

(8.7), we obtain

1 Z
2

aE a2E\

/
(aE

at bE - r 2 +
aZ\

(a- 2 E 2a
az az2 J = 0 (8.12)

If we collect terms, the coefficient of E is

b - (r - 10-2 ) a-'U2a2,

and the coefficient of z isa

We are now in a position to solve the problem. Picking a to make the coefficient
of az equal to zero and then picking b to make the coefficient of E equal to zero,
we have reduced the problem to a simple heat equation and the boundary condition
is just

E(log B, t) = 0, (8.13)

and the initial condition at time zero is easily computed.
There is a standard approach to such problems. It relies on the principle of re-

flection. As we are interested only in the value of the solution for Z > log B, we
can modify the initial condition below log B without affecting the problem. We
therefore solve the problem by making the initial condition odd when reflected in
log B. Thus if the initial condition was

E(Z, 0) = g(z) for z > log B, (8.14)

we extend it via

E(Z, 0) = -g(log B + (log B - z)) for z < log B. (8.15)
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Why does this do what we want? At any point along log B, there is an equal amount
of positive heat coming from above log B and negative heat coming from below;
these cancel each other to give zero. Alternatively, if we think financially we have
defined a new option payoff which is negative below the barrier in such a way that
the value of the amount we may owe below the barrier is equal to the value of
the amount we may make above the barrier. Indeed, in Chapter 10, we look at an
approach to barrier pricing based on this point of view.

How do we prove the solution has the correct property? The function E(Z, r)
solves the diffusion equation if and only if E(2 log B - Z, r) does, as we get a dou-
ble negative sign when differentiating with respect to Z. Since the boundary con-
ditions are odd on reflection in log B, we conclude that E (Z, r) and -E (2 log B -
Z, r) solves the diffusion equation with the same boundary conditions. By
uniqueness of solutions, it follows that

E(Z, r) = -E(2logB - Z, r), (8.16)

for all Z and r. Putting Z equal log B, we obtain

E(log B, r) = -E(log B, r) (8.17)

which immediately implies that E (log B, r) is equal to zero as desired.
To derive the solution, we now just need to solve on the entire space using the

reflected final condition, and carry out multiple changes of variables to get back to
the original problem. We do not carry this out here, but instead we will use an alter-
native method based on risk-neutral expectation to derive the solution. However,
the underlying techniques used are similar, relying both on reflection and a less
mysterious multiplication by a function of the form eaZ+bi , and the reader should
try to hold both points of view firmly in mind.

8.3 Expectation pricing of continuous barrier options

We can equally well price by risk-neutral expectation. We focus on a down-and-
out option for concreteness as before. The price of an option will then be given by
its discounted risk-neutral expectation. To compute this expectation we will need
to know the probability that the barrier will be breached and the distribution of
the final value of spot given that the barrier has not been breached. To compute
these what we really need is the joint distribution of the minimum and the terminal
value for a Brownian motion with drift. In order to compute the joint distribution
we need to develop a better understanding of Brownian motion, stopping times and
Girsanov's theorem.

Our programme for this rest of this chapter is therefore to develop the neces-
sary techniques to carry this out. We start with the reflection principle, move on
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to computing with Girsanov's theorem, compute the joint distributions of minima
and terminal values and then return to the pricing.

8.4 The reflection principle

We present an argument that allows us to deduce the joint law of the minimum
and the terminal value for a driftless Brownian motion. Our argument is not wholly
rigorous and we refer the reader who wishes to see the technical details to [94].

Let Wt be a Brownian motion. Let mT denote the minimum value of Wt over the
interval [0, T]. We want to compute the probability of the event, E, defined by

mT < y, WT > x

for x > y and y < 0. If the event occurs then for some to we have that Wt(, is
equal to y as Brownian paths are continuous, and there is certainly some value of
t for which Wt is less than or equal to y. The Brownian motion therefore descends
at least as far as y and then comes back up to level x. Suppose that instead of
continuing the Brownian motion after time to, we restart it and replace it by its
value reflected in the level y. We thus define a second random process via

Wt - Wt for t < to,
(8.18)l2y-Wt for t>to.

The event WT > x becomes WT < 2y - x. The crucial point here is that the event
WT < 2y - x can only occur if mT < y also occurs, as otherwise Wt has been
above y at all times, and therefore above 2y - x which is less than y at all times.
Thus the event E for WT is equivalent to the much simpler event

WT <2y-x.

Of course, we need to know the distribution of WT for this to be of any use. In fact,
Wt is also a Brownian motion. Let r be the first time that Wt equals y. Then for
s > 0 we have

Wt+s - Wt = W, - Wz+s . (8.19)

The crucial issue now is therefore the distribution of Wt+s - W. If r were a con-
stant then there would be no issue, it would follow from the properties of Brownian
motion that the distribution is just a normal of mean 0 and variance s. But r is not
constant; it does however have the property of being a stopping time. Recall that
a stopping time is a random time such that the event that the time is before a time
t is determined by information available at time t. The time to reach a given level
is clearly such a time, as r < t is the statement that the minimum value of WS for
s < t is less than or equal to y.
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Fig. 8.4. The Vega of a down-and-out put option struck at 110 with barrier at 90
and one year to expiry.
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Fig. 8.5. A Brownian motion and its reflection in the level -1.

The key point is that as the event that the stopping time has occurred only relies
on information already available, the distribution of W,+S - W, will be totally
unaffected, since it is, by definition, independent of the behaviour of Wr for r < t.

In conclusion, we have

]P(WT > x, MT < y) = ]P(WT < 2y - x) (8.20)

fort' <0,x <y.
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The property that Brownian motion starts anew at stopping times is sometimes
called the strong Markov property.

8.5 Girsanov's theorem revisited

We have derived a formula for the joint law of minimum and terminal value for
a driftless Brownian motion. Unfortunately this is a not a great deal of help, as a
stock in a non-zero interest rate environment will have drift equal to the risk-free
rate and the log of the stock will have drift depending on the risk-free rate and
the volatility. Note that working with discounted prices will not help here, as the
barrier will depend upon the actual price, not the discounted price.

The standard tool for changing the drift of a Brownian motion is, of course,
Girsanov's theorem. Previously, we have treated Girsanov's theorem as a black
box and avoided looking at how the measure is changed. Here we will need to
explicitly understand the measure change in order to be able to compute its effect
on the joint law.

A measure change really consists of reweighting the probability of paths. We
therefore construct them by multiplying probabilities by a random variable. Let A
be an event in the filtration FT. Let IA be the random variable which is 1 if A
occurs and 0 otherwise. We can define a measure via

IP(A) = E(1AX) (8.21)

for some random variable X in the same filtration. What properties should X have?
Probabilities should be non-negative so X should be non-negative. The probability
of the global event should be 1. Taking A to be the entire sample space is the same
as taking 1 A to be identically 1, so we conclude that we must have

IE(X) = 1. (8.22)

Recall that an equivalent change of measure involves having the same sets of
probability 0 and 1. We will therefore need the probability of X being zero (in the
original measure) to be zero, as otherwise the set where it is zero will go from being
of positive probability to zero probability. We therefore assume that X is positive
everywhere in the following.

One trickiness is that we will actually need to use different random variables for
each filtration, Ft, as we cannot have a single simple random variable which is in
the filtration 1',. Let the random variable for Ft be Xt. For an event, A, in FS for
s < t, we will then have two different candidates for P(A), namely

IE(1AXS) and IE(1AXt).
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Clearly, we will want these two values to agree. Agreement is equivalent to the
condition that

E(lA(XS - Xt)) = 0 (8.23)

for any event A in F. As A is arbitrary, this equation really says that no matter
what value X. takes and no matter how it got there, the expected value of Xt at
time s should be equal to Xs. That is, we must require Xs to satisfy the martingale
condition

E°(XtlFF)=XS. (8.24)

We then have

IE(XtlA)=]E(X,lA)+IE((Xt -Xs)lA). (8.25)

As 1A E F, and Xt - X, is independent of .F5, we can rewrite the last term as

IE(Xt - XS)E(1A),

which will be equal to zero as the first factor is zero.
We conclude that our measure change must be given by a collection of positive

random variables Xt which form a martingale with respect to the filtration gener-
ated by the Brownian motion Wt. There is one such process that we have repeat-
edly studied in this book: geometric Brownian motion. We therefore take Xo = 1
and

dXt = vXtdWt, (8.26)

or equivalently,

Xt = e-2v2t+vWr (8.27)

We want to show that this really does give the right measure change. First, we
check that Wt is distributed correctly in the new measure. Recall that Wt is dis-
tributed as It-N(O, 1). We therefore have that

xt,
1 (

?(Wt < x) =P(N(0, 1) < xt-2) =
2rc

J
e_IzSzds.

(8.28)

-00

Changing variables, we obtain

x
2

P(Wt < x) =
2n t J

e- z ds. (8.29)

_00



212 Continuous barrier options

This is equivalent to saying that the density of Wt is

1 S2

e- 2r
2nt

We therefore have
x

1 S2 - 1 V2r+VSlP(Wt < x) = IE(1W,<xXr) = 2 t e-2r e 2 ds.f
-00

Collecting terms, we have

x
2(s-vr)

?(Wt < x) =
2 t J

e- v ds.
n

-00

A simple change of variables, r = s - vt, shows that this is equal to

(8.30)

(8.31)

?(Wt < x - Vt). (8.32)

We have shown that the probability that Wt < x in the new measure is equal to
the probability that Wt + vt is less than x in the old measure. In other words, the
process Wt is distributed as a Brownian motion with drift v in the new measure.

We are not yet finished. We have only shown that the distribution of Wt is correct;
we must also show that the marginal increments are correct.

We compute

lfD(Wt - WS < x) = 1E(1W,-Ws<xe 2v2t+vWt),

= (1Wr-WS<xg-ZV2(t-s)+v(Wr-WS)e Zv2s+vW5) (8.33)

As Wt - WS is independent of W, we can factorise the last term into a separate
term of expectation 1. This leaves us with

IID(Wt - Ws < x) = lE(1W,-Ws<xe-1 2V2(t-s)+v(Wr-WS)). (8.34)

As the distribution of Wt - WS is identical to that of Wt-S, we are now back in the
situation where s = 0 which we already covered above. We conclude that Wt - Ws
is distributed as a Brownian motion with drift v.

In conclusion, we have proven

Theorem 8.1 Let Wt be a Brownian motion; then we can define a new measure by

IP(A) = E+ (1Ae- 2 vet+vW t )

Under this new measure Wt is a Brownian motion with drift v.
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The term Xt which we used to change the probability weightings, is sometimes
called the Radon-Nikodym derivative. Note the analogue with ordinary integration,
a change of variables leads to an extra term which is the derivative of the variable
change. Note also that we can easily change back. We simply change the drift by
-v instead of by v. We change the drift by using the Brownian motion in the new
measure rather than the old. Thus if Wt was our original Brownian motion, then
Wt has drift v in the new measure, so the Brownian motion in the new measure is

Wt = Wt - Vt.

The Radon-Nikodym derivative for changing back is therefore

1
Z Z 2Wt-V t+ve-ZV t-vWt =t = e-ZV

e-1V2t+»W

(8.35)

(8.36)

that is, the reciprocal of the original derivative.
If we want to compute expectations under IID then we reweight by Xt also. This

is clear when computing the expectation of a piecewise constant function as then
we just have a linear sum of probabilities. The general case follows from approxi-
mating by piecewise constant functions.

8.6 The joint distribution of minimum and terminal value for a Brownian
motion with drift

In Section 8.4, we derived the joint law of the minimum and terminal value for
a Brownian motion without drift. In this section, we combine that result with our
results on Girsanov's theorem to derive the joint law for a Brownian motion with
drift.

Let Wt be a Brownian motion. Let Yt = aWt, and my be the minimum of Yt up
to time t. We then have for y < 0 and x > y that

?(Yt > x, m ' < y) = I1(Yt < 2y - x). (8.37)

This follows from the result for Brownian motion, (8.20), as the volatility term
makes no real difference.

We wish to prove an analogous result for a Brownian motion with drift. Let

Zt = vdt + 6dWt (8.38)

and mZ denotes its minimum up to time t. Our main result is

Theorem 8.2 If y < 0 and x > y, then

IED(Zt > x, mZ < y) = e2vy6-2IED(Zt < 2y - x + 2vt)

= e2vyv-2N (2y - x + Vt 1
.

0- "It
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Proof The volatility o- scales through everything and it is straightforward to reduce
to the case where or = 1. We therefore assume that or is equal to 1.

We use a change of measure to remove the drift of Zr. The change of measure is
given by

e-ZV2r-VW,

and to change back we take
e-1 vet+vzt

.

We denote expectation under the original measure by IE and under the new measure
by E. We have, by the results of the previous section, that

P(A) = IE(lA e-2 v2r+vZ,) (8.39)

for a n y event A E J J.
In particular, it holds for

A={Zr>x,mZ <y}. (8.40)

We therefore wish to compute

-2 V2r+vZtIE(1{Z,>x,mZ<y}e

with Zr a Brownian motion under this measure.
We use the reflection principle. As x > y, we have that if the Brownian motion,

Zr, touches the level y anywhere then the terminal distribution of 2y - Zr is equal
to that of Zr. As our indicator function is zero unless the level y is breached, our
expectation must be equal to

- 1 v2 ]E(r+v(2y-Z,)1{2y-Z,>x,mZ<y}e 2

However, 2y - Zr > x is equivalent to Zr < 2y - x and 2y - x is less than x,
which means that the condition on the minimum is now redundant. The expectation
is therefore equal to

IE (1 {Z, <2y-x} e
v2r+v(2y-Zt) 2yv -1 vet-vZ,

)= e IE(1{Z,<2y-x}e z

We wish to eliminate the exponential term in the expectation. We can regard it as
the Radon-Nikodym derivative of a Girsanov transformation which changes the
drift of Zr by -v. We use' to denote the corresponding measure.

So

IE(1{Z,<2y-x}e-2 VZr-vz,) = }Er(1{Z,<2y-x}) =11D'(Zt < 2y - x).

Under the new measure Zr has drift - v so the final term is equal to the probability
that a Brownian motion with drift -v is less than 2y - x. This is equal to the
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probability that a Brownian motion with drift v is less than 2y - x + 2vt and we
are done.

We can easily deduce the law of the minimum of a Brownian motion with drift. We
have that

IP (mZ < y) = IP(mZ < y, zr < y) + IP(mZ < y, Zr > y). (8.41)

The event that the minimum is less than y and the terminal value is less than y is
the same as the event that the terminal value is less than y. We therefore have

]P(mZ < y) = P(Zt < Y) + IP(Mt < y, Zt > y). (8.42)

We conclude

Corollary 8.1

P(mZ < Y) = N (
y - vtl + e2vya-2N (Y + vtl

or -Vi

or equivalently

P(m' > y) = N /vt - y\ e2vyo,2N (y + vt)

As

1P(Zt > x, mZ < y) + IP(Zt < x, mZ < Y) = IP(mZ < Y),

we also have

Corollary 8.2 For y < 0 and x > y,

P(Zt < x mZ <
y)

=
N (y - vtl + e2vyQ-2N (Y + vt

or -Vt 0' -Vt

-e2vyc-2N (2y - x + vtl

J
Similarly, we can prove

Corollary 8.3 For y < 0 and x > y,

IP(Zt > x, mZ > y) = N
Cvt - x - e2vyv-2N C2y - x + vtl

.

t 0-,It-

have concentrated on studying the distribution of the minimum of a Brow-We
nian motion which is relevant when studying down-and-out options. If we wish
price up-and-out options, we will need similar theorems for the maximum. Let MZ
denote the maximum over the interval [0, t]. Fortunately, the fact that the negative
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of a Brownian motion with drift is a Brownian motion with drift means that the law
for the maximum is easily deducible from the law for the minimum. We can write

M? = max(o- Wt + vt) = max(-(orWt + vt)) = - min(-Q WW - vt). (8.43)

As -Wt is a Brownian motion, we have, letting Z' denote a process with drift -v
and volatility a, that

IP(MZ < y) = IP(mZ' > -y),

= N 0't) - e2vya zN Q'
t

I .

A similar argument shows

P(Zr < Mz > y) = e2vya-2N (x - 2y - yt)
(8.44)

(T -,It-I\

which immediately implieswhich

< y) _ N Cx - vtl - e2vy°-2N
(x - 2y - vt)

(8.45)P(Zr < x MZt
or Vt 0-,It-

forx<yandy>0.

8.7 Pricing the continuous barrier by risk-neutral expectation

We pull together our results in order to derive formulas for the price of barrier
options. Suppose our call option is struck at K and is down-and-out with barrier at
H. We first suppose that H < K. The payoff is then

(ST - K)l{ST>K,n,T>H}

As in Section 6.13, we divide the payoff into two pieces:

ST 1{ST>K,rT>H} - K l{ST>K,nnT>H}.

To price the first piece, we take S as numeraire. Then, the value is

SOIE(1{ST>K,,, >H}) = SOP(ST > K, mT > H)

= SoP(log(ST) > log(K), m1Tgs > log(H)).

(8.46)

(8.47)

In this measure, log(ST) - log(So) is a Brownian motion with drift r + z . We can
therefore apply Corollary 8.3, with

x = log(K) - log(So) = - log(So/K),

y = log(H) - log(So) = log(H/So)
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and

to obtain

1
v = r + 2or 2

log
SON

H 1+2,Q-2

N

log(p2) +2(r+1-Q2)TSo (So

0-'1_T_

217

To price the second piece we take the continuous compounding money market
account as numeraire. The value of the second part is therefore -Ke-''T times the
probability that the pay-off occurs. In this measure, as usual, we have that log(s)
has drift

v=1"- or2
2

Applying Corollary 8.3 again, we obtain

log (K)+(r-2o-2)T

-Ke-''T N

H\-1+ara-2 log (o2) +(r - 1a2)T
+Ke-'T

(H)_
So

N

Pulling all this together, we have

Theorem 8.3 In a Black-Scholes world with interest rate r, and volatility Q, the
value of a down-and-out call option struck at K with barrier H < K is equal to

C

H\ 1+2ro 2 H -1+2ra 2

SON(d,) - Ke-'TN(d2) - J) SoN(hl) + Ke-TTN(h2)
So so

where

and

log (K)+(r+(-1)1
1Io.2)t

dj =
QIT

2

log (A07) + (r + (-1)J-11Q2)t
hj = Q
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Note that we can regard this value as the price of a vanilla call option minus a
correction term. The correction term arises from the decrease in value caused by
the barrier. This correction, whilst more complicated than the original option, has
a similar form. We will see in Section 10.6 that it can be interpreted as the price of
an option whose payoff is the reflection of the original payoff in the barrier.

Thus far, we have only looked at the case where the barrier is less than the strike.
When the barrier is above the strike, the condition of being in-the-money at expiry
is redundant, because if the minimum is above the barrier then the terminal value
is certainly above the barrier, and hence the strike. The option's payoff is therefore

1mT>H(ST - K).

As before, we can tackle this by dividing into pieces with coefficients S and K,
and then using the stock and money market account as numeraires respectively.
The value is therefore

Solps(1mT>H) - e-TTKIPB(1mT>H)'

where Ps is the probability measure with stock as numeraire and PB is the measure
with the money market as numeraire. Using Corollary 8.1, we have for the first
term, taking v = r + Za2, and x, y as above,

S0N log (H) + (r + Za2)T - So
H)1+2ra-2

N
log ( ) + (r + Za2)T

a\-
(so

QV,-T-

For the second term, we have v = r - Za2, and obtain

(lo()g + (r - ia2)T-Ke-'.TN

+Ke-rT
(H)-1+2rQ-2

N
\ log

( °) + (t
2a2)T

J .So a

In conclusion, we have

Theorem.8.4 In a Black-Scholes world with interest rate r, and volatility a, the
value of a down-and-out call option struck at K with barrier H > K is equal to

H i+2rv-2 H -i+2ra-2

SON(dl) - Ke-rTN(d2)
- (So) SON(hi) + (-) N(h2)
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where

and

log (x) (r + Td
or "IT

log (o) + (r + (-1)'-11 2)T
hj _

"IT
la

or
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We have only looked at the case of a down-and-out call option. The same tech-
niques can be applied with little difficulty to each of the other out options, i.e.
down-and-out put options, up-and-out call options and up-and-out put options. We
refer the reader to Haug, [66], or Wilmott, [139], for the formulas.

8.8 American digital options

There are many variants of the American digital option. One particular variant
can be regarded as a barrier option. We study an option which pays 1 at expiry if
at any point during the life of the option a given barrier has been breached. The
option is American in the sense that it is equivalent to the holder early exercising a
digital. As there is never any advantage to not exercising, the contract's American
features are innocuous; the maximum payoff is 1 so there is never any advantage
to not exercising in the money and exercise will occur at the instant the barrier is
breached. Note that the option pays 1 at expiry rather than at time of exercise which
is slightly different from a standard American option.

An American digital put struck at K therefore has payoff equal to

1niT<K.

Taking the money-market account as'numeraire the value is then just

e TP(n4 < K),

with the probability taken in the appropriate risk-neutral measure. This is similar
to the term which arose when pricing the strike part of a down-and-out call option
with barrier above the strike. We conclude that the price is

log (?) + (r - a2)T
-'T -'.Te - e N

6 "IT

+e-rT l
l+z'a 2

N
log ( o) + (r - 262)T(K)_A

digital call option could be handled similarly.
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8.9 Key points

In this chapter, have examined the pricing of a continuous barrier options using
both PDE methods and risk-neutral valuation.

An out option only pays off if a given barrier level is not breached.
An in option only pays off if a given barrier level is breached.
An in option plus an out option is equivalent to a vanilla so in option prices can
always be deduced from the vanilla and out option prices.
A knock-out option can have negative Vega.
Knock-out options satisfy the Black-Scholes equation with an additional bound-
ary condition at the barrier.
A key component of all approaches to pricing barrier options is to use reflection
in the barrier.
To price a down-and-out option by risk-neutral evaluation, we need the joint law
of the minimum and terminal value for a Brownian motion with drift.
We can use Girsanov's theorem to compute probabilities of events for Brownian
motions with drift.
To change measure, we multiply expectations by a random process which is a
positive martingale called the Radon-Nikodym derivative.
The measure change for changing the drift of a Brownian motion uses geometric
Brownian motion as Radon-Nikodym derivative.
The formula for a down-and-out call is most easily deduced by dividing the pay-
off into two pieces and using a different numeraire for each piece.
An American digital option is really just a barrier option.

8.10 Further reading

For lists of formulas for pricing barrier options see [66] or [139].
Bjork, [18], gives an alternative approach to deriving prices of barrier options.

His approach is related to that of Carr, Ellis & Gupta, [32], and put-call symmetry.
We discuss replication methods and put-call symmetry in Chapter 10.

8.11 Exercises

Exercise 8.1 If the price of a knock-in option plus the corresponding knock-out
option is not equal to the price of the corresponding vanilla, construct an arbitrage
portfolio.

Exercise 8.2 A stock follows geometric Brownian motion with time-dependent
volatility. How will the time-dependence affect the price of a down-and-out call?
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Distinguish the two cases where interest rates are zero and interest rates are posi-
tive. Suppose the knock-out is determined by the forward rate for the same expiry
instead of the spot price, what happens?

Exercise 8.3 The first passage time to a given level is the first time at which a
Brownian motion reaches that level. Use the distribution of the maximum of a
Brownian motion to derive the density of the first passage time.

Exercise 8.4 Explain why increasing volatility can decrease the price of a barrier
option.

Exercise 8.5 How will increasing volatility affect the price of an American digital
option?

Exercise 8.6 Sketch the price of a down-and-in put with barrier in-the-money as a
function of spot.

Exercise 8.7 Sketch the price of a down-and-out put with barrier out-of-the-money
as a function of spot.

Exercise 8.8 Check that the price of a down-and-out put satisfies the Black-Scholes
equation.

Exercise 8.9 Develop a pricing formula for an American digital put option.

Exercise 8.10 What we can say about the relative prices of American digital put
and European digital puts in general?

Exercise 8.11 Suppose an asset follows Brownian motion and there are no interest
rates. What can we say about the relative prices of out-of-the-money American and
European digital calls?

Exercise 8.12 If

dX, = QdW,

and X0 < L, give an expression in terms of the cumulative normal, X0, a and T
for

F max X, < L
r E [o, r]\
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Multi-look exotic options

9.1 Introduction

In this chapter, we look at the pricing of a derivative which depends upon the value
of the underlying not just at one time but rather at several times. We concentrate
on two examples, the Asian option and the discrete barrier option. To motivate the
Asian option, consider a company that has regular cashflows in a foreign currency.
At the end of each accounting year, it has been exposed to a certain amount of
currency risk arising from fluctuations in the exchange rate. However, the com-
pany does not care about the cashflow for individual months, instead it wants to
smooth the average cashflow for the year. The company therefore purchases a call
option on the average of the exchange rates rather than the final one. This option is
much cheaper than buying an option for each month as there is only one decision
involved, and is cheaper even than an option on the final exchange rate for the year
as the averaging effect reduces the overall volatility.

The discrete barrier option is a vanilla option that either knocks in or knocks out
on any one of a certain set of pre-specified dates. That is, unless spot is within a
certain range on one of the look-at dates, the option ceases to exist. A knock-in
option will only exist if a barrier is crossed on one of the dates while a knock-
out option will only exist if it is not. As discrete barrier options carry fewer rights
than vanilla options they will always be cheaper. For that reason they tend to be
popular; they can however be a false economy as their cheapness reflects their
reduced optionality. We shall concentrate on knock-out options here as we have
the relation

knock-in + knock-out = knockless = vanilla

The Asian option and the discrete barrier option can be placed in the same frame-
work. They depend upon the value of spot on a discrete set of times tl, ... t,,, and
at time t, they pay the sum

222
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for a fixed function, f. We shall call such an option a multi-look option. They are
often called path-dependent exotic options.

For the Asian call option struck at K, we have

1 "
fa(St...... max

n
Stj - K, 0 . (9.1)

j=1

For a down-and-out call option with barrier B and struck at K, we have

n-1
fD(Sti, ... , fl H(Stj - B) max(St,, - K, 0), (9.2)

j=1

where H is, as usual, the Heaviside function.
In Chapter 8, we studied continuous barrier options; the discrete barrier option

with frequent barrier dates is very similar in price to a continuous barrier option,
and each can be regarded as an approximation to the other. Indeed, the difficulty
of defining continuous sampling means that in practice most continuous barrier
options are really discrete barrier options with daily sampling.

9.2 Risk-neutral pricing and Monte Carlo simulation
for path-dependent options

We can apply the techniques of risk-neutral pricing to value these options. If we
pass to the risk-neutral measure then we immediately have that for any multi-look
option, C, the price is given by

C(0)=e-',TE(f(St,....
St,)), (9.3)

where the expectation is taken in the risk-neutral measure. Thus, if we are working
in a Black-Scholes world with constant volatility then the expectation is associated
to the process for the spot which, as usual, is given by

dS = rSdt + aSdW. (9.4)

T o compute the price, we need to compute the joint density function, c, of (St, , ... ,
St,,) in the risk-neutral measure and then compute the integral

f .f(St...... St)fi(Stl, . . . , St)dSt, ... dSt, (9.5)

Unfortunately, analytically evaluating the expectation is not so trivial, and, in
general, not possible. However, the risk-neutral evolution of the spot is easy to
write down. We simply use the solution of the stochastic differential equation for
geometric Brownian motion. If the initial value of S is So, then

ZSt, = Soe("-QZ)ti+v r1N(O
1), (9.6)
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and

Sti+1 = Stj e(, 2a2)(ti+i-tj)+v tj+1-tjN(0,1).
(9.7)

We can therefore easily simulate a path (St,, Stz..... St, ). This means that to eval-
uate (9.5) is straightforward by Monte Carlo simulation. One simply takes a vector
of n independent N(0, 1) draws, and uses (9.6) to simulate all the relevant spot
prices, and plugs them into f to get one realized price. We then average over many
paths. (Note that we have really carried out a change of variables here in order to
make the Gaussian draws the variables to simulate instead of the spot prices.)

One important issue with this sort of problem is dimensionality. As we are inte-
grating over n realizations of spot, we are really studying an n-dimensional prob-
lem. This has a number of implications. The first is that we have to be sure that
we draw n truly independent N(0, 1) variables each time. If we synthesize our
N(0, 1) variables from uniform random variables using the inverse cumulative nor-
mal function, this means that the vector of underlying uniforms must be drawn
from the uniform density on the hypercube [0, 1]11. If a single draw from the ran-
dom generator was truly random and all draws were truly independent, then this
would be easy. Just take n draws and we are done. However, a computer cannot pro-
duce random numbers: it simply produces numbers from a deterministic sequence
that look reasonably random. The problem then becomes that whilst many draws
of a single number are reasonably random, if one thinks in terms of a vector of
uniforms they may not be so random. In particular, there may be non-obvious rela-
tionships between succeeding draws from the number generator which may cause
all vectors of n draws to lie inside a fixed lower-dimensional space, and render
the Monte Carlo integration meaningless. The moral here is that one needs to be
careful in the choice of random number generator, and ensure that the one used
is certified to work for the dimensionality required, rather than relying on the one
provided by the computer language's implementation. It is important to realize that
for many languages including C, the definition of the random number generator
is left up to the writer of the compiler rather than being specified in the language
standard. This means that if you use the inbuilt generator you are placing yourself
at the mercy of your compiler writer.

The second issue arising from dimensionality is that it slows down convergence,
many more variables are contributing and it takes many more draws to fill out a
hypercube uniformly than to fill out the unit interval. In fact, whilst convergence is
slower in higher dimensions, it is still of order (9(n z ) but the constant in front of
the n-z may be higher.

This is the great advantage of Monte Carlo: other methods always get much
worse in higher dimensions. In dimension d, if we divide a unit hypercube into
little cubes of side length k, then the number of cubes required is (1 / k)d. The



9.3 Weak path dependence 225

amount of time required to carry out numerical integration by approximating over
little cubes will therefore increase much more rapidly.

A one-year option may well involve weekly look-at dates and thus be
52-dimensional so high dimensionality is a very real issue. Monte Carlo simula-
tion gives an effective method of carrying out the integration but it is still not a
very fast one. There are various methods of speeding up the convergence. We ex-
amined some of them in Section 7.5, and these will work as well for multi-time-step
evolutions as for single-step evolutions.

One nice feature of both the Asian option and discrete barrier option is that at
the penultimate (i.e. second last) look-at date, the option becomes a vanilla option
or is zero. For the Asian call option with strike K, after the penultimate date, the
option pay-off can be written as

n
max St - nK - E Sti )'0)

i.e. it has become a vanilla call with strike nK - i < St1. This means that
there is no need to simulate the final step, and the payoff at time t, can be re-
placed with the Black-Scholes value of the option at time ti_1, for the relevant
strike.

For the discrete barrier option, at the last barrier date either the option has
knocked out, in which case the option is valueless, or it cannot any longer knock
out in which case it has become a vanilla call option, and we can substitute the
Black-Scholes value for the final pay-off.

In the remainder of this chapter, we look at some alternative methods for pricing
these options and at some of the practicalities.

9.3 Weak path dependence

The discrete barrier option is different from the Asian option in that the path depen-
dence is fairly mild in that there are only two possible states before expiry: either
the option has knocked out and is valueless, or the option has not knocked out.
Precisely where it knocked out or how much it managed to avoid knocking out by
are totally irrelevant. For the Asian option, we need to know more about where the
spot was, which makes it the harder problem.

A consequence of this is that we can apply a backwards method such as trees
and PDEs to the discrete barrier option. From the PDE point of view, the option
must satisfy the Black-Scholes equation. Let the boundary level be B; we study
a down-and-out option stuck at K for concreteness. We must simply identify the
boundary conditions. The first is just that the value of the option at maturity is the
payoff of the option. The additional boundary conditions are that at each barrier
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date, tj, the value of the option is zero along the set [0, B]. This means that as a
function of (S, t) the boundary conditions are

C(S, t,,) = (S - K)+, (9.8)

C(S,tj)=0, for S<B, j=1,...,n-1. (9.9)

Thus to solve the PDE, we solve backwards from t, to this yields a function
fi_1 at time ti_1. Outside the barrier, the option is then worth fi_1 and zero oth-
erwise. Let g,,_1 = H(S - B) fi_1 be the value. We then solve back to time
with g,_1 as final condition at time and so on. Eventually we obtain the value
at time 0.

We could similarly apply tree methods. Solve back to time ti_1, set the values
at nodes outside the barrier to zero, solve back to time and so on. For both
the tree and numerical PDE method, the subtleties are in the details of the imple-
mentation. Whilst both methods are guaranteed to converge eventually, we must
be careful to implement them in such a way that the results obtained are stable. In
the case of a PDE finite difference method, this means adapting the grid points to
the locations of the barriers, and for a tree it means adapting the nodes to he on the
barrier.

In Section 10.3, we adapt these methods to give a method of pricing discrete
barriers by replication.

9.4 Path generation and dimensionality reduction

We have described a very simple and intuitive way of constructing the requisite
points of our Brownian path. We just take a random draw to describe the first
step, then a second to describe the next step and so on. Such a method of path
construction is said to be incremental. If we think in terms of drawing an entire
path at once rather than stepping along, then there is no necessity to determine
the points in order. If we are not to generate the points in order, then we need to
think about the relationships between the points. Clearly, the location of the second
point, if already known, will affect the distribution of the location of the first point.

Suppose Wt is a Brownian motion starting at 0, and we are interested in its values
at It,, . . . , t,}. There will be a certain amount of correlation between Wt; and Wtk.
If j < k, we can write

E(Wt;Wtk)=E(Wt;(Wtk -Wt;))+IE(Wr ). (9.10)

The first of these terms is zero by the independence of increments for Brownian
motion, and the second is tj, by the definition of Brownian motion. We thus have
that

E(Wti Wtk) = min(tj, tk), (9.11)

for any j and k.
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The objective in path generation is therefore to generate a vector of normal vari-
ables X 1, . . . , X, such that the covariance of X j and Xk is the minimum of ti and
tk. Suppose we draw a set of independent N(0, 1) variables, Z1, . . . , Z,,, and try
to write the random variables X j as a linear combination of Z. We know this is
possible as this is essentially what happens in incremental path generation where

X1 = tIZ1, (9.12)

and

X j+1 = X j + /t j+1 - t3 Z3 . (9.13)

We want to find other possible methods. Thus suppose we write

Xj ajkZk, (9.14)
k=1

or equivalently

X = AZ, (9.15)

where X and Z are now vectors, and A is an n x n matrix. The covariance of X;
and X3 is then

E aika jk. (9.16)
k

In other words, the covariance matrix is AAT , where AT is the transpose of A. Our
problem is therefore to find the solutions of the matrix equation

AAT = C (9.17)

where Cij = min(ti, t1). Any covariance matrix has certain properties. It is always
symmetric and positive semi-definite. It will in general be strictly positive definite.
A matrix A satisfying (9.17) is said to be a pseudo-square root of C.

There will always be many pseudo-square roots, and there are a number of al-
gorithms for generating them. In fact, there is always a unique symmetric positive-
definite square root, but this is rarely the best choice for performing Monte Carlo
simulations. There are generally two popular choices, one of which is easy to com-
pute, whilst the second has other desirable properties (see Appendix Q.

If we restrict the class of A we wish to use to the lower triangular matrices,
then we get a unique solution which is easy to compute. The process of find-
ing this lower triangular matrix is called Cholesky decomposition. If we solve
for the elements of A row by row, and column by column in each row, then we
find that we have precisely one undetermined element at each step which is easy
to compute. Note that the fact that the choice of element is forced at each stage
means that the Cholesky decomposition is unique. If A is positive semi-definite
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rather than positive-definite then the decomposition will not be unique but will still
exist.

In particular, we find that
2

all = c11,

implying that all = cl1 From the second row, we obtain

a21 all = c21, a21 + a22 = c22,

which imply that

(9.18)

(9.19)

a21 =
X21

, a22 = c22 - a21. (9.20)
all

We can continue similarly for the remaining rows.
In fact for Brownian motion, Cholesky decomposition is nothing new for us:

inspecting our incremental path generation, we see that it is equivalent to multiply-
ing by a lower triangular matrix and thus must be the Cholesky decomposition by
uniqueness. In particular, if we take time points which are 1 apart then incremental
path generation is equivalent to multiplying the random draws by a matrix which
is all l s on and below the diagonal.

For example,

1 1 1 1 0 0 1 1 1

1 2 2= 1 1 0 0 1 1. (9.21)
1 2 3 1 1 1 0 0 1

What other square roots can we find? A simple approach is to relabel the random
variables, X j. If we let

Yk = X,(k), (9.22)

with or a permutation of 1, . . . , n then the covariance matrix, C', of the variables
Yk can be obtained by reordering C. If we now take the Cholesky decomposition,
B, of C', and use that to generate the variables Yj, then permuting back it must also
generate the variables X 1. In order words, if we permute the rows of B back, then
we obtain a pseudo-square root of C.

Another approach is to use spectral theory. If we recall the spectral theory of
symmetric matrices from elementary linear algebra, then we have that there exists.
a basis of eigenvectors, e1, . . . , e such that

Cep = )1ej, (9.23)

for some ?j > 0, and the vectors ej are orthonormal. If we let P be the matrix
with the jth column equal to ej, then as the vectors ej are orthonormal we have
that

ppT = pTp = I, (9.24)
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and we can write

C =PDPT , (9.25)

where D is a diagonal matrix with the numbers X j on the diagonal. This gives us
two possible pseudo-square roots. Let D1/2 be the diagonal matrix with diagonal
elements Clearly, we have that D1/2 is the square root of D. It therefore
follows that

PD1I2(PD1/2)T = PDPT = C. (9.26)

This means that PD1/2 is a pseudo-square root for C. Similarly, PD1/2PT is also a
pseudo-square root as pTp = I.

If we now order the eigenvalues X j so that) j > ,l j+l. We can regard each eigen-
vector as being a different component of the Brownian motion, then the first eigen-
vector expresses the largest component. Each successive eigenvalue represents the
weighting of higher frequency vibrations. If we take the pseudo-square-root to be
of the form PD 1/2, the form of our map from the independent draws, Z j, to the
correlated variates will be of the form

Z H 'k1/2Zjej.
j=1

(9.27)

One notices two things about the decomposition into the principal components.
The first is that the first eigenvalue is much bigger than the others and the con-
tribution of the latter eigenvalues rapidly decays. The second is that the higher
components all consist of lots of up and down movements. These two things mean
that we can expect most of the value of an Asian option to come from the first few
components. See Figure 9.1. The upshot of this is that instead of using PD1/2 as
our pseudo-square root, we can use a truncated map,

k

Z H a (9.28)
j=1

with k being small, to reduce the dimensionality of our problem. We have intro-
duced the scaling factor a in order retain the total overall variance, and it would be
chosen to make

k 17

a2 Y, Xk = E Xn- (9.29)
j=1 j=1

Having reduced the dimensionality we can expect faster convergence but at the
price of some loss of accuracy.
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Spectral
Cholesky

1 2 3 4 5 6 7 8 9 10

Fig. 9.1. The sum of the squares of the first j columns for the spectral pseudo-
square root and the Cholesky decomposition of the covariance matrix of Brownian
motion for times 1 to 10.

We remark that another advantage of such a method of path generation is that
when using low-discrepancy numbers one finds that the lower dimensions achieve
greater uniformity of coverage. For optimal convergence, we therefore need to have
the maximum possible weight placed upon the low dimensions, and this analysis
into components does precisely that. This allows more rapid convergence even if
we do not truncate the number of components.

Spectral decomposition can be time consuming. However, almost as rapid con-
vergence can be obtained by using a pseudo-square root obtained from reordering
if we reorder in an optimal fashion. In particular, if we wish to simulate a path from
Brownian motion, then we can proceed by placing the last point first, as that is the
point of greatest variation. We then fill in each succeeding point by placing it in
the largest empty gap. This procedure is called the Brownian bridge and results in
a substantial increase in the rate of convergence for low-discrepancy-based simu-
lations at little computational cost. It is equivalent to taking the covariance matrix
for Brownian motion, rearranging the order of the rows and columns, and then per-
forming a Cholesky decomposition. Whilst the computational burden in computing
the spectral square root is not great when the covariance matrices are small, it can
become prohibitive when large numbers of time steps are involved and then the
Brownian bridge is much more appropriate. The fact that each point in the path is
determined by the location of its neighbours and a random number means that it is
not necessary to carry out a matrix multiplication for each path, which also speeds
things up. See Figure 9.2 for a comparison of convergence speeds. (See [79] for
further discussion.)
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Fig. 9.2. The convergence of a Monte Carlo simulation for the pricing of a
twenty-step Asian option using random numbers, low-discrepancy numbers and
a Brownian bridge combined with low-discrepancy numbers.

9.5 Moment matching

Another approach to pricing Asians is to try and simulate the average variable
directly. As an average of random variables, it is itself a random variable so we can
just simulate that random variable directly. We can then either use Monte Carlo,
or if the distribution of the random variable is benign, an analytic formula can be
developed.

The main problem with this approach is that the average of a set of log-normal
variables does not have an easily computable distribution. We can therefore try to
approximate it by a similar distribution. One standard method of carrying out such
an approximation is moment matching. Recall that the moments of a distribution
are the expectations

E(Xk), k=1,...,oo.

Under certain technical conditions, a distribution is determined by its moments.
This means that we can approximate a distribution by matching its first few
moments. Typically, one works with a family of distributions depending on some
parameters. The parameters are then chosen to match the moments of the target
distribution.

Of course, this all begs the question of how to compute the moments. If the
underlying is log-normally distributed with volatility a and interest-rate r, and we
wish to average over the times T1, ... , T,,, then the spot at time T j is distributed as

X j = S0eb'-z°2)Ti+a TjN(0,1) (9.30)
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We want the moments of
1 li

X=-1Xj.
n

j=1

The first moment is just the expectation and easy to compute, we have

1 /7 1 li

E(X) = n 1] ]E(X j) =
n

Y S0e'TJ.
j=1 j=1

For the second moment, we have

E (X2) =
1

- E)E(X jXk)-
n j k=1

If j < k, we can write the individual expectations as the expectation of

e(''-2Q2)(Tk-TJ)+v Tk7TJN(0,1)X
J

(9.31)

(9.32)

The two terms in the product are independent since the increments of a Brownian
motion are independent. The expectation of the product is therefore the product of
the expectations. Recalling that

IE(eaN(0°1)) = e2a2 (9.33)

we have that the expectation is

SOZer(Tk -TJ)+2rTJ+a2TJ

Summing over all the possible j, k terms we can compute the second moment. A
similar argument works for the higher moments. We can thus compute as many
moments of X as we choose.

Having done so, we then match the moments with our favourite family of distri-
butions. One popular choice for matching the first two moments is the log-normal
distribution, [136]. If

V2Y = µe-Z+vN(0,1)

then the mean is p. and, arguing as above, the second moment is µ2e"2. We can thug
easily solve for p. and v to match the first two moments. As Y is log-normally dis-
tributed a variation of the Black-Scholes formula is easily developed for
E((Y - K)+) which yields a price for the option.

We may feel that matching the first two moments of X is not sufficiently accu-
rate (and it probably is not). To match three moments, we therefore need a third
parameter. One simple choice is to displace the log-normal distribution by adding
a constant parameter a. Our new random variable is therefore W = a + Y. As a
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is constant the moments of W are easily computed in terms of moments of Y. We
also have

E((W - K)+) = E ((Y - (K - a))+), (9.35)

so the pricing formula for W is just the pricing formula for Y with K displaced.
One can match any number of moments one likes by picking sufficiently compli-

cated families of distributions. Of course, at some point the amount of time spent
computing and matching moments will become prohibitive, and then it will be eas-
ier to use other techniques. The main disadvantage of moment matching is that
there is no natural concept of convergence so one is not sure how good the approx-
imation is. On the other hand, it can be faster than Monte Carlo techniques which
makes it usable for trading in a way that Monte Carlo is not.

9.6 Trees, PDEs and Asian options

Between sampling dates, the price of an Asian option will, like any other option,
satisfy the Black-Scholes equation. To see this, just compute the drift of the op-
tion price divided by the riskless bond. This drift must be zero as the ratio is a
martingale.

The trickiness is that the option's value will depend not just on the current value
of spot but also on the value of spot on the previous sampling dates. Suppose that
the sampling dates are ti < t2 < < t,,, and tj < t < tj+1. When the first
j sampling dates have passed, we can rewrite the payoff of the Asian call option
struck at K as

1 t
1max - St,- K --±Stk 0 .

n
1=.1+1

72
k=1

The second sum here is determined at time t whereas the first is not. If we want to
apply backwards methods here then we need to know the value of the second sum
at time t but in a backwards method it is not known. This is why Monte Carlo is
the natural approach to pricing Asian options.

A solution to this problem is simply to solve for all possible values of the second
sum! That is, we develop a one-dimensional family of solutions indexed by an
auxiliary variable aj which expresses the running average.

We therefore proceed as follows. At time t, the payoff is

max n , - (K - a,,), 0

and we solve back to time ti_1 with this payoff. In fact, we can just use the Black-
Scholes formula as the payoff is equivalent to a call option struck at n(K -
with expiry t - ti_1 and notional 1/n.
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This gives us a one-dimensional family of solutions at time tn_I indexed by a,,.
Our definition of an implies that part of its value comes from Sn_1, so as we pass
over tn_1 we have to take this dependence into account. We now develop a second
family of solutions in the domain It., -2, ti_1], indexed by a new variable

1 n-2
an-1= EStin-1

j=1

We need to join this new family naturally onto the preceding one. As an is the
average of the first n - 1 terms and a72-1 is the average of the first n - 2 terms, we
have the condition that

( n-1 1
C(S, to-1-, C S, to-1+,

S-)
, (9.36)

n n

where C is the value of the option. We can now numerically solve back to the
previous time step, tn_2, using trees or PDEs, and repeat the algorithm all the way
back to time zero. In Section 10.4, we adapt this technique to construct a trading
strategy which replicates Asian options.

The key to this argument was that although the value of the Asian option was
path dependent, the effect of the path dependency was such that one only needed
a one-dimensional set of data to express its effect. This allowed the backwards
pricing by simultaneously solving for all possible values of this piece of data.

One could therefore price any option for which the path dependency can be
expressed by a one-dimensional auxiliary quantity in a similar fashion. More gen-
erally, one could use two (or more) auxiliary variables if the dependency could not
be reduced to one dimension.

9.7 Practical issues in pricing multi-look options

We have developed various methods for pricing Asian options and discrete barrier
options in a perfect Black-Scholes world. Unfortunately, we will never want to
price them in a perfect Black-Scholes world. The reason is that we want to develop
prices which are compatible with the prices of the vanilla options which we use to
hedge them. Even if we ignore smile effects, which is often done, we find that the
volatility is not a constant function. In particular, if we observe the prices of at-the-
money call options, then for each of the look-at dates we get a different value for
volatility. Let the value of volatility for the interval I3 = [0, t.j ] be aj.

We need a volatility function, a (t), such that the effective volatility over each
interval Ij is a3. Recall from Section 6.11 that it is the root-mean-square volatility
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that matters in Black-Scholes pricing. We therefore need a (t) to be such that

f U(S)Zds = 6 t1

0

(9.37)

for all j. This can be achieved by letting a (t) be piecewise constant, and on the
interval [tj, t1+1] giving it the value

l `2 2tj
tj+l - tj +ltj+l - a1),

and up to time tl, the value al. This breaks down if for any j,

a ti > DJ+ltl+l

However, at that point (9.37) is definitely insolvable which means that either we
abandon the Black-Scholes model, or conclude that there is an arbitrage to be had
by selling options with t1 expiry and buying ones with expiry t.j+l

Pricing a multi-look option with time-dependent volatility is, in fact, little harder
than with constant volatility. One simply has to use a different value of or over
each time step [ti, t.j+l] but otherwise everything is the same. The ideas are all the
same, it is just that the formulas are slightly more delicate. Note also that the only
way a (t) manifests itself is as the integral of its square over an interval [t1, 0+11-
It therefore does not matter whether we use a smoothly time-varying volatility
function or a piecewise constant one as long as (9.37) is satisfied.

We similarly need to address issues arising from the non-constancy of the con-
tinuously compounding interest rate r. In the market, we can observe discount
factors, P1, for each of the times ti' and infer from them a different r1 given by
Pi = e_ninJ. However, as with volatility, this problem can be removed by using a
piecewise constant r, and indeed it will be necessary to do so. To carry out a Monte
Carlo simulation we therefore infer values of or and r which are constant across
each interval [ti, t.j+1] and use them stepwise.

Having placed our multi-look option in the same framework as the traded vanilla
options, we can now hedge the former with the latter. The price will be sensitive
to the values of the volatilities over the different time steps. We will wish to hedge
these sensitivities; we can do so by hedging with vanilla call options. We use a
vanilla call option for each maturity in such a way that the Asian option minus the
sum of the call options has zero sensitivity to the volatility over each time segment.
That is, the derivative of the price with respect to each volatility is zero. We then
Delta hedge to make our portfolio instantaneously neutral to price changes in the
underlying.
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Note that as well as placing the multi-look option in the same framework as the
vanillas for hedging, matching the volatilities gives us the market's best estimate
of the volatility of the underlying over the life of the option.

9.8 Greeks of multi-look options

For hedging purposes we will need to compute the Greeks of the multi-look option.
In this section, we look at how the Monte Carlo methods we discussed in Section
7.5 go over to the multi-period case. As before, to run two Monte Carlo simu-
lations with different variates with slightly different parameter values is a recipe
for disaster - the errors in the convergence are magnified and one simply obtains
noise.

As before, bumping the starting parameter for example spot by a small amount
and recomputing using the same variates is reasonably effective in a lot of cases
but not all. As in the one-dimensional case, the breakdown occurs precisely when
the pathwise method has problems.

9.8.1 Pathwise method

We rederive the pathwise method in this setting. We derive it in a more general
setting in Black-Scholes as it can be useful in the contexts of the other models we
discuss in Chapters 15, 16 and 17.

Thus suppose our derivative pays f (Si, S2, ... , S,) at time T where Sj is the
value of spot at time t3. The value of the derivative is then, of course, equal to

e-, TE(f (Si, S2, ... ,
S")),

(9.38)

with the expectation taken in the risk-neutral measure. We must differentiate (9.38)
and the various methods really come down to different ways of writing the expec-
tation.

In the Black-Scholes world, we have

Sj+l=Sje"(tj+i-tj)+a tj+1-tjZj,

with Z j independent N(0, 1) draws. It follows that we can write

(9.39)

Sj =SoXj, (9.40)

where X j is a random variable independent of So.
The derivative price is therefore equal to

T
e

rIE(.f(SOX,, SOX2, ... , SOX,,))-
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Note that the random variables are not independent of each other. If we now differ-
entiate with respect to So, we obtain

e-,T (ExJ(sOxl
, SoX2, ... , SoXn) .

As Xj = S1 /So, we have the expression

aD =e_"TIE Si of
(Sl,...,Sn)

(1:a so so as Sj
(9.41)

This is the multi-look pathwise method. Note that the derivation only depended on
(9.40).

For the second derivative, we can repeat the argument to get

a2D
= e ,TE S;Si a2f

o- s2oasJ as
(Sl, ... , s

as2 i,j=l ,

(9.42)

As in the one-dimensional case, we are essentially proceeding by perturbing So
and we need the derivatives of f to exist; when these derivatives do not exist will
be precisely when the finite difference method is not effective. Note, however, that
just as in the one-dimensional case, one can make the pathwise method work by
interpreting the derivatives in a distributional sense.

9.8.2 Likelihood ratio method

If we write our expectation in an alternate way and then differentiate, we obtain a
different expression. Let

(D (Sl, ... , a),

be the joint density of the spot variables, with a any parameter such as So or volatil-
ity, or indeed any other parameter we might want the Greek for. We can write the
derivative with respect to aj as

e_rT ac(Sl, ... , Sn; a)
f f (St, S2, ... ,

as
dS1 ... dS,,.

r

Dividing and multiplying by (D, we obtain

-,T r a log
e f f (S) as (S; a) (D (S; a)dS,

where S = (Si, ... , Sn). Rewriting as an expectation, have

,.Te- ]E
(f(S)alob(S))

as . (9.43)
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The main advantages of the likelihood ratio method are that it is quite general,
and that the weighting factor is independent of the choice of f. This means that
we can build an engine for pricing derivatives that computes the Greeks simultane-
ously, with the only input required being the pay-off f. For the pathwise method,
we would have to compute the derivatives analytically, and when they exist only in
a distributional sense we would have to adjust the integration appropriately.

The disadvantage of the likelihood ratio method is that it can be fiddly to com-
pute the density and its derivatives. It can also be slow to converge close to expiry.

We can easily extend the method to cope with higher derivatives. If we take a
second derivative with respect to aj, we obtain

(a2e-1 T
.f (S)

aa2
(log (D) +

a alog

a.
J J 1')

OdS,

and thus the second derivative can be written as

e-iTE
.f(S) ((1ogc)+

()2))
J

9.8.3 Central method

We have derived the pathwise and likelihood ratio method, by making choices for
the changes of variables and then differentiating. What other choices can we make?
Suppose we make our random variables a Brownian motion starting at log So, and
observe the value of the Brownian motion at the times ti, ... , t,,. Let W1 denote
the Brownian motion at time tj, and let 0 denote their joint density function. Then
the derivative is equal to

e"T f f (eAt1+aW1 .... , log So)dWi...

with µ = r - d. We can now argue as we did as for the likelihood ratio method to
obtain

e-'.T J ,f (eAt1+aW1 ... ,
a so

(log O(W))O(W )dWi ... dW,, ,

where W = (WI, W2, ... , This expression is very similar to the one we ob-
tained for the likelihood ratio method. The main advantage lies in the fact that
the density 0 is much simpler than (D. One also finds greater stability in certain
circumstances.
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9.9 Key points

We have looked at two path-dependent exotic options in detail as they exemplify
most of the issues involved in general.

A path-dependent or multi-look exotic option depends on the value of spot at
many times.
A discrete barrier option pays off according to whether a certain barrier is brea-
ched on a finite set of dates.
An arithmetic Asian option pays off according to the value of the average of spot
across a number of days.
Path-dependent exotic options can be easily priced by Monte Carlo.
Stock price paths can be generated by many different techniques.
It is much easier to price a barrier option than a general exotic option by back-
wards methods as it can only be in two possible states.
Asian options can be priced by backwards method by solving for all possible
values of an auxiliary variable.
A rapid method for pricing Asian options is to approximate the distribution of
the average via moment matching.
When pricing exotic options it is not enough to use a constant volatility and
interest rate as the vanilla options used for hedging will not be priced correctly.
The vanilla option prices gives us the market's best guess of the volatility over
their lives.

9.10 Further reading

Chapter 9 of [29] has a good discussion of Monte Carlo techniques for security
pricing including the estimation of Greeks.

Discussion of the rate of convergence as a function of dimension for various
methods of numerical integration can be found in [52], along with lots of helpful
discussion of the application of Monte Carlo to various option pricing problems.

The pathwise and likelihood ratio methods for computing Greeks by Monte
Carlo were introduced by Broadie & Glasserman, [26]. An alternative approach re-
lying on Malliavin calculus was introduced by Fournie, Lasry, Lebuchoux,
Lions & Touzi, [54]. Their approach appears to yield similar results to the cen-
tral method discussed here.

A lot of work has been done on the problem of rapidly pricing Asian options. A
good survey of the state of the art in 1997 is given in [38]. Of particular interest is
the method of Curran, [43, 44], which depends upon conditioning on the geometric
mean and is highly effective.

For further discussion of the PDE method see [139], [140]. Early work on
the topic was done by Bergman, [16]. See also the book by Ingersoll, [77].
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Benhamou & Duguet have shown that the PDE method for pricing arithmetic Asian
options can be greatly speeded up by using homogeneity ideas, see [15]. Their ideas
extend results from the continuously-sampled case due to Rogers & Shi, [130].

In the continuously sampled case, Geman & Yor have shown that it is possible
to develop a formula for the Laplace transform of the solution, [64].

9.11 Exercises

Exercise 9.1 How will the price of a discrete barrier option compare to the price of
a vanilla option and the price of a continuous barrier option?

Exercise 9.2 How will the price of an Asian option compare to the price of a vanilla
option with the same strike and final maturity?

Exercise 9.3 A max option pays the maximum value of the stock on a number of
dates T1, ... , T at time T . Describe how to price this option using PDE techniques
and Monte Carlo.

Exercise 9.4 Express the moments of a displaced log-normal distribution in terms
of the moments of the log-normal one.

Exercise 9.5 Show that the auxiliary variable PDE method can be used to price a
discrete barrier option.

Exercise 9.6 Discuss how a geometric mean Asian option would be priced by the
auxiliary variable method and by Monte Carlo. The geometric mean Asian pays
the positive part of the geometric mean minus the strike. (The geometric mean is
the exponential of the average of the logs.) Develop an analytic price. How will the
price of a geometric Asian option compare to the price of an ordinary Asian?

Exercise 9.7 Suppose an option pays the maximum value of spot minus the mini-
mum value of spot across a number of dates. Discuss how to price this option using
PDEs and Monte Carlo.

Exercise 9.8 Show that if the prices of discount bonds are a decreasing function of
time to maturity then the implied continuously-compounding rates across periods
[t1, tj+i] are always non-negative.

Exercise 9.9 Express

E((X + a)4)

in terms of the moments of X.
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Exercise 9.10 Let St, Br be as in the Black-Scholes model with St non-dividend
paying. An option P allows the holder to sell the stock for K at any time after St
has been above L up to an expiry time T. Describe an efficient numerical algorithm
that could be used to price this option. What if the option were a call?

Exercise 9.11 A compound option gives the right to buy (or sell) an option at a
pre-specified date at a pre-specified price. In the Black-Scholes model for a non-
dividend paying stock, describe the most efficient methodology for developing a
numerical price for each of the following:

a call on a European call option;
a call on an American call option;
a call on a European put option;
a call on an American put option.

Given these, explain how to get the following quickly:

a put on a European call option;
a put on an American call option;
a put on a European put option;
a put on an American put option.

Exercise 9.12 Let St, Br be as in the Black-Scholes model. Let

or = 10%,

t- = 5%,

so 100.

An Asian option call option is struck at 100 with sampling dates 0.4 and 1. Given
the following stream of pairs of N(0, 1) variables, compute the price and standard
error for a ten-sample Monte Carlo estimate of the price.

-0.54 1.17

0.03 0.31

0.73 -1.07
-0.97 0.84
0.66 -0.01
0.64 -1.31

-0.93 0.72

0.68 0.23

-0.76 -1.19
0.46 -0.80

Describe four ways to reduce the variance of your simulation without using any
more random draws. Which of these can be combined?
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Exercise 9.13 Let Sr, Br be as in the Black-Scholes model. Let

Q = 20%,

r=10%,
SO 1.

An Asian option put option is struck at 0.9 with sampling dates 1 and 2. Given
the following stream of pairs of N(0, 1) variables, compute the price and standard
error for a ten-sample Monte Carlo estimate of the price.

-0.54 1.17

0.03 0.31

0.73 -1.07
-0.97 0.84
0.66 -0.01
0.64 -1.31

-0.93 0.72
0.68 0.23

-0.76 -1.19
0.46 -0.80

Now do the pricing with anti-thetic sampling.

Exercise 9.14 Find a pseudo-root of

9 3 0

3 5 2

0 2 2

Exercise 9.15 Find a pseudo-root of

4 2 2

12 2 2

2 2 3
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Static replication

10.1 Introduction

The Black-Scholes no-arbitrage argument is an example of dynamic replication;
by continuously trading in the underlying and riskless bonds, we can precisely
replicate a vanilla option's payoff. The cost of setting up such a replicating portfolio
is then the unique arbitrage-free price of the option.

If we do not allow continuous trading in the underlying, but instead restrict our-
selves to portfolios in the underlying and zero-coupon bonds set up today, the only
derivative we can precisely replicate is the forward contract which does not get us
very far. However, if our principal interest is the pricing of exotic options, we can
allow ourselves to hedge with vanilla options including forwards, calls, puts and
digitals. Given this ability, we can do much better. We do not really need digitals
as we can always replicate them arbitrarily well with calls or puts; however it will
be convenient to include them.

We have already seen in Chapter 7 that any derivative paying off a function of
the underlying at a single fixed-time'horizon can be approximated arbitrarily well
by calls and puts with the same payoff time. This is an example of strong static
replication. The only real assumption here is the existence of a liquid market in
calls and puts today. We require no assumptions on the process of the underlying,
nor on the values of calls and puts at future times.

Unfortunately, very few options can be strong-statically-replicated. In this chap-
ter, we therefore concentrate on various versions of weak static replication which
means that we are allowed a (reasonably small) finite number of trades, and in
particular, we are allowed to sell vanilla options before their expiry.

If we are to replicate using a trading strategy involving selling options before
their expiry, we have to make assumptions about how their values change.

243
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Definition 10.1 We shall say a model admits a deterministic future smile if the
value of a call option struck at K and expiry T is a known function of the current
time, t, and spot, S.

Thus we are assuming that we have a function

F(S, K, t, T)

which tells us the future price of any call option. Note that we then get the put
prices for free by put-call parity. Whilst this assumption appears quite strong, it is
certainly implied by the Black-Scholes model in which we have

F(S, K, t, T) = BS(S, K, T - t, cr). (10.1)

The deterministic future smile assumption also holds for the jump-diffusion model
and the Variance Gamma model studied in Chapters 15 and 17. However, it does
not hold for stochastic volatility models. It is effectively equivalent to using a model
in which the only state variable is spot. Once we add in a second stochastic quantity
such as volatility the assumption breaks down.

The importance of this chapter has several facets. The first is the demonstration
that the assumption of the future smile dynamics enforces unique prices for a large
class of exotic options. The second facet is that as well as being of theoretical
interest, the approaches presented here are effective numerical methods which are
often the optimal method of pricing. The third facet is that we can gain additional
hedging methods. If we can create a weak static replication then our risk is solely
that the function F may change; we are no longer exposed to the behaviour of the
underlying.

Of course, F will change. However, these methods allow us to assess how
changes affect the prices of options, and to see to what extent we are exposed
to model risk. By model risk, I mean the risk coming from the fact that our model
for price movements is imperfect.

10.2 Continuous barrier options

The down-and-out put option

Consider a down-and-out put option struck at K with barrier at B, and expiry at
T. If spot ever passes below B the option ceases to exist. We want to replicate this
option with vanilla options.

The final payoff is (K - S)+ if S is greater than or equal to B and zero otherwise.
It will also be zero if spot has ever passed below the barrier. We first replicate the
final payoff. This is easy: we just use the techniques of Chapter 7. We take a put
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option struck at K with expiry T. The pay-off of the put is wrong by

(K - S)H(B - S),

where H is the Heaviside function. If we now short a digital put struck at B of
notional K - B, the error in our final pay-off is

(B - S)+,

which is the pay-off of a put option struck at B. Shorting this put, we have repli-
cated the final pay-off.

Our replicating portfolio now dominates the down-and-out put option. If the spot
finishes below B they agree and if spot never goes below B they agree. However,
if spot touches B and then goes back up the replicating portfolio pays off and the
down-and-out put does not.

As the down-and-out put option ceases to exist when the spot touches B, sup-
pose we dissolve our replicating portfolio immediately this happens. We then re-
ceive a sum of cash. It is this cash that reflects the amount by which we are
over-replicating. The deterministic future smile assumption guarantees that this
sum is precomputable and is purely a function of the hitting time (i.e. the time it
reaches B.)

If we make the assumption that the movements of spot are continuous, then we
can be sure that we can actually dissolve the portfolio at B, whereas if we allow
jumps, the spot could jump from above B to below it in one go. For the rest of this
section, we therefore assume that the spot moves continuously.

We now want to construct a portfolio which kills the value of the difference port-
folio along the barrier and has zero value at the final pay-off time. Our assumption
of continuity and the fact we dissolve the portfolio on touching the barrier means
that we do not have any constraints on the portfolio's value below the barrier.

Rather than trying to pin down the portfolio's value at every time on the barrier,
we divide time into N steps, tj, with tN = T. We now successively kill the differ-
ence portfolio's value at the points (B, tj) with j counting downwards. If we add a
put option struck at B, and expiring at time tN to our portfolio, then the final pay-
off above B is not affected, but the put option will have non-zero value along the
barrier B, so there will be some notional which makes it kill the value, precisely at
(B, tN_i). In fact, the notional will just be the negative of the ratio of the value of
the difference portfolio to the value of the put at that point.

To kill the value at (B, tN_2), we now do the same thing again but use an option
struck at B expiring at time tN_1 to ensure that the portfolio value at (B, tN_1) is
not affected. We can now work all the way back to j = 0, and we have a portfolio
which replicates the final payoff above B, and is zero at all the points (B, tj). This
last fact means that we can expect its value to be small for any (B, t).
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The difference in price between the replicating portfolio and the down-and-out
put must be less than the maximum value of the replicating portfolio on the line
(B, t) (actually the discounted maximum value) or we have an arbitrage. As N
goes to infinity this difference will go to zero, and the replicating portfolio value
will converge to the price of the down-and-out put.

In fact, the convergence is reasonably rapid and an accurate price can be quickly
obtained. Note that since the portfolio replicates the option without any trading in
an area around the initial values of spot and time, the time and spot Greeks of the
replicating portfolio must equal those of the down-and-out put. We therefore get
the Delta, Gamma and the Theta of the down-and-out put for free. Note that this
argument does not extend to the other Greeks as changing other parameters in the
model will affect the composition of the replicating portfolio.

There was little special about a down-and-out put option in this argument. We
could equally do an up-and-out option or a call option. The same basic procedure
would apply. First, replicate the final pay-off, then kill the value on the barrier by
selling options which pay off behind the barrier.

Note that we do not actually have to replicate the final payoff everywhere, we
only really need to be accurate above the barrier. However, a more accurate repli-
cation of the final pay-off vastly decreases the number of steps required to get a
good price. This happens because one ends up needing to sell large notional put
options to kill the value at the boundary because of the large value of the pay-off
behind the boundary.

We have only discussed out options; however, using the fact that `in + out =
vanilla', we can immediately replicate in options by purchasing the vanilla, and
shorting the replicating portfolio for the out option.

Double barrier options

We can apply similar techniques to the replication of double barrier options. For
concreteness consider an American double digital option. It pays 1 at expiry if spot
remains in the interval (B1, B2) at all times and zero otherwise.

We can replicate by a similar argument. We approximate the final profile using
digitals (or call spreads). In particular, the final pay-off is accurately replicated by
a digital call struck at B1 minus (i.e. short) a digital call struck at B2.

As before, we divide time into N steps and construct a portfolio which replicates
backwards. Things are slightly trickier now in that we have to kill the values at both
barriers simultaneously. To kill the values at (B1, ti_1) and (B2, t,-1), we use a
call option struck at B2 and a put option struck at B1. Unfortunately, the put option
struck at B1 will have non-zero value at (B2, tn_1) as well as substantial value at
(B1, Similarly for the call option struck at B2.
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This is only a slight obstacle in that we obtain a 2 x 2 system for the notionals.
However, it will always be invertible. Let P(S) denote the value of the put at S,
and C(S) the value of the call. We get

P(Bi) P(B2) Nl
V1 (10.2)

N2 V2C(B1) C(B2) ) ( ) ()
where Nj are the notionals and VI are the values to kill. As B1 < B2, we must
have P(B1) > P(B2) and C(B1) < C(B2), the determinant must be non-zero, and
the system is solvable.

As in the single barrier case, we can now repeat the argument. To kill the values
at (B1, and (B2, t,,_2) we use a put option struck at B1 with expiry at t1,
and a call option struck at B2 with the same expiry. We again obtain a 2 x 2 system
which will always be solvable. We now just iterate back to time 0.

10.3 Discrete barriers

The method of the last section worked very well for the continuous barrier option;
however, it relied on the assumption that the underlying was continuous. In this
section, we present a method for pricing discrete barrier options which makes no
assumptions beyond the fact that the future smile is deterministic. As a continuous
barrier option can be regarded as a discrete barrier option in which the barrier times
are very close together, it also gives us a method for replicating continuous barrier
options when the underlying is discontinuous.

For concreteness, we once again study a down-and-out put option. Let the option
be struck at TN with strike K, and suppose the barrier times are T1, . . . , TN_1 with
TN_1 < TN. Let the barrier be at B. Our option pays off (K - S)+ at time TN,
provided it is above B at the times T J for j < N. Note that there is nothing forcing
B to be above K.

Were we to try to repeat the argument of the previous section, we would hit the
problem that we cannot dissolve the portfolio as soon as the spot passes the barrier
B; the spot could pass below B and then come up again before the next barrier
time. If we wait to dissolve until the next barrier time then the spot will not be at B
but possibly far below. The replicating portfolio will therefore need to be zero not
on the set (B, t), but instead on the union of the sets (S, Tj) for j = 1, ... , N - 1
and S < B. We shall call these sets the barrier sets.

Our objective is therefore to construct a portfolio which replicates the final pay-
off, and has zero value on the barrier sets. The idea here is that if the option knocks
out then the replicating portfolio would be immediately liquidated at zero cost.
To construct this portfolio, we backwards induct. First, we choose a portfolio of
vanilla options with expiry T which approximates the final pay-off as accurately as
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we desire. Of course, if we were modelling a knock-out call or put, this would just
be the call or put without the knock-out condition. Call this initial portfolio Po. For
any portfolio P, we denote by P(S, t) its value at the point (S, t).

As we know the price of any unexpired vanilla option for any value of spot and
time, we can value Po along the last barrier [0, B] x {TN_I }. We can kill the value
of Po at the point (B, TN_1) by shorting a digital put option with notional equal to
PO(B, TN_1), struck at B. Call our new portfolio Pa. This portfolio then has correct
final payoff profile and has zero value at (B, TN_1) but may have non-zero value
along [0, B) x {TN-1}. We partition [0, B) into [0, x1], [xl, x2], ... [xk_1, B). We
then approximate the value of P° along [0, B) x {TN_1 } by assuming it is affine on
each of these subintervals (i.e. its value is a straight line on each subinterval.) We
now remove this value by moving successively inward. The portfolio PO has zero
value at (B, TN_1) so if we short put options struck at B with expiry at TN_1 and
notional Pl (xk_1, TN_1), we obtain a portfolio Pi which has zero value at both
(B, TN_1) and W_1, TN_1). If our partition is suitably small, the linear approxi-
mation will be close in value to the original portfolio, and the value will be small
on the interval [x,_1, B] x {TN_1 }. We now iterate along the barrier at each stage
shorting put options struck at with expiry TN_1 and notional TN_1)

to obtain a sequence of portfolios, PJ. Note that the put options only affect value
for spot below their strike so will not affect the value of the portfolio at the points
already fixed. The portfolio Pr -1 will then have close to zero value along the bar-
rier as desired. Let P1 denote the portfolio Pi -1

We can repeat this procedure along the barrier [0, B] x {TN-1} using the port-
folio P1 instead of P0 to obtain a portfolio P2. Repeating, we obtain a sequence
of portfolios, PI. If we regard an option as having zero value after expiry then
the portfolio PN has the property of having close to zero value along all the bar-
riers [0, B ] x {Tj } and approximates the final payoff profile. We are justified in
considering the options to have zero value after their expiry because, if at any
of the expiry times, the option are in the money, our hedging procedure is to
liquidate the portfolio as this is precisely when the original option knocks out.
The value of So) is then the approximate value of the knock-out option
today.

By increasing the fineness of the partition size, we can replicate the price ar-
bitrarily well, and thus price the option as accurately as we desire. As with our
strategy in the continuous case, we get the Delta, Gamma and Theta for free, just
by evaluating them for the replicating portfolio.

A similar procedure would be effective for up barriers; simply replace puts by
calls and induct upwards instead of downwards. To do double barriers, we simply
do each barrier independently at each knock-out time as there is no interaction be-
tween the two pieces at a given knock-out time; the portfolio is, of course, affected
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by both barriers at previous times. Note also that our procedure does not require
the barrier level to be constant.

The procedures for both discrete and continuous barriers involve setting up a
portfolio initially which we then dissolve when the option knocks out. At that time,
our replicating portfolio has been constructed to have zero value. This is where the
deterministic future smile condition is crucial: for the portfolio to have zero value,
all the unexpired options must have precisely the value predicted.

10.4 Path-dependent exotic options

One interpretation of replication methods is that they are really approximating a
solution to the Black-Scholes equation by using a basis for the space of solutions.
Whilst this interpretation is a little narrow in that replication methods do not re-
quire the existence of a PDE describing option prices, it does suggest that problems
which can be tackled by PDE methods in the Black-Scholes world can be tackled
by replication for any deterministic future smile model.

In this section, we adapt the auxiliary variable method presented in Section 9.6
to the pricing of Asian options by replication. In fact, there is nothing special about
Asian options; any option which can be priced using the auxiliary variable PDE
method can be priced by replication.

The method we present in this section is weaker than the one for continuous
barrier options in that it involves trading in options at each reset time of the Asian
option, unlike our barrier hedging strategies which only involved trading at setup
and one other time - knock-out.

Suppose our Asian has reset times t1, ... , t and for concreteness is a call option
struck at K. Our auxiliary variable, Al , is defined to be equal to

We have
1

Aj = -(Stj + (j - 1)Aj_1)), (103)
1

where A0 = 0. The final payoff of the option is

(A - K)+. (10.4)

The fact that the final payoff depends only on A and that the value of Aj can
always be computed in terms of Stj and AtJ_, means that the value of the Asian
option at any time, t, is a function purely of St and the value for A1, where j is
such that tj < t < tj+r
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At the final time, T = t,, the value of the option is (A, - K)+. We can rewrite
this as

n
n

1 An-1 + 1St,, - K) = n (St, - (nK - (n - 1)An-1))+ . (10.5)

This means that at time ti-1 a call option struck at (nK - (n - 1)A,_1) of notional
1/n precisely replicates the final payoff. Note that the replicating portfolio here
depends upon but not

We have assumed the existence of a pricing function so we immediately have
that the value of this replicating call option is determined as a function of for
each value of An_1. By no-arbitrage, the value of the Asian call option must be
equal to the value of this replicating option and we therefore know its value as a
function of and An-1

At time t,_2, we wish to construct portfolios of options expiring at time
whose payoffs precisely replicate the value of the Asian call at time t11_1.

Recall that the value of is equal to

n-2 1

n-1` _2+n-1St"
This means that the set of points in the (St,,-,, reachable from a point

An-2) is a line, one that depends purely upon the value of and not
Sti_2. In particular, the reachable line of points is

C n-2 1
Stn_,,n_1An-2+n-1St"-'

Thus given a value of An_2, the value of determines a point in the
An_1)-plane and aprice for the Asian option at time tn-1.Call this price
This means that for each value of An -2, we can replicate the value of the Asian call
at time tn_1 by a European option paying at time tn_1.

This European option can be approximated arbitrarily well by using a portfolio
of vanilla call and put options. The given pricing function can then be used to assess
the value of this portfolio for any value of Stn-21 at time tn_2. Thus by valuing the
portfolio associated to each value of An-2 for every value of Stn_2, we develop the
price of the Asian call option as a function of Stn-2 and An_2 at time ti_2.

We can repeat this method to get the value of the call option across each plane
(Stp Aj) for j =1,...,n- 1.

At time t1, we have, of course, that Al = Sl and only the values along that line
are relevant. Thus in setting up the initial replicating portfolio at time zero, we
replicate the values along this line in the (S1, A1) at time tl.

The value of this initial replicating portfolio is now the value of the Asian call
option at time zero. Note that as with barrier options, we get the value of the Delta,
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Gamma and Theta just by evaluating the relevant quantity for the initial replicating
portfolio.

Having used a replicating argument to price the derivative, what is the actual
trading strategy? We set up the initial replicating portfolio and hold it until the first
reset time, when we dissolve the portfolio by exercising all the options which are
in the money, as all the options are at their expiry. The sum of money received is by
construction precisely the cost of setting up a new portfolio which depends upon
the value of A t and which replicates out to the second reset time. We then exercise
again and use the money to buy a new portfolio out to the third reset time and so
on. At all stages, the new portfolio set up will depend on the value of the auxiliary
variable, and will be equal in value to the exercised value of the previous portfolio.

The existence of a deterministic pricing function is crucial because any indeter-
minacy in the set-up cost of the later replicating portfolios will destroy our argu-
ment.

We have described the method as if we could do everything continuously; in
practice we would work with a grid of values in spot and A at each time tJ.

As we mentioned above, there is nothing special about Asian options, and any
multi-look option that can be priced using PDE auxiliary variables techniques can
also be replicated in this fashion. One interesting consequence of this is an alterna-
tive method for replicating a discrete barrier option. If we define A0 =1, and let Aj
equal A0 if the barrier is not breached at time tj and 0 otherwise, then a knock-out
call's final payoff is

K)+.

This means that we can. replicate the discrete barrier by a trading strategy that
involves at each stage buying European options which approximate the profile of
the option's value across the next knock-out time. This is conceptually not as nice
as the first method we presented, in that it requires trading at multiple times. How-
ever, it has the practical advantage that the total number of options in the portfolio
at any given time will not be as large. As we need to repeatedly evaluate the price
of the portfolio, this can cause this pricing method to be substantially faster. In
particular, the time will grow linearly with the number of barrier dates rather than
quadratically.

10.5 The up-and-in put with barrier at strike

Suppose we wish to replicate an up-and-in continuous-barrier put option with strike
and barrier at K. Suppose also that there are no interest rates nor dividend rates.
Spot is initially below K (otherwise the option would just be a vanilla option). We
suppose that spot is continuous. Let the expiry of the option be T.
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Our hedge is as follows: we initially hold one call option struck at K with expiry
T. If spot never touches K both our hedge and our target option finish valueless
and we have replicated. If spot does touch K then at that instant, the target option
becomes a vanilla put. As spot is equal to K at that instant, a forward with strike
equal to K will have zero value. By put-call parity, this means that the value of the
put and the call will be equal at the touching time. In addition, we can transform
the call into the put by shorting a forward contract, of zero value, struck at K.

Our hedging strategy is therefore to buy the call struck at K today and to short a
forward contract struck at K when the barrier is crossed. This replicates the target
option's payoff precisely.

We conclude that the up-and-in put and the call option have the same value.
Note that we have used the fact that interest rates are zero in a non-trivial way
to guarantee that the forward price is equal to the current price. Our strategy also
heavily relies on the fact that spot is continuous.

10.6 Put-call symmetry

In this section, we look at an approach to replicating barrier options, one that relies
on reflecting the pay-off in the barrier in an appropriate fashion.

10.6.1 A simple model

To illustrate the ideas of this section, consider a simple model in which there are
no interest rates nor dividend rates, and the stock (not its log) follows a Brownian
motion. So in the risk-neutral measure we have

dS = QdW. (10.6)

Suppose the current value of spot is B. Consider a call option struck at K and a
put option struck at B -(K -B)=2B -K, with the same expiry. These two options
will have the same value. The easy way to see this is that reflecting the Brownian
motion in the level B takes the pay-off of one option to the payoff of the other. As
the reflection of a Brownian motion is still a Brownian motion, we conclude that
the risk-neutral expectations and therefore the prices are equal.

Suppose now that the current value of spot So is above B, and we set up a
portfolio consisting of a call option struck at K > B and short a put option struck
at 2B - K. Above B, the final payoff is that of the call option. Along B at any
time the argument above shows that the portfolio is of zero value. If we dissolve
our portfolio when spot touches B, which we can do at zero cost, then we have
precisely replicated a down-and-out call.

The key point in this argument is that the call option has a symmetric partner
obtained by reflection in the barrier which has the same value at any point on the
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barrier. This partner was particularly easy to find because the Brownian motion
could be reflected in the barrier. This approach to replication is intimately related
to the reflection arguments we used in Chapter 8.

10.6.2 The zero interest-rates log-normal case

Suppose we try the same argument when the process is log-normal instead of nor-
mal. As the log is the natural variable, we try reflecting the log in the log of the
barrier rather than the spot in the barrier. As the pay-off is exponential in the log we
cannot expect perfect symmetry; nevertheless we can still do quite well. We have
to rescale the pay-off to compensate.

Reflecting the log of the strike, K, in the log of the barrier, B, is equivalent to a
geometric reflection of the strike in B. The strike for our put option will therefore
be

B2

K

If we value this option, we discover that its value is not the same as that of the orig-
inal call option; however the adjustment to the notional required to obtain the same
price is independent of time. This is sufficient for our barrier replication argument.

In general, we can prove

Theorem 10.1 Suppose

dS = c SdW, (10.7)

and interest and dividend rates are zero. If a European option, C, pays f (ST) at
time T, then the European option D with the pay-off at time T equal to

Bf(ST)
has the same value as C when St = B.

To prove this we simply write down the risk-neutral valuation price and change
variables. Let r = T - t. We have, using the expression (7.16) for the log-normal
density

00r 1

C(B, t) =
J

f (ST)
ST 27ra2i

e 2o2T dST. (10.8)

0

Letting B2/ST, we get

dS _ dST
(10.9)

S ST
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It follows that
00

L (Iog(B/S)+ZO2=)4

C(B, t) = J f
(BS ) 1

e 2a2r dS. (10.10)
S 2 a2r

0

Given log(B/S) log(S/B), by expanding the exponent, it immediately follows
that

00

S B2 1 (log(s/B)+Zo2=)2

C(B, t) - J f (-1
B 2 7ra2 a

e 2a2= dg,
S S

0

which is the price of an option with pay-off

2ST f (B2
B ST

(10.11)

If C is a call option then f (ST) = (ST - K)+, and the reflected option's pay-off
is

+
(
K

K

B

(BT - K)__ST).
Thus we have proven that on the barrier B, at any time, a call option of strike K and
notional 1 has the same value as a put option of strike B2/K and notional K/B.

A down-and-out call is therefore replicated by the portfolio consisting of being
long the vanilla call and short the vanilla put with modified notional. As usual,
we dissolve the portfolio when the barrier is touched. This gives us an immediate
formula for the option.

An interesting fact about this replicating portfolio is that the composition of the
portfolio does not depend on a. This means that as a hedge to the down-and-out
call, it is robust under changes in volatility. In fact, all that really matters is that
when spot is on the barrier B the smile should be symmetric - a call option of
strike K/B must trade with the same implied volatility as a put (or call) option of
strike B/K.

This symmetry condition is certainly satisfied by a Black-Scholes model with
time-dependent volatility. One consequence of this is that the price of a down-and-
out call option in a zero interest rate world is not affected by the time-dependence
of volatility. All that matters is the final root-mean-square volatility, just as for a
vanilla option.

Of course, whilst these results are nice, a zero interest rate world is not realistic.
However, the important thing in the above arguments is that there is zero drift;
this means that the techniques immediately apply to barrier options on futures or
forwards. We would use the Black formula rather than the Black-Scholes formula
but the argument would otherwise be identical.
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10.6.3 The non-zero interest rates log-normal case

Once we bring interest rates back in, put-call symmetry is not as simple. The re-
flected option is, in fact, no longer a put.

In general, we can prove

Theorem 10.2 Suppose

dS = (r - d)Sdt + aSdW. (10.13)

If a European option, C, pays f (ST) at time T, then the European option D with
the payoff equal to

T

()P

B .f(B2/ST),

where p = 1 - 92h as the same value as C when Sr = B.

To prove this theorem, we repeat the proof of Theorem 10.1. The interest rates add
an extra term which gives rise to the extra factor. We have, in this case,

00
2 2)v]

1
Dog(ST/B)-(r-d-7a

C(B, t) = f f (ST) e 2a2r dST. (10.14)
ST 2ncr2T

0

We then work through the same argument to get the payoff of the reflected option.
For a call option, the reflected option's payoff is

( ( l
_ 26d)

K) K/ 2 (K -ST 1+.

Clearly, we no longer have a put option. However, it is still a European option,
which we can replicate arbitrarily well by a portfolio of vanilla put options. Our
first option is a put struck at

H2/K

of notional
1 _ 2(rd)

CH1 a2

K

This replicates the reflecting option to first order at H2/K, and most of the value
will be in this option. We can replicate further by approximating the difference in
the usual manner, as discussed in Chapter 7.

As well as the fact that we need more options in the non-zero interest rates
case, we also have the fact that the replicating portfolio depends upon r, d and
or. This means that the replication is no longer robust under changes in volatility.
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A consequence of this is that the barrier option's value will now be affected by
time-dependence in the volatility. If volatility is time-dependent but deterministic,
the pay-off needed by the reflecting option will depend upon time; the replication
argument breaks down as we will no longer have zero value along the barrier at all
times.

The fact that the time-dependence of volatility affects the knock-out option's
value is not surprising. If r - d is non-zero, the spot price will have non-zero drift
in the risk-neutral world. If the volatility occurs before the spot has had time to
drift away from the barrier, the option is clearly more likely to knock out than if it
occurs after the spot has already drifted a long way.

Although we have seen that this method does not work in the presence of time-
dependent volatility, it is still useful in that we can construct a first approximating
portfolio using the methods of this section, and then complete the replication using
the methods of Section 10.2.

10.7 Conclusion and further reading

In this chapter, we have looked at a number of methods for replicating path-
dependent exotic options under the assumption that the future smile is known as a
function of spot and time. The precise assumptions needed to replicate the options
varied according to the exact method used. In this section, we try to categorize
these methods and assumptions.

There are really two sorts of assumptions we can make:

(i) about the behaviour of the underlying;
(ii) about the behaviour of vanilla options.

Whilst generally in option pricing it is the first sort of assumption that is important,
for static replication it is the second sort that really matters. This distinction is a
little arbitrary in that the behaviour of vanilla option prices is intimately related to
that of the underlying! (After all that's the basis of much of this book.)

Assumptions on the underlying are:

Al there exists a liquid market in the underlying (or forwards) at all times;
A2 the underlying follows a Markovian process;
A3 the underlying follows a continuous process;
A4 the underlying follows a diffusive process;
A5 the underlying follows a log-normal process.

Possible assumptions on the vanilla options markets include:

B 1 there exists a liquid market in calls and puts of all strikes and maturities today;
B2 there exists a liquid market in calls and puts of all strikes and maturities at all

times;
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B3 the prices of calls and puts satisfy the 'put-call symmetry' condition at all
times;

B4 the price of calls and puts are a known deterministic function of calendar time,
spot, strike and maturity.

Subject to these assumptions, there are a lot of different forms of replications,
we could achieve for a given option.

We also give a classification of replication methods.

C1 strong static: the option pay-off can be perfectly replicated by a finite portfolio
of calls, puts and the underlying set-up today with no further trading.

C2 mezzo static: the option pay-off can be perfectly replicated by a finite portfolio
of calls, and puts setup today together with a finite number of trades in the
underlying.

C3 weak static: the option pay-off can be perfectly replicated by setting up a fi-
nite portfolio of calls and puts today which may be sold before their own
expiries.

C4 feeble static: the option pay-off can perfectly replicated by trading a finite num-
ber of calls and puts at a finite number of times.

C5 dynamic: the option pay-off can be perfectly replicated by continuous trading
in the underlying.

We shall also use the term `almost' to indicate that the pay-off can be replicated
arbitrarily well rather than perfectly with a finite portfolio. If the underlying satis-
fies Al-5 then C5 holds; this is the fundamental result of Black and Scholes, [20].
This still holds under Al-A4; see Dupire [51].

Under assumption B 1 then Cl holds for a straddle with no assumptions on the
underlying. We also have, under the assumption B 1, that digital European options
can be almost strong-statically-replicated, by approximating using a call-spread.
Unfortunately, strong static replication holds for very few options. This is the repli-
cation method we discussed in Chapter 7.

If we make the assumptions Al, A3 as well as B1 then we mezzo-statically-
replicated the up-and-in put option. We saw this in Section 10.5. This was proven
in [30, 73].

Under B 1, B2, B3, A3 we saw in Section 10.6 that a class of barrier options can
be weak-statically-replicated. This was proved in [32].

If we assume B1, B2 and B4 then we are in the situation of Section 10.3. The
method we present for hedging discrete barrier options under these assumptions
is then an almost weak static replication. Note that we can also hedge continuous
barrier options arbitrarily well by approximating with a discrete barrier option with
an arbitrarily large number of sampling dates.
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The method of Section 10.4 for the replication of a general path-dependent ex-
otic option makes the same assumptions, but it is almost feeble static in that it
requires trading in options at multiple times.

Note that whilst these methods make no assumptions on the underlying, it is
difficult to imagine a situation where B1, B2 and B4 hold but A2 does not.

If we make the additional assumption of continuity of sample paths, A3, then the
simpler method of Section 10.2 can be used to almost-weak-replicate continuous
barrier options. This method relies on dissolution of the portfolio at the instant
the barrier is crossed, and therefore only requires the replicating portfolio to be of
zero value on the barrier rather than behind it. Under these assumptions, it is also
possible to replicate American options, [81]. This is further discussed in Chapter
12. In fact, one does not really need continuity of sample paths: the crucial property
is that the spot cannot jump across the barrier for knock-out options or into the
exercise domain for American options. These techniques could therefore be applied
in markets where only down jumps occur - for example equity indices - to the
pricing of up-and-out barrier options and American call options.

We have studied the problem of perfect replication under the assumption that
the future smile is known. An alternative approach is to assume that the future
smile is unknowable and therefore allow oneself only to trade in options today
and hold them to expiry. Whilst one will not obtain perfect replication, one can
obtain bounds on prices which can be strong. Such approaches are developed in
[73] and [30].

10.8 Key points

In this chapter, we have studied the application of replication techniques to the
pricing and hedging of exotic options.

Replication is a powerful technique for taking account of our views on the evo-
lution of vanilla option prices when pricing exotic options.
Strong static replication allows us to price options purely by using the prices of
vanilla options observable today without any modelling assumptions.
Weak static replication allows us to price exotic options providing the future
smiles of the vanilla options are known.
The auxiliary variable technique for pricing exotic options using PDEs in a
Black-Scholes world can be adapted to work with replication techniques in any
model that implies a deterministic future smile.
Replication can be made much simpler when it is assumed that the stock price
process is continuous.
Options which can be replicated include barrier options and Asian options.
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Very few options can be strong-statically-replicated which means that assump-
tions on the behaviour of future smiles strongly affect the price of exotic options.
Weak static replication is generally not applicable in stochastic volatility models.

10.9 Exercises

Exercise 10.1 A range-accrual option pays £1 at expiry for each day the underlying
has spent between two given levels. Show that the range-accrual can be almost-
strong-statically-replicated given deterministic interest rates.

Exercise 10.2 Which of the techniques discussed in this chapter require the spot
price to be continuous?

Exercise 10.3 For the weak static replication of a discrete barrier option, approx-
imately how many price evaluations will be required if N options are used per
barrier time and there are n barrier times? How many will be required for the aux-
iliary variable replication technique?

Exercise 10.4 Show that under the Black-Scholes model the pricing function sat-
isfies

F(S,K,t,T)=F(S,K,0,T - t) = SoF (s0 KSo,0,T-t

What relation is satisfied in the Black-Scholes model with time-dependent
volatility?

Exercise 10.5 It is possible to pick the function F in such a way that today's non-
arbitrageable smile is matched, and arbitrages are implied in the future whilst F
satisfies

F(S, K, t, T) = So F (s0, K

S

, 0, T - t 1 .

Find such an F.
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Multiple sources of risk

11.1 Introduction

We have so far concentrated on the case of an option on a single asset driven by a
single Brownian motion. In this chapter, we look at derivatives which are depen-
dent on more than one stochastic quantity. Whilst some of the options we study
may appear a little contrived, the mathematics we introduce will be essential in
the development of interest-rate models and for the construction of more compli-
cated models for asset price movements. We will see that, by careful use of the
numeraire, the pricing of some derivatives can be reduced to a one-dimensional
problem; however for others multi-dimensionality is unavoidable. It is these latter
derivatives that bear the most similarity to interest-rate derivatives.

We start with some examples. A US investor is exposed to some Japanese equi-
ties risk. He therefore wishes to buy an option on the Nikkei. His banker sells him
a put option which pays $1 for each point the Nikkei is below 15000 a year from
now. The Nikkei is made up of yen-priced equities, yet our pay-off is in dollars. The
mismatch here between the currency of pay-off and the currency of the underlying
means that the hedger is exposed to the exchange rate, and the option is not just a
vanilla put option. Such options which pay off in the `wrong' currency are known
as quanto options.

An investor is not sure which of two stocks he will wish to hold in a year.
He therefore buys the first one, and purchases an option which allows him to ex-
change it for the second one. If we denote the stocks, St"', S;2', then this option's
pay-off is

max (S(" - Stl) 0).

Such an option is generally called a Margrabe option, after the first person to
analyze its pricing.

260
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More generally, we could allow the possibility to exchange for any one of a
number of stocks Sr1), and get the payoff

max (max St, ) 0)

Another common product is an option on a basket. Thus we could take any
ordinary derivative, and then make its payoff dependent on the average

1
n

(k)
n Sr ;

k=1

or more generally the pay-off could be dependent a weighted average of the under-
lyings.

For all the products we examine, an important issue will be the correlation be-
tween the assets involved. For example, if two stocks are perfectly correlated then
an option to exchange will simply be worth the value of exchanging them today.
Whereas if they are perfectly negatively correlated, that is if one goes up when the
other goes down and vice versa, then it will be worth a great deal.

In order to understand multi-asset options, we will need to understand multi-
dimensional Brownian motions, how to understand correlations between Brownian
motions and how to extend the Ito calculus to higher dimensions.

11.2 Higher-dimensional Brownian motions

Recall that a one-dimensional Brownian motion, Xt, is defined so that the distribu-
tion of Xt - XS is always a normal distribution of mean 0 and variance t - s, for
t > s. This holds regardless of the value of Xs and the path of Xr for r < s.

We can make a similar definition in higher dimensions; we simply have to
replace the one-dimensional normal by a higher-dimensional normal. The higher-
dimensional normal with variance 1 and mean 0 is really just a vector of indepen-
dent one-dimensional random variables. Thus to construct a k-dimensional normal,
we take independent one-dimensional normals X(i), and set

X = (X(1) X(2) ... , X(k)).

This means that X has a probability density function

1
f12

-I z xP(x)27t) e zez ...e2

We therefore define a k-dimensional Brownian motion to be a k-dimensional
random process such that the covariance matrix of Xt - Xs is (s - t)I, where I
denotes the identity matrix, and the behaviour of Xt - XS is independent of the
behaviour of X, for r < s. A k-dimensional Brownian motion path is a map from
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IR to Rk. The measure on the space of paths will therefore be a probability density
on the space of k-dimensional paths. Conceptually there is very little difference
from the one-dimensional case.

One interesting and important aspect of higher-dimensional Brownian motions
is our ability to use them to construct other similar processes. First, trivially, any
subset of the coordinates defines a Brownian motion as all the properties are im-
mediately satisfied. More importantly, we can construct a Brownian motion from a
linear combination of two coordinates. Let p be between -1 and 1. Let

1'r = pXi1) + 1 - p2Xr2). (11.2)

We then have

Yt - YS = p(Xi1) - Xsl)) + 1 - p2(Xr2) - Xs 2)). (11.3)

We know that Xrj) - Xs j) is a normal distribution of mean zero and variance t - s.
Recall that a sum of two independent normal distributions is a normal distribution
with mean equal to the sum of the means, and variance equal to the sum of the
variances. This means that Yt - YS is a normal with mean zero, and with variance
equal to

p2(t - s) + (1 - p2)(t - s) = t - s.

Thus Yt - YS has mean zero and variance t - s. It is also clearly independent of the
value of YS, as each of its constituent components are independent of the behaviour
up to time s. We therefore have that Yt defines a Brownian motion.

If we now compare Yt with X (l), the fact that Xil) was used to construct Yt means
that their movements are correlated. In particular, we have that

E((Yt - YS)(Xil) - X(1)))
= PE((Xtl) - Xs1))2)

+ 1 - p2]E((Xi2)- X(Z))(Xt`1 Xs1))). (11.4)

Since V) and X(2) are independent, the second expectation is zero and so

1E((Yt - YS)
(Xrl)

- Xs 1))) = p(t - s). (11.5)

As Yt - YS and Xtl) - XSl) both have variance t - s, this means that the correlation
coefficient is p. Thus we have constructed a Brownian motion whose increments
are correlated to those of X(1) with correlation p.

More generally, we could construct a Brownian motion from any vector

a = (al,ak)
with a? = 1, by taking Ek=l ajX(J).
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The existence of such correlated Brownian motions will be crucial in pricing
multi-asset options. In general, we may want a whole vector of Brownian motions
with a specified correlation matrix. To construct such a vector, we can proceed in
a similar fashion as to constructing a vector of correlated normal variates as we
discussed in Section 9.4. In particular, given a positive-definite correlation matrix,
R, we take any pseudo-square root, A, and set

n
y(1) = E aij W(j)

j=1
(11.6)

11.3 The higher-dimensional Ito calculus

When we are pricing derivatives, we will need to understand the process followed
by a function of random variables which are each following Ito processes, that is
we need a multi-dimensional Ito rule.

Thus suppose we have correlated Brownian motions W(j). Associated to each
Brownian motion, we have an Ito process X(j),

dX(j) = Aj (X(j), t)dt + aj (X(j), t)dW(j). (11.7)

We want to understand what process is followed by a smooth function of all the
X(j). Let f (t, x1, ..., xn) be a smooth function from 1872+1 to 18

Following our arguments in the one-dimensional case, we can attempt to approx-
imate the derivative via Taylor's theorem. Taylor's theorem tells us that

f(t+At,xl+Axl,...,xn+Axn)=.f(x,t)+ af(x,t)At+Y fAxj
at ax

j=1

1 n a2f
+ 2 a

Ax10xj, (11.8)
1,J=1 ' J

plus an error of order three in Axl, order two in At and order one in Ax1At.
If we wish to imitate our arguments in the one-dimensional case, we have to

understand how the terms Ax1 Ax j behave when xl =X(t1). Recall that our definition
of the process for X(j), implies that

Xr+ot=XU)+µj(X(i),t)At+of(X(.i),t)(W(j) -W,j))+small error
1 (11.9)

where, of course,

W +or - Wrj) = Atzj, (11.10)

and the Z j are ordinary N(0, 1) draws. However, our definition of correlated
Brownian motions means that the variates Z j are correlated to the same extent
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as the Brownian motions. Thus if we let pjk be the correlation between W(j) and
W(k), we can write

Zj = PjkZk + 1 - pjkejk, (11.11)

where ejk is N(0, 1) and independent of Zk. This means that

(Wr+At - (yVr+At - Wt(k)) = AtpjkZk + Ot 1 - pjkejkZk. (11.12)

The second term has mean zero and variance of order At2 so we can discard
it as small, whereas the first term has mean pjk At and variance of order At2
and therefore contributes. This gives us a new rule for the multi-dimensional Ito
calculus:

dWrj)dW(k) = pjkdt.

To summarize, we have

Theorem 11.1 (Multi-dimensional Ito lemma) Let Wtj) be correlated Brownian
motions with correlation coefficient pjk between the Brownian motions WU) and
Wtk). Let Xj be an Ito process with respect to Wt W. Let f be a smooth function;
we then have that

af 11 of
at ax j

(t,X1,...,X,1)dXj
j=1

1
11 a2f

+ 2 T ax ax
(t, X1, ..., X7,)dX jdXk, (11.14)

j,k=1 i`

with

dWtj)dWtk) = pjkdt.

When collecting terms, the final double sum will be absorbed into the dt term.
We still need to think a little about what a process of the form

12

dYt = ltdt + ajdWtj), (11.16)
j=1

means. Here we have a sum of Brownian motions driving the asset instead of just
one. In a small time step At, we can simulate the Ito process by

72

Yt+ot - Yt = µ0t + Y- 6j (W (t+Atj) - Wt j)),
j=1

where we have constructed the W(j) as correlated Brownian motions.
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Alternatively, if we are not interested in the individual W(1) and simply wish to
simulate Yj, we can do so by observing that a linear sum of correlated Brownian
motions can be expressed in terms of a single Brownian motion.

For example,

Q1 (W(1) +62(W(2) W(2)) = At(aiZi-- + Q2p12Z1

+Q2 1 - 12Z3)

with Z1 and Z3 independent N(0, 1) variables. We can rewrite this as

(11.18)

Ot(O'1 + 62p12)Z1 + At a2 1 - p12Z3

This is a sum of two independent normals, and therefore is equal to a normal dis-
tribution with variance equal to the sum of the variances which is

(a1 + 92P12)2 + a22(1 - p12) = a1 + 2p1261Q2 + O'2.

This means that if k = 2, we can regard Y as being driven by a single new Brownian
motion W(4) and satisfying

dYr = µ,dt -+ crdW4 (11.19)

with

o = Oi +2p12a1Q2+62 (11.20)

Note that if Q1 = 0"2 and A12 = -1, then or = 0, and Y. has become deterministic -
the two Brownian motions are perfectly inversely correlated and their movements
cancel each other. Note also that if P12 = 1 then

6=61+Q2. (11.21)

We can interpret (11.20) geometrically. Suppose we regard a Brownian motion
as being a vector times a one-dimensional Brownian motion. Perfect correlation
means the vectors point the same way, perfect negative correlation means they
point the opposite way, and zero correlation means they are orthogonal. In (11.20),
the first vector has length O'1, and the second length oa2. When we add two vectors,
v1, V2, the square of the length of the resultant vector is

IIv1112 + 2 cos(9)IIv111. i1v211 + IIv2112,

where 9 is the angle between the vectors. If we interpret the correlation coefficient
as being the cosine of the angle between the two Brownian motions, then this means
that the new volatility is just the length of the vector obtained by summing the
vectors for each Brownian motion.
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More generally, we could construct a Brownian motion from any vector

a=(a1,...,ak)
with a? = 1, by taking Ek=1 ajX( ).

When we have a process driven by k > 2 Brownian motions, we obtain a similar
expression to (11.20). The volatility becomes

N

n

Y" Ors 6j Pig

i,J=1

and we can write

dYt = µdt + adW, (11.22)

for a Brownian motion W constructed from the old one. We can similarly regard
our processes as vectors in 1R which add according to their directions.

Example 11.1 Suppose the stocks Xt and Yt follow correlated geometric Brownian
motions. Show that XtYt also follows a geometric Brownian motion and compute
its drift and volatility.

Solution We write

dXt = aXtdt + o XtdWW 1),

dYt = ,BYtdt + vYdWt(2),

and take the correlation coefficient to be p. We compute

d(XtYt) = XtdYt + YtdXt + dXt.dYt,

= XtYt (f3dt + vdW 2) + adt + vdWr 1) + avpdt) ,

= XtYt ((a +,B + QVp)dt + o'dW(1) + vdWr2)) .

The drift is therefore

a+/3+pa-v,

and the effective volatility is

Q2 + 2pav + v2.

Example 11.2 Two Brownian motions, Wt1, Wr are jointly normal with correlation
0.5. A stock St follows the process

dSt = iiSt + St(aidWt1 + a2dW),

with al = 0.15, a"2 = 0.25, what volatility would you use to price an option on St?
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Solution We use

Ql + 2palor2 + QZ = 0.252 + 2 x 0.5 x 0.15 x 0.25 + 0.252,

0.252 + 2 x 0.5 x 0.15 x 0.25 + 0.252,

= 0.35.

Note that since the Brownian motions are positively correlated, the resulting volatil-
ity is higher than the maximum of the two. O

11.4 The higher-dimensional Girsanov theorem
and risk-neutral pricing

A key component of martingale pricing in one dimension was the ability to change
the drifts of stock prices via a measure change on the space of Brownian motion
paths. An important converse was that this was all that a measure change could do.

The situation in higher-dimensions is very similar. Once again we can change.
drifts. Once again we cannot do anything else. This second statement has some
new aspects however. When we are dealing with correlated Brownian motions, this
means that the correlations between them cannot be changed via measure change.
In financial terms, this ensures that the correlation between two assets affects the
price of a derivative contract written on both of them which is what we might
expect. However, as before, the real-world drifts have no effect on prices.

Our sample space is larger than in the one-dimensional case. The space of paths
is the space of continuous paths in 11872 rather in R. The set of information, Ft,
available at time t is the behaviour of all n Brownian motions up to time t rather
than just one. The information for each of the individual Brownian motions is still
contained in fit, it is just that Ft contains a lot more information. The measure
change will be a change of measure on the larger sample space and we can change
the drifts of the individual Brownian motions by differing amounts.

Our martingale condition is the same as before:

E'(XtI.F)=Xs. (11.23)

We want to change the drifts so that this holds for all the assets. This is trickier
than in the one-dimensional case because correlation may cause the effective di-
mensionality of the Brownian motion to be lower than immediately apparent. For
example, suppose we have a three-dimensional Brownian motion W(i), and three
stocks, S(l). Suppose also that we have

dS(1) = µ1S(1 dt + S(1 a1dZ(l), (11.24)

where Z(1) = W(l), Z(2) = W(2) and Z(3) =
wc1n+W(2)
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The Girsanov theorem allows us to change the drifts of W(j). If we change the
drift of W(') by vJ then for j = 1, 2, we have

dS(i) = (µj + vja1)S(')dt + S(j)ojdZ(j), (11.25)

and

dS(3) = (t3 + 17 vta3 + 1/ V2 0'3 S(3)dt +S(3) Q3dZ(3). (11.26)

We want to choose vj so that each SAW) has drift r. Equation (11.25) determines v1
and v2 immediately. The measure-changed drift of S(3) is then already determined
and is equal to

1 1

43+
T2

v193 + 2V263.

For a risk-neutral measure this has to be r. So a risk-neutral measure exists if and
only if

1 µ1-r 1 µ2-r
A3

91
Q3 -

U2
U3 = r. (11.27)

How can we interpret this? The fact that there are only two sources of uncertainty
driving the stock prices means that we can only assign two drifts arbitrarily in the
real-world measure without causing arbitrage.

If (11.27) does not hold then we can hedge the movements in S(3) by suitable
holdings in SO) and S(2), and achieve a risldess portfolio which does not grow at
the riskless rate. That is we can achieve an arbitrage.

Note that our correlation matrix in this case is

1 0

1

1

1 1

1 1 0

0

The important thing to note about these matrices is that they are not of full rank.
Clearly, (0, 0, 1) is in the null-space of the second matrix. The null-space of the
first matrix is the set of scalar multiples of (1, 1, -V).

In general, we can prove
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Proposition 11.1 If C is a n x n symmetric matrix, and A is a pseudo-square root
of C then A and C have null spaces of the same dimension.

Proof We show that the set of vectors orthogonal to ImA is the null-space of AAT.
Let (a, b) denote the inner product of a and b. If

AATU = 0

then we have that

So

and hence

(ATU, ATU) = (AATU, u) = 0.

ATU = 0,

(Av, u) = (v, AT u) = 0,

which means that u is orthogonal to ImA.
If u is orthogonal to ImA, then u is orthogonal to ImAAt as it's a subset of

ImA. In particular this means that u is orthogonal to AATU which implies
that

(ATU, ATU) = (u, AATU) = 0.

Clearly AT U = 0 implies that AATU = 0. We thus have proved that the null-space of
AAT is equal to the null-space of AT and is equal to the set of vectors orthogonal
to the image of A.

If A is an n x n matrix, then we have that

dim KerA + dim ImA = n,

and

dim ImA1 + dim ImA = n.

The result is now immediate.

The upshot is that the correlation matrix is of full rank (i.e. rank n) if and only if
n independent Brownian motions are needed to drive the process. If it is of lower
rank then we can discard Brownian motions in the null-space of AT.

We return to the issue of the existence of risk-neutral measures. Let our corre-
lation matrix be C and A be a pseudo-square root. Suppose we have independent
Brownian motions Zj, driving our n stocks via

71

dS1 = µ1Sldt + o-1S1 A1kdZk. (11.28)
k=1
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If we perform the measure change Zk = Zk + vk, then we get

n n

dSj = µJ +aJ l:afkvk Sjdt +oajSj rAJkdZk. (11.29)
k=1 k=1

To achieve a risk-neutral measure, we need to have

n

µ' (11.30)ajk vk = -
k=1 O'J

If we set a j = - µa1 , a = a C 1,J, v = v v) then we can rewrite
our equation as

Av = a. (11.31)

Note that if some aj is zero, then either p j = r, and no measure change is needed
for that asset, or there is a riskless asset which is not growing at the riskless rate.
The latter would of course imply an arbitrage. We can therefore assume that all the
oc j are non-zero.

If A is invertible this is easy to solve. Otherwise, a has to be in the image of
A. However, as in the special case we examined above, the non-solvability will
correspond to the existence of arbitrage. We prove this in the special case where A
has been found by Cholesky decomposition, and therefore has the property that if
a jk (with k > 1) is non-zero then aj,k_1 is non-zero for some i < j. We then solve
iteratively for v j, with j increasing. When solving for the drift of each asset, we
find either that there is a v j entering the drift which has not yet been specified, or
that the assets' risk can be hedged precisely by a linear combination of the assets
whose drifts have already been fixed. In the latter case, this means that the drift of
the asset must already be r, or we can create a riskless asset that grows at a rate
other than r, and hence there is an arbitrage opportunity. In the former case, we
simply solve for the not yet determined v.

In conclusion, when pricing derivatives we can assume the existence of a risk-
neutral measure in which all the stocks grow at the riskless rate, or there will be an
arbitrage opportunity just from trading the stocks.

We can proceed to risk-neutral pricing for multi-asset derivatives in much the
same way as for single asset derivatives. We change measure so that all asset
prices discounted by the numeraire are martingales. The arbitrage-free price for
the derivative is then the initial value of the numeraire times the expectation of the
ratio of pay-off to numeraire. The same argument that this price is arbitrage-free
holds; if all assets are martingales then any portfolio involving trading them must
have a chance of being worth less if it can be worth more, so no arbitrages can
occur.
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As in the single asset case, the derivatives' price must satisfy a PDE, the dif-
ference being, of course, that the PDE will be higher-dimensional which reflects
the price dependence on each of the stocks. To get the PDE, we can either use a
hedging argument as in the Black-Scholes derivation in the one-dimensional case,
or we can just use Ito's lemma to compute the drift in the risk-neutral measure. We
do the latter.

Thus suppose we have j have assets Sj such that

dSl = a Sldt+QjSjdW(i), (11.32)

and WO) is correlated with W (k) with correlation coefficient pjk. We shift to a risk-
neutral measure in which all the assets have drift r. Let the derivative be D. We
set

CD(T) 1 (11.33)
e'.T

I-F),

where, as usual, T is after all payoffs and the value of D(T) incorporates any
previously generated cashflows rolled up to time T. As De-''t is a martingale by
construction, it must have zero drift.

We compute; by Ito's lemma we get

d(De-'t) = e-'t(dD - rD). (11.34)

We have

n n 2

+ 1 E a D
dSidS1.dD = aDdt + > aD

dS (11.35)j
at j=1 as; 2l j=1 asias;

Using the fact that

dSidS3 = pijSiSjoiorjdt, (11.36)

we conclude that the drift of D is

aD nE aD 1 " a2D
at + as, rSl +

2 E PijSiSIOriO-l asias;
i=1 i,J=1

The drift condition therefore gives us

aD " aD 1
it a2D- + -rSS + - E pijSiS1oriol = rD. (11.37)

at 1=1 as; 2 i . 1 asias;

This is the higher-dimensional Black-Scholes equation.
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11.5 Practical pricing

We can now apply the same techniques to pricing that we developed in the one-
dimensional case. We can attempt to solve the PDE analytically, or use a numeric
grid method to solve it. If we work with the expectation, we can attempt to evaluate
analytically, or approximate it via numerical integration or Monte Carlo simulation.

In fact, it is in higher dimensions that Monte Carlo becomes an important method.
The reason is that with a grid-based numerical integration or PDE method, the num-
ber of grid points grows exponentially with dimensions. For example, suppose we
have n stocks, S, and we decide to integrate over the region

50<Sj <150, j=l,...,n.

If we take 1 as our grid size, then the number of hypercubes in the grid is 10012, as
each cube is of the form

[S1, S1 + 11 x [S2, S2 + 11 x ... X [$2, S,2 + 1],

with the value of S j any integer from 50 to 149 and the value of each S j totally
independent of the others. If we were doing a 10-dimensional problem, we would
then have 10010 cubes which would clearly be prohibitive. We would have the same
problems with a grid-based PDE method.

Monte Carlo on the other hand is a lot less affected by high dimensions. We
proceed in much the same way as before. We generate paths, evaluate the value
of the derivative on each path and then average. How would we actually carry out
the simulation? Suppose the payoff of our derivative, D, depends on the values of
S j (t) for t = tl, ... , tk. Suppose that the correlation of Si with S j is pip. Let A be
a pseudo-square root of the matrix (pi j ). Let to = 0.

We need nk normal random draws. We denote them as Zjt. We first create cor-
related normal variates by

12

Wit = CtijZjt.
j=1

(11.38)

We then put

to S tt))=to Sj(tt_g( ( g( 1)) + r- 2°.i ] (ti - tt-1) +Qj tt - tl-1Wji. (11.39)

For each J, we iterate through the values of 1. In practice, we might absorb the
volatilities and times into the correlation matrix to form a covariance matrix, and
take the pseudo-square root of that instead, which would have the advantage of
reducing slightly the number of computations necessary during each run of the
simulation.
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Having generated the path, we can then compute D's pay-off for that path. If D
generates cashflows at varying times then we discount each one according to when
it occurs. We now just repeat this algorithm for each path and average as usual.

11.6 The Margrabe option

The Margrabe option pays off at time ti the maximum of S2(t1) - S1 (ti) and zero.
To price it by Monte Carlo is straightforward: we apply the method of the previous
section using two normal draws for each path. However, this option is sufficiently
simple that there are other tractable approaches.

The PDE to be satisfied is

aD 2 aD 1 2 2 2 a2D a2D+ r ESi + - ESi ai 2
+ pSi S2ai62 = rD. (11.40)

at i_1 asi 2i_1 asi aslas2

It is possible to solve this by making some educated guesses. If the reader is prac-
ticed at such guesses, we urge him to try.

There is however a more financially appealing method of getting the solution.
The payoff of the option is

max(S2(tl) - Sl(tl), 0) = S1(ti)max (S2(tl)/Si(ts) - 1, 0).

This means that if we take S1 as numeraire then the price of the option at time zero
satisfies

D(0) _ ]E ((S2(t1) - l l

S1(0) S1(t1) 1+

where the expectation is taken in the risk-neutral measure associated to Si. We
need to find the drifts of S1, and S2 in this measure. As in Example 6.2, the drift of
S1 will be r + ai , in order to ensure that the ratio of the money market account to
the numeraire has zero drift. The process for 1/Sl is therefore

(±-d 1

r= -
Si

dt - S1 dW1. (11.42)

If the risk-neutral drift of S2 is µ2 then applying Ito's lemma, we have

S2 S2s21d
_

Si Si
(42 - r - po1Q2) dt + -

S1
(-61d W1 + o-2dW2). (11.43)

If we therefore put

92=r+puia2, (11.44)

then S2/S1 is driftless and hence a martingale.
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To price the option we need to compute

«Si(t1) -1)+
The ratio S2/S1 has zero drift and effective volatility

Q = 61 - 2por1a2 + Q2 . (11.45)

We can now directly evaluate this expectation by the same methods we used to de-
rive the Black-Scholes formula. Indeed, one can make it into the same expectation
by substituting variables. One obtains

D(S1, S2, t) = S2N(d2) - SIN(d1) (11.46)

where

d 109(S2/SO + (-1)'-12o2(t1 - t)
11.47' o t1 -t ( )

We can see some interesting facts about the formula for D. It does not involve r.
The price of a Margrabe option is therefore independent of the prevailing interest
rates. Why does this happen? The pay-off after division by the numeraire S1, is a
function of S2/S1. This means, using the martingale representation theorem, that
D's pay-off can be replicated purely by trading in Si and S2. We never need to have
any cash holdings which means that interest rates are irrelevant.

Suppose now that the market consists only of the stocks S1 and S2. Since we have
shown that we can replicate D's pay-off by trading purely in Si and S2, the non-
existence of the money-market account should not matter. However, our derivation
of the martingale measure drifts of Si and S2 depended upon the existence of the
riskless bond. If we do not have the bond then Si has arbitrary drift - there are
an infinite number of equivalent martingale measures. The drift of S2 is still deter-
mined by that of S1 by a simple relationship, but in any case, we do not actually
need to know the drift of S2 since S2/S1 is always driftless. Thus whichever equiv-
alent martingale measure we pick, the expectation of the pay-off of D is always the
same.

What feature of the Margrabe option makes this work? The crucial point is that
the payoff is homogeneous (of degree one) in the assets; that is

f(AS1, ).S2) = Af (S1, S2), (11.48)

which implies that

.f (S1, S2)/S1 = .f(1, S2/S1); (11.49)
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so the martingale representation theorem lets us represent f (Sl, S2)/Sl as an in-
tegral against S2/Sl, which means that the pay-off can be synthesized using S2
and S1.

Clearly, there is nothing special about 2 in this argument, and the method can be
adapted to work for any number of assets provided the pay-off is homogeneous in
all of them, that is

.f01S1,xS2,...,XS-)_-kf(S1,S2,..., SO- (11.50)

One interesting aspect of the Margrabe option is that it is really an option on
correlation. In (11.45), we can observe of and or2 from the prices of vanilla op-
tions. We can even use vanilla options to Vega-hedge our exposures to them. Thus
the only quantity we do not have a concrete handle on is p. This means that when
pricing a Margrabe option we are really making a market on p, in the same way
that for a vanilla option we are making a market on the volatility. Note that if
we know Q then we know p. This means that if we are pricing more compli-
cated options which depend upon p, we can use the market prices of Margrabe
options to infer a value of p to use. We can also use them to hedge our exposure
to p.

11.7 Quanto options

A quanto option is, roughly, an option that pays off in the wrong currency. In practi-
cal terms, this means that some variable quantity is translated into another currency
at a pre-determined fixed exchange rate. Usually this fixed exchange rate is just one
for one.

The key to understanding quanto option pricing is to keep a firm grasp on what
the tradable quantities are. Suppose we are a sterling investor; our unit of account
is the sterling money-market account, and we have a quanto option on a US stock.
For example, we have a call option on Microsoft, Mt, a US dollar stock struck at
K that pays at time T, the sum of

max(MT - K, 0)

pounds not dollars.
The quantity Mt is a dollar tradable but not a sterling tradable. However, we can

convert it into a sterling tradable by multiplying by the exchange rate to give it a
price in sterling instead of dollars.

To price this option, we first identify the real-world processes involved. Let
Ft denote the value of one dollar in pounds at time t. Let Bt denote the ster-
ling money-market account which grows at continuous rate r. The dollar money-
market account, Dt, grows at a continuous rate d. We assume that Ft and Mt are
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log-normally distributed in the real-world measure. The processes are therefore

dBt = rBtdt, (11.51)

dDt = dDtdt, (11.52)

dFt = FtpFdt + Fto-FdWt, (11.53)

dMt = MtµMdt + MtoxMdZt (11.54)

where Wt and Zt are Brownian motions correlated with coefficient p.
We want to identify the risk-neutral processes associated with taking the sterling

money-market account as numeraire. The exchange rate, Ft, is just the value of
one unit of the dollar money-market account in sterling, and so is the same as a
dividend-paying stock with dividend rate d. Its risk-neutral dynamics are therefore

dFt = (r - d)Ftdt + F orFdWr. (11.55)

The real-world dynamics of FtMt, the sterling price of Microsoft, will be

d(FtMt) = dFtMt + FtdMt + dFtdMt,

= MtFt(l-LF + µM + po'FcJM)dt + MtFt(o'FdWt + QMdZt). (11.56)

The risk-neutral dynamics of FFMt as a non-dividend paying sterling-denominated
stock are

d(FtMt) = rFFMtdt + MrFt(QFdWt + aMdZt). (11.57)

We want the risk-neutral dynamics of Mt = Ft 1(FtMr). We have from Ito's lemma
that

d(Ft 1) = Ft 1(d - r + QF)dt - Ft 1QFdWt. (11.58)

Applying Ito's lemma again, we have

dMr = d(FF 1(FtMt))

= (dFF1)(FtMt) + Fr 1d(FtMt) + dFr 1d(FtMt)
or 2 F+r-QF-popaM)Mtdt+omMtdZt

= (d - pcxFcM)Mtdt + QMMtdZt. (11.59)

The risk-neutral dynamics of Mt therefore involve an adjustment factor to the drift
which depends on the correlation between the price of Microsoft shares in dollars
and the dollar/sterling exchange rate. This adjusted drift is sometimes called the
quanto drift. The fact that the correlation has some impact is not surprising. Perhaps
more surprising is that it only shows up in the risk-neutral drift. If Microsoft shares
are totally uncorrelated with the exchange rate then their risk-neutral dynamics are
totally independent of the volatility of the exchange rate.



11.8 Higher-dimensional trees 277

Now that we have the risk-neutral dynamics, we can price simple quanto options.
The simplest option is the quanto forward. This pays £(MT - K) at time T. Its value
will be

rTe- ]E(MT - K).

As MT is log-normal, we know immediately that its expectation is

Moe(d-PQFaM)T
.

The value of the quanto forward is therefore

e-rT (Moe(d-PUFUM)T - K).

The quanto forward strike, the strike that makes the contract have zero value, is
therefore

Mp = Moe(d-PaFaM)T .

The quanto call, C(t), at time 0 will have value equal to

C(0) = IE(e-''T C(T)).

This is equal to

(11.60)

K) ),

where the expectation is taken over the standard normal variable Z. Here we have
used the usual solution to the log-normal stochastic differential equation. The quanto
call price can be written in simpler form as

e'TE((Moe zQMT+aM,lTZ - K)+).

This expectation can now be evaluated by the same procedure as for the Black-
Scholes call price. It turns out be to equal to

log
(Q)

+ Z-T KNe (lcfoN - log
QM'V 1 am' 4T

11.8 Higher-dimensional trees

A powerful technique in one dimension was the recombining tree. We can adapt
trees to higher dimensions with a little work. The implementation becomes more
fiddly but conceptually there is little change. There are however some added com-
plications which limits their use.
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We could use trees, as we did in the one-dimensional case, to justify risk-neutral
valuation. However, we have already justified risk-neutral valuation using stochas-
tic calculus arguments so we focus instead on their utility for implementing option
pricing models.

We concentrate on the two-dimensional case as it illustrates the concepts well
without being too technical. Our objective is to create a discrete process which
converges to the stock price processes as the step-size tends to zero. We have some
choices about how to do this.

We have two stocks following correlated log-normal processes. The stocks will
be driven by a two-dimensional Brownian motion and the state will be determined
by the value of Brownian motion at a given time. We can therefore regard either
the Brownian motion or the stocks as the fundamental process. As usual, we also
have the choice of whether to work with the log-processes for the stocks. Denote
the stocks by Si and let the correlation between them be p. We assume they follow
risk-neutral processes

dSJ = rSjdt + QjSjdZ? , (11.62)

and the correlation between Z1 and Z2 is p.
Thus suppose our Brownian motion is

Wt = (Wi, W2). (11.63)

We can synthesize Z from W in the usual manner, for example

Zt=W1t,
Z2=pW1+ 1-p2W2.

The stock price at time t is then, of course, equal to

(r-Sj(t) = Sj (O)e (11.66)

which means that the stock price is a function of Wt.
This all means that we only need to construct the tree for W. A simple first

approach is to consider the two components of W separately. Let the time step-
size be At. In each step the increment of a Brownian motion has mean zero and
variance At, so, copying the one-dimensional case, each component can moveup
or down by -,/-A-t.

Just as in the one-dimensional case, the Central Limit theorem guarantees that
the process for each coordinate converges to Brownian motion. As the draws for
each coordinate are independent of each other, the Brownian motions for each
coordinate will also be independent of each other and hence we obtain a two-
dimensional Brownian motion. We can now proceed to pricing just as in the one-
dimensional case. First, we fill in the pay-offs in all the terminal nodes, and then
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at each preceding time slice we assign a value depending on the discounted expec-
tation over the daughter nodes and the current stock prices. The discounted expecta-
tion is of course just e-r°` times the average of the values at the discounted nodes.
As in the one-dimensional case early exercise features are easy to account for.

Note that for the first time step, we have four possible states

( At, At), ( At, - 'IfA-t (- At, 11A-t (- At, - At),

and at the jth step we have j2 states, since we have j states for each of the two
components. The number of points in our tree is therefore growing quite rapidly
even in two dimensions. In n dimensions, we would have j" possible states.

One curious aspect of the tree we have constructed in two dimensions is that it
implies an incomplete market as at each step the state can move to four possible
new states whilst we have only three hedging instruments. This does not matter in
that we are only using the tree to approximate the already arbitrage-free risk-neutral
measure rather than to deduce the uniqueness of risk-neutral prices. However, it
does suggest that we ought to be able to approximate by a complete discrete pro-
cess, which would only involve three daughter nodes rather than four which would
result in a smaller total number of states.

The key to reducing the number of nodes is to consider both components si-
multaneously. We need a random variable Xot such that in a small step, the mean
in each component is zero, the variance in each component is At, and the covari-
ance between the components is zero. Let's look for a solution in which the three
daughters nodes are assumed with equal probabilities. As we have three daughter
nodes, we are really talking about a triangle. The condition on the mean says that
the centroid (i.e. the centre of gravity) of the triangle is the origin. As everything is
reasonably symmetric the obvious thing to try is an equilateral triangle centred at
the origin.

Thus we try, for a time step At, the points

1 1
x(0,1), a 2 ,2 , a 2 2

where a is to be solved for, and each point is to be taken with equal probability.
Let Xj be the jth coordinate. The expectation of each Xj is clearly zero. We have

_ 21 C3 31a2
IE(X2) 1-C12

3 4+4 2

]E(X2)=x2311+4+ 4

22

]E(X 1X2) = 0.
\ ///

(11.67)

(11.68)

(11.69)
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Thus taking a = 12At, we have mean zero, and variance At and covariance zero.
This is all we need.

Across each time step, now let the asset evolve according to the three possible
moves. The tree will still recombine as the ordering of the moves does not affect the
final location. We can therefore proceed as before without problems. We let Yj be
a sequence of independent two-dimensional random variables with the distribution
of (X1, X2) for all j. The discretization of the process for the stocks, (S(1 , S(2)) is

therefore given by the process

log log (r - 0.5a) At + ui (ai lYl + ai2Y2 ), (11.70)

where (ai j) is any Cholesky decomposition of the correlation matrix. To see this
process is a discretization of two-dimensional Brownian motion, we simply invoke
the two-dimensional Central Limit Theorem, just as we did in the one-dimensional
case.

This technique can be extended easily to higher dimensions by using a tetra-
hedron, or higher-dimensional analogue, with the appropriate scaling to get the
variances correct. As the number of dimensions becomes higher it will soon be-
come impractical, however, because of the huge number of nodes needed to fill out
space.

11.9 Key points

In this chapter, we have extended the Black-Scholes theory from a single uncertain
to several correlated assets. We have seen that whilst the details are more complex,
the fundamental theory is essentially the same.

Many derivatives have a pay-off which is dependent on the evolution of several
stocks.
A Margrabe option is an option to exchange one stock for another.
A quanto option is an option that whose pay-off is transformed into another cur-
rency at pre-determined rate.
A multi-dimensional Brownian motion is a vector of processes which have jointly
normal increments and is a Brownian motion in each dimension.
Correlated Brownian motions can be constructed by adding together multiples
of one-dimensional Brownian motions.
The Ito calculus goes over to higher dimensions with the additional rule
dWjdWk = pjkdt where Pjk is the correlation between Wj and Wk.
When adding correlation Brownian motions we can find the volatility of the new
process by treating the original processes as vectors.
We can change the drift of a multi-dimensional Brownian motion by using
Girsanov's theorem.
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No arbitrage will occur if and only if the discounted price processes can be made
driftless by a change of measure.
We can price by risk-neutral expectation.
Monte Carlo has the advantage in high dimensions that the rate of convergence
is independent of dimension.
An analytic formula can be developed for the Margrabe option which does not
involve interest rates.
Quanto options can be priced analytically using a modified Black-Scholes for-
mula.
Trees can be adapted to higher dimensions by placing the nodes on a triangle or
tetrahedron.

11.10 Further reading

A recent paper discussing mathematical finance from the point of view of homo-
geneity is [74].

The original paper on Margrabe options is [109].
A recent paper on higher-dimensional trees is [116]: the authors discuss

paradigms for assessing the appropriateness of a given discretization and suggest
an icosohedral method in three dimensions.

11.11 Exercises

Exercise 11.1 Suppose we are a dollar investor. The stock we wish to buy is priced
in pounds. How would we price a call option on the stock which has a strike in
pounds?

Exercise 11.2 Suppose we are a dollar investor. The stock we wish to buy is priced
in pounds. How would we price a call option on the stock which has a strike in
dollars?

Exercise 11.3 Suppose

dS1 = a S1dt + SjorjdWt,

with the same Brownian motion for j = 1, 2. The riskless bond grows at a constant
rate r. What relation must hold between µj and c to prevent arbitrage?

Exercise 11.4 If

dXt = aXtdt +,BXtdWt,

dYt = aYtdt + yYtdWt,



282 Multiple sources of risk

with W and W correlated Brownian motions with correlation p. Find the process
for X1 Y.

Exercise 11.5 Two Brownian motions, W 1, Wr are jointly normal with correlation
-0.5. A stock St follows the process

dSt = iSt + St(aidWt1 + a2dWI ),

with al = 0.15, a2 = 0.15. What volatility would you use to price an option on St?

Exercise 11.6 Two normal random variables X, Y have correlation 0.25, mean 0
and standard deviations 1 and 2, respectively. Explain how you would turn inde-
pendent draws from N(0, 1) into samples of (X, Y). Carry out your algorithm for
the following pairs:

0.34 -0.07
-1.22 -0.45
-0.21 0.33

0.63 0.35

0.94 0.04

Exercise 11.7 Let Xt be the price process of a (non-dividend paying) US$ stock
following geometric Brownian motion. Let Yt be the price process of an AU$ stock
following geometric Brownian motion with dividend rate q. Let Ft be the price of
one US$ in AU$ that is also following geometric Brownian motion. The risk-free
rate in AU$ is r and in US$ is d.

If

r 5%,

d=3%,
q = 2%,

PY,F = PX,F = 0.5,

aX=10%,
aF = 20%,

aY=15%,

what are the drifts of Xt, Yt in each of the following measures:

the AU$ risk-neutral measure;
the US$ risk-neutral measure;
the Xt measure;
the Yt measure.
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Exercise 11.8 Our quant has given us an implementation of the Black-Scholes
formula for a call option in our spreadsheet: BS(S, K, r, or, T). We have an option
to exchange 1 unit of stock X for stock Y at time 2. We have

Xo = 100,

Yo=120,
ax = 0.1,
ay = 0.2,

pxy = 0.1,

r = 0.1.

How do we get the price of the option using the formula?

Exercise 11.9 Our quant has given us an implementation of the Black-Scholes
formula for a call option in our spreadsheet: BS(S, K, r, a, T). We have two stocks
X and Y. We have a contract that pays

max(2X1, 3Y1).

We have

X0 = 120,

Yo = 80,

Qx = 0.25,

ay = 0.15,

pxy = 0.2,
r = 0.0.

How do we get the price of the option using the formula?

Exercise 11.10 You are an AU$ bank. An investor purchases a call option to buy a
US$ share for 10 US$. How would you price and hedge this option?



12

Options with early exercise features

12.1 Introduction

When discussing options, we have so far concentrated on the case of a European
option which allows the purchase of the underlying asset on a specific date at an
agreed price, or more generally we have considered path-dependent exotic options
which do not involve any choice on the part of the holder. The problem of valuing
an option when the exercise date is not fixed is considerably trickier. Recall that an
option is said to be American if it can be exercised at any time before expiry.
An option is said to be Bermudan if it can be exercised on any one of a fixed set
of dates. Whilst Bermudan options are not common in the equity and FX markets,
they are very common in the interest rates markets.

We have seen that it is never optimal to exercise an American call option on a
non-dividend paying stock before expiry as the value of a European option must
always exceed its intrinsic value - that value obtained by exercising immediately
were it possible. However, this is not true for a put option nor for a call option on a
dividend-paying stock. Pricing must therefore take into account the extra exercise
rights and will involve the question of how to make an exercise decision.

Making an exercise decision is simple once the value of an American option
is known. A rational investor will exercise if and only if he makes more money
by exercising the option. One has to be a little careful about what one means by
making more money. No arbitrage implies that the value of an American option
will be at least as much as the intrinsic value. Otherwise, one would just buy the
American option and exercise it immediately, making an instantaneous profit on
the difference in values. If the American option's value is greater than the intrinsic
value, one would clearly not exercise as one could sell the option in the market for
more money than is to be had by exercising it. This leaves us with the case where
the two values are equal. In these cases, we exercise and it would be an error not
to do so. The reason is that once the option has been exercised, we hold some cash
which will grow at the risk-free rate whereas the rights granted by the option will

284
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Fig. 12.1. The value of a six-month European put option struck at 100 and the
value that would be obtained by exercised today were that possible.

decrease with time. So although the values are equal the time derivatives are not.
An alternative way of looking at this is that once one has made the decision not to
exercise for a certain very short period of time, then the value of the option need no
longer be more than the intrinsic value as one has given up the rights that enforce
this no-arbitrage inequality.

Unfortunately, the fact that knowing the value of an American option implies
knowledge of when to exercise is not very helpful since computing the value typ-
ically depends on knowing when to exercise. To illustrate this, let's consider a
simple Bermudan option. Suppose we have a one-year put option but with the op-
portunity to early exercise after six months. We work in a simple Black-Scholes
world with volatility 10%, spot 100, strike 100, and continuously compounding
interest rate of 5%. After six months, we clearly do not early exercise if spot is
greater than 100. If it is less than 100 then we have a choice: do we prefer the cash
we receive by exercising today or do we keep the option hoping to make more
money that way. In this case,' we can simply compute the two values. The value
by exercising today is simply 100 minus spot, whereas the value by not exercis-
ing is the price of a six-month put option struck at 100 with today's spot. We
exercise according to whichever is bigger. The cross-over point in this case is just
below 97: we exercise if spot is below the cross-over point and hold otherwise. See
Figure 12.1.

Note the general principle here that the value of an option at an exercise oppor-
tunity is the maximum of the exercised value and the unexercised value.
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How do we value the original option? We know the value after six months as a
function of spot: it is just the maximum of the exercised and unexercised prices. So
we can treat the option as a European contingent claim with six-month expiry and
payoff equal to the value at six months of the Bermudan. The price can therefore
be found by any of the methods for valuing a European contingent claim.

A slightly more complicated option having two early exercise dates after four
and eight months can be valued similarly. After eight months the value is the max-
imum of the intrinsic and a four-month option. We can then, treating this as a
European contingent claim, back out the value after four months. The value at four
months is then the maximum of the intrinsic and the unexercised option. Note that
we will have to compute the price of the unexercised option for every possible value
of spot at four months. We then solve back to time zero to get the original value.

This procedure can easily be extended to any number of exercise dates. The
crucial point to note is that it is a backwards method. First one computes the values
at the final exercise date, then the second final date, then the third final and so on.
The reason for this backwardsness is that one cannot make an exercise decision
without knowledge of the unexercised value which requires knowing the values for
the later-dated exercise opportunities.

The consequence of this in practical terms is that it is more natural to price
American and Bermudan options using trees and PDE methods than to use Monte
Carlo simulations. To emphasize this point, consider using a risk-neutral evolution
of the spot to price an American option. We divide time into lots of little steps.
After each step, we either exercise or we do not. If we exercise then we store the
exercised value discounted back to today, otherwise we proceed to the next step.
We repeat this until we reach the final maturity of the option. The problem is that
we have to give our computer an exercise strategy. For example, our strategy could
be "exercise if and only if the option is in the money" or "exercise if and only if
the exercised value is greater than the price of a European option with the same
maturity." Thus to each strategy, we associate a price. But our price should not be
strategy-dependent - after all if we have sold an option how can we be sure the
purchaser is using the same strategy.

The price of the American option should therefore be the maximum of the prices
obtained by any admissible exercise strategy. What do we mean by admissible
here? Consider the exercise strategy, "exercise when the spot reaches its maximum
value on the path." Clearly this is unreasonable as the holder of the option would
not be able to know at a given time whether the maximum had been reached. So
the decision to exercise should be based solely on the information available at the
time of exercise. In mathematical terms, the time of exercise is a stopping time. The
price of an American option, 0, should therefore be the maximum over the set of
stopping times of the risk-neutral expectation of the pay-off at the stopping time. If
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we let Bt denote the continuously-compounding money market account and K be
the strike; then we can write this as

0 =maxE(B,-1(Sr - K)), (12.1)
r

where the maximum is taken over the stopping times r. (The reader who knows the
difference between a supremum and a maximum should use supremum here.) We
are of course evolving S in a risk-neutral log-normal fashion.

12.2 The tree approach

Unfortunately, this has not bought us a huge amount in terms of actually pricing
the option! We cannot run a Monte Carlo simulation for every possible exercise
strategy. We will return to the issue of Monte Carlo pricing below but now turn
to the nicely adapted method of binomial trees. As trees are a backward method,
the problems of exercise immediately disappear. We exercise if and only if the
exercised value is greater than or equal to the unexercised value which has already
been computed. What does this mean in practical terms? We develop a binomial
tree in the same way as for a European option except that at each node, rather than
setting the value to the weighted average of its daughters nodes suitably discounted,
we set the value to the maximum of the intrinsic value and the same weighted
average as before. The additional computational difficulty is tiny.

For example, consider a two-period model with initial spot 100, continuously
compounding interest rates of 10%, and volatility 20%. We take each step to be
one year. Our spot values after one year are then 132.3 and 88.7. After two years
they are 175.1, 117.4 and 78.7. We take our option to be a put with strike 106. See
Figure 12.2.

The values in the terminal nodes for both European and American options are
0, 0, 27.3. In the middle layer, the European values are 0, 15.0 whereas for the
intrinsic values are 0, 17.3. So the American values are 0, 17.3.

The value at time 0 is then the maximum of 6, the initial intrinsic value, and
8.27, the discounted unexercised value. We conclude that immediate exercise is
not optimal and the initial value of the option is 8.27.

Our procedure for a general American option is now clear. We build an n-step
tree. Working backwards, we assign to each node in the final layer the intrinsic
value. In each previous layer, we assign to each node the maximum of the intrinsic
value and the discounted expectation of the values of the daughter nodes in the
succeeding layer. The value at the base node is then our American option price. In
practice, as the tree is an approximation to the underlying Brownian motion which
becomes more accurate with increasing n, we would want to compute the price
for several values of n to make sure that the price has converged as a function of
n. One advantage we have for American options is that we can use the European
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Fig. 12.2. A two-step tree for an American option.

6.12-

6.115-

6.11

6.105

a 6.1

6.095

6.09

6.085

6.08

.-- N V C^O ODD M U) N O) N Mr r r N N

- With control
-- Without control

Steps

Fig. 12.3. The convergence of the price of an American put option price on a
binomial tree with smoothing by averaging odd-step prices with even ones. The
graphs are with and without the European put as a control variate. Spot and strike
are 100. Interest rates are 5%. Expiry is one year and volatility is 20%. The correct
price is 6.090.

price as a control. The idea is similar to the control variate approach to Monte
Carlo. We. know the correct price of the European option, so we know how large the
error is for the European price on the tree. We assume that the American price is
wrong by the same amount and adjust accordingly. Whilst this will not make the
American price totally correct, it will make it more accurate. We illustrate this for
an American put option in Figure 12.3.
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If we take a finely branched tree and mark the nodes according to whether ex-
ercise has occurred, we find that the spot-time domain is neatly divided into two
regions. On one side of a smooth curve, we exercise on the other we do not. The
area where exercise would occur is known as the exercise region. The dividing line
is called the exercise boundary.

Note that the dividing curve will always pass through the strike at the expiry
time, as the decision to exercise there is trivial. Its distance from the strike will
increase as a function of time to maturity as the value of optionality increases with
time to maturity - the earlier we exercise the more rights we give up.

12.3 The PDE approach to American options

Given that PDE approaches are backwards, they are a natural way to price an
American option. In the domain of non-exercise, there is no difference from the
vanilla case. If we Delta-hedge the option to cancel the Brownian part, then the
same arguments work and the value of our option must satisfy the Black-Scholes
equation. The difference is in the boundary conditions. The boundary condition
at expiry is as before. However, we now have a second boundary, the edge of the
exercise domain. And we do not even know where this boundary is.

Our problem is therefore to identify the location of the boundary and to identify
the appropriate boundary conditions on it. The first obvious boundary condition is
that the unexercised value should equal the exercised value there. Once the bound-
ary is known this is enough to fix a solution to the Black-Scholes equation and
hence a price. Of course, we do not know the location of the boundary so this is of
little help.

The boundary is determined by a second boundary condition, which is that the
Delta of the option must be continuous across the boundary. Inside the exercise
domain, the Delta is trivial to calculate: it is just the derivative of the payoff. Thus
for a put it is -1 and for a call + 1. Why is this the correct condition? We focus
on the put case for simplicity. Let X be the point of exercise at time t and f the
solution of the Black-Scholes equation. If the derivative of the unexercised value
is lower than -1 on approach to X from above, we can write

f(X+E)= f(X) + f'(X)e+O(E). (12.2)

Of course, f (X) = K - X, so we have

f (X + E) = K - X + f'(X )E + O(E) < K - (X + E) - 8E - (9(E2), (12.3)

where we have put f'(X) = -1 - 8, with 8 > 0. For E sufficiently small, this
implies that f (X + E) < K - (X + E), which means that the exercised value is
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Fig. 12.4. The exercise boundary for an American put deduced from a binomial
tree for various volatilities. Spot is 100, strike is 100, r is 5%, maturity is 1 year,
and volatilities ranges from 12% to 36% going downwards. The graininess arises
from the method of estimation.

greater than the unexercised value. This is impossible as we are inside the domain
of non-exercise. We therefore conclude that f'(X) > -1.

What if f'(X) is greater than -1? We show that a smaller value of X would lead
to greater value at X. The solution of the equation will vary continuously with X.
Let X E = X - E, and let fE be the solution associated with moving the boundary
smoothly, so that at time t it is X - E. Then for e sufficiently small we will have
fE(s) > -1 on the interval [X - E, X]. Hence there exists a positive 8 such that
fE (s) > -1 + S on that interval.

It follows from the mean-value theorem that

fE(X) > K -X +E+E(-1+S)=K -X +E8 > K -X. (12.4)

Moving the boundary back by e has therefore increased the value of the option
at X. This shows that the boundary was not in an optimal position. We therefore
conclude that for the boundary to be optimally placed we must have f' (X) = -1.

To summarize, we have shown that the price of an American option satisfies
the Black-Scholes equation in the domain of non-exercise. It also satisfies three
boundary conditions. At expiry it must agree in value with the pay-off for all values
of spot. On the boundary of the domain of non-exercise, it must agree with the
pay-off and it must have derivative equal to the derivative of the pay-off also. If
one knew the location of the boundary this would be too much data, as specifying
the value at the boundary is enough to fix the solution uniquely. Instead we have a
free boundary-value problem - the boundary is determined by being that boundary
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for which the solution has derivative equal to that of the pay-off. Whilst there is a
theory of such free boundary-value problems, it is not sufficiently well-developed
(or more likely it is not possible to develop the theory sufficiently) to give us an
analytic solution. Indeed, developing an analytic solution for the price of an Amer-
ican put option is one of the great unsolved problems of mathematical finance.
(Warning to PhD students - do not take this as inspiration!)

We therefore must proceed numerically. In fact, the solution can then be found
quite simply. We use essentially the same procedure as in the tree case. Using an
explicit finite difference method, the value of the option is simulated on a grid and
backwards inducted. This is the same procedure as in the European case. The only
difference now is that, as in the tree method, at each point of the grid we take the
maximum of the exercised and unexercised values, before proceeding to the next
layer. Here, as in the tree case, the crucial point is that all the future values are
known before the exercise decision is decided, which is possible provided we are
using a method which is backwards in time. If one uses implicit finite difference,
the algorithm becomes trickier.

We refer the reader who is further interested in PDE approaches to solving
American options to [139] or [140].

12.4 American options by replication

An alternative method for carrying out the numerical integration is to approximate
the American pay-off by using solutions of the Black-Scholes equation. From a
theoretical point of view, this constitutes approximating the American option by a
portfolio of European options.

Suppose our American put option has expiry at time T. We divide time into
segment to = 0 < ti < t2 < < t = T. At time t,,, the value is just the pay-off.
Our first approximation is therefore the European option with the same pay-off and
expiry. Call this option On. At time tn_1, we can compute the value of 0, precisely:
it is just the solution of the Black-Scholes equation with expiry time t - tn_1.

Let BS(S, t, or, K) denote the solution of the Black-Scholes equation for a put
option with strike K, spot S, volatility a and expiry t.

We numerically find the point where the value of On becomes less than the
exercised value. That is the value of spot where

BS(S,t,, -tn_1,6,K)=K -S.

We take this point, Xn_1, to be the exercise boundary at time to-1. In the unex-
ercised domain, the value of our American put will be well approximated by the
value of On but in the exercised domain we want it to be K - S.

If we imagine actually hedging an American option then the important thing is
not that the value of the American option is K - Xn_1 in the exercised area since
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it will be exercised as soon as the domain is entered. Instead the important issue is
that the derivative of the American put at the exercise boundary is -1 as we showed
in the previous section. We therefore adjust our portfolio in such a way as to make
this be true. We therefore add a European put option struck at with notional
equal to 1 plus the Delta of the European option. That is chosen so that the sum of
the negative of the notional and the Delta of the European option expiring at time
t,,, is -1. Denote this new European option by The Delta of the portfolio at
t = and S = X is of course not defined since the pay-off of a vanilla option is
not differentiable at the strike. However the Delta of the portfolio as S converges
to X from below is -1, as desired.

The portfolio Pi_1, consisting of O, and is easy to price at any previous
time as the sum of two European options. We can therefore repeat this operation
at time We find the point where the value of becomes less than
K - S. We compute the Delta of there and add in an option with the
appropriate notional to make the Delta of the extended portfolio, equal to
-1 as S tends to X from below.

We now just iterate this procedure back to n = 0. The value of our American put
is then taken to be the value of Oo at today's spot at time 0. All the Greeks are also
just the Greeks of the portfolio.

The remarkable aspect of this approach is the speed of convergence. A very
accurate price can be obtained with only 8 steps as opposed to about the 50 or
more that are required for a tree or a finite difference method. The reason for this
effectiveness is that we are making good use of the structure of the Black-Scholes
equation. Our approximating functions are already solutions so we not need to do
small stepping to compute their values. We quote some results from [81]. For a
two-year American call option, spot 100, strike 105, volatility 11.35%, domestic
rate 4.25%, and dividend rate 6.5%:

2-step replication 2.776;
4-step replication 2.853;
8-step replication 2.879;

PDE price (501 x 507 grid) 2.878.

The approach given here is of course related to the replication method for pric-
ing continuous barrier options in Chapter 8. Here, as there, an important aspect of
the method is the fact that we only replicate up to the exercise boundary and not
beyond it., We are able to do so by a non-arbitrage trading strategy argument. We
start off holding the approximating portfolio; we continue to hold it until the spot
crosses the exercise boundary or the expiry time is reached. If the spot touches the
exercise boundary, the American option is exercised and the portfolio is liquidated.
Assuming our method works reasonably, these two values are almost equal and in
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the theoretical limit as the step-size goes to zero they are equal. In any case, the
portfolio no longer exists behind the boundary so replication there is both unnec-
essary and irrelevant.

It is worth noting that we are really only using two properties of the Black-
Scholes model for this argument. The first is the continuity of the paths that are
followed by the spot price which allows us to liquidate on the boundary. The sec-
ond is the deterministic nature of the pricing function. This means that as well as
knowing the value of a vanilla option for any spot, strike and expiry today, we also
know today what the value of a vanilla option will be at any time in the future for
any spot, strike and expiry.

Both these properties are retained by models allowing the volatility to be a de-
terministic function of time and spot. However, the second property fails for fully
stochastic volatility models, as future prices will depend on the stochastically-
evolved value of volatility. On the other hand, for jump-diffusion models, the first
property fails as the spot can jump across the boundary. A jump-diffusion model
in which the jumps were only one-way and could not cross the boundary would,
however, satisfy both properties.

12.5 American options by Monte Carlo

After having demonstrated above the great superiority of backwards methods for
pricing American-type options, let us now look at the use of the classic forward
method Monte Carlo simulation. Why would we want to? When working with suf-
ficiently complicated multi-asset models, it is not clear how to apply tree and PDE
methods. For example, suppose we have two assets with different time-dependent
instantaneous volatility curves and an American `selector' put option which allows
us to sell either one of the two with strike K at a time of our choice. It thus has
pay-off,

max(K - Si, K - S2, 0). (12.5)

We therefore need to simulate both assets' price movements simultaneously.
The problem with a tree method is that the time-dependence of the instanta-

neous volatility curves destroys the recombining nature of the binomial tree. To
see this consider a single asset. Let the asset follow a risk-neutral log-normal
process,

dS = rdt + u(t)dW
S

(12.6)

which we approximate by discrete binomial steps. Suppose that in the first time
step the volatility is 61 and in the second it is u2. Let a time step be At long.



294 Options with early exercise features

After an up-move and then a down-move we have

6 + U2
log (S2ot) = log(So) + (2r - 1 2 2 At + (al - U2) Ot, (12.7)

whereas after a down-move and then an up-move we have

log (Szot) = log(So) + (2r -
612

2
+ a2

At + (a2 - a1) Ot. (12.8)

So (SZOt) equals Szot if and only if U2 equals o . Thus the time-dependence of
volatility stops the tree from recombining. The number of branches of a non-
recombining tree grows exponentially with the number of time steps, which renders
them impractical in general.

For a single asset option, there is a trick which removes this problem; we simply
vary the size of our time steps so that a ,/-At is constant. The tree then recombines
and the problem disappears. However when valuing an option dependent on two
assets with different time-dependence in their volatilities, we no longer have this
way out; rescaling time can only flatten one of the volatility curves, not both. Thus
to value the `selector option' we need an alternative approach. In case the reader
feels this option is a little contrived, I want to stress that this sort of problem arises
very naturally when evaluating interest-rate options with early exercise features.

Now that we are convinced that there is some point to pricing an option with
early exercise opportunities via Monte Carlo, let us return to the simple American
put option. Once an exercise strategy is chosen, valuation is simple. We simply
divide time into a large number of steps. Evolve the asset along the time steps. At
each time step, we consult the exercise strategy, if it says exercise we return the
exercised value at that time step suitably discounted back to time 0, otherwise we
proceed to the next step. If we reach expiry then we return the final pay-off suitably
discounted. We do this for a large number of paths and take the average.

The American price is of course the maximum over all possible exercise strate-
gies and it is not possible (let alone practical) to try them all. However, we do not
need to try them all. We only need to find the best one. We do not even really need
to find the best one, just one that's good enough to give the correct price to a high
degree of accuracy. This is not so unreasonable. In addition, we are helped by the
fact, from elementary calculus, that the behaviour of a function around a critical
point is quadratic so a small error c in strategy translates into a negligible error of
order E2 in price.

For the American put, we know that the exercise strategy is of the form `exercise
at time t < T if and only S(t) < X(t)' where X(t) is a smooth curve. We also
expect that X(t) should increase with t as fewer rights are given up by early
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exercise the less time there is left to expiry. It is also clear that the exercised
value must be greater than the price of a European put with the same expiry and
strike.

This all means that we can guess a parametrization form for the curve X (t) and
see how well it does. If expiry is at time T, we might therefore try

X(t)=a-,B(T -t)y, (12.9)

with a, ,B, y all positive. We can then use an optimization method to find the best
exercise strategy of this form.

If we were to practically implement such a method, we would probably want to
generate a reasonable number of paths, say around ten thousand, and store them.
We would then using that set of paths, find the average realized price as a func-
tion of a, ,B and y. Moving a, /3 and y around we would search for the optimal
parameters for the exercise for that fixed set of paths. Using the fixed set of paths
reduces the random noise one would otherwise obtain when trying to assess sensi-
tivities to changes in a, ,B and y. Having found an optimum, we would then run a
second Monte Carlo simulation with different paths using the optimal strategy and
see whether the predicted optimal value was actually realizable. If it is, then this
will be a reasonably good predictor for the price. If it is not then the original set of
paths was probably either too small or somehow biased and we need to run with a
larger base set of paths.

The implementation of the optimization is slightly tricky in that if one moves
a, ,B and y by very small amounts then it is possible that none of the ten thousand
paths change time of exercise, and we get zero derivative. If we use an optimization
method relying on differentiation then we have to be sure that our finite differenc-
ing width is sufficiently large to stop this occurring. Alternatively, one could such
a simplex-type method which does not require the derivatives but might converge
more slowly. See [123] for implementations of optimization methods including the
simplex method.

Of course, we cannot be sure by exercise strategy estimation that we have found
the right price, we can only be sure of having found a lower bound for the price.
Nevertheless, in settings where other methods are impractical, Monte Carlo sim-
ulation can provide a good way of estimating the price of an option with early
exercise features. We discuss these techniques further in Chapter 14.

12.6 Upper bounds by Monte Carlo

The method of the previous section can be very effective but can only give lower
bounds for the price of an American option. In this section, we develop a method
for finding upper bounds for American and Bermudan option prices by Monte
Carlo due to Rogers [129].
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The arbitrage-free price for an American option is equal

sup IE(e-' 7 f (S,)),
t

where the supremum (or maximum) is taken over all stopping times r. If we in-
crease the set of random times then the price can only go up. If we allow all random
times, we get a higher price. One random time clearly gives the highest price: the
time defined by being the point of optimal exercise along the path when foresight
is allowed. Thus we have that _

IE(max(e-'t f (St)))

is an upper bound.
Unfortunately, it is not a very good upper bound. Allowing the holder to see

the future means that the price is much higher and the estimate is not particularly
useful. How can we tighten the upper bound? If we take a martingale, Mt, of initial
value zero, that is the discounted price process of a portfolio of initial value zero,
we can subtract before taking the maximum. Because Mt is a martingale the initial
value of the American option is equal to

sup IE(e-tt f (St) - Mt),
z

and when we pass to exercising with maximal foresight we still get a higher num-
ber, so we have that

1E(max(e-'t f (St) - Mt))
is still an upper bound for the price.

A slight subtlety here arises from the fact that we must take the expectation of
Mt at some point. However, it is possible not to exercise an American option at all.
One solution is to take f to be the positive part of the pay-off so for a call we take
the pay-off at maturity time to be

(K - St)+,

rather than K - St. This means that we can assume that the American option is
always exercised at some point; for if it has not been exercised before time T its
value will be zero which is the exercised value there.

So whatever martingale, Mt, with Mo equal to zero, we pick we get an upper
bound. We therefore search for a best choice. It is a theorem of Rogers that there
exists a choice which makes the upper bound equal to the price of the option.
Unfortunately, his proof is non-constructive and depends on knowing the price
process for the American option which means we cannot directly apply it. We can
interpret Rogers' result to say that we can hedge an American option perfectly
by investing its value at time zero and trading appropriately. This hedging will be
effective even if the option holder is exercising with maximal foresight.

This is a little surprising: even if the holder can see the future we can hedge our
exposure to his exercise strategy. However, the seller's price ought to be enough to



12.8 Further reading 297

cover against any exercise strategy or we are not truly hedged. As in option pricing
we only live once, we have to be hedged against the the possibility that the buyer's
ineptitude by luck imitates seeing the future. Thus a seller's price that did not allow
hedging against maximal foresight would not be sufficient.

Whilst Rogers' result is non-constructive, we can optimize by picking a family
of portfolios Mt(a) depending upon a parameter or parameters, a. As in the lower
bound case, we generate a set of paths and then carry out an optimization of the
price by varying a. What sort of portfolio would we choose for a? For an American
put option, the obvious Mr is a European put option minus cash bonds equal to
its initial value. We can make a the notional of the contract and then optimize.
This approach can generate tight upper bounds. As with the lower bounds, the
main advantage of this technique lies in its applicability to interest-rate options,
particularly Bermudan swaptions, and to multi-asset options rather than for the
pricing of single-asset options. We discuss the implementation of this method for
a Bermudan swaption in Section 14.10.

12.7 Key points

An American option can be exercised at any time before expiry.
A Bermudan option can be exercised on any one of a finite number of dates.
An American option is always worth at least as much the underlying European
option.
Exercise strategies are interpreted mathematically as stopping times since they
must depend on the information available at the time.
Trees and PDEs are natural methods for pricing American options as they are
backwards methods.
Backwards methods are better for pricing American options because they natu-
rally incorporate the unexercised value of the option.
The PDE problem for the American option is a free boundary problem where the
boundary is not determined but instead the value of the function and its derivative
are determined at the boundary.
We can get lower estimates for American option prices by picking an exercise
strategy and then pricing by Monte Carlo.
We can get upper bounds for American options by allowing exercise with maxi-
mal foresight on portfolios consisting of the American option minus a European
option.

12.8 Further reading
The tree approach to American options was developed by Cox, Ross & Rubinstein,
[42].

For furtherdiscussion of the theory in the PDE approach we refer the reader to
[140].
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The replication approach discussed here was introduced in [81].
A good overview of various methods for pricing American options on multiple

assets is Chapter 11 of [29]. Tilley develops a method based on the bundling to-
gether of paths in [135]. Broadie & Glasserman develop two different methods in
[27] and [28].

There are quite a few approaches to early exercise under Monte Carlo. The two
we have given have the virtue that we can be sure that they bracket the price,
whereas many other methods have biases but it is not always clear in which direc-
tion. A good overview is Chapter 16 of [52]. See also [56] for numerical compar-
isons of various methods. There is also discussion of various aspects in [79].

The upper bounds method we have developed here is due to Rogers, [129]. A
similar approach is developed in [67].

The use of sub-Monte Carlo simulations for obtaining upper bounds was sug-
gested by Andersen and Broadie in [8]. Various enhancements are suggested and
simpler derivations are given in [88].

A comprehensive comparison of tree methods for pricing American put options
is carried out in [91]. The precise choice of tree parameters and how the tree is
implemented turns out to have a considerable effect on efficiency.

The least-squares method of Longstaff and Schwartz, [104], has become the
most popular approach to early exercise in Monte Carlo simulations in recent years.
Its pros and cons are discussed in detail in [90].

12.9 Exercises

Exercise 12.1 Suppose two options, A and B, have the same pay-offs but A is
exercisable on all the dates B is and more. Prove that A is worth at least as much
as B. Give an example where they have the same value.

Exercise 12.2 Consider a forward which gives the right and obligation to buy a
stock at a fixed price K during a period [t1, t2]. Thus is if the option has not been
exercised before t2, it must be exercised at t2. How will the price of this derivative
compare to that of an ordinary forward? How will it compare to the price of a
American call option exercisable across the period [t1, t2]? How would you carry
out the practical pricing of this option?

Exercise'12.3 Does put-call parity hold for American options in general?

Exercise 12.4 Show that if an American and European option with the same pay-
off are priced on the same tree then the estimated price for the American option is
always at least as high as the estimated price for the European option.
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Exercise 12.5 Show that if cr(t) is the instantaneous volatility function for a stock
S then it is possible to choose uneven time steps in such a way as to make the tree
for log S recombine.

Exercise 12.6 An American-Asian call option pays the positive part of the running
average value of spot across a discrete number of dates at the time of exercise. How
would you price this option?

Exercise 12.7 The perpetual American call option is a call option that can be ex-
ercised at any time in the future and never expires. What will its value be in a
positive-interest-rate world? What will its value be in a zero-interest-rate Black-
Scholes world?

Exercise 12.8 Suppose we have American options, A and B, and B has half the
notional of A but is otherwise identical. Consider a portfolio, C, consisting of two
contracts of type B. Show that it carries more rights than A. How will its price
compare to the price of A?

Exercise 12.9 Suppose we have a forward contract with one year expiry with the
additional property that either party can cancel the contract after six months. How
much will this contract be worth?



13

Interest rate derivatives

13.1 Introduction

One of the many forms of risk a company has to manage is interest rate risk. A
modern company is typically financed by a mixture of debt and equity. In other
words, it first raises money from investors by issuing shares and then typically
borrows heavily to provide the rest of its funding. This is often called leveraging or
gearing. The idea is that the shareholders get much more `bang for a buck' because
the company has several dollars to play with for every dollar invested.

On the other hand the company has to pay interest on the debt and in general
eventually repay it too. If the interest rate varies according to the prevailing rates
in the market, it is said to be floating. The interest payments can be a severe burden
on a fledgling company and if they go up can cripple it. The company may well
therefore want a fixed-rate loan, that is a loan for which all the interest payments are
fixed in advance. This however introduces extra complications. Suppose rates fall
during the period of the loan; the company will then want to refinance. However,
the lending bank will not be so keen. It has a fixed stream of interest payments.
coming in at above the prevailing rate and will not want to break the contract early
as that will simply mean losing money. Indeed, the bank may well have matched the
fixed stream of payments with another fixed stream of payments going out, and thus
will be neutral to interest rate changes. The bank will therefore charge the company
a breakage fee equal to the loss. This fee will precisely match any gains from
refinancing the loan, and the company is therefore stuck with the high interest rates.

The company, being aware of all this, might ask the bank to include a clause in
the loan contract allowing it to break the contract. From the bank's point of view,
this is equivalent to granting the company an option to swap a fixed rate of interest
for a floating rate of interest at a time of the company's choice. Would the bank
be willing to include such a clause? Yes - for the right price. All the bank does
is charge a fee, or increase the interest rate to cover the cost of the option. The
bank may well cover the option by buying an identical one in the market place.

300
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This option is called an American swaption as it gives the right to swap interest
payments at an arbitrary time.

Rather than going straight to a bank for a loan, a company may instead issue
bonds in the market. Investors buy the bonds from the company and typically re-
ceive a fixed interest payment once a year called the coupon, and at the expiry of
the bond, their original investment, the principal, is returned. The pricing of such
a bond will depend on the prevailing interest rates and the credit-worthiness of the
company. Here, we will stick to studying the former rather than the latter.

As with a straight loan, the company may worry about falling interest rates. It
might therefore issue a callable bond, which the company can call, that is repay
early. Typically the right to call is restricted to a set of pre-specified dates. Thus
the buyer of the bond is really granting the company a Bermudan swaption - the
right to swap a fixed stream of interest payments for a floating one on a discrete
set of dates. The price of the bond in the market will therefore reflect this fact and
go down accordingly. The purchaser of the bond will need to price the option to
decide whether the bond is a good buy.

At a more mundane level, consider a homeowner with a mortgage. In the UK,
interest payments typically float with prevailing interest rates. In the US, interest
payments are typically fixed. However, fixing the rate is becoming more popular in
the UK. The homeowner is then protected against rises in interest rates, and is faced
with a wholly predictable stream of payments. Suppose the homeowner wishes to
sell his house or refinance the mortgage, or, for whatever reason, wishes to early
terminate a fixed-rate mortgage. If interest rates have fallen in the meantime, the
bank is taking a hit. As in the case of a company loan the bank is effectively grant-
ing an option on a swap if it does not make a charge. Yet in the US, that is precisely
what happens, mortgages can be early terminated at no cost to the borrower. In the
UK, there has typically been a fee for early termination equal to the loss the bank
suffers from early termination. However, there is a widespread public perception
that such fees are unfair, and borrowers have on occasion managed to avoid them by
publicly bleating about the unfairness. The solution is probably for banks to restrict
sales of fixed-rate mortgages to ones with early termination allowed, but to price
in the additional cost of the option which is what implicitly happens in the US.

At this stage, it is worth examining what a bank actually does! The principal
business of a bank is borrowing and lending money. Money is made on the differ-
ence between the rate it pays to borrow and the rate it receives for lending. The
spread is of course dented by those creditors who go bankrupt in the meantime,
and an inherent part of the spread is that the bank is taking on risk.

The bank can borrow in a number of different ways. The simplest is to take
money on deposit from savers, paying them interest in return for the use of their
money. The bank can also issue bonds just like any other company. Another easy
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but generally more expensive way is to borrow on the interbank lending market. For
each currency, there are a number of interest rates, called LIBOR rates, at which the
bank can borrow. The different rates correspond to different lengths of borrowing.
Thus there is typically a one-month rate, a three-month rate and a six-month rate.
LIBOR stands for London Interbank Borrowing Rate.

What do we mean by a rate here? The reader should now forget everything to
do with continuous compounding we have said so far in this book! Interest rates
are never quoted continuously in the market and are generally simple rates. Whilst
continuous compounding is a convenient approximation for pricing options in the
equity and FX markets, it is positively misleading in the interest rate markets.

Thus if the three-month LIBOR rate is 5% on sterling, a bank can borrow a
million pounds today in return for the obligation to repay a million pounds plus
5% of a million pounds times the accrual period. The accrual period in this case
is a quarter, as three months is a quarter of a year. The quoted rate of 5% is a rate
of 5% a year, but is only available for the period of three months. Note that if we
compounded this borrowing, and interest rates did not change, we would end up
paying more than 5% for the year because of the interest on the interest.

In equation terms, if we borrow £N for a period r and the r-period LIBOR rate
is f then the interest payable is Nf z, and it is payable at time r. The cashflows are
receiving £N today and paying £N(1 + f r) at time r.

Interest rates are generally quoted in this way, and such rates are called annual-
ized rates.

What a bank does is continuously borrow and lend. An important consideration
for the bank is that it wants to match its receivables and obligations. For example,
suppose most of the bank's money comes from short-term deposits which can be
withdrawn at any time and the interest payable floats with short-term interest rates.
Suppose the bank makes a long-term fixed-rate loan to a company. The maturity
mismatch exposes the bank to risks. It may have a short-term liquidity risk if too
many of its depositors want their money back at once. It is also exposed to inter-
est rate risk - if the floating rate it pays the depositors rises above the fixed rate
received from the company then the bank is making a loss. The bank will there-
fore try to match maturities in money it receives and pays, in order to avoid these
problems, and will use interest rate derivatives when appropriate to reduce risks.

13.2 The simplest instruments

13.2.1 Zero-coupon bonds and present valuing

We have talked about swapping a stream of fixed interest payments for a stream of
floating ones. This sort of contract is one of the most widely traded and simplest
products to price mathematically. Indeed, it can be perfectly hedged in a static
model-independent fashion. In this section, we define and price swaps. In general,
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the best way to analyze an interest rate derivative is in terms of the cashflows in-
volved, and we illustrate this here.

All pricing of interest rate derivatives assumes the existence of a continuum of
zero-coupon bonds which can be freely bought and sold, including short-selling as
necessary. We will return to why it makes sense to make this assumption later but
for now note that the bonds in question do not exist. The zero-coupon bonds will
always have notional one. They will almost always be worth less than their face
value as a bigger value is equivalent to negative interest rates, and so their values
will be less than 1. In fact, as a function of maturity we will obtain a function which
is monotone decreasing and ranges from 1 at T = 0 to 0 as T becomes infinite.

First, let's establish some notation. We denote by P (T) the value today of a zero-
coupon bond expiring at time T. When we want to think of its value at time t, we
write P (t, T).

The importance of the zero-coupon bonds, P (T), is that we can write any deter-
ministic set of cashflows as a linear multiple of such bonds. For example, suppose it
is agreed to lend a company a principal N at time 1 year and the company is to pay
a fixed six-monthly annualized-rate of 10% for five years, and then at time 6 years
to return the principal. We can write this transaction in terms of zero-coupon bonds:

10

-NP(1) + L 0.05NP(1 + 0.5j) + NP(6). (13.1)
.i=1

The important thing is that, upon substituting the values of the bonds, we have a
value for the entire transaction. If this number is zero, the loan is at fair value. If
it is positive, the lender makes a profit and if negative a loss. Note that this is the
value today of the entire transaction - the value a year from now might be totally
different but this would not matter as all the cashflows could have been hedged with
zero-coupon bonds, making all interest-rate changes irrelevant. This technique for
valuing trades is very standard and is called present-valuing or PVing.

13.2.2 Forward rates

Of course, the value of P(T) is closely rated to prevailing interest rates. In particu-
lar, there is a one-to-one correspondence between LIBOR rates for the periods over
which they exist and the value of zero-coupon bonds. Suppose the T -period rate
is f. This means I can loan £1 today and receive £(1 + f T) at time T. Equivalently,
I can loan £(1 + f T)-1 today and receive £1 at time T.

However, the right to receive £1 at time T is equivalent to owning a zero-coupon
bond with expiry T. The value of P (T) must therefore be (1 + f T)-1. Inverting
this relationship we have

f=
P(T)-1 - 1

(13.2)
T
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The simplest form of interest rate derivative is a for-Ward-rate agreement, or
FRA. This is an agreement to pay a fixed simple rate of interest on a fixed sum of
money between two fixed dates in the future. We take the sum of money, usually
called the notional, to be 1 since it will simply multiply through everything. Let the
two times be T1 and T2. If the fixed rate of interest is f then our cash flows are 1
at time T1 and -(1 + (T2 - Tl) f) at time T2. If we take the PV of these cash flows
we have

P(T1) - (1 + (T2 - T1)f)P(T2). (13.3)

The fair rate of interest is then the value that makes the transaction have zero value.
Rearranging, we then have that

P(Ti)
f = P(T2) (13.4)

T2 - T1

We say that f is the forward rate from time T1 to time T2. Note that the values
of any two of f, P(T1), P(T2) fix the value of the third. Note also that the forward
rate says absolutely nothing about what the interest rate will be at time T1; it simply
says what the no-arbitrage rate is. In general, we would not expect the forward rate
to be in any way constant; rather it will vary with time. Note that the fact that
cashflows were synthesizable using zero-coupon bonds means that it is possible to
perfectly statically hedge the forward-rate agreement, so the implied forward rate
is enforced by no-arbitrage considerations.

Example 13.1 We wish to know the forward rate for putting money on deposit
from 1 year to 1.5 years. We therefore look up the discount factors for 1 year and
1.5 years and find

P(1) = 0.956, P(1.5) = 0.92.

The forward rate is therefore

1 0.956 - 1J1 = 0.0783.
0.5 0.92

Once we have entered into a forward-rate agreement, it will soon cease to have
zero value. We will want to know what value it has. Suppose the strike of a FRA is
K and the current forward rate is f. What is the value of the contract? The value
will depend on which side of the contract you hold. Suppose we are the borrower.
The PV of the cash flows is

P(T1) - (1 + (T2 - T1)K)P(T2). (13.5)

We can rewrite this as

(1+(T2-Tl)f)P(T2)-(1+(T2-Tl)K)P(T2)=(f -K)(T2-Tl)P(T2). (13.6)
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Thus the value of a forward-rate agreement is the difference between the prevail-
ing rate and the strike multiplied by the accrual period, payable at the end of the
agreement.

Now suppose we have three times, T1, T2, T3; we could either enter into a
forward-rate agreement from time T1 to time T3 or we could enter into two suc-
cessive rate agreements: one from T1 to T2 and then the second from T2 to T3.
These two transactions ought to be equivalent. Let fib denote the forward rate from
time Ti to time Tj. We have, of course, that

P(T')

P(T') (13.7)fii = Ti - Ti

In the first case, we invest a £1 at time T1 and receive £(1 + f 13 (T3 - Tl )) at time T3.
In the second case, we receive £(1 + f12(T2 - T1)) at time T2 and then immediately
give it up again, in order to receive £((1+ f23(T3 -T2))(1+ f12(T2-Ti))) at time T3.

If there is to be no arbitrage then we must have

1 + f13(T3 - Ti) = (1 + f23(T3 - T2))(1 + f12(T2 - T1)). (13.8)

Fortunately, this follows immediately from (13.7) since it is equivalent to

P(T1) _ P(T1) P(T2)

'
(13.9)

P(T3) P(T2) P(T3)

which is certainly true.
The important thing about (13.8) is that it expresses compounding effects. Putting

money on deposit for six months at an annualized rate of 5% and then rolling it into
another six-month deposit at the same rate is not the same as putting money on
deposit for one year at an annual rate of 5%.

13.2.3 Swaps

Whilst the forward-rate agreement involves a principal, its close relative, the in-
terest rate swap, does not. Rather than agreeing with a counterparty to put some
money on deposit for a fixed period of time in the future at a fixed rate, we instead
enter into a contract to pay him the floating rate of interest on a notional, whilst
he pays us a rate fixed in advance. As the interest payments go both ways, there
is no need to exchange principals. Thus whilst the contract has a notional which
multiplies the cashflows, the total sum of money exchanged will actually be quite
small in comparison. We take the notional of the swap to be 1 in what follows, as
the notional will just multiply through everything.

Unlike a FRA, a swap is generally a multi-period arrangement. It may last sev-
eral years and will involve payments at regular intervals. These intervals are typi-
cally three or six months long. However, from a mathematical point of view, there
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is little to be lost be considering unequal interval lengths - indeed in the real world
the intervals will vary by one or two days in length in any case. Suppose we have
fixed dates

To < T1 < .. < T.

Let r j = T j+1 - T. The fixed part of the swap then involves making payments at
the times T j+1 for j < n of value X r j , where X is the pre-agreed swap rate. The
present value of these cashflows is then

n-1

XrjP(Tj+i)
j=o

If we are the person making the fixed payments, the swap is said for us to be a
payer's swap. If we are the person receiving the fixed payments, we are said to be
in a receiver's swap. The set of floating payments is called the floating leg and the
fixed ones are called the fixed leg.

Let fj be the forward rate from Tj to Tj+1. The value of the cashflows on the
floating leg is

n-1

E tjfjp(Tj+1)
j=0

as we can turn each of the individual floating rates into a fixed rate by using a FRA.
To see this, recall that at all times

fj r1 Pj+1 = Pi - Pj+1,

and the value of the right-hand side is fixed by no-arbitrage. We therefore have that
the unique arbitrage-free swap rate X satisfies

n-1 n-1

X Y, zjP(Tj+1) = Y ZjfjP(Tj+1). (13.10)
j=o j=o

Dividing through, we get

where

n-1
X = wjfj,

j=o

tj P (Tj+l)
1n-1

I riP(T1+1)

M -

i=o

(13.12)

The weights w j have the interesting property that w j = 1. This means
that the swap rate is a weighted average of the forward rates. It must therefore
always lie between the lowest forward rate and the highest one. We shall also see
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when modelling rate movements that most of the change in X comes from the f j
in (13.11) whilst the w j are comparatively constant.

Of course, f j is expressible in terms of zero-coupon bonds and in particular we
have that

P(Ti)

tjfl = (Tj+i - T1) Tj+1 - T1 P(T1+1)

Thus we can rewrite the swap rate as

PO - PN
n-1

Y_ r1P(T1+i)
1=0

(13.13)

(13.14)

This reflects the fact that investing a sum at a floating rate over multiple periods is
just the same in PV terms as buying a zero-coupon bond with the same termination
date.

Example 13.2 Our discount curve is

0.0
0.5

1

0.975609756
0.949991019

0.923971427
0.898032347

0.872449235

0.847375747
0.822893781

0.799043132
0.775839012
0.753282381

0.73136604
0.710078203
0.689404609

0.669329748
0.649837584
0.630911969
0.61253689

0.594696597

0.577375683
0.560559119
0.544232274
0.52838092
0.512991226
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We wish to find the swap rate for a swap starting in year with six-monthly pay-
ments over 3 years. We thus have that

tj =1+0.5j,

for j = 0 through 6. We need the discount factors for P (t1) for each j. The rate is
equal to

P(1) - P(4)
6

> 0.5P(1 + 0.5j)
i=i

We substitute the numbers from the curve to get

swap rate = 0.0585.

The underlying forwards are

0.0563, 0.0578, 0.0586, 0.0592, 0.0595, 0.0597,

which straddle the swap rate as we would expect from the fact that it is a weighted
average of the forward rates.

As with a FRA, the fact that a swap is initially worthless does not guarantee that
it will be worthless in the future. In fact, it will almost certainly not be. Let B equal

r P(Tj+1), which is sometimes called the annuity of the swap. If the swap
is struck at K and the current implied swap-rate is X, then the value of the swap
will be

(X - K)B.

The simplest way to see this is that X is the swap rate such that the floating and
fixed legs are of equal value. Thus if the fixed rate is K, we can write K =(K - X) +
X,
which means that if 'the fixed leg has rate K, the swap is equivalent to a swap
with a fixed leg at rate X together with a contract to pay the fixed amount (K - X)
times B. The value of paying this amount is therefore simply (X - K)B since we
are paying, and the swap struck with strike X is valueless by definition. Note that
the definition of B has already taken all the discounting into account.

Sometimes in complicated transactions, there is need for a swap with variable
notional. That is the paying and receiving amounts on the jth period are multiplied
by a pre-specified sum Nj, for each j. A similar argument, which we leave to the
reader, then shows that the arbitrage-free swap rate is

n-i
X=Jfjwj, (13.15)

j=o
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where
N1 t1 P (T1+1)

w1 = (13.16)
n-1

N1 r1 P (T1+1)
1=0

Note that the weights still add up to 1.

13.3 Caplets and swaptions

13.3.1 Definitions

The first obvious consequence of trading FRAs and swaps is that there will be a
market for options on them. An option on a FRA is a called a caplet or a floorlet
depending on whether it's a call on the rate or a put on the rate. The option's expiry
is typically the start of the forward-rate agreement. Thus if the FRA runs from time
Tl to T2, at time Tl we have the option to receive a sum equal to the present value
of the FRA which is, of course,

(f - K)(T2 - Tl)P(T2),

where f is the prevailing forward rate from Ti to T2 at time TI, and K is the strike of
the FRA which is also called the strike of the caplet. Thus the pay-off of a caplet is

(f - K)+ (T2 - Ti)P(T2)

Similarly, the payoff of a floorlet is

(K - .f)+(T2 - Ti)P(T2)

Typically caplets and floorlets are sold in large bundles which are called caps and
floors. A ten-year cap would consist of forty three-month caplets; the cap would
allow the purchaser to be sure of never having to pay more than the strike rate of
the cap, as three-month interest rate on its borrowings, for the entire ten years. A
cap is so-called because it means that the borrowing rate for the holder is capped
at the cap's strike for the period of the contract. Similarly, a floor would guarantee
a minimum interest rate for money on deposit.

Options on swaps similarly exist. They are called swaptions. An option on the
right to pay the fixed rate in a swap is called a payer's swaption. An option on
the right to pay the floating rate, i.e. receive the fixed rate, is called a receiver's
swaption. The expiry of the option is normally the start of the swap. If K is the
strike of the swap and B is the annuity then the payoff of a payer's swaption is

(X - K)+B,

where X is the swap rate at expiry, i.e. the prevailing swap rate at the start of the
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swap. This is immediate from the fact that the swap's value is (X - K)B at expiry.
Similarly, the pay-off of a receiver's swaption is

(K - X)+B.

Such swaptions, having one exercise time, are called European swaptions.
Often swaptions arise in the sense of the right to break a swap. However, the

right to break a swap is mathematically equivalent to the right to enter a swap in
the opposite direction at the swap strike. For example, suppose we are in a payer's
swap with strike K which lasts 30 years and we have the right to break once a year.
The right to break is then equivalent to having the choice after a year to enter a
receiver's swap with strike K of length 29 years, or to retain the right to break in
the future. After two years, if we have not already exercised, we have the right to
enter a swap of length 28 years. Thus the right to break is really a swaption with
multiple exercise dates. The big difference from stock options is that the length
of the swap decreases with time, so the asset on which we have an option is not
always the same. Swaptions of this type are known as Bermudan swaptions. The
fact that they represent the right to break a long stream of fixed payments means
that they are very heavily traded. The early exercise rights make Bermudans tricky
to price, and their pricing is still the object of much active research.

13.3.2 Black formulas

First, we need to learn how to price caplets, floorlets and European swaptions. If
we take the forward rate to be log-normally distributed, this is easy once we take
the right framework. The trickiness in applying risk-neutral valuation is that the
forward rate is not a traded asset. However, a forward-rate agreement is a tradable.
If the current forward rate is f, and f covers the period from T1 to T2, the value of
the forward-rate agreement is

(f - K)P(T2),

where K is the strike. Since P(T2) is tradable and K is constant, we have that
fP(T2) is tradable. (Alternatively, we could consider another FRA with zero strike.)
If we take P (T2) to be the numeraire and pass to the risk-neutral measure then'we
have that the ratio of any tradable to the numeraire is a martingale. This says that

f - f P(T2)
. P(T2) '

is a martingale.
We know from our study of martingales and measure changes in Chapter 6 that

the only effect a measure change can have on a log-normal variable is a change of



13.3 Caplets and swaptions

drift. Thus, if in the real-world measure,

df =µ(f,t)dt+ufdW,
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(13.17)

then in the risk-neutral measure, since all martingales are driftless, we have

df =afdW.

Let C denote the value of the caplet; then

Co
E ( CT,

P(0, T2) P(T1, T2)

which is equivalent to

(13.18)

(13.19)

Co = P(0, T2)E((f - K)+)(T2 - Ti). (13.20)

We have thus reduced the problem to computing ]E((f - K)+). However, this is just
the same as valuing a call option on a non-dividend paying stock in a zero-interest-
rate world. (Note that the analogy with a zero-interest-rate world is because the
underlying is driftless.) We thus have that the value of the caplet is

Co = P(0, T2)(T2 - T1)Q(fo, K, or, T1), (13.21)

where

Q(fo, K, or, T) = foN(di) - KN(d2), (13.22)

and

log (LO) + (- 1)1-1 ZQ2T1
d 23)(131 =

U T1
.

and fo is, of course, the initial value of the forward rate. This formula, (13.21), is
generally called the Black formula as a variant was first developed by Black when
pricing options on futures [19].

We notice that, as with a stock option, the formula remains valid for variable
volatilities simply by replacing or with the root-mean-square volatility. In common
with the FX and equity markets, caplets and the caps which they make up are typi-
cally quoted in terms of volatility rather than price. The use of the Black formula is
assumed by both sides even if neither believes it. Another curious aspect of this is
that if one calls a market-maker and asks for a price on a cap, he will quote a single
volatility to be used for all the caplets. However, he will have arrived at this volatil-
ity, by assigning a different volatility to each caplet according to how much he
thinks it is worth, converting these individual volatilities into prices, adding them
up, and then converting back into the single constant volatility which makes the
cap have the summed price.
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13.3.3 LIBOR-in-arrears

The pricing of the caplet was facilitated by the choice of numeraire; in particular the
fact that the forward rate times the numeraire is a tradable meant that the forward
rate was a martingale in the risk-neutral measure and this made life easy. In general,
we will not be so lucky - our good fortune here is really caused by the fact that
we are considering an option on a tradable: the forward-rate agreement. Once the
pay-off is no longer defined in terms of an option on a tradable, pricing becomes
much trickier.

To illustrate this point, consider a contract which is beguilingly similar to a
caplet: the LIBOR-in-arrears caplet. The only difference is that at time TI, instead
of receiving the right to receive

(f - K)+(T2 - Ti)

at time T2, we receive the money immediately at time T1. In other words, the pay-
off has changed from

(f - K)+(T2 - Ti)P(T2)

to

(f - K)+(T2 - T1)P(Ti)

Whilst this change seems small, it destroys our previous argument. If we take
P (T2) as numeraire then we still have that f is a martingale but we no longer need
the same expectation. Let Dt be the value of the contract at time t. We now have

Do -1
P(0, T2)

K)+(T2 - Ti)P(Ti, I1)P(T1, T2) ). (13.24)

We have that P(T,, T1) = 1 and P(T1, T2) = (1 + fTl(T2 - T,))-1. Letting r =
(T2 - T1), we get

Do t)t). (13.25)= E((fT. - K)+(1 + fT ,
P(0 T2)

It is fiddly (but possible) to evaluate this integral for log-normally distributed f : a
slight change in timing has made the formula a lot harder to handle. With multiple
rates, the difficulty is greatly exacerbated and analytical formulas cannot be found.

Another attack is to say that the problems are coming from the fact that the
pay-off is at time T1, whilst we are using P(T2) as numeraire; this mismatch in
times is what messes us up, so clearly we should use P(T1) as numeraire instead.
We then obtain, as in the vanilla caplet case,

Do = P(0, Tl)E((fT1 - K)+)-r, (13.26)
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and life looks good. However, there is a hidden thorn: the expectation is to be taken
in the risk-neutral measure associated with the numeraire P(T1). We do not know
that f is a martingale in this measure so we need to compute its drift. All we have
done is shifted the problem. We shall return to this issue when we examine the
pricing of exotic options; for now we stress the fact that this numeraire-mismatch
problem is central to the pricing of exotic interest rate derivatives.

13.3.4 Pricing a swaption

We can attack the pricing for a swaption in a similar way to the pricing of a caplet.
The key point is to pick a numeraire which makes the swap rate driftless. Thus
suppose the swap rate X is log-normal so we have

dX = g(X, t)Xdt + XcsdW. (13.27)

From our arguments with caplets, we know that if we can find a numeraire, Q, such
that X Q is a tradable asset, then X is a martingale with respect to Q's risk-neutral
measure and thus X will have zero drift.

In fact, for any quantity that is a rate we can expect to be able to find such an
asset. A rate is after all a ratio. Thus if we take the denominator of the ratio as our
numeraire then the rate should become a martingale. For a swap rate we have

_ PO - PN
(13.28)

-rj p (Tj+1)
1=0

The numerator and the denominator of this fraction are both tradables - they are
just linear multiples of zero-coupon bonds. The swap rate is just the ratio of the
values of the floating leg and the annuity. Thus taking the denominator, which is
the annuity of the swap rate, as numeraire, the swap rate becomes driftless. Let
Bt denote the value of the annuity at time t. If Ot denotes the value of a payer's
swaption with strike K at time t then we have that

Oo (OT
Bo = BT = )E ((X - K)+). (13.29)

The value of the expectation is just given by the Black formula, precisely as for a
caplet, and Bo is immediately observable as the appropriate multiple of the zero-
coupon bond prices. We thus have the price of a swaption. Similarly, we can value
a receiver's swaption, simply by replacing the Black formula for a call with the
Black formula for a put. Just as with caplets and equity options, it is typical to
quote swaption prices in terms of volatilities, the Black model being assumed by
both sides in the transaction. As for equity and FX options, swaptions with different
strikes are quoted with different volatilities reflecting traders' lack of belief in the
log-normal model.
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As with caplets, the argument we have presented here is heavily dependent on
the choice of numeraire; the numeraire is the unique tradable, B, such that X B is a
tradable. Thus it is the unique numeraire such that X is a martingale in the implied
risk-neutral measure. There will be circumstances in which we will want to evolve
multiple swap rates simultaneously, or forward rates and swap rates simultane-
ously; we will then need to understand swap rate drifts under different numeraires.
We will return to this point when developing pricing models for exotic options.

The sharp reader will have noticed that there is a slight inconsistency. We price
caplets by assuming forward rates are log-normally distributed and we price swap-
tions by assuming swaps are log-normally distributed. However, forward rates de-
termine swap rates in a complicated way. Thus if a forward rate is log-normal, the
swap rate cannot be log-normal. However, the inconsistencies involved in assum-
ing joint log-normality are small, and it is market practice to ignore them. (See for
example [127].)

13.4 Curves and more curves

13.4.1 Introduction
Our discussion of swaps and forward-rate agreements has been dependent on the
existence of zero-coupon bonds which can be freely bought, sold and even shorted.
This is a distortion for a number of reasons but is nevertheless a reasonable way to
proceed: in this section we explain why. There are, in fact, many yield curves for
each currency whose levels depend on the riskiness of the instruments involved. We
discuss the curves for sterling but the issues are essentially the same for the euro
and US dollar curves. We will generally talk about constructing discount curves
rather than yield curves, as the discount curve is just the price of a zero-coupon
bond as a function of maturity which is what we generally want. On the other hand,
the yield curve is a notional measure of the effective annual interest rate which we
would receive for investing in such a bond. The yield curve is useful from a qualita-
tive point of view as it strips out redundant information by converting everything to
interest rates, but to work mathematically with the yield curve is simply annoying.
With all the discount curves, one thing to bear in mind is that the theoretical curve
will not actually represent a price one can obtain in the market. If we call a market-
maker and ask to buy or sell, he will always quote a pair of prices straddling the
theoretical price; thus there is always a spread around the theoretical curve.

13.4.2 Gilts

The lowest yielding instruments are, of course, the riskless ones - for example, UK
government bonds which are generally known as gilts. The UK government does
not generally issue zero-coupon bonds so all we can observe in the market is the
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price of coupon-bearing bonds. However, a coupon-bearing bond is decomposable
into a sum of zero-coupon bonds. This is clear if we remember that the bond is
really just a sequence of cashflows. The cashflows are the coupon at each coupon-
payment date and the repayment of the principal at maturity. Any cashflow is just
a zero-coupon bond with expiry equal to the timing of the flow and notional equal
to the size of the cashflow.

This means that we can attempt to fit a theoretical discount curve for zero-
coupon bonds to the observed prices of UK gilts. The curve should be reason-
ably smooth and reproduce the prices of all traded gilts exactly. Curve fitting is
more a tricky programming issue than a conceptual one so we will not explore
precisely how to do this. The main idea is that one should build up the short ma-
turities first using the prices of the short-dated gilts and then gradually bootstrap
up to the longer ones, using the fact that the initial coupons now have well-defined
present values. This will only give us certain points on the gilt curve associated to
gilt payments. Typically, one would then interpolate to find the intervening points.
Generally, the interpolation is carried out in a log-linear fashion; that is the logs
of two neighbouring points are taken and then interpolated linearly to provide the
logs of the intervening points.

13.4.3 Repos

The problem with the gilt curve for pricing options is that a gilt cannot be truly
shorted. If we sell a gilt we do not own, then the purchasers are exposing them-
selves to a credit risk - we might go bankrupt and never actually provide the gilt.
However, it is possible to borrow some money, use it to buy the gilt and then sell it,
which is effectively the same as short-selling. The lender will require some form
of collateral to cover any obligations. Typically, the borrower will have to provide
the market value of any instruments borrowed plus a little bit more. The little bit
more is sometimes called the haircut.

These agreements are generally called repo deals, which is short for repurchase
rather than repossession. The reason is that they are generally phrased in terms of
an agreement to sell the collateral to a broker and then repurchase it at a higher
price in the future. The difference between sale and purchase prices is the interest
paid to the broker. The implied discount curve from these interest rates is called the
repo curve. Since the borrowing is collateralized, the riskiness is small but it is not
non-existent and so the interest rates are higher. Thus the implied yields from the
repo curve are higher and the discount factors correspondingly lower than for gilts.

13.4.4 The LIBOR curve

The third main curve is the LIBOR curve and this is the most important one.
(Remember that with this is the rate at which banks can freely borrow and lend
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to each other and that LIBOR is an abbreviation for London Interbank Offering
Rate.) The short end of the LIBOR curve is constructed from the market rates for
borrowing. However, LIBOR rates are not available for long-term borrowing - one
cannot go to the LIBOR market and ask for a five-year loan. The longer-dated
discounts are therefore inferred from the prices of other instruments, in particular
from the prices of the most liquid of instruments, swaps. As interbank borrowing is
riskier than collateralized borrowing, the LIBOR yield will be higher than the repo
and gilt curves whilst the discount factors are lower. However, as it is quite rare for
a bank to go under, the spread is not very large.

Although we have priced swaps using zero-coupon bonds, in fact it is the oppo-
site process that is carried out by the market. Swaps are liquidly traded, their rates
observed and the resultant discount factors inferred. This is more a tedious task
than a theoretical problem and we leave it to the exercises. The consistency of the
prices of different swaps is then checkable by repricing the swaps from the curve.
For example, if the one-to-two-year-rate is X, and the two-to-three-year rate is Y,
there will be a unique compatible rate for the one-to-three-year period.

For us, the LIBOR curve is the most important curve for the pricing of exotic
interest-rate options, as it's the curve at which the bank can effortlessly trade swaps
that allows it to take positions on interest rates and to freely hedge.

As well as the three curves discussed, there is also a host of other curves asso-
ciated to the cost of corporate bonds. The price of a corporate bond is dependent
on the credit status of the issuer. The rating agencies assign a credit rating to each
bond issue which is the main determinant of the spread required over gilts. Thus to
each credit rating a discount curve is associated. These range from the AAA curve
which yields between gilts and LIBOR to the C curve which can easily have a 5%
spread above gilts. These curves are important to the pricing of credit options but
play little role in the pricing of exotic interest rate derivatives so we do not examine
them in detail.

13.5 Key points

Interest rate derivatives are used to manage risks arising from exposure to interest
rates.
A forward-rate agreement, or FRA, is the right and obligation to borrow or de-
posit a sum of money for a fixed rate for a fixed period time in the future.
Forward rates are quoted in annualized terms over discrete periods.
Forward contracts can be perfectly replicated by zero-coupon bonds and forward
rates are therefore uniquely determined.
Swaps are contracts to swap a fixed stream of interest rate payments for a floating
stream.
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Swaps do not involve exchange of principals.
The swap rate is determined by no-arbitrage considerations.
A caplet is call on a forward rate.
A floorlet is a put on a forward rate.
If forward rates are log-normal then caplets and floorlets can be valued by the
Black formula.
Swaptions are options on swaps and can be valued by using the Black formula
provided swap rates are taken to be log-normal.
There are many different discount curves depending upon the riskiness of instru-
ments involved.

13.6 Further reading

A comprehensive text on interest-rate derivatives is Interest Rate Option Models
by Riccardo Rebonato [105].

A good overview of available products in the market is [137].

13.7 Exercises

Exercise 13.1 If the six-month LIBOR rate is 5% and the one-year rate is 5%, what
is the forward rate from six months to one year?

Exercise 13.2 If the six-month LIBOR rate is 4% and the one-year rate is 6%, what
is the forward rate from six months to one year?

Exercise 13.3 If the six-month LIBOR rate is 6% and the one-year rate is 5%, what
is the forward rate from six months to one year?

Exercise 13.4 A LIBOR-in-arrears FRA pays (f - K)r at the reset time of the
forward-rate f. If f is log-normal, derive a formula for its price.

Exercise 13.5 Suppose

0=to<tl<t2<...<t,,,
and the swap rate, Xi , runs from to to tj, for each j. Show that the discount factors
P(ty) can be deduced from the rates Xj. Such rates are said to be co-initial.

Exercise 13.6 Suppose

0=to<tl <t2<...<t,,,
and the swap-rate, Xj, runs from tj to t,,, for each j. Show that the discount factors
P(t1) can be deduced from the rates X j. Such rates are said to be co-terminal.



318 Interest rate derivatives

Exercise 13.7 Show that the process for a swap-rate is not log-normal if the under-
lying forward rates are log-normal.

Exercise 13.8 A trigger FRA is a FRA that comes into existence if and only if the
forward rate is above H at the start of the FRA. Develop an analytic formula for its
price if the forward rate follows geometric Brownian motion.



14

The pricing of exotic interest rate derivatives

14.1 Introduction

The critical difference between modelling interest rate derivatives and equity/FX
options is that an interest rate derivative is really a derivative of the yield curve and
the yield curve is a one-dimensional object whereas the price of a stock or an FX
rate is zero-dimensional. One might be tempted to think that as most movements
of the yield curve are up and down it is unnecessary to model the one-dimensional
behaviour. However, the yield curve can and does change shape over time, and
we shall see that for certain options these changes are the source of most of the
option's value. From time to time, yield curves also undergo qualitative changes
in shape. For example, the UK yield curve changed from being upward-sloping to
being humped in the early 1990s.

The fact that we are modelling the changes of a curve makes life considerably
more complicated but also much more interesting. One important thing to realize
is that just because most of the movements in the yield curve are up and down
does not mean that most of the value of a given derivative comes from these up and
down movements. To try and illustrate this point and some others in pricing interest
rate derivatives, we introduce an option which to my knowledge is not traded but
is very good at demonstrating some of the trickier issues involved. Suppose we
have a contract consisting of two forward-rate agreements which span contiguous
segments of times, and that we are long the first contract and short the second.
That is, we pay fixed on the first one and receive fixed on the second. Thus the first
forward-rate agreement runs from time tl to time t2 and the second runs from time
t2 to time t3. We shall call such a contract a reversing pair. Pricing a reversing pair
is trivial: we just decompose it into a sum of two forward-rate agreements, which
we already know how to price, and we are done.

The interesting thing about the reversing pair is that its value is very insensitive
to changes in the overall level of the yield curve. If interest rates go up by 1%,
then we gain on the first forward-rate agreement but lose a similar amount on the

319



320 The pricing of exotic interest rate derivatives

second. If, however, the shape of the yield curve changes so that the first rate goes
down and the second rate goes up, then we lose on the first and lose on the second.
Thus the value of the reverse contract reflects changes in the shape but not the level
of the yield curve. In particular, the reverse contract is sensitive to the slope of
the curve: a change in slope means money won or lost. We can extend the reverse
contract to a double reverse contract by taking two reverse contracts over adjacent
periods of time which go in opposite directions. We are then in the situation of
being neutral to both the level and the slope of the yield curve. However, we are
still sensitive to changes in the shape, in particular the curvature will be the main
impact on our profits and losses.

Whilst there are no problems with pricing the reverse and double-reverse con-
tracts because of their decomposability, if we now consider options upon them
then the situation becomes considerably more complex. Call an option on a reverse
contract a reverse option. Note that the reverse option is not the sum of two op-
tions of forward-rate agreements because it is only the right to enter into the two
forward-rate agreements simultaneously. Thus the pricing is not as trivial as that of
the underlying contract. All the value of the reverse option comes from divergence
in the neighbouring forward rates, so the crucial thing we need to understand is the
correlation between them.

When pricing, we must try to use all the information we have available. We can
observe the initial values of the forward rates in the market. We can also observe
the cost of caplets and floorlets on the forward rates. If we believe a log-normal
model for forward-rate movements then the market price tells us what volatilities
to ascribe to each of the forward rates. Or does it? Forward rates generally move
according to a time-dependent volatility curve with a peak around two years. Very
close to expiry not much happens, far from expiry not much happens but with a
couple of years to go the rate moves around a lot.

If the volatility is not constant then the market price reflects the root-mean-
square volatility over the period from now until the start of the forward rate. Thus
if we are pricing a reverse option, we have the r.m.s. volatility of the first contract
over the period until the start of the option, but for the second forward rate, we have
the r.m.s. volatility until its own start, which is not the expiry of the reverse option.

This means that every time we need the volatility of a forward rate over a period
other than from now till expiry, we need to assume a shape for the instantaneous
volatility curve. That is we need to define a function for the instantaneous volatil-
ity with the property that the r.m.s. volatility from now till expiry is equal to the
observed market value.

Returning to the reverse option, if we have chosen a shape for the volatility
function then we can compute the r.m.s. volatility up to the reverse option's expiry.
Now that we have the two forwards' r.m.s. volatilities what can we do with them?
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Suppose we decide to employ risk-neutral valuation and run a Monte Carlo simu-
lation. First, we have to pick a numeraire. It will not be possible to do so in such a
way that both the forward rates become driftless, since they have different finish-
ing times and only the zero-coupon bond maturing at the finishing time will imply
a driftless rate. We will therefore need to compute the drift of at least one of the
forward rates.

Supposing we know the drifts, the next issue for our simulation is that we have
to evolve both the forward rates simultaneously. To run such a multi-asset simula-
tion, we will need to know the correlation between the two rates. In fact, we have
to be careful about what we mean by correlation, since two quantities which are
instantaneously perfectly correlated can, in fact, become decorrelated by the shape
of their volatility curves. To see this, suppose we have a Brownian motion Br and
two assets X, and Y. following the processes,

dXr = ax(t)dBr (14.1)

dYr = Cy(t)dBr. (14.2)

If we let ax(t) be equal 1 for t < 0.5 and 0 thereafter, whilst we let ay (t) = 1 -
aX(t), then we have that

X1 - Xo = Bo.s - B0, (14.3)

Yl-Yo=B1-B0.5. (14.4)

Since B is a Brownian motion, it has independent increments so X1 - X0 and
Yl -Yo are totally uncorrelated despite being driven by the same Brownian motion.
Thus two assets with perfect instantaneous correlation can be totally uncorrelated
because of differences in the shape of their volatility curves. This means that if we
are to run a Monte Carlo simulation then we will need to know both the shapes of
the volatility curves and the instantaneous correlations.

Once we know the curve shapes, the correlations, and the drifts in the risk-neutral
measure, we can run the simulation and obtain a price. For the reverse option, the
price will be largely dependent on the choices we have made for the curve shapes
and for the instantaneous correlations, since we have seen that all the value comes
from changes in the slope, which will not result from correlated movements.

How can we estimate these factors? One approach is to observe historical move-
ments and use these to infer likely future behaviour. A second approach is to try
and use the market prices of more instruments as a guide. The advantage of the
second approach is one could then use these instruments as a hedge against having
the wrong values. So, for example, consider a forward caplet. This is a caplet for
which the exercise time is not the start of the forward rate but instead some earlier
time. The pricing will proceed in precisely the same way as for an ordinary caplet
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except that the expiry time in the Black formula will be the time of exercise, and
the volatility will be the root-mean-square volatility from now to the expiry time.
Thus if one knew the prices of forward caplets for all possible expiries then one
would know the r.m.s. volatilities for all expiries, and one would be able to deduce
the shape of the instantaneous volatility curve in a hedgeable way. Unfortunately,
forward caplets are not sufficiently liquid to be able to infer the volatilities in a
useful manner so we are stuck with historical measures.

Our study of how to price the reverse option has yielded a programme of attack
for pricing any interest rate derivative which we now outline.

(i) Write the instrument's payoff in terms of the behaviour of forward rates.
(ii) Observe the current forward rates and their implied volatility in the market.

(iii) Choose a numeraire which makes the rates as driftless as possible.
(iv) Compute the drifts of the forward rates in the risk-neutral measure.
(v) Choose or infer instantaneous volatility curves for the forward rates.

(vi) Choose or infer instantaneous correlations between different forward rates.
(vii) Run a Monte Carlo simulation.

This approach is commonly called the BGM model after Brace, Gatarek &
Musiela who published an early paper on the method. It is also known as BGM/J
as Jamshidian published another early paper. Since the model relies on evolving
LIBOR market forward rates, it is often called the LIBOR market model. Whilst
we have have tried to present the approach in such a way that it appears natural
and inevitable, historically it was a latecomer. The earlier interest rate models de-
pended on the notion of an evolving short rate - the continuously compounding
rate which we used in equity and FX models became a stochastic quantity follow-
ing its own process. The price of a bond or forward rate was then inferred by the
expected quantities obtained by rolling up this short rate to maturity. Heath, Jar-
row & Morton introduced a new approach, now known as HJM, in the late 1980s
which essentially said that one should model the yield curve directly rather than
thinking about a compounding short rate. There was initially a great deal of resis-
tance to such a change in viewpoint but in the longer term the approach has become
very popular and use of BGM, which can be viewed as a discretitation of the-HJM
approach, in particular has become widespread.

Ultimately, the big attraction of the BGM model is that it incorporates in a very
natural fashion all the market-observable information. We do not have to fiddle or
develop complicated calibration procedures to price the caplets correctly; instead
we just plug their volatilities in. The main downside of the approach is that it de-
pends inherently on Monte Carlo simulation, which, as we recall from Chapter 12,
is tricky to apply to options with early exercise opportunities.
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14.2 Decomposing an instrument into forward rates

The first stage of our BGM programme was to write the instrument to be priced in
terms of the values of forward rates; in this section we carry this out for various
instruments.

Decomposing a swap or a swaption

Whilst there is little point to pricing a swap using BGM since there is a simple
static model-independent price, it is instructive nevertheless to examine how one
might do so. It is also worthwhile for testing an implementation of the model; the
fact that the price is model-independent means that the model ought to recover it
and if it does not then the model is seriously wrong. There are in fact two different
ways to approach modelling a swap. The first is to evolve the yield curve up to the
time when the swap starts, and then value the swap as its value at that point using
the usual formula - this has the advantage of being easily adapted to the case of a
swaption. The second method is to evolve all the way through the swap, generating
all the cashflows.

The second method is more illustrative so we examine it first. The swap is asso-
ciated to a set of dates to < tl < t2 < < t, . Suppose the swap is to pay fixed
at rate X. Let f j (t) denote the forward rate from t j to t.1 as realized at time t. At
time t j+l for j < n, we then receive a payment of ((f j (t j) - X)(t j+l - ti)) pounds.

We are trying to compute an expectation of the ratio of the swap value to the
numeraire. Suppose we have chosen as numeraire, B,,, which is the zero-coupon
bond expiring at time t, . The value of Bn at time t j+1 is then

n- 1-1 1

F1k=j+l 1 + fk(tj+1)(tk+1 - tk)'

as investing this sum at the prevailing interest rates, which could be hedged not to
float, we would receive £1 at time t, . Thus the ratio of the payment at time tj+l to
the numeraire is

) - X)(t - t )(t= (fQ

n-1

H
1

j+lj jj j
k=j+1 1 + fJk(t'+1)(tk+l - tk)

We therefore have for a given realized path that the value of the ratio is n 1j=oQj
We have used as numeraire the zero-coupon bond Bn as it's the natural bond

which does not expire before the swap does. Now we could use a shorter bond for
example B1, the zero coupon bond which expires at time t1, for the evolution up to
time tl but we would then have to be careful about what to do after that time. One
way out of this is to regard the numeraire as an asset with a trading strategy. So at
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time t1, we use the £1 we receive from our maturing bond to buy more bonds! In
particular, at time tl we could buy bonds, B2, maturing at time t2, at time t2 buy
those maturing at time t3 and so on. When we get to t,,, the numeraire is then a
number of B, bonds. This numeraire is called the discretely-compounding money-
market account. How would it work in practical terms?

At time t1, the numeraire is one B1 bond and the swap payoff is (fo(to) -K)(tl -
to). The first component of our sum is therefore

R1=(fo-K)(ts-to).
The numeraire is reinvested in B2 bonds which will cost (1 + f1(t1))-1 each - we
therefore buy (1 + fl(tl)) of them.

At time t2, we receive the payment, (fl(t1) - K)(t2 - t1) and the numeraire is
worth 1 + fl(tl). The second term of our sum of ratios is therefore

R2 = (fl(tl) - K)(t2 - t1)
1 + fl(ti)

The numeraire is now reinvested in B3 bond which will cost 1 + f2(t2) each.
So at time t3, we receive (f2(t2) - K)(t3 - t2) and the numeraire is now worth

(1 + fl(tl))(1 + f2(t2)). The third term is then

(.f2(t2) - K)(t3 - t2)R3 __
(1 + fl(t1))(1 + f2(t2))

The numeraire is then reinvested and so on.
The reasons for choosing one of these numeraires over the other are mainly

technical, and we shall discuss them in the context of computing forward rate drifts.
We now look at the alternate method of valuing a swap in BGM. In this approach,

we take as numeraire any of the bonds Bj. Let BI be the numeraire. We evolve the
forward rates up to time to. At time to, we can value our swap in the conventional
way. The discount factors associated to each time tj as seen from to, are easy to
compute: in fact they are just the values of the bonds Bj at time to. We get

P(to, tj) = B1(to) _
i1-1 1

(14.5)

1 1 (1 + fk(t0)(tk+1 - tk))
k=0

We therefore just plug these values into the formula for valuing a swap to get the
value of the swap at time to. We also have the value of the numeraire, B1. Thus the
realized value of the price ratio is computed and we are done.

Suppose we want to value a swaption. At time to, we will exercise if and only
if the swap value is positive. We therefore simply proceed as in the second method
but rather than taking the ratio of the swap's value to the numeraire, we take the
ratio with the positive part of the swap's value.
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The trigger swap

A trigger swap is a swap that does not take effect until some reference rate passes
a trigger level on one of a number of fixed dates. It is similar to a barrier option
except that the barrier occurs on the basis of a different underlying than the option.
As with barrier options, there can be many sorts: up-and-out; down-and-out; up-
and-in; and down-and-in. Also as with barrier option, the in option plus the out
option is equal to the vanilla.

In what follows, we concentrate on the 'up-and-in' payer's swap for concreteness
leaving the reader to fill in the obvious details for the other cases. In particular,
suppose the trigger swap is based on a five-year swap which starts in two years
with three-monthly payment dates. Let the swap rate be X. In our notation for
swaps above, we have

tl = 2 + j14, (14.6)

where j runs from 0 to 20. We take the reference rate to be three-month LIBOR
and the reference dates to be the setting dates of the swap, i.e. tl. Let fj (t) be the
forward rate from tj to tj+l as evaluated at time t. Take the trigger level to be K.

To run a BGM simulation, we would simulate all the rates ft. At time to, we
check fo. If it is above K, we value the swap as seen at time to and take the ratio
with the numeraire in precisely the same way as for the vanilla swap. If it is below
K we continue on to time t1. At time tl, if fl is above K, we value the remaining
part of the swap by the same method and take the ratio with the numeraire.

If fl(tl) is below K, we continue on to t2, and repeat until either we reach t19 or
the three-month LIBOR rate is above K.

Whilst this method of pricing the trigger swap is intuitively obvious, there is a
more rapid way of proceeding. The crucial observation to make is that we only need
to know the value of each forward rate on its own reset date. If we now let a forward
rate have zero volatility after its reset date, then we need only evolve all the forward
rates to a single time horizon: namely, the reset date of the last forward rate.

To price, we then run through the forward rates until the swap is triggered, and
use the final values of the forward rates to simulate all the cashflows. Note that
the evolution of the forward rates takes a twentieth of the time that the naive ap-
proach does; however we do have to be careful that the errors arising from evolving
forward rates over long periods are not large. In practice, we would probably do
five-year steps in order to reduce such errors.

The Bermudan swaption with a given exercise strategy

A Bermudan swaption is an option to enter a swap on any one of the swap's fixing
dates. The theoretical value of the Bermudan will be the maximum attainable by
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any exercise strategy. One interesting aspect of the 'up-and-in' trigger swap is that
we can regard it as a Bermudan swaption with the exercise strategy of "exercise
if and only if the 3-month LIBOR rate is greater than the trigger." Thus the price
of a trigger swap gives us an immediate lower bound of the price of a Bermudan.
We could optimize over all trigger levels to improve this bound. The value of the
remaining optionality decreases with time because there are fewer exercise dates
left and because the underlying becomes a swap of shorter and shorter length. We
will therefore want to let the trigger level depend on time also. Close to the start
where the option is worth a lot, we could expect the optimal trigger level to be
higher than at the end, when it is optimal to exercise if and only if the swap is in
the money.

Suppose we have chosen an exercise strategy which could be based on all of
the information available. We could equally well have made it depend on the
level of the remaining swap rate which would probably be better, or the level of
the discount factors remaining. As all the information available is any case deter-
mined by the forward rates, we can regard our exercise strategy as a function from
the set of forward rates cross (i.e. Cartesian product) the set of exercise times to
the set

{exercise, don't exercise}.

We then proceed simply as in the trigger swap case. At each time, we check the
value of the exercise function, if it says exercise, we value the swap and numeraire
as for the trigger swap. Otherwise, we go on to the next time and check again. We
repeat until we reach the end, or the strategy tells us to exercise.

Of course, valuing the swaption once the exercise strategy has been chosen is
the easy part - choosing it is hard. We discuss exercise strategies in Section 14.9.

The LIBOR-in-arrears FRA or caplet

A forward-rate agreement is associated to two times to and tl. As usual, let f0(t)
denote forward rate from to to ti, at time t. The pay-off of the LIBOR-in-arrears
FRA is (t1 - to) f0(to) and is paid at to. The pay-off of the LIBOR-in-arrears caplet
is simply the positive part of the pay-off of the LIBOR-in-arrears FRA. To simulate
these options, we take the bond expiring at to as numeraire and then evolve to to
where the pay-off is immediately computable.

A caption or a floortion

A cap is a sequence of caplets, and similarly for floors. Valuing a cap or floor does
not require BGM: we just add together the prices of the caplets or floorlets and
we are done. Indeed, caps and floors are more liquid than caplets and floorlets so
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it really the opposite procedure which is carried out: cap prices are observed and
then caplet prices are inferred.

An option on a cap, known as a caption, is a more interesting object. As some
time, typically the expiry time of the first caplet, we have the option to purchase
the cap for a pre-agreed price. As the option is on all the caplets at once, we cannot
decompose into the individual caplets. Indeed, an option on a caplet at the expiry
of a caplet would be a rather boring instrument - it's just a caplet. How do we
approach the valuation of the caption? If we assume that volatilities are determin-
istic, which is an explicit assumption of BGM in any case, then at any time, given
the state of the yield curve, we can rapidly price all the caplets by using the Black
formula with the residual volatility for each caplet.

Our procedure is now easy. We take as numeraire the zero-coupon bond with the
same expiry as the caption. We evolve the rates underlying the caplets to the expiry
time of the caption. We then compute the caption's payoff by pricing the caplets
using the Black formula, subtracting the strike price and taking the maximum with
zero.

Similarly for floortions. Note that we should however be slightly careful with
compound options because of the possible change in volatilities during the life of
the option. We refer the reader to Chapter 18 for further discussion of this point.

The cash-settled swaption

True swaptions are actually less liquid than a closely related variant, the cash-
settled swaption. A swaption in its original form is the right to enter into a swap.
However, the purpose of holding a swaption is often to hedge certain risks, possibly
volatility risk. When this is the case, one does not wish to actually enter into a swap
when the swaption is in the money, rather one desires just to receive the cash value
of the swap. The problem is in agreeing this cash value: the value depends on the
discount factors which make up the swap's annuity. These discount factors are not a
market observable and the swap counterparties are unlikely to agree them precisely.
Of course, the swaption holder could just trade a swap in the market to balance
the swap coming from the swaption. However, this would expose the holder to
bid-offer spread, the necessity to manage the two swaps over what could be a long
period of time, and counterparty credit risk.

To cope with these problems, the cash-settled swaption was devised. In compu-
tation of the annuity, the swap rate itself is used as interest rate across each period.
Thus if the period of the swap is r and there are N periods, the cash-settled swap-
tion's payoff is

N

(SR - K)+>(1 + SRr)-1r.
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To price this using BGM, we simply need to evolve the forward rates underlying
the swap up to the expiry time of the swaption, and then compute the swap rate.

What numeraire would we choose? It's important to realize that we cannot use
the approximate annuity,

N

Y'J1 + SR-r)-1r,
r-i

as numeraire. Why? It is not the price process of a traded asset. Whilst we can
certainly define an asset which pays this amount at time T, its value at previous
times will not be equal to yN1(1 + SRz)-1 t. We therefore use a zero-coupon
bond such as the bond maturing at the expiry time of the swaption as numeraire.

What happens in the markets? Although there is no theoretical justification for
using the Black formula with the approximate annuity to price a cash-settled swap-
tion, in fact this is often done. Of course, the trader will adjust his volatility in order
to take account of the errors.

The constant maturity swap

The constant maturity swap (CMS) is a hybrid between a forward-rate agreement
and a swap. It is a series of payments each one based on a fixed length of swap rate
rather than the prevailing LIBOR rate in an ordinary swap.

Thus at each reset time, t, we compute

(SR(t) - K)r

where r is the accrual period, and we receive this sum at t + r. The rate SR(t) is
a fixed length rate observable on that day; for example the ten-year rate, starting at
time t.

Thus every six months we would observe the ten-year swap rate, X, and arrange
to pay 0.5(X - K) six months later.

To value using BGM, we can do each payment individually. The swap rate is
then computable from the forward rates over the time periods underlying the swap.
We also need to simulate the discounting from t to t + t. This means that we also
need the forward rate from t to t + r.

It is important to realize that there's an alternative approach to pricing CMS
swaps (and swaptions) which is to observe that both the CMS and cash-settled
swaption have pay-offs which are functions of the prevailing swap rate (except for
the fact that the CMS pays a little later), which means that one can replicate the
CMS pay-off using cash-settled swaptions. We can therefore price by strong static
replication provided we take the timing mismatch into account.
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The general procedure

Given a new instrument which has no early exercise opportunities, how do we
proceed? First, we must identify the times at which we need to know the state of
the yield curve, whilst remembering that a forward rate at its own reset time can
be observed at any time after that reset. Second, we must recognize which forward
rates are necessary to computing the payoff. There are two ways in which a forward
rate can be necessary. One is simply in terms of defining the size (or existence) of a
cashflow. The second is in terms of its use in discounting cashflows, or equivalently
in assessing the ratio of the value of the cashflow to the numeraire. Having decided
which forward rates are relevant, we must then write the ratio of the payoff to the
numeraire as a function of the forward rates. We give a rather contrived example to
illustrate the process.

Example 14.1 Let B1, B2 be two zero-coupon bonds expiring at times ti, t2 respec-
tively. We take t1 < t2. Let B3(t) denote the value of Bj at time t. Let to and t3 be
such that t j is strictly increasing.

Suppose we have an instrument that pays

(B1(to) - B2(to))2

at time t3. The cashfiow only depends upon the state of the yield curve at time
to. We therefore have one evolution time: to. Observing that the value of a bond
expiring at to at time to is 1, we can write

1

B1(to) = 1 + fo(t)(tl - to)
(14.7)

where f j denotes the forward rate running from t j to tj+1. Similarly, we have

B2(to) =
(1 + fo(to)(t1 - to))(1 + ,f1(to)(t2 - t1)).

(14.8)

The size of our cashflow is therefore easily expressed in terms of fo and fl. How-
ever, we still need to consider discounting. If we take B0 (the bond expiring at to)
as numeraire then we have to multiply the cashfiow by

2

2 H 1 + fj(toXtj+1 - t1)

If, however, we take the bond B3 (the bond expiring at t3) as numeraire then we do
not have to multiply the cashfiow. However, we would still need to include f3 in
our simulation since its value will affect the drifts of the other forward rates, as we
shall see in Section 14.3.
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Which instruments are possible?

Whilst BGM is a general approach, there are instruments that do not fit within
the framework. What do we need to make BGM work? The instrument's pay-
off should depend upon the value of a finite number of forward rates, and bond
prices on a finite number of dates. The restriction to a finite number of rates and
bond prices is not really a restriction at all - there are only a finite number of
instruments and rates to observe the market prices of, so the pay-off function is
inevitably a function of a finite number of them. The second restriction is more of
a problem. For example, suppose we have a trigger swap that triggers whenever a
certain LIBOR rate passes a reference level. If the trigger occurs at any time rather
than on a certain discrete subset of dates, then our finiteness condition is violated
and we will not be able to fit the product into the BGM framework. Similarly, an
option to exchange two bonds at a time of the holder's choice will not fit into the
framework.

14.3 Computing the drift of a forward rate

We have observed that we can only expect forward rates to be martingales in the
risk-neutral measure when the numeraire is the zero-coupon bond with maturity
equal to the pay-off time of the forward rate. This means that in general we will
need to compute the drifts of our forward rates.

Note that any rate is really the ratio of two asset prices, so the rate will be a
martingale when the second asset has been taken as numeraire, and it will generally
not be a martingale otherwise. This second asset is sometimes called the natural
pay-off for the rate.

The simplest case to compute is the LIBOR-in-arrears case, that is when the
numeraire is the bond B0 expiring at to and the forward rate f runs from to to
ti. Let r = tl - to. We know that f B1 is tradable so f ao is a martingale in the
risk-neutral measure. Thus we have that

B1 f
fBo 1+fz (14.9)

is driftless. We also know that 1- is driftless, that is 1+- is driftless.
B0 fr

Recall that given two Ito processes Xt and Yt with respect to the same Brownian
motion, we have

d(XtYt) = XtdYt +YtdXt +dXtdYt. (14.10)

If we let Xt = f, and Yt = (1 + f r)-1 then we can compute the drift of XtYt, which
we know must be zero, and use this to deduce the drift of f.
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Let

then

dft = µ(f, t) f dt + Q(t) f dWt, (14.11)

d
1 _ tQf dW (14.12)

1 + f t (1 + ft)2

using the fact P1/Po is a martingale.
Computing and using the fact that dW2 = dt, we find that the drift of if Po is

it (f, Of _ o2tf2 (14.13)
1 + f r (1 + f t)2'

which must be zero by the martingale property. We therefore conclude that

dit = tf or2dt + QdWt. (14.14)f +tf
Note that the crucial part of this argument was to find a tradable asset, B, such

that f B was tradable. If N is the numeraire, then the fact that both BIN and f B IN
are martingales in the risk-neutral measure is what allows us to determine the drift
of f.

An important aspect of (14.14) is that not only is f not driftless but that its drift is
state-dependent, that is, it depends on the value of f. This complicates the running
of Monte Carlo simulations considerably as we no longer have a nice closed-form
solution for the stochastic differential equation.

We can use similar arguments to compute the drifts of a forward rate with other
numeraires. As we have seen in the previous section, we will generally want to
evolve a string of forward rates, f j, which span contiguous intervals of time,
[t1, tj+1]. Let Bj be the zero-coupon bond expiring at time tj. If we choose BI
as numeraire then we have that f1_1 is driftless and we have just computed the drift
of fl. How do we compute the drift of fi+r?

We know that fi+,. is tradable and that Bi+r+1 is a tradable. Hence, both
f1+rBl+r+1B1 1 and B1+,.+iBl1 are martingales. In terms of forward rates, this
says that

Z} = fi+r

H 1 (1 + fl+jrl+j)
j=0

and

Yr_ ;.
1

F1 (1 + fi+j t1+j )
j=0
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are driftless. To infer the drift of fi+,. we compute that of Zr, which must be zero,
in terms of Y,. and fl+,.. Let

dfr+1 = µi+r(fr+r)fr+Jdt + °1+Ifr+1dW1.

Using the product rule and remembering that Y,. must have zero drift,

dY,. = -Y,.
rt+j

°t+1ft+jdW1. (14.15)
i=o + fr+1 rl+1

We have that

dWjdW,. = pi+j,t+,.dt (14.16)

where pl+.i,l+,r is the instantaneous correlation between the forward rates ft+,i and

.ft+r. Using

dZ,. = .fi+rdY,. +Y,.dfi+,. + dfi+,.dY,., (14.17)

we have on computing the drift of Z,. that

' .fi+i rl+.i
yr. pt+l,i+rrfr+r°r+r°i+i = 0. (14.18)

J=0 1 + ft+itt+i

Hence, we conclude that

fi+1 rt+.i
P1+j,1+r°t+,-61+i. (14.19)

'=0 1 + fi+.i rt+i

We have computed a not very nice, but extremely useful, expression for the drift.
We have in general that the drift is state-dependent and depends not just on the for-
ward rate fl+,. but also on all the others. This will mean that the interaction amongst
all the rates will have to be considered when evolving them in a simulation.

The expression (14.19) holds for numeraires which are too short, that is, the
numeraire bond's maturity is before the payment time of the forward rate. We will
equally need to evolve forward rates when the numeraire bond is too long: that is,
it has maturity after the payment date of the bond. Keeping B1 as numeraire, we
want to compute the drift of fi, for r > 1. The drift for r = 1 is of course zero. A
very similar argument yields a very similar expression with the principal difference
being one of sign:

ft +.i rl-r+.i
µt =- pi+i°i- °t-r+.i. (14.20)

1=i 1 + ft-r+i rl +J

The reader is encouraged to derive this expression!
Note that if we are allowing volatilities to be time-dependent, which we will need

to do later, then the drifts are implicitly time-dependent, as well as state-dependent.
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14.4 The instantaneous volatility curves

In our discussion of the reverse option, we saw that there were two important rea-
sons to understand the instantaneous volatility curves of the forward rates. The first
was that we will often need to evolve a forward to some time other than its expiry,
and we therefore need to know how much volatility has been used up by a previous
time. The second is that the shapes of the instantaneous volatility curves affect the
degree of correlation between rates and will therefore critically affect the price of
highly slope-dependent instruments.

As we have mentioned above the price of a caplet gives us the root-mean-square
volatility of the underlying forward. Thus if the forward rate runs from time to to
time t1, and the volatility function is a (t) then we can recover

to

°total = f o(t)2dt.
0

There are clearly lots of functions which give the same value to atotal In the ab-
sence of further market information, we must therefore make a choice.

One assumption we can make to narrow the choice, is that the shape of a forward-
rate volatility curve ought to be time-homogeneous. This means that, in future, the
forward-rate volatility curves, as a function of time-to-go, should look the same
as they do today. We can achieve this by letting the instantaneous volatility of a
forward rate be a function of the amount of time until its reset. This means that
today's two-year rate will have volatility one year from now equal to the volatility
of the one-year rate today.

So if we have forward rates f j running from t j to t j+1, we can take the volatil-
ity, a j (t), of f j to have the form p(t j - t) where the function p is independent of
j. This expresses the idea that the behaviour of the forward rate should be largely
dependent on the time until its own expiry, rather than on absolute time. This re-
flects the observation that the volatility of forward rates is low with a long time to
expiry, has a high around two years to expiry and then falls again close to expiry.

One still needs to choose a functional form for p. One simple form that works
reasonably well is to put

p(s) _ (a + bs)e-" + + d, (14.21)

where a, b, c, d are the parameters to fit with. (See Figures 14.1 and 14.2.) The
virtues of this function are that is sufficiently flexible to allow an initial steep rise
followed by a slow decay, and that its square has an analytic integral. This virtue is
very important - when carrying out any fit, one needs to be able to rapidly evaluate
the function a large number of times; doing a numeric integration would simply
not be practical.
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Fig. 14.1. The term structure of implied volatilities of caplets implied by the
functional form (14.21), with a = -0.02, b = 0.3, c = 2, and d = 0.14.
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Fig. 14.2. The instantaneous volatility of a caplet as a function of time to expiry
implied by the functional form (14.21), with a = -0.02, b = 0.3, c = 2, and
d = 0.14.

Thus we take all the observed caplet volatilities in the market and search for the
values of a, b, c and d which makes p(tj - t) fit them all optimally. That is, if the
caplet C j starting at time t j has observed r.m.s. volatility a j, those values such that
the quantities

orjtj - J
r, p(t j - s)2ds

0
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are made as close to zero as possible. For this we would fit all the caplets in the
market rather than just the ones we need to simulate, since we want to use as much
information as possible in inferring the shape of the volatility curves.

It will, however, be impossible to obtain a perfect fit to all the caplets simultane-
ously. This means that we then have to rescale p by a different factor, K1, for each
f1 in order to ensure that all the caplets are priced correctly.

Our procedure is therefore to find the a, b, c and d which best match all the
caplet volatilities and then letting p be the implied function, we set K1 so that

Kp(t1 - s)2ds. (14.22)f
The instantaneous volatility function, o1(t), for f1 is then K1 p (t1 - t). We have
thus achieved a perfect fit to all the caplet volatilities at the cost of losing a little
time-homogeneity.

How much time-homogeneity has been lost is reflected by the divergence of
the K factors. If they are very close to 1 then our parametric form has matched
the market well, if they are far then perhaps our fit is bad, or it may be that our
parametric form is simply not suitable for the current market. If a good fit cannot
be obtained then it is probably time to consider a different parametric form, or to
consider whether there's an economic reason to expect a lack of time-homogeneity.

For example, interest rate volatilities for the millennium period were much higher
because of worries about the millennium bug. Similarly, volatilities tend to be much
higher around uncertain U.S. presidential elections. If we do believe in a good rea-
son for the lack of time-homogeneity, we might want to try a fitting function of the
form h(t)g(t1 - t), with h reflecting the expected information arrival rate, whilst g
reflects the sensitivity of the forward rate f1 to the information.

14.5 The instantaneous correlations between forward rates

We have seen that for certain options assessing the amount of decorrelation be-
tween neighbouring forward rates is crucial for pricing. We therefore want to es-
timate the correlation between forward rates. This is a very tricky quantity to get
hold of - there's no obvious instrument whose price directly reflects it. We can
expect the movement of neighbouring forward rates to be more closely correlated
than those that are far apart and since most of the movements of the yield curve are
up and down, we can also expect the instantaneous correlations to be high.

An easy simplification we can make is to assume that the correlation between
forward rates is purely a function of the number of years that separate them. That
is, the correlation, pit, between the rates f; and f1 should be of the form p( I tj - t1 1).
This assumption is arguably dubious in that a nineteen-year rate is probably more
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correlated with a twenty-year rate than a six-month rate is with an eighteen-month
one. However, it's a reasonable first approximation and we shall use it here.

Suppose we have three forward rates, fl, f2, f3, associated to times Tj, such
that T1 < T2 < T3; now suppose that any movements of fl which are uncorrelated
with movements of f2, are also uncorrelated with movements of f3. This is not an
unreasonable assumption in that we would not expect information to arrive which
would affect both ft and f3 but not f2. This assumption may be criticized on
statistical grounds but it is not too bad. How do we translate our assumption into
mathematical terms? Here we assume that the processes for the rates can be written
as follows:

dfl = fi t1dt + fiai ( 1 - p12dW1 + p12dW2), (14.23)

df2 = f2µ2dt + f2Q2dW2, (14.24)

df3 = f3/s3dt + f3a3(p23dW2 + 1 - p23dW3), (14.25)

where W1, W2 and W3 are uncorrelated Brownian motions. The fact that W1 and
W3 are uncorrelated comes from our decorrelation assumption. Note that this is a
quite strong interpretation of our condition.

It is then immediate that the instantaneous correlation of fl and f3 is just p12P23
This means that if pig = p(T; - T1), then

p(T3 - T1) = p(T2 - T1)p(T3 - T2). (14.26)

This means that p must satisfy the functional equation

p(sl + S2) = p(sl)p(s2). (14.27)

This implies that log p is linear and hence that

p(s) = exp(as). (14.28)

Given that p must be less than or equal to 1, and that p(O) = 1, we conclude that

Pij = p(T, - T1) = exp(-,aIT, - Tj I ), (14.29)

for some 0 > 0.
We will still need to choose i . To do so we can use the additional data available

from swaption volatilities. In particular for any given value of X13, having chosen
our instantaneous forward-rate volatility curves, we can price a swaption by run-
ning a BGM Monte Carlo. The price of the swaption will be affected by /3 since
the swap's volatility will increase as the forward rates underlying it become more
correlated. Thus we can choose the value of /3 which best matches all the swap-
tion volatilities. Typically a (3 of around 0.1 tends to fit the market quite well. (See
Figure 14.3.)
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Fig. 14.3. The correlation between a forward rate expiring in five years and the
forward rate expiring at time T according to the functional form (14.29) with
equal to 0.1.

14.6 Doing the simulation

Having decomposed the product, selected the instantaneous volatility curves, com-
puted the drifts and chosen the instantaneous correlations, we can now run a Monte
Carlo simulation and obtain a price.

However, this is not as easy as it sounds - for two reasons. The first is that the
shapes of the instantaneous volatility curves will affect the correlations between
assets, and the second is that we have state-dependent drifts. If we had infinitely-
fast computers there would not be any issues: we would simply divide time into
lots of small steps and evolve over little steps. However, running a multi-asset
simulation is time-intensive and if we run lots and lots of little steps, the amount of
time required will be prohibitive.

We therefore want a way of accurately evolving over long steps without looking
at the intervening values. For the second problem, we can only use approximations,
though we can find very good ones. For the first problem, there is a method of
solving the stochastic differential equation which involves computing the effective
correlation over a long step; we now examine this. We take the drift to be constant
for the purpose of this discussion.

Thus suppose we have

df1 = flµjdt + fjo-j(t)dW1, (14.30)

where µl is constant and the correlation between the Brownian motions Wj and
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Wk is a known constant quantity, p1k. Since f j is log-normal we have

fj(T)= fj(0)exp (1t - 262T +Q,I-TXj) (14.31)

where d is the root-mean-square value of or over [0, T], and for each j, X j is a
normally-distributed random variable with mean 0 and variance 1. The remaining
question is what the correlation between X j and X k is. An obvious first answer
would be p jk but this is incorrect. The reason is that the instantaneous volatility
curves' differing shapes mean that the forward rates will have different sensitivities
to a piece of information arriving at a given time, which will cause extra decorre-
lation. (See (14.4) for a simple example.)

Suppose we have two quantities moving under scaled Brownian motions:

gi = Ql (t)dWt 1)

92 = a2(t)dWr2).

(14.32)

(14.33)

If the instantaneous correlation between WO) and W(2) is P, then, introducing a
new Brownian process W(3) which is independent of WM, we can write

W(2) = OW(1) + l - p2W(3),

and hence

(14.34)

dgi = 6i(t)dW9) (14.35)

dg2 = Q2(t)pdWr1) + 62(t) 1 - p2dW,3). (14.36)

As W1 and W3 are uncorrelated, the correlation between gj and 92 comes purely
from the first dW 1 term. We therefore need to understand the correlation between
gl and g3 defined by

dg3 = Q2(t)dW,1). (14.37)

The processes gi and g3 are perfectly instantaneously correlated; all decorrela-
tion comes from the different shapes of al (t) and v2(t). We suppose that Ql(t) and
a2(t) are piecewise constant. For notational convenience let 63(t) = a2(t). We thus
have that there exists a strictly increasing sequence of times, t1, such that on the
interval [tj, tj+1], we have that 6k(t) takes the constant value Qk, j. For notional
convenience write T = t72. Then

n-1

gk(T) - gk(0) = E °rk, j (Wtj+, - Wtj ). (14.38)
j=0
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We want the covariance of gl(T) - gl(0), and g3(T) - g3(0). Since the increments
of a Brownian motion are independent, we have

)E((Wtj,, - Wtj)(Wt,+, - Wt)) = 0, (14.39)

for jl . For j =l , this expectation is the variance of Wt,-,, -Wtj which is (t j+l -t1).
This means that

E((g3(T) - g3(0))(g1(T) - gl(0))) = Tj-1 a1.j63,j(tj+1 - ti). (14.40)

We can identify this sum as fo Ul(t)U3(t)dt. We conclude that the correlation co-
efficient of g3(T) - g3(0) and g1 (T) - gl(0) is

fo U1(t)a2(t)dt

(f T 61(t)2dt) Z
(IT

U2(t)2dt J
z

using the fact that U2(t) and 93(t) are equal.

11

Of course, we actually wanted the correlation between g1 and 92 rather than g1
and g3. However, we can write

g2(T) - g2(0) = P(g3(T) - g3(0)) + 1 - p2Z, (14.41)

where Z is an independent normal variable. It is therefore immediate that

P(gl(T) - gl(0), g2(T) - g2(0)) = P
f a1(t)a2(t)dt (14.42)

(1T
Ul(t)2dt) Z

(1T U2(t)2dt 1

z

Whilst we have only deduced this expression for piecewise constant/U, a limiting
argument shows that it remains true for general volatility functions. Note that the
final values of the rates have less correlation that the instantaneous changes. This
effect is known as terminal decorrelation.

We can now return to (14.31). To do the evolution from zero to time T we pop-
ulate the covariance matrix for the logs with

fPjk Uj(t)Uk(t)dt,

0

and then proceed as in Chapter 11. More generally we could carry out an evolution
between any two times, Ti and T2, by taking the covariance matrix of the logs to
be given by the integral over the interval [T1, T2].

We have been ignoring the state-dependence of the drift, and also the implicit
time-dependence of the drift coming from the time-dependence of the instanta-
neous volatility functions. Taking the latter into account is simple. If we want to
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evolve from time zero to time T, it is really the integral of the drift that is important,
so, ignoring the state-dependence of the drift, we can use as total drift

T T

t dt = fi+1tj+i f ar+r(t)ai+.i(t)dt. (14.43)f µi+r( )0-0 1 + fi+it1+1 0

If the forward rates were constant along the path, this drift would be precisely
correct.

However, they are not; the whole point of our model is that they are state-
dependent and therefore effectively time-dependent. We can pretend that they are
constant and obtain a reasonable approximation for medium-sized time steps, for
example one year. But the approximation is too rough for longer steps.

We present an improved approximation method which works well in practice.
Since we are evolving the log, the volatility is state-independent and the contri-
bution of the drift is generally small in comparison. We can therefore think of the
drift as a perturbation to the driftless equation. Our procedure is first to evolve pre-
tending the drift is constant, recompute the drift at the evolved time, and take the
average of the beginning and ending drifts. We then re-evolve using the same ran-
dom numbers with this evolved drift. This approximation works extremely well,
allowing evolution out to ten years for reasonable values of volatility with only
small errors. This is a variant of the predictor-corrector method of solving ordi-
nary differential equations.

We have completed our programme for developing the BGM model. We can now
price any interest rate derivative which does not involve early exercise decisions by
running a Monte Carlo simulation. For early exercise, we would have to apply a
variant of the Monte Carlo techniques discussed in Chapter 12.

14.7 Rapid pricing of swaptions in a BGM model

We have covered many of the principal ideas involved in implementing a BGM-
type approach. In this section, we mention some of the further issues involved in
implementing the model. One natural question is why use forward rates? Jamshid-
ian has suggested using swap rates instead. If we use a set of swap rates with
the same ending date and the same fixing dates but different starting dates, then
they will determine discrete points on the discount curve in the same way that for-
ward rates did. Such a collection of swaps is sometimes said to be co-terminal. If
they have the same start date but different end dates, they are co-initial. We can
therefore evolve swap rates instead of forward rates and apply similar techniques.
The advantage of this approach is that calibration to the swap-rate volatilities is
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automatic, and if one is pricing a product that is essentially dependent on swap
rates this is an extremely useful feature.

We may, however, wish to calibrate our LIB OR market model to swaption volatil-
ities. To do so, we will have to be able to price swaptions rapidly. One can always
run a Monte Carlo simulation for each swaption and compute the price. However,
if one is carrying out a calibration, fast repeated calculations will be needed and
Monte Carlo is generally not fast enough for that.

Rebonato has suggested an approximation which can be very effective. Recall
(13.11),

n-1Xwjfj,
j=0

where X is the swap rate. We therefore have

(14.44)

n-1 n-1

dX=Ewjdfj+>(dwjdfj+dwjfj). (14.45)
j=0 j=0

This is not very tractable; however if we make the courageous assumption that w j
is constant, we obtain

n-1

dX =)wjdfj. (14.46)
j=0

Computing, this implies that

n-1 n-1 1/2

dX = wjwkAjkcrjQkfjfk dZ, (14.47)
j =O k=0

plus possible drift terms, where Z is a Brownian motion. If we want to think of X
as log-normal, this becomes

n-1 n-1 1/2
dX (wiwkPJkaiakfifkX_2) dZ. (14.48)
X j=0 k=0

We can therefore approximate the variance of log X to put in the Black formula for
an option of expiry T by

T n- n-
X-2 f Y, wjwkpjkaj(t)ak(t) f j fkdt.

0 k 0

I 1

0 j= =

Here X, w, and f, are taken to have their initial values rather than their stochastic
values. Whilst, this expression has been derived in a slightly hand-waving fashion
it is surprisingly accurate. This means that we can price swaptions quickly and
analytically which allows rapid calibration to the swaption market.
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This formula involved approximating the derivative of the swap rate with respect
to the forward rate by the weight w j . The formula can be improved slightly by
removing this approximation and instead computing the derivative precisely.

14.8 Automatic calibration to co-terminal swaptions

If we are pricing a Bermudan swaption then our primary concern is to correctly
price all the European swaptions underlying the product. In particular, if the prod-
uct has exercise and reset times

to<ti<...<tn,

then for each j the European swaption associated to the set tj, tj+l, ... , to under-
lies the Bermudan, and its price must be a lower bound for the Bermudan's price -
just consider using the exercise strategy of `exercise at time t j if in the money and
do not exercise at any time otherwise'. These swaptions are also natural hedges for
the Bermudan swaption, we can use these swaptions to Vega hedge to reduce our
exposure to changes in volatility.

We therefore wish to calibrate to co-terminal swaption prices; one solution is
just to use a swap rate market model. However, sometimes we will want to be sure
both of caplet and swaption prices, particularly when the product has additional
exotic features, so it is useful to be able to calibrate the FRA-based model to the
swaption prices. We can do this by extending the ideas of the last section. We think
in terms of a change of coordinates - we wish to specify covariances in a swap
rate framework but work in a FRA-based framework. This means that we have to
understand how the covariance matrix transforms.

Let SR j denote the swap rate for times t j , tj+1, ... , to , and f j the forward rate
for t j and tj+1. Note that we can certainly express each swap rate in terms of
forward rates and by a tedious calculation it is possible to do the reverse.

We want to relate the processes for the two sorts of rates. If we ignore drifts, we
can write

n-1 8 log SR j
d lo SR = d lo f (14 49)g j g k .

k=o 8 109 fk

which implies

n-1 fk aSR -
d log SR j = d log fk. (14.50)

Let

k SR j 8fk

fk aSRj
Zjk = 14.51)SRj afk
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Clearly, we have that Zik is zero for k < j, and the diagonal elements, Zjj, will
be non-zero so the matrix has non-zero determinant and is therefore invertible.
Writing log SR for the vector of rates log SRS and similarly for the FRAs we can
now write

d log SR = Zd log f, (14.52)

still ignoring drifts.
This means that if the instantaneous covariance matrix of the log forward rates

(i.e. the product of the instantaneous correlations and the volatilities), is Cf, then
the instantaneous covariance matrix of the log swap rates, CSR, is equal to

ZCf Zt.

To see this we consider

d log SRid log SRI = Y, Zikd log fk > Zlid log fi
k

_ T, Zikd log fld log fiZil. (14.53)
k,l

Now

d log fld log fl = pcja1dt, (14.54)

where p is the instantaneous correlation, and similarly for the swap rates. We there-
fore conclude that if we cancel dt then we have

CSR = ZCf Zt (14.55)

as desired. Since Z is invertible we can equally well go in the opposite direction,
and write

Cf = Z-1CSR (Zt)-1 (14.56)

However, this is still not particularly useful in that it is an instantaneous ex-
pression and we will want to evolve rates across long time intervals, and we will
not want to have to recompute Z every time step since it would be rather slow.
We therefore make an approximation, by taking Z to be equal to Z(0), and tak-
ing the swap-rate covariance matrix across an interval (s, t) to be equal to the
conjugated FRA-rate covariance matrix across the same interval. In particular,
we write

CSR(s, t) = Z(0)Cf (s, t)Z(O)t (14.57)

for any s < t.
We have to be a little careful with this expression because we do not want a

swap rate to continue to change after its own reset although the FRAs underlying it
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will continue to change until their own resets. We therefore cut time into intervals
[si, si+1 ] such that for each i such that no swap rates reset in the interior of the
intervals. Over each interval we then just work with the restricted set of forward
rates and swap rates which have not yet reset.

This means that we can now prescribe a swap-rate covariance structure and use
(14.57) to infer a FRA covariance structure and use that to run a BGM simulation.
The only difficulty is that it is hard to get a good feeling for the covariances of swap
rates. We can therefore adopt a compromise approach where the variances of the
swap rates are determined by the market but we infer correlations from the forward
rates.

Thus suppose we have calibrated the BGM model to a set of caplets and decided
forward-rate correlations and instantaneous volatilities. This means that we have
determined Cf (s, t) for all s and t, i.e. we can infer that

CSR(0, tj) = ZCf (0, tj)Zt (14.58)

for each j. If the model is pricing the swaptions correctly then we should have that
the implied volatility of SR j , &j, is equal to

Uj 4!cno' t1)

In general, it will not be. We therefore need to adjust appropriately. Let

a1

Let A be the diagonal matrix with entries equal to A j; then if we replace Cf (s, t)
by

Of (s, t) = Z(0)-1AZ(0)Cf Z(0)tA(Z(0)t)_l

we certainly have that

OSR(0, t1) = AZ(O)Cf(0, t)Z(0)tA;

has the correct variance for SR j by construction.
This method is highly effective at calibrating to at-the-money swaption prices

with an error of only a few basis points, even over twenty years. This method is
essentially due to Jackel & Rebonato, [82], but we have rephrased the argument
slightly.

In extreme cases, the method can break down, for example for a 30-year deal
with sharply varying yield curve and volatilities. However, in that case we can
use it as a first approximation. In particular, suppose we have calibrated as above,
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and we have obtained a vector of prices pl, or equivalently a vector of implied
volatilities, . We can create a new scaling matrix A' by setting

,l,. = )1 (14.59)
Q

We now replace A by A', and our calibration will be accurate to about a basis point
even in extreme cases.

Why does this method work? Although a swap rate is not log-normal in a FRA-
based model, it is approximately log-normal and the at-the-money Black formula
is approximately linear. By rescaling we are effectively multiplying the volatility
by the ratio of the prices, and the price scales accordingly.

14.9 Lower bounds for Bermudan swaptions

In this section, we look at the problem of pricing a Bermudan swaption using a
LIBOR market model. The trickiness arises from the fact that Monte Carlo is the
only tractable method for pricing using market models, but as a forward method it
is ill-adapted to pricing options which feature early exercise opportunities. We can,
however, apply the methods of Section 12.5 to obtain lower bounds, and Section
12.6 to obtain upper bounds. We now look at lower bounds and leave upper bounds
to the next section.

Whilst we concentrate on the case of a Bermudan swaption for concreteness,
we stress that these techniques could be applied to many callable structures. Early
exercise opportunities generally arise from the ability to break a contract. Thus if
the bank has entered into a swap with a counterparty, the right to break that swap
is equivalent to the right to enter into a swap in the opposite direction. In general,
any contract with the right to break can be rephrased as an unbreakable contract
plus the right to enter into a contract with the opposite cashflows.

We assume that our swaption is associated to times

tp < tl < t2 < <t,,.
Let SRj(t) denote the swap rate for tj through t, at time t. At each tj, for j <
n, the holder of the swaption has the right to enter into a swap associated to the
times tj < tj+l < . . . < t,,, provided the right has not already been exercised.
Thus for a payer's Bermudan swaption struck at K, the holder has the right to
receive

77-1

Arj = (SRj(tj) - K)+ 1:(ti+l - ti)Pi+i(tj)
i=i

provided the option has not already been exercised. We write the positive part here
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so we can assume that the option is always exercised at the final time slice, tr_1,
even if out-of-the-money.

If we take P as numeraire, then the price of the Bermudan swaption is equal to

1(r)At),
t

where the supremum (maximum) is taken over all stopping times r. The stopping
time r encapsulates the exercise strategy for the Bermudan swaption. The decision
to exercise must be made on the basis of information available at the time which is
why we require r to be a stopping time.

Once the stopping time i has been chosen, pricing is straightforward: we just run
a BGM simulation as usual. Our problem is therefore to find the optimal choice of
stopping time. Note that if we take r = tj, then we have the European swaption
associated to the times tj, . . . , t,,. This means that these European swaptions will
always be worth less than the Bermudan swaptions.

At the last two time horizons, the decision of whether to exercise is simple. At
time ti_1, we exercise if and only if in the money. At time we have a choice
between a caplet associated to the times ti_1 and t, and exercising into a swap. We
can value the caplet by using the Black formula since the final swap rate, i.e. the
forward rate, is log-normal and the swap is simply priceable in the usual fashion.
We therefore exercise at time if and only if the swap is worth more than the
caplet.

It is at previous times that the decision of whether to exercise becomes trickier.
The decision at each time is based on whether the money received by immediate
exercise is less than the value of the Bermudan swaption over the remaining times.
As the Bermudan swaption over the remaining times effectively has a smaller un-
derlying, it is a balance between whether the extra optionality is worth more than
is being given up by the change of underlying. If the swap is out-of-the-money or
barely in-the-money then the remaining optionality will be worth more; but if it is
deeply in-the-money it will not since the value of the additional optionality falls
away as an option gets more and more in-the-money.

This suggests an approach to pricing. For each j, we set a trigger level, Rj > K.
At time tj, we exercise if and only if SRS is greater than Rj. In other words,
our exercise strategy has turned the Bermudan swaption into a trigger swap which
triggers on the remaining swap-rate. For each choice of triggers, we are choosing
a different exercise strategy and therefore obtain a different lower bound for the
Bermudan swaption. We therefore optimize over the trigger levels to get the best
possible price.

How do we carry out the optimization? There are two different ways. One is to
to carry out a global optimization adopting a functional form for the triggers. The
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second is to iterate backwards storing nominal values for the unexercised portion
as we go. We discuss the global optimization first.

Global optimization

We have certain properties for our array of triggers. The final trigger will be at the
strike. The level of trigger will decrease with exercise time. A simple strategy will
therefore be to trigger on the basis of a swap level which varies linearly. Thus we
set the trigger level at time tj to be

tj -tn-1R = K + a (14.60)
to -

We have one unknown parameter here, a. We can therefore optimize over a to
get a best lower bound. As behaviour is quadratic near a maximum, the value of
the trigger as a function of a will roughly look parabolic. This means that the
optimization is simple to carry out. As usual, we would generate a set of paths to
carry out the optimization and determine a. We would then generate a second set
of paths to correctly estimate the expectation for this optimal a.

This method is not optimal in the sense of price obtained; however, it does get
close, is very simple to implement and tends to be quite robust. One simple im-
provement that can be made is to allow a more complicated functional form. The
exercise boundary for the American put tended to show more a square-root type
behaviour as a function of time-to-go. We could therefore allow the trigger level to
vary as a function of a power of time-to-go. For example, we could take

(ti - to-1lR= K + a
/to - to-1

(14 61).

and then optimize over a and P. This will generally give a slightly higher price.

Local optimization

Rather than adopting a functional form and then solving globally, an alternative
approach is to solve for the exercise boundary at each time slice and iterate back-
wards. How would this work? We first generate a set of paths. For each path, at
each exercise time we store the relevant information for our exercise strategy, and
the exercised value divided by the numeraire. In this case, the relevant information
at each slice would be the swap rate for the remaining period, but it could be other
rates or quantities.

At the final time slice, the exercise strategy is clear: exercise if and only if in the
money. At the second last time slice, we need to develop the price as a function of
trigger level and then optimize. We make the approximation that the unexercised
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value divided by numeraire on a given path is the value divided by numeraire at the
next time slice on the same path. Thus for each trigger level, we estimate the value
of this two-time-slice product by taking for each path the exercised value (divided
by numeraire) at time if the swap rate is above the trigger, and the exercised
value (possibly zero) (divided by numeraire) at time ti_1 otherwise. This gives us
a function of trigger level, and we can therefore optimize over trigger level to get a
best lower bound.

In what follows, all values should be regarded as discounted, that is all values
will have been divided by the numeraire. Having determined the second last trigger
level, we move on to the third last trigger. First, we store for each path a nominal
value at time ti-2, this will be the value on that path of the exercise value at time
tr_2 if the swap rate is above the trigger, and the value at time ti_1. We now carry
out the same procedure. For each trigger level, we take the value on each path to be
the exercised value if the rate is above the trigger level and the unexercised value
otherwise. We then average over all paths, and we have a value for that trigger
level. We optimize over the time ti-3 trigger level to get the best value as before.

We now just repeat this procedure iterating back to the beginning; this gives an
estimate of the price. There is a slight upwards biasing arising from the interaction
between choice of trigger level and the precise sample drawn. Also, the use of the
value at the next time slice for the unexercised value is an approximation. We there-
fore run a second simulation using a different set of random numbers, and using
the optimized trigger levels, to estimate the expectation for this exercise strategy.
As usual, we can be sure that this second expectation will give a lower bound for
the Bermudan price.

Note that one could first carry out the global optimization to estimate the trig-
ger levels, and then carry out the local backwards optimization using the global
estimates as a starting point for the optimization.

A more powerful strategy

When we use the swap rate to trigger an exercise strategy, we are effectively col-
lapsing the multi-dimensional yield curve onto a one-dimensional quantity. Whilst
the swap rate is the right quantity in that it encapsulates well the level of the yield
curve and also how far the swaption is in-the-money, our dimensional collapse
necessarily throws away information. An obvious extension is to collapse onto a
two-dimensional space. The question is, which two-dimensional space? Exercise
will depend upon whether the current intrinsic value is greater than the next un-
exercised value. Thus the two main obvious rates are the swap rate for the entire
period and the rate for the next period. So at time, tj, we consider SRS and SR1+i
However, our projection is less clean than it could be in that these two rates overlap.
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If we change SRS+1, we also change SRS. An alternative projection encapsulating
similar information is therefore to use fj the forward rate from time tj to tj+l and
SRS+1. The level of fj will express well the difference in the two rates.

In fact, one can determine the efficacy of a projection by using a non-recombining
tree. One develops a price in very simple cases, and stores the location of exercise
and non-exercise nodes. One can plot the projection of these nodes onto various
two-dimensional subspaces. If a choice of projection is good then the two sets of
nodes will not overlap. This was carried out by Jackel, [80], [79], and he found
that the projection onto fj and SRS+1 was very good and better than the obvious
alternatives.

One can then develop an exercise strategy and iterate backwards as for the trigger
strategy. The main question in the two-dimensional case, is what functional form
to adopt for the exercise strategy at each time horizon. Jackel suggests exercising
according to the sign of

M0 - Pi
SRS+1(0)

- K,
p2 + p3SRj+1(t1)

where the parameters p, vary with j and are optimized over. He also makes the
additional constraint of never exercise out of the money which is not necessarily
forced by this functional form in the way that it was for the trigger strategy. Jackel's
strategy works very well. See figure 14.4.

14.10 Upper bounds for Bermudan swaptions

In the last section, we developed lower bounds for Bermudan swaptions using
the BGM model, and now we study the complementary problem of finding upper
bounds. We proceed by using the method of Rogers which we introduced in Sec-
tion 12.6. For concreteness, we restrict ourselves to considering payers' swaptions
but the extension to receivers' swaptions is obvious.

Recall that we showed that an upper bound for an early exercisable product is

IE (maxB(tl)-1(A(tl) - M(tJ))) B(0),

where A is the exercised value at time tj, M is any portfolio of assets with initial
value zero, and B is the numeraire. Here we have only a finite set of exercise times
to, ... , t,T_1. If Bj is the annuity, we take the exercise value of A to be the positive
part of the value of the payoff at time tl, that is,

(SRS - K)B1

if the swaption is in the money. If the swaption is out-of-the-money then we can
take the payoff to be -oo since decreasing the payoff at a point where the swaption
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would never be exercised, cannot affect its value. At the final time slice, we must
take the payoff to be

(SRS - K)+Bj,

however. We need to do this as the argument of Rogers relies on the fact that for
any martingale M' we have

(14.62)

for any finite stopping time z. The important point here is the finiteness: we must
take the value of Mz at one of the sampling dates, and when we do so it is possible
that the Bermudan will be out-of-the-money and so its correct value is zero, not
the negative value. This roughly corresponds to the fact that the Bermudan may
not ever be exercised, and the hedging portfolio will then dissolved at the final
sampling date. We can therefore think of not exercising as being the same thing as
exercising into zero value.

We need to choose the portfolio M in such a way as to minimize the expected
value of

max(B(tj)-1(A(tj) - M(tj)))

We therefore want Mt to look as much as possible like At. It should therefore grow
linearly above the strike and, below it, look like zero. The obvious product with
this sort of behaviour is the European swaption.

We could therefore consider a portfolio of European swaptions and optimize
over the weights to get the best possible M and an upper bound. However, the Eu-
ropean swaptions violate a second important property we require which is that we
need to be able to take the value of M at each exercise time, and thus we need the
value of the European swaption before its expiry. If swap rates were log-normal
this would not be an issue as we could use the Black formula, but if we are using a
BGM model this is not the case. One solution is to use a swap-rate market model
instead; this was done in [93]. A second solution is to use the approximate swaption
volatilities to rapidly evaluate the swaptions, as in Section 14.7. However, whilst
the evaluation is rapid it is not instantaneous and does slow things down consider-
ably. Also one obtains additional approximation errors, whilst the approximation
is superb at-the-money, it is not so good away-from-the-money.

We do not pursue the path of European swaptions here as we do not wish to
develop the swap-rate market model. We therefore use portfolios of caplets instead.
Our initial portfolio is a caplet for each exercise time with some notional to be
optimized over, together with zero-coupon bonds to make the initial value zero.
One subtlety is what to do with a caplet after its expiry. The portfolio M can be
dynamic so we can carry out a trading strategy as long as we remain self-financing.
Thus when a caplet reaches expiry, we receive cash equal to its intrinsic value



14.10 Upper bounds for Bermudan swaptions 351

discounted from the next time slice. We can (and must) now use this money to buy
further assets, for example more caplets or zero-coupon bonds. What appears to
work best is either to use the money to buy caplets with expiry equal to the next
expiry time or to buy zero-coupon bonds expiring at the final time. Buying caplets
has the desirable property of giving the portfolio that is most reactive to the level of
the swap rate. Note that the caplets can always be priced using the Black formula
as the forward rates are log-normal. We thus take as our portfolio

-1
Ma _ a1Caplet1 -,BP(ti_1) (14.63)

j=0

where ,B has been chosen to make the portfolio initially valueless. The parameter
a is the parameter to be optimized over.

We use the zero-coupon bond expiring at time ti_1 as numeraire for simplicity.
Our procedure to find an upper bound is therefore as follows:

(i) Generate a set of paths of the underlying forward rates. Say 32768 paths.
(ii) For this set of paths, optimize over a to get the possible upper bound.

(iii) Generate a new set of paths with different random numbers to evaluate

IE (max (At, P(t1, t,,-1)-1 - M0'(t1)P(tl, t, _1)-1)) P(0,tj

with the optimal a.

Just as for the lower bound, we use a two-pass approach in order to ensure that the
optimization procedure has not resulted in biasing arising from exploitation of the
microstructure of the paths involved.

This method is highly effective and results in bounds that are of the order of
a few basis points and generally small compared to a Vega. We define Vega here
to mean the change in value obtained by increasing all the underlying swap-rate
volatilities by 1%. See figure 14.4.

One interesting side effect of this method is that the optimal portfolio M", hav-
ing been constructed to be as similar to the intrinsic value as possible, provides a
good control variate. In other words, if we want to estimate the lower bound and
run a Monte Carlo simulation to estimate

E ((A, - M" P(-r, t,7_1)-1))

where r is the optimal exercise strategy, it will converge much faster since we have
removed much of the variance. It will give the same price as

IE(M") = Mo = 0. (14.64)
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Fig. 14.4. Prices for a five into ten year Bermudan swaption produced by forward-
rate based and swap-rated models as a function of the number of factors. We
present both lower and upper bounds for each model. To give an idea of scale
we also show the lower bound for a swap-rate based model with volatility
1 % higher.

This fact is of limited utility for computing prices in that lower bounds tend to be
faster to compute than upper bounds in any case, since the optimization is easier.
Nevertheless if one wishes to compute Greeks one has many simulations to run for
the lower bound and it can then be highly useful.

14.11 Factor reduction and Bermudan swaptions

We have so far implicitly assumed that the dimension of the Brownian motion
driving our forward-rate process is equal to the number forward rates. In fact,
few banks use such a full factor model. Instead they tend to use a small num-
ber of factors, typically between 2 and 4. In addition, although we have discussed
the predictor-corrector method to allow long-stepping of rates whilst correcting
for drift errors, most banks short-step the forward rates and use constant drifts
across the small steps. As they take steps of about 3 months, the error in the
drift approximation is negligible and there is no need for a more sophisticated
approach.

What effect does using fewer factors have? Reducing the number of factors
makes the rates more correlated. However, as the rates are being short-stepped
it is only the instantaneous correlation matrix which is affected: decorrelation aris-
ing from the varying shapes of the instantaneous volatility curves will be totally
unaffected. In general, it is the terminal decorrelation that has more effect.
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Before presenting an example, we discuss how one would carry out the factor
reduction. Given the instantaneous correlation matrix C of the form, say,

Ci1 = e-,slti-til (14.65)

we compute the eigenvectors, e1, and (decreasing) eigenvalues, The matrix A
with column j equal to T 1 el is then a pseudo-square root of A. Let A(') be the
matrix with first 1 columns equal to those of A and the others equal to zero. We can
now form a reduced factor matrix equal to

C(i) = A(1)(A(t))t. (14.66)

However, C(i) is not a correlation matrix; it will not generally have is on the di-
agonal but will be positive semi-definite and thus be a covariance matrix. We can
therefore form Chi) by taking

C(1)

T (14.67)

Since C(i) is just the correlation matrix associated to Chi), we can be sure it is a
correlation matrix.

Since we are short-stepping we can ignore terminal decorrelation effects, and
take the covariance matrix for a short step from t,. to t,.+l to be

oio1C11),

where Qk is the r.m.s. volatility of uk across the interval [t,., t,.+i]Now

we know how to carry out a short-stepped, reduced-factor simulation, what
effect does the factor reduction have on prices? We have to keep the price of
the objects calibrated to constant or the question is meaningless. We present one
example. We consider a payer's Bermudan swaption on an annual rate. It starts
in five years and lasts for ten years. It is exercisable and pays annually. So we
put

ti =i +5, (14.68)

for i running from 0 to 10. The swap pays at the dates ti for i equal to 1 through
10. It can be exercised at ti for i equals 0 through 9.

The strike is 5.91%. The natural calibrating instruments are the co-terminal
swaptions underlying the Bermudan so we need the volatilities of European
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swaptions running from t; to do for i equals 0 through 9. We take these to be
as follows

t; Vol
5 11.83%

6 11.50%

7 11.13%

8 10.80%

9 10.55%

10 10.39%

11 10.30%

12 10.28%

13 10.32%

14 10.45%

To apply the calibration method of Section 14.8, we need to know the instantaneous
volatilities of the forward rates, their instantaneous correlations and of course the
yield curve.

We take the instantaneous correlation matrix before factor reduction to be
e-fiI it-ti l , with ,3 equal to 0.1. For simplicity we define the yield curve by a func-

tional form. The rate from time i to i + 1 is taken to be

-1%e-0.3i + 6%,

for i an integer. We therefore obtain a gently upwards-sloping curve. Other discount
factors are to be computed by log-linear interpolation. The instantaneous volatility
of a forward rate expiring at time T is taken to be (a + b(T - t))e-`(T -t) + d,
where

For each number of factors, we factor-reduced and then carried out the calibration
procedure of Section 14.8. Upper bounds and lower bounds were then computed
using the methods presented above. We present the results in Figure 14.4. For com-
parison, we also present prices found by a swap-rate based model with the same
calibration. To give some idea of scale, we also present the lower bound when
volatilities have been increased by 1%.

The graph shows a marked increase from one to two factors. A slight increase
from two to three and quite slight increases thereafter. Note that there is a certain
amount of noisiness in the prices arising from the fact that the bounds result from
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an optimization procedure and we cannot always be sure that the optimal bounds
have been attained.

14.12 Interest-rate smiles

An important issue in pricing exotic interest-rate derivatives is smiles. Just as in the
equity and FX worlds, traders typically use different volatilities to price swaptions
and caplets of different strikes which are otherwise identical. If one truly believed
forward rates and swap rates were log-normal, then this would make no sense.
(They cannot both be log-normal in any case.) However, this strike dependence is,
of course, just expressing the traders' belief in a non-log-normal world. One strong
reason to be sceptical of log-normality is that there is an absolute component to the
movement of interest rates which does not exist in the equity/FX setting. Whilst
interest rates do move in smaller amounts when they are low, they do not move
proportionately less. Part of the reason for this is that interest rates already express
a ratio, and therefore do not have the same invariance of scale that stock prices
have. Rebasing an index to be a tenth of its current value has no effect on any-
thing but this has no analogue in the interest-rate world. A 5% interest rate really
is different to one of 100%

For example, yen rates are very low at the time of writing, yet they still move
around a lot more than would be predicted by a log-normal model. Interest-rate
smiles are therefore typically downward-sloping, reflecting the effectively greater
volatility for low values of the forward rate.

We can build this effect into our models in a couple of ways. The first is to say
that log-normal volatilities go up as the rate goes down so we let the log-normal
volatility depend on the rate. A forward rate would therefore follow a process of
the form

f = µdt + crf Y-1dW, (14.69)

where y is a constant between 0 and 1. The y = 0 case corresponds to normal
rates and y = 1 case to log-normal. Such a process is called a constant elasticity
of variance process or more ordinarily a CEV process. The main downside of this
approach is trickiness of implementation in terms of pricing the vanilla options and
running the Monte Carlo.

A model that in easier to work with is the displaced diffusion model which mod-
els the process as being a mixture of normal and log-normal processes. Where the
CEV process is the geometric mean of the processes, the displaced diffusion is the
arithmetic mean. In particular, we put

df =a(f + a)dW, (14.70)
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Fig. 14.5. The smile produced by a displaced-diffusion model.

where a is the constant displacement coefficient. As da = 0, we can rewrite the
process as

d(.f +a)
f+a

= odW, (14.71)

which shows that the model is equivalent to saying that f + a, rather than f,
is log-normally distributed. This has the huge advantage that the Black analysis
carries over immediately if we regard a caplet of strike K as being a call option
of strike K + a on f + a. In particular, one can use the Black formula just by
shifting the forward rate and strike by a. Running a Monte Carlo simulation is
also no harder than in the vanilla case, with the drift expression only being very
slightly more complicated; the displacement must be added to the forward rates in
the numerator in (14.19) but otherwise there is no change. One can therefore work
in a displaced-diffusion setting for BGM with little difficulty. We display a typical
displaced-diffusion smile in Figure 14.5.

One further advantage of the displaced-diffusion setting is the simplicity of cal-
ibration for varying values of a. The Black formula is approximately linear at-the-
money (see Figure 3.7), and in fact it is very accurately approximated by

C f or 4T-P r, (14.72)

where P is the discount bond for the payment time, r is the accrual, o is the volatil-
ity, T is expiry and f is the forward rate today. As the displaced Black formula just
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Fig. 14.6. The smiles produced by displaced-diffusion models by varying the
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volatility constant. The displacements vary from zero (flat line) to 5% (most
sloped line).

involves moving rate and strike by a we have a similar approximation

C(f + a)a« / Pr, (14.73)

where as is the volatility of f + a. We can therefore obtain the same price in the
two settings by letting

Qa = f (14.74)f +a

Using this formula allows us to pivot the smile about the at-the-money volatility by
changing the displacement. See Figure 14.6.

Unfortunately, displaced diffusion cannot be the whole story. If one plots caplet
smiles, one notices a slight upkick for high strikes. It is impossible to match this
with a displaced diffusion smile, however, as the nature of displaced diffusions
means that smiles can only ever be down-sloping.

To go further, one needs a more sophisticated model. There are many such any
alternative model for equity/FX evolutions can be adapted to modelling forward-
rate changes. One could therefore incorporate the possibility of jumps or of stochas-
tic volatility. Or more generally, since each forward rate has an instantaneous
volatility curve, one could make the shape of that curve stochastic. We do not
explore these possibilities here but merely suggest the reader bears them in mind
when studying the alternative models of stock evolution.
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14.13 Key points

The pricing of exotic interest-rate derivatives depends on the evolution of a one-
dimensional object: the yield curve.
The modem approach to pricing exotic interest rate derivatives is to evolve mar-
ket observable rates.
The BGM (or BGM/J) model is based on the evolution of log-normal forward
rates.
Forward rates only have zero drifts in the martingale measure when the nu-
meraire is a bond with the same payoff time as the forward rate.
In general, the drift of a forward rate is both state- and time-dependent.
The BGM model can used to price any instrument that is dependent on a finite
number of rates at a finite number of times.
A crucial part of the calibration of the BGM model is choosing the instantaneous
volatility functions for the rates.
Decorrelation between rates can occur both through instantaneous decorrelation
and through terminal decorrelation arising from the differing shapes of volatility
curves.
The state-dependence of drifts means that Monte Carlo is the natural method of
pricing in the BGM model.
Forward rates can be evolved over long time intervals by using a predictor-
corrector technique.

14.14 Further reading

The approach given here to calibrating the instantaneous volatility curves is due to
Rebonato and discussed at length in [125]. A comprehensive discussion of market
models can be found in [126]. For a discussion of the historical models predating
the BGM approach as well as some discussion of market models see [124]. Musiela
& Rutowski, [114], contains a quite extensive discussion of market models includ-
ing BGM. Brace's book on BGM is strong on the mathematical aspects of BGM
and addresses many issues neglected elsewhere [21]. Fries's book, [53], is strong
on the implementation aspects. Piterbarg's overview, [122], is also very useful.

Other recent books on the topic of exotic interest rate derivative pricing from a
similar point of view are Pelsser, [120] and Brigo and Mercurio, [24].

The original paper suggesting that one should evolve a yield curve rather than
a short rate is by Heath, Jarrow & Morton and such models are often called HJM
models.See [71].

Some early papers on market models were by Brace, Gatarek & Musiela, [22],
Jamshidian [78], and Musiela & Rutowski, [115].

The predictor-corrector technique discussed here was introduced by Hunter,
Jackel & Joshi in [76].
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The use of trigger swaps to price Bermudan swaptions was introduced by
Anderson, [3]. Extensive discussion of the use of non-recombining trees to
design exercise strategies and in particular the Jackel strategy of Section 14.9 is
in [79].

The upper bound for Bermudan swaptions method discussed here was intro-
duced by Joshi & Theis in [93]. An alternative approach for upper bounds for
Bermudan swaptions based on similar theory but different practicalities was intro-
duced by Andersen & Broadie in [8].

In [103], Longstaff, Santa-Clara & Schwartz argued that banks were throwing
away billions of dollars by using low-factor models for pricing Bermudan swap-
tions. In [7] Andersen & Andreasen argue that if a model is calibrated to both all
caplet prices and all swaption prices, then the factor dependence is a myth.

The equivalence between displaced-diffusion and CEV models is due to Marris,
[110].

We have not examined short-rate models at all. They are covered in [124], [18]
and [13] as well as many other places. Indeed most books on mathematical finance
treat the topic.

Developing smile models in a market model context is an active area of research.
Some recent papers on the topic are [4], [60], [61], [92] and [142].

14.15 Exercises

Exercise 14.1 Derive the drift of a forward rate following a displaced-diffusion
process when the zero-coupon bond expiring at its reset date is the numeraire.

Exercise 14.2 Show that if the forward rates underlying a swap rate are all the same
then the derivative of the swap rate with respect to fj is equal to wj. (Notation as
in Section 14.7.)

Exercise 14.3 Suppose all the forward rates followed normal processes instead of
log-normal processes. What changes would be necessary to implement the BGM
approach?

Exercise 14.4 Suppose we decide that all the trouble in the BGM model is caused
by the non-tradability of the rates and therefore decide to evolve the values of
forward-rate agreements with zero strike instead. What process for the FRAs is
equivalent to the log-normal process for forward rates? Suppose we make the FRAs
log-normal, what process do we get for the rates?

Exercise 14.5 Every three months, an inverse floater pays max(2L - K, 0)r - L 'r,
where L is the three-month LIBOR rate for the preceding three months. How would
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you price this derivative using BGM? How many evolution times would be needed?
Could you price it without using BGM?

Exercise 14.6 Suppose we take a forward rate f with P the zero-coupon bond with
the same payoff time, and use f P as numeraire. What is the drift of f ? Why is it
valid to use f P as numeraire?

Exercise 14.7 Develop an analytic formula for a trigger FRA under a displaced-
diffusion model (see Exercise 13.8).

Exercise 14.8 Suppose the volatility of fl is equal to 0.1 +e-2t and the volatility of
f2 is equal to 0.2 + e-3r The instantaneous correlation is 0.5. What is covariance
of fl and f2 over the time interval from 0 to 1?



15

Incomplete markets and jump-diffusion processes

15.1 Introduction

We have mentioned the imperfections of the Black-Scholes model of stock-price
evolution. In this chapter, we look at one method of improving it. Our improvement
is to add the possibility of the stock price jumping discontinuously. The motivation
for this model is that stock markets do crash and during a crash there is no oppor-
tunity to carry out a continuously-changing Delta hedge. One consequence of this
will be the impossibility of perfect hedging; at any given time the stock price can
increase slightly or decrease slightly or fall a lot. It is not possible to be hedged
against all of these simultaneously. The impossibility of perfect hedging means
that the market is incomplete, that is not every option can be replicated by a self-
financing portfolio. The price of a non-replicable option can then only be bounded
rather than fixed using no-arbitrage methods. This means that the risk preferences
of investors re-enter the picture despite their banishment from the Black-Scholes
world. Our secondary purpose in this chapter is to discuss many of the issues, both
philosophical and practical, involved in pricing in incomplete markets.

In the equity world, the call and put option prices generally display a steeply
downward-sloping smile. One explanation of this smile is that it is caused by strong
demand for slightly out-of-the-money put options. A fund manager has his perfor-
mance reviewed every three months. He wants to be protected against the possi-
bility of a market crash in the mean time. He therefore buys put options which
guarantee that his portfolio's value can only fall by a small amount even if the mar-
ket crashes. Thus he is buying the put option as insurance. Since there are many
fund managers doing the same thing, hedging is impossible, and no one wants extra
exposure to crashes, the market is all one way, and the price of the put option is bid
up. The bank can still make money by selling put options but it is doing so by tak-
ing on risk, rather than by charging for the cost of hedging, as in the Black-Scholes
framework. The purchase of the put option is therefore a transference of risk from
the fund manager to the bank. The market price will settle on a point where the

361
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banks feel that they are being adequately compensated for taking on the extra risk.
A major determinant of the price is therefore risk preferences rather than arbitrage.

Once we have moved to an incomplete market, there are two different issues
to be addressed. The first is how to use arbitrage to bound the prices of vanilla
options. The second is to determine prices for exotic options which are compatible
with both the model and the prices of the vanilla options traded in the market.

Our objective in this chapter is place these ideas in a mathematical context and
to examine some of the consequences.

15.2 Modelling jumps with a tree

We can see some of the problems with modelling jumps, by returning to a tree
model. Suppose that in each small time-step, the log of the stock price can move
up or down a small amount, or else it can fall by 10%. If the current price is St,
length of the step is At, the volatility is a and the drift of the stock is p, then after
the time step the stock has the possible prices,

St(l + µ0t - -,/At)' St(1 + µ0t + / t), 0.9St.

More generally, we might want a distribution of possible jumps which would add
more branches. As we let the time-step get smaller and smaller, the first two prices
get closer and closer together but the third price does not change. This reflects the
instantaneous nature of a crash; you cannot catch the stock price in between in the
way that you could for continuous models. Of course, the probability of a crash
occurring would decrease as the size of a time-step decreased but its size would
not change. In Chapter 3, we showed that for a binary tree, the probabilities of
attaining a particular node was not important; there was a single arbitrage-free price
independent of the probabilities. We also demonstrated that for a tree with three
branches, there was an infinite number of prices for an option that were arbitrage-
free. This means that when modelling a stock with jumps there will always be an
infinite number of possible prices.

How can we assess which prices are possible? We can use risk-neutral valuation.
For example, suppose interest rates are zero, the stock price is 100 and the stock
can take the values 110, 100 or 50 tomorrow. We wish to price a call option struck
at 100. What are the possible prices? If we assign probabilities p1, p2 and p3 to
110, 100 and 50 respectively, then the expected price tomorrow is

110p1 + 100p2 + 50p3

for a risk-neutral measure, and this must equal 100, since interest rates are zero.
We must also have pl + P2 + p3 = 1. We solve to obtain,

pi = 5P3, (15.1)

P2 = 1 - 6p3. (15.2)
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This means that an equivalent martingale measure can be achieved by taking any
value of p3 between zero and 1/6. The value of the option can therefore be any-
where between zero and 6 (110 - 100) = 8

3

, without introducing arbitrage. Which
is correct? Any of them - it is simply a question of risk-aversion.

We can now define a multi-step model by stringing trees together. However, at
each stage there will be three branches and we thus obtain a bound on the possible
prices at each node which then has to be propagated backwards.

Although we cannot price an option precisely, we can relate the prices of options
to each other. Suppose we have two call options, O1 and 02, which are struck at
100 and 90. The first option pays off 10, 0 and 0 in the states 110, 100 and 50
respectively. The second option pays off 20, 10 and 0 in the three states. We can
regard these prices as vectors, namely

(10, 0, 0) and (20, 10, 0).

We can hedge any product which can be written as a linear combination of the
stock,

S = (110, 100, 50),

and the bond,

B = (1, 1, 1).

The set of all such linear combinations (i.e. the linear span) of the two options'
vectors will be two-dimensional as will the linear span of the stock and the bond.
As we are working in three-dimensional space, the intersection must be at least one-
dimensional. This means that it must be possible to find a linear combination of the
two options which is equal to a linear combination of stock and bond. Solving, we
find that

S - 50B = 502 -401, (15.3)

as vectors. This equation holds in any of the three final states and therefore must
hold initially. Thus although the prices of 01 and 02 are not determined, the price
of either completely determines the other. Note that this argument has, of course,
depended on the fact that there is only one possible jump amplitude and if we
allows k jump amplitudes, we would have a (k + 2)-dimensional state space, and
would need k options to force the pricing of all other options. This illustrates
the fact that in the general setting that although any individual option price is
not fixed, there is a lot of rigidity in the possible overall shape of the volatility
surface. By volatility surface, we mean the two-dimensional surface of Black-
Scholes volatilities implied by the prices of options for all strikes and maturities.
We shall return to the issue of hedging with options once we have developed more
theory.
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15.3 Modelling jumps in a continuous framework

Suppose we have a stock moving under geometric Brownian motion, with the
added possibility of crashes. What properties should crashes have? They should
occur instantaneously: the probability of one occurring in a given small time inter-
val should be roughly proportional to the length of a time interval. We can achieve
these properties by modelling crashes with a Poisson process.

We recall the characteristics of a Poisson process. The main parameter is the
intensity k and the probability of an event in a given small time interval, At, is
),At plus a smaller error. We denote the number of events up to a time t by N(t).
We therefore have that N(t) is an integer-valued function which is constant for a
while and then jumps up by 1. Another important property is that the probability
of an event is independent of the number of events that have already occurred: that
is for t > s, we have that N(t) - N(s) is independent of the value of N(s).

We find

lP(N(t) = j) =
(.lty

j!
e-fir

(15.4)

that is, the number of jumps up to time t is Poisson distributed with parameter) t.
It is often useful to simulate the times of arrivals between jumps. That is the time to
the first jump, and then the time from the first jump to the second jump, and so on.
These times are all independent and they are continuous random variables. Denote
the random time by X. The probability that X > t is the same as the probability
that no jumps occur in the period [0, T] which is e-xt. We conclude that X has
density function

;,e-"t H(t), (15.5)

where H(t), the Heaviside function, is 1 for t > 0 and 0 otherwise. For further
discussion of the Poisson process, we refer the reader to Grimmett & Stirzaker,
[63].

Returning to our stock, it moves according to a geometric Brownian motion with
superimposed jumps. We suppose that at a jump the stock price is multiplied by a
random variable J. We could take J to be log-normal, or to be a single constant
number, or anything we want.

We can write the process as

d St
= µdt + adWW + (J - 1)dN(t). (15.6)

St

Note that when a jump occurs, S changes by S(J - 1), which is equivalent to
multiplying S by J. We want to be able to price options under this process. We saw
in Chapter 6, that if we find an equivalent martingale measure and set the option
prices to the discounted expectations of their values in that measure, then there can
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be no arbitrage. We therefore look for an equivalent martingale measure. Suppose
interest rates are a constant r and the riskless bond is therefore worth e'*t at time t.
The expected change of S in a small time interval will be

aSiXt + E(J - 1)a,SOt.

For the ratio Sl e" to be a martingale, we need S to grow at the risk-free rate so we
need the expected change to be r S At. That is we need

µ = -E(J - 1)X + r. (15.7)

We therefore conclude that an arbitrage-free price for a European option, 0, of
expiry T is obtained by taking

e-' T E(O(ST)), (15.8)

with ST evolved according to (15.6) with drift given by (15.7). We can do this
change of measure by invoking Girsanov's theorem.

How do we actually use this expression? The first point to note is that if we
evolve the log, there is no interaction between the Brownian part and the jump
part. The log will follow the process

d log S = /J,- 1 a2) dt + QdWt + (log J)dN(t); (15.9)

to see this note that if no jump occurs the log will just evolve as in the continuous
case, and if a jump occurs then multiplying S by J is equivalent to adding log J to
log S.

We therefore have that the final distribution of log ST is of the form

/ 1 N(T)

log(So) + Cµ - 2Q2 J T + a N(0, 1) + Y' log Jj,
\ / j=1

where N(0, 1) is a standard normal variable, and Jj are independent variables
distributed according to the jump distribution. Note that this expression involves
N(T), the number of jumps, which is itself a random variable.

We can now price by Monte Carlo. We just draw the number of jumps, then the
size of each of the jumps and the Brownian part to get the final spot, and evaluate
the option.

To do better, we need to make some assumptions on the nature of the jumps.
Suppose there is only one jump size, really a jump ratio, since we are multiplying
by J. We then have that the final distribution of log S is

log(So) + (bt - 1 2) T + a N(0, 1) + N(T) log(J).
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We can rewrite this as

log(So) + (h - r)T + N(T) log(J) + I r - 1 a2 I T + a,\ITN(0, 1).

If we fix N(T), then this has the same terminal distribution as the log of a standard
Black-Scholes evolution with initial spot

log(So) + (µ - r)T + N(T) log(J).

This means that, integrating over the possible values of N(0, 1), we just obtain a
Black-Scholes price for the option but with spot Soe(t`-'')TJN(T)

Thus, using the distribution for N(T), the formula for the price of a call option
is

00
e-XT (,T)j

BS0e (g-r )T i,(S J Q, r, T, K), (15.10)
j=0 1

where BS(S, or, r, T, K) is the Black-Scholes price of a call option struck at K
with spot S, interest rate r, volatility a, and expiry T. We therefore have a semi-
closed-form solution but note that it involves an infinite series. In practice, however
we would be able to cut off after a finite number of terms, since the sum of the
remaining terms will converge to zero.

Of course, a single jump amplitude is not particularly realistic. We can develop
similar but more complicated expressions for any finite number of jump ampli-
tudes. If we want to use a continuous jump distribution, we can develop an expres-
sion when the amplitude is itself log-normal, the reason being that we can then
absorb the jump into the Brownian part of the Black-Scholes expression. Thus if
J is distributed as m exp(-1 v2 + vZ) with Z a standard normal variable then the
terminal distribution of log S is

N(T)

log So+rT+(µ-r)T -2cr2T +o4Zo+N(T)logm- 1V2N(T)+ vZj,
1

j=1
(15.11)

where Zj are independent draws from N(0, 1). We can regroup all the normal
distributions together to obtain

log ST = log So + rT + (µ - r)T - 1 a2T + N(T) log(m) - 1 v2N(T)'
2 2

+ a2T + N(T )v2W, (15.12)

with W a standard normal variable. Fixing N(T), this is the terminal distribution

of a stock in a Black-Scholes world with volatility Q2 + N(T)v2 and initial spot

SomN(T)e(t`-' )T . The price will therefore be given as a weighted infinite sum over
Black-Scholes prices with these parameters, as in the single jump amplitude case.
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With a little work, the price can be rewritten as

00 e-X'T(,X'T)n
BS(S0, a, r, T, K) (15.13)

n=o nl

where

an = _ a2 + nv2/T,

r =
r -').(m

- 1) + n log m/T,
X,=),m.

These formulas were originally derived by Merton using a PDE approach.

(15.14)

15.4 Market incompleteness

In the last section, we derived formulas for arbitrage-free prices for call options
(and hence puts) on a non-dividend-paying stock in a jump-diffusion world. We
did not show that these were the only arbitrage-free prices, only that they were
arbitrage-free. This arbitrage-free price was arrived at by taking an equivalent mar-
tingale measure obtained by changing the drift of the Brownian part of the evolu-
tion. The question therefore arises of whether there are other equivalent measures
and how to find them. Recall that an equivalent martingale measure has to have the
same set of events of probability 0 and 1, but that any other event can change in
probability. This means that if all but a set of measure zero of Brownian paths has
a certain property before measure change, then all but a set of measure zero will
have it after the measure change. (A set of measure zero is another name for a set
of probability zero.)

In particular, the amount of jaggedness is the same for almost all paths. What do
we mean by jaggedness? To make the concept mathematical, we need the idea of
variation. Consider a function

f : [0, T] 11 ,

for example a stock-price path. The first variation is obtained by taking a partition,

to=0<tl <t2<
and taking the sum

n-i

If(t,+1)-f(toI;
=o

this measures the total amount of up and down moves for this partition. If we make
the partition finer and finer, this number can only get bigger (by the triangle inequa-
lity). For a continuously differentiable function it will converge. If the limit exists,
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this number is called the first variation of f. However, for a Brownian motion
path, this number will always diverge to infinity (with probability 1.) The easiest
way to see this is to consider approximating the Brownian motion by up and down
moves. If we divide our interval into N equal length pieces allowing an up or down
move of size T /N, at each step, then the total size of moves will always be

T N, regardless of which the way the moves are, and the variance of the path is
T. Letting N tend to infinity, the paths converge to Brownian motion and the first
variation becomes infinite. Since (almost) every path has infinite first variation, this
property must be preserved by changes of measure.

How can we measure how infinitely jagged the paths are? If we take the second
variation this has a better chance of converging, since we square the differences
which being small become smaller. We therefore consider

If(t,+1)-f(t,)12,
i=o

and let the partition size go to zero. If we again approximate by N up or down
moves of size T IN, then this sum will always be T. Letting N tend to infinity,
we deduce that Brownian motion paths always have quadratic (or second) varia-
tion T over an interval [0, T]. This actually holds with probability 1. This is why
we can use measure changes to change the drift but not the volatility of a Brow-
nian motion. There is an immense rigidity in the paths caused by the fact that the
quadratic variation is always the same. For an alternative analysis, see Section 5.3.
The amazing thing about Girsanov's theorem is not that one can change the drift of
a Brownian motion, but the fact that a measure change can do nothing else.

If we consider a stock moving under geometric Brownian motion, this means that
the quadratic variation of the log of the stock over an interval [0, T] will always be
Q2T . (The part coming from the drift will have finite first variation and disappear in
the limit.) We can therefore observe from a given path what the volatility a is. This
is essentially why Black-Scholes pricing works. The cost of hedging is determined
by the amount of vibration and the amount of vibration is always the same. We
can interpret this by saying that all paths are the same, there are no lucky paths nor
unlucky paths; we are totally indifferent to which path occurs.

If we now move to a jump-diffusion process, our indifference disappears. Sup-
pose spot moves according to a jump-diffusion process such that jumps occur with
an intensity k, and the diffusive part has volatility Cr. If we examine the quadratic
variation over a small, jump-free period then we can measure a. However, we have
no way of measuring k from within a single path. A given path may have no jumps,
one jump or a hundred jumps, whatever the value of k is. If we take a large sam-
ple of paths, then we can start approximating which values of A are likely to be
consistent, but in a single path there is no way to tell. Lucky and unlucky paths do
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exist in the jump-diffusion setting, and we are not indifferent to how many jumps
occur.

The upshot of this is that we change the measure on our space of paths by letting
be whatever we want as long as it is non-zero. We thus have an infinite num-

ber of pricing measures: first we choose a value for k, and then we enact a drift
change on the Brownian motion to make the adjusted measure a martingale. As the
implied prices have been arrived at by risk-neutral expectation from an equivalent
martingale measure, they are arbitrage-free. We thus have an uncountable infinity
of arbitrage-free prices.

In fact, we have even more measures than this. There is nothing forcing ). to be
a constant. We could take a, to be function of time or more generally a function of
spot and time. There is also the issue of changing the jump distribution. We can
change the density of jumps to any other jump density which has the same zero
set. This means that if we have a single discrete jump amplitude, measure changes
cannot change it at all, but if we have log-normal jumps then we can replace them
by any distribution which has non-zero density everywhere on the positive real line.

These infinities of pricing measures reflect the impossibilities of hedging across
jumps. We can Delta-hedge to remove the infinitesimal vibrations but we will al-
ways be exposed to the possibility of a jump. For this reason, jump-diffusion mod-
els tend to be unpopular in the markets as traders do not like the lack of a guaran-
teed price. This attitude is ostrich-like in that jumps do occur, so to say that we will
not use models that incorporate them because we do not like the consequences is
ultimately perverse.

15.5 Super- and sub-replication

It is worth relating the range of arbitrage-free prices to the concept of replication.
We have seen that if we can replicate the payoff of an option by a self-financing
portfolio in the riskless asset and the underlying, then the set-up cost of that port-
folio is the unique arbitrage-free price of the option. Since we have a multitude of
possible prices in the jump-diffusion world, we can be sure that it is impossible to
set up a replicating portfolio. However, replicating portfolios are not useless: we
can use them to bound option prices.

In particular, suppose we have an option 0 with payoff f (ST). If we can create
a self-financing portfolio Q such that whatever path S,- follows, we have

0(T)=.f(ST) < Q(T),

then the portfolio Q is said to be super-replicating. We must have 0(0) < Q(0).
Otherwise, the portfolio of Q - 0 will define an arbitrage. So the price of the
option 0 must be less than or equal to that of any super-replicating portfolio.
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Similarly, if a self-financing portfolio R is such that

R(T) < f(ST)=O(T)

then we have that 0 (0) > R (0). Such a portfolio is said to be sub-replicating.
Thus the option price lies in the interval bounded by the most expensive sub-

replicating portfolio and the cheapest super-replicating portfolio. In fact, in Section
2.8 when we proved model-free arbitrage bounds on the prices of options, we were
constructing sub- and super-replicating portfolios.

We should really be a little careful about what we mean by a self-financing
portfolio. The self-financing condition is not difficult: we just require

d(aS +,BB) = adS + ,BdB, (15.15)

as before. The hard bit is determining of which functions a and ,B are admissible.
We previously took them to be functions of S and t. This meant that they were pre-
visible functions, that is they were determined by information available before time
t. The reason for then, despite the dependence on St, was that St was continuous,
and so

St = lim (15.16)r-*t-

and the right-hand side of this equation is determined by the set of all information
available before time t.

In the jump setting, (15.16) no longer holds. If a jump occurs at time t, the path
is discontinuous: the left and right sides of the equation differ by the size of the
jump. However, the right-hand side of (15.16) always exists and is determined at
time t. If we define

St_ = lim Sr,
r-+ t-

(15.17)

then we can consider functions a(St-, t) and (S-, t), which are previsible.
Why do we want previsible functions? Essentially, one should only be able to

hedge against the possibility of a jump, not the definite occurrence. If we allow
our hedging strategy to know the value of St - St- then we are letting it know in
advance when the jumps occur, and thus allowing the possibility of hedging in a
different fashion at the times of jumps.

One application of this idea of sub-replication is to relate the Black-Scholes
price of an option to the possible jump-diffusion prices. (By the Black-Scholes
price here we mean the price obtained by keeping the diffusive volatility constant
and setting the jump intensity to zero.) We know that the measure associated to
any value of X is valid so we can expect the Black-Scholes price to be arbitrarily



15.5 Super- and sub-replication 371

Spot

Fig. 15.1. The Black-Scholes value of a portfolio consisting of minus one call
option and its Delta hedge.

close to an arbitrage-free jump-diffusion price. However, it is not so obvious where
the Black-Scholes price will lie in the range of possible prices. We show that for a
vanilla call or put option, the Black-Scholes price is always less than any arbitrage-
free jump-diffusion price.

The crucial point we use is that the price of a vanilla call or put option is a
convex function of spot in the Black-Scholes world. (See Theorem 4.1.) Suppose
our option expires at time T and let CBS(t, St) denote the Black-Scholes price of
an option at time t if spot is St.

We carry out the Black-Scholes hedging strategy. Our initial portfolio therefore
costs CBS(0, So) to set up and at any time we hold aasS units of the stock, with
the remaining value in riskless bonds. As long as a jump does not occur then the
hedging works perfectly, just as in the Black-Scholes setting. So if no jumps occur
throughout the simulation then the option's pay-off is replicated precisely. i.e. the
option has been hedged perfectly.

We need to consider what happens across a jump. The fact that CBS(t, S) is a
convex function of S means that any tangent to its graph will always lie below the
graph. (See Figure 15.1.) The value of our Delta-hedged portfolio as a function of S
has been constructed to be precisely the tangent through the point (St, CBS(t, St)).
Since a jump occurs instantaneously, the effect will be that the value of the portfolio
jumps to a point below the Black-Scholes value of the option. Call the difference
in values X. We can now continue to Delta-hedge (the amount of the hedge will
have changed greatly) but the value of our replicating portfolio will now always be
CBS(t, St) - X. If there are subsequent jumps, X will of course increase, and X
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will, of course, grow at the risk-free rate. At time T the value of our portfolio will
therefore be

CBS(T, ST) - Xe''(T-t).

But CBS(T, ST) is by definition the payoff of the option and so the replicated value
will be less than the payoff of the option.

In conclusion, we can set up a portfolio of initial value CBS (0, So) which is
sometimes of the same value as the option at payoff time and sometimes of lower
value. The value of the option today must, by no-arbitrage considerations, therefore
be greater than CBS(0, So).

Note that this argument depends heavily on the convexity of the Black-Scholes
price of a call or put option as a function of spot. A careful examination of the
proof shows that this is the only property of the option that we used. It is possible to
prove, see Section 15.10, that any option with a convex payoff has a convex Black-
Scholes value so our result actually holds for any option with a convex payoff. We
therefore have

Proposition 15.1 Suppose a stock S follows a jump-diffusion process. If there is no
arbitrage then the price of any vanilla option on S which has a convex payoff must
be greater than the price obtained by taking no jumps.

The result ceases to be true if one allows general options. For example, consider
an in-the-money digital-call option. If interest rates are zero then the price of the
option is just the risk-neutral probability of finishing in-the-money. If the diffusive
volatility is very low this will be very close to 1. If we now crank up A, the chance
of the option finishing out-of-the-money will increase and the price of the option
goes down. An alternate way to see that not all options can be monotone in A is
to observe that a digital call plus a digital put with the same strike is the same as
a riskless bond. The price of the digital call going up means that the price of the
digital put goes down and vice versa. Another interpretation is that adding in jumps
increases volatility so we would expect the prices of options which are monotone
in volatility to go up but the prices of others need not increase. See Figures 15.2
and 15.3.

This leads onto the natural question of how to hedge vanilla options in a jump-
diffusion world. In order to answer that, one really needs to decide an objective -
in a complete market the objective of no-arbitrage forces a unique choice of hedg-
ing strategy and achieves a final portfolio of zero variance but in an incomplete
market this is impossible so we have to decide what the objective of our hedging is.

One possible objective is to minimize the variance of the final portfolio. There
is also the issue of whether one wants to have minimal variance at all times, or just
at the final time. Trading positions are assessed on a day-to-day basis and daily
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Fig. 15.2. The price of an at-the-money call option as a function of jump intensity
for a jump-diffusion model with downward jumps.
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Fig. 15.3. The price of an at-the-money digital call option as a function of jump
intensity for a jump-diffusion model with downward jumps. Note the initial in-
crease from the increasingly positive drift.

profit and losses are observed. An approach that only minimizes the final variance
may look bad en route - or if it does not, its local optimality still has to be demon-
strated. Alternatively, one could decide to be perfectly hedged if no jumps occur
and bear the risk if one does happen. This may seem slightly feckless but since
whatever hedge one chooses, one will do badly in the case of a jump arguably it's
pointless to try.
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If we decide to hedge only the diffusive part and bear the risk of jumps, then
clearly we should Delta-hedge. However, the definition of Delta is not as obvious as
it first looks. Delta is only defined relative to a set of parameters. We can therefore
choose whether to use the real-world or risk-neutral parameters for hedging. For
the purpose of this discussion, we assume that the market is not fickle (see Section
15.6) and the risk-neutral parameters do not change. A third alternative is to Delta-
hedge as if there are no jumps, that is, use a jump intensity of zero.

If our objective is solely to minimize variance for paths containing no jumps,
then the third of these is correct. If there are no jumps, then we are in a Black-
Scholes world, holding the Black-Scholes hedge, which corresponds to the zero
jump-intensity case, and we know this strategy yields a final portfolio of zero vari-
ance, provided no jumps occur. Thus if no jumps occur, our final portfolio is worth
the risk-neutral jump-diffusion price minus the Black-Scholes price. Of course, if
a jump does occur we do extremely badly. The no-jump final portfolio value re-
ally represents the insurance premium we are taking, in return for taking on jump
risk.

Note also that on a day-to-day basis we are not Delta-hedged relative to the
market. The market price uses the risk-neutral parameters, so if spot changes, the
rate of change of the option's price will not equal the Delta hedge that we hold. This
means that the Delta of the option minus our hedge is non-zero, so a change in spot
will cause a change in the portfolio value en route, despite the final variance being
zero. Thus if we are worried about keeping the change as small as possible in the
short term rather than the long term, we should Delta-hedge with the risk-neutral
parameters.

If we decide that we wish to hedge the final variance whatever happens, then
Delta-hedging is no longer appropriate. We must instead hold a hedge that reduces
the damage of a jump. There is some discussion of how to reduce the variance by
hedging in [139].

We showed in Proposition 15.1, that the jump-diffusion price is always higher
than the Black-Scholes price with the same diffusive volatility for vanilla options
with convex options. A related question is whether the jump-diffusion price must
be a monotone-increasing function of jump-intensity? We show that it is. We de-
duce our result from the domination of Black-Scholes prices by jump-diffusion
prices.

Suppose .l1 <X2, and the expiry of our option is T > 0. Let

X1(t) = 2.11 for t < T/2,

and zero otherwise. Let

2(t) _
2,11 for t < T/2,

2012 -.11) for t > T/2.
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Given a volatility a, a jump distribution J and an interest rate r, the price of an
option on a stock with jump-intensity ).j will be the same as that for one with
intensity X1 as the integral of the intensity is the same in both cases.

We therefore take a market in which there are two stocks, Si, S2 which move
identically up to time T/2 with the same diffusive volatility a driven by the same
Brownian motion and with jumps according to the same Poisson process with in-
tensity 5 i. After the time T/2 however, S1 jumps with intensity zero and S2 has
intensity ).2. Each stock has the instantaneous drift at all times required to make
the discounted price process a martingale. We take Si and S2 to have the same
value initially.

The price of an option with intensity k1 is equal to the discounted expectation of
its pay-off as an option on Sj. If we consider a portfolio consisting of being long
an option on S2 and short an option on Si, then proving its value at time zero is
positive is equivalent to saying that the option price is a strictly increasing function
of X.

By the monotonicity theorem, it is enough to prove that the portfolio is of
positive value in all world states at time T/2. But at time T12, Si turns into a
nice purely diffusive stock so the price of an option on it is just the Black-Scholes
price. However, S2 is still jumpy so since Si and S2 must be equal at time T/2, we
invoke our result that the Black-Scholes prices is less than the jump-diffusion price
and conclude the portfolio is indeed of positive value in all worlds at time T/2 and
hence it is of positive value at time zero. Our result follows. We conclude

Theorem 15.1 The price of a vanilla option which has a convex payoff on a stock
following a jump-diffusion process is an increasing function of jump intensity pro-
vided we fix the other risk-neutral parameters.

15.6 Choosing the measure and hedging exotic options

Given that there are an infinite number of pricing measures, how can we choose
one and what does that choice mean? Also, given that the price is not unique, what
good is it?

The first point to realize is that choosing a given value of the jump intensity
is really equivalent to assessing the risk-aversion to jumps. A risk-averse investor
will use a greater intensity and a risk-seeking investor a lower one. A trader can
therefore assess whether a given piece of jump risk has a price that is greater or
lower than what he wishes to pay and therefore trade accordingly. When Merton
first introduced jump-diffusion models, he argued that stock-price jumps were a
diversifiable risk and that therefore no risk-aversion would be attached to them.
This is equivalent to saying the pricing measure should be the one with jump
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intensity equal to the real world intensity. Unfortunately, whilst this view may have
been accurate in 1976 when Merton wrote the first paper, it has not been true since
the 1987 crash which demonstrated to market participants that the possibility of a
crash was very real, and that the event of a crash was definitely a piece of undiver-
sifiable risk. Indeed since the 1987 crash, equity market option smiles have become
much more strongly downward sloping. This reflects an increased risk-aversion to
downward jumps amongst market participants.

It is important to remember that there is a large number of vanilla option prices
observable at a given time. We can therefore assess whether these prices are com-
patible with a jump-diffusion model and assess how much of the price is coming
from risk-aversion to jumps, and how much from volatility. In practice, this means
fitting a jump-diffusion model to the observed market prices and seeing what val-
ues of a, and a are implied. The required values may well be time-dependent. If no
good fit is possible, we have a choice between deciding that the market prices of
options are arbitrageable and exploiting the opportunity, or abandoning our model.

Assuming we have found a fit, the market has given us its view on a, and or. The
market has therefore chosen a measure for us. To quote Bjork, [18],

Who chooses the martingale measure?

The answer is

the market.

Given that the market has chosen a measure for us, what can we do with it? We
can assess whether we think the market is overpricing certain pieces of risk. We
can take the vanilla option prices as a given and use the given measure to price
exotic options. We can attempt to hedge by using the vanilla options as a hedging
instruments.

To illustrate the issues involved in hedging using vanilla options in a jump-
diffusion world, let's consider a simple model with only a single possible jump
amplitude. Suppose we use the vanilla call option, 0, struck at 100 as a hedging
instrument and we want to hedge a call option, C, struck at 110. We can set up
a hedging portfolio consisting of -1 units of C, and a units of 0 and A stocks,
together with bonds to ensure the self-financing condition holds.

We want the portfolio's value to be invariant under small changes in S, that is,
to be Delta-neutral, and to be invariant under jumps. This means we require a and
A to be such that

ac a0 +0=0,- - +a
as

and that

(15.18)

-C(S, t) + aO(S, t) + AS = -C(JS, t) + aO(JS, t) + AJS, (15.19)
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where J is the jump amplitude. We have two equations in two unknowns which
we can solve for a and A. We are now perfectly hedged and the price of C is
guaranteed.

Suppose we have a larger finite number of jump amplitudes, then we can hedge
in a similar fashion provided we add in another hedging option for each jump
amplitude, we just have to solve a larger linear system. Generally, we will want
to have an infinite number of amplitudes. However, by hedging all the jumps in a
large finite set, we will expose ourselves to little risk since we only have the small
amount of slippage between the actual realized jump and the nearby hedged ones.
Thus provided we can use vanilla options to hedge, the hedging problems have
disappeared.

Or have they? We have, in fact, made a huge but non-obvious assumption. We
have assumed that the hedging call options continue to be priced according to the
same measure. This was not an issue in the Black-Scholes world where the pricing
measure was unique, but in an incomplete market, the market chooses the measure
and the market can change its mind. We can therefore add to the answer to Bjork's
question above,

and the market is fickle.

This means that in (15.19) even if the equation holds before the jump, the value
of 0 after the jump may not be as expected because the market's risk aversion
to jumps will probably be affected by the jump's occurrence. The market may
also think a jump back up is more likely after a jump. This means that after a
jump the market may price with a different jump-intensity and jump-distribution.
Therefore to hedge in a jump-diffusion world really requires a model of how the
market chooses the measure, and hedging against the markets' fickleness. Note that
the fact that the market's choice of measure has changed will mean that the implied
volatilities of options in the market have changed. Thus implied volatilities can
and do change from day to day without the real-world volatility and jump-intensity
changing, simply because the market has chosen a different measure.

Thus in conclusion if we use a jump-diffusion model to hedge then we are really
using a model for the price processes of the hedging options. Note the difference
here from the Black-Scholes world: there a process for the underlying was chosen
and then all the vanilla option prices were determined. In the jump-diffusion world
there are many possible price processes and we therefore have to choose one in
order to hedge.

15.7 Matching the market

In trying to decide the appropriateness of jump-diffusion models, one important is-
sue is how well they reproduce the market prices of options. As we have
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mentioned, the cost of equity put options is bidded up by an excess demand for
protection against jumps. If we translate back into Black-Scholes implied volatili-
ties, as the market does, we therefore obtain a steeply downward-sloping curve.

If we price according to a jump-diffusion model and compute the Black-Scholes
implied volatilities, then we similarly get a smile. We therefore want to see how
accurately these smiles mimic market observed smiles. The jump-diffusion model
produces downward-sloping smiles quite easily by taking the expected jump ratio
to be less than one and it is fairly easy to match the market smile at a single matu-
rity. (See Figures 15.4 and 15.5.)
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However, we do not wish to match the smile at just one maturity. In the market,
we can simultaneously observe many maturities. So the issue is, how do the smiles
change as a function of the maturity of the option. For both the equity market and
the jump-diffusion model, we observe the property that the smile is much steeper
for short maturities than for long maturities. In general, the rate of decay of the two
smiles need not be the same - the market-observed smiles are driven by traders
making prices, not by jump-diffusion smiles. This means that if we want to match
the smile at all maturities we may need to use time-dependent parameters.

How can we interpret this? One explanation is simply that the jump-diffusion
model is wrong. However, it is hard to find a model with time-independent pa-
rameters that does reproduce the market smile. Another interpretation is that the
jump-intensity really is a function of time to jump. This is not so unreasonable if
we remember that the jump-intensity is not a real world quantity but instead reflects
the risk-aversion of the market to jumps. So a decreasing jump-intensity says that
the market cares more about short-dated jumps than about long-dated ones. That
is, there is more demand for short-dated put options than long-dated ones. This is
quite believable if one believes that the demand for put options comes from fund
managers worried about the short-term performance of their investments.

15.8 Pricing exotic options using jump-diffusion models

One possible use for a jump-diffusion model is to price exotic options. If we have
fitted the vanilla market with a jump-diffusion model then we have effectively cho-
sen a measure. We can now use this measure to price an exotic option and be
assured that the price obtained is arbitrage-free. How do we actually carry out the
pricing?

The simplest approach is to use Monte Carlo simulation. We have to evaluate
a risk-neutral expectation and the simplest way to do it is by sampling the paths
and averaging over them. Another approach is to use replication techniques; as we
have a formula for the vanilla options, we can price accurately any option that is
replicable in terms of vanilla options. If we are using only a few jump amplitudes
we could also use tree techniques though they would tend to be tricky to implement.

In what follows, we assume that ), is a function of time but not spot. Before
proceeding to the pricing of exotics, we examine what difference this makes to the
pricing of vanilla options. In fact, if ) is non-constant then the number of jumps
in a time segment [0, T] has the same distribution if ) is replaced by the average
value of , which we denote by

T

= T f).(s)ds. (15.20)

0
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If we consider the evolution of the log, we see that the terminal distribution of the
Brownian part of S is unaffected by the occurrence of jumps. We essentially have
two separate non-interacting processes for log S, one displacing it in a Brownian
way and the other in a jump fashion. This means that changing the timing of jumps
does not affect the terminal distribution of log S, in neither the risk-neutral density
nor the real-world density.

The effect of this is that our pricing formulas hold true in the presence of variable
jump-intensity provided we replace A by its mean over the period of the option.

Pricing a multi-look option

Suppose our option is a multi-look option as we studied for the Black-Scholes
model in Chapter 9. Our option therefore pays at time T a function f of the values
of spot at times tt, t2, ... , t,,. The two principal examples to keep in mind are the
Asian option

1 "

fA(St,, St2, ... , Sti - K (15.21)

i=1 +

and the discrete-barrier knock-out call option where fD (St, , St, ... , equals
(St, - K)+ if Sti is greater than the barrier B for all j, and zero otherwise.

How can we price this option by Monte Carlo? We only need the value of the
spot at times Stj, so we can simply evolve over these times. Indeed, if we work with
log-normal jumps, we can use (15.12). Thus for each evolution step from time tj
to time tj+1, we draw the number of jumps using (15.4) with At taken to be equal
to f t +' A(s)ds. We then take a normal variable W which we plug into (15.12) and
store the value of St1+, and evolve on to the next time up to time t,,. At the end, we
just store e-'*t f (St,, St, ... , We then average over all paths as usual.

This procedure is guaranteed to converge to the correct price eventually. As with
any Monte Carlo simulation, we may want to consider how to improve the speed of
convergence. In the case of a discrete-barrier option, we could immediately aban-
don any path once the barrier is crossed, reducing slightly the computation time for
each path. Interestingly, at time ti_1, both the discrete-barrier option and the Asian
option, turn into a vanilla option. For the discrete-barrier if the barrier has not been
crossed, it is a vanilla call of duration t, - ti_1 and strike K. For the Asian call,
it becomes a vanilla call with a modified strike which is dependent on the realized
values. In both these cases, one can therefore just plug the formula value of this op-
tion into the expectation, instead of running the final time slice. This will probably
have more effect in the case of a discrete-barrier option, where it is the distribution
at final time that is all-important, rather than for the Asian option where the final
distribution has the same effect as the distribution at any other time slice.
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How else can we price these options? The semi-static replication method we
presented in Chapter 10 for discrete-barrier options will work with no changes,
simply by plugging in the pricing formula for a jump-diffusion option instead of the
Black-Scholes formula. To see this one simply has to observe that the only feature
used of the Black-Scholes model is the fact that prices are deterministic in the sense
that not only do we know the price of all options today, we also know the prices of
all options for any give value of spot and time in the future. This is also true in the
jump-diffusion model provided we stay within a given risk-neutral measure, which
we are implicitly doing when we carry out a risk-neutral expectation in any case.

15.9 Does the model matter?

Suppose we have observed market for vanilla options, and we use this to de-
termine the choice of pricing measure for a jump-diffusion model. We can now
use the model to price exotic options. Suppose we calibrated a different model to
the vanilla option prices and used that to price the exotic options: would it give the
same prices? Let us make the problem more concrete by developing an alternate
model which can be used to match any smile perfectly, and then examining the diff-
erences between it and a jump-diffusion model.

The model we consider is geometric Brownian motion, but we let volatility be a
function of spot and time. We thus take the stochastic differential equation for the
stock to be

dS
S = µ(S, t)dt + Q(S, t)dWt, (15.22)

with W as usual a Brownian motion. The Black-Scholes analysis applies equally
well in this case; the Black-Scholes equation still holds with the volatility taken
to be a function and there is a unique risk-neutral pricing measure. Unfortunately,
actually evaluating expectations is tricky because the volatility is state-dependent.
However, one can always run a PDE-solver model to compute the price of an op-
tion. It can be shown that any non-arbitrageable smile surface of call options can
be exactly matched by this model. We do not develop the method here, but refer
the interested reader to [125] for one approach to implementing the method. This
model is sometimes called the Dupire model, [51], or a restricted stochastic volatil-
ity model, as the volatility is a deterministic function of the stochastic stock price.
An alternative interpretation is that it is a tree with nodes varying according to the
local volatility referred to as the Derman-Kani implied tree, [47].

Given that we have precisely calibrated the Dupire/Derman-Kani and jump-
diffusion models to the same vanilla option prices, to what extent will exotic prices
be different? Any option that can be precisely strong statically replicated will
have the same price. In practice, this means that the vanilla European options
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will have the same prices but not a lot more. In particular, recalling the results of
Section 6.3, the risk-neutral distributions for the stock price at any given time must
be the same for both models since it is directly determined by the vanilla prices.
However, the two-dimensional distributions need not, and will not, be the same. So
the probability that the stock price lies both in a given interval I1 at time T1 and a
given interval I2 at time T2 will depend on the model.

For example, suppose we have a knock-out put discrete-barrier option struck at
100 which expires at time T2 and that the option knocks out if the spot is below 110
at time T1 less than time T2. Thus for the options to pay off, the price of the stock
must fall from above 110 to below 100 in the time segment [T1, T2]. This fall can
occur in the jump-diffusion model via a crash, and in either model via diffusion. If
the times T1 and T2 are close together, then the probability of a diffusive move over
the interval becomes very small. In particular, one can prove that the probability of
passing over the interval is an exponentially decaying function of T21 Tl . However,
the probability of a jump is roughly proportional to T2 - T1. The effect of this is that
when T2 - T1 is small the probability of the option paying off in a jump-diffusion
model is much greater than in the Dupire/Derman-Kani model even if they assign
the same prices to vanilla options. This of course means that the Dupire/Derman-
Kani price will be much lower than the jump-diffusion price. In effect, the option
is pricing the possibility of a jump in the interval [T1, T21.

In conclusion, the model certainly does matter when pricing exotic options: the
choice of underlying process can have a large impact on the price even when the
different models have been calibrated to give the same vanilla option prices. One
consequence of this is that if we wish to assess the riskiness of exotic option posi-
tions, not only do we need to assess the probability of adverse market moves but
also the possibility that our model is wrong. We return to these issues in Chapter 18
where we discuss the philosophical issues and practical problems associated with
model choice.

15.10 Log-type models

The Black-Scholes model and the jump-diffusion model have a nice property in
common: the distribution of increments of the log of the stock price is independent
of the current value of the stock price. This is equivalent to the fact that the process
for the log is constant-coefficient. Our purpose in this section is to prove that this
property leads to some nice results about option pricing. The results of this section
apply equally well to the models of Chapters 16 and 17.

Our fundamental assumption for this section is that the risk-neutral distribution
of log ST given the value of log St can be written as

(Dt,T (log ST - log St)d log ST.
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We include the d log ST to emphasize that the variable of integration is log ST. The
equivalent assumption for St is that the density is of the form

'Dt,T(ST/St)
dST

S

15.10.1 Homogeneity

Let C(So, K, T) denote the price of a call option struck at K, with expiry T at time
0 if spot is So. Our first result is

Theorem 15.2 In a log-type model, the function C(S0, K, T) is homogeneous of
order 1 in (So, K). That is

C(XSo,X.K,T)_AC(So,K,T),

for any A > 0.

Proof We have, dropping T, that

C(So, K) = f(S - K)+(D (S-
dS

(15.23)

C(), SO, ),K) = f(S - XK)t (--)
r XS' dS'=J(xS'-)K)+

'k So S'

'k f (S' K)+O
(S') dS'

SOJJ S'

XSo, K). (15.24)

Here in the second equality we have performed a change of variables S =,)S'.

Note that this proof will hold for any pay-off function which is a homogeneous
function of spot and strike. We therefore have

Corollary 15.1 If the derivative, D(S, K, T), has pay-off which is a homogeneous
of order one in spot and strike then the price is also homogeneous of order one in
spot and strike for any log-type model.

15.10.2 Convexity

We can also show that the Gamma of a call option or indeed any option with a
convex pay-off is positive for any log-type model. Recall that a function is convex
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if the chord between any two points on the graph lies above the graph, and that
convexity is equivalent to the fact that the second derivative is non-negative.

When such a function not twice-differentiable, we can interpret this result in a
distributional sense. For example, the call option's pay-off has second derivative
equal to S(S - K). The distribution 8(S - K) is positive in that its integral against
any positive function is positive: if f (x) > 0 for all x, we have

J
f (x)8(S - K)dS = f (K) > 0.

Theorem 15.3 If the derivative D has pay-off f , at time T, which is a convex func-
tion of ST then the Gamma of D in any log-type model is non-negative, provided
we have that f (ST)(D(ST/So) tends to zero as ST tends to infinity.

Note that the technical condition here is very mild.

Proof We have that the value of D at time zero is equal to

e-i T f
.f (S),D ( S) SJ \ So S

Differentiating with respect to So we obtain

-e-''T f .f (S)I'
(S) dS

So SO'

Integrating by parts and using the technical part of the hypotheses, this becomes

e-''T f f'(S)o (S) S .

So So

We now change variables and let

S
So

to get

e-rT f f'(SSo)(D (S) dS.

Differentiating with respect to So, we find

e_rT f f"(SSo)SO (S) dS.

This will be non-negative since f is convex and 4 is supported where S is
non-negative. As the Gamma is non-negative the value is convex as a function of
spot.
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15.10.3 Floating smiles

One nice consequence of the homogeneity of call prices is that the implied volatil-
ity smile floats. Thus if strike is K and spot is S then the implied volatility function,
a (S, K), that is, the implied volatility of a call option struck at K given that spot is
S satisfies

6(S,K)=g( ), (15.25)

for some function g. To see this observe that if

C(S, K, T) = BS(S, K, or, T),

then it also true for any A > 0 that

C(AS, AK, T) = BS(AS, a,K, a, T),

as the ), passes through everything. This means that 6(),S, AK, T) is independent
of A, which is equivalent to saying that it is a function of K/S.

We call K/S the moneyness as it expresses how much the option is in or out of
the money as a ratio. The implied volatility is only a function of moneyness i.e. the
smile will always look the same qualitatively. For example, if the smile is smile-
shaped with a minimum at the money then this will remain true whatever spot
does.

15.11 Key points

We have covered a lot of ground in this chapter. The main thing to take away
is that whilst the incompleteness of the market means that option prices are not
unique, many other aspects of the theory can be extended to jump-diffusion
models.

Jump-diffusion models encapsulate the idea that the stock price can jump with
no possibility of rehedging during the move.
A closed-form formula as an infinite sum can be developed for the price of a call
or put option in a jump-diffusion model.
The market consisting of a stock evolving to a jump-diffusion model and a risk-
less bond is incomplete.
In an incomplete market an option does not have a unique price.
When changing measure in a jump-diffusion world, we can change the drift,
the intensity of the jumps and the jump distribution but we cannot change the
volatility of the underlying.
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Increasing jump-intensity always increases the price of a European option, which
has a convex final payoff.
For a digital option increasing jump-intensity can either increase or decrease the
price of an option.
In an incomplete market it is the market which chooses the measure.
It is possible to hedge in a jump-diffusion model using options provided we
assume that the market does not change its choice of measure. That is provided
the market is not fickle.
Even if two models give identical prices to vanilla options, they can give quite
different prices to exotic options.
Jump-diffusion models give rise to deterministic future smiles so weak static
replication can be used to price exotic options.
Exotic options can be priced by Monte Carlo in jump-diffusion models by step-
ping between the look-at dates of the option.
Jump-diffusion smiles are very sharp for small maturities and shallow for long
maturities.

15.12 Further reading

The original paper on jump-diffusion models was written by Merton, [113], in
1976. This paper was written before the concept of an equivalent martingale mea-
sure had been introduced and is based on a partial-integro-differential equation
approach. The issue of market incompleteness was avoided by arguing that the
risk of a jump was diversifiable and therefore did not attract a risk-premium. The
paper was reproduced in the highly recommended collection of Merton's papers,
[112].

For some of the issues about choosing martingale measures and more highbrow
proofs of option price monotonicity see [14], [35] and [121].

A jump-diffusion model with a different jump-distribution is given in [96].
Rebonato makes the case for jump-diffusion models at length in [125].
One approach to hedging to obtain minimal variance under the jump-diffusion

model is given in [139]. Another approach under the assumption that the real-world
measure is a martingale is given in [97].

The pricing of path-dependent exotic derivatives is discussed in [141]. The use of
replication methods for pricing under jump-diffusion models is discussed in [85].

Some aspects of smiles under jump-diffusion models are discussed in [5]
The sub- and super-replication of exotic prices, whilst assuming the ability to

trade in vanilla options today but not at future times, is studied in [73] and [30].
Note that prices developed in this fashion will be robust and not affected by market
fickleness.
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The original papers on models with volatility of the form o(S, t) are [51] and
[47]. A recent paper on the practical difficulties involved in implementation is
[102]. Another approach to finding to the fitting using PDEs is given in [125].

A quite different approach to developing a pricing formula using Fourier trans-
form techniques is given in [101].

15.13 Exercises

Exercise 15.1 Suppose we have two assets with the same diffusive volatility and
real-world drift. The first asset, S, jumps downwards according to a Poisson process
and the second asset, T, never jumps. Show that the real-world expected payoff of
a call option on S is always less than one on T. What does Theorem 15.1 say about
the relative prices of call options on these assets?

Exercise 15.2 Show that an arbitrage exists if the two assets in Exercise 15.1 are
driven by the same Brownian motion.

Exercise 15.3 Suppose the log St follows a Brownian motion over the period [0, 1]
except at time 0.5 where it jumps by x. What are the first and second variations of
log St over the period [0, 1].

Exercise 15.4 Develop a formula for the price of a digital call option in the context
of a jump-diffusion model.

Exercise 15.5 Develop a formula for the risk-neutral density of a stock in a jump-
diffusion world.

Exercise 15.6 Suppose a stock follows a process in the risk-neutral world which
involves time-dependent parameters. For the pricing of a call option, which param-
eters can be replaced by the appropriate average without changing the price of the
option?

Exercise 15.7 Show that the pay-off of a put option is a homogeneous function of
spot and strike.

Exercise 15.8 Show that the pay-off of a digital option is a homogeneous function
of order zero in spot and strike.

Exercise 15.9 Find a formula for the price of a call option on a dividend-paying
stock with constant dividend rate d under a jump-diffusion model.
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Exercise 15.10 Suppose we wish to price an Asian option by Monte Carlo using
a jump-diffusion model with log-normal jumps. If the option has N look-at dates,
how many (pseudo-)random numbers will be needed per path? What if the jumps
are not log-normal?

Exercise 15.11 Suppose a stock St follows a jump-diffusion process such that
jumps can only occur in the time period from 0 to t1. An option pays f (St2/St,)
for some reasonable function f. Show that there is a unique arbitrage-free price
for f and write down an expression for it.
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Stochastic volatility

16.1 Introduction

It is an observed fact in the market that the implied volatilities of traded options
vary from day to day. We have seen that in an incomplete model, such as jump-
diffusion, this can be caused by the changing risk preferences of the market's par-
ticipants. An alternative and straightforward explanation is that the instantaneous
volatility of a stock is itself a stochastic quantity. Thus during certain periods the
stock is more heavily traded and more information arrives, causing the stock to
wobble more rapidly. During such a period the total amount of vibration expected
during the option's life will be greater, and one therefore expects the option's cost
to be higher. Thus options' implied volatilities will become stochastic. It is impor-
tant to realize that whilst making instantaneous volatility stochastic makes implied
volatility stochastic, the relationship between the two is not straightforward. In-
deed in the presence of stochastic volatility, it is necessary to redevelop the pricing
formula to take account of the added uncertainty, and one then needs to plug the
instantaneous volatility into the new formula and invert the Black-Scholes formula
to get the new implied volatility.

Having decided to make the instantaneous volatility stochastic, it is necessary
to decide what sort of process it follows. Volatility is generally chosen to follow a
diffusive process though in more sophisticated models it can be allowed to jump,
and indeed some models mix jump-diffusion and stochastic volatility to reflect the
greater volatility in the market after a crash. This is achieved by giving a jump
component to the volatility process which is correlated with the jump process for
the underlying. We do not address jumps in volatility here but restrict ourselves to
diffusive volatilities. We therefore take a process of the form

dS
= µdt + V1/2 dW(1),

S
(16.1)

dV = µvdt + ovV"dW(2), (16.2)

389
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with a a positive real number. We work with the instantaneous variance, V, which
is the square of the instantaneous volatility a. The Brownian motions WO and
W(2) may be correlated or uncorrelated as we choose.

Many of the issues which arise with stochastic-volatility models are similar to
those involved with jump-diffusion models. Both models imply an incomplete mar-
ket and hence an infinity of prices. Pricing formulas can be developed but they are
complicated. Pricing by Monte Carlo is possible but not very rapid. Hedging is
possible provided one allows the use of an option and assumes that the market is
not fickle, that is, the market does not change its choice of measure. We explore all
these issues in this chapter.

16.2 Risk-neutral pricing with stochastic-volatility models

Given that the spot and the instantaneous variance evolve according to (16.2),
what are the risk-neutral measures? Invoking the multi-dimensional version of Gir-
sanov's theorem, changing the measure will allow us to change the drifts of the
two stochastic processes but will allow nothing else. If we are working in a deter-
ministic interest-rate world with constant continuous compounding rate r then the
risidess bond at time t will be worth e". Taking the riskless bond as numeraire, we
want e-rt S to be a martingale. In this context, ignoring technical difficulties, being
a martingale will be equivalent to the price process being driftless. The drift of the
variance process is not relevant to being a martingale, as its size will only magnify
up and down moves, not change the mean of the stock value.

A quick application of Ito's lemma shows that, as in the Black-Scholes world,
for a risk-neutral measure the drift of S must be r S. Invoking Girsanov's theorem,
we conclude that all risk-neutral measures are associated to processes of the form

dS
S

=rdt+V1/ZdW(1), (16.3)

dV = AV (S, V, t)dt + aVVadW(2), (16.4)

The crucial point here is that µV is arbitrary: it need bear no relation to,av and can
be any reasonable (i.e. measurable) function of (S, V, t) one likes.

The arbitrariness of µv reflects the fact that volatility is not a tradable quantity,
and hence our market has two sources of uncertainty but only one underlying and
so is incomplete. How do we choose µv? A popular choice is to make the volatility
process mean-reverting. We then have that

AV (S, V, t) = ),(V,- - V). (16.5)

This means that the instantaneous variance reverts to the level V, at rate ? . A mean-
reverting variance process is appealing because volatility tends to have a natural
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level which is occasionally perturbed. In particular, a turbulent period will even-
tually subside, and the volatility will fall back to the background level. However,
one should be careful to distinguish between risk-neutral volatility and real-world
volatility. The fact that the real-world volatility is mean-reverting does not force us
to use a mean-reverting risk-neutral volatility process. Of course, as in the jump-
diffusion world, it is the market that chooses the measure, which in this case means
that the market chooses the form of the drift function. A certain circularity now
comes into play. If we attempt to fit the market, and a mean-reverting function fits
the prices well, what does it signify? It may well be that other banks are using
mean-reverting stochastic volatility models to price: the model could be driving
the derivatives market.

Once the drift has been fixed we want to price. The hard thing is to actually use
(16.4) for pricing. Of course, the price of a derivative is just given by its risk-neutral
expectation but how do we evaluate that expectation?

16.3 Monte Carlo and related approaches to stochastic volatility pricing

When working with a Black-Scholes world, the evolution of the spot was greatly
simplified by the fact that we could solve the stochastic differential equation which
described the risk-neutral evolution. This allowed us to evolve the spot to the expiry
time of a vanilla option in a single jump whilst ignoring the values in between. For
stochastic volatility models, the stochastic differential equation is generally not
solvable and Monte Carlo simulation is therefore much more cumbersome.

Any Ito process can be simulated by using small step increments, so we can
certainly use Monte Carlo: it will simply be much slower. We choose a small step
size, At, and put

1 1\
log Sjot = log S(j_1)ot + r - 2 V(j_1)ot J At + V(j_1)ot OtW1, (16.6)

Vjot = V(j-1)4t + µ (S(j-1)At) V(j-1)At, (j - 1)ot) At

+V(j_1)or OtW2, (16.7)

where W1 and W2 are correlated normal draws with correlation equal to the in-
stantaneous correlation between V and S. We can certainly use this approach to
price any derivative. However, the pricing will be rather slow! Monte Carlo is not
particularly fast at the best of times, and if we divide the time segment into say
one hundred steps then the time to run one path will increase a hundred-fold. We
can use longer steps if we increase the stability of V. One way to increase the sta-
bility of (16.7) is to change variables so that the coefficient of W2 is independent
of V. In other words, we compute the SDE for VP instead of V and choose /3 in
such a way that the volatility term is a constant. This will make the drift term more
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complicated but since the volatility term dominates over short steps, this is a price
well worth paying. The computation of the reduction is in Section 5.6.

We can look for simplifications which allow us to speed up the simulation. Sup-
pose the volatility and spot are uncorrelated. Suppose in addition that the drift of
the volatility process is independent of the value of spot. In other words, the volatil-
ity process does not see the value of spot in any way: information flows from the
volatility to the spot but not the other way round. The density of the volatility paths
can therefore be developed without reference to S.

Of course, the distribution of S still depends on the choice of volatility path.
Suppose we are valuing a European option, and therefore want the risk-neutral dis-
tribution of S at time T. We first draw a volatility path and then use it to simulate S.
Drawing a volatility path is really drawing a time-dependent function V (t) = a(t)2
for instantaneous variance. We are then drawing a path for S under the stochastic
process

dS
S = rdt + a(t)dW. (16.8)

We know that the terminal distribution for S under such a process is given by

ST _ (16.9)

where it is the root-mean-square value of a. This means we do not need to small-
step S, which will greatly speed up the simulation.

Since the process for or is independent of that for S, we can integrate over S for
each value of Q. What does this give us? We get

e-rT f
.f (ST) q) (ST, 6)d ST,

where c(ST, Q) is the log-normal density for ST starting at So with drift r and
volatility Q. However, we know the value of this integral; it is the Black-Scholes
price for an option paying f (ST) at time T with volatility Q.

How can we interpret this? We draw a volatility function o-(t); this tells us the
total amount of volatility experienced during the life of the option. The hedging
costs for the option are then determined by the total amount of volatility, and the
actual path for the underlying is not relevant. In other words, there are lucky and
unlucky paths for the volatility but not for the underlying. Contrast this with the
Black-Scholes world, where all paths were equivalent and luck was not an issue.
This is also different from jump-diffusion where lucky and unlucky paths existed,
but it was the movements in spot that were important.

To return to the issue of practical pricing, we can now price more effectively by
drawing a path for the volatility, and then plugging the root-mean-square volatil-
ity for that path into the Black-Scholes formula. We then simply average these
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prices over many paths. This procedure is highly effective. As most of the work is
in generating the volatility path, several options of different strikes but the same
maturity can be priced simultaneously, without much extra computational effort. If
one wished to do several different maturities simultaneously one could also stop
the volatility path at various points in order to get the volatility up to each maturity.
In practise, we cannot actually draw the entire volatility path, but instead we use
short steps and draw the values of the volatility at a discrete set of points. We then
integrate the variance along each path by assuming that the instantaneous variance
is linear between sampling points. We could have taken the variance to be constant
between times but this would result in requiring more steps for convergence since
the approximation is cruder. It is the difference between using the trapezium rule
and piecewise constant integration.

Our pricing of a European option only depends upon one aspect of the volatility
path: the root-mean-square of the volatility, Q, along the path. We therefore do not
really need to simulate the path, all we need to do is to compute the distribution
of (T and simulate it. The problem is that analytically computing the distribution
of o is not tractable. The root-mean-square volatility is, of course, the square root
of the mean-square volatility. So if we can get the distribution of the latter that is
enough. However, it is not particularly tractable either, but in special cases, we can
compute its moments. Once we have computed the moments of the mean-square
volatility we can then moment match using our favourite distribution. If g is the
fitted density for the mean-square volatility, V, and BS(V) is the option price for
V, then our implied price is

f g(V)BS(V)dV.

This approach was pioneered by Hull & White and was one of the earliest ap-
proaches to implementing stochastic-volatility models.

When can we compute the moments? If the volatility process is log-normal and
the risk-neutral drift is constant then the process for the square of the volatility is
log-normal. It is then a question of computing the moments of the integral of a
log-normal process. This is possible analytically.

16.4 Hedging issues

One reason why stochastic-volatility models tend to be more popular than jump-
diffusion models is that they allow the illusion of hedgeability. There are two
sources of uncertainty, the movement of the spot and the movement of volatil-
ity. This means that if we allow ourselves a second hedging instrument, we ought
to be able to hedge. In particular, this means we can Vega-hedge the volatility.
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How does this work in practice? Provided the risk-neutral measure is constant
then we can assume for each of our options, 01 and 02, that it is a function of
(S, V, t). We then have from Ito's lemma that

130 80 30 1 a2O a20.
dOj = atL dt +

as
dS + aV dV +

2 aV2
dV2 + 3S3V dSdV

1
a20.

2+2
3S2

dS for j=1,2. (16.10)

When hedging we are not interested in the drift, and, computing, we obtain

dOj = 1,L1(S, V, t)dt + S ao- V1/2dW(1) +
aOj

a,V"dW(2), (16.11)
as av

with j some unknown and unimportant function. Suppose we are short 01. We
can hedge the W(2) uncertainty in the option 01 by holding

1

av) (s'
V, t)av(S'v't)

units of 02. We are then left with a portfolio with non-zero Delta; however this can
be hedged as usual by holding stock equal to the Delta.

Note that this argument works for any derivative 01 - it could be any exotic
option. For the hedging option 02 the only important property is that it has non-
zero Vega. This implies that, for example, a ten-year out-of-the-money call option
could be hedged by a one-week in-the-money put option. Typically, we would,
however, hedge with as similar an option as possible. For example, an at-the-money
option might be used to hedge an out-of-the-money option with the same maturity.
This is because it is really the implied volatilities that are moving around rather than
the instantaneous. They are being driven as much by changing risk-preferences and
expectations of future volatility as by the change in the instantaneous volatility. For
example, something may happen that suggests the arrival time of some information
in the future but does not particularly affect today's price or volatility. For example,
if an election date is set we can expect a lot of volatility around the time of the
election. We can expect a company share's price to react strongly to the publication
of the annual report.

The argument for perfect hedging depends on the market's choice of risk-neutral
measure not changing - the market must not be fickle. Thus whilst only one option
is required for hedging in stochastic-volatility models, hedgeability really depends
upon the assumption that the market does not change its risk-preferences, as we
saw for jump-diffusion models.
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16.5 PDE pricing and transform methods

Another reason for the popularity of stochastic-volatility models is that it is possi-
ble to produce a PDE for the price, and in certain cases to solve this PDE for the
Fourier transform of the price. This means that price evaluations can be reduced to
computing an inverse Fourier transform at one point.

If the correlation between the two Brownian motions is p then an application of
Ito's lemma using (16.4) yields that the drift of an option 0 (S, V, t) in the risk-
neutral measure is

a0
+1-Sao +µa0

11VS2a20
+pV1/2avV"

a20
+ 162v2aa20

at as aV 2 as2 asaV 2 '' av2'

In the risk-neutral measure, we must have that e-''r 0 (S, V, t) is a martingale. This
is equivalent to saying that the drift of 0 must be r 0. We therefore have the partial
differential equation

00 00 00 1 2a20 1/2 a a20 1 z 2«a20
at

+rSas +µaV +2 VS aS2 +pv ''v
asaV +2Vv av2 =rO.

(16.12)

Note that the risk-preferences have entered this equation through µ, the choice
of drift in the risk-neutral measure.

We now want to solve this equation. Whilst this equation can be solved in quite
a few cases, we restrict ourselves to the case where a = 0.5, µ = 0 and p = 0. That
is, the instantaneous variance follows a square root process which is uncorrelated
with the stock process and has no drift.

dV = QVV 1/2dW(2).

The PDE now takes the form

(16.13)

a0 a0 1 2a20 1 2 a20

at +rS as + 2V S aS2 + 2VaV2
=r0. (16.14)

Our first simplification is to use log coordinates for the spot. Letting x = log S,
we obtain

a0 (1) a0 1 a20 1 2 a20

at + ' 2V J ax + 2V x2 + 26VV aV2 = rO. (16.15)

We will solve this PDE by applying Fourier transform methods: they seem to be
the only viable approach.

Recall that the Fourier transform of a function f is given by

f () =
J

e'x-I f (x)dx. (16.16)
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(I am following the physicists' convention on the sign of the exponent here as it
seems to be prevalent in finance - probably because there are more physicists than
pure mathematicians in mathematical finance.) The function f can be retrieved
from J(%) via

f(x) = 2n f
e-tx.g f( )dl;. (16.17)

For the integral (16.16) to exist, it is enough for the integral of f and If I to exist.
When they do not, the Fourier transform can still be defined but it is more tricky.
There are two basic approaches to taking Fourier transforms of functions whose
integrals do not exist because of growth at infinity. The first approach is to use
distribution theory to define the Fourier transform via duality. This works provided
the function is polynomially bounded but really requires more theory than we can
develop here. A second approach is to use complex values of %. Thus if = a + i b,
we have

f (a + ib) =
J

eiax-bx f(x)dx. (16.18)

If f is zero for x large and negative, and is exponentially bounded for x large and
positive, then this integral will converge for b sufficiently large. Similarly if f is
zero for x large positive and exponentially bounded for x large negative then it will
converge for b sufficiently large negative. Note that f (a + i b) is really the Fourier
transform of e-bx f (x) which means that we can recover e-bx f (x) using (16.17),
and hence f (x) is recoverable from the knowledge of !(a + i b) for all a and one b.

Back to the problem at hand, our boundary condition for a call option is

C (ST, V, T) = max(ST - K, 0).

After transforming to log space, the boundary condition becomes

C(x, V, T) = max(ex - K, 0).

(16.19)

(16.20)

The Fourier transform will therefore exist for b > 1. The put option is much more
benign, the pay-off being

P(x, V, T) = max(K - ex, 0), (16.21)

which is bounded by 0 and K. The integral does not exist but the Fourier transform
will exist for any b < 0. (Indeed the Fourier transform of the put option price exists
as a distribution whereas that of the call option does not.) This makes the put option
more tractable than the call option. Recall that by put-call parity, the price of the
put option immediately determines the price of the call option. We therefore focus
henceforth on the put option from here on.
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A simple integration shows that

gig+1

1;2
(16.22)-i

for Imo < 0.
The crucial property of the Fourier transform in solving PDEs is that it trans-

forms differentiation into multiplication by We have

a x f eix.g
ax

(x)dx = - f ax
ei (x)dx = -i f ei x.4 f(x)dx

_ (-i).1(), (16.23)

Fourier transforming (16.15) in x, we obtain a PDE in t and V but not x. We have
therefore reduced the dimensionality of the problem. Our Fourier transformed PDE
is therefore

/ 2
a°+lr-2VI(-i )0 +2 V ay2=r0. (16.24)

We can rewrite this as

a0 1 2 a0
= (r 1V)

1 2\
at + 2wV aV2

(r + - 2i + 2V (16.25)

If we let r = T - t, we can as usual transform a backwards equation into a
forward one. We further simplify by letting (1; 2 - ii; )/2, and putting

O

We then obtain
2,.2

ai 2 v aV2
(16.26)

Our initial condition is that Q at i = 0 is given by P in (16.22).
Fortunately, it is possible to write down a solution to (16.26). In particular, if the

boundary condition is 1 the solution is

-Q, 2 X tank( `Ziivt.r
Q( ,V,i)=e (16.27)

In fact, since (16.26) does not involve any differentiations in , if we want the
boundary condition to be an arbitrary function f (4), for example P, then we just
multiply Q by f. The function Of has the correct boundary value by construc-
tion and since multiplication by f (1;) commutes with differentiation in the other
variables, (16.26) is satisfied by Of.
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We can now price any option for which we know the fundamental transform. We
simply numerically invert the Fourier transform at the appropriate value of T and
obtain a price.

16.6 Stochastic volatility smiles

Since the possibility of stochastic volatility getting large increases the probability
of large movements in the underlying stock, stochastic-volatility models lead to fat-
ter tails for the distribution of the final stock price. This leads to implied-volatility
smiles which pick up out-of-the-money; that is, smile-shaped smiles!

If we allow correlation between the underlying and the volatility then a skew is
introduced. Roughly, if the volatility and the underlying are negatively correlated
then as the stock price falls, it becomes more volatile and so out-of-the-money put
options require more hedging and thus are more valuable which leads to increased
implied volatilities. On the other hand, increasing the stock price leads to lower
volatility, and hence lower prices and implied volatilities.

The marked difference between stochastic-volatility smiles and jump-diffusion
smiles is in their time decay. The amount of stochasticity in the volatility increases
over time and this leads to long-maturity smiles not decaying. Jump diffusion mod-
els have the opposite property: the chance of a large move in a short time is much
greater in a jump world than a diffusive world, but the relative impact of a large
move in a long time is much smaller.

To a certain extent, the time behaviour can be controlled by the mean-reversion
parameter. The faster the mean-reversion, the flatter long-time smiles will be, as
the mean-reversion will stop volatility's effect from piling up. See Chapter 18 for
graphs of various cases.

Note that we should be careful in using stochastic-volatility models. Just because
a negative correlation can be used to produce a skewed smile does not mean that
that is the financial mechanism which does produce it. We return to this point in
Chapter 18.

16.7 Pricing exotic options

Pricing exotic options using stochastic-volatility models is tricky. The replication
methods we have presented cannot be used. For a stochastic-volatility model, the
future prices of options for a given time and value of spot are not determined today.
Instead, they depend upon the then prevailing value of instantaneous volatility.
Whilst this is a quite appealing feature of the model in that it reflects well experi-
ence in the markets, where the prices prevailing in the future are rarely predictable,
it violates a fundamental requirement of pricing by replication.

We can, of course, price multi-look options by Monte Carlo. However, as the
stochastic differential equation is not solvable, this requires short-stepping which
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means that the time to run one path is a lot slower than for other models. This, of
course, implies that the time required to price an option is much greater and often
too long to be useful.

Another approach is to use trees. However, we then have to use a two-dimensional
tree to reflect the fact that we have two state variables. We also have that the size of
spot movements are state-dependent which means that the trees will not naturally
recombine.

As we have a PDE for stochastic volatility prices, we can apply PDE techniques
but we will of course have to add on an extra dimension to cope with volatility.
That is we have to solve a PDE with three state variables instead of two. If we wish
to price path-dependent exotics, we may need to add in an extra auxiliary variable
which increases the dimensionality again.

16.8 Key points

Stochastic-volatility models are currently quite popular. They provide a simple
mechanism for allowing implied volatilities of options in the market to vary from
day to day. A rapid pricing formula can be developed. They have the appealing
property that it is possible to hedge using one option. They can also be used to
produce convincing market smiles with appropriate parameters.

On the other hand, it is difficult to price exotic options, and the hedging is really
too good to be true.

Stochastic-volatility models introduces smiles by letting volatility be a stochastic
quantity.
Real-world volatility is mean-reverting.
Any drift can be chosen for the volatility in the risk-neutral measure but in prac-
tice a mean-reverting volatility is used.
In a stochastic-volatility model, the instantaneous volatility and the implied vola-
tility are quite different things.
Prices can be developed by Monte Carlo, transform methods and PDE solutions.
If volatility and spot are uncorrelated then the spot can be long-stepped and the
price of a vanilla option can be written as an integral over Black-Scholes prices.
Stochastic-volatility smiles tend to be shallow relative to jump-diffusion smiles
for short maturities and relatively steep for long maturities.

16.9 Further reading

The transform approach developed here is based on that in Option Valuation Un-
der Stochastic Volatility by A. Lewis, [100] where much more general stochastic-
volatility models are studied and solved. If you want to implement transform-based
solutions to stochastic volatility models this is the book to buy.
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The transform approach to stochastic-volatility pricing was started by Heston,
[72]. A quite general jump-diffusion and stochastic-volatility model, which
probably pushes the transform technique as far as it will go in this direction, has
been developed by Duffle, Pan & Singleton, [50]. In [101], the transform technique
is extended to cover a large class of models.

An alternate approach to stochastic volatility models using ideas from ergodic
theory has been developed by Fouque, Papanicolaou & Sircar, [55]. Their model
relies on the volatility having a very fast mean reversion which means that the only
effective state variable is spot. The book is interesting, readable and accessible.

One of the first papers on stochastic volatility was by Hull & White, [75], where
they developed a price in the uncorrelated case by moment-matching the density
of the total variance along a path.

One appealing idea is to make the implied volatilities stochastic instead of the
instantaneous volatilities. To do so in a way that avoids arbitrage is, however, tricky.
One approach is to make the instantaneous volatilities stochastic but let the implied
volatility drive the process. Such an approach has been developed by Schonbucher,
[1321.

One approximation to stochastic volatility that has recently become very pop-
ular is the SABR model [65]; this model involves a log-normal volatility with no
drift and a correlated CEV process for the stock or forward. Its great virtue is the
existence of analytic approximations for prices together with more realistic smile
dynamics.

A highly recommended recent text focussing on the practicalities of modelling.
the volatility surface is by Jim Gatheral, [58].

16.10 Exercises

Exercise 16.1 Show that if spot and volatility are uncorrelated then the risk-neutral
density of spot can be written as an integral over log-normal densities. How would
you use Monte Carlo to estimate this density?

Exercise 16.2 Which of the replication techniques of Chapter 10 can be applied
when using a stochastic-volatility model?

Exercise 16.3 Which PDE will an option on a dividend-paying asset following a
stochastic-volatility process with constant dividend rate, d, satisfy?

Exercise 16.4 Suppose a stock moves according to a stochastic-volatility model
and we Delta-hedge using a constant volatility; what will happen?
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Variance Gamma models

17.1 The Variance Gamma process

If one examines the movements of stocks on small time scales, one finds that they
do not look particularly similar to a Brownian motion. They move in little jumps
rather than continuously and the total amount of up and down moves is finite rather
than infinite. All of the models we have so far considered look very similar on small
time scales. Jump-diffusion and the Black-Scholes model are identical except at
crash times, and letting volatility be stochastic makes little qualitative difference at
small scales. They all give continuous paths (except at jump events) and have an
infinite first variation, that is an infinite amount of up and down moves.

The Variance Gamma model of stock evolution attempts to address these prob-
lems by letting `experienced time' be a random process itself. The idea is that the
volatility should be a measure of a stock's sensitivity to information as it arrives,
but the amount of information arriving is random also, and needs to be described
by a random process itself. One can think of trading volume as a proxy for informa-
tion arrival, and there is some statistical evidence that stock price returns are more
log-normal when rescaled to use trading volume for the time parameter instead of
calendar time.

A mathematical motivation for using random times lies in the classification of
martingales. If one has a continuous martingale then it is a diffusion, so moving
within the space of continuous martingales will not buy us much. A second classifi-
cation theorem says that a general martingale is a random-time-changed Brownian
motion. This means that in mathematical terms, the introduction of random times
is inevitable if we wish to study new processes.

The random process modelling information arrival should have certain prop-
erties. The market will not forget information so the amount of information can
only increase. Our random process should therefore be monotone increasing. If
we require that the speed of arrival of information should not be affected by the
amount of information that has already arrived then the distribution of the amount

401
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of information over any period should be independent of the total amount of in-
formation at the start of the period. We can also require that the distribution of the
information arriving in a given period should only depend on the length of that
period.

Note that this is quite different from stochastic-volatility models where an in-
crease in volatility persists and keeps the stock more volatile until the volatility
returns randomly or mean-reverts to its previous level.

If we denote our process for information by IF(t) then our requirements mean
that F(t) - r(s) is a positive random variable with density depending only on t - s.
Note that we cannot use a Brownian motion for F(t) because it will not result in an
increasing F. We therefore look for a family of positive random variables Yh such
that Yh + Y, has the same distribution as Yh+,.. We then want F(t) - F(s) to be
distributed as Yt_S for t larger than s.

Such a family of random variables are the Gamma distributions. We have two pa-
rameters: it, the mean and, v, the variance. Having fixed these the density function
of Yh is

/ a
A21, L x

Ph(x) = H(x) (-) v (17.1)

where H(x) = 0 for x < 0 and IF is the Gamma function. Recall that r(x) is a
generalization of the factorial function defined for non-integers with the properties

I'(x + 1) = xF(x)

and

r(n) = (n - 1)!

for integers n. We recall that

(x) = Jsx_le_sds.F (x) (17.2)

The random variable Yh has mean µh and variance vh.
We now define a Gamma process to be a sequence of random variables, Tt,

such that Tt - TS is distributed as Yt_5. The group property, that Yh + Y,. has the
same distribution as Yh+., guarantees that we obtain the same distribution for Tt
regardless of how many stops we make before time t. That is if we take times

t1

and sample Tt, as Yt,, and Tt, as Tt,_, -+Yt,_t;_,, we get the same distribution for Tt
regardless of the values of tj and n. The parameter µ is said to be the mean rate of
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Variance Gamma paths
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Fig. 17.1. Variance Gamma paths with small v.

T and we shall typically take it to be 1. The parameter v is said to be the variance
rate of T. As Tt and Yt have the same distribution, we have that Tt has mean tµ
and variance tv.

Having defined the Gamma process, we can now define a Variance Gamma pro-
cess. Let b(t; 0, a) be a Brownian motion, with drift 0 and volatility a, that is,

db = Odt + adW, (17.3)

and let

X(t; or, v, 0) = b(Tt; 0, a), (17.4)

where Tt is the value of a Gamma process at time t with a = 1 and variance rate
v. We then say that X is a Variance Gamma process. We illustrate this process in
Figures 17.1 and 17.2.

Thus to take a random draw from X we first take a random draw from a Gamma
distribution to get T, and then we take a second random draw, Z, from a standard
Gaussian distribution to get

X = BTt + aTt112Z. (17.5)

Our model for stock evolution is now to let the log of the stock follow a Variance
Gamma process with an additional drift, a, based on the actual calendar time rather
than the randomly drawn time. Thus we take

S(t) = S(0)e`+x(r;0', ,,o) (17.6)

We now proceed to examine to price options using this model.
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Fig. 17.2. Variance Gamma paths with large v.

17.2 Pricing options with Variance Gamma models

If we plot the paths of a Variance Gamma process, we discover that they consist of
a large number of very small jumps. We have repeatedly seen that perfect hedging
in the presence of jumps is impossible. We can therefore expect that a Variance
Gamma model for stock movements will lead to an incomplete market and there-
fore the existence of many equivalent martingale measures.

We will show in Section 17.4 that

S(0)ex(r;o,v,B)+cvr

is a martingale if

w=Ulogl 1-By-021 . (17.7)

Note that as v tends to zero, this w converges to -0 - 10-2 which is the correction
term required to make geometric Brownian motion a martingale.

This means that if we work with a continuously-compounding interest rate, r,
then for the discounted stock price to be a martingale, then the stock process-must
be of the form

v,O)+wr

It turns out that when taking an equivalent measure we can change the parame-
ters a, a, v, and 0 to whatever we want. Proving this is however way beyond our
scope. The essential idea is that the process is made up of a large number small
jumps of varying sizes; if we think in terms of each jump size occurring according
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to a Poisson process then we can let each Poisson process have any intensity we
like. Note the contrast to the Black-Scholes world where only the drift could be
changed. This means that we can obtain an equivalent martingale measure by set-
ting a, v, 0 to anything we choose and we are then constrained to put

a=r+w. (17.8)

Once we have chosen an equivalent martingale measure, that is once we have
chosen a, v and 0, we can price options as expectations in the usual fashion. For
a vanilla European option, C, with payoff function f (ST) at time T, we have that
the value at time zero is

C(0) = e-' T E(f (17.9)

This is easily evaluated by a Monte Carlo simulation. We simply take a random
draw, S, from a Gamma distribution with mean T and variance vT, and then let

X=BS+a / W, (17.10)

where W is a draw from an N(0, 1) distribution. We then just plug X into (17.9);
repeating many times we get a Monte Carlo estimate for the price. Note the big
advantage here over stochastic-volatility models - we never need to substep. We
always just take two draws: one Gamma draw for the variance and one normal draw
for the Brownian motion, and the distribution is precisely simulated. One subtlety
here is that we need to be able to draw quickly from the Gamma distribution. One
method of rapidly computing the incomplete Gamma function, that is the integral
of the density up to a point x, is given in [123]. Its inverse can then be computed
via Newton-Raphson search. In practice, we might want to develop a table be-
fore running the Monte Carlo simulation depending on how many paths we are
doing.

For vanilla call and put options, we can develop the price as an integral over
Black-Scholes prices. If we fix a random time S and integrate N(0, 1) draws, we
are taking an integral

C(0) = J y(R)f f (17.11)

where y(R) is the density of the relevant Gamma distribution and g is the density
of a standard normal. We can rewrite (17.11) as

C(0) = f Y(R)e-rT

X f f (S(O)eBR+cuT+2azRerT-2o2R+ R/TaW)g(W)dWdR.

(17.12)
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Fig. 17.3. Variance Gamma smiles with 0 = 0.

The inner integral is now just the Black-Scholes price of an option with payoff f
with spot equal to S(0)e0R+wT+2!°2R and volatility o R -IT. We can therefore sub-
stitute the Black-Scholes price for the inner integral and then do the outer integral
numerically; this pricing will be very fast.

Having developed the pricing method, we can examine the qualitative shape of
Variance Gamma smiles. There are two effects depending on the values of v and
0. If 0 is zero then the smile is symmetric and goes down in the middle and up
at either side, i.e. the `smile' is smile-shaped. This reflects the fact that increasing
v increases the probability that the spot (in the risk-neutral world) will end up far
out-of-the-money, making far out-of-the-money calls and puts more valuable; the
distribution has fatter tails than the normal distribution. When v is non-zero, the 0
parameter determines the skewness of the smile. A positive 0 will yield an upwards
sloping smile, whilst a negative one will give a downwards slope. See Figures 17.3

and 17.4.
As well as examining the smile at one time horizon, it is interesting to see how

the smile looks across many maturities. In common with jump-diffusion models,
we see that it is much sharper at short times and becomes flat at long time horizons.
This qualitative behaviour is often found in market smiles and therefore is a good
argument in favour of the model. However, as with jump-diffusion models there
is a tendency for the smile to flatten too quickly. This contrasts with stochastic
volatility models, where the total amount of variation of volatility increases over
time and for certain parameter sets, smiles flatten quite slowly.

If we take constant parameters then the observed smiles will be a constant func-
tion of time-to-expiry and moneyness (i.e. strike divided by spot). To see this,
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Fig. 17.4. Variance Gamma smiles with 0 < 0.

observe that in both Variance Gamma and Black-Scholes, the process for the log
is given by a process with increments that are distributed independently of cur-
rent level and time. Our smiles therefore float. This property is shared with jump-
diffusion models.

To what extent is the Variance Gamma model correct? It gives an accurate model
for stock price movements in the small scale. It does not include the mechanisms
for crashes which are an important qualitative feature of equity markets. However,
one could easily develop a combination of jump-diffusion and Variance Gamma
which includes crashes.

17.3 Pricing exotic options with Variance Gamma models

Two of the methods we have presented for pricing exotic options easily go over
to the Variance Gamma model. These are Monte Carlo simulation and replica-
tion. Having chosen the risk-neutral measure, we need as usual to evaluate the
discounted expectation of the derivative's payoff.

To price a multi-look option paying f (St, , . . . Stk) at time tk in a constant-interest-
rate world, we simply simulate the values of Sty one after another. Thus we draw
the random time Tt,, and use this to draw St, with a normal draw. We then draw
the increment Tt2 - Tt, which is independent of the value of Tt, , and use this to
determine St, / St, which is, of course, independent of St, and so on. To approximate
the expectation

e-rtk7G (f (St,,... , Stk)),
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we therefore just plug in drawn values of S,1 into f, discount and average over a
large number of draws.

For the use of replication methods, the important point to note about the Variance
Gamma model is that the state is only dependent on the current value of spot - this
is the same as jump-diffusion models and the Black-Scholes model but unlike
stochastic-volatility models. The price of an option at some future time for a given
value of spot is therefore determined within the model today. This means that the
replication methods presented in Sections 10.4 and 10.3 go over verbatim.

17.4 Deriving the properties

In this section, we derive some of the easier properties of Variance Gamma pro-
cesses which were needed earlier in the chapter. As Ph, is zero for x < 0, Y1, will,
by construction, be a positive random variable. The easiest way to see that it has the
other requisite properties is to use its characteristic function. Let A be a random
variable. Recall that the characteristic function, OA(u), is the expectation of e'A"
It is essentially the Fourier transform of the density function and as Fourier trans-
forms are invertible, knowing the characteristic function is equivalent to knowing
the density function. It is immediate from the definition of the characteristic func-
tion that A and B are independent random variables if and only if

I A+B(u) = OA(u)OB(u). (17.13)

This means that to prove that Y. + Y, = Y,r+t in distribution, we need only show that

OYS+r(u) = OYy(u)OY,(u). (17.14)

In fact, the characteristic function of Y, is
u2,

1
OY, (u) = , (17.15)

1 -
iuv

where A, v are the mean and variance rates respectively, which immediately yields
(17.14). The energetic reader can derive the characteristic function using contour
integration.

To get an expression for the density of X(t; a, v, 0), we use the fact that, if we
know the density, pAI B (x, b), of A given B and the density, pB(b), of B, then the
density of A is

PA (x) =
J

PAIB(x, b)pB(b)db. (17.16)

Applying this to the Variance Gamma density, where A corresponds to a normal
distribution of which the variance is determined by the second draw and B is the
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random time drawn from the Gamma distribution, we deduce that the density of
X (t) is given by

2 gv-1ef 1 -fx(t)(x) =
J Q 27tge

2a
g v V r t dg. (17.17)

(U)

The characteristic function can be evaluated as an integral over characteristic
functions of Gaussians and is equal to

1

Ox(t)(u) = 1 - i6vu + (Q2v/2)u )

r/v

If we evaluate the characteristic function at u = -i, we obtain the expected value
of ex(t) and this is equal to e", which is why we have defined co in the way that
we did. In particular, it follows that ex(t)+ 0t is a martingale.

Another fact that we can easily deduce from the characteristic function is that
Variance Gamma paths are of finite first variation. This is very different from Brow-
nian motion where the second variation is finite and non-zero, and the first varia-
tion is always infinite. We prove that the first variation is finite by showing that the
Variance Gamma process is a difference of two increasing processes. An increas-
ing process is necessarily of finite first variation since the variation is then just the
total amount of up moves which is just the final value minus the initial value.

To see that it is the difference of two increasing functions, we simply rewrite the
characteristic function as

2 2

1 (vi )t 1 (z)t
(1 - i(v1/lti)u/ (1 + i(v2/A2)u)

where µj, vj satisfy

v-1µ2 = v-1,
i J

V1V2 cr2V V1 V2
= 0v.

AI 2 2 /-t1 /-c2

(17.18)

The first term is the characteristic function of a Gamma process with parameters
µ1, v1, and the second is the characteristic function of the negative of a Gamma
process with parameters µ2, v2. Recalling that Gamma processes are increasing,
we have the desired result. Note that if 0 = 0, the equations for µj and vj are
symmetric in j and so the Variance Gamma process can be written as the difference
of two identically distributed Gamma processes.
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17.5 Key points

The Variance Gamma process has some nice properties. It is possible to develop
Monte Carlo and numeric integral prices for vanilla options which allow rapid cal-
ibration to the market. The paths seems to mimic market prices well. The process
leads to an incomplete market with a great deal of choice for risk-neutral parame-
ters - perhaps too much. It is not however clear how to hedge since all movements
are jumps. For pricing exotic options, the Variance Gamma model is well-adapted
to both Monte Carlo and replication techniques.

The Variance Gamma is a model based on the notion of random time.
Random time increments have the properties of being proportional in mean and
variance to the length of calendar time, and of being independent of previously
elapsed time.
Variance Gamma paths consist of many small jumps.
Variance Gamma paths are of finite first variation whereas Brownian motion
paths are of infinite first variation.
In passing to an equivalent measure, there are no constraints on the changes in
parameter values unlike in the diffusion setting.
Variance Gamma smiles are a fixed function of time-to-expiry and moneyness.
Variance Gamma smiles become flatter as time-to-expiry increases.
Vanilla options can be priced using Variance Gamma models as an integral over
Black-Scholes prices or by Monte Carlo.
Exotic options can be priced using Variance Gamma models by Monte Carlo or
replication.

17.6 Further reading

Variance Gamma models were introduced by Dilip Madan and various collabora-
tors. The fundamental papers are:

`The Variance Gamma model for share market returns,' by Dilip Madan &
Eugene Seneta, [106]. This paper introduces the Variance Gamma process and
discusses how good a model it is for stock market returns.
`Option Pricing with VG martingale components' by Dilip Madan & Frank
Milne, [107]. This paper introduces option pricing with Variance Gamma and
produces the formula for pricing vanilla options.
`The Variance Gamma process and option pricing' by Dilip Madan, Peter Can
& Eric' C. Chang, [108]. This paper extends the theory and deduces formulas for
the Variance Gamma density in terms of Bessel functions.

A quite different approach to developing a pricing formula using Fourier trans-
form techniques is given in [101].
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The Variance Gamma is only one of a class of Levy process models that have
recently become popular. These models have stock price moves that consist of
infinite numbers of very small jumps with no continuous part. Stochastic volatility
extensions of the model now exist. The most popular versions are CGMY, [33],
and its stochastic volatility extension, [34]. Two recent books on modelling Levy
and jump processes are [41] and [133].

17.7 Exercises

Exercise 17.1 Which of the replication techniques of Chapter 10 can be applied
when pricing with a Variance Gamma model?

Exercise 17.2 Suppose we wish to price an Asian option with N look-at dates
with a Variance Gamma model using Monte Carlo. How many (pseudo-)random
numbers will we need per path?
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Smile dynamics and the pricing of exotic options

18.1 Introduction

We have examined in varying depths a range of models for stock price evolution
and developed various methods of pricing using them. This yields differing meth-
ods of pricing exotic options which will lead to varying prices. The topic of this
chapter is how to choose between them, and what the choice means. Our objective
is more to make the reader aware of the questions than to answer them. Indeed, the
questions we raise are still the subject of much ongoing research.

Our starting point will always be that there is a liquid market in vanilla options.
We want to price the exotic options in a manner compatible with this market. A
simple and fundamental constraint is that the price of an exotic must not be arbi-
trageable by using a static portfolio of vanilla options.

Recall that in Chapter 6 we showed that the specification of a process for the
underlying was equivalent to specifying a measure on the space of paths. We also
saw that the price of a derivative contract could be obtained by taking an expec-
tation in a risk-neutral measure associated with the process. What are we doing
when we take this expectation? Typically, our derivative contract depends upon the
value of the underlying at a finite set of times. The choice of a risk-neutral measure
then specifies a joint probability distribution of the underlying for this set of times.
Suppose our look-at times are

to<tl<...<t,,.

Let S1 denote the value of the underlying at time t1.
Let (1?(S1, ... , denote the joint probability density function implied the by

risk-neutral pricing measure. Unfortunately, ' is not determined by the vanilla
option prices. However, they do imply certain constraints on (D. We showed in
Section 6.3 that the risk-neutral density of the underlying at time t1 is determined
by the call option prices.

412
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This means that we can observe (D1(S1), the integral of (D over all coordinates
except S1. Risk-neutrality implies that the expectation of S1 under c 1 must be the
forward of So, the spot at time zero. In fact, the martingale conditions also means
that the future-implied densities must always be risk-neutral: that is, the conditional
density of S1 given the values of S1, ... , Sk for some k < 1, must have expectation
equal to the forward of Sk.

The upshot of all this is that there are many possible choices of D, and the way in
which they will differ is in the future densities implied by Sl for j < k taking given
values. A choice of density for a single time horizon is equivalent to specifying the
call option prices, and that in turn is equivalent to specifying the implied volatility
smiles. Our choice of is therefore a choice of smile dynamics. In other words,
how we choose c is a statement about how we believe the smile evolves over
time.

Our purpose is this chapter is therefore to examine some of the possible ways
smiles can evolve, and to relate these to the models we have developed. The moral
is that we should price the exotic option with a model that produces believable
smile dynamics.

18.2 Smile dynamics in the market

Before we start examining what smile dynamics our models imply, we need to
examine the various sorts of smile dynamics that can be observed in the market.
There are basically two things we need to think about: how the smile changes with
spot, and how the smile changes with time.

18.2.1 Sticky or floating

The implied volatility smile is a function of strike. The crucial question is how does
that function change when spot is moved. Two fairly obvious functional forms are

81(K) and 82(K/S),

where K is the strike and S is spot. In the first case, the smile does not change as
S changes. Such a smile is said to be sticky. In the second case, the smile floats
with spot and the smile is said to be floating. It is sometimes called a sticky-delta
model.

For example, a foreign exchange smile is typically a `U' shape with the bottom
of the `U' at-the-money. If we modelled our smile by a sticky smile model then we
would be saying that at-the-money would be up the sides of the `U' if spot changed.
Clearly this would be a poor model for market behaviour. We therefore conclude
that for foreign exchange we need a floating smile model.
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On the other hand, in interest-rate markets the caplet smile tends to be a
downward-sloping curve whose shape is attached to the level of strike rather than
relative to at-the-money. We conclude that the smile is therefore sticky.

We can expect equity smiles to float. Remember that the principal cause of the
equity smile is the risk-aversion of investors against rapid downward movements.
This is always manifested in terms of movements relative to the current value of
spot. An investor is always worried about losing the value he currently has, not
what he might have in a year, or what he did have a year ago. There is however some
evidence that implied volatilities increase when spot decreases which suggests that
the smile has a sticky component.

It is important to realize that the decision between sticky and floating can have
consequences for hedging when working with a Black-Scholes type model. Sup-
pose we have sold a call option, C, on an underlying S, and we are Delta-hedging it.
We should hold as units of S. If we use a Black-Scholes formula with the implied
volatility smile, 6, taken into account, then this implies that we have to hold

a (C(S, 6(S, K))) =
ac

(S, 6(S, K)) +
ac 86

(s, K) (18.1)
as as 86 as

units of S. For a sticky smile, the second term is zero but for a floating smile it is
not. How we hedge is therefore affected by our belief about smile movements. If
our belief is wrong, we will end up with a non-delta neutral position, and be left
with undesirable extra risk arising from the hedging error.

18.2.2 Time dependence

There are really two types of time dependence of the smile. The first is the time
dependence as seen from today: we can observe various maturities of vanilla op-
tions in the market and for each maturity we get a smile. There is nothing forcing
these smiles to be the same. The second sort of time dependence comes from the
why the smile evolves over time. Do we expect the smile to have the same qualita-
tive properties in the future as it has today? Should these qualitative properties be
relative to current time or should they be associated to fixed calendar dates?

Typically in the equities market one sees a steeply downwardly sloping smile
with sometimes a slight up-kick for out-of-the-money calls. This smile is much
sharper for short maturity options than for long-dated ones. Short-dated here means
about one to three months. This behaviour has persisted over time and has been
generally the same qualitatively since the 1987 crash. Before then smiles were
much shallower but the crash seems to have triggered a much greater use of options
in hedging against jump-risk which increased the smile's slope.

The fact that the equities smile has persisted over time means that we can expect
the future equities smile to have a similar shape to today's.
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The foreign exchange smile is more constant as a function of maturity. It displays
a `U' shape for each maturity but these `U' shapes are roughly similar for each
maturity. Again, these smiles have persisted over a long period of time, and we
therefore expect the smile to be the same shape qualitatively in the future.

The interest-rate smile really has two components. The first is a downward
slope which has been around for quite a long time and which first appeared in
the mid 1990s. The second component is a slight upward curve for out-of-the-
money caplets which appeared in the aftermath of the Asian crisis in 1998. This
component reflects risk-aversion to large market moves. This second component
is fairly homogeneous across maturities existing even for very long-dated options,
for example ten-year caplets.

18.3 Dynamics implied by models

We have studied a number of alternative models in varying detail. We recall them
here

(i) jump-diffusion,
(ii) stochastic-volatility,

(iii) Variance Gamma,
(iv) displaced diffusion, that is a Black-Scholes type model in which the underly-

ing plus a constant is log-normal instead of the underlying,
(v) a Derman-Kani or Dupire type model where the underlying follows a process

dS = Sµdt + u(S, t)SdW. (18.2)

What sort of smile dynamics do these models give rise to?

18.3.1 Jump-diffusion smiles

If we use a log-normal jump-diffusion model with constant parameters, then every-
thing is defined relative to the current value of spot and the current time. As we saw
in Section 15.10 this leads to a smile which is a constant function of moneyness.
This means that if we write the implied volatility as a function of strike, K, spot,
S, current time, t, and expiry time, T, we obtain a function

&(S, K, t, T) = &(K/S, T - t). (18.3)

If we make the mean jump size (ratio) less than 1 then we obtain a downwards-
sloping smile. However, this smile will be much sharper for small values of T - t
than large ones. Over long time periods, the smile becomes more horizontal as the
diffusive component of the model wins out. See Figures 18.1 and 18.2.
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Fig. 18.1. Jump-diffusion smiles for time horizons of one through five years. The
sharpest smile is one year, and the shallowest is five years. Spot is 100 and jumps
are symmetric.
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Fig. 18.2. Jump-diffusion smiles for time horizons of one through five years. The
sharpest smile is one year, and the shallowest is five years. Spot is 100 and jumps
are asymmetric with mean ratio equal to 0.8.

18.3.2 Stochastic-volatility smiles

If we use a stochastic-volatility model with constant parameters the model is of
log-type and again everything is defined relative to the current value of spot and
time, and we obtain a functional dependence for the implied volatility of the form

&(S, K, t, T) _ &(K/S, T - t). (18.4)
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Fig. 18.3. Stochastic-volatility smiles (Heston model) for time horizons of one
through five years. The sharpest smile is one year, and the shallowest is five years.
Spot is 100 and volatility is uncorrelated with spot. The reversion speed is 1 and
the volatility of variance is 1. Initial volatility is 10%.

The principal difference between stochastic-volatility and jump-diffusion smiles is
that there is an implicit assumption that the volatility has not changed in (18.4). A
big difference between jump-diffusion and stochastic volatility is therefore that we
expect the smile's shape and level to evolve, even if risk-preferences do not change,
in stochastic-volatility models.

Another big difference with stochastic volatility is that for long maturities, the
stochasticity of volatility has more time to affect the moves of the underlying. The
smiles therefore do not decay so rapidly at long maturities. The relative sharp-
ness of long-dated smiles can be controlled by the speed of mean reversion of the
volatility. If a very strong mean reversion is used then the volatility cannot get too
far away from the mean for any length of time, and so there will be less opportunity
for the effects of the stochastic volatility to build up. See Figures 18.3, 18.4, 18.5,
18.6, 18.7 and 18.8 for examples of these effects.

18.3.3 Variance Gamma smiles

If we use a Variance Gamma model with constant parameters, then everything is
defined relative to the current value of spot and the current time. Once again we
obtain an implied volatility function of the form

&(S, K, t, T) = &(K/S, T - t). (18.5)
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Fig. 18.4. Stochastic-volatility smiles (Heston model) for time horizons of one
through five years. The sharpest smile is one year, and the shallowest is five years.
Spot is 100 and volatility is uncorrelated with spot. The reversion speed is 1 and
the volatility of variance is 0.1. Initial volatility is 10%.
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Fig. 18.5. Stochastic-volatility smiles (Heston model) for time horizons of two
through ten years. The highest smile is two years, and the bottom is ten years.
Spot is 100 and volatility is uncorrelated with spot. The reversion speed is 0.1 and
the volatility of variance is 1. Initial volatility is 10%.
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Fig. 18.6. Stochastic-volatility smiles (Heston model) for time horizons of one
through five years. The sharpest smile is one year, and the shallowest is five years.
Spot is 100 and volatility is uncorrelated with spot. The reversion speed is 0.1 and
the volatility of variance is 1. Initial volatility is 10%.
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Fig. 18.7. Stochastic volatility smiles (Heston model) for time horizons of one
through five years. The highest smile is one year, and the lowest is five years.
Spot is 100 and volatility is negatively correlated (-0.6) with spot. The reversion
speed is 0.1 and the volatility of variance is 0.1. Initial volatility is 10%.



420 Smile dynamics and the pricing of exotic options

0.15 -- - -

0.09

0.08

bO ) 1<, 'O 4) ':P X30 o'P 'ph

Fig. 18.8. Stochastic-volatility smiles (Heston model) for time horizons of one
through five years. The steepest smile is one year, and the shallowest is five years.
Spot is 100 and volatility is negatively correlated (-0.6) with spot. The reversion
speed is 2 and the volatility of variance is 0.1. Initial volatility is 10%.

The smile is symmetric, unlike a jump-diffusion smile. However, skewness can be
introduced using the 9 parameter. For a single fixed maturity, Variance Gamma and
stochastic-volatility smiles look very similar. As with jump-diffusion models, this
smile will be much sharper for small values of T - t than large ones. Over long
time periods, the smile becomes more horizontal, since the model becomes more
and more similar to a purely diffusive model.

18.3.4 Displaced-diffusion smiles

Displaced diffusion will give us a downward sloping smile. It is a quite sticky
smile in that the shape is quite insensitive to the value of spot. The overall level
will change a little but if one rescales volatility so that the smile is at the same level
then one obtains an almost identical smile.

The shape of the displaced-diffusion smile is highly insensitive to maturity, see
Figure 18.9.

Note that as none of the parameters involve the current time, the smile implied
will necessarily be purely a function of T - t, not t and T individually.

18.3.5 Dupire/Derman-Kani smiles

If we calibrate a Dupire/Derman-Kani model to the market then we obtain a func-
tion or (S, t) to use in the model. Typically the function a (S, t) is fairly constant
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Fig. 18.9. The displaced-diffusion implied volatility smile for maturities 1, 3, 5
and 9 years. The highest graph is 9 years and the lowest is 1.

for large t. This means that if we use the model to predict the smiles that will be
observable a year from now, then we find that there will not be any. That is the
model predicts that smiles are destined to disappear. As smiles have persisted for a
long period of time, this is an undesirable feature.

The other aspect of the model is that the volatility function or is highly dependent
on spot. This means that as spot changes, the predicted smile will change greatly,
in possibly strange ways. This again is less than ideal.

18.4 Matching the smile to the model

In the previous two sections, we looked at the smile dynamics in various markets,
and which ones are implied by various models. In this section, we put the two
together.

18.4.1 Equity smiles

The equity smile is highly skewed, much sharper for short maturities and is much
flatter for long maturities than for short maturities. These behaviours persist over
time. The obvious match is therefore the jump-diffusion model as it naturally gives
all these properties. See Figure 18.10.

However, if we try to fit the smile with constant parameters we make a surprising
discovery: the market-implied parameters will not be a constant function of time.
The market skewness may decay even faster than implied by the model or at times
it may decay more slowly. We can interpret this fact in a couple of ways. One
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Fig. 18.10. Implied volatilities of short-dated options on the FTSE.

obvious way is simply to decide that jump-diffusion is not the whole story and that
we need a more sophisticated model; however it is not so clear how to define the
requisite more sophisticated model that gives a time-homogeneous fit.

A second way is to remember that the market chooses the martingale measure,
which in this case corresponds to choosing the jump-intensity. If jump-intensity is
not constant, we can then conclude that the market is choosing to price with greater
jump-intensity for short-dated jumps. How could this come about? Ultimately, the
market's choice is determined by supply and demand. Thus if there is a great deal
of demand for out-of-the-money put options from fund managers trying to protect
their portfolios then the short-term jump-intensity will be driven up, and increase
skewness in the short-dated smiles.

A second problem with jump-diffusion models is that the at-the-money implied
volatility is much greater than the diffusive volatility since a large component of
the price comes from jump risk. However, if one measures the diffusive volatility
of a major index such as the S&P and compares it with the implied volatility of
at-the-money options they are not particularly different. This is an argument against
using jump-diffusion models. (See Figure 18.12.)

A third issue is that jump-diffusion models imply deterministic future smiles
that float perfectly. Future smiles are not deterministic so we are failing to capture
an important aspect of smile evolution. There is also some evidence that at-the-
money implied volatilities increase when spot decreases which the model also fails
to capture. (See Figure 18.11.) We could capture this second feature by using a dis-
placement in combination with a jump-diffusion model. To get indeterminacy in
future smiles we need to make some parameter stochastic. This parameter could be
the instantaneous volatility but could equally be the jump-intensity or jumpmean.
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18.4.2 FX smiles

The FX smile between major currencies is fairly symmetric and time-constant.
These properties can be obtained by the use of a stochastic-volatility model with
rapid mean-reversion. As there is no skew, we can use a model with uncorrelated
volatility. Occasionally, jumps do occur in exchange rates. For example, the dollar-
yen rate once moved 20% in one day.

18.4.3 Caplet smiles

The caplet smile really has two components. One is the skew which is sticky
and time-constant. We can naturally achieve this part via displaced-diffusion. The
second component is the slight increase in volatilities for high strikes. This is also
fairly time-constant. It is less clear whether it is sticky or floating. We can achieve a
good match to it using an uncorrelated mean-reverting stochastic-volatility process
and maintain time-homogeneity.

18.5 Hedging

The pricing of exotic options is not just about finding prices that are compatible
with market dynamics in the sense of being non-arbitrageable; it is equally about
realizing those prices via hedging. Thus if a model is to be useful to a trader it must
tell him how to hedge and that the hedges must work.

Typically, the way a trader will hedge is to fit the model to the market and then to
hedge each of the parameters by using simple options. Typically, an exotic option
will be hedged using calls and puts of various maturities. Therefore after fitting the
model to the vanilla market, the trader measures the derivative of the price with
respect to each parameter of the model, possibly breaking up time into pieces to
do this if he is using a variable-parameter model so as to get the exposure of the
model to changes in the parameter over the various time slices. The trader then
buys a portfolio of vanilla options so as to cancel all these exposures and uses the
underlying at the end to remove any residual Delta.

The trader returns a day later and repeats the process. The market will have
changed a little in the meantime. If the market fit has also changed only a little,
his hedge has been successful and the value of his portfolio has only changed a
small amount. He need then only make small adjustments to his hedging portfolio
to keep himself hedged.

However, suppose he runs his fitting routine and it outputs a vastly different
parameter-set. He then has a problem: although the market has not changed much
his fitter is telling him to totally dissolve his original hedge and set up a new one.
In addition, the new fit will probably give a wildly different price for the exotic
option. The trader will be very unhappy at this and probably throw the model away
(and shoot the quant!).
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This means that an important criterion for trading off a model is that it should
fit the market stably. That is, if one changes the market slightly, the fit should also
change slightly. This is also related to uniqueness of fits. If a model has many
parameters - for example a jump-diffusion stochastic-volatility model with all
parameters time-dependent, then it is possible to get similar qualities of fits with
vastly different parameter sets. This implies instability in that small changes in the
market-observed prices to be fit will lead to great jumps in the parameter-set.

The ultimate test of a model is therefore how does it perform at hedging? This
can be tested by taking historical market data and then running historical simula-
tions of hedging over various periods. In [11], an empirical study of the perfor-
mance of various option pricing models at hedging vanilla options on the S&P
is carried out. The authors find that sophisticated models, particularly stochastic-
volatility models do a lot better than Black-Scholes.

18.6 Matching the model to the product

We have discussed matching the model to the market in terms of deciding whether
the model produces dynamics for the underlying and the smile which replicate
well those observed in the market. A second equally important aspect of pricing
derivatives is that we must consider what quantity an option is most exposed to,
and we must make sure our model prices that quantity correctly.

We consider some examples. A cliquet is an option on the ratio of the value of
spot at two different times. If the strike is A, and the two times are TI and T2, then
at T2 the holder receives the sum

STZ -A .

STl +

This is a call cliquet, one could easily define a put cliquet analogously.
We can regard the cliquet as a forward option, in particular we can rewrite the

payoff as

(ST2 - AST,)+

ST,

In other words, at time Tl it becomes a call option with strike AST, and no-
tional 1/ST,. A quick examination of the Black-Scholes formula shows that the
Black-Scholes value of this call option is independent of the value of ST, for fixed
volatility.

For simplicity, suppose that there are no interest rates. Suppose we take A = 1;
what will the value of this option be at time T1? We have the approximation to the
Black-Scholes formula that an at-the-money call option is worth

0.4Sa,IT P,
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where P is the discount factor. This means that the value of our cliquet at time
T1 is

0.4Q T2 - T1,

where o- is the implied volatility observable in the market at time T1 for options
expiring at time T2. Thus when we buy and sell cliquets, we are really trading the
forward value of implied volatility. For a cliquet, as the value is linear in implied
volatility the product is reasonably benign, and for our valuation all that matters is
that the mean volatility is captured correctly. Thus if we use a model that repoduces
today's smile in the future we can be reasonably confident of our pricing.

Suppose we now add a twist to our product. The holder has to pay an additional
fee at time T1 in order to receive the payoff at time T2. In other words, we have a
compound option. We denote the additional fee by K. Thus we have an option to
buy a call option struck at ST, with notional S-1 and expiry T2, and the strike price
of the option is K. We will call this option an optional cliquet.

Suppose we use a deterministic smile model such as Black-Scholes, jump-
diffusion or Variance Gamma. Then the implied volatility prevailing at time T1
is already known at time To and a unique price, C(1), at time T1 for the cliquet is
known. The value of the optional cliquet is then

max(C(1) - K, 0).

This is very neat but also very dangerous. If C(1) < K, then we are saying that the
option has zero value. Suppose C (1) is equal to K. If you ever get the opportunity
do this trade, and sell the option for zero or almost zero, you will almost certainly
get the sack immediately. Why? Implied volatilities do change. There is a roughly
50% chance that the option will be worth something at time T1 and by selling the
option for zero, you have given away money. By using a deterministic-volatility
model, you have failed to capture the essential feature of this option, namely that
it is an option on volatility. To price this option correctly, you need a model which
captures the variation in volatility well. The obvious candidate for such a model is a
stochastic-volatility model. Of course, by this we mean a stochastic instantaneous
volatility model not a stochastic implied volatility model, so the connection is not
direct as the name suggests.

Another possibility is to use a jump-diffusion model with stochastic parameters.
For example, if we believe that changing risk-aversions to jumps are an impor-
tant component of changes in volatility levels we could let the jump-intensity be a
stochastic parameter, and then price by Monte Carlo.

A general moral to be drawn from this product is that when compound option-
ality is involved it is very important to take account of the stochastic nature of
implied volatility.
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Consider another related cliquet product. Suppose we trade two cliquets on the
same underlying with different strikes. Suppose one has strike ratio 1.1 and is a
call, whilst the other has strike ratio 1 / 1.1 and is a put. If we consider the portfolio
consisting of the difference of the two options, what are we trading? If the two
options are trading at the same implied volatility at time T1, then their values will
cancel as they have the same moneyness, and the trade will be of zero value. Our
value at time T1 is therefore a function of the skewness of the smile. If we use
a model which can never produce changes in skewness, such as a deterministic
smile model, or a stochastic-volatility model with uncorrelated spot and vol, we are
failing to capture the salient features. Once again, this failure will be exacerbated
if we introduce optionality at time T1. To price accurately, we will need a model
that accurately reproduces random changes in skew. We could again use a model
with stochastic jump-intensity or a stochastic-volatility model in which correlation
between spot and volatility is stochastic.

These cliquet-related products exemplify the need to capture the smile dynamics
well when pricing certain products. Other products depend more on the ability to
capture spot moves well. Suppose we consider a crash option. The crash option
pays one after a year if spot drops by a fixed ratio on any one day during the year.
If the ratio is say 20%, then the holder receives a payment if and only if the index
loses at least 20% of its value in one day. If we price this product with a purely
diffusive model, we will get a very small number as the probability of a move of a
certain size in a time interval of length t behaves likes e-l/t. One the other hand, if
we price with a jump model, the probability of a move of a certain size behaves like
Xt which is much, much bigger. When selling this option, we would definitely use a
jump-type model even in markets which do not generally display much jumpiness,
such as major FX markets.

In conclusion, when pricing an exotic option we should take especial care to
analyze what features of the market the exotic option is particularly sensitive to,
and to make sure that our model captures those features accurately.

18.7 Key points

A smile can either float or be sticky according to whether it behaves as a function
of strike or of strike divided by spot.
FX smiles tend to float.
Equity smiles tend to be downward-sloping and display a mix of floating and
sticky behaviour.
Interest-rate smiles are partially sticky.
Different markets display differing term structures for smiles. Equity smiles dis-
play a decrease in skew with time. FX and interest-rate smiles are more time-
constant.
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One method of evaluating a model is whether or not it predicts the future will be
different from the present.
An important criterion for selecting a model is its performance at hedging.
Jump-diffusion, stochastic-volatility and Variance Gamma models predict float-
ing smiles.
Displaced-diffusion predicts a stickier smile.
When pricing an exotic option we should be careful to examine what features of
the model it is particularly sensitive to.

18.8 Further reading

Jim Gatheral's book, [58], is the best reference currently available on the dynamics
of the volatility surface.

Cont and Fonseca, [40], carried out a principal components analysis of the volatil-
ity surface for index options in S&P and FTSE. They have many interesting results
including that relative movements of implied volatilities have little correlation with
the underlying.

Emanuel Derman carried out an analysis of how changes in spot related to
changes in skew for the S&P 500 and identified differing regimes over time, [46].
Other papers applying the same methodologies in different contexts are [1] and
[117]. See also [12], [83] and [84] for further discussion of how option price move-
ments are affected by spot movements in the real world.

Eric Reiner examined many of the different possible smile dynamics in [128].
Alexander discusses methodologies for modelling real-world market processes

in [2]. For a perspective more driven by economics see [31].
Whilst complicated models have the upside of producing more realistic smile

dynamics, they have the downside of non-perfect reproduction of market smiles.
One compromise is therefore to overlay a Dupire/Derman-Kani style model on
top of a jump-diffusion or stochastic-volatility model. This is done in [6] and
[251.

In [11], an empirical study of the performance of various option-pricing models
at hedging vanilla options on the S&P is carried out. The authors find that sophis-
ticated models, particularly stochastic-volatility models, perform better than the
Black-Scholes model.



Appendix A

Financial and mathematical jargon

Finance is full of arbitrary terms that appear to make little sense. In this appendix,
we provide definitions of the more commonly used terms in finance and mathemat-
ical finance for general reference.

Accreting notional An instrument has an accreting notional if the notional in-
creases during its life. Typically used in interest-rate derivatives such as swaps and
Bermudan swaptions.

American option An American option is an option that can be exercised at any
time before expiry. See also European option and Bermudan option.

Amortising notional An instrument has an amortising notional if the notional
decreases during its life. Typically used in interest-rate derivatives such as swaps
and Bermudan swaptions.

Arbitrage An arbitrage is a trading strategy which results in a risk-free profit.
In other words, an opportunity to make money for nothing.

Asian option An Asian option pays off according to the average value of an
asset over a number of dates.

Auto cap A cap which is limited so that only the first k caplets which are in-the-
money pay off for some prespecified k.

Barrier option A barrier option is an option that only pays off if the underlying
has either passed or not passed some prespecified barrier level. See knock-out and
knock-in.

Basis point 0.0 1%.
Basket option An option that allows the holder to buy or sell a basket of

securities.
Binary option Another name for a digital option.
Bermudan option A Bermudan option is an option that can be exercised on

any one of a finite number of times before expiry. See also American option and
European option.

429
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BGM or BGM/J BGM stands for Brace, Gatarek & Musiela; and J stands for
Jamishidian. The BGM model is a model based on letting forward rates have their
own log-normal processes. It is also known as the LIBOR market model. The
Jamishidian model is based on letting swap rates have their own log-normal pro-
cesses. Such models are examples of market models.

Black-Scholes model A model consisting of an asset following geometric
Brownian and a riskless bond allowing frictionless trading.

Bond A unit of debt issued by a company or country that involves periodic
payment of an interest payment called the coupon and return of its face value at the
time of maturity.

Brownian motion A random process in which the distribution of increments be-
tween time t and time s is independent of behaviour up to time s, and is distributed
as a normal with mean zero and variance t - s.

Call option A contract that carries the right but not the obligation to buy an asset
for a predetermined price. See also put option.

Cap A series of caplets.
Caplet The right but not the obligation to enter into a forward-rate agreement at

a pre-agreed strike. So called because it caps the cost of borrowing. See also cap
and floorlet.

Caption An option on a cap.
Cash bond Another name for the continuously compounding money-market

account.
Cliquet An option that pays off according to the ratio of the underlying's value

across two different dates.
Complete market A market in which every contingent claim can be replicated

by trading in the underlying asset or assets.
Consol A bond that pays a regular coupon but has no maturity date and therefore

goes on forever.
Contingent claim A contract whose payoff depends on the price behaviour of

another asset.
Continuously compounding money-market account The riskless money-

market market account in which interest is continuously accumulated.
Convertible bond A bond that can be exchanged for a stock if the holder so

desires.
Coupon A regular payment made to the holder of a bond.
Credit rating A rating assigned to debt that assesses the probability that the

obligor will pay back the debt.
Delta The derivative of the price of an option with respect to spot.
Derivative An instrument that pays off according to the price of another

asset.
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Digital option An instrument that pays either a fixed amount or zero according
to the value of some reference rate.

Discount curve The theoretical prices of zero-coupon bonds of all maturities.
Diversifiable risk Risk that can hedged away by judicious holdings of other

assets.
Dividend A sum paid to the owner of a stock by a company out of its profits at

the discretion of the board.
European option A European option is an option that can only be exercised at

one fixed time. See also American option and Bermudan option.
Expectation The expected value of a random variable. Mathematically defined

as the integral of its density function, f, against x:

E(X) = J xf(x)dx.

Fat tails A distribution has fat tails if its kurtosis is higher than that of a normal
distribution.

Fixed rate A rate for lending or deposit that is fixed across the lifetime of a
contract.

Floating rate A rate that changes during a contract according to market condi-
tions.

Floor A series of floorlets.
Floorlet The right but not the obligation to enter into a forward-rate agreement

at a pre-agreed strike. So called because it puts a floor on the interest received for
putting money on deposit. See also caplet and floor.

Floortion An option on a floor.
Forward contract A contract that carries the obligation to buy an asset at a

pre-determined price on a fixed date.
Forward-rate agreement A contract to put some money on deposit for a fixed

period in the future at a pre-agreed interest rate. The interest is paid at the end of
the contract. The interest rate is called the strike of the contract. Also known as a
FRA.

FRA short for Forward-rate agreement.
Gamma The second derivative of the price of an instrument with respect to spot.
Girsanov's theorem states that changing to an equivalent measure changes the

drift of a Brownian motion but nothing else.
Greek The derivative of the price of an instrument with respect to any parameter

or variable.
Hedging Holding an asset in order to reduce the risk exposure due to some other

asset.
Incomplete market A market in which is not complete.
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Knock-in option A derivative that pays off only if some reference level is
passed.

Knock-out option A derivative that pays off only if some reference level is not
passed.

Kurtosis The fourth moment of a random variable minus its mean divided by
the variance squared:

E ((X - E(X))4)
Var(X)2

LIBID London Interbank Bid Rate. The rate at which the bank can deposit short-
term money in the interbank market. See also LIBOR.

LIBOR London Interbank Offer Rate. The rate at which the bank can
borrow short-term money in the interbank market. See also LIBID.

Long A long position is a positive holding of an asset. Opposite to a short
position.

Market model A model for interest rates in which the movement of some
market-observable rates are modelled directly. See also BGM, BGMlf.

Martingale A random variable whose value is always equal to its expected
future value.

Moment The kth moment of a random variable is the expectation of its kth
power.

Parisian option A barrier option which requires the barrier to be breached for
some prespecified period of time.

Payer's swap A swap in which the holder pays the fixed rate and receives the
floating rate.

Payer's swaption An option on a payer's swap.
Put option A contract that carries the right but not the obligation to sell an asset

for a predetermined price. See also call option.
Receiver's swap A swap in which the holder receives the fixed rate and pays the

floating rate.
Receiver's swaption An option on a receiver's swap.
Rho The derivative of the price of an instrument with respect to r, the

continuously compounding interest rate.
Risk-neutral measure A probability measure is risk-neutral if all assets grow at

the same rate as a riskless bond.
Risk premium The additional return expected on an asset in order to compen-

sate for the riskiness in its future value.
Share A fraction of the ownership of a public limited company which carries

the right to receive dividends and voting rights. It does not carry any obligations.
Stock is an equivalent term.



Financial and mathematical jargon 433

Short To go short is to sell something you do not own. Thus one effectively has
a negative holding in the asset. See also long.

Short rate The theoretical interest rate available for depositing money for very
short periods of time.

Skew A normalization of the third moment of a random variable:

E((X - E(X))3)
Var(X)3/2

Stochastic A fancy word for random.
Stock See share.
Strike The price that an options allows an asset to be ought or sold for.
Swap A contract to swap a fixed stream of interest rate payments for a floating

stream of interest rate payments. The fixed rate is called the strike of the swap.
Swap rate The rate such that a swap with that strike has zero value.
Swaption The option but not the obligation to enter into a swap.
Theta The derivative of the price of an instrument with respect to time.
Trigger option An option that requires the holder to buy or sell an asset at a

fixed price according to the level of some reference rate.
Value at risk (or VAR) The amount that a portfolio can lose over some period

of time with a given probability. For example, the amount the bank can lose in one
day with 5% probability.

VAR Short for value at risk.
Variance Variance is defined as

Var(X) _ ]E((X - ]E(X))2).

Vanna The derivative of the Vega with respect to the underlying.
Vega The derivative of the price of an instrument with respect to volatility.
Yield The effective interest rate receivable by purchasing a bond. (There are lots

of different sorts of yields.)
Yield curve Another name for a discount curve.
Zero-coupon bond A bond which pays no coupons.
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Computer projects

B1 Introduction
In this appendix, we look at some basic methods of simulating financially important
mathematical functions, and then list a number of projects the reader is encouraged
to try for himself. Ultimately, quantitative analysis is about the implementation of
financial models not the theory, and the reader will not have truly learnt the topic
until he, or she, has programmed a few models. For the reader who is familiar with
object-oriented programming, we include a few pointers on how to make use of
O.O. techniques when programming financial models. We refer all readers to this
book's parallel text: "C++ Design Patterns and Derivatives Pricing" for detailed
discussion of how to implement financial models in object-oriented C++. It also
contains code for a variety of purposes including random number generation, the
cumulative normal function and the inverse cumulative normal function.

One point I wish to stress is that any model should be implemented at least
twice. Once in an efficient fast manner for pricing use, and a second time in a
robust, straightforward manner for checking the first method. Often the second
method is Monte Carlo since it is generally easy to implement but slow to converge,
which makes it ideal for testing purposes where speed is generally not an issue
but accuracy is. In a bank, there will generally be a model-validation team whose
job is to carry out the second implementation completely separately and compare
the results with the first implementation. Fortunes have been lost by the incorrect
implementation of models, so being lax on testing is an unaffordable risk.

One extremely good and affordable resource, which any serious quant should
have access to, is Numerical Recipes in C++, [123], which comes in book and CD
form. It lists implementations of a large number of mathematical techniques and
algorithms in C++, and one should make use of these techniques and programs
whenever possible!

This leads on to an important point which is that programs should always be
written with re-use in mind. If one can use part of an old program or a library
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routine one should always do so. It saves a lot of time not just in code writing,
but also more importantly in debugging - if the code has been used several times
without problems it is much more likely to be robust.

B.2 Two important functions

The cumulative normal function and its inverse are the two most important func-
tions in mathematical finance. We therefore need to be able to evaluate them quickly
and accurately.

Recall that the cumulative normal function is defined by

1 s2

N(x) = e-z ds. (B.1)
2rc

-00

Its importance lies in the Black-Scholes formula, (3.22).
The inverse cumulative normal function, N-1(x), is simply the inverse of N(x).

It is useful in the simulation of normal random variables. A computer random num-
ber generator typically generates a integer, m, between zero and some fixed large
number RANDMAX. We can create a uniform random variable X on the unit in-
terval by taking just

m /RANDMAX.

(If this gives you zero then you are probably accidentally using integer arithmetic!)
We then have

IP(X < x) = x, for x E [0, 1]. (B.2)

We want to convert X into a standard normal variable. We can do this by taking
N-1(X). To see this, observe that

]P(N-1(X) < x) =P(X < N(x)), (B.3)

since N is increasing. The right-hand side is just the definition of a normal random
variable.

We give a method due to Moro, [111], which is accurate to within 1E - 12.
We remark that there are other methods of generating normal random variables
using draws from a uniform distribution which do not rely on the inverse cumula-
tive normal function. We avoid these other methods here as they typically require
more than one uniform variate to generate a normal variate. This causes problems
when one shifts from the use of random numbers to the use of low-discrepancy
numbers, as the special structure is destroyed by the mixing around. Thus if the
reader wishes to plug in a low-discrepancy number generator at a later time then
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no additional problems will be introduced if he has adopted the inverse cumulative
normal distribution approach from the start.

B.2.1 The inverse cumulative normal function

We give the Moro algorithm for computing the inverse cumulative normal function.
The function is defined for x between 0 and 1.

Let

ao = 2.50662823884,

a1 = -18.61500062529,

a2 = 41.39119773534,

a3 = -25.44106049637,

bo = -8.47351093090,

b1 = 23.08336743743,

b2 = -21.06224101826,

b3 = 3.13082909833

and

co = 0.3374754822726147,

cl = 0.9761690190917186,

c2 = 0.1607979714918209,

c3 = 0.0276438810333863,

c4 = 0.0038405729373609,

c5 = 0.0003951896511919,

c6 = 0.0000321767881768,

c7 = 0.0000002888167364,

c8 = 0.0000003960315187.

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B. 13)

(B.14)

(B.15)

(B. 16)

(B.17)

(B.18)

(B.19)

(B.20)

Let y equal x - 0.5; then if, I y I < 0.42 let r equal y2, then the required value is

3

y L a-rJ
i-o

3

>, bjri+1 + 1.0
j=0

If I y I > 0.42, let r equal x if y negative, and 1 - x otherwise. Lets equal

log(- log(r))
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and let t equal

If x > 0.5 then the required value is t otherwise it is -t.

B.2.2 Cumulative normal function

The cumulative normal function is defined by

x
1 2

N(x) = e- z ds.27r

-00

k = 1/(1 + 0.2316419x);

then N(x) is equal to

1 - 1 e-x2 k(0.319381530 + k(-0.356563782 + k(1.781477937
2n
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+ k(-1.821255978 + 1.330274429k)))).

If x < 0, simply evaluate 1 - N(-x). We have written the function in a slightly
odd way as it will be faster to evaluate in a computer when written in that fashion.

B.3 Project 1: Vanilla options in a Black-Scholes world

The purpose of this project is to implement the pricing of some vanilla options with
the Black-Scholes model by multiple methods. Some of the functions implemented
here will be extremely useful for other projects.

Formulas

The first thing to do is to implement the Black-Scholes formulas for various
options:

Implement the price of a forward as a function of time-to-maturity, T,
continuously compounding rate, r, dividend rate, d, strike, K, spot, S, and vola-
tility, a.
Ditto for a call option.
Ditto for a put option.
Ditto for a digital-call option.
Ditto for a digital-put option.
Ditto for a zero-coupon bond.
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Consistency

We need to be sure that the formulas have been implemented correctly so run the
following consistency checks.

(i) We should have put-call parity: the price of a call minus the price of a put
equals the value of a forward.

(ii) The price of a call option should be monotone decreasing with strike.
(iii) A call option price should be between S and S - K e-'T , for all inputs.
(iv) A call option price should be monotone increasing in volatility.
(v) If d = 0, the call option price should be increasing with T.

(vi) The call option price should be a convex function of strike.
(vii) The price of a call-spread should approximate the price of a digital-call

option.
(viii) The price of a digital-call option plus a digital-put option is equal to the price

of a zero-coupon bond.

Validation via Monte Carlo

We want to test the prices against a Monte Carlo simulation. It is worthwhile
writing code to work using a random number generator class which can then be
changed later on. This will allow you to check whether the random number gener-
ator is biased, and also to easily plug in a low-discrepancy generator at a later time.
Each path in any Monte Carlo simulation will require a certain number of random
draws. The maximum number needed is the dimensionality. It is best to set-up the
class to draw a vector of this size from the random number generator at the start of
each run, and make sure the random number generator is actually capable of that
dimensionality. Several methods of generating random numbers are given in [123].
Once you have done this, you should

(i) Implement an engine which randomly evolves a stock price from time 0 to time
T according to a geometric Brownian motion with drift r - d, and volatility a.
Use the formula

ST = SDe(r-d)T-ZQZT+a'W (B.21)

where W is a standard normal random variable.
(ii) Use the engine to write Monte Carlo pricers for all the products mentioned

above. The engine generates a final stock value. The option's pay-off for that
final value is then evaluated and discounted. These values are then averaged
over a large number of paths. Get it to return the price for successive powers
of two for the number of paths so you can see the convergence. Also get it to
return the variance of the samples and standard error.
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When implementing the pricer and the engine try to do it in an orthogonal way so
that the engine just takes in an option object which states its pay-off and expiry. If
done correctly, the engine should then need no modifications when a new option
type, such as a straddle, is added in. Also the option objects can then be reused
when doing Monte Carlo simulations based on different engines.

We can now run some tests.

(i) Compute Monte Carlo and formula prices for a large range of inputs for each
of the options above. They should all agree up to the degree of convergence of
the Monte Carlo.

If the above tests worked, we can be reasonably confident in both our Black-
Scholes functions and in our Monte Carlo engine.

Investigations

We can now use these routines for implementing tougher projects and doing some
investigations.

(i) How does the Black-Scholes price of a call option vary as a function of volatil-
ity? What happens when volatility is zero, or volatility is very large?

(ii) What about a digital call option?
(iii) For various at-the-money call options, how does the price vary with volatility?

Plot the ratio of price to volatility.
(iv) For various put options plot the price and intrinsic value on the same graph.

Find at least one example where the two graphs cross.

Stepping methods

One further thing to implement is an alternative engine based on Euler stepping.
Divide the time, T, into a large number of steps, N. Let

At = TIN.

Evolve the stock price across each step by

(B.22)

S(1+1)AT = SLAT + rSjATAT + SjATQ ATWI, (B.23)

where the Wj are independent normal variables. Running up to the last step this
gives an alternate way of generating the final stock value. Use this to develop
pricers for the basic options above. The engine will need as inputs the number
of steps and the number of paths.

(i) Plot the final price as a function of the number of steps to see how many steps
are required for convergence..



440 Computer projects

(ii) Compare the number of paths required for the two Monte Carlo methods to
get a given degree of convergence.

(iii) Make sure the two methods give the same prices.
(iv) Compare the times required to get a given level of accuracy.

B.4 Project 2: Vanilla Greeks

The purpose of this project is to implement formulas for the Greeks and then use
them to test various methods of doing Monte Carlo Greeks. The functions written
in the first section will be used in later projects.

Implementing the formulas

Implement formulas for

(i) the Delta (spot derivative) of a call option,
(ii) the Gamma (2nd spot derivative) of a call option,

(iii) the Vega (volatility derivative) of a call option,
(iv) the Rho (r derivative) of a call option,
(v) the Theta of a call option, this is equal to minus the T derivative,

The formulas are deducible by simply differentiating the Black-Scholes prices.

Testing

Test them all by comparing with the finite differencing price. That is let E be a
small number, and compute the price change for bumping the parameter for E and
divide by E. To approximate the delta, for example, take

1 (BS(S + e, T, a, r, d) - BS(S, T, a, r, d)).
E

The Gamma can be approximated by finite differencing the Delta, or by taking the
formula

EZ (BS(S + 6, T, a, r, d) - 2BS(S, T, or, r, d) + BS(S -E,T,6,r,d)).

(Why does this work?)

Graphs

Once you have all the formulas working and tested. Plot the following graphs and
try to interpret them.

(i) The Delta of a call option as a function of spot.
(ii) The Delta of a call option as a function of time for in-the-money, out-of-the-

money and at-the-money options.
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(iii) The Gamma of a call option as a function of spot,
(iv) The Vega of a call option as a function of volatility, as a function of spot and

as a function of time.

Monte Carlo Greeks

We can now try various Monte Carlo methods for computing the Greeks of vanilla
options and compare them to the analytical formulas. Implement the following
methods and compare to the formulas. How do the convergence speeds compare?

(i) Run the Monte Carlo twice. The second time with the parameter slightly
bumped, and finite difference to get the Greek. Use different random numbers
for the two simulations.

(ii) Do the same again but using the same random numbers for the two simula-
tions. (Depending upon the language you are using, it will either default to
different random numbers or default to the same ones. Setting the random
number seed is the way to achieve either.)

(iii) Implement the pathwise method for the Delta.
(iv) Implement the likelihood ratio method for the Delta.

B.5 Project 3: Hedging

The essence of the Black-Scholes approach to derivatives pricing is that the uncer-
tainty in the final pay-off can be removed by trading in the underlying so try it out
in the context of hedging a vanilla call option.

The perfect Black-Scholes world

Implement an engine which evolves a stock under a geometric Brownian motion
with drift µ, volatility o, in N steps using the solution for the stochastic differential
equation. Write a hedging simulator that accounts for the profits and losses of a
hedging strategy against an option payoff, if the interest rate is r. Implement the
Black-Scholes hedging strategy for a call option: hold a Delta amount of stock
across each time step. Obviously, you will need to have already done part of the
Vanilla Greeks project for this.

Note here we could do the three things quite separately. For the reader au fait
with object-oriented programming, one class could handle generation of stock
paths, a second could define hedging strategies and the third could take a path
generation object and a hedging strategy object and actually carry out the simula-
tion. The best way to approach this would be to use abstract base classes for the
path generation and the hedging strategy from which the specific classes could then
be inherited. If the simulator then takes in objects from the abstract base classes,
new strategies and generators can easily be plugged in later.
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Assessing step-size dependence

Use the hedging simulator to compute the variance of the Delta hedging strategy
for various input parameters. Plot the variance against the time-step size, How is
the variance affected by changing µ and a?

The stop-loss strategy

Implement the stop-loss hedging strategy: across a time step hold one unit of stock
if spot is greater than or equal to the call option strike and none otherwise. How
does the variance change with step size? How are the mean and variance of the
final portfolio affected by changing µ and a?

Gamma hedging

Extend the hedging simulator to allow hedging with options. Implement the Gamma
hedging of a far-out-of-the-money option with spot and another option. How does
the variance change with time-step size?

Time-dependent volatility

We now try hedging our option when volatility is time-dependent but deterministic.
We therefore have

dS
S = µdt + a(t)dWt. (B.24)

To simulate perfectly across a time-step, we take the root-mean-square volatility
for that step and put

St+Ot = SteG zo2)or+a otN(0>1)
1

(B.25)

with j the root-mean-square value of a(t) across [t, t + At], and N(0, 1) a normal
draw.

Implement the following hedging methods:

(i) Delta hedge using the current value of a(t) in the formula for the Black-
Scholes Delta;

(ii) Delta hedge using the root-mean-square value of a (t) across [0, T] at all times;
(iii) Delta hedge using the root-mean-square value of a (t) across [s, T ] at time s.

For each method, plot the graph of the variance of final portfolio value against
time-step size. Extrapolate to get the variance for instantaneous hedging. Which
one works perfectly, and why is it the only one that does?
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B.6 Project 4: Recombining trees

Recombining trees are a standard method for pricing options. In this project, we try
them out for some simple options. The crucial point when implementing a recom-
bining tree is to make use of the fact that an up-move followed by a down-move is
the same as a down-move followed by an up-move. This keeps the total number of
nodes tractable, otherwise the number of nodes grows exponentially. A tree should
be implemented purely in the risk-neutral world, the real-world tree is useful for
justifying risk-neutral pricing but not for actually doing the pricing. We also work
with the log as the geometry is simple.

We wish to price an option under geometric Brownian motion so we discretize

d(log S) = r - 262 I dt + 6dW. (B.26)

We divide time into N steps of length At. For a binomial tree at each step log S,
goes either up or down by a At and increases by (r - Za2)At. One can therefore
easily construct the set of all possible nodes across N steps, and work out how they
relate to each other.

Pricing rules

A tree is well-suited to pricing an option whose value can be written as a function
of the current spot and the option's expected value in the future. In practical terms,
we can price options whose value can be specified at a node as a function of spot
at the current node, and the discounted average of the values at its two daughter
nodes. Note the discounted average will be

e-' At I (Value-up + Value-down).

Work out what the rule for computing the price at a node is for each of the
following derivatives

(i) a vanilla call option,
(ii) a forward,

(iii) a put option,
(iv) a down-and-out call or put option,
(v) an American put option,

(vi) a digital option.

Pricing on the tree

Now implement the binomial tree and apply it to the pricing of each of the above.
If you are using an objected-oriented language keep the definitions of the tree and
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of the option rule as separate as possible so you can plug in various different rules
without recoding the tree. The option will be specified by the rule for its value at a
node, and by its final payoff.

Plot the value of each option as a function of the number of steps for reasonable
parameters. (e.g. spot 100, strike 100, r = 0.05, a = 0.1, and T = 2.) Check the
answers you get against analytic formulas or another pricing method.

For which options does the price oscillate? Compare the rate of convergence
with that obtained by taking the sequence obtained by averaging the N-step price
with the (N + 1)-step price.

Price an option with a strike that puts the option far out-of-the-money. How does
the speed of convergence change?

Trinomial trees

Repeat everything with a trinomial tree. Compare the rate of convergence both as
a function of the number of steps and as a function of the number of nodes. See if
you can get improved convergence rates by adapting the position of the nodes to
specific properties of the derivative product.

B.7 Project 5: Exotic options by Monte Carlo

Monte Carlo is the most straightforward way to price path-dependent exotic op-
tions, and therefore should be implemented early on as a benchmark for testing
other implementations.

The pricing engine

We wish to be able to price arithmetic Asian options and discrete barrier options in
a Black-Scholes world. To do this we need three things: the first is a path-generator
which, given the parameters, So, r, d, and or, and a set of times, t1, t2, ... , t,,, gen-
erates a random path S,, , S.2 , .... St , for the option price at those times. For future
flexibility, allow the possibility that the parameters are step functions which are
constant on the intervals (t3, tj+1] but need not be constant everywhere. The sec-
ond thing is a product specification which converts the values of the set of times
into a cashflow, that is, a sum of money at a given time. For the Asian option, this
would be

1 n

nE
i=1

at time t,,. The third thing is a control engine which calls the path-generator, calls
the product definition, discounts the cashflow back to time zero and averages the
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results. We wish to return not just the final value, but also the intervening averages
so that we can see the convergence trend; return, for example, the results for all
the powers of two. Try to implement the random number generator as an object
which plugs into the path generator and returns n independent Gaussian draws on
request - this will make life easier when doing Project 6.

Pricing Asian options

Having implemented the engine, price the following options with So = 100, 0-
0. 1, r = 0.05, d = 0.03, and strike 103.

(i) an Asian call option with maturity in one year and monthly setting dates;
(ii) an Asian call option with maturity in one year and three-monthly setting dates;

(iii) an Asian call option with maturity in one year and weekly setting dates.

How do the prices compare? How do they compare with a vanilla option? How
does the speed of convergence vary?

Pricing discrete barrier options

Price some discrete barrier options, all with maturity one year and struck at 103.

(i) a down-and-out call with barrier at 80 and monthly barrier dates;
(ii) a down-and-in call with barrier at 80 and monthly barrier dates;

(iii) a down-and-out put with barrier at 80 and monthly barrier dates;
(iv) a down-and-out put with barrier at 120 and barrier dates at 0.05, 0.15, ... ,

0.95.

Compare prices and speed of convergence. Also compare prices with the vanilla
option.

Speeding up the simulation

At time the discrete barrier and Asian options become vanilla options as all
the path-dependence has been used. Now change the product definitions so that
instead of using the value of Si,, they return a cashflow at time ti_1 which is the
Black-Scholes value of the option at that time. Reprice all the options, make sure
the final prices are the same and compare convergence speeds.

B.8 Project 6: Using low-discrepancy numbers

For this project, you will need a good low-discrepancy number generator. There is
some discussion and code for the implementation of Sobol numbers in [123].
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Straight-forward implementation
First adapt the code in Project 5 to use the low-discrepancy numbers. Rerun all the
option pricing exercises from that project and compare the rates of convergence.

Bridging

You should have seen some improvement but not necessarily a huge amount. The
reason is that the power of low-discrepancy numbers is much better in low di-
mensions that in high ones. We therefore wish to put as much dependence on the
low dimensions as possible. There are two ways to do this: the Brownian bridge
and spectral decomposition. Our objective is to produce draw a path, Wt, from a
Brownian motion and pass back the increments Wt; -Wt1_I . When we use the intu-
itive method of incremental path-generation, we are effectively drawing n Gaussian
variables, Zj, and letting

Wt1 = Wt.i-1 + 4 (B.27)

with the net effect that we pass back the vector (Zj).
However, all that is important is that we synthesize n normal variates Wj which

have covariance matrix

(min(i, j))

As we observed in Chapter 9, setting

W = AZ, where AAT = C,

(B.28)

(B.29)

is a necessary and sufficient condition. We now wish to try out various choices
of A. The incremental method is the Cholesky decomposition, that is, the unique
choice of A which is lower triangular. Try the following methods and compare
convergences for Asian options,

(i) Use spectral decomposition to write C = PD PT with D diagonal and with
the diagonal elements decreasing. Try A = PD1/2 and A = PD1I2P'T. See
[123] for code to carry out diagonalization. Here P is of course the matrix of
orthonormal eigenvectors.

(ii) Use Cholesky decomposition but first reverse the order.
(iii) Use Cholesky decomposition but reorder so that the first index is the last one,

and each successive one is in the middle of the longest set of indices not chosen
(not unique). Thus if there are ten indices the ordering would be say 10, 5, 2,
7, 3, 8, 1, 4, 6, 9.
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B.9 Project 7: Replication models for continuous barrier options

In Chapter 10, we looked at a number of methods of replicating exotic options us-
ing vanilla options. As well as being useful for hedging, these methods can actually
be applied to pricing.

Convergence

Implement the method of Section 10.2 for the pricing of continuous barrier options.
Write your implementation in such a way that you can plug in any pricing function
for the vanillas as a function of spot, strike, current time and the expiry time of the
option. Also allow as arbitrary input the final pay-off of the option.

In a Black-Scholes world with spot equal to 100, r equal to 0.05, d equal to
0, and a = 0.1, use the engine to price an up-and-out call option with strike 100
and barrier at 120, and a down-and-out call option with the same strike and a bar-
rier at 80. Take both options to have expiry time of one year. How do the rate of
convergences as a function of the number of steps compare?

Varying the final pay-off

We do not need to replicate the final pay-off behind the barrier as the replicating
portfolio is dissolved on first touching the barrier. We can therefore change the
pay-off behind the barrier and see if that helps. Try pricing the up-and-out call with
the following final pay-offs and compare the convergence rates:

(i) The pay-off is constant above the barrier;
(ii) A tight call spread of width E is used to bring the value at the barrier down to

0 and then the pay-off is zero above 120 + E. Do multiple values of c;
(iii) A tight call spread of width 2E starting at 120 is used to bring the value just

above the barrier down to -20 and then the pay-off goes back up to zero with
gradient one. Once it reaches zero it stays zero;

(iv) A tight call spread of width 2E starting at 120 - e is used to bring the value just
above the barrier down to -20 and then the payoff goes back up to zero with
gradient one. Once it reaches zero it stays zero. (Note that the pay-off below
the barrier is not exactly correct for this one.)

Try to explain your results.

Time-step size

Try varying the time-step sizes so that the steps are shorter close to expiry. What
difference does this make?



448 Computer projects

Time-dependent volatility

Now reprice the options using a variety of time-dependent functions for 0% Choose
the functions so that the root-mean-square value of o over the year is always the
same. Make sure the variety of functions include:

(i) a function which is rapidly decreasing;
(ii) a function which is rapidly increasing;

(iii) a function with a bump in the middle.

Do the tests with zero interest rates; with small interest rates and with large interest
rates.

B.10 Project 8: Multi-asset options

We want to price multi-asset options depending upon the evolution of several un-
derlyings. As usual, we want to price the options in multiple fashions in order to
check our models are correct.

Quantos

Implement an analytic formula for a quanto option and a Monte Carlo pricer. The
Monte Carlo pricer will need to simulate correlated random draws for the foreign
exchange and the stock. Check the two pricers give the same value. How much
impact does correlation have on the price? Do the Monte Carlo both in a single
step and in several steps.

Margrabe
Implement a pricer for a Margrabe option. Check that it gives the correct price by
Monte Carlo. The Monte Carlo pricer will have an input for interest rates since the
stocks will grow at the riskless rate. How much does correlation affect the price?
Is the pricer injective in correlation? i.e. can one deduce the correlation given the
other inputs and the price?

B.11 Project 9: Simple interest-rate derivative pricing

Swap-rate formulas

Let 0 < to < ti < ... < t,,. Let Pj be the zero-coupon bond expiring at time
tj. Write a function which computes the swap-rate for the times tj in terms of Pi .
Write one that computes the annuity of the swap also.
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Discounts from swap-rates

If SRi is the swap-rate for the times ti, ti+1, ... , t,,, write a routine which compute
Pj for j > 0 given all the rates SRi and Po. Check that the two functions are
inverse to each other. Such a collection of swap-rates is said to be co-terminal.

Do the same problem for co-initial swap-rates. i.e. take the swap rates starting at
time to and finishing at time ti for each i.

Black formulas

Implement the Black formulas for each of the following:

(i) a payers or receivers swaption as a function of annuity, swap-rate, strike,
volatility and expiry;

(ii) a receiver's swaption;
(iii) a caplet;
(iv) a floorlet.

The easiest way to do these is to use the Black-Scholes formula with zero interest
rates and multiply by the annuity.

B.12 Project 10: LIBOR-in-arrears

This project is a precursor to the BGM project. Some of the issues that arise there
appear here without being so fiddly.

We have multiple ways to price the LIBOR-in-arrears forward rate agreement
(henceforth the arrears FRA) and the LIBOR-in-arrears caplet.

Analytic formula

If f runs from to to tl and the strike is K, the arrears FRA pays (f - K)(tl - to) at
time to instead of at time ti. This is equivalent to paying

(f - K)(1 + f (ti - to))(ti - to)

at time t1. Use this fact to derive an analytic formula for the price of the arrears
FRA using the zero-coupon bond expiring at time ti as numeraire; assume that f
is log-normal.

Pricers

Implement the following pricers:

(i) an analytic pricer for the arrears FRA;
(ii) a numeric integration pricer for the arrears FRA;
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(iii) a numeric integration pricer for the arrears caplet;
(iv) a Monte Carlo pricer for the FRA and caplet using the tl bond as numeraire.

Use all the methods to price a FRA and caplet starting in ten years with current
forward rate 6%, strike 7%, volatility 20%, price of the zero-coupon bond expiring
in ten years is 0.5 and they are both of length 0.5.

Change of numeraire
Suppose we now use the to bond as numeraire. We have to price by Monte Carlo
as we do not know the density explicitly. Implement a Monte Carlo pricer for the
arrears FRA and caplet. Do it twice. The first time use an Euler integration method.
The second time use the predictor-corrector type method outlined in Section 14.6.
In both cases, divide time into a number of steps and plot the converged price as a
function of the number of steps.

B.13 Project 11: BGM

The purpose of this project is to implement an engine for pricing products using
BGM. This is a large task and you should not embark on it unless you have plenty
of time to do it. On the other hand, if you can successfully do it, you are well on
the way to being a quant.

To do a project like this well, one really has to use object-oriented techniques. I
am therefore setting the project in terms of writing various classes of objects rather
than pricing things. Whilst I tend to state objects using the terminology of C++,
any object-oriented language could be used. However, if you want to be a quant
implement it in C++ as that's what the bank will want.

We will want to simulate the movements of n forward rates, f j, associated to
times

to<ti<...<tn,
such that f j runs from tj to tj+l.

The forward volatility structure

We will repeatedly need the covariance matrix of our forward rates across arbitrary
time steps. Assume that the forward fj has volatility

K j ((a + b(t j - t))e-c(ti-t) + d)

for t < tj, and zero otherwise. Assume that the instantaneous correlation between
f, and f j is a-,e I t; -tj l



B.13 Project 11: BGM 451

Write a class that stores all the necessary information and has a method that
returns the covariance between ft and f j over any time step. (Use an analytic
integration which is a bitch to compute in itself.)

For speed, it will be better to write a method that computes the entire covari-
ance matrix for the time-step and stores it in a matrix that has been passed by
reference.

At some stage, you may want to use a different functional form for your forward
rates. One easy way to have this functionality is to set up an abstract base class
which has the method of computing covariances, and then inherit this particular
volatility structure from it. One alternative volatility structure to implement would
be flat volatilities: every forward rate has some constant volatility up to its setting
time and then has zero volatility.

The products

We want to implement our engine and the products separately so we can plug new
products into the engine easily, and also if we invent a new model then we can
still plug the products in without having to rewrite them all which would be an
unnecessary pain.

We start with an abstract base class BGMProduct. This class should have abstract
methods implemented in the inherited class which defines the product as follows.

GetUnderlyingTimes - this returns an array of times between which the forward
rate to be used in the simulation will run.
GetEvolutionTimes - this states at what times the product needs to know the
forward rates.
Reset - this resets the object for a new path of the simulation.
DoNextStep - this passes in the current forward rates, and should pass back
whether to continue to the next step and the values and timings of any cash flows
generated.

For example, for a swaption associated to a set of times to, tl, ... , t,, with
strike K,

GetUnderlyingTimes - return the times to, tl, ... , t,.
GetEvolutionTimes - return to.
Reset - does not do anything.
DoNextStep - returns a signal to terminate and computes the value of the
swap-rate, SR, and annuity, A. It returns the intrinsic value of the swaption i.e.
(SR - K)+A.



452 Computer projects

For a swap-based trigger swap which at each stage knocks-out if the swap-rate
for the remaining times is above a reference rate, R, and otherwise is a swap at
strike K :

GetUnderlyingTimes - returns the times to, t1, ... , t,,.
GetEvolutionTimes - returns to, tl, ... , t,1_1 -

Reset - sets a variable I to zero to indicate we are the beginning.
DoNextStep - returns a signal to terminate if I is n - 1 or if the remaining
swap-rate is above R. Generates a cash flow of value (fl - K)(ti+l - tj) at time
tj+1. Increases I by 1.

Work out how to do a FRA-based trigger swap with only one evolution time

The engine

The engine is the class that does all the work. As inputs we need:

the product;
the covariance structure (which must cover the forward rates used in the product);
the number of paths to be used in the simulation;
a number generator - do this as an input to give some flexibility;
the amount of substepping to be carried out - whilst we only need to know the
forward rates at certain times, the Monte Carlo will be more accurate if you put
in intervening times because of the state-dependent drift;
the method of approximating the drift, e.g. the Euler stepping method or the
predictor-corrector method;
the initial values of the forward rates;
what numeraire to use and its initial value.

The engine should precompute as much as possible. For example, the covariance
matrices over each time-step will be the same every time; this means that they can
be computed once and for all in the engine's constructor. We need to know the
pseudo-square root of each covariance matrix, and we can precompute them too.
The initial drifts for the first step can be precomputed, but all other drifts will have
to be computed on the fly.

For each path, the engine will have to evolve the forward rates up to each evo-
lution time specified by the product, possibly using multiple steps to get there.
First the Reset method of the product should be called. At each evolution time, it
will then call the product method DoNextStep to decide whether to terminate and
discover if any cashflows have been generated. The generated cashflows will have
to be accounted for by storing the ratio of their value to the current value of the
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numeraire. Note that the value of the cashflow and the numeraire will have have to
be computed by discounting using the current forward rates.

The engine stores the final ratio of product value to numeraire for each path, and
then averages over all paths.

We then multiply the final value of this average by the initial value of the nu-
meraire to get the price. In practice, we would want to output the average for
smaller numbers of paths also, in order to see how converged the Monte Carlo is.

Testing the engine

Having written the engine, we want to be sure that it works. One important property
it should have is that changing the numeraire should not change the price.

Our first test is therefore to price a caplet with the wrong numeraire. We take

tj = 10 + j/2. (B.30)

Let Pj denote the bond expiring at time tj. If the initial curve is flat with compound-
ing continuous rate 5%, the value of a bond expiring at time t will be exp(0.05t).
Price a caplet on the first forward rate with strike 6% by using the engine with
each different Pj. Compare the price with that obtained from the Black formula.
To define the forward volatility structure, take for example

a = 0.05, (B.31)

b = 0.09, (B.32)

c = 0.44, (B.33)

d = 0.11, (B.34)

with all the K factors equal to 1. Take ,B = 0.1. You may need multiple steps if you
use an Euler approximation type method for the drift.

Once you have got the caplet price to be numeraire invariant, implement the
swaption and trigger swap, and test that they are numeraire invariant also.

The approximation formula

In Section 14.7, we developed a formula for pricing swaptions in a BGM model in-
stantaneously. Implement this formula and compare the prices obtained with those
implied by the BGM engine.

Sensitivity to shape

We want to see how much changing the shape of the instantaneous volatility curves
affects the price of an exotic option. Work out the effective constant volatility that
gives each forward rate the same total volatility, and thus gives the same price to
all the caplets.
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With the same value of 8, now price the trigger swap with flat volatilities and
with the a, b, c, d volatility structure.

Compare the changes in value with the Vega of the option, that is, the change
in value obtained by bumping all the volatilities up by 1%. (Typically, we know
volatilities within about 1% so a change in price which is large compared to the
Vega is important, whilst one small is unimportant.)

Also test the price sensitivity to changing P. How different is the ,B = 0 flat
volatilities price from the ,B = 0.1 variable volatilities price?

Log-normality of swap-rates

Forward rates and swap-rates cannot be simultaneously log-normal; to see this just
derive the SDE for a swap rate from the log-normal SDE for forward rates.

However, it does not really matter whether the rates are perfectly log-normal. If
the swap-rates are almost log-normal then the failure of perfect log-normality does
not really matter. How can we test the rates log-normality? If we price swaptions
using our BGM engine then the deviation of the swap-rates from log-normality will
be displayed in the shape of the swaption smile.

Price options on 1-, 5- and 10-year swaps starting in 1, 5, and 10 years with a
variety of strikes. Plot the implied volatility smile of the swaptions in each case.
(See Project 12 for some discussion of how to implement an implied volatility
function.) What can we conclude about log-normality?

B.14 Project 12: Jump-diffusion models

In this project, we investigate how to implement a pricer for a jump-diffusion
model, see what sort of smiles are implied and look at pricing variations for ex-
otic options.

Vanilla options

Implement a pricer for vanilla options for a jump-diffusion model with log-normal
jumps. Implement a Monte Carlo pricer also and check they give the same answers.

Implied volatility

Implement an implied volatility function - this is a function which inverts the
Black-Scholes price function to get the unique volatility which gives the correct
price for the option. There is no analytic formula so you will have to use Newton-
Raphson or repeated bisection to invert the map

as i-+ Black-Scholes Price.
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Smiles

With r=0.05, d=0, o-=0.1, A=0.2,m=0.9andv=0.1,plottheimplied
volatility as a function of strike for options with maturity 0.25, 0.5, 1, 2, 4, and 8
years. How does the shape change with maturity?

Repeat the exercise but now take m = 1.

Varying intensity

Plot the price of a vanilla call as a function of X. Do the same for a variety of digital
options.

Exotic options

Write a pricer for Asian options using a Monte Carlo implementation of jump-
diffusion. With parameters as in the previous setting, spot equal to 100 and strike
equal to 100, price a one-year Asian call option with monthly resets.

Comparison with Black-Scholes

Fit a Black-Scholes model with time-dependent volatility so that it gives the same
implied volatility to at-the-money call options at the monthly reset times. Reprice
the Asian option with this model.

Now do a discrete barrier call option with the same reset times and strike, with
an up-and-out barrier at 105. Compare with the Black-Scholes prices obtained by
calibrating to the at-the-money and at-the-barrier prices.

B.15 Project 13: Stochastic volatility

In this project, we investigate how to implement a pricer for a stochastic-volatility
model, see what sort of smiles are implied and look at pricing variations for exotic
options.

Vanilla options

Implement a pricer for vanilla options for a stochastic-volatility model with uncor-
related volatility and spot. Implement a Monte Carlo pricer also and check they
give the same answers. Do the Monte Carlo pricer in the following ways:

(i) short-step the volatility and the spot;
(ii) short-step the volatility, compute the root-mean-square volatility for the path

and long-step the spot;
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(iii) short-step the volatility, compute the root-mean-square volatility for the path
and plug it into the Black-Scholes formula.

With r = 0.05, d = 0, oro = 0.1, a = 0.5, zero drift of volatility, and volatility
of volatility 0.2, plot the implied volatility as a function of strike for options with
maturity 0.25, 0.5, 1, 2, 4, and 8 years. (See Project 12 for discussion of how to
do implied volatilities.) How does the shape change with maturity? Compare with
jump-diffusion smiles.

Exotic options

Write a pricer for Asian options using a Monte Carlo implementation of stochastic
volatility. With parameters as in the previous setting, spot equal to 100 and strike
equal to 100, price a one-year Asian call option with monthly resets.

Comparison with Black-Scholes

Fit a Black-Scholes model with time-dependent volatility so that it gives the same
implied volatility to at-the-money call options at the monthly reset times. Reprice
the Asian option with this model.

Now do a discrete barrier call option with the same reset times and strike, with
an up-and-out barrier at 105. Compare with the Black-Scholes prices obtained by
calibrating to the at-the-money and at-the-barrier prices.

B.16 Project 14: Variance Gamma

In this project, we investigate how to implement a pricer for the Variance Gamma
model, see what sort of smiles are implied and look at pricing variations for exotic
options.

Vanilla options

Implement a pricer for the Variance Gamma model as an integral over Black-
Scholes prices. Implement a Monte Carlo pricer also and check they give the same
answers.

With r = 0.05, d = 0, ao = 0.1, 6 = 0, and v = 0.2, plot the implied volatility
as a'function of strike for options with maturity 0.25, 0.5, 1, 2, 4, and 8 years.
(See project 12 for discussion of how to do implied volatilities.) How does the
shape change with maturity? Compare with jump-diffusion smiles and stochastic
volatility smiles. Repeat trying varying values of 6.
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Exotic options

Write a pricer for Asian options using a Monte Carlo implementation of variance
gamma. With parameters as in the previous setting, spot equal to 100 and strike
equal to 100, price a one-year Asian call option with monthly resets.

Comparison with Black-Scholes

Fit a Black-Scholes model with time-dependent volatility so that it gives the same
implied volatility to at-the-money call options at the monthly reset times. Reprice
the Asian option with this model.

Now do a discrete barrier call option with the same reset times and strike, with
an up-and-out barrier at 105. Compare with the Black-Scholes prices obtained by
calibrating to the at-the-money and at-the-barrier prices.



Appendix C

Elements of probability theory

C.1 Definitions

Our objective in this appendix is to recall some of the basic definitions and some
elementary results from probability theory. We do not attempt to teach the reader
who knows no probability theory but instead wish to fix notation, remind the reader
of some basic results, and perhaps shift his point of view a little. We refer the reader
who has never studied probability theory to Grimmett & Stirzaker, [63].

To define probabilities we need three things. The first is a sample space generally
denoted 2. The sample space can be viewed as a set which encapsulates the notion
of a state-space. For example, it could be just the set {0, 1}, or it could be the real
numbers, or it could be the set of continuous functions from [0, 1] to R. For us, the
sample space will often be the set of continuous paths.

The second thing we need is a collection of events. In probability theory, we wish
to assign numbers between 0 and 1 to subsets of Q to represent the likelihood of
that subset containing the random element drawn. These subsets are called events.
We require the set of events to be closed under certain simple operations.

Definition C.1 A collection of subsets .F of Q is called a a-field if

(i) the empty set and S2 are in F;
(ii) F is closed under countable unions and intersections;
(iii) A E F if and only if A' E Y.

The third thing we need is a probability measure. That is, we need to be able
to assign to every event a probability. As events are subsets of 0, the probability
measure,is a map from a set of subsets of S2 to [0, 1]. For technical reasons we
generally require the probability measure only to be defined on a a-field, T, rather
than everywhere; this is essentially because the set of all subsets is too big a set in
general. We require the probability measure to have certain consistency properties:

458
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Definition C.2 A probability measure P on a sample space, 0, and a a-field F of
Q is a function P from F to [0, 1] such that

(i) ]P(o) = 0;
(ii) P(M) = 1;

(iii) if Ai, A2, A3, ... are pairwise disjoint elements of F then

P UAj =jP(Aj).
j=1

An immediate consequence of the definition is that

IP(A) + IPA') =1, (C.1)

for any A in Y.
We therefore define a probability space to be a triple (Q, F, IP), where Q is the

sample space, 97 is the v-field, and IP is a probability measure on T.
Often when we are considering simple random variables this definition is unnec-

essarily complicated; however when studying probability events on spaces of paths
it becomes necessary.

Definition C.3 A random variable on a triple (Q, F, IP) is a map, X, from the
sample space to the real numbers such that for any x E R, we have

{wEQ:X(w)<x}ET.

Thus the event {X < x} is in the Q-field, F, for any x. This means that we can
define a probability to the event {X < x}. Thus we can write

P(X < x) = IP({w E Q : X((V) < x}).

Much of the time, we do not need to think of the random variable X and the sample
space as being different things. In particular, in simple cases we can take 0 to be
the real numbers and X to be the identity map.

Example C.1 We can model the toss of a coin by taking Q to be the set {0, 1}, the
a -field to be the sets

0, {0}, {l}, to, III

and the probability of these sets to be

0, 0. 5, 0.5, and 1,

respectively. In this case, our random variable is simply the identity map taking 0
to0andIto1.
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It is when studying multiple random variables simultaneously that the distinction
between sample space and random variable becomes important.

Example C.2 Suppose we wish to simulate two random coin tosses. We take 0 to
be the set

{0, 1} x {0, 11.

We assign to each event a probability 0.25 times the number of points in it. If we let
X1 denote the (projection onto the) first coordinate and X2 the second coordinate
then each of X1 and X2 define a random variable. The probability that X1 takes the
value zero is equal to the probability of the event

{0} x {0, 1}

which is equal to twice 0.25 as it has 2 elements. Thus X1 defines the same random
variable as in our previous example. Similarly, for X2. O

Consider a related but slightly different example.

Example C.3 Suppose we again wish to simulate two random coin tosses. We
again take Q to be the set

{0, 1} x {0, 1}.

We assign probabilities as follows: if the event contains {0, 0} or {1, 1} it has
probability 1/2; if it contains both it has probability 1. In all other cases it has
probability 0.

Let Y1 denote the (projection onto the) first coordinate and Y2 the second coor-
dinate, then each of Y1, and Y2 defines a random variable. The probability that Y1
takes the value 0 is equal to the probability of the event

{0}x {0, 1}

which is equal to 0.5. Thus Y1 defines the same random variable as in our previous
example. Similarly, for Y2. However, the probability of the event Y1 = Y2 is now
equal to 1. Whereas the probability of the event X1=X2 was 0.5.

The moral of this example is that the nature of the sample space is important when
trying to understand the interaction between different random variables.

When studying multiple random variables, we also will need conditional prob-
abilities: the probability of an event given that another event has occurred. Given
events A and B, we define the conditional probability

]F(AIB) _ P(A n B)
(C.2)

P(B)
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This captures the notion that we should only consider the part of the event A that
is in B if we know that B has occurred.

With two random variables, knowledge of one of the variables can affect the
value of the other. For example, in the example above if we know Y1 then we also
know Y2. This implies that the probability that Y2 takes a given value is affected by
the value of Y1. In this case, the two variables are said to be dependent. Variables
are said to be independent if the value of one does not affect the value of the other.
In other words, X 1 and X2 are independent if

IP(XI E A) = IP(X1 E AIX2 E B) (C.3)

for any sets A and B.
When studying random variables, we can specify their behaviour by using the

cumulative distribution function. If X is a random variable then this is defined by

Fx(x) = IP(X < x). (C.4)

Since increasing x increases the probability that X is less than x, we have that Fx
must be an increasing function of x and will range between 0 and 1.

Note that Fx need not be continuous. For example if Fx equals 0 for x < 0,
0.5 for 0 < x < 1, and 1 for x > 1, then X takes the values 0 and 1 with equal
probability 0.5.

When Fx is continuous it can generally be written in the form

x

Fx(x) = J fx(s)ds. (C.5)

00

We then say that fx is the probability density function of X.
For us the two most important examples of random variables are the uniform

distribution and the normal distribution.

Definition C.4 A random variable X is said to be uniformly distributed if it takes
values between 0 and 1, and the probability of X E J is equal to the length of J
for any J subinterval of [0, 1].

A uniform random variable; U, has probability density function fu, equal to 0
outside [0, 1] and 1 inside.

Definition C.5 A random variable X is said to have a standard normal distribution
if it has probability density function equal to

1 s2

e 2.

27r
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It is then written as N(0, 1). More generally we say a random variable is N(µ, a2)
if it can be written as orN(0, 1) + it.

To justify this notation, we need to recall the concept of expectation.

C.2 Expectations and moments

The expectation of a random variable encapsulates the intuitive notion of the aver-
age value of a random variable. If X has continuous density function fx then the
expectation is equal to

eo

E(X) = f fx(x)xdx. (C.6)
-00

We have the simple relations

E(aX + bY) = aE(X) + b]E(Y), (C.7)

for any a, b e IR and any random variables X and Y.
For the uniform distribution, U, we have

r1

E(U) =
J

sds = 2. (C.8)

0

For the standard normal, N(0, 1), we have
r

E(N(O 1)) -'2 2d C 9, s,=
Zn J

se ( . )

which is equal to zero since the integral is odd.
The law of large numbers tells us that the expectation does indeed capture the

notion of a long-term average:

Theorem C.1 If X j are identically distributed independent random variables then

1
N

lim - X j = E(X),
N--*oo N j-1

with probability 1.

This theorem is very important in mathematical finance since it gives us a method
of evaluating the expectation. Rather than computing the integral analytically or
via numerical integration, we simply repeatedly draw random variables and take
the long run average to approximate the integral. This method is called Monte
Carlo simulation.
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As well as needing the notion of the average of a random variable, we also need
to understand how likely it is to stray from the average. This notion is captured by
the variance, defined to be equal to

Var(X) = E((X - E(X))2). (C.10)

As the expectation of a positive quantity, the variance is always positive. Its square
root is called the standard deviation.

We have trivially that

Var(X) = E(X2) - E(X)2, (C.11)

and

Var(aX) = a2Var(X). (C.12)

We also have that if X and Y are independent then

Var(X + Y) = Var(X) + Var(Y). (C.13)

When evaluating expectations of functions of X we have the handy result, some-
times called the law of the unconscious statistician, that

IE(g(X)) =
J

fx(s)g(s)ds (C.14)

for any function g.
If we take orN(0, 1) + µ we have

E(aN(0, 1) + s) = µ + o ]E(N(0, 1)) = it, (C.15)

and

Var(µ + or N(0, 1)) = Var(6N(0, 1)) = a2Var(N(0, 1)). (C.16)

The variance of N(0, 1) is equal to

1 e-2s e ds = 1.
2nJ

So an N(µ, a2) distribution has mean µ and variance a2.
The normal distribution is important for two reasons; the first is that it underlies

the definition of Brownian motion which will be crucial to us in modelling stock
price movements. The second is that it is, in a certain sense, the distribution one
obtains by averaging a large number of random variables. In particular, if we add
together a sequence of independent random variables, whilst rescaling in such a
way as to keep the mean and variance fixed, then we obtain a normal distribution.
This is the Central Limit theorem:
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Theorem C.2 Let Yj be a sequence of identically distributed random variables
with mean it and variance o-z; if we let

i
> Y1 - j µ

Zj = `=1
(C.17)

a

then, as j oo, Zj converges to a standard normal distribution.

Note that Zj has been defined so that it has mean 0 and variance 1.
For example, suppose we let Yj be a sequence of random variables defined by

taking 1 and -1 with probability 0.5. Then Yj has mean 0 and variance 1. We set

k

Zk= 7)Y;.
j_1

(C.18)

We then have that Zk converges to a standard normal random variable as k tends
to infinity. This means that we can approximate a normal distribution as a sum of
binary random variables by taking k large but finite.

As well as studying the mean and variance, the higher-order moments can often
tell us important things about a distribution. Let it denote the mean of X and 62

the variance. The skew is defined to be equal to

E((X - µ)3)
U3

Similarly, we define the kurtosis to be equal to

]E((X - µ)4)
64

Note that the skew will not be affected by adding a positive constant to X or by
multiplying by a constant. The skew of a normal random variable is 0 and the
kurtosis is 3. (Sometimes 3 is subtracted from the definition in order to make the
kurtosis of a normal random variable equal to 0.) When a random variable has
kurtosis bigger than the normal, it is said to have fat tails, expressing the notion
that the distribution does not decay to infinity as quickly as a normal with the same
variance. The skew expresses the idea that a distribution may be asymmetric and
therefore tilted to one side or the other.

C.3 Joint density and distribution functions

If we have a collection of random variables then as well as knowing the density
or distribution function of each one, we will also want to know their interdepen-
dencies. This means that we need to the joint probability that each will take given
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values or lie in given sets. The random variables could be the values of different
stocks or different forward rates or simply the value of a given stock for a collec-
tion of times. Clearly, the value of a stock at time 2 will be affected by its value at
time 1 and it will certainly not be independent of it.

We can express these dependencies by using joint distribution functions. Thus,
given random variables X 1, ... , X,, , the joint distribution function is

F(xl, x2, ... , x,) = IP(X1 < x1, X2 < x2, ... , X < (C.19)

Similarly, the joint density function, if it exists, is the function f such that for any
reasonable (i.e. measurable) set, A C R",

P((X 1, ..., X") E A) = J .f (x1, x2, ..., dx,,. (C.20)

A

We can recover the density function of any individual Xj by integrating out the
other variables since the event that XJ E B is clearly equal to

f
f f (xl, ... , dx1-1dx1+1 ... dx

JJJ

1 dxj.

xj EB

From the other direction this means that if we know the density functions of the
individual Xj, we do not know the joint density function but only its value when
integrated against any n - 1 coordinates. We will call these individual distributions
the marginal distributions.

When studying the pricing of path-dependent derivatives this fact is particularly
pertinent since we will be able to deduce the probability densities of the stock's
pricing measure across each single time slice from the value of vanilla options, but
we will not be given the joint distribution functions. The purpose of our model will
then be to determine the form of the joint density function from these marginals.

Note that when the individual random variables are independent, the joint den-
sity takes on a particularly simple form; it is just a product of one-dimensional
functions

fl (xl)f2(x2)

Whilst this will never be the case for the value of the stock at various time hori-
zons it is not so unreasonable for the value of the ratio of the stock between time
horizons; thus we could put

St.
,Xj =Sti-1
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and assume each X j is independent. Fixing the distribution of the X j would then
be the same as fixing their joint distribution.

C.4 Covariances and correlations

We will often need methods of expressing the level of dependence for random vari-
ables which are not independent. It is here that the concepts of covariance and cor-
relation are important. In certain limited but important circumstances they express
the relationship between two normal random variables.

The covariance of two random variables X, Y is defined by

Cov(X, Y) = E((X - lE(X))(Y - ]E(Y))). (C.21)

It is equal to

E(XY) - E(X)E(Y).

Note that for this definition to make sense X and Y must be defined on the same
sample space.

Clearly, we have

Cov(aX, ,BY) = afCov(X, Y). (C.22)

It is therefore sometimes useful to strip out the size of X and Y by dividing by their
standard deviations to get the correlation coefficient

Cov(X, Y)
A(X

,

Y)
= Var(X)Var(Y) .

(C.23)

It can be shown that

IE(XY)I < IJE(X)E(Y)I (C.24)

and thus we have that the correlation lies between -1 and + 1. If X = Y then

p(X, Y) = 1, (C.25)

as the covariance is the variance of X, and if X is -Y then we get -1. If X and Y
are independent we get 0.

Given a vector Xj of random variables we can form a matrix

Cov(X;, Xj)

called the covariance matrix, and similarly we can form the correlation matrix.
These matrices have some special properties. Note that as the correlation matrix

is the covariance matrix of the random variables var(Xl) , any property of the

former will equally well hold for the latter. Indeed we can distinguish correlation
matrices amongst covariance matrices by the property of having is on the diagonal.
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The first obvious property is that the covariance matrix is symmetric. Let C be a
covariance matrix and let Ci j denote the ij element. Since it is symmetric, we can
use C to define a bilinear form via

n

C(v, w) = vTCw = T, viCijwj.
i,j=1

If we take C(v, v) we obtain

n n n

viCov(Xi,X1)vj=Cov EviXi,EvjXj ,

i, j=1 i=1 j=1

(C.26)

which is the variance of F_t 1 viXi and is therefore non-negative.
This says that the covariance matrix is a positive semi-definite matrix. Since it is

symmetric, it can be diagonalized and has a complete basis of eigenvectors. If e j
is an eigenvector of eigenvalue X j then we have

0<C(ej,e1)=eTCej=.ljeTej=a,j.

So all the eigenvectors are non-negative. One consequence of this is that the co-
variance matrix always has a square root, that is there exists a matrix A such that

C = A2. (C.27)

We can construct A via diagonalization. We can write C = PDPT where P is the
matrix with columns equal to the eigenvectors of C and D is a diagonal matrix
with elements equal to the eigenvalues (with the same ordering.) We then set

A=PDzPT,

where D z is found by taking the square root of the diagonal elements.
One important issue for us is to be able construct vectors of normal random

variables with a given covariance matrix. The key to this is the fact that a sum of
two independent normal variables is also normal with mean the sum of the means
and variance the sum of the variances. We can write this as

N(µ1,1 +N(µ2,a2 2) =N(/L1+µ2,CTi +aa).

Thus if we take two independent normal variables X, Y with mean 0 and variance
1, and consider

Z = pX + l - p2Y (C.28)

we obtain a normal variable with mean 0 and variance 1. The covariance of X and
Z is equal to p since X and Y are independent.
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More generally, if we take a vector of independent N(0, 1) random variables,
Xj, we can form a vector of correlated random variables, by multiplying by a
matrix A. Thus if we set

Y = AX, (C.29)

the random variables Yj are all normal variables and are correlated. In fact, we can
compute

Cov(Yi, Yj) = Cov (aikXk, Eaiii)
k=1 i=1

_ aikajlCov(Xk, XI),
k,l=1

_ aikajk.
k=1

(C.30)

In matrix notation, we have that the covariance matrix of the vector Y is equal to
AAT.

This means that we can achieve any positive semi-definite covariance matrix, C,
by taking a matrix A such that

C = AAT. (C.31)

The matrix A is then said to be a pseudo-square root of A. We saw above that a
symmetric pseudo-square root always exists. There are in general many pseudo-
square roots. We discuss pseudo-square rooting further in Section 9.4.



Appendix D

Order notation

D.1 Big 0
The notation 0 is commonly used in analysis and computer science. It stands for
`order of.' It is used to denote the order of vanishing.
So

f (x) = g(x) + 0(x")

means that for some C

If(x)-g(x)I <- Clxliai.

When we use the notation for a continuous parameter, such as x, we are generally
making a statement about behaviour near x = 0. In which case, we can assume
IxI < 1/2.

The notation can also be used in connection with behaviour near infinity. In
which case, we can assume I x I > 2. It is not generally used near both simultane-
ously.

When working with an integer, N, it is normally only used near infinity. So

f (N) = ()(N-1/2)

is a statement about the decay rate of f at infinity.
We give some simple properties of 0 when working near zero. For each of these,

s and t are arbitrary real numbers,

0(xs) + 0(xt) = O(xmm(s,t))
f = 0(x') = f = 0(xt) for all t < s.
xs _ 0(xt) = O(xs+t).

0(xs) 0(xt) = 0(xs+t).

Taylor's theorem is intimately related to the notion of 0: we can state it as

469
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Theorem D.1 If f is k + 1 times continuously differentiable near y, then for h near
0, we have

V
ff (y)

W
+ (7(hk+l ).f (y + h) = E

j<k
ayJ j'

For example,

We can also write

2

ex=1+x+
2

+0(x3)

ex = 1 + x + (7(x2).

Note that these follow trivially from Taylor's theorem; but it is hard to get the value
of C were we to need it (but we don't).

We also have

1+x
=1 -x+x2+(7(x3)=1 -x+(7(x ).

When working with (7(xs) near zero, the basic idea is that we can discard any
term with xt for t > s on it.

For example,

1(1-x)ex=(1-x)(l+x+1x2+(7(x3)

= 1 - 2x2 + (7(x3)

= 1 + (7(x2). (D.1)

Dividing expressions is the trickiest part. We first compute 1/f and then multi-
ply. For example,

1

axs + Pxs+1 + yxs+2 + 0(xs+3) - axs 1 +,3x1 + yx2 + (7(x3)'

1= a-lx-s

We then have using the expansion for 1/(1 + x),

1

1 +,3x1 + yx2 + (7(x3)'

1 +,3x1 + yx2 + (7(x3)

=1 - (,3x1 + Yx2 + (7(x3)) + (fx1 + Yx2 + 0(x3))2 + (7(x3),

=1 -,3x - yx2 + f32x2 + 0(x),
=1-fix+(,32-Y)x2+0(x3).
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So in conclusion,

1 =a- IX-s(l - px + (p2 - y)x2) + O(x3-s).

axs +,Bxs+1 + yxs+2 + O(xs+3)

D.2 Small o

Small o notation is similar to big 0 but not the same. The difference with small o
is that C must go to zero as the interval size goes to zero.
So

f (x) = o(xs)

means
f xO*0 asx->O.

xS

If something is o(xs) then it is also 0(xs) but the converse is not true. However
if something is 0(xs) then it is also o(xs-E) for any E > 0.

A function f is differentiable at x with derivative f'(x) if and only if

f(x+h)- f (x) - hf'(x) = o(h).



Appendix E

Hints and answers to exercises

Chapter 1

Exercise 1.1 It would generally trade for less than 1/6.

Exercise 1.2 The sum of the assets would trade for 1 and each asset would trade
for 1/6. The risk is diversifiable.

Exercise 1.3 They go down.

Exercise 1.4 The corporate bond will be worth less.

Exercise 1.5 The yield will go lower and the price higher.

Chapter 2

Exercise 2.1 £1 is 120 x 1.4 yen.

Exercise 2.2 You are advised to sketch pictures as well as read this solution.
For part (i), our super-replicating portfolio will be a shares and ,B stocks. It must

dominate at zero. This implies that /3 > 0.
It also must dominate at infinity. If a < 0, it will go off to -oo as S - oo and

so not dominate. So a > 0.
Now, if the line describing the portfolio value lies above 1 at 110, then it will

also lie above 1 everywhere for values greater than 110 since a > 0. So if we
reduce a a little, it will remain above the pay-off and be cheaper to set up.

This means that the optimal super-replicating portfolio goes through the point
(110, 1), or, algebraically,

110a+/3=1.

The initial value of the portfolio is

100a + P.

472
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Substituting our constraint, we get

1 - 10a.

So the cost of a super-replicating portfolio goes down as a goes up. We therefore
have to take the biggest a which keeps / > 0. This is

1a=
110

and so /3 = 0, and the upper bound is then

100/110.

At the other end, clearly zero is a lower bound. To see that it is optimal, observe
that we must have a < 0 or the line would go off to infinity and so would be bigger
than zero for large S. At S = 0 we see that /3 < 0.

So maximizing both we get zero.
For part (ii), we can perfectly replicate using one stock and -80 bonds so the

value is 20.
For part (iii), for super-replication again we must have a > 0 and /3 > 0. By

similar arguments to part (i), the optimal portfolio must go through

(120, 20).

So we have

120a -j- /3 = 20.

The set-up cost is

100a +,B.

So adding in the constraint, we get

20 - 20a.

To minimize this, we maximize a. That is we take ,6 = 0, and a = 1/6. The upper
bound is then 100/6.

The lower bound is zero by similar arguments to above.
For part (iv), clearly, zero is a lower bound. Note that the set-up cost of a sub-

replicating portfolio is its value at termination when S = 100, so the set-up cost
must be less than or equal to zero, if it sub-replicates there.

To get the upper bound, observe that any straight line will eventually be smaller
than (S - K)2 so there are no super-replicating portfolios.
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Exercise 2.3

(i) Precisely one of the derivatives pays off so the value of the two together at
expiry will be equal to 1. Therefore

DC(K1) + DP(K1) = ZCB.

(ii) At most one of the derivatives pays off so the value of the two together at
expiry will be 1 or 0. Therefore

DC(Kj) + DP(K2) < ZCB.

(iii) At least one of the derivatives pays off so the value of the two together at
expiry will be 1 or 2. Therefore

DC(K1) + DP(K2) > ZCB.

Exercise 2.4 The forward price is given by the formula

Ft = er(T-t)St

and so will increase with r. The value of a forward contract struck at K is

e-r(T-t)(Ft - K) = St - Ke-r(T-t)

Increasing r decreases the second term, so the value will increase too.

Exercise 2.5 Increasing transactions costs can only decrease the number of arbi-
trage portfolios, so the bounds will be at least as wide.

Exercise 2.6 We know that for Ci struck at Kj then with K1 < K2,

C2 < C1 < C2 + (K2 - K1)Z(t, T).

If there are no interest rates, this simplifies to

C2 < C1 < C2 + (K2 - K1).

We therefore have that call option prices are a decreasing function of strike hence

ac
aK

We also have

<0.

C1+ K1 <C2+K2,

so C + K is an increasing function of strike implying

aC aK
aK+aK >09
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ac

aK

Exercise 2.7 Construct a portfolio of these options which approximates taking the
third derivative and then proceed as for proving call options are convex. The basic
point is that the linear relation holds for the final time slice for each value of S and
therefore will hold at previous times as well.

Exercise 2.8 We know from put-call parity that

C(K) - P(K) + F(K);

but if K = Soe'T then

F(K) = 0,

and C(K) = P(K).

Exercise 2.9 The lower bounding portfolio must be below zero at infinity so must
have zero or negative slope. That is, the number of stocks is non-positive. At zero
the value of the stock is zero, as is the digital-call, so the number of bonds must be
non-positive too. The most valuable lower bound portfolio is therefore obtained by
letting both be zero.

Exercise 2.10 Just go short the asset and use the money to buy bonds. When the
asset drops in value, buy it back.

Exercise 2.11 A < a Z + f So + y B, where Z is the price of a zero-coupon bond
with the same expiry.

Exercise 2.12 A will be worth at least as much as B.

Exercise 2.13 We have with the same hypotheses KZ > P(K) > KZ - S. We
also have that P(K) is an increasing function of K, is Lipshitz continuous and
convex. We do not have that P (K, T) is an increasing function of T.

Exercise 2.14 The bounds will widen by XerT

Exercise 2.15 To get St, just buy the stock at time 0 at cost So. To get St, at time t2
we must buy St,e-r(t2-t') bonds at time ti. We can achieve this by buying e-rQ2-ti)

stocks today. The overall cost is therefore St, - Stoe_r(t2-t,).

Exercise 2.16 Throughout, we have a stocks and P bonds.

(i): For the digital call struck at 100. With S =100, Z = 1, clearly one bond super-
replicates. Any super-replicating portfolio must have

100a + P > 1,

but this is the set-up cost of a portfolio. So 1 is the optimal upper bound.
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Since we must sub-replicate at zero and infinity, a < 0, and /8 < 0. So 0 is the
optimal lower bound. This argument applies to all four initial values of stock and
bond.

With S = 90, Z = 1, clearly 1/100 stock super-replicates with set-up cost 0.9.
Our problem is to minimize

90a + /8

with 100a + /8 > 1, and a, /B > 0. If 100a + /8 > 1, then we can reduce a to get
equality.

So we can assume 100a + ,8 = 1. Solving for /8, the set-up cost of our super-
replicating portfolio is

90a+1-100x=1-10a.

We therefore wish to maximize a; this occurs when a = 0.01, since we must keep
/B > 0, so 0.9 is the optimal upper bound.

For S =100, Z = 0.9, clearly one ZCB super-replicates at cost 0.9. Our problem
is to minimize

100a + 0.9/8

with 100a + /B = 1, and a, /B > 0. Solving for /8, the set-up cost of our super-
replicating portfolio is

100a+0.9-90a =0.9+ l0a.

This is minimized when a = 0. Our upper bound is 0.9.
For S = 110, Z = 1, clearly one ZCB super-replicates at cost 1. This will be

optimal since it was optimal with S = 100, and any increase in the amount of stock
will cost even more now.

(ii): The digital put struck at 100. To super-replicate, we must have /8 > 1, since
we must super-replicate when S = 0. We also must have a > 0, since we must
super-replicate for S very large. This means that /8 = 1, a = 0, is optimal in all four
cases. The cost of super-replication is therefore equal to Z.

To sub-replicate, we must have /8 < 1, a < 0, by considering behaviour for
S = 0 and large S. The usual argument shows that we can assume

100a+/8=0.

Therefore if S = 100, Z = 1, our problem is to maximize

100a + ,B

subject to

100a+/i=0.
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So the best sub-replication will be 0.
Hence if S = 90, Z = 1, our problem is to maximize

90a + /3

subject to

100a + ,8 = 0,

and a < 0, / < 1. This means that a must lie between 0 and -1 / 100.
Solving for ,8 and substituting, the sub-replication cost is

- lOa.

This is maximal with a = -1 / 100 and the lower bound is 0.1.
If S = 100, Z = 0.9, our problem is to maximize

l00a + 0.9,8

subject to

100a+/B=0.

Solving for ,8 and substituting, the sub-replication cost is

100a - 0.9 x 100a = lOa.

This is maximal with a = 0, and so the lower bound is 0.
If S = 110, Z = 1, our problem is to maximize

1loa +,8

subject to

l00a+,8=0.

Solving for /3 and substituting, the sub-replication cost is

110a - 100a = lOa.

This is maximal with a = 0, and so the lower bound is 0.

(iii): We have a portfolio of 0.5 digital calls struck at 90 and 1 call option struck at
110. For sub-replication, we have a < 1, ,8 < 0. We can move the sub-replicating
portfolio upwards until it intersects the pay-off.

At such an intersection point we will have (Case A)

110a+/3 = 0.5,

90a + ,B < 0,
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or (Case B)

110a + < 0.5,
90a + ,B = 0.

In Case A, we have

P=0.5-110x,

90a+,8=0.5-20a <0.

So

a > 1/40.

In Case B, a similar argument gives

a < 1/40.

We now have to analyze the situation according to the starting values. For
S = 100, Z = 1, we have to maximize

100a + ,B

over Cases A and B. In Case A, we get

0.5 - Mot

which will be maximized with a = 1/40 to get 0.25. In Case B, we obtain

10a.

This is maximized again at a = 1/40 yielding 0.25.
For S = 90, Z = 1, we have to maximize

90a +

over Cases A and B. In Case A, we find

0.5 - 20a

which will be maximized with a =3/40 to get 0.0. In Case B, we get 0 everywhere.
So the sub-replication price is 0.

For S = 100, Z = 0.9, we have to maximize

100a + 0.9/3

over Cases A and B. In Case A, we have

100a+0.9(0.5- 110a)=a+0.9 x 0.5

which will be maximized with a = 1 to get 1.45.
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In Case B, we get

100a + 0.9 x (-90a) = 19a.

This will be maximal when a = 1/40 giving a value less than 1.45. The sub-
replication price is therefore 1.45.

For S = 110, Z = 1.0, we have to maximize

110a+,B

over Cases A and B. In Case A, this yields

llOa+0.5-110a=0.5.

In Case B, we get

110a - 90a = 20a.

This will be maximal when a = 1/40 giving a value of 0.5. The sub-replication
price is therefore 0.5.

Clearly, for super-replication in (iii), we have /3 > 0, and a > 1. For whatever
value of S, Z, we get super-replication at ,B = 0, a = 1. So the optimal upper bound
is the stock price.

(iv): A portfolio of 0.5 digital calls struck at 90 and one digital call option struck
at 110. The usual arguments give an optimal lower bound of zero.

For the upper bound, as usual we have ,B > 0, a > 0. We also have

90a + /B > 0.5

and

110a+8>1.5.

The first of these is redundant. To see this observe that the portfolio with smallest
value at 90 that super-replicates at 110, has ,B = 0. So then

110a > 1.5

which always implies

90a > 0.5.

So for all four cases our problem is to minimize

aS+/3Z

with the constraint

110a+/B=1.5, a,/3>0.
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We can rewrite the constraint as

=1.5-110a.
Thus, if S = 100, Z = 1, we minimize

100x-}-8=100a+1.5-110a=1.5-10a.

We have to make a as big as we can whilst keeping ,8 > 0. We therefore put

a = 1.5/110.

The set-up cost is

1.5 x 100/110,

and that is our upper bound.
If S = 100, Z = 0.9, we minimize

100a+0 =100a+0.9(1.5-110x)=a+0.9x 1.5.

We have to make a as small as possible. So take a = 0. The upper bound is

0.9 x 1.5.

If S = 110, Z = 1, we minimize

110a+,8=110a+(1.5-110x)=1.5.

The answer is 1.5.

Exercise 2.17 The stock is unlimited liability so can go arbitrarily large and
negative.

This means any holding involving non-zero amounts of stock can go arbitrar-
ily large, either positive and negative. We will therefore never be able to super-
replicate using stock. So the problem of super-replication is simply how many
bonds you need to hold.

We therefore get

Z, Z, oc, 1.5Z

for the four contracts.
For sub-replication, only one of the contracts can be sub-replicated using stocks:

namely the third one, as it is unbounded. For the other three, the pay-off will be too
big somewhere.

So for these other three, we get zero as the lower bound.
For the third one, we can hold between zero and one stocks and still be able to

sub-replicate. This means that the answers are the same as for the limited liability
case, Exercise 2.16.
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Exercise 2.18 The essential difference between this Exercise and the others on
bounds is that S will range from 0 to 1 at maturity. We therefore do not have to
consider behaviour for large S.

(i): A digital call struck at 0.9. We first reduce the super-replication problem to one
considering two portfolios. Clearly, we must have a stocks and ,B bonds and ,8 > 0.

Now, if a < 0 then the super-replicating portfolio is worth at least 1 and more
than 1 elsewhere. It is therefore worth more than a ZCB and so is not optimal.

So /3 > 0 and a > 0. We move the portfolio downwards by reducing ,B until it
intersects the pay-off somewhere. The intersection will be either at 0 or 0.9. If it
does not intersect at 0.9 then it will have a greater value, so we just reduce a until
it does intersect.

We now need only consider lines through (0.9, 1) which are upwards sloping or
horizontal. The value of such a portfolio will be a linear function of the slope so we
need only consider the two extreme cases: when the line goes through (0, 0) and
(0.9, 1); and when it is horizontal. These correspond to a = 1/0.9, ,6 = 0.0, and

To get the upper bound, one simply values two portfolios in each of the four
cases and takes the minimum in each.

In the first case, we get 8/9; in the second, 1; in the third, 6/9; and the final, 7/9.
For sub-replication, a similar argument shows that the two extreme cases are

a =0, ,B=0, and a = 10, 13= 0.9.
We take the maximum in each of the four cases to get 0, 0, 0 and 0.

(ii): The digital put struck at 0.9. We proceed similarly. The two extreme super-
replications are a horizontal line of value 1 and a downwards sloping line through
(0.9, 1) and (1, 0).

These correspond to a = 0, ,B = 1 and a = -10, ,6 = 10.
We get the super-replicating values of 1, 1, 0.9 and 1.
For sub-replication of the digital put, the critical lines are zero, and the line

through (0, 1) and (0.9, 1). These correspond to a=0, /6=0, and a=-1/0.9, P= 1.
Our optimal sub-replicating values are 1/9, 0, -6/9 + 0.9, 2/9.

(iii): The 0.5 digital calls at 0.5 with call at 0.75. When super-replicating, the three
important points are (0, 0), (0.5, 0.5) and (1, 0.75). These lead to the portfolios
a = 1, /8 = 0, and a = 0.5, ,8 = 0.5. The upper bounds are 0.8, 0.9, 0.6, 0.7.

For sub-replication, the three important points are (0, 0), (0.5, 0) and (1, 0.75).
These lead to the portfolios a = 0, ,8 = 0, and a = 3/2, ,8 = -0.75. The lower
bounds are 0.45, 0.6, 0.225, 0.3.

(iv): A portfolio of 0.5 digital calls struck at 0.6 and one digital call option struck
at 0.8. For super-replication the important points are (0, 0), (0.8, 1.5), (1, 1.5). Our
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two portfolios are a = 1.5/0.8, /3 = 0, and a = 0, ,8 = 1.5. The optimal super-
replicating prices are 1, 1, 0.9, 1.

For sub-replication, the crucial points are (0, 0), (0.5, 0.5), (0.8, 0.5) and (1, 1.5).
For the optimal a and /B we need the pairs (0, 0), (5/3, -5/6), (5, -3.5). The opti-
mal values are 0.5, 1, 1/4, 1/3.

Exercise 2.19 We will show that

K1P(T, K2) > K2P(T, K1)

at maturity. To see this, first note that if 5=0, the two sides are both equal to K1 K2.
On the interval [0, K1] both sides describe a straight line. At K1, P(T, K1) = 0

but P(T, K2) > 0.
We have two straight lines which intersect at zero and one is bigger at K1, so the

right-hand side dominates on [0, Kl].
Above K1 we have P(T, K1) = 0, so any positive multiple of P(T, K2) will

dominate. The result is now clear.

Exercise 2.20 We can replicate a cash-flow of S,s at t > s, by buying e-r(t-s) units
of stock today, selling them at s and then putting the proceeds into riskless bonds.
So the value is

X j Soe-r(T-tj)

Exercise 2.21 Suppose a portfolio with a stocks and /6 bonds sub-replicates D.
Then

aST +/ < f(ST)

for all values of ST. Let ST = So. We get

aSo +,B < f(So).

The set-up cost of a sub-replicating portfolio is therefore less than or equal to
f (So)

For upper bounds, the same argument shows that the upper bound is greater than
or equal to f (So).

Alternatively, consider the Black-Scholes model with very small volatility. For
any reasonable f, the value of a derivative that pays f will converge to f (So) as
or -->- 0. So model-free bounds have to straddle this value.

Exercise 2.22 For a non-dividend paying stock, American and European call op-
tions are worth the same. The result is trivial for American options since for T > S,
an American with expiry T has all the rights of an American with expiry S and
more. So it also holds for European call options.
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Exercise 2.23 By put-call parity,

P(K) = C(K) - K + So.

The first term on the right-hand side increases with maturity, and the other two do
not depend on it. The result follows.

Chapter 3
Exercise 3.1 The real-world probability is, as usual, irrelevant. In both cases, the
risk-neutral probability, p, will satisfy

110p+90(1-p)=100,

so p = 0.5 and the value is

lOp = 5.

Exercise 3.2 This is easiest by risk-neutral evaluation. We find the p such that

220p+(1-p)190=200.

This is

30p = 10, i.e. p = 1/3.

We then have

C190 = 3 30 = 10,

C200 = 320 = 63,

C220 = 0.

Note that the final option always has pay-off zero.

Exercise 3.3 The first approach to this problem is to observe that C100 pays 0, 0
or 10, whilst C105 pays 0, 0 or 5; therefore at maturity

Cloo = 2C1o5,

and

Cloy = 2 C1oo = 1.

Alternatively, if the probability of an up-move is p, then by risk-neutrality the
probability of a down-move will be p and the probability of no move will be 1- 2p.
The price of C100 forces p = 0.2. We then have

C105=5p=1.
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Exercise 3.4 For the first part, the pay-off has values as follows:

85 0

95 0

105 5

115 15.

We can think of these values as four points

(85, 0), (95, 0), (105, 5), (115, 15).

A sub-replicating portfolio can be moved upwards until it intersects one of these
and still be sub-replicating. It can then be pivoted until it meets another of the
remaining points. We therefore need to consider portfolios, through two of these
points, that sub-replicate. A similar argument applies to super-replication.

We therefore find the lines through those points which sub- or super-replicate.
These are the lines through the following pairs:

(i) (85, 0) (115, 15);
(ii) (85, 0) (95, 0);
(iii) (95, 0) (105, 0);
(iv) (105,0) (115, 0).

If we write our portfolio as a S + ,8 B, in case (i) we have

15-0 1
a

_ _
115 - 85 2'

and

85

so the value of the portfolio in the first case, which clearly super-replicates, is 7.5.
In case (ii), the portfolio is clearly empty, and so has value zero.
In the third case we have

5-0 1
a

105 - 95 2

and

so the value is

95,6=-
2

= -47.5,

50-47.5=2.5,

and the portfolio clearly sub-replicates.



Hints and answers to exercises

In case (iv) we have

and

so the value is

15-5a_ =
115-105 1,

,8=15-115=-100,

0

485

and the portfolio clearly sub-replicates.
We therefore have an upper bound of 7.5 and a lower bound of 2.5. To show that

these bounds are optimal, we can argue that the pivoting procedure will always lead
to a better bound so these are the best bounds - this takes a little work to justify
properly, however.

Alternatively, we use risk-neutral valuation to show that each price in between
is non-arbitrageable. Let the probabilities be as follows:

p 115,

q 105,

r 95,

s 85;

then the conditions for a risk-neutral measure are

p+q+r+s=1,
3p+q=r+3s.

If we let q E (0, 1/2), and set

then these conditions are satisfied, and the risk-neutral value is

15p+5q=7.5-15q+5q=7.5-l0q,

which is in the interval (2.5, 7.5).
This establishes that prices in the interval (2.5, 7.5) are not arbitrageable; but we

have already showed that all other prices are, so we are done.
Note that we do need both arguments unless we need to classify all risk-neutral

measures or all super- and sub-replicating portfolios which we do not.
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In the second part, we now have an additional condition on the risk-neutral mea-
sure

15p + 5q = 5.

With three conditions on four unknowns, we can expect a one-dimensional solution
set. We will now find what that set is. The last two conditions imply

r+3s=1.

From the first condition, we have

p+1-3p+s+1-3s=1,
or

p+s=1/2.

Expressing everything in terms of p

s=2-p,
q=1-3p,
r=1-3s=3p-2

These must all be between zero and 1. This will be true if and only if p lies in the
interval (1/6, 1/3).

The value of the option is 5p, so the result is in the interval

(5/6, 5/3).

Exercise 3.5 The risk-neutral probability of an up-move is 0.5. The probability of
j up-moves in n days is

C J
12-n

The value if there are j up-moves and n - j down-moves is

2j - n.

The risk-neutral expectation of the pay-off is therefore

2-n.(2j - n)
In

j>n/2

Exercise 3.6 The European is worth 13.06 and the American 13.38.
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Exercise 3.7 This is a straightforward computation: the probability of an up-move
is

50-40 1
P = 70-40 3

Exercise 3.8 Numbering the probabilities in ascending fashion, we must have

P1 +P2+P3 = 1,
40p1 + 55P2 + 70P3 = 50,

with Pj E (0, 1). Substituting for p3 and factorizing, we obtain

6pi + 3P2 = 4,

or

1

P2 = 3 (4 - 6P1).

Since p2 > 0, we have

p1 < 2/3.

We also have

P3=1-P1- P2,
1=1-p1-3(4-6p1),
4=1-p1-3+2pi,

This implies p1 > 1/3.
So p1 is in the range (1/3, 2/3) and the others follow.

Exercise 3.9 We hold a units of A and ,8 units of B to replicate the option. We
therefore must have

110a + 120,8 = 10,

90a+80f = 0.

This has the solution

a=-0.4, ,6=0.45.
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The value is therefore

100a -I- 100,8 = -40 + 45 = 5.

Exercise 3.10 6.805.

Exercise 3.11 We can either apply the general result that the American has at least
as many rights as the European so will be worth at least as much, or we can proceed
by induction.

The induction hypothesis is that in the final layer the two options agree and we
then proceed by backwards induction. If we assume that the American is worth
at least as much as the European in layer k, then in layer k - 1 the discounted
expectation of the next layer's value must be at least as big. Taking the maximum
with the exercise value will only increase this and we are done.

Exercise 3.12 The option pays the vanilla value unless the barrier is breached and
then it pays zero.

We give two solutions.
(1) At expiry the barrier option either has the same value as the vanilla or is zero,

so the result follows by monotonicity. (This is a model-independent result.)
(2) We give an illuminating tree-specific proof by induction. At each node, if the

barrier is not breached we have the discounted expectation of the value at the next
time, or zero if the node is behind the barrier.

We proceed by backwards induction. In the final layer the result is clearly true.
In earlier layers, the value is either the discounted expectation of the value at the
next time or is zero. This is clearly less than or equal to the discounted expectation
at the next time by our induction hypothesis. So the result follows.

Exercise 3.13 This can be done either by a power series expansion or by direct
integration. For direct integration we have

2n

00
z1 p re _z +aXdx.J

-00

Write

x2 x - or ) - 1- ax - -a2,
2 2

and put y = x - or, then the answer is clear.
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Exercise 3.14 First, we consider the products, fg, f h, gh:

fg(x) = (2 + x + x2)(1 + 2x2) + 0(x3),

=2+x+x2+4x2+07(x3),

= 2 + x + 5x2 + 0(x3);

f h(x) = (2 + x + x2)(x3/2 + x2) + 07(x),

= 2x32 + 2x2 + x512 + 07(x3);

gh(x) = (1 + 2x2)(x3/2 + x2) + 0(x3),

= x3/2 + x2 + 0(x3)

Now we look at the six ratios:

2+x+x2
flg= 1+2x2 +0(x3),

_ (2 + x +x2)(1 - 2x2) + C7(x3),

=2+x+x2-4x2+ 0(x3),

= 2 + x - 3x2 + 0(x3);

1+2x2
gl f = x + x2

+ 0(x3),
2 +

1 1 + 2x2

21+2x+2x2
+ C7(x ),

/ 2 2\\
2(1+2X2) (1 -

x - 2 + 4 I +(7(x3),

2(1 + 2x2) C1 - 2 - 4
2)

+ 0(x3),

1 / x x2 1
2 1 - 2 -

4
+ 2x2 + 07(x3),

2
C1 - 2 + 4x2) + 0(x3),

2 4 + 8x2 +
0(x3).

489
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When dividing by h we have to be a little careful as an 0(x3) term divided by
x3/2 will be 0(x3/2) so the final answer is only accurate up to 0(x3/2).

f/h - 2 + x + x2 + 0(x3)
x312 + x2 ,

2+x+x2 31.X-3/2
1+x1/2 +0(x )J'

= x-3/2(2 + x +x2)(1 -x112 + x - x3/2 + x2 -\x-5/2) + 0(x3/2),

= x-3/2 (2 - 2x 1/2 + 3x - 2x3/2 + 4x2 - 4x5/2 I + 0(x312);

g/h = 1+2x2+0(x3)
x3/2 + x2

=x-32 1+2x2
+()(X3)

/ (1 +x1/2 ) ,

= x 3/2(1 + 2x2)(1 - x1/2 + x - x3/2 + x2 - x5/2) + 0(x312),
= x-3/2(1 - x112 + x - x312 + 3x2 - 3x512) + (7(x3/2);

x3/2 + x2
+(7(x3),h/f +x22+x

= 2(x3/2 + x2)(1 + x/2)-1 + 0(x3),

= 2(x3/2 + x2)(1 - x/2) + 0(x3),

= 2 (x312 + x2 - 2x512) + 0(x3).

For h/g we just get h to 0(x3) since multiplying h by x2 gives something 0(x3).

Chapter 4

Exercise 4.1 We have

F - N'(d1) ac = s T - tN'(dl),
So T - t' acr

I, 1

ac/ate S2U(T - t)
- f(S, t, T)
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which does not depend on K. This means that if we have a portfolio of calls with
the same maturity T then the F is (f x the Vega). Since f is non-zero, I, will be
zero if and only if the Vega is.

Note that this will not hold if T varies since f depends on T.

Exercise 4.2 The Vega will increase with time for reasonable lengths of time but
for very large expiries the Vega will fall away.

Exercise 4.3 The sum of the two contracts is a zero-coupon bond so we have

DC(St, t, K) + DP(St, t, K) = e-' (T-t) = erte-rT

We differentiate this relation. For Greeks with respect to a quantity X which is not
t or r, we get

aDC aDP

ax ax
For p we have

and for theta, we get

BDC aDP r(t-T)
ar + ar = (t-T)e ,

aDC + aDP = rer(t-T).
at at

Exercise 4.4 It goes down.

Exercise 4.5 The change in value of the portfolio against the change in value of S
will look like an upside-down parabola (actually more like a hyperbola) with tip at
(0, 0). So any move will result in a loss.

Exercise 4.6 We can differentiate the relation

C-0.4So T-t.
This yields

ac

a0

and

-0.45 T-t,

at
--OAS

2
(T - t)-3/2 = -0.2S(T - t)-3/2

Note the second approximation ignores the fact that the at-the-money value will
change with t.

Exercise 4.7 We have

C(K) = P(K) + F(K)
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by put-call parity. The value of F is model-independent so does not depend on a;
hence on differentiating, we obtain

(K)= ao-a
Cr

(K).

Exercise 4.8 We can do this by using put-call parity:

C(K) - P(K) = F(K),

P(K) = C(K) - F(K).

The forward has value

So - Ke-r(T-t).

Its Gamma and Vega are 0, and its Delta is 1. Its value is

100 - 110e-0.05 x 1 = -4.635.

In summary,

forward put
value -4.64 6.81
Vega 0 36.78

Delta 1 -0.657
Gamma 0 0.0367

Exercise 4.9 We can do this by using put-call parity:

The forward has value

C(K) - P(K) = F(K),

P(K) = C(K) - F(K).

.So - Ke-r(T-t)

Its Gamma and Vega are 0, and its Delta is 1. We have

forward put
value 14.389 0.239
Vega 0 11.03

Delta 1 -0.054
Gamma 0 0.011
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Exercise 4.10 We can do this by using put-call parity:

C(K) - P(K) = F(K),

i.e.

C(K) = P(K) + F(K).

The forward has value

so - Ke-'(T-r).

Its Gamma and Vega are 0, and its Delta is 1. We have

forward call
value 9.633 10.41

Vega 0 22.676
Delta 1 0.856

Gamma 0 0.0227

Exercise 4.11 We can do this by using

i.e.

The ZCB has value

We have

CD(K) + DP(K) = ZCB,

CD(K) = ZCB - DP(K).

Ke-''T

ZCB digital call
value 0.951 0.570
Vega 0 -1.294
Delta 0 0.037

Gamma 0 -0.0013

Exercise 4.12

493

(i) For Delta hedging we need 0.709 units of stock;
(ii) For Delta and Gamma hedging we need 0.919 units of B and 0.394 of stock;

(iii) For Delta and Vega hedging we need 0.932 units of B and 0.389 of stock.

Exercise 4.13

(i) Delta hedging: -0.709 of stock;
(ii) Delta and Gamma hedging: -0.919 of B and -1.313 of stock;

(iii) Delta and Vega hedging: -0.932 of B and -1.322 of stock.
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Exercise 4.14

(i) Delta hedging: -0.034 of stock;
(ii) Delta and Gamma hedging: 0.054 of B and 0.0015 of stock;

(iii) Delta and Vega hedging: 0.051 of B and -0.0003 of stock.

Exercise 4.15

(i) -0.037 of stock;
(ii) 0.048 of B and -0.0266 of stock;

(iii) 0.031 of B and -0.0302 of stock.

Exercise 4.16 For a person holding a long put position and Delta hedging, the
value will be a convex function with minimum for the zero move. So she makes
money on the spot move. She is long volatility so makes money on the vol too. So
she makes money.

For a person holding a long call position and not hedging, the value will be an
increasing function of spot. So she loses money on the spot move. She is long
volatility so makes money on the vol. So she may make or lose money (but will
probably lose ... ).

A Delta-hedged long call is essentially the same as a Delta-hedged long put so
we get the same answer.

A Delta-hedged short call is the negative of a Delta-hedged long call so she loses
money.

Exercise 4.17 The Delta will rise from -1 to 0. It will be flat away from the money
and then rapidly increase. The speed of increase will decrease with maturity. The
graph is roughly symmetric in shape about the strike.

Exercise 4.18 The Gamma will go from 0 to 0 with a spike in the middle. The
spike will be much sharper for short maturities. The graph is roughly symmetric in
shape about the strike.

Exercise 4.19 (a) It will be roughly convex and symmetrical with wings going up
with slope 1/2. It will be positive everywhere.

(b) The option struck at 110 will have Delta less than 0.5 so the right tail will go
up with slope greater than 0.5, e.g. about 0.75. The left tail will go up with slope
(1 - the right slope). It will be positive everywhere.

(c) This will be the negative of (b).
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Chapter 5

Exercise 5.1 We compute using Ito's lemma:

dXr = kXr-1dXt + 1k(k - 1)Xr-2dXt ,

= kXr-1µXtdt + kXr-1QXtdWt + I k(k - 1)XrQ2dt,

= Xr [(kit + -k(k - 1)a2) dt + kadWt] .

Setting Y. = X k,, we obtain

dYt
(kit +

k(k2
1) Q

21= dt + kQdWt.

Exercise 5.2 The volatility part of f (Xt) will, from Ito's lemma, be

.f'(Xt)cy(Xt)

So we need to solve

f'(Xt) = or (Xt)-1A

for a constant A. We deduce

fx
f (X) = C + A

I
Q(s)-1ds

0

with A and C arbitrary constants.

Exercise 5.3 Note that F is the forward price, not the price of a forward contract.
We first express Ft in terms of St:

Ft = er(T -t) St ,

with T = 1. So by Ito's lemma,

dFt = -rer(T-t) Stdt + er(T-t)dSt,

= er(T-t) [(-rSt + µSt)dt + QStdWt] ,
= (µ - r)Ftdt + QFtdWt.

Note that there are no cross terms since dt dSt = 0.

Exercise 5.4 We compute

f(S) = S-1,
fl(S) _ -S-2,

f"(S) =
2S-3
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Hence

d(Sr1) _ -S-2d St + 22St 3dSt,

= -Sr2 (,uStdt + crStdWt) + Sr 3a2St dt,

= Sr-1 [(a-2 - µ)dt - adWt] .

Exercise 5.5 This is geometric Brownian motion in the volatility part but the drift
part pushes St towards it if a > 0. The derivation of the Black-Scholes equation
does not require µ to be constant so this will have no effect on the Black-Scholes
price.

Exercise 5.6 We compute

a St

at - 0,
a sta = 1,

st

a2st

aSt2 = 0.

The left-hand side of the Black-Scholes equation is therefore

0+rSt 1+0=rSt,

when C = St, which agrees with the right-hand side.
The reason to expect this is that St is the price of a derivative that pays ST at

time t.

Exercise 5.7 We set C = Aert, so

t= rAe'
at
aC

= 0,
a st

a2C =0 .

aSt

The left-hand side of the Black-Scholes equation is therefore

rAert = rC

which agrees with the right-hand side.
The reason to expect this is that Ae't is the price of a derivative that pays Ae,T

at time T.
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Exercise 5.8 The Black-Scholes solution is the no-arbitrage price under the Black-
Scholes model. The rational bounds we developed in Chapter 2 apply in any no-
arbitrage model so they must apply in the Black-Scholes model as well. Therefore

0 < C(St, t) < S.

Exercise 5.9 Let h = g - f ; then h > 0 at time T. Let A pay f, B pay g and C
pay h at time T. We clearly have

C(St, t) = B(St, t) - A(St, t),

at all times. The contract C has non-negative pay-off at time T so

C(St, t) > 0,

for all t by monotonicity, hence

A(St, t) < B(St, t)

for all t. But f and g are solutions of the Black-Scholes equation, so

A(St, t) = .f (St, t)

B(St, t) = g(St, t)

everywhere. Therefore

f < g.

Exercise 5.10 We compute

d (x2) - X t l)) = 92dt + QdWt - µ1dt - o-dWt,

_ (µ2 - µl)dt.

So

Xt2) - Xtl) _ (/L2 - µl)t > 0.

Exercise 5.11 The point to note is that the only real change, if we allow or to be a
general function of S, is that we must replace a S by a (S) everywhere.

Then, in the particular case that a(S) = Q, we get

ac ac 1 2a2c
+ rSt

aSt
+ 2U

aS2
= rC.

at t
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Exercise 5.12 The important observation here is that the pay-off does not affect the
equation. A common mistake is to attempt to rederive the Black-Scholes equation.
Instead it is the same equation. To solve the equation is tiresome and it is most
easily done using risk-neutral evaluation which we discuss in Chapter 6.

Exercise 5.13 Using (5.40) we obtain

6-4
10

= 0.2

and

5-2
20 = 3/20.

Exercise 5.14 For the general case, consider eatXt. A straightforward application
of Ito's lemma gives

d(eatXt) = eatdXt + aeatXtdt,

= eat [(aXt + a(p - Xt))] dt + eat oadWt,

= eat [cup + o-dWt] .

We now have a stochastic differential equation with time-dependent, but state-
independent, drift and volatility. We therefore have that eat X t is normal with mean

/t
Xo +

J
easdsaf,

0

and variance

fo
e2aso.2ds.

t

These integrals can then be evaluated to give precise expressions.

Exercise 5.15 Positive interest rates would increase the price. We have to hold a
negative amount of stocks at all times to replicate the option so our payment of the
dividends would cause us to sub-replicate if we allowed the non-dividend paying
strategy.

Chapter 6

Exercise 6.1 We have

dSt = (r - d)Stdt + o StdWt.
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We compute

dFT(t) = d [e(r-d)(T-t)StJJ l

= -(r - d)e(r-d)(T-t) Stdt + e(r-d)(T-t)dSt,

= e(r-d)(T-t)uStdWt,

= QFT(t)dWt.

Exercise 6.2

(i) Yes, since the value of Ws is clearly known at time s.
(ii) No, since we do not know the value of Wr.

(iii) Yes, since Ws-1 is known at time s.
(iv) No, because we do not know Ws+l at time s.
(v) Yes, since Ws and Ws-1 are known.

(vi) Yes, since all these values of Wr are known.
(vii) Yes, since all these values of Wr are known.

Exercise 6.3

(i) Yes, since we can tell at time t whether the level 1 has been reached.
(ii) Yes, since.Ft will contain the values of Wt and Wi-1.

(iii) No, we do not know Wt+1 at time t.
(iv) This is very tricky as it depends on how we define `cross.' For some definitions,

yes and for others no.

Exercise 6.4 St grows at the same rate as a riskless bond so its drift must be r St.
The volatility term will not change hence

dSt = rStdt + QdWt.

We compute

dFt = d (er(T-t)st)

_ -re r(T-t)Stdt + rSter(T-t)dt + Qer(T-t)dWt

= uer(T-t)dWt.

We therefore have

where

FT ^' Fb + o' 'N(0, 1),

2T = e2r(T -t)dta2.U
fo

T
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The risk-neutral expectation of the pay-off is therefore

1

fE((FT - K)) = e (Fo + / s - K)ds,

where x is such that

that is,

Fo+o / x=K;

x=
K - Fo

E((FT - K)+) _ (Fo - K)(1 - N)(x) + 1 f se-z 6 / ds,
2n

1 -z2-= (Fo - K)N(-x) +
2n

e z a / .

We need to multiply this by e-'T to get the price.
To get the analogue of the Black-Scholes equation we replace aS by a, when-

ever it appears, to obtain

ac 1
2a2C ac

at +
2a

as2 + rS
as

= rc.

Exercise 6.5 The price will decrease. We can see this from the fact that the drift in
the risk-neutral measure will be lower, so the value of the stock at expiry for any
given path will be lower and hence the pay-off will be too.

Alternatively, a portfolio replicating the pay-off without dividends will super-
replicate. This is because the stock holding will always be positive and the stocks
will pay dividends.

Exercise 6.6 We have

FT(t) = e'(T-t)st,

FT(T) = FT(O)e 22T+a,1_T_N(0,1)

FT(T)2 =

So to price, we just use the Black formula with forward equal to

FT(O)2ea2T

and volatility equal to 2a.
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The PDE satisfied will be the Black-Scholes equation since the pay-off does not
come into the derivation.

It is important to realize that St is not the price process of a traded asset so
cannot be treated in the same way as St.

Exercise 6.7 The short answer is that if we use the wrong volatility, we get the
wrong hedge and so we end up with variance. One can show, however, that if we
sell an option for or' > a and at all times volatility is lower than o' then we will
always come out ahead, but the proof of this is beyond the scope of this book.

Exercise 6.8 We have, in the risk-neutral measure,

ST = Soe(r-1/2a2)T+aN/_T_N(0,1)

or

109 ST = log So + (r - 1/2Q2)T + a / N(0, 1).

The value is therefore

e-rTE((r - 1/2Q2)T + log So + 6'N(0, 1)) = e-rT [(r - 1/20r2 )T + log So]

Exercise 6.9 The pay-off is

(ST - K)IST>H = STIST>H - KIST>H.

The value is therefore

SOIES(ST > H) - Ke-'T IB(ST > H),

using the arguments of Section 6.13, where Es is the probability in the stock mea-
sure and IEB is the probability in the bond measure. We therefore get

SON(hl) - Ke-TT N(h2),

where

log(So/H) + (r + Za2)T
ht Q

and

h2=h1-orN/T.
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Exercise 6.10 Use (6.104) to compute the implied volatility:

T
increment

of time sigma
increment
of variance

total
variance

implied
vol

0.5 0.5 20% 0.02 0.02 20.00%

1 0.5 15% 0.01125 0.03125 17.68%

1.5 0.5 10% 0.005 0.03625 15.55%

2 0.5 10% 0.005 0.04125 14.36%

Note that interest rates and strike are irrelevant.

Exercise 6.11 We compute as above:

T
increment

of time sigma
increment
of variance

total
variance

implied
vol

0.5 0.5 10% 0.005 0.005 10.00%

1 0.5 15% 0.01125 0.01625 12.75%

1.5 0.5 20% 0.02 0.03625 15.55%

2 0.5 20% 0.02 0.05625 16.77%

Note that interest rates and strike are irrelevant.

Exercise 6.12 We compute as above:

T
increment

of time
implied

vol
total

variance
increment
of variance vol

0.5 0.5 10% 0.005 0.005 10.00%

1 0.5 15% 0.0225 0.0175 18.71%

2 1 20% 0.08 0.0575 23.98%

Exercise 6.13 By Ito's lemma the drift of the call will be the drift of
2

dS.
2 aS2

(S, t)dS2 +
at

dt +
as

In the stock measure, S has drift (r + a2)S. So we get

1 a2c
(s t)Q2S2

+ ac + ac (r + o 2)s.
2 as2 at as

In the risk-neutral measure, S has drift rS. So we get

2

2 as2
(S, t)a2S2 + a + as

rS.

Exercise 6.14 The price of a forward contract at time t with strike K and expiry
T is

T(TGt = St - Ke-r -t).
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So

dGr = dSr - rKe-'(T -t)dt = iSdt + crSdWt - rKe-''(T -t)dt.

Exercise 6.15 We have

Ft = Srer(T -t )

so

dFr = dSter(T -t) - rSter(T -t)dt.

We can write this as

dFr = (!t - r)Ster(T-t)dt + QSrer(T-t)dWt,

or

dFr=Ft((µ-r)dt+6dWr).

Exercise 6.16 Let i = 0.25, then

Ft =era St,

so

dFr = e''adSt = eraµSrdt + e''a6SdWt.

Exercise 6.17 We can find an equivalent measure by setting p = 0.5. In this mea-
sure, Zk is martingale. Any trading strategy in Zk will also be a martingale so there
are no arbitrages in any equivalent measure.

Exercise 6.18 The value of W10 is Y10. Changing measure so the probability of an
up-move is 0.5, we find that the expectation of W10 is zero. So if we can only trade
at 0 and 10, there is no possibility of arbitrage.

Now suppose Yl is 1. If Y2 = 1, then we have for Wt

0, 1, 1

and if W2 = - 1, we have

So if W1 = 1, go short at time 1 and then dissolve the portfolio at time 2 to achieve
an arbitrage in both case 2 and case 3.

Exercise 6.19 Changing measure so p = 0.5, we obtain

E(X10) = 0,

so no arbitrages involving only 0 and 10 exist.
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Otherwise, go long X at time 1 if X1 > 0, since then X2 = 2X I > X1 and we
have an arbitrage.

Exercise 6.20 The forward price is given by

FT(t) = er(T-t)St.

So

FT(0) = er(T )So,

and

FT(T) = ST = FT(0)e

Raise to the power a to get

FT(T)a =
2T+caa/N(0,1)

=
FT(0)ae-ZV2aT+22,2T

2

Then use the Black formula for a call option with forward price:

1

azaT+a2

zFT (0)ae- z 2

and volatility aa.

Exercise 6.21 The forward price is given by

FT(t) = er(T-t)St.

So

FT(0) = er(T)So,

FTT = ST = FT(0)e Z2T+U,1-T-N(0,1)

Raise to the power a to get

FT T
a = FT (0)ae-

z 2 e 2=

Then use the Black formula for a put option with forward price:

a
e-1 12aT+a2Q2TFT(O) z z

and volatility aQ -,I-T-.

Exercise 6.22 We write

Wt=Ws+(Wt-WS)



hence

So
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W2=Ws +2WS(Wt-W)+(Wt-WS)2.

lE(Wt Its)=WS +t - s,

since E(Wt - WS) = 0.
We have

Wt = WS + 3(Wt - WS)2WS + 3(Wt - WS)WW + (Wt - WS)3.

Therefore

since

We have

I(W) = Ws + 3(t - s)WS,

E(Wt - WS) = E((Wt - WS)3) = 0.

505

W4 = W4 + 4(Wt - WS)WW + 6(Wt - WS)2 WS + 4(Wt - WS)3WS + (Wt - WS)4.

Taking the expectation, the odd powers of Wt - W. give zero. The fourth moment
of a normal is 3 so we obtain

W4 + 6(t - s)WS + 3(t - s)2.

Exercise 6.23 We need to compute

E((log ST)3)

in the risk-neutral measure. Now

log ST = log So + (r - 0.562)T + Q/N(0, 1)

in a distributional sense. So if we cube and take expectations, the odd powers of
N(0, 1) will have zero expectation yielding

(log So + (r - 0.562T))3 + 3(log So + (r - 0.5Q2)T)62T.

The value is this multiplied by e-''T .

Exercise 6.24 Either compute as in Exercise 6.22, or derive the drift for Wt using
Ito's lemma.

Our function f is given by f (x) = x3, so

f'(x) = 3x2,
f"(x) = 6x.
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The drift is therefore

3Wrdt

which is not identically zero. So we do not have a martingale.

Exercise 6.25 See the previous exercise: Wr . The expectation is zero by oddness.

Exercise 6.26 We have to find µ(S, t) such that

BX= S+B
is a martingale. Note that this will immediately imply that S/(S+B) is a martingale
since they add up to 1.

We therefore simply compute the drift of X in terms of the drift of S, and then
solve. We can write

The process for S/B is just

d(S/B) = (µ - r)(S/B)dt + o(S/B)dW .

Let
1f( )x =

,1+x
Then

1
f1( ) = -x (1 +x)2,

and

2
f"( ) =x (1 +x)3

Therefore

B 1 dS 1 dS2d S )) _ - ,(f ( / +
(1 + S/B)2 (1 + S/B)3

and the drift is
1 I

r
2S2/B 2)S B +( -

So

.r o/µ(1 + S/B)2 (1 + S/B)3

1
( - )S B 252/B2

Hence

r ./!.t =
1 + S/B

6

1
a
2S_ S

or
2µ=r+ 1+S/B B

- r+ S+B
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Chapter 7

Exercise 7.1 Across a time-step of size dt, we have, for Yt = Wt+dt - Wt,

E(Yt)=0,
E(Yr2 ) = dt,

E(Yt3) = 0,

E(Y4) = 3dt2.

We use symmetry to get the odd moments right. So we assume that it goes up
with probability p and down with probability p. The probability of staying the
same we let be zero.

We also take the up-move to be a, the down-move to be -a and no-change to
be zero. Let X be the random variable with these properties. We then have

E(X) = 0,

IE(X2) = 2a2p,

E(X3) = 0,

E(X4) = 2a4p.

So we need to solve the simultaneous equations

2a2p = dt,
2a4p = 3dt2.

Dividing the second of these by the other, we get

a2 = 3dt

or

a13- dt,
and it follows that

p=1/6.

Exercise 7.2 Since the integral is symmetric about the midpoint for each step, we
have

0.5(x1 - x3_i)(.f (xj) + f (xj-1)),

so if we have n + 1 points evenly spaced with xj - x1_1 we can rewrite the integral
as

n

Sx (o.5f(xo)+o.5f(x)+f(xJ)).
j=1
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Exercise 7.3 Recall
d 1

dx 1+x2*
So the cumulative distribution function is of the form

f(x)_ 1
1 tan-1(x)+C,

for some C.
Now f should go to zero as x -oo, and tan-1 goes to -7r/2 as x -oo.
We therefore have

Hence

]P(Y<x)_-tan-1(x)+-.
2

We want the inverse of this: from

we get

Hence

y =
1

1

tan-1

(x) +
1

2
,

tan-1(x) = 7r (y - 1/2).

x = tan(ir(y - 1/2)).

So to get a draw from this random variable, use

u H tan(rr(u - 1/2)),

with u uniform on [0, 1].

Exercise 7.4 If we have draws

x1,x2,...,xn

from a normal, and do anti-thetic sampling, we get

x1, -x1, x2, -X2, ... , xn, -xn.

Our estimate of E(X2k+1) is therefore

1 ` x2k+1 + 1 (-x )2k+1
2n

L J 2n J

which equals

1

(Y-X2k+l_Y'X2k+l)=O.
J J
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Exercise 7.5

SST-KI=(ST-K)++(K-ST)+

Exercise 7.6 The key to this one is to note that it is horizontal and equal to -5 for
spot large. So it looks like -5 zero-coupon bonds for S large. If we subtract this
from the pay-off, then we get an option that pays

95 - ST

below 95 and 0 otherwise. This is a put option struck at 95.
The solution is therefore a put option struck at 95 and -5 ZCBs.
Alternatively, using call options one can take

-1 call struck at 0,
90 riskless zero-coupon bonds,
1 call struck at 95.

Exercise 7.7 Recall that the price of a digital call option is

ac ac as_aK(K'
&(K)) -

as aK

where C is the Black-Scholes price and & is the implied volatility at K. Now

a K J < 0 if upwards sloping.
a& > 0, if downwards sloping

We also have that

ac

ad

is the Vega of a call option and is positive.
So downwards sloping must be worth more.

Exercise 7.8 The crucial point is that the replicating portfolio is the same regard-
less of the parameters S, r, d, a, t and so it will agree in price whatever their
values.

This means that after we differentiate, it still agrees and we are done.

Exercise 7.9 Take a Taylor expansion and note that in the symmetric case the first
term cancels.

Exercise 7.10 The sum-square of these and their negatives is 13.3482. Divide by
20 to get 0.6674, whose square root is +0.81695.
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Divide the twenty numbers by this quantity to get

0.83, -0.83,
-0.38, 0.38,
-0.60, 0.60,
-0.23, 0.23,
-0.88, 0.88,
-0.20, 0.20,
-1.24, 1.24,

-1.96, 1.96,

1.08, -1.08,
-1.19, 1.19.

Exercise 7.11 We want to evaluate
Z2

1 cos(e(r-0.50r2)T+o Tz)e-Z2/2dz,

27r
z1

with z j the value of z mapping to j.
We solve to get

zl = 0.05, z2 = 6.981.

We have four points of which two are zl and z2. The other two divide the interval
into 3 equal segments. We compute:

z 0.05 2.360 4.6710 6.98

log S 0 0.231 0.4621 0.69

S 1 1.260 1.5874 2.00

cos S 0.540 0.306 -0.0166 -0.42
exp(-z2/2) 0.499 0.0019 1.67E - 10 3.40E - 22

1 / 27r 0.3989 0.3989 0.3989 0.3989

value 0.108 0.00023 -1.11E-12 -5.6E-23
We add the two middle columns and halve the end columns. We then multiply by
the length of a segment, that is (z2 - zi)/3.

The final value is therefore 0.1247.

Exercise 7.12 Increasing the slope decreases the price since the correction is
-(slope x Vega). So B is worth more.

Exercise 7.13 We want to decrease the standard error by a factor of 100, so we
have to run 1002 as many simulations.

This will take

10 x 100 x 100 = 100 000 seconds.
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We have a normal distribution, and we want the value between the 2.5 and 97.5
percentiles to be less than 1E - 4. Now

N-1(0.975) = 1.96.

This means that the standard error has to be less than

1E-4/1.96=5.1E-5.

We need an extra 1.962 simulations. So the answer is

100 000 x 1.962 seconds.

Exercise 7.14 This contract pays 0.3(S1 /So - 1)+; we can rewrite this as

0.3

So
(S1 - So)+,

so the price is 0.3/So times that of a call option struck at So.

Exercise 7.15 The gradient changes are

1

K2-K1

at K1,

K3-K2 K2-K1

at K2, and

1

K3 - K2

at K3. So buy these numbers of call options at each of these strikes.

Exercise 7.16 The pay-off is

1
max(1, S1/So) = max(Si/So - 1, 0) + 1 = 1 + -(Si o- So)+.

So

e_,.t + BS(So, So, r, d, 1, a)
So

where BS(S, K, r, d, T, o) is the Black-Scholes price of a call option.
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Chapter 8

Exercise 8.1 If the value of the sum is higher do the vanilla minus the sum.
Otherwise do the negative.

Exercise 8.2 If interest-rates are zero, time-dependence of volatility is irrelevant.
Otherwise the time-dependence matters since the stock will drift in the risk-neutral
measure and whether the volatility occurs before or after the drifting will make a
difference. Forward-rates are always driftless so we are back in the zero-interest-
rate case.

Exercise 8.3 If L is the level, and r is the passage time, the crucial observation is
that

IP(c < t) = E(Mt > L)

so differentiate the right-hand side to get the density.

Exercise 8.4 The stock will wobble about more so the probability of breaching the
barrier is increased.

Exercise 8.5 It will increase it. (Unless it has already breached the barrier in which
case there is, of course, no effect.)

Exercise 8.6 The graph will be similar to the Black-Scholes price of a put option
but will have lower value for spot above the barrier. For spot below the barrier, it
will be an ordinary put option.

Exercise 8.7 Identically zero!

Exercise 8.8 Just differentiate.

Exercise 8.9 We have to compute

e-rT?(mT >

We just plug the parameters of the risk-neutral process into Corollary 8.1.

Exercise 8.10 The American put will cost more than the European digital put with
the same strike and expiry.

Exercise 8.11 The asset is driftless so when the American pays off there is pre-
cisely a 50% chance (in the risk-neutral measure) that the European option will pay
off too so the European is worth half as much as the American.

Exercise 8.12 We have

IP( max Xt < L) = 1 - P( max Xt > L),
tE[O,T] tE[O,T]

and

IP( max Xt > L) = IP(max(Xt - X0) > L - Xo),
tE[O,T]

= IID(min(Xt - X0 < Xo - L))
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since Brownian motion is symmetric. (All mins and maxes are implicitly over
[0, T].)

Let Wt=Xr-Xo,M=Xo-L, then

IP(min(Xt - Xo < X0 - L))

_ P(min Wt < M)

= IP(min W < M, WT < M) + P(min W < M, WT > M)

= P(WT < M) + IP(min W, < M, WT > M)

= IP(WT M) + IF'(WT M) reflection principle

= 2IP(WT M)

=2NIaIT =2N\
0-'1_T_ /

So the final answer is

1-2N o - L
a IT

Chapter 9

Exercise 9.1 Vanilla greater than discrete greater than continuous.

Exercise 9.2 In general, it will be lower since the averaging process reduces overall
variance in the risk-neutral measure.

Exercise 9.3 By PDE, use running maximum as an auxiliary variable and then pro-
ceed as for an Asian. For Monte Carlo, proceed as for Asian but take the maximum
along each path.

Exercise 9.4
k (k)

E((X +a)k) = ak-,E(X').

Exercise 9.5 We take as auxiliary variable the value 1 if the barrier has not been
breached and 0 if it has. The updating rule is then make it 0 if the barrier is breached
at the new time, otherwise leave it alone. The final payoff is the auxiliary times the
option payoff.

Exercise 9.6 For auxiliary variable, take the running geometric mean. For Monte
Carlo, compute the geometric mean instead of the ordinary one at the end of the
path. The key to developing the formula is to observe that a geometric mean of log-
normal random variables is also log-normal. The geometric option is worth less by
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the inequality of arithmetic and geometric means so for every path the pay-off of
the geometric option is lower.

Exercise 9.7 For the PDE method, we need two auxiliary variables, the running
min and the running max. For Monte Carlo just compute the min and the max at
the end of each path, and take the difference.

Exercise 9.8 The implied rate is

log P(tj) - log P(tj_1)

tj+1 - tj
which is positive if P(tj) > P(tj+i)

Exercise 9.9 By the binomial theorem,

/ \
(X + a)4 = 1 4 ) X i a4-1.\J

So taking expectations, the value is

4
E(XJ)a4-j.

J

Exercise 9.10 This is essentially a knock-in American put option. We can price
this on a risk-neutral binomial tree. The subtlety is that we need two values at each
node: the value when knock-in has occurred, and the value if it has not. Behind the
barrier, these values agree.

In the final layer, the value is the put pay-off for knock-in options, and zero for
ones that are not yet knocked-in.

In previous layers, we just do the usual thing for each of the knocked-in values
and those not yet knocked-in, i.e. take discounted expected value at the next time
given up- or down-moves. Behind the barrier, we set the value of those not yet
knocked-in to equal that of the one that is.

Note "knocked in + knocked out" does not equal vanilla here, as they might be
exercised at different times.

If the option were a call, it would never be early exercised after knocking in. So
the price is that of a knock-in European call option and we use the formula.

Exercise 9.11 Note that in the first group, the first two are the same since an
American call and a European call are worth the same.

For the first three, the value of the option at the compound option's exercise date
is therefore given by the Black-Scholes formula. We can therefore simply carry
out a numerical integration.

For the fourth, no simple formula exists for the pay-off. We therefore use a bi-
nomial tree with the number of steps carefully chosen so that one step lands on the
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pay-off time of the first option. We therefore backwards induct on the tree from
the expiry of the second option to the expiry of the first in the usual way to get
the value of the pay-off. At that time, we replace the value of the inner option by
the value of the pay-off (i.e. subtract the strike and take max with zero). We then
proceed as usual with trees, back to zero.

For the second group, we can use put-call parity to simplify. So we take the
value of the first compound option and subtract it from the value of a forward on
the underlying option.

The value of a forward on an option is simply the value of the option minus the
discounted value of the strike.

Exercise 9.12 We use

St == S0E(r-0.5a 2)tt+a
t, Z1,t

St Ste(r-0.5v2)(tz-tt)+Q tz-t1Zoz=- t

Each time we take Z0 from the first column and Zl from the second.
We obtain

S1 S2 average pay-off discounted pay-off

98.40 110.68 104.54 4.54 4.32

102.01 107.35 104.68 4.68 4.45

106.63 100.83 103.73 3.73 3.55

95.76 104.99 100.38 0.38 0.36

106.16 108.98 107.57 7.57 7.20

106.02 98.41 102.22 2.22 2.11

96.00 104.28 100.14 0.14 0.14

106.29 111.16 108.73 8.73 8.30

97.04 90.92 93.98 0.00 0.00

104.82 101.22 103.02 3.02 2.87

We sum appropriately to get:

E(X) 3.33

E(X2) 18.46

V (X) 7.38

se 0.905

To reduce variance we could try:

anti-thetic sampling;
moment matching;
using a geometric Asian option as a control variate;
using the Black-Scholes price for the final time step.
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These could all be used together.

Exercise 9.13 As in the previous question, we compute to get

S1 S2 average pay-off discounted pay-off
0.97 1.33 1.15 0.00 0.00

1.09 1.12 1.11 0.00 0.00

1.25 0.85 1.05 0.00 0.00

0.89 1.25 1.07 0.00 0.00

1.24 1.05 1.14 0.00 0.00

1.23 0.81 1.02 0.00 0.00

0.90 1.22 1.06 0.00 0.00

1.24 1.10 1.17 0.00 0.00

0.93 0.83 0.88 0.02 0.02

1.00 0.90 1.04 0.00 0.00

This leads to

E(X) 0.0016
E(X2) 2.57E - 05
V (X) 2.32E - 05

se 0.0016

The negatives of the variates give

1.21 0.83 1.02 0.00 0.00
1.08 0.99 1.03 0.00 0.00

0.94 1.30 1.12 0.00 0.00
1.32 0.89 1.10 0.00 0.00
0.95 1.06 1.00 0.00 0.00
0.95 1.37 1.16 0.00 0.00
1.30 0.91 1.11 0.00 0.00
0.95 1.01 0.98 0.00 0.00
1.26 1.34 1.30 0.00 0.00
0.99 1.24 1.11 0.00 0.00

Ultimately we find

E(X) = 0.00080.

Note that to estimate standard error, one cannot apply the same algorithm with 20
samples. This is because the pairs are not independent. To find the standard error,
we therefore regard the average of each pair as a sample point. So we only have 10
points.
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Exercise 9.14 We use Cholesky decomposition. We therefore write the matrix as

a 0 0 a b d a2 ab ad
b c 0 0 c e = ab b2+c2 bd+ce
d e f 0 0 f ad bd + ce d2 + e2 + f2

We now have to solve the equations

.a2 = 9,

ab=3,
b2 + C2 = 5,

ad = 0,

bd + ce = 2,

d2+e2+f2=2.

The solution is

a=3, b=1, c=2, d=0, e=1, f =1,

and the matrix is

3 0 0

1 2 0

0 1 2

Note that by taking negative roots we would get different solutions. Note also that
if we took an upper triangular matrix, we again would get a different solution.

Exercise 9.15 We use Cholesky decomposition. We therefore write the matrix as

a 0 0 a b d a2 ab ad

b c 0 0 c e I = ab b2+c2 bd+ce
d e f 0 0 f ad bd + ce d2 + e2 + f 2

We now have to solve the equations

a24,
ab=2,

b2 + c2 = 2,

ad = 2,

bd+ce=2,
d2+e2+f2=3.
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The solution is

and the matrix is
2 0 0

1 1 0

1 1 1

Note that by taking negative roots we would get different solutions. Note also that
if we took an upper triangular matrix, we again would get a different solution.

Chapter 10

Exercise 10.1 We can write the range accrual as a sum of double digitals with
pay-off times moved to the end of accrual time. Each double digital corresponds to
one day of accrual. We can replicate the double digitals in the usual way. We have
to assume deterministic interest rates so that the change in discounting is known.

Exercise 10.2 Sections 10.2, 10.5, 10.6

Exercise 10.3 n2N, Nn

Exercise 10.4 The first relation follows from the fact that all the parameters are
time-independent so it is only residual time that matters. The second is by direct
observation or can be proven using the fact that the process for the log is constant
coefficient. With time-dependent volatility the second relation still holds but the
first does not.

Exercise 10.5 This can be done taking time-dependent volatility which is rapidly
decaying. Or more extremely, take the F that is implied by having zero volatility
after one year. Then one- and two-year options have the same value initially if
r = 0, but after we get to one year the two-year option is now a one-year option
and is worth more than the one-year option which is at its pay-off time. So the
portfolio of two-year option minus one-year option is an arbitrage portfolio.

Chapter 11

Exercise 11.1 Price in pounds and then convert the premium into dollars at today's
exchange rate. This will work because we can replicate the option by converting
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the premium into pounds and then carrying out the usual Black-Scholes replication
argument.

Exercise 11.2 To price the option with strike in dollars, we work out the process
for the dollar price of the stock which will be affected by the correlation between
exchange rate and the stock price. Once we know the process for the dollar price
we can proceed in the standard fashion.

Exercise 11.3 We must have that (µj - r)/Qj is independent of j.

Exercise 11.4 The usual argument gives

d (--) = [2-a)dt- ydW].
t

We then have

d (Y r) = Xrd (Y +dXrd (yr +dXrd (Yt ,

= Xr
[(y2 - a + a)dt - p,8ydt +fdWt - ydWr] ,

Yt

=
Yr

[(y2 - pfY)dt +,BdWt - ydWr] .

Exercise 11.5 We use

a +2paala2+a, = 0.152(1 -2 x 0.5+1)=0.15.

Exercise 11.6 We correlate the random variables with

Zl = Wi,
Z2 = pWi + 1 - p2 W2;

here p = 0.25.

We then apply these as

X=Zi,
Y=2Z2.

The output of our algorithm is

0.34 0.544

-1.22 -3.311
-0.21 0.219

0.63 1.938

0.94 1.957
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Exercise 11.7 For the AU$ risk-neutral measure, the drift of Xt is the quanto drift
so we get

d -Px,F6FcYx=0.03-0.5 x 0.2 x 0.15.

For Yt, we get

r-q=5%-2%=3%.
For the US$ risk-neutral measure, for Xt, we get

d=3%.

For Yt, we get a quanto drift. We have to be careful as it is 1/Ft that is important
not Ft. Note that since 1/Ft is the value of 1 AU$ in dollars, its price process in
the US$ risk-neutral measure

d(1/Ft) = (1/Ft)((d - r)dt - o-FdWt),

where Wt is the Brownian motion driving Ft. The effect of the minus sign is that
the correlation flips sign:

r - PY,1/FQI/FQY = 0.05 + 0.5 x 0.2 x 0.15.

We are still not quite there since this is the drift of a non-dividend paying stock.
We therefore also have to subtract q to get the final answer.

For the Xt measure, the drift of Xt will be, as usual,

d+a =0.03+0.12=4%.

In fact, we don't have enough information to compute the drift of Yt. We need the
correlation between Xt and Yt for this.

For the Yt measure, we in truth take Yt as numeraire since it is not a self-financing
portfolio.

Exercise 11.8 We put

o-1-2po-j62+62= 0.12-2x0.1x 0.1 x0.2+0.22.

We use this vol and set r = 0, So = Yo, K = Xo, T = 2, in the Black-Scholes
formula.

Exercise 11.9 We write

max(2X1, 3Yj) = 3Y1 + max(2X1 - 3Y1, 0).

So the value is that of a Margrabe option to exchange three units of Y1 for two units
of X1 plus 3YO.

Note that 3Yt follows the same process as Yt with a different start point, and
similarly for 2Xt.
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We therefore use the Black-Scholes formula with

a = 0.252 - 2 x 0.2 x 0.25 x 0.15 + 0.22,

521

and So = 240, K = 240, r = 0, T = 1.

Exercise 11.10 We work out the option premium as if we were a US$ bank. We
convert this into AU$ at today's exchange rate.

To hedge, we convert the premium back into US$ and then act as if we were a
US$ bank throughout.

Chapter 12

Exercise 12.1 Any exercise strategy for B is also a strategy for A so the price
of A is a maximum over a larger set and therefore must be at least as large. The
American and European calls on a non-dividend-paying stock is an example where
they have the same value.

Exercise 12.2 It will be more valuable than a forward but less so than the American
call. The obvious way to price this is to use a tree. In the final layer, we take the
value of the forward contract. In the preceding layers, we take the max of the
discounted unexercised value and the exercised value until we get back to time tl
and before that we do not do anything except discount.

Exercise 12.3 No it does not. For example, if we have zero dividend rate but
positive interest rate, the American put is worth more than the European put but
the two calls are worth the same. This means that put-call parity cannot hold.

Exercise 12.4 This can be done by backwards induction. In the final layer, they
are equal. In preceding layers, each node is the max of the exercised value and the
discounted values in the next layer, which are assumed to be at least as big, so the
value at the node must be more.

tj+1

Exercise 12.5 We just take tj so that f a2(t)dt is independent of j.
ti

Exercise 12.6 We can do this via PDE methods using an auxiliary variable.

Exercise 12.7 Its value will be the stock price in both cases. In the first case, use
the rational bounds theorem. In the second use the Black-Scholes formula.

Exercise 12.8 C carries more rights than A since we can exercise the two options
separately. But it will have the same value since the two pieces will have the same
optimal exercise time.

Exercise 12.9 Zero. If it is not worth zero after six months the person who it is
against will cancel it.



522 Hints and answers to exercises

Chapter 13

Exercise 13.1 4.88%

Exercise 13.2 7.84%

Exercise 13.3 3.88%

Exercise 13.4 Let f run from to to t1 . Take P (tl) as numeraire. The value is then

E((f - K)(1 + fv)r)P(tl),

with f log-normal and driftless. The expectation can be evaluated since it is a
quadratic in f and f is log-normal.

Exercise 13.5 Proceed by induction. We have P(to) = 0, and

P(ti) = (1 + X1(t1 - to))-1.

If we know Pt; for i < j, we have

X
Po - Pi

i -
Pi

isj

All terms in this equation except Pj are known so we can solve for Pj.

Exercise 13.6 This is similar to the previous question except that we work back-
wards from the end and initially find the ratios of the discount factors to the value
of the final discount factor.

Exercise 13.7 Compute the volatility of the swap-rate; it will be of the form

aiajfif,Pij aSR 8SR

i' i a.fi a.fi

with Pi.i the instantaneous correlations between forward rates and (Ti the volatility
of fi. This is clearly not of the form swap-rate times a constant.

Exercise 13.8 In the Black formula, we replace the strike inside the N(dj) terms
by the trigger level.

Chapter 14

Exercise 14.1 The key to this problem is to observe that f has two different roles.
One is its part in the volatility term a f which must be replaced by or (f + a) and the
other is its role in the discounting, which is unchanged. So the displaced diffusion
drift is the original drift with all a f terms replaced by or (f + a) terms.

Exercise 14.2 Express the swap-rate formula in terms of forward rates, and differ-
entiate.
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Exercise 14.3 In the drift computation, we will have replaced each occurence of
a f by or. We evolve the rates instead of their log. Basically not much is different
except that we must develop and define everything for the rate instead for its log.

Exercise 14.4 See [62].

Exercise 14.5 The inverse floater can be decomposed as a sum of floorlets and
FRAs so we can price by Black. If we price by BGM, we need only one evolution
time since it is only the terminal values of rates that matter (but if we evolve over
too long we may get a drift error.)

Exercise 14.6 This is very similar to taking the stock as numeraire. We get that f
has drift a2. We have that f P is a mulitple of the difference of the bonds at start
and end of the FRA, so f P is a tradable and can be taken to be the numeraire.

Exercise 14.7 Just add a to trigger, strike and initial rate.

Exercise 14.8 We need to compute

[(0.10.5 + e-21)(0.2 + e-3r)dt

0

f(0.02= 0.5 + 0.2e-2` + 0.1e-3t + e-5t)dt.

0

This is easily evaluated to give

0.5 (0.02 + 0.1(1 - e-2)+0.11
_ 3e-3

+ 1 5e

5

) .

Chapter 15

Exercise 15.1 If we condition on no jumps then the expected pay-off is the same.
If there are jumps, the expectation is lower since the asset has jumped down so
the overall expectation must be lower. However, the price of the second call option
will be higher - the difference is that the risk-neutral drift will compensate in the
second case.

Exercise 15.2 Without loss of generality, take S and T to have the same initial
value. (Otherwise take a multiple of S.) Then consider the portfolio S - T.

Exercise 15.3 The first variation is infinite. The second variation is equal to 1.25.

Exercise 15.4 Just differentiate the call formula with respect to strike.

Exercise 15.5 Twice differentiate the call formula with respect to strike.
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Exercise 15.6 The intensity by its average. The vol by the rms value. The others
cannot. For example, if we average jump-means, we may end up with no jumps at
all.

Exercise 15.7

(a.K - AS)+ =).(K - S)+.

Exercise 15.8 Multiplying spot and strike by k does not change the sign of S - K
so will not affect the value of H(S - K).

Exercise 15.9 We just have to adjust the risk-neutral drift down by d and every-
where it appears we must reduce it by d. So for the log-normal jumps case we
reduce the r,, by d.

Exercise 15.10 We need 2N as we can bundle all the jumps together with the
diffusive moves. If the jumps are not log-normal but we know how to bundle them
with each other, then we need 3N. If we do not know how to bundle the jumps
then we need a potentially infinite number as there is upper bound on the number
of jumps per interval. In practice, we would neglect the possibility of more than,
say, ten jumps occurring in a short time.

Exercise 15.11 At time t1, all the jumps are over. We are therefore in a Black-
Scholes world and for each value of S1 there is a unique price which can be repli-
cated in the standard way. In fact, since the option payoff is homogeneous of order
zero, this price will be independent of S1. Let this price be C. We can hedge the op-
tion by buying e-rt' C bonds at time 0, doing nothing until time ti and then carrying
out the Black-Scholes hedging strategy. The value at time to is therefore e-rt' C. If
the rms vol of S from t1 to t2 is a the value of e-rt' C will be

where r = t2 - t1.

Chapter 16

Exercise 16.1 Just differentiate the price with respect to strike twice to get the
expression for the density. To estimate the density by Monte Carlo we could short
step the vol, integrate it, draw the final value of spot, and then store all the final
values of spot. Dividing the spot values into bins and finding the fraction in each
bin would then give an estimate of the density.

Exercise 16.2 Most will not work. Strong static replication of digitals does work.
The up and in put with barrier at strike method works. Put-call symmetry works
when there are zero interest rates and the vol is uncorrelated with spot.
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Exercise 16.3 The rS a° term will change to (r-d)S aO- . See this by using delivery
contracts just as in the deterministic vol case.

Exercise 16.4 We will be imperfectly hedged and our final portfolio will have final
variance which is non-zero. However, the variance will generally be quite small.

Chapter 17

Exercise 17.1 All of the techniques that do not depend on the stock price being
continuous will work.

Exercise 17.2 2N.
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N, 65
N(0, 1), 57
N(µ, a2), 98
or-field, 458

accreting notional, 429
admissible exercise strategy, see exercise strategy,

admissible
almost, 257
almost surely, 99
American, 10
American option, see option, American
amortising notional, 429
annualized rates, 302
annuity, 308
.anti-thetic sampling, 192
arbitrage, 19-20, 27-29,429

and bounding option prices, 29-39
arbitrage-free price, 45, 46
arbitrageur, 12-13, 18
Arrow-Debreu security, 152
at-the-forward, 31
at-the-money, 30, 66
auto cap, 429

bank, 12
barrier option, see option, barrier
basis point, 429
basket option, 261
Bermudan option, see option, Bermudan
Bermudan swaption, see swaption, Bermudan
BGM, 429

implementation of, 450-453
BGM model, 322-355

automatic calibration to co-terminal swaptions, 342
long steps, 337
running a simulation, 337-342

BGM/J, 429
BGM/J model, see BGM model
bid-offer spread, 21
Black formula, 173, 310-311

approximate linearity, 356
approximation for swaption pricing under BGM

model, 341

Black-Scholes formula, see option, call,
Black-Scholes formula for

Black-Scholes density, 188
Black-Scholes equation, 69, 160, 161

for options on dividend-paying assets, 123
higher-dimensional, 271
informal derivation of, 114-116
rigorous derivation, 116-119
solution of, 119-121
with time-dependent parameters, 164

Black-Scholes formula, 65
Black-Scholes model, 74, 113, 430
Black-Scholes price, 19
Black-Scholes model, 76
bond, 4 6, 430

callable, 301
convertible, 7, 430
corporate, 7
government, 1
premium, 2
riskless, 5, 7
zero-coupon, 5, 24-26, 28, 302, 433

Brownian bridge, 230
Brownian motion, 97-100, 101, 107, 142, 260, 430

correlated, 263
higher-dimensional, 261-263

Buffett, Warren, 2
bushy tree, see tree, non-recombining

calibration
to vanilla options using jump-diffusion, 377

call, 301
call option, see option, call
callable bond, see bond, callable
cap, 309, 430
caplet, 309-311, 430

strike of, 309
caption, 326, 430
cash bond, 26, 430
Central Limit theorem, 56, 60
Central Limit Theorem, 64
Central Limit theorem, 278,463
central method, 238
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CEV, see constant elasticity of variance
chain rule, 106

for stochastic calculus, 109
characteristic function, 408
Cholesky decomposition, 227
cliquet, 425, 430

call, 425
optional, 426
put, 425

CMS, see swap, constant maturity
co-initial, 317, 340
co-terminal, 317, 340
commodities, 123
complete market, 152, 430
compound optionality, 426
conditional probability, 460
consol, 430
constant elasticity of variance, 113
constant elasticity of variance process, 355
constant maturity swap, see swap, constant

maturity
contingent claim, 152, 430
continuously compounding rate, 25, 26
control variate

and pricing of Bermudan swaptions, 351
on a tree, 288

convenience yield, 123

convexity, 35-37, 81
as a function of spot price in a log-type model,

383
correlation, 466

between forward rates, 321, 335
correlation matrix, 268, 466
cost of carry, 123
coupon, 4, 301, 430
covariance, 466
covariance matrix, 466

and implementing BGM, 343
crash, 10, 86
credit default swap, 23
credit rating, 316, 430
cumulative distribution function, 461
cumulative normal function, 65, 435, 437

default, 1
deflated, 168
Delta, 76, 80,430

and static replication, 246, 248
Black-Scholes formula for call option,

80
integral expression for, 189

Delta hedging, see hedging, Delta
dependent, 461
derivative, 10, 430

credit, 11
weather, 11

Derman-Kani implied tree, 381
deterministic future smile, 244, 426
digital, 430
digital option, see option, digital
dimensionality, 224, 438
dimensionality reduction, 229
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discount curve, 431
discretely compounding money market account,

324
displaced diffusion model, 355
distribution

log-normal, see log-normal distribution
diversifiable risk, 431
diversification, 8
dividend, 7, 431

scrip, 25
dividend rate, 25
dividends

and the Black-Scholes equation, 121-123
drift, 60, 111

of a forward rate under BGM, 330
real-world, 64

Dupire model, 381
dynamic replication, see replication, dynamic

early exercise, 68
equivalent martingale measure

for a tree with jumps, 363
equivalent probability measures, see probability

measure, equivalence
European, 10
European contingent claim, 116
exercise, 10
exercise boundary, 289
exercise region, 289
exercise strategy

admissible, 286
expectation, 431, 462

conditional, 155

fat tails, 85, 431, 464
Feynman-Kac theorem, 161
fickle, 377
filtration, 143, 154, 162
first variation, see variation, first
fixed leg, 306
fixed rate, 431
floating, 300
floating leg, 306
floating rate, 431
floating smile, see smile, floating
floor, 309,431
floorlet, 309, 431
floortion, 326, 431
forward contract, 9, 22, 181, 431

and risk-neutrality, 137
value of, 26

forward price, 26, 31
forward rates, 303-305
forward-rate agreement, 23, 304, 431
Fourier transform, 395, 408
FRA, see forward-rate agreement
free boundary value problem, 290

Gamma, 77, 80, 431
and static replication, 246, 248
Black-Scholes formula for a call option, 80
non-negativity of, 384
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Gamma distribution, 402
Gamma function, 402

incomplete, 405
Gaussian distribution, 57, 103
Gaussian random variable

synthesis of, 191
gearing, 300

geometric Brownian motion, 111, 114
gilt, 314
Girsanov transformation, 214
Girsanov's theorem, 158, 166, 210-213, 368, 390,

431
higher-dimensional, 267-271

Greeks, 77-83, 431
and static replication, 246, 248
computation of

on a tree, 186
of multi-look options, 236-238

Ito's Lemma, 106-110
application of, 111-114
multi-dimensional, 264

joint density function, 464
joint law of minimum and terminal value of a

Brownian motion
with drift, 213
without drift, 208

jump-diffusion model, 87, 364-381
and deterministic future smiles, 244
and replication of American options, 293
price of vanilla options as a function of jump

intensity, 374
pricing by risk-neutral evaluation,

364-367
jump-diffusion process, 361
jumps, 86-88
jumps on a tree, 362

heat equation, 119, 120-121
Heath, Jarrow & Morton, 322
hedger, 12-13, 18
hedging, 4, 8, 11, 67-68, 431, 441

and martingale pricing, 162-164
Delta, 18-19, 68, 73, 76, 115, 118, 162
exotic option under jump-diffusion,

375
Gamma, 77
in a one-step tree, 44-45
in a three-state model, 49
in a two-step model, 51
of exotic options, 424
vanilla options in a jump-diffusion world,

372
Vega, 79

hedging strategy, 17-18, 44, 76
stop-loss, 143

hedging, discrete, 76
HJM model, 322
homogeneity, 274, 281, 383

implied volatility, see volatility, implied
importance sampling, 193
in-the-money, 30
incomplete, 431
incomplete market, 50, 361, 367-375, 389,

390
incomplete model, 89
incremental path generation, see path generation,

incremental
independent, 461
information, 2, 4, 113, 140-145, 162, 401

conditioning on, 145
insider trading, 3
insurance, 12
inverse cumulative normal function, 192, 435,

436
inverse floater, 359
Ito, 97
Ito calculus

higher-dimensional, 261, 263-266
Ito process, 106, 154

Kappa, 79
knock in, 202
knock out, 202
knock-in option, see option, barrier
knock-out option, see option, barrier
kurtosis, 85, 432, 464

law of large numbers, 69, 191, 462
law of the minimum of a Brownian motion drift, 215,

216
law of the unconscious statistician, 463
Leibniz rule, 110
leveraging, 300
LIBID, 432
LIBOR, 302, 315, 432
LIBOR market model, 322
LIBOR-in-arrears, 312-313
LIBOR-in-arrears caplet

pricing by BGM, 326
LIBOR-in-arrears FRA

pricing by BGM, 326
likelihood ratio, 195, 237
liquidity, 21
Lloyds, 6
log-normal distribution, 61
log-normal model, 58

approximation by a tree, see tree, approximating a
log-normal model

for stock price movements, 112
log-type model, 382-385
long, 21, 432
low-discrepancy numbers, 193

the pricing of exotic options, 445-447
lucky paths, 369

marginal distribution, 465
Margrabe option, see option, Margrabe
market efficiency, 2-4

weak, 3, 4, 99
market maker, 74
market model, 432
market price of risk, 89, 112
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Markov property, 3, 98, 99
strong, 210

martingale, 129, 145, 432
and no arbitrage, 146
continuous, 154-160
discrete, 146
higher-dimensional, 267

martingale measure, 148
choice of, 376
uniqueness, 150

martingale pricing
and time-dependent parameters, 164-165
based on the forward, 172-175
continuous, 157-160
discrete, 145-154
equivalence to PDE method, 161-162
with dividend-paying assets, 171

martingale representation theorem, 162
maturity, 5
maximal foresight, 296
mean-reverting process, 390
measure change, 368
model risk, 244
moment, 432
moment matching, 193

and pricing of Asian options, 231-233
money-market account, 26, 114, 430
moneyness, 385
monotonicity theorem, 27
Monte Carlo simulation, 69, 462

and price of exotic options using a jump-diffusion
model, 379

and pricing of European options, 191
computation of Greeks, 194-195
variance reduction, 192

Moro, 435
mortgage, 301
multi-look option, see option, multi-look

Name, 6
natural payoff, 330
NFLWVR, 132, 135
no free lunch principle, 19
no free lunch with vanishing risk, see

NFLWVR
no-arbitrage, 45
non-recombining tree, see tree, non-recombining
normal distribution, see Gaussian distribution,

461
notional, 304
numeral e, 168, 174, 310, 312, 314, 324

change of, 167
numerical integration

and pricing of European options, 187-190

option, 9-12
American, 68, 144, 284, 429

boundary conditions for PDE, 290
lower bounds by Monte Carlo,

293-295
PDE pricing, 289-291
pricing on a tree, 287-289
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replication of, 291-293
seller's price, 297
theoretical price of, 287
upper bounds by Monte Carlo,

295-297
American digital, 219
American put, 219
Asian, 222, 429

pricing by PDE or tree, 233-234
static replication of, 249-251

barrier, 69, 429
definition, 202-204
price of down-and-out call, 217, 218

basket, 261, 429
Bermudan, 284,429
binary, 429
call, 10, 181, 430

American, 32
Black-Scholes formula for, 65, 160
down-and-in, 202
down-and-out, 202
formula for price in jump-diffusion model, 366,

367
pay-off, 29
perpetual American, 299
pricing under Black-Scholes, 114

chooser, 294
continuous barrier

expectation pricing of, 207-208, 216-219
PDE pricing of, 205-207
static replication of, 244-247, 252-256
static replication of down-and-out put,

244-246
continuous double barrier

static replication, 246-247
digital, 83, 257

call, 83
put, 83

digital call, 181
Black-Scholes formula for price of, 183

digital put, 181
Black-Scholes formula for price of, 183

discrete barrier, 222
static replication of, 247-249

double digital, 130
European, 431
exotic, 10, 87

Monte Carlo, 444445
pricing under jump-diffusion, 379-381

knock-in, 431
knock-out, 69, 432
Margrabe, 260, 273-275
model-independent bounds on price, 29-39
multi-look, 223
Parisian, 432
path-dependent, 223

and risk-neutral pricing, 223-225
static replication of, 249-251

power call, 182
put, 10, 181,432

Black-Scholes formula for, 65
pay-off, 30
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quanto, 260, 275-280
static replication of up-and-in put with barrier at

strike, 251-252
trigger, 433
vanilla, 10
with multiple exercise dates, 284

out-of-the-money, 30

path dependence

weak, 225
path generation, 226-230

incremental, 228
using spectral theory, 228

path-dependent exotic option, see option,
path-dependent

pathwise method, 195, 236
PDE methods

and the pricing of European options, 195-196
Poisson process, 364
positive semi-definite, 467
positivity, 7, 28
predictable, 162
predictor-corrector, 340
present valuing, 302
previsible, 370
pricing

arbitrage-free, 22
principal, 5, 301
probability

risk-neutral, see risk-neutral probability
probability density function, 461
probability measure, 458

equivalence, 147
product rule

for Ito processes, 110
pseudo-square root, 468
put option, see option, put
put-call parity, 30, 65, 67
put-call symmetry, 252-256

quadratic variation, 100, see variation, quadratic
quanto call, 277
quanto drift, 276
quanto forward, 277
quanto option, see option, quanto
quasi Monte Carlo, 194

Radon-Nikodym, 214
Radon-Nikodym derivative, 213
random time, 88, 143
random variable, 459
real-world drift, see drift, real-world
recombining trees

implementing, 443
reflection principle, 208-210
replication, 23, 116

and dividends, 122
and the pricing of European options,

196-198
classification of methods, 257
dynamic, 198, 257
in a one-step tree, 48-49

in a three-state model, 50
semi-static

and jump-diffusion models, 381
static, 198

feeble, 257
mezzo, 257
strong, 243, 257
weak, 243, 257

repo, 315
restricted stochastic-volatility model, see Dupire

model
reverse option, 320
reversing pair, 319
Rho, 79
rho, 432
risk, 1-2, 8, 9

diversifiable, 8-9
purity of, 9

risk neutral, 19
risk premium, 46, 60, 64, 111, 119,432
risk-neutral distribution, 64
risk-neutral density

as second derivative of call price, 137
in Black-Scholes world, 139

risk-neutral expectation, 64
risk-neutral measure, 148, 432

completeness, 166
existence of, 129
uniqueness, 166

risk-neutral pricing, 64 65, 140
higher-dimensional, 267-271

risk-neutral probability, 47, 52, 54, 59, 128
risk-neutral valuation, 59

in a one-step tree, 45-48
in a three-state model, 50
in jump models, 86
two-step model, 52

riskless, 1
riskless asset, 28
Rogers method for upper bounds by Monte Carlo,

295, 350

sample space, 458
self-financing portfolio, 28, 116-117, 128, 163, 369

dynamic, 28
share, 6-7, 432
share split, 57
short, 432
short rate, 25, 433
short selling, 21
simplex method, 295
skew, 433, 464
smile, 74-77

displaced-diffusion, 356,420
equity, 421
floating, 88, 385, 407, 413-414
foreign exchange, 413
FX, 424
interest-rate, 355-357, 424
jump-diffusion, 378, 415
sticky, 88, 413-414
sticky-delta, 413
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smile (cont.)
stochastic volatility, 398, 416
time dependence, 414-415
Variance Gamma, 406,417

smile dynamics
Deiman-Kani, 420
displaced-diffusion, 420
Dupire model, 420
equity, 421
FX, 424
interest-rate, 424
jump-diffusion, 415
market, 413-415
model, 415-421
stochastic volatility, 416
Variance Gamma, 417

smoothing operator, 120
spectral theory, 228
speculator, 12, 18
split

share, see share split
spot price, 31
square root

of a matrix, 467
standard error, 191
standard deviation, 463
static replication, see replication, static
stepping methods for Monte Carlo, 439
stochastic, 433
stochastic calculus, 97
stochastic differential equation, 105

for square of Brownian motion, 107
stochastic process, 102-106, 141
stochastic volatility, 88, 389

and risk-neutral pricing, 390-393
implied, 400
pricing by Monte Carlo, 391-394
pricing by PDE and transform methods,

395-398
stochastic volatility smiles, see smile, stochastic

volatility
stock, 6-7, 433
stop loss hedging strategy, 18
stopping time, 143, 286, 346
straddle, 182, 257
strike, 10, 433
strong static replication, see replication, static,

strong
sub-replication, 369-375
super-replication, 369-375
swap, 300, 305-309, 433

constant maturity, 328
payer's, 306, 432
pricing by BGM, 323
receiver's, 306, 432
value of, 308

swap rate, 433
swap-rate market model, 340
swaption, 301, 309, 433

Bermudan, 301, 310, 342
and factor reduction, 352-355
lower bound via global optimization, 347

Index

lower bound via local optimization, 347
lower bounds by BGM, 345-349
pricing by BGM, 325
upper bounds by BGM, 349-352

cash-settled, 327
European, 310

price of, 313-314
payer's, 309,432
pricing by BGM, 323
receiver's, 309, 432

swaptions
rapid approximation to price in a BGM model,

340

Taylor's theorem, 67, 80, 108
term structure of implied volatilities, 334
terminal decorrelation, 339, 352
Theta, 79, 433

and static replication, 246, 248
time homogeneity, 33, 333
time value of money, 24-26
time-dependent volatility

and pricing of multi-look options, 235
Tower Law, 155
trading volatility, see volatility, trading of

trading volume, 401
transaction costs, 21, 76, 90, 91
trapezium method, 188
tree

with multiple time steps, 50-55
and pricing of European options, 183-186
and time-dependent volatility, 184
approximating a log-normal model,

60-68
approximating a normal model, 55-58
higher-dimensional, 277-280
non-recombining, 184
one-step, 44-50
risk-neutral behaviour, 61
trinomial, 184
with interest rates, 58-59

trigger FRA, 318
trigger swap, 325

pricing by BGM, 325
trinomial tree, see tree, trinomial

underlying, 10
uniform distribution, 461

valuation
risk-neutral, see risk-neutral valuation

value at risk, 433
Vanna, 433
VAR, 433
variance, 433, 463
Variance Gamma

mean rate, 402
variance rate, 403

Variance Gamma density, 408
Variance Gamma model, 88, 404-407

and deterministic future smiles, 244
Variance Gamma process, 401-403
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variation, 157, 367
first, 99, 367, 409
quadratic, 368
second, see variation, quadratic

Vega, 79, 82, 433
integral expression for, 189

Vega hedging, see hedging, Vega
volatility, 60, 65, 66, 73-74, 111

Black-Scholes formula as linear function of,
66

forward, 426
implied, 73, 197
instantaneous curve, 320, 333

root-mean-square, 320
time-dependence and tree-pricing, 294
trading of, 73

volatility surface, 363

weak static replication, see replication, static, weak
Wiener measure, 141, 142

yield, 5, 24, 433
annualized, 25

yield curve, 319, 433

zero-coupon bond, see bond, zero-coupon
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