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Foreword

The Handbook of Financial Time Series, edited by Andersen, Davis, Kreiss
and Mikosch, is an impressive collection of survey articles by many of the
leading contributors to the field. These articles are mostly very clearly writ-
ten and present a sweep of the literature in a coherent pedagogical manner.
The level of most of the contributions is mathematically sophisticated, and
I imagine many of these chapters will find their way onto graduate reading
lists in courses in financial economics and financial econometrics. In reading
through these papers, I found many new insights and presentations even in
areas that I know well.

The book is divided into five broad sections: GARCH-Modeling, Stochas-
tic Volatility Modeling, Continuous Time Processes, Cointegration and Unit
Roots, and Special Topics. These correspond generally to classes of stochas-
tic processes that are applied in various finance contexts. However, there are
other themes that cut across these classes. There are several papers that care-
fully articulate the probabilistic structure of these classes, while others are
more focused on estimation. Still others derive properties of extremes for each
class of processes, and evaluate persistence and the extent of long memory.
Papers in many cases examine the stability of the process with tools to check
for breaks and jumps. Finally there are applications to options, term struc-
ture, credit derivatives, risk management, microstructure models and other
forecasting settings.

The GARCH family of models is nicely introduced by Teräsvirta and then
the mathematical underpinning is elegantly and readably presented by Lind-
ner with theorems on stationarity, ergodicity and tail behavior. In the same
vein, Giraitis, Leipus and Surgailis examine the long memory properties of
infinite order ARCH models with memory decay slower than GARCH, and
Davis and Mikosch derive tail properties of GARCH models showing that
they satisfy a power law and are in the maximum domain of attraction of
the Fréchet distribution. The multivariate GARCH family is well surveyed
by Silvennoinen and Teräsvirta. Linton and Čížek and Spokoiny, respectively,
specify models which are non- or semi-parametric or which are only constant
over intervals of homogeneity.



vi Foreword

The section on Stochastic Volatility Modelling (SV) brings us up to date on
the development of alternatives to GARCH style models. Davis and Mikosch
in two chapters develop the somewhat easier underlying mathematical the-
ory and tail properties of SV. They derive an important difference from
GARCH models. While both stochastic volatility and GARCH processes ex-
hibit volatility clustering, only the GARCH has clustering of extremes. Long
memory is conveniently described by SV models in Hurvich and Soulier. Chib,
Omori and Asai extend these analyses to multivariate systems although they
do not envision very high dimensions. Estimation is covered in several chap-
ters by Renault, Shephard and Andersen, and Jungbacker and Koopman.

The continuous time analysis begins with familiar Brownian motion pro-
cesses and enhances them with jumps, dynamics, time deformation, correla-
tion with returns and Lévy process innovations. Extreme value distributions
are developed and estimation algorithms for discretely sampled processes are
analyzed. Lindner discusses the idea of continuous time approximations to
GARCH and SV models showing that the nature of the approximation must
be carefully specified. The continuous time framework is then applied to sev-
eral finance settings such as interest rate models by Björk, option pricing by
Kallsen, and realized volatility by Andersen and Benzoni. The book then re-
turns to analysis of first moments with surveys of discrete time models with
unit roots, near unit roots, fractional unit roots and cointegration.

Finally, a remaining 13 chapters are collected in a section called Special
Topics. These include very interesting chapters on copulas, non-parametric
models, resampling methods, Markov switching models, structural break
models and model selection. Patton and Sheppard examine univariate and
multivariate volatility forecast comparisons. They show the advantages of a
GLS correction, discuss multiple comparisons and economic loss functions.
Bauwens and Hautsch survey a wide range of models for point processes that
have been used in the finance literature to model arrival times of trades and
quotes. The survey is well grounded in the statistical literature and the eco-
nomics literature. Embrechts, Furrer and Kaufmann discuss different types
of risk— market, credit, operational and insurance—and some of the leading
approaches to estimation. Christoffersen applies the filtered historical simu-
lation or FHS method to univariate and multivariate simulation based calcu-
lation of VaR, Expected Shortfall and active portfolio risks. Lando surveys
the structural and reduced form approaches to modeling credit spreads. He
focuses on CDS spreads and default dependence and gives a nice description
of tests between contagion and factor structures in formulating dependence.

So make yourself a double cappuccino and relax in a comfortable chair, or
adjust your headphones at 30,000 ft. over the Pacific, and dig in. There are
treats in lots of different areas just waiting to be discovered.

New York, September 2008 Robert Engle



Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Torben G. Andersen, Richard A. Davis, Jens-Peter Kreiss and Thomas
Mikosch

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Part I Recent Developments in GARCH Modeling

An Introduction to Univariate GARCH Models . . . . . . . . . . . . . 17
Timo Teräsvirta

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 The ARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 The Generalized ARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Why Generalized ARCH? . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Families of univariate GARCH models . . . . . . . . . . . 20
3.3 Nonlinear GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Time-varying GARCH . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Markov-switching ARCH and GARCH. . . . . . . . . . . 27
3.6 Integrated and fractionally integrated GARCH . . . 28
3.7 Semi- and nonparametric ARCH models . . . . . . . . . 30
3.8 GARCH-in-mean model . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Stylized facts and the first-order GARCH model . . 31

4 Family of Exponential GARCH Models . . . . . . . . . . . . . . . . . 34
4.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Stylized facts and the first-order EGARCH model . 35
4.3 Stochastic volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Comparing EGARCH with GARCH . . . . . . . . . . . . . . . . . . . . 37
6 Final Remarks and Further Reading . . . . . . . . . . . . . . . . . . . . 38
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Stationarity, Mixing, Distributional Properties and Moments
of GARCH(p, q)–Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Alexander M. Lindner

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



viii Contents

2 Stationary Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1 Strict stationarity of ARCH(1) and GARCH(1, 1) . 45
2.2 Strict stationarity of GARCH(p, q) . . . . . . . . . . . . . . 49
2.3 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4 Weak stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 The ARCH(∞) Representation and the Conditional
Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Existence of Moments and the Autocovariance Function of
the Squared Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Moments of ARCH(1) and GARCH(1, 1) . . . . . . . . . 56
4.2 Moments of GARCH(p, q) . . . . . . . . . . . . . . . . . . . . . . 57
4.3 The autocorrelation function of the squares . . . . . . 60

5 Strong Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6 Some Distributional Properties . . . . . . . . . . . . . . . . . . . . . . . . . 64
7 Models Defined on the Non-Negative Integers . . . . . . . . . . . . 66
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ARCH(∞) Models and Long Memory Properties . . . . . . . . . . . . 71
Liudas Giraitis, Remigijus Leipus and Donatas Surgailis

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2 Stationary ARCH(∞) Process . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.1 Volterra representations . . . . . . . . . . . . . . . . . . . . . . . . 73
2.2 Dependence structure, association, and central

limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3 Infinite variance and integrated ARCH(∞) . . . . . . . 77

3 Linear ARCH and Bilinear Model . . . . . . . . . . . . . . . . . . . . . . 79
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Tour in the Asymptotic Theory of GARCH Estimation . . . 85
Christian Francq and Jean-Michel Zakoïan

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2 Least–Squares Estimation of ARCH Models . . . . . . . . . . . . . 87
3 Quasi–Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . 89

3.1 Pure GARCH models . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2 ARMA–GARCH models . . . . . . . . . . . . . . . . . . . . . . . 94

4 Efficient Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5 Alternative Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Self–weighted LSE for the ARMA parameters . . . . 100
5.2 Self–weighted QMLE . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Lp–estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Least absolute deviations estimators . . . . . . . . . . . . . 102
5.5 Whittle estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 Moment estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Properties of Estimators when some GARCH Coefficients
are Equal to Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents ix

6.1 Fitting an ARCH(1) model to a white noise . . . . . . 105
6.2 On the need of additional assumptions . . . . . . . . . . . 106
6.3 Asymptotic distribution of the QMLE on the

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Application to hypothesis testing . . . . . . . . . . . . . . . 107

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Practical Issues in the Analysis of Univariate GARCH Models 113
Eric Zivot

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2 Some Stylized Facts of Asset Returns . . . . . . . . . . . . . . . . . . . 114
3 The ARCH and GARCH Model . . . . . . . . . . . . . . . . . . . . . . . . 115

3.1 Conditional mean specification . . . . . . . . . . . . . . . . . . 118
3.2 Explanatory variables in the conditional variance

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3 The GARCH model and stylized facts of asset

returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.4 Temporal aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Testing for ARCH/GARCH Effects . . . . . . . . . . . . . . . . . . . . . 121
4.1 Testing for ARCH effects in daily and monthly

returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5 Estimation of GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Numerical accuracy of GARCH estimates . . . . . . . . 125
5.2 Quasi-maximum likelihood estimation . . . . . . . . . . . 126
5.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4 Evaluation of estimated GARCH models . . . . . . . . . 127
5.5 Estimation of GARCH models for daily and

monthly returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6 GARCH Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1 Asymmetric leverage effects and news impact . . . . . 131
6.2 Non-Gaussian error distributions . . . . . . . . . . . . . . . . 135

7 Long Memory GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.1 Testing for long memory . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Two component GARCH model . . . . . . . . . . . . . . . . . 139
7.3 Integrated GARCH model . . . . . . . . . . . . . . . . . . . . . 140
7.4 Long memory GARCH models for daily returns . . . 141

8 GARCH Model Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.1 GARCH and forecasts for the conditional mean . . . 142
8.2 Forecasts from the GARCH(1,1) model . . . . . . . . . . 143
8.3 Forecasts from asymmetric GARCH(1,1) models . . 144
8.4 Simulation-based forecasts . . . . . . . . . . . . . . . . . . . . . 145
8.5 Forecasting the volatility of multiperiod returns . . . 145
8.6 Evaluating volatility predictions . . . . . . . . . . . . . . . . 146



x Contents

8.7 Forecasting the volatility of Microsoft and the
S&P 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Semiparametric and Nonparametric ARCH Modeling . . . . . . . 157
Oliver B. Linton

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2 The GARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3 The Nonparametric Approach. . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.1 Error density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.2 Functional form of volatility function . . . . . . . . . . . . 159
3.3 Relationship between mean and variance . . . . . . . . . 162
3.4 Long memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.5 Locally stationary processes . . . . . . . . . . . . . . . . . . . . 164
3.6 Continuous time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Varying Coefficient GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . 169
Pavel Čížek and Vladimir Spokoiny

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
2 Conditional Heteroscedasticity Models . . . . . . . . . . . . . . . . . . 171

2.1 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2.2 Test of homogeneity against a change–point

alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3 Adaptive Nonparametric Estimation . . . . . . . . . . . . . . . . . . . . 175

3.1 Adaptive choice of the interval of homogeneity . . . . 176
3.2 Parameters of the method and the implementation

details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4 Real–Data Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.1 Finite–sample critical values for the test of
homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.2 Stock index S&P 500 . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Extreme Value Theory for GARCH Processes . . . . . . . . . . . . . . . 187
Richard A. Davis and Thomas Mikosch

1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
2 Strict Stationarity and Mixing Properties . . . . . . . . . . . . . . . 188
3 Embedding a GARCH Process in a Stochastic Recurrence

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4 The Tails of a GARCH Process . . . . . . . . . . . . . . . . . . . . . . . . 190
5 Limit Theory for Extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.1 Convergence of maxima . . . . . . . . . . . . . . . . . . . . . . . . 194



Contents xi

5.2 Convergence of point processes . . . . . . . . . . . . . . . . . 195
5.3 The behavior of the sample autocovariance function 197

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Multivariate GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Annastiina Silvennoinen and Timo Teräsvirta

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

2.1 Models of the conditional covariance matrix . . . . . . 204
2.2 Factor models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
2.3 Models of conditional variances and correlations . . 210
2.4 Nonparametric and semiparametric approaches . . . 215

3 Statistical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4 Hypothesis Testing in Multivariate GARCH Models . . . . . . 218

4.1 General misspecification tests . . . . . . . . . . . . . . . . . . . 219
4.2 Tests for extensions of the CCC–GARCH model . . 221

5 An Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Part II Recent Developments in Stochastic Volatility Modeling

Stochastic Volatility: Origins and Overview . . . . . . . . . . . . . . . . . . 233
Neil Shephard and Torben G. Andersen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
2 The Origin of SV Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
3 Second Generation Model Building . . . . . . . . . . . . . . . . . . . . . 240

3.1 Univariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
3.2 Multivariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

4 Inference Based on Return Data . . . . . . . . . . . . . . . . . . . . . . . 242
4.1 Moment–based inference . . . . . . . . . . . . . . . . . . . . . . . 242
4.2 Simulation–based inference . . . . . . . . . . . . . . . . . . . . . 243

5 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

6 Realized Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Probabilistic Properties of Stochastic Volatility Models . . . . . . 255
Richard A. Davis and Thomas Mikosch

1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
2 Stationarity, Ergodicity and Strong Mixing . . . . . . . . . . . . . . 256

2.1 Strict stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
2.2 Ergodicity and strong mixing . . . . . . . . . . . . . . . . . . . 257

3 The Covariance Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4 Moments and Tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
5 Asymptotic Theory for the Sample ACVF and ACF . . . . . . 263



xii Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Moment–Based Estimation of Stochastic Volatility Models . . . 269
Eric Renault

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2 The Use of a Regression Model to Analyze Fluctuations in

Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
2.1 The linear regression model for conditional variance 272
2.2 The SR–SARV(p) model . . . . . . . . . . . . . . . . . . . . . . . 274
2.3 The Exponential SARV model . . . . . . . . . . . . . . . . . . 277
2.4 Other parametric SARV models . . . . . . . . . . . . . . . . . 279

3 Implications of SV Model Specification for Higher Order
Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
3.1 Fat tails and variance of the variance . . . . . . . . . . . . 281
3.2 Skewness, feedback and leverage effects . . . . . . . . . . 284

4 Continuous Time Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
4.1 Measuring volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
4.2 Moment-based estimation with realized volatility . . 288
4.3 Reduced form models of volatility . . . . . . . . . . . . . . . 292
4.4 High frequency data with random times separating

successive observations . . . . . . . . . . . . . . . . . . . . . . . . 293
5 Simulation–Based Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 295

5.1 Simulation-based bias correction . . . . . . . . . . . . . . . . 296
5.2 Simulation-based indirect inference . . . . . . . . . . . . . . 298
5.3 Simulated method of moments . . . . . . . . . . . . . . . . . . 300
5.4 Indirect inference in presence of misspecification . . 304

6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Parameter Estimation and Practical Aspects of Modeling
Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Borus Jungbacker and Siem Jan Koopman

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
2 A Quasi-Likelihood Analysis Based on Kalman Filter

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
2.1 Kalman filter for prediction and likelihood

evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
2.2 Smoothing methods for the conditional mean,

variance and mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
2.3 Practical considerations for analyzing the

linearized SV model . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
3 A Monte Carlo Likelihood Analysis . . . . . . . . . . . . . . . . . . . . . 322

3.1 Construction of a proposal density . . . . . . . . . . . . . . 323
3.2 Sampling from the importance density and Monte

Carlo likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
4 Some Generalizations of SV Models . . . . . . . . . . . . . . . . . . . . . 327



Contents xiii

4.1 Basic SV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
4.2 Multiple volatility factors . . . . . . . . . . . . . . . . . . . . . . 328
4.3 Regression and fixed effects . . . . . . . . . . . . . . . . . . . . 329
4.4 Heavy-tailed innovations . . . . . . . . . . . . . . . . . . . . . . . 330
4.5 Additive noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.6 Leverage effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.7 Stochastic volatility in mean . . . . . . . . . . . . . . . . . . . 333

5 Empirical Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
5.1 Standard & Poor’s 500 stock index: volatility

estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
5.2 Standard & Poor’s 500 stock index: regression

effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
5.3 Daily changes in exchange rates: dollar–pound and

dollar–yen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Stochastic Volatility Models with Long Memory . . . . . . . . . . . . . 345
Clifford M. Hurvich and Philippe Soulier

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2 Basic Properties of the LMSV Model . . . . . . . . . . . . . . . . . . . 346
3 Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4 Semiparametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
5 Generalizations of the LMSV Model . . . . . . . . . . . . . . . . . . . . 352
6 Applications of the LMSV Model . . . . . . . . . . . . . . . . . . . . . . . 352
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Extremes of Stochastic Volatility Models . . . . . . . . . . . . . . . . . . . . 355
Richard A. Davis and Thomas Mikosch

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
2 The Tail Behavior of the Marginal Distribution . . . . . . . . . . 356

2.1 The light-tailed case . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
2.2 The heavy-tailed case . . . . . . . . . . . . . . . . . . . . . . . . . . 357

3 Point Process Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
3.2 Application to stochastic volatility models . . . . . . . 360

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Multivariate Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Siddhartha Chib, Yasuhiro Omori and Manabu Asai

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
2 Basic MSV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

2.1 No-leverage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.2 Leverage effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
2.3 Heavy-tailed measurement error models . . . . . . . . . . 377



xiv Contents

3 Factor MSV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
3.1 Volatility factor model . . . . . . . . . . . . . . . . . . . . . . . . . 379
3.2 Mean factor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
3.3 Bayesian analysis of mean factor MSV model . . . . . 384

4 Dynamic Correlation MSV Model . . . . . . . . . . . . . . . . . . . . . . 388
4.1 Modeling by reparameterization . . . . . . . . . . . . . . . . 388
4.2 Matrix exponential transformation . . . . . . . . . . . . . . 390
4.3 Wishart process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Part III Topics in Continuous Time Processes

An Overview of Asset–Price Models . . . . . . . . . . . . . . . . . . . . . . . . . 403
Peter J. Brockwell

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
2 Shortcomings of the BSM Model . . . . . . . . . . . . . . . . . . . . . . . 409
3 A General Framework for Option Pricing . . . . . . . . . . . . . . . . 410
4 Some Non-Gaussian Models for Asset Prices . . . . . . . . . . . . . 411
5 Further Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Ornstein–Uhlenbeck Processes and Extensions . . . . . . . . . . . . . . . 421
Ross A. Maller, Gernot Müller and Alex Szimayer

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
2 OU Process Driven by Brownian Motion . . . . . . . . . . . . . . . . 422
3 Generalised OU Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

3.1 Background on bivariate Lévy processes . . . . . . . . . 424
3.2 Lévy OU processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
3.3 Self-decomposability, self-similarity, class L,

Lamperti transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
4 Discretisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

4.1 Autoregressive representation, and perpetuities . . . 430
4.2 Statistical issues: Estimation and hypothesis testing 431
4.3 Discretely sampled process . . . . . . . . . . . . . . . . . . . . . 431
4.4 Approximating the COGARCH . . . . . . . . . . . . . . . . . 432

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Jump–Type Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Ernst Eberlein

1 Probabilistic Structure of Lévy Processes . . . . . . . . . . . . . . . . 439
2 Distributional Description of Lévy Processes . . . . . . . . . . . . . 443
3 Financial Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
4 Examples of Lévy Processes with Jumps . . . . . . . . . . . . . . . . 449

4.1 Poisson and compound Poisson processes . . . . . . . . 449



Contents xv

4.2 Lévy jump diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
4.3 Hyperbolic Lévy processes . . . . . . . . . . . . . . . . . . . . . 450
4.4 Generalized hyperbolic Lévy processes . . . . . . . . . . . 451
4.5 CGMY and variance gamma Lévy processes . . . . . . 452
4.6 α-Stable Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . 453
4.7 Meixner Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . 453

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Lévy–Driven Continuous–Time ARMA Processes . . . . . . . . . . . . 457
Peter J. Brockwell

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
2 Second–Order Lévy–Driven CARMA Processes . . . . . . . . . . 460
3 Connections with Discrete–Time ARMA Processes . . . . . . . 470
4 An Application to Stochastic Volatility Modelling . . . . . . . . 474
5 Continuous–Time GARCH Processes . . . . . . . . . . . . . . . . . . . 476
6 Inference for CARMA Processes . . . . . . . . . . . . . . . . . . . . . . . . 478
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Continuous Time Approximations to GARCH and Stochastic
Volatility Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Alexander M. Lindner

1 Stochastic Volatility Models and Discrete GARCH . . . . . . . 481
2 Continuous Time GARCH Approximations . . . . . . . . . . . . . . 482

2.1 Preserving the random recurrence equation property 483
2.2 The diffusion limit of Nelson . . . . . . . . . . . . . . . . . . . 484
2.3 The COGARCH model . . . . . . . . . . . . . . . . . . . . . . . . 486
2.4 Weak GARCH processes . . . . . . . . . . . . . . . . . . . . . . . 488
2.5 Stochastic delay equations . . . . . . . . . . . . . . . . . . . . . 489
2.6 A continuous time GARCH model designed for

option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
3 Continuous Time Stochastic Volatility Approximations . . . . 491

3.1 Sampling a continuous time SV model at
equidistant times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

3.2 Approximating a continuous time SV model . . . . . . 493
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Maximum Likelihood and Gaussian Estimation of Continuous
Time Models in Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Peter C. B. Phillips and Jun Yu

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
2 Exact ML Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

2.1 ML based on the transition density . . . . . . . . . . . . . . 499
2.2 ML based on the continuous record likelihood . . . . 502

3 Approximate ML Methods Based on Transition Densities . . 503
3.1 The Euler approximation and refinements . . . . . . . . 504
3.2 Closed–form approximations . . . . . . . . . . . . . . . . . . . . 509



xvi Contents

3.3 Simulated infill ML methods . . . . . . . . . . . . . . . . . . . 512
3.4 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

4 Approximate ML Methods Based on the Continuous
Record Likelihood and Realized Volatility . . . . . . . . . . . . . . . 516

5 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
6 Estimation Bias Reduction Techniques . . . . . . . . . . . . . . . . . . 520

6.1 Jackknife estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
6.2 Indirect inference estimation . . . . . . . . . . . . . . . . . . . 522

7 Multivariate Continuous Time Models . . . . . . . . . . . . . . . . . . 524
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Parametric Inference for Discretely Sampled Stochastic
Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Michael Sørensen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
2 Asymptotics: Fixed Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 532
3 Likelihood Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
4 Martingale Estimating Functions . . . . . . . . . . . . . . . . . . . . . . . 538
5 Explicit Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
6 High Frequency Asymptotics and Efficient Estimation . . . . 548
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

Realized Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Torben G. Andersen and Luca Benzoni

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
2 Measuring Mean Return versus Return Volatility . . . . . . . . . 557
3 Quadratic Return Variation and Realized Volatility . . . . . . . 559
4 Conditional Return Variance and Realized Volatility . . . . . . 561
5 Jumps and Bipower Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 563
6 Efficient Sampling versus Microstructure Noise . . . . . . . . . . . 564
7 Empirical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

7.1 Early work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
7.2 Volatility forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 567
7.3 The distributional implications of the no-arbitrage

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
7.4 Multivariate quadratic variation measures . . . . . . . . 568
7.5 Realized volatility, model specification and

estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
8 Possible Directions for Future Research . . . . . . . . . . . . . . . . . 569
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570



Contents xvii

Estimating Volatility in the Presence of Market
Microstructure Noise: A Review of the Theory and Practical
Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
Yacine Aït-Sahalia and Per A. Mykland

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

2.1 The parametric volatility case . . . . . . . . . . . . . . . . . . 579
2.2 The nonparametric stochastic volatility case . . . . . . 582

3 Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
3.1 Multi-scale realized volatility . . . . . . . . . . . . . . . . . . . 585
3.2 Non-equally spaced observations . . . . . . . . . . . . . . . . 586
3.3 Serially-correlated noise . . . . . . . . . . . . . . . . . . . . . . . . 587
3.4 Noise correlated with the price signal . . . . . . . . . . . . 589
3.5 Small sample edgeworth expansions . . . . . . . . . . . . . 591
3.6 Robustness to departures from the data generating

process assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
4 Computational and Practical Implementation

Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
4.1 Calendar, tick and transaction time sampling . . . . . 592
4.2 Transactions or quotes . . . . . . . . . . . . . . . . . . . . . . . . . 592
4.3 Selecting the number of subsamples in practice . . . 593
4.4 High versus low liquidity assets . . . . . . . . . . . . . . . . . 594
4.5 Robustness to data cleaning procedures . . . . . . . . . . 594
4.6 Smoothing by averaging . . . . . . . . . . . . . . . . . . . . . . . 595

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Jan Kallsen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
2 Arbitrage Theory from a Market Perspective . . . . . . . . . . . . . 600
3 Martingale Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
4 Arbitrage Theory from an Individual Perspective . . . . . . . . . 605
5 Quadratic Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
6 Utility Indifference Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

An Overview of Interest Rate Theory . . . . . . . . . . . . . . . . . . . . . . . 615
Tomas Björk

1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
2 Interest Rates and the Bond Market . . . . . . . . . . . . . . . . . . . . 618
3 Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
4 Modeling under the Objective Measure P . . . . . . . . . . . . . . . 621

4.1 The market price of risk . . . . . . . . . . . . . . . . . . . . . . . 622
5 Martingale Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

5.1 Affine term structures . . . . . . . . . . . . . . . . . . . . . . . . . 624



xviii Contents

5.2 Short rate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
5.3 Inverting the yield curve . . . . . . . . . . . . . . . . . . . . . . . 627

6 Forward Rate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
6.1 The HJM drift condition . . . . . . . . . . . . . . . . . . . . . . . 629
6.2 The Musiela parameterization . . . . . . . . . . . . . . . . . . 631

7 Change of Numeraire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
7.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
7.2 Forward measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
7.3 Option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

8 LIBOR Market Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
8.1 Caps: definition and market practice . . . . . . . . . . . . 638
8.2 The LIBOR market model . . . . . . . . . . . . . . . . . . . . . 640
8.3 Pricing caps in the LIBOR model . . . . . . . . . . . . . . . 641
8.4 Terminal measure dynamics and existence . . . . . . . . 641

9 Potentials and Positive Interest . . . . . . . . . . . . . . . . . . . . . . . . 642
9.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
9.2 The Flesaker–Hughston fractional model . . . . . . . . . 644
9.3 Connections to the Riesz decomposition . . . . . . . . . 646
9.4 Conditional variance potentials . . . . . . . . . . . . . . . . . 647
9.5 The Rogers Markov potential approach . . . . . . . . . . 648

10 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

Extremes of Continuous–Time Processes . . . . . . . . . . . . . . . . . . . . . 653
Vicky Fasen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
2 Extreme Value Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

2.1 Extremes of discrete–time processes . . . . . . . . . . . . . 655
2.2 Extremes of continuous–time processes . . . . . . . . . . 656
2.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

3 The Generalized Ornstein-Uhlenbeck (GOU)–Model . . . . . . 657
3.1 The Ornstein–Uhlenbeck process . . . . . . . . . . . . . . . . 658
3.2 The non–Ornstein–Uhlenbeck process . . . . . . . . . . . . 659
3.3 Comparison of the models . . . . . . . . . . . . . . . . . . . . . . 661

4 Tail Behavior of the Sample Maximum . . . . . . . . . . . . . . . . . . 661
5 Running sample Maxima and Extremal Index Function . . . 663
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

Part IV Topics in Cointegration and Unit Roots

Cointegration: Overview and Development . . . . . . . . . . . . . . . . . . 671
Søren Johansen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
1.1 Two examples of cointegration . . . . . . . . . . . . . . . . . . 672



Contents xix

1.2 Three ways of modeling cointegration . . . . . . . . . . . . 673
1.3 The model analyzed in this article . . . . . . . . . . . . . . 674

2 Integration, Cointegration and Granger’s Representation
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
2.1 Definition of integration and cointegration . . . . . . . 675
2.2 The Granger Representation Theorem . . . . . . . . . . . 677
2.3 Interpretation of cointegrating coefficients . . . . . . . . 678

3 Interpretation of the I(1) Model for Cointegration . . . . . . . . 680
3.1 The models H(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
3.2 Normalization of parameters of the I(1) model . . . . 681
3.3 Hypotheses on long-run coefficients . . . . . . . . . . . . . . 681
3.4 Hypotheses on adjustment coefficients . . . . . . . . . . . 682

4 Likelihood Analysis of the I(1) Model . . . . . . . . . . . . . . . . . . . 683
4.1 Checking the specifications of the model . . . . . . . . . 683
4.2 Reduced rank regression . . . . . . . . . . . . . . . . . . . . . . . 683
4.3 Maximum likelihood estimation in the I(1) model

and derivation of the rank test . . . . . . . . . . . . . . . . . . 684
5 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

5.1 Asymptotic distribution of the rank test . . . . . . . . . 686
5.2 Asymptotic distribution of the estimators . . . . . . . . 687

6 Further Topics in the Area of Cointegration . . . . . . . . . . . . . 689
6.1 Rational expectations . . . . . . . . . . . . . . . . . . . . . . . . . 689
6.2 The I(2) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

Time Series with Roots on or Near the Unit Circle . . . . . . . . . . 695
Ngai Hang Chan

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
2 Unit Root Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

2.1 First order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
2.2 AR(p) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
2.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

3 Miscellaneous Developments and Conclusion . . . . . . . . . . . . . 704
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Fractional Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
Willa W. Chen and Clifford M. Hurvich

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
2 Type I and Type II Definitions of I(d) . . . . . . . . . . . . . . . . . . 710

2.1 Univariate series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
2.2 Multivariate series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

3 Models for Fractional Cointegration . . . . . . . . . . . . . . . . . . . . 715
3.1 Parametric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

4 Tapering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
5 Semiparametric Estimation of the Cointegrating Vectors . . 718



xx Contents

6 Testing for Cointegration; Determination of Cointegrating
Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724

Part V Special Topics – Risk

Different Kinds of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
Paul Embrechts, Hansjörg Furrer and Roger Kaufmann

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732

2.1 Risk measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
2.2 Risk factor mapping and loss portfolios . . . . . . . . . . 735

3 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
3.1 Structural models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
3.2 Reduced form models . . . . . . . . . . . . . . . . . . . . . . . . . . 737
3.3 Credit risk for regulatory reporting . . . . . . . . . . . . . . 738

4 Market Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
4.1 Market risk models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
4.2 Conditional versus unconditional modeling . . . . . . . 740
4.3 Scaling of market risks . . . . . . . . . . . . . . . . . . . . . . . . . 740

5 Operational Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
6 Insurance Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

6.1 Life insurance risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
6.2 Modeling parametric life insurance risk . . . . . . . . . . 745
6.3 Non-life insurance risk . . . . . . . . . . . . . . . . . . . . . . . . . 747

7 Aggregation of Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750

Value–at–Risk Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
Peter Christoffersen

1 Introduction and Stylized Facts . . . . . . . . . . . . . . . . . . . . . . . . 753
2 A Univariate Portfolio Risk Model . . . . . . . . . . . . . . . . . . . . . . 755

2.1 The dynamic conditional variance model . . . . . . . . . 756
2.2 Univariate filtered historical simulation . . . . . . . . . . 757
2.3 Univariate extensions and alternatives . . . . . . . . . . . 759

3 Multivariate, Base–Asset Return Methods . . . . . . . . . . . . . . . 760
3.1 The dynamic conditional correlation model . . . . . . . 761
3.2 Multivariate filtered historical simulation . . . . . . . . . 761
3.3 Multivariate extensions and alternatives . . . . . . . . . 763

4 Summary and Further Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764



Contents xxi

Copula–Based Models for Financial Time Series . . . . . . . . . . . . . 767
Andrew J. Patton

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
2 Copula–Based Models for Time Series . . . . . . . . . . . . . . . . . . . 771

2.1 Copula–based models for multivariate time series . 772
2.2 Copula–based models for univariate time series . . . 773
2.3 Estimation and evaluation of copula–based models

for time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
3 Applications of Copulas in Finance and Economics . . . . . . . 778
4 Conclusions and Areas for Future Research . . . . . . . . . . . . . . 780
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

Credit Risk Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
David Lando

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
2 Modeling the Probability of Default and Recovery . . . . . . . . 788
3 Two Modeling Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
4 Credit Default Swap Spreads . . . . . . . . . . . . . . . . . . . . . . . . . . 792
5 Corporate Bond Spreads and Bond Returns . . . . . . . . . . . . . 795
6 Credit Risk Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

Part V Special Topics – Time Series Methods

Evaluating Volatility and Correlation Forecasts . . . . . . . . . . . . . . 801
Andrew J. Patton and Kevin Sheppard

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

2 Direct Evaluation of Volatility Forecasts . . . . . . . . . . . . . . . . 804
2.1 Forecast optimality tests for univariate volatility

forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
2.2 MZ regressions on transformations of σ̂2

t . . . . . . . . . 806
2.3 Forecast optimality tests for multivariate volatility

forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
2.4 Improved MZ regressions using generalised least

squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
2.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

3 Direct Comparison of Volatility Forecasts . . . . . . . . . . . . . . . 815
3.1 Pair–wise comparison of volatility forecasts . . . . . . . 816
3.2 Comparison of many volatility forecasts . . . . . . . . . . 817
3.3 ‘Robust’ loss functions for forecast comparison . . . . 818
3.4 Problems arising from ‘non–robust’ loss functions . 819
3.5 Choosing a “robust” loss function . . . . . . . . . . . . . . . 823
3.6 Robust loss functions for multivariate volatility

comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825



xxii Contents

3.7 Direct comparison via encompassing tests . . . . . . . . 828
4 Indirect Evaluation of Volatility Forecasts . . . . . . . . . . . . . . . 830

4.1 Portfolio optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 831
4.2 Tracking error minimisation . . . . . . . . . . . . . . . . . . . . 832
4.3 Other methods of indirect evaluation . . . . . . . . . . . . 833

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Structural Breaks in Financial Time Series . . . . . . . . . . . . . . . . . . 839
Elena Andreou and Eric Ghysels

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
2 Consequences of Structural Breaks in Financial Time Series 840
3 Methods for Detecting Structural Breaks . . . . . . . . . . . . . . . . 843

3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
3.2 Historical and sequential partial–sums

change–point statistics . . . . . . . . . . . . . . . . . . . . . . . . . 845
3.3 Multiple breaks tests . . . . . . . . . . . . . . . . . . . . . . . . . . 848

4 Change–Point Tests in Returns and Volatility . . . . . . . . . . . . 851
4.1 Tests based on empirical volatility processes . . . . . . 851
4.2 Empirical processes and the SV class of models . . . 854
4.3 Tests based on parametric volatility models . . . . . . 858
4.4 Change–point tests in long memory . . . . . . . . . . . . . 861
4.5 Change–point in the distribution . . . . . . . . . . . . . . . . 863

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866

An Introduction to Regime Switching Time Series Models . . . 871
Theis Lange and Anders Rahbek

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
1.1 Markov and observation switching . . . . . . . . . . . . . . . 872

2 Switching ARCH and CVAR. . . . . . . . . . . . . . . . . . . . . . . . . . . 874
2.1 Switching ARCH and GARCH . . . . . . . . . . . . . . . . . 875
2.2 Switching CVAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877

3 Likelihood–Based Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 879
4 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889
Hannes Leeb and Benedikt M. Pötscher

1 The Model Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 889
1.1 A general formulation . . . . . . . . . . . . . . . . . . . . . . . . . 889
1.2 Model selection procedures . . . . . . . . . . . . . . . . . . . . . 892

2 Properties of Model Selection Procedures and of
Post–Model–Selection Estimators . . . . . . . . . . . . . . . . . . . . . . . 900
2.1 Selection probabilities and consistency . . . . . . . . . . . 900



Contents xxiii

2.2 Risk properties of post-model-selection estimators 903
2.3 Distributional properties of post-model-selection

estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906
3 Model Selection in Large- or Infinite–Dimensional Models . 908
4 Related Procedures Based on Shrinkage and Model

Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916

Nonparametric Modeling in Financial Time Series . . . . . . . . . . . 927
Jürgen Franke, Jens-Peter Kreiss and Enno Mammen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
2 Nonparametric Smoothing for Time Series . . . . . . . . . . . . . . . 929

2.1 Density estimation via kernel smoothing . . . . . . . . . 929
2.2 Kernel smoothing regression . . . . . . . . . . . . . . . . . . . . 932
2.3 Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
4 Nonparametric Quantile Estimation . . . . . . . . . . . . . . . . . . . . 940
5 Advanced Nonparametric Modeling . . . . . . . . . . . . . . . . . . . . . 942
6 Sieve Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947

Modelling Financial High Frequency Data Using Point
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
Luc Bauwens and Nikolaus Hautsch

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
2 Fundamental Concepts of Point Process Theory . . . . . . . . . . 954

2.1 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . 955
2.2 Compensators, intensities, and hazard rates . . . . . . 955
2.3 Types and representations of point processes . . . . . 956
2.4 The random time change theorem . . . . . . . . . . . . . . . 959

3 Dynamic Duration Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960
3.1 ACD models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960
3.2 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
3.3 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965

4 Dynamic Intensity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
4.1 Hawkes processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
4.2 Autoregressive intensity processes . . . . . . . . . . . . . . . 969
4.3 Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976



xxiv Contents

Part V Special Topics – Simulation Based Methods

Resampling and Subsampling for Financial Time Series . . . . . . 983
Efstathios Paparoditis and Dimitris N. Politis

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
2 Resampling the Time Series of Log–Returns . . . . . . . . . . . . . 986

2.1 Parametric methods based on i.i.d. resampling of
residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986

2.2 Nonparametric methods based on i.i.d. resampling
of residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988

2.3 Markovian bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . 990
3 Resampling Statistics Based on the Time Series of

Log–Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
3.1 Regression bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . 992
3.2 Wild bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993
3.3 Local bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994

4 Subsampling and Self–Normalization . . . . . . . . . . . . . . . . . . . . 995
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997

Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
Michael Johannes and Nicholas Polson

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
2 Overview of MCMC Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 1002

2.1 Clifford–Hammersley theorem . . . . . . . . . . . . . . . . . . 1002
2.2 Constructing Markov chains . . . . . . . . . . . . . . . . . . . . 1003
2.3 Convergence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007

3 Financial Time Series Examples . . . . . . . . . . . . . . . . . . . . . . . . 1008
3.1 Geometric Brownian motion . . . . . . . . . . . . . . . . . . . . 1008
3.2 Time-varying expected returns . . . . . . . . . . . . . . . . . . 1009
3.3 Stochastic volatility models . . . . . . . . . . . . . . . . . . . . 1010

4 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012

Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
Michael Johannes and Nicholas Polson

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
2 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017
3 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019

3.1 Exact particle filtering . . . . . . . . . . . . . . . . . . . . . . . . . 1021
3.2 SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
3.3 Auxiliary particle filtering algorithms . . . . . . . . . . . . 1026

4 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031



List of Contributors

Yacine Aït-Sahalia
Princeton University and NBER, Bendheim Center for Finance, Princeton
University, U.S.A..

Torben G. Andersen
Kellogg School of Management and NBER, Northwestern University, U.S.A.
and CREATES, Aarhus, Denmark.

Elena Andreou
Department of Economics, University of Cyprus, Nicosia, Cyprus.

Manabu Asai
Faculty of Economics, Soka University, Tokyo, Japan.

Luc Bauwens
CORE, Université Catholique de Louvain, Belgium.

Luca Benzoni
Federal Reserve Bank of Chicago, U.S.A..

Thomas Björk
Department of Finance, Stockholm School of Economics, Sweden.

Peter J. Brockwell
Department of Statistics, Colorado State University, Fort Collins, U.S.A..

Ngai Hang Chan
Department of Statistics, Chinese University of Hong Kong, Shatin, NT,
Hong Kong.

Willa W. Chen
Department of Statistics, Texas A&M University, College Station, U.S.A..



xxvi List of Contributors

Siddhartha Chib
Olin Business School, Washington University in St. Louis, U.S.A..

Peter Christoffersen
Desautels Faculty of Management, McGill University, Quebec, Canada.

Pavel Čížek
Department of Econometrics & OR, Tilburg University, The Netherlands.

Richard A. Davis
Department of Statistics, Columbia University, New York, U.S.A..

Ernst Eberlein
Department of Mathematical Stochastics, University of Freiburg, Germany.

Paul Embrechts
Department of Mathematics, ETH Zürich, Switzerland.

Vicky Fasen
Zentrum Mathematik, Technische Universität München, Germany.

Christian Francq
University Lille III, EQUIPPE-GREMARS, France.

Jürgen Franke
Department of Mathematics, Universität Kaiserslautern, Germany.

Hansjörg Furrer
Swiss Life, Zürich, Switzerland.

Eric Ghysels
Department of Economics, University of North Carolina at Chapel Hill,
U.S.A..

Liudas Giraitis
Department of Economics, Queen Mary University of London, United
Kingdom.

Nikolaus Hautsch
Institute for Statistics and Econometrics, Humboldt–Universität zu Berlin,
Germany.

Clifford M. Hurvich
Leonard N. Stern School of Business, New York University, U.S.A..

Michael Johannes
Graduate School of Business, Columbia University, New York, U.S.A..

Søren Johansen
Department of Applied Mathematics and Statistics, University of
Copenhagen, Denmark.



List of Contributors xxvii

Borus Jungbacker
Department of Econometrics, Vrije Universiteit Amsterdam, The
Netherlands.

Jan Kallsen
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Germany.

Roger Kaufmann
AXA Winterthur, Winterthur, Switzerland.

Siem Jan Koopman
Department of Econometrics, Vrije Universiteit Amsterdam, The
Netherlands.

Jens-Peter Kreiss
Institut für Mathematische Stochastik, Technische Universität Braunschweig,
Germany.

David Lando
Copenhagen Business School, Department of Finance, Denmark.

Theis Lange
Department of Economics, University of Copenhagen, Denmark.

Hannes Leeb
Department of Statistics, Yale University, U.S.A..

Remigijus Leipus
Vilnius University and Institute of Mathematics and Informatics, Vilnius,
Lithuania.

Alexander M. Lindner
Technische Universität Braunschweig, Institut für Mathematische Stochastik,
Germany.

Oliver B. Linton
Department of Economics, London School of Economics and Political
Science, United Kingdom.

Ross A. Maller
School of Finance & Applied Statistics and Centre for Mathematics & its
Applications, Australian National University, Canberra, Australia.

Enno Mammen
Abteilung Volkswirtschaftslehre, Universität Mannheim, Germany.

Thomas Mikosch
Laboratory of Actuarial Mathematics, University of Copenhagen, Denmark.

Gernot Müller
Zentrum Mathematik, Technische Universität München, Germany.



xxviii List of Contributors

Per A. Mykland
Department of Statistics, The University of Chicago, U.S.A..

Yasuhiro Omori
Faculty of Economics, University of Tokyo, Japan.

Efstathios Paparoditis
Department of Mathematics and Statistics, University of Cyprus, Nicosia,
Cyprus.

Andrew J. Patton
Department of Economics and Oxford-Man Institute of Quantitative
Finance, University of Oxford, United Kingdom.

Peter C. B. Phillips
Cowles Foundation for Research in Economics, Yale University, U.S.A.;
University of Auckland; University of York; and Singapore Management
University.

Benedikt M. Pötscher
Department of Statistics, University of Vienna, Austria.

Dimitris N. Politis
Department of Mathematics, University of California, San Diego, U.S.A..

Nicholas Polson
Graduate School of Business, University of Chicago, U.S.A..

Anders Rahbek
Department of Economics, University of Copenhagen, Denmark.

Eric Renault
Department of Economics, University of North Carolina, Chapel Hill,
U.S.A..

Neil Shephard
Oxford-Man Institute and Department of Economics, University of Oxford,
United Kingdom.

Kevin Sheppard
Department of Economics and Oxford-Man Institute of Quantitative
Finance, University of Oxford, United Kingdom.

Annastiina Silvennoinen
School of Finance and Economics, University of Technology Sydney,
Australia.

Michael Sørensen
Department of Mathematical Sciences, University of Copenhagen, Denmark.

Philippe Soulier
Department of Mathematics, University Paris X, France.



List of Contributors xxix

Vladimir Spokoiny
Weierstrass–Institut, Berlin, Germany.

Donatas Surgailis
Vilnius University and Institute of Mathematics and Informatics, Vilnius,
Lithuania.

Alex Szimayer
Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Kaiserslautern,
Germany.

Timo Teräsvirta
CREATES, School of Economics and Management, University of Aarhus,
Denmark and Department of Economic Statistics, Stockholm School of
Economics, Sweden.

Jun Yu
School of Economics, Singapore Management University, Singapore.

Jean-Michel Zakoïan
University Lille III, EQUIPPE-GREMARS, and CREST, France.

Eric Zivot
Department of Economics, University of Washington, Seattle, U.S.A..



An Introduction to Univariate GARCH
Models

Timo Teräsvirta

Abstract This paper contains a survey of univariate models of conditional
heteroskedasticity. The classical ARCH model is mentioned, and various ex-
tensions of the standard Generalized ARCH model are highlighted. This in-
cludes the Exponential GARCH model. Stochastic volatility models remain
outside this review.

1 Introduction

Financial economists are concerned with modelling volatility in asset returns.
This is important as volatility is considered a measure of risk, and investors
want a premium for investing in risky assets. Banks and other financial insti-
tutions apply so-called value-at-risk models to assess their risks. Modelling
and forecasting volatility or, in other words, the covariance structure of asset
returns, is therefore important.

The fact that volatility in returns fluctuates over time has been known for
a long time. Originally, the emphasis was on another aspect of return series:
their marginal distributions were found to be leptokurtic. Returns were mod-
elled as independent and identically distributed over time. In a classic work,
Mandelbrot (1963) and Mandelbrot and Taylor (1967) applied so-called sta-
ble Paretian distributions to characterize the distribution of returns. Rachev
and Mittnik (2000) contains an informative discussion of stable Paretian dis-
tributions and their use in finance and econometrics.

Observations in return series of financial assets observed at weekly and
higher frequencies are in fact not independent. While observations in these
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series are uncorrelated or nearly uncorrelated, the series contain higher-
order dependence. Models of Autoregressive Conditional Heteroskedastic-
ity (ARCH) form the most popular way of parameterizing this dependence.
There are several articles in this Handbook devoted to different aspects of
ARCH models. This article provides an overview of different parameteriza-
tions of these models and thus serves as an introduction to autoregressive
conditional heteroskedasticity. The article is organized as follows. Section
2 introduces the classic ARCH model. Its generalization, the Generalized
ARCH (GARCH) model is presented in Section 3. This section also describes
a number of extensions to the standard GARCH models. Section 4 considers
the Exponential GARCH model whose structure is rather different from that
of the standard GARCH model, and Section 5 discusses ways of comparing
EGARCH models with GARCH ones. Suggestions for further reading can be
found at the end.

2 The ARCH Model

The autoregressive conditional heteroskedasticity (ARCH) model is the first
model of conditional heteroskedasticity. According to Engle (2004), the orig-
inal idea was to find a model that could assess the validity of the conjecture
of Friedman (1977) that the unpredictability of inflation was a primary cause
of business cycles. Uncertainty due to this unpredictability would affect the
investors’ behaviour. Pursuing this idea required a model in which this un-
certainty could change over time. Engle (1982) applied his resulting ARCH
model to parameterizing conditional heteroskedasticity in a wage-price equa-
tion for the United Kingdom. Let εt be a random variable that has a mean
and a variance conditionally on the information set Ft−1 (the σ-field gener-
ated by εt−j, j ≥ 1). The ARCH model of εt has the following properties.
First, E{εt|Ft−1} = 0 and, second, the conditional variance ht = E{ε2t |Ft−1}
is a nontrivial positive-valued parametric function of Ft−1. The sequence {εt}
may be observed directly, or it may be an error or innovation sequence of an
econometric model. In the latter case,

εt = yt − μt(yt) (1)

where yt is an observable random variable and μt(yt) = E{yt|Ft−1}, the
conditional mean of yt given Ft−1. Engle’s (1982) application was of this
type. In what follows, the focus will be on parametric forms of ht, and for
simplicity it is assumed that μt(yt) = 0.

Engle assumed that εt can be decomposed as follows:

εt = zth
1/2
t (2)
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where {zt} is a sequence of independent, identically distributed (iid) random
variables with zero mean and unit variance. This implies εt|Ft−1 ∼ D(0, ht)
where D stands for the distribution (typically assumed to be a normal or a
leptokurtic one). The following conditional variance defines an ARCH model
of order q:

ht = α0 +
q

∑

j=1

αjε
2
t−j (3)

where α0 > 0, αj ≥ 0, j = 1, . . . , q−1, and αq > 0. The parameter restrictions
in (3) form a necessary and sufficient condition for positivity of the conditional
variance. Suppose the unconditional variance Eε2t = σ2 < ∞. The definition
of εt through the decomposition (2) involving zt then guarantees the white
noise property of the sequence {εt}, since {zt} is a sequence of iid variables.
Although the application in Engle (1982) was not a financial one, Engle and
others soon realized the potential of the ARCH model in financial applications
that required forecasting volatility.

The ARCH model and its generalizations are thus applied to modelling,
among other things, interest rates, exchange rates and stock and stock index
returns. Bollerslev et al. (1992) already listed a variety of applications in their
survey of these models. Forecasting volatility of these series is different from
forecasting the conditional mean of a process because volatility, the object
to be forecast, is not observed. The question then is how volatility should be
measured. Using ε2t is an obvious but not necessarily a very good solution
if data of higher frequency are available; see Andersen and Bollerslev (1998)
and Andersen and Benzoni (2008) for discussion.

3 The Generalized ARCH Model

3.1 Why Generalized ARCH?

In applications, the ARCH model has been replaced by the so-called gen-
eralized ARCH (GARCH) model that Bollerslev (1986) and Taylor (1986)
proposed independently of each other. In this model, the conditional vari-
ance is also a linear function of its own lags and has the form

ht = α0 +
q

∑

j=1

αjε
2
t−j +

p
∑

j=1

βjht−j . (4)

The conditional variance defined by (4) has the property that the uncondi-
tional autocorrelation function of ε2t , if it exists, can decay slowly, albeit still
exponentially. For the ARCH family, the decay rate is too rapid compared
to what is typically observed in financial time series, unless the maximum
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lag q in (3) is long. As (4) is a more parsimonious model of the conditional
variance than a high-order ARCH model, most users prefer it to the simpler
ARCH alternative.

The overwhelmingly most popular GARCH model in applications has been
the GARCH(1,1) model, that is, p = q = 1 in (4). A sufficient condition for
the conditional variance to be positive is α0 > 0, αj ≥ 0, j = 1, . . . , q; βj ≥ 0,
j = 1, . . . , p. The necessary and sufficient conditions for positivity of the
conditional variance in higher-order GARCH models are more complicated
than the sufficient conditions just mentioned and have been given in Nelson
and Cao (1992). The GARCH(2,2) case has been studied in detail by He
and Teräsvirta (1999). Note that for the GARCH model to be identified if
at least one βj > 0 (the model is a genuine GARCH model) one has to
require that also at least one αj > 0. If α1 = . . . = αq = 0, the conditional
and unconditional variances of εt are equal and β1, . . . , βp are unidentified
nuisance parameters. The GARCH(p,q) process is weakly stationary if and
only if

∑q
j=1 αj +

∑p
j=1 βj < 1.

The stationary GARCH model has been slightly simplified by ’variance
targeting’, see Engle and Mezrich (1996). This implies replacing the inter-
cept α0 in (4) by (1 −

∑q
j=1 αj −

∑p
j=1 βj)σ

2 where σ2 = Eε2t . The estimate
σ̂2 = T−1

∑T
t=1 ε

2
t is substituted for σ2 before estimating the other param-

eters. As a result, the conditional variance converges towards the ’long-run’
unconditional variance, and the model contains one parameter less than the
standard GARCH(p,q) model.

It may be pointed out that the GARCH model is a special case of an
infinite-order (ARCH(∞)) model (2) with

ht = α0 +
∞
∑

j=1

αjε
2
t−j. (5)

The ARCH(∞) representation is useful in considering properties of ARCH
and GARCH models such as the existence of moments and long memory; see
Giraitis et al. (2000). The moment structure of GARCH models is considered
in detail in Lindner (2008).

3.2 Families of univariate GARCH models

Since its introduction the GARCH model has been generalized and extended
in various directions. This has been done to increase the flexibility of the
original model. For example, the original GARCH specification assumes the
response of the variance to a shock to be independent of the sign of the
shock and just be a function of the size of the shock. Several extensions of
the GARCH model aim at accommodating the asymmetry in the response.
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These include the GJR-GARCH model of Glosten et al. (1993), the asym-
metric GARCH models of Engle and Ng (1993) and the quadratic GARCH
of Sentana (1995). The GJR-GARCH model has the form (2), where

ht = α0 +
q

∑

j=1

{αj + δjI(εt−j > 0)}ε2t−j +
p

∑

j=1

βjht−j. (6)

In 6), I(εt−j > 0) is an indicator function obtaining value one when the
argument is true and zero otherwise.

In the asymmetric models of both Engle and Ng, and Sentana, the centre
of symmetry of the response to shocks is shifted away from zero. For example,

ht = α0 + α1(εt−1 − γ)2 + β1ht−1 (7)

with γ �= 0 in Engle and Ng (1993). The conditional variance in Sentana’s
Quadratic ARCH (QARCH) model (the model is presented in the ARCH
form) is defined as follows:

ht = α0 + α′εt−1 + ε′
t−1Aεt−1 (8)

where εt = (εt, . . . , εt−q+1)′ is a q × 1 vector, α = (α1, . . . , αq)′ is a q × 1
parameter vector and A a q × q symmetric parameter matrix. In (8), not
only squares of εt−i but also cross-products εt−iεt−j , i �= j, contribute to
the conditional variance. When α �= 0, the QARCH generates asymmetric
responses. The ARCH equivalent of (7) is a special case of Sentana’s model.
Constraints on parameters required for positivity of ht in (8) become clear
by rewriting (8) as follows:

ht =
[

εt−1 1
]′
[

A α/2
α′/2 α0

] [

εt−1

1

]

. (9)

The conditional variance ht is positive if and only if the matrix in the
quadratic form on the right-hand side of (9) is positive definite.

Some authors have suggested modelling the conditional standard deviation
instead of the conditional variance: see Taylor (1986), Schwert (1990), and for
an asymmetric version, Zakoïan (1994). A further generalization of this idea
appeared in Ding et al. (1993). These authors proposed a GARCH model for
hkt where k > 0 is also a parameter to be estimated. Their GARCH model
is (2) with

hkt = α0 +
q

∑

j=1

αj |εt−j |2k +
p

∑

j=1

βjh
k
t−j, k > 0. (10)

The authors argued that this extension provides flexibility lacking in the
original GARCH specification of Bollerslev (1986) and Taylor (1986).

The proliferation of GARCH models has inspired some authors to define
families of GARCH models that would accommodate as many individual
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models as possible. Hentschel (1995) defined one such family . The first-order
GARCH model has the general form

h
λ/2
t − 1
λ

= ω + αh
λ/2
t−1f

ν(zt−1) + β
h
λ/2
t−1 − 1
λ

(11)

where λ > 0 and
fν(zt) = |zt − b| − c(zt − b).

Family (11) contains a large number of well-known GARCH models. The Box-
Cox type transformation of the conditional standard deviation h1/2

t makes it
possible, by allowing λ → 0, to accommodate models in which the logarithm
of the conditional variance is parameterized, such as the exponential GARCH
model to be considered in Section 4. Parameters b and c in fv(zt) allow the
inclusion of different asymmetric GARCH models such as the GJR-GARCH
or threshold GARCH models in (11).

Another family of GARCH models that is of interest is the one He and
Teräsvirta (1999) defined as follows:

hkt =
q

∑

j=1

g(zt−j) +
p

∑

j=1

cj(zt−j)hkt−j , k > 0 (12)

where {g(zt)} and {c(zt)} are sequences of independent and identically dis-
tributed random variables. In fact, the family was originally defined for q = 1,
but the definition can be generalized to higher-order models. For example,
the standard GARCH(p, q) model is obtained by setting g(zt) = α0/q and
cj(zt−j) = αjz

2
t−j + βj , j = 1, . . . , q, in (12). Many other GARCH mod-

els such as the GJR-GARCH, the absolute-value GARCH, the Quadratic
GARCH and the power GARCH model belong to this family.

Note that the power GARCH model itself nests several well-known GARCH
models; see Ding et al. (1993) for details. Definition (12) has been used
for deriving expressions of fourth moments, kurtosis and the autocorrelation
function of ε2t for a number of first-order GARCH models and the standard
GARCH(p, q) model.

The family of augmented GARCH models, defined by Duan (1997), is a
rather general family. The first-order augmented GARCH model is defined
as follows. Consider (2) and assume that

ht =
{

|λφt − λ− 1| if λ �= 0
exp{φt − 1} if λ = 0 (13)

where
φt = α0 + ζ1,t−1φt−1 + ζ2,t−1. (14)

In (14), (ζ1t, ζ2t) is a strictly stationary sequence of random vectors with a
continuous distribution, measurable with respect to the available information
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until t. Duan defined an augmented GARCH(1,1) process as (2) with (13)
and (14), such that

ζ1t = α1 + α2|εt − c|δ + α3 max(0, c− εt)δ

ζ2t = α4
|εt − c|δ − 1

δ
+ α5

max(0, c− εt)δ − 1
δ

.

This process contains as special cases all the GARCH models previously men-
tioned, as well as the Exponential GARCH model to be considered in Section
4. Duan (1997) generalized this family to the GARCH(p, q) case and derived
sufficient conditions for strict stationarity for this general family as well as
conditions for the existence of the unconditional variance of εt. Furthermore,
he suggested misspecification tests for the augmented GARCH model.

3.3 Nonlinear GARCH

3.3.1 Smooth transition GARCH

As mentioned above, the GARCH model has been extended to characterize
asymmetric responses to shocks. The GJR-GARCH model, obtained as set-
ting

∑q
j=1 g(zt−j) = α0 and cj(zt−j) = (αj + ωjI(zt−j > 0))z2

t−j + βj , j =
1, . . . , q, in (12), is an example of that. A nonlinear version of the GJR-
GARCH model is obtained by making the transition between regimes smooth.
Hagerud (1997), Gonzales-Rivera (1998) and Anderson et al. (1999) proposed
this extension. A smooth transition GARCH (STGARCH) model may be
defined as equation (2) with

ht = α10 +
q

∑

j=1

α1jε
2
t−j + (α20 +

q
∑

j=1

α2jε
2
t−j)G(γ, c; εt−j) +

p
∑

j=1

βjht−j (15)

where the transition function

G(γ, c; εt−j) = (1 + exp{−γ
K
∏

k=1

(εt−j − ck)})−1, γ > 0. (16)

When K = 1, (16) is a simple logistic function that controls the change
of the coefficient of ε2t−j from α1j to α1j + α2j as a function of εt−j, and
similarly for the intercept. In that case, as γ → ∞, the transition function
becomes a step function and represents an abrupt switch from one regime
to the other. Furthermore, at the same time setting c1 = 0 yields the GJR-
GARCH model because εt and zt have the same sign. When K = 2 and, in
addition, c1 = −c2 in (16), the resulting smooth transition GARCH model is
still symmetric about zero, but the response of the conditional variance to a
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shock is a nonlinear function of lags of ε2t . Smooth transition GARCH models
are useful in situations where the assumption of two distinct regimes is not
an adequate approximation to the asymmetric behaviour of the conditional
variance. Hagerud (1997) also discussed a specification strategy that allows
the investigator to choose between K = 1 and K = 2 in (16). Values of K > 2
may also be considered, but they are likely to be less common in applications
than the two simplest cases.

The smooth transition GARCH model (15) with K = 1 in (16) is designed
for modelling asymmetric responses to shocks. On the other hand, the stan-
dard GARCH model has the undesirable property that the estimated model
often exaggerates the persistence in volatility (the estimated sum of the α-
and β-coefficients is close to one). This in turn results in poor volatility fore-
casts. In order to remedy this problem, Lanne and Saikonnen (2005) proposed
a smooth transition GARCH model whose first-order version has the form

ht = α0 + α1ε
2
t−1 + δ1G1(θ;ht−1) + β1ht−1. (17)

In (17), G1(θ;ht−1) is a continuous bounded function such as (16): Lanne
and Saikkonen use the cumulative distribution function of the gamma-
distribution. A major difference between (15) and (17) is that in the latter
model the transition variable is a lagged conditional variance. In empirical
examples given in the paper, this parameterization clearly alleviates the prob-
lem of exaggerated persistence. The model may also be generalized to include
a term of the form G1(θ;ht−1)ht−1, but according to the authors, such an
extension appeared unnecessary in practice.

3.3.2 Threshold GARCH and extensions

If (15) is defined as a model for the conditional standard deviation such
that ht is replaced by h

1/2
t , ht−j by h

1/2
t−j, j = 1, . . . , p, and ε2t−j by |εt−j |,

j = 1, . . . , q, then choosing K = 1, c1 = 0 and letting γ → ∞ in (16) yields
the threshold GARCH (TGARCH) model that Zakoïan (1994) considered.
The TGARCH(p, q) model is thus the counterpart of the GJR-GARCH model
in the case where the entity to be modelled is the conditional standard devi-
ation instead of the conditional variance. Note that in both of these models,
the threshold parameter has a known value (zero). In Zakoïan (1994), the
conditional standard deviation is defined as follows:

h
1/2
t = α0 +

q
∑

j=1

(α+
j ε

+
t−j − α−

j ε
−
t−j) +

q
∑

j=1

βjh
1/2
t−j (18)

where ε+t−j = max(εt−j , 0), ε−t−j = min(εt−j , 0), and α+
j , α

−
j , j = 1, . . . , q, are

parameters. Rabemananjara and Zakoïan (1993) introduced an even more
general model in which h1/2

t can obtain negative values, but it has not gained
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wide acceptance. Nevertheless, these authors provide evidence of asymmetry
in the French stock market by fitting the TGARCH model (18) to the daily
return series of stocks included in the CAC 40 index of the Paris Bourse.

The TGARCH model is linear in parameters because the threshold pa-
rameter is assumed to equal zero. A genuine nonlinear threshold model is the
Double Threshold ARCH (DTARCH) model of Li and Li (1996). It is called
a double threshold model because both the autoregressive conditional mean
and the conditional variance have a threshold-type structure as defined in
Tong (1990). The conditional mean is defined as follows:

yt =
K
∑

k=1

(φ0k +
pk
∑

j=1

φjkyt−j)I(c
(m)
k−1 < yt−b ≤ c

(m)
k ) + εt (19)

and the conditional variance has the form

ht =
L
∑

�=1

(α0� +
p�
∑

j=1

αj�ε
2
t−j)I(c

(v)
�−1 < yt−d ≤ c

(v)
� ). (20)

Furthermore, k = 1, . . . ,K, � = 1, . . . , L, and b and d are delay parameters,
b, d ≥ 1. The number of regimes in (19) and (20), K and L, respectively, need
not be the same, nor do the two threshold variables have to be equal. Other
threshold variables than lags of yt are possible. For example, replacing yt−d

in (20) by εt−d or ε2t−d may sometimes be an interesting possibility.
Another variant of the DTARCH model is the model that Audrino and

Bühlmann (2001) who introduced it called the Tree-Structured GARCH
model. It has an autoregressive conditional mean:

yt = φyt−1 + εt (21)

where εt is decomposed as in (2), and the first-order conditional variance

ht =
K
∑

k=1

(α0k + α1ky
2
t−1 + βkht−1)I{(yt−1, ht−1) ∈ Rk}. (22)

In (22), Rk is a subset in a partition P = {R1, . . . ,RK} of the sample space
of (yt−1, ht−1). For example, if K = 2, either R1 = {yt−1 > cy, ht−1 > 0}
or R1 = {−∞ < yt−1 < ∞, ht−1 > ch}, ch > 0, and R2 is the complement
of R1. Note that, strictly speaking, equation (22) does not define a GARCH
model unless φ = 0 in (21), because the squared variable in the equation
is y2

t−1, not ε2t−1. A practical problem is that the tree-growing strategy of
Audrino and Bühlmann (2001) does not seem to prevent underidentification:
if K is chosen too large, (22) is not identified. A similar problem is present in
the DTARCH model as well as in the STGARCH one. Hagerud (1997) and
Gonzales-Rivera (1998), however, do provide linearity tests in order to avoid
this problem in the STGARCH framework.
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3.4 Time-varying GARCH

An argument brought forward in the literature, see for instance Mikosch and
Stărică (2004), is that in applications the assumption of the GARCH models
having constant parameters may not be appropriate when the series to be
modelled are long. Parameter constancy is a testable proposition, and if it is
rejected, the model can be generalized. One possibility is to assume that the
parameters change at specific points of time, divide the series into subseries
according to the location of the break-points, and fit separate GARCH models
to the subseries. The main statistical problem is then finding the number
of break-points and their location because they are normally not known in
advance. Chu (1995) has developed tests for this purpose.

Another possibility is to modify the smooth transition GARCH model (15)
to fit this situation. This is done by defining the transition function (16) as
a function of time:

G(γ, c; t∗) = (1 + exp{−γ
K
∏

k=1

(t∗ − ck)})−1, γ > 0

where t∗ = t/T , t = 1, . . . , T , and T is the number of observations. Standard-
izing the time variable between zero and unity makes interpretation of the
parameters ck, k = 1, . . . ,K, easy as they indicate where in relative terms the
changes in the process occur. The resulting time-varying parameter GARCH
(TV-GARCH) model has the form

ht = α0(t) +
q

∑

j=1

αj(t)ε2t−j +
p

∑

j=1

βj(t)ht−j (23)

where α0(t) = α01 + α02G(γ, c; t∗), αj(t) = αj1 + αj2G(γ, c; t∗), j = 1, . . . , q,
and βj(t) = βj1 +βj2G(γ, c; t∗), j = 1, . . . , p. This is the most flexible param-
eterization. Some of the time-varying parameters in (23) may be restricted to
constants a priori. For example, it may be assumed that only the intercept
α0(t) is time-varying. This implies that the ’baseline volatility’ or uncon-
ditional variance is changing over time. If change is allowed in the other
GARCH parameters then the model is capable of accommodating systematic
changes in the amplitude of the volatility clusters that cannot be explained
by a constant-parameter GARCH model.

This type of time-varying GARCH is mentioned here because it is a special
case of the smooth transition GARCH model. Other time-varying parameter
models of conditional heteroskedasticity, such as nonstationary ARCH models
with locally changing parameters, are discussed in Čížek and Spokoiny (2008).
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3.5 Markov-switching ARCH and GARCH

Markov-switching or hidden Markov models of conditional heteroskedasticity
constitute another class of nonlinear models of volatility. These models are an
alternative way of modelling volatility processes that contains breaks. Hamil-
ton and Susmel (1994) argued that very large shocks, such as the one affecting
the stocks in October 1987, may have consequences for subsequent volatil-
ity so different from consequences of small shocks that a standard ARCH
or GARCH model cannot describe them properly. Their Markov-switching
ARCH model is defined as follows:

ht =
k

∑

i=1

(α(i)
0 +

q
∑

j=1

α
(i)
j ε2t−j)I(st = i) (24)

where st is a discrete unobservable random variable obtaining values from
the set S = {1, . . . , k} of regime indicators. It follows a (usually first-order)
homogeneous Markov chain:

Pr{st = j|st = i} = pij , i, j = 1, . . . , k.

Cai (1994) considered a special case of (24) in which only the intercept α(i)
0

is switching, and k = 2. But then, his model also contains a switching con-
ditional mean. Furthermore, Rydén et al. (1998) showed that a simplified
version of (24) where α(i)

j = 0 for j ≥ 1 and all i, is already capable of gen-
erating data that display most of the stylized facts that Granger and Ding
(1995) ascribe to high-frequency, daily, say, financial return series. This sug-
gests that a Markov-switching variance alone without any ARCH structure
may in many cases explain a large portion of the variation in these series.

Nevertheless, it can be argued that shocks drive economic processes, and
this motivates the ARCH structure. If the shocks have a persistent effect on
volatility, however, a parsimonious GARCH representation may be preferred
to (24). Generalizing (24) into a GARCH model involves one major difficulty.
A straightforward (first-order) generalization would have the following form:

ht = (α(i)
0 + α

(i)
1 ε2t−1 + β

(i)
1 ht−1)I(st = i). (25)

From the autoregressive structure of (25) it follows that ht is completely
path-dependent: its value depends on the unobservable st−j , j = 0, 1, 2, . . . t.
This makes the model practically impossible to estimate because in order to
evaluate the log-likelihood, these unobservables have to be integrated out of
this function. Simplifications of the model that circumvent this problem can
be found in Gray (1996) and Klaassen (2002). A good discussion about their
models can be found in Haas et al. (2004). These authors present another
MS-GARCH model whose fourth-moment structure they are able to work
out. That does not seem possible for the other models. The MS-GARCH
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model of Haas et al. (2004) is defined as follows:

εt = zt

k
∑

i=1

h
1/2
it I(st = i)

where st is defined as in (24). Furthermore,

ht = α0 + α1ε
2
t−1 + Bht−1

where ht = (h1t, . . . , h1k)′, αi = (αi1, . . . , αik)′, i = 0, 1, and B =
diag(β11, . . . , β1k)′. Thus, each volatility regime has its own GARCH equa-
tion. The conditional variance in a given regime is only a function of the
lagged conditional variance in the same regime, which is not the case in the
other models. The identification problem mentioned in Section 3.3.2 is present
here as well. If the true model has fewer regimes than the specified one, the
latter contains unidentified nuisance parameters.

More information about Markov-switching ARCH and GARCH models
can be found in Lange and Rahbek (2008).

3.6 Integrated and fractionally integrated GARCH

In applications it often occurs that the estimated sum of the parameters
α1 and β1 in the standard first-order GARCH model (4) with p = q = 1
is close to unity. Engle and Bollerslev (1986), who first paid attention to
this phenomenon, suggested imposing the restriction α1 + β1 = 1 and called
the ensuing model an integrated GARCH (IGARCH) model. The IGARCH
process is not weakly stationary as Eε2t is not finite. Nevertheless, the term
”integrated GARCH” may be somewhat misleading as the IGARCH process
is strongly stationary. Nelson (1991) showed that under mild conditions for
{zt} and assuming α0 > 0, the GARCH(1,1) process is strongly stationary if

E ln(α1 + β1z
2
t ) < 0 (26)

(recall that Ez2
t = 1). The IGARCH process satisfies (26). The analogy with

integrated processes, that is, ones with a unit root, is therefore not as straight-
forward as one might think. For a general discussion of stationarity conditions
in GARCH models, see Lindner (2008).

Nelson (1991) also showed that when an IGARCH process is started at
some finite time point, its behaviour depends on the intercept α0. On the
one hand, if the intercept is positive then the unconditional variance of the
process grows linearly with time. In practice this means that the amplitude
of the clusters of volatility to be parameterized by the model on the average
increases over time. The rate of increase need not, however, be particularly
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rapid. One may thus think that in applications with, say, a few thousand
observations, IGARCH processes nevertheless provide a reasonable approxi-
mation to the true data-generating volatility process. On the other hand, if
α0 = 0 in the IGARCH model, the realizations from the process collapse to
zero almost surely. How rapidly this happens, depends on the parameter β1.

Although the investigator may be prepared to accept an IGARCH model
as an approximation, a potentially disturbing fact is that this means assum-
ing that the unconditional variance of the process to be modelled does not
exist. It is not clear that this is what one always wants to do. There exist
other explanations to the fact that the sum α1 + β1 estimates to one or very
close to one. First Diebold (1986) and later Lamoureux and Lastrapes (1990)
suggested that this often happens if there is a switch in the intercept of a
GARCH model during the estimation period. This may not be surprising as
such a switch means that the underlying GARCH process is not stationary.

Another, perhaps more puzzling, observation is related to exponential
GARCH models to be considered in Section 4. Malmsten (2004) noticed
that if a GARCH(1, 1) model is fitted to a time series generated by a sta-
tionary first-order exponential GARCH model (see Section 4), the probabil-
ity of the estimated sum α1 + β1 exceeding unity can sometimes be rather
large. In short, if the estimated sum of these two parameters in a standard
GARCH(1,1) model is close to unity, imposing the restriction α1 + β1 = 1
without further investigation may not necessarily be the most reasonable
action to take.

Assuming p = q = 1, the GARCH(p, q) equation (4) can also be written
in the ”ARMA(1,1) form” by adding ε2t to both sides and moving ht to the
right-hand side:

ε2t = α0 + (α1 + β1)ε2t−1 + νt − β1νt−1 (27)

where {νt} = {ε2t − ht} is a martingale difference sequence with respect to
ht. For the IGARCH process, (27) has the ”ARIMA(0,1,1) form”

(1 − L)ε2t = α0 + νt − β1νt−1. (28)

Equation (28) has served as a starting-point for the fractionally integrated
GARCH (FIGARCH) model. The FIGARCH(1,d,0) model is obtained from
(28) by replacing the difference operator by a fractional difference operator:

(1 − L)dε2t = α0 + νt − β1νt−1. (29)

The FIGARCH equation (29) can be written as an infinite-order ARCH
model by applying the definition νt = ε2t − ht to it. This yields

ht = α0(1 − β1)−1 + λ(L)ε2t
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where λ(L) = {1 − (1 − L)d(1 − β1L)−1}ε2t =
∑∞

j=1 λjL
jε2t , and λj ≥ 0 for

all j. Expanding the fractional difference operator into an infinite sum yields
the result that for long lags j,

λj = {(1 − β1)Γ (d)−1}j−(1−d) = cj−(1−d), c > 0 (30)

where d ∈ (0, 1) and Γ (d) is the gamma function. From (30) it is seen that the
effect of the lagged ε2t on the conditional variance decays hyperbolically as a
function of the lag length. This is the reason why Ballie et al. (1996) intro-
duced the FIGARCH model, as it would conveniently explain the apparent
slow decay in autocorrelation functions of squared observations of many daily
return series. The FIGARCH model thus offers a competing view to the one
according to which changes in parameters in a GARCH model are the main
cause of the slow decay in the autocorrelations. The first-order FIGARCH
model (29) can of course be generalized into a FIGARCH(p, d, q) model.

The probabilistic properties of FIGARCH processes such as stationarity,
still an open question, are quite complex, see, for example, Davidson (2004)
and Giraitis et al. (2008) for discussion. The hyperbolic GARCH model in-
troduced in the first-mentioned paper contains the standard GARCH and
the FIGARCH models as two extreme special cases; for details see Davidson
(2004).

3.7 Semi- and nonparametric ARCH models

The ARCH decomposition of returns (2) has also been used in a semi- or
nonparametric approach. The semiparametric approach is typically employed
in situations where the distribution of zt is left unspecified and is estimated
nonparametrically. In nonparametric models, the issue is the estimation of
the functional form of the relationship between ε2t and ε2t−1, . . . , ε

2
t−q. Semi-

and nonparametric ARCH models are considered in detail in Linton (2008).

3.8 GARCH-in-mean model

GARCH models are often used for predicting the risk of a portfolio at a
given point of time. From this it follows that the GARCH type conditional
variance could be useful as a representation of the time-varying risk premium
in explaining excess returns, that is, returns compared to the return of a
riskless asset. An excess return would be a combination of the unforecastable
difference εt between the ex ante and ex post rates of return and a function
of the conditional variance of the portfolio. Thus, if yt is the excess return at
time t,
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yt = εt + β + g(ht) − Eg(ht) (31)

where ht is defined as a GARCH process (4) and g(ht) is a positive-valued
function. Engle et al. (1987) originally defined g(ht) = δh

1/2
t , δ > 0, which cor-

responds to the assumption that changes in the conditional standard devia-
tion appear less than proportionally in the mean. The alternative g(ht) = δht
has also appeared in the literature. Equations (31) and (4) form the GARCH-
in-mean or GARCH-M model. It has been quite frequently applied in the
applied econometrics and finance literature. Glosten et al. (1993) developed
their asymmetric GARCH model as a generalization of the GARCH-M model.

The GARCH-M process has an interesting moment structure. Assume that
Ez3

t = 0 and Eε4t < ∞. From (31) it follows that the kth order autocovariance

E(yt − Eyt)(yt−k − Eyt) = Eεt−kg(ht) + cov(g(ht), g(ht−k)) �= 0.

This means that there is forecastable structure in yt, which may contradict
some economic theory if yt is a return series. Hong (1991) showed this in
a special case where g(ht) = δht, Eε4t < ∞, and ht follows a GARCH(p,q)
model. In that situation, all autocorrelations of yt are nonzero. Furthermore,

E(yt − Eyt)3 = 3Eht{g(ht) − Eg(ht)} + E{g(ht) − Eg(ht)}3 �= 0. (32)

It follows from (32) that a GARCH-M model implies postulating a skewed
marginal distribution for yt unless g(ht) ≡ constant. For example, if g(ht) =
δh

1/2
t , δ < 0, this marginal distribution is negatively skewed. If the model

builder is not prepared to make this assumption or the one of forecastable
structure in yt, the GARCH-M model, despite its theoretical motivation,
does not seem an appropriate alternative to use. For more discussion of this
situation, see He et al. (2006).

3.9 Stylized facts and the first-order GARCH model

As already mentioned, financial time series such as high-frequency return
series constitute the most common field of applications for GARCH models.
These series typically display rather high kurtosis. At the same time, the
autocorrelations of the absolute values or squares of the observations are low
and decay slowly. These two features are sometimes called stylized facts of
financial time series. Granger and Ding (1995) listed a few more such features.
Among them is the empirical observation that in a remarkable number of
financial series, the autocorrelations of the powers of observations, |εt|k, peak
around k = 1. Granger and Ding called this stylized fact the Taylor effect
as Taylor (1986) was the first to draw attention to it (by comparing the
autocorrelations of ε2t and |εt|).
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One way of evaluating the adequacy of GARCH models is to ask how
well they can be expected to capture the features or stylized facts present
in the series to be modelled. The expressions for kurtosis and the autocor-
relation function of absolute values and squared observations are available
for the purpose. They allow one to find out, for example, whether or not
a GARCH(1,1) model is capable of producing realizations with high kurto-
sis and low, slowly decaying autocorrelations. The results of Malmsten and
Teräsvirta (2004) who have used these expressions, illustrate the well known
fact, see, for example, Bollerslev et al. (1994), that a GARCH model with
normally distributed errors does not seem to be a sufficiently flexible model
for explaining these two features in financial return series. This is shown
in Figure 1. The panels contain a number of isoquants for which the sum

Fig. 1 Kurtosis/first-order autocorrelation isoquants for the GARCH(1,1) model, from
highest to lowest: α+β = 0.9, 0.95, 0.99, 0.999, and corresponding combinations estimated
from data: Upper left panel: Daily returns of the 27 most actively traded stocks at the
Stockholm Stock Exchange; Upper right panel: Returns of five major daily exchange rates,
divided into 34 subseries; Lower left panel: Daily returns of the S&P 500 index from 3
January 1928 to 19 September 2001, divided into 20 equally long subseries; Lower right
panel: All observations
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α1 + β1 remains constant as a function of the kurtosis and the first-order
autocorrelation of squared observations. Note that α1 +β1 is the exponential
decay rate of the autocorrelation function, that is, the jth autocorrelation
ρj = (α1 + β1)j−1ρ1 for j ≥ 1. They also contain combinations of the kur-
tosis and the first-order autocorrelation estimated directly from time series.
It is seen that very often the kurtosis/autocorrelation combinations do not
tend to lie in the vicinity of these isoquants even when α1 + β1 is very close
to one. The isoquants are od course only defined for combinations of α1 and
β1 for which Eε4t < ∞.

Malmsten and Teräsvirta (2004) also demonstrated how the situation can
be improved, as is customary in practice, by replacing the normal error dis-
tribution by a more fat-tailed one. In Figure 2 it is seen how increasing the
”baseline kurtosis”, that is, the kurtosis of the distribution of zt, the error,
helps the GARCH(1,1) model to capture the stylized fact of high kurtosis/low
autocorrelation. The isoquants are moved to the right because the baseline

Fig. 2 Isoquants of pairs of kurtosis and first-order autocorrelation of squared observa-
tions in the GARCH(1,1) model with t(7)-distributed (left-hand panel) and t(5)-distributed
errors (right-hand panel), for (from above) α + β = 0.90, 0.95, 0.99 and 0.999, and corre-
sponding observations (the same ones as in the lower right panel of Figure 1).

kurtosis increases. At the same time it seems that the level of the autocor-
relations decreases. But then, this does not simultaneously affect the decay
rate α1 + β1 of the autocorrelations.

Recently, Kim and White (2004) suggested that the standard estimator of
kurtosis exaggerates the true kurtosis and that robust measures yield more
reliable results. It follows that high kurtosis values estimated from return
series are a result of a limited number of outliers. If this is the case, then
the use of a non-normal (heavy-tailed) error distribution may not necessarily
be an optimal extension to the standard normal-error GARCH model. How-
ever, Teräsvirta and Zhao (2006) recently studied 160 daily return series and,
following Kim and White (2004), used robust kurtosis and autocorrelation
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estimates instead of standard ones. Their results indicate that leptokurtic
distributions for zt are needed in capturing the kurtosis-autocorrelation styl-
ized fact even when the influence of extreme observations is dampened by
the use of robust estimates.

As to the Taylor effect, He and Teräsvirta (1999) defined a corresponding
theoretical property, the Taylor property, as follows. Let ρ(|εt|k, |εt−j |k) be
the jth order autocorrelation of {|εt|k}. The stochastic process has the Taylor
property when ρ(|εt|k, |εt−j |k) is maximized for k = 1 for j = 1, 2, . . .. In prac-
tice, He and Teräsvirta (1999) were able to find analytical results for the AV-
GARCH(1,1) model, but they were restricted to comparing the first-order au-
tocorrelations for k = 1 and k = 2. For this model, ρ(|εt|, |εt−1|) > ρ(ε2t , ε

2
t−1)

when the kurtosis of the process is sufficiently high. The corresponding results
for the standard GARCH(1,1) model (4) with p = q = 1 and normal errors
are not available as the autocorrelation function of {|εt|} cannot be derived
analytically. Simulations conducted by He and Teräsvirta (1999) showed that
the GARCH(1,1) model probably does not possess the Taylor property, which
may seem disappointing. But then, the results of Teräsvirta and Zhao (2006)
show that if the standard kurtosis and autocorrelation estimates are replaced
by robust ones, the evidence of the Taylor effect completely disappears. This
stylized fact may thus be a consequence of just a small number of extreme
observations in the series.

4 Family of Exponential GARCH Models

4.1 Definition and properties

The Exponential GARCH (EGARCH) model is another popular GARCH
model. Nelson (1991) who introduced it had three criticisms of the standard
GARCH model in mind. First, parameter restrictions are required to ensure
positivity of the conditional variance at every point of time. Second, the
standard GARCH model does not allow an asymmetric response to shocks.
Third, if the model is an IGARCH one, measuring the persistence is difficult
since this model is strongly but not weakly stationary. Shocks may be viewed
persistent as the IGARCH process looks like a random walk. However, the
IGARCH model with α0 > 0 is strictly stationary and ergodic, and when
α0 = 0, the realizations collapse into zero almost surely, as already indicated
in Section 3.6. The second drawback has since been removed as asymmetric
GARCH models such as GJR-GARCH (Glosten et al. (1993)) or smooth
transition GARCH have become available. A family of EGARCH(p, q) models
may be defined as in (2) with
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lnht = α0 +
q

∑

j=1

gj(zt−j) +
p

∑

j=1

βj lnht−j. (33)

When gj(zt−j) = αjzt−j + ψj(|zt−j| − E|zt−j|), j = 1, . . . , q, (33) be-
comes the EGARCH model of Nelson (1991). It is seen from (33) that no
parameter restrictions are necessary to ensure positivity of ht. Parameters
αj , j = 1, . . . , q, make an asymmetric response to shocks possible.

When gj(zt−j) = αj ln z2
t−j , j = 1, . . . , q, (2) and (33) form the logarith-

mic GARCH (LGARCH) model that Geweke (1986) and Pantula (1986)
proposed. The LGARCH model has not become popular among practition-
ers. A principal reason for this may be that for parameter values encountered
in practice, the theoretical values of the first few autocorrelations of {ε2t} at
short lags tend to be so high that such autocorrelations can hardly be found
in financial series such as return series. This being the case, the LGARCH
model cannot be expected to provide an acceptable fit when applied to fi-
nancial series. Another reason are the occasional small values of ln ε2t that
complicate the estimation of parameters.

As in the standard GARCH case, the first-order model is the most popular
EGARCH model in practice. Nelson (1991) derived existence conditions for
moments of the general infinite-order Exponential ARCH model. Translated
to the case of the EGARCH model (2) and (33) such that gj(zt−j) = αjzt−j+
ψj(|zt−j | − E|zt−j|), j = 1, . . . , q, where not all αj and ψj equal zero, these
existence conditions imply that if the error process {zt} has all moments and
∑p

j=1 β
2
j < 1 in (33), then all moments for the EGARCH process {εt} exist.

For example, if {zt} is a sequence of independent standard normal variables
then the restrictions on βj , j = 1, . . . , p, are necessary and sufficient for the
existence of all moments simultaneously. This is different from the family
(12) of GARCH models considered in Section 3.2. For those models, the
moment conditions become more and more stringent for higher and higher
even moments. The expressions for moments of the first-order EGARCH
process can be found in He et al. (2002); for the more general case, see He
(2000).

4.2 Stylized facts and the first-order EGARCH model

In Section 3.9 we considered the capability of first-order GARCH models to
characterize certain stylized facts in financial time series. It is instructive to
do the same for EGARCH models. For the first-order EGARCH model, the
decay of autocorrelations of squared observations is faster than exponential
in the beginning before it slows down towards an exponential rate; see He et
al. (2002). Thus it does not appear possible to use a standard EGARCH(1,1)
model to characterize processes with very slowly decaying autocorrelations.
Malmsten and Teräsvirta (2004) showed that the symmetric EGARCH(1,1)
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model with normal errors is not sufficiently flexible either for characteriz-
ing series with high kurtosis and slowly decaying autocorrelations. As in the
standard GARCH case, assuming normal errors means that the first-order
autocorrelation of squared observations increases quite rapidly as a func-
tion of kurtosis for any fixed β1 before the increase slows down. Analogously
to GARCH, the observed kurtosis/autocorrelation combinations cannot be
reached by the EGARCH(1,1) model with standard normal errors. The asym-
metry parameter is unlikely to change things much.

Nelson (1991) recommended the use of the so-called Generalized Error Dis-
tribution (GED) for the errors. It contains the normal distribution as a special
case but also allows heavier tails than the ones in the normal distribution.
Nelson (1991) also pointed out that a t-distribution for the errors may imply
infinite unconditional variance for {εt}. As in the case of the GARCH(1,1)
model, an error distribution with fatter tails than the normal one helps to
increase the kurtosis and, at the same time, lower the autocorrelations of
squared observations or absolute values.

Because of analytical expressions of the autocorrelations for k > 0 given
in He et al. (2002) it is possible to study the existence of the Taylor property
in EGARCH models. Using the formulas for the autocorrelations of {|εt|k},
k > 0, it is possible to find parameter combinations for which these autocor-
relations peak in a neighbourhood of k = 1. A subset of first-order EGARCH
models thus has the Taylor property. This subset is also a relevant one in
practice in the sense that it contains EGARCH processes with the kurtosis of
the magnitude frequently found in financial time series. For more discussion
on stylized facts and the EGARCH(1,1) model, see Malmsten and Teräsvirta
(2004).

4.3 Stochastic volatility

The EGARCH equation may be modified by replacing gj(zt−j) by gj(st−j)
where {st} is a sequence of continuous unobservable independent random
variables that are often assumed independent of zt at all lags. Typically in
applications, p = q = 1 and g1(st−1) = δst−1 where δ is a parameter to be es-
timated. This generalization is called the autoregressive stochastic volatility
(SV) model, and it substantially increases the flexibility of the EGARCH pa-
rameterization. For evidence of this, see Malmsten and Teräsvirta (2004) and
Carnero et al. (2004). A disadvantage is that model evaluation becomes more
complicated than that of EGARCH models because the estimation does not
yield residuals. Several articles in this Handbook are devoted to SV models.
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5 Comparing EGARCH with GARCH

The standard GARCH model is probably the most frequently applied pa-
rameterization of conditional heteroskedasticity. This being the case, it is
natural to evaluate an estimated EGARCH model by testing it against the
corresponding GARCH model. Since the EGARCH model can characterize
asymmetric responses to shocks, a GARCH model with the same property,
such as the GJR-GARCH or the smooth transition GARCH model, would
be a natural counterpart in such a comparison. If the aim of the comparison
is to choose between these models, they may be compared by an appropriate
model selection criterion as in Shephard (1996). Since the GJR-GARCH and
the EGARCH model of the same order have equally many parameters, this
amounts to comparing their maximized likelihoods.

If the investigator has a preferred model or is just interested in knowing
if there are significant differences in the fit between the two, the models
may be tested against each other. The testing problem is a non-standard
one because the two models do not nest each other. Several approaches have
been suggested for this situation. Engle and Ng (1993) proposed combining
the two models into an encompassing model. If the GARCH model is an GJR-
GARCH(p, q) one (both models can account for asymmetries), this leads to
the following specification of the conditional variance:

lnht =
q

∑

j=1

{α∗
jzt−j + ψ∗

j (|zt−j | − E|zt−j|)} +
p

∑

j=1

β∗
j lnht−j

+ ln(α0 +
q

∑

j=1

{αj + ωjI(εt−j)}ε2t−j +
p

∑

j=1

βjht−j). (34)

Setting (αj , ωj) = (0, 0), j = 1, . . . , q, and βj = 0, j = 1, . . . , p, in (34) yields
an EGARCH(p, q) model. Correspondingly, the restrictions (α∗

j , ψ
∗
j ) = (0, 0),

j = 1, . . . , q, and β∗
j = 0, j = 1, . . . , p, define the GJR-GARCH(p, q) model.

Testing the models against each other amounts to testing the appropriate
restrictions in (34). A Lagrange Multiplier test may be constructed for the
purpose. The test may also be viewed as another misspecification test and
not only as a test against the alternative model.

Another way of testing the EGARCH model against GARCH consists of
forming the likelihood ratio statistic despite the fact that the null model is not
nested in the alternative. This is discussed in Lee and Brorsen (1997) and Kim
et al. (1998). Let M0 be the EGARCH model and M1 the GARCH one, and
let the corresponding log-likelihoods be LT (ε;M0,θ0) and LT (ε;M1,θ1),
respectively. The test statistic is

LR = 2{LT (ε;M1, ̂θ1) − LT (ε;M0, ˜θ0)}. (35)
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The asymptotic null distribution of (35) is unknown but can be approximated
by simulation. Assuming that the EGARCH model is the null model and that
˜θ0 is the true parameter, one generates N realizations of T observations from
this model and estimates both models and calculates the value of (35) us-
ing each realization. Ranking the N values gives an empirical distribution
with which one compares the original value of (35). The true value of θ0 is
unknown, but the approximation error due to the use of ˜θ0 as a replace-
ment vanishes asymptotically as T → ∞. If the value of (35) exceeds the
100(1−α)% quantile of the empirical distribution, the null model is rejected
at significance level α. Note that the models under comparison need not have
the same number of parameters, and the value of the statistic can also be
negative. Reversing the roles of the models, one can test GARCH models
against EGARCH ones.

Chen and Kuan (2002) proposed yet another method based on the pseudo-
score, whose estimator under the null hypothesis and assuming the customary
regularity conditions is asymptotically normally distributed. This result forms
the basis for a χ2-distributed test statistic; see Chen and Kuan (2002) for
details.

Results of small-sample simulations in Malmsten (2004) indicate that the
pseudo-score test tends to be oversized. Furthermore, the Monte Carlo likeli-
hood ratio statistic seems to have consistently higher power than the encom-
passing test, which suggests that the former rather than the latter should be
applied in practice.

6 Final Remarks and Further Reading

The literature on univariate GARCH models is quite voluminous, and it is
not possible to incorporate all developments and extensions of the original
model in the present text. Several articles of this Handbook provide detailed
analyses of various aspects of GARCH models. Modern econometrics texts
contain accounts of conditional heteroskedasticity. A number of surveys of
GARCH models exist as well. Bollerslev et al. (1994), Diebold and Lopez
(1995), Palm (1996), and Guégan (1994) (Chapter 5) survey developments
till the early 1990s; see Giraitis et al. (2006) for a very recent survey. Shep-
hard (1996) considers both univariate GARCH and stochastic volatility mod-
els. The focus in Gouriéroux (1996) lies on both univariate and multivariate
ARCH models. The survey by Bollerslev et al. (1992) also reviews appli-
cations to financial series. The focus in Straumann (2004) is on estimation
in models of conditional heteroskedasticity. Theoretical results on time se-
ries models with conditional heteroskedasticity are also reviewed in Li et al.
(2002). Engle (1995) contains a selection of the most important articles on
ARCH and GARCH models up until 1993.
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Multivariate GARCH models are not included in this article. There exists
a recent survey by Bauwens et al. (2006), and these models are also considered
in Silvennoinen and Teräsvirta (2008).
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Stationarity, Mixing, Distributional
Properties and Moments of
GARCH(p, q)–Processes

Alexander M. Lindner

Abstract This paper collects some of the well known probabilistic properties
of GARCH(p, q) processes. In particular, we address the question of strictly
and of weakly stationary solutions. We further investigate moment conditions
as well as the strong mixing property of GARCH processes. Some distribu-
tional properties such as the tail behaviour and continuity properties of the
stationary distribution are also included.

1 Introduction

Since their introduction by Engle (1982), autoregressive conditional het-
eroskedastic (ARCH) models and their extension by Bollerslev (1986) to gen-
eralised ARCH (GARCH) processes, GARCH models have been used widely
by practitioners. At a first glance, their structure may seem simple, but their
mathematical treatment has turned out to be quite complex. The aim of this
article is to collect some probabilistic properties of GARCH processes.

Let (εt)t∈Z be a sequence of independent and identically distributed (i.i.d.)
random variables, and let p ∈ N = {1, 2, . . .} and q ∈ N0 = N ∪ {0}. Further,
let α0 > 0, α1, . . . , αp−1 ≥ 0, αp > 0, β1, . . . , βq−1 ≥ 0 and βq > 0 be non-
negative parameters. A GARCH(p, q) process (Xt)t∈Z with volatility process
(σt)t∈Z is then a solution to the equations

Xt = σtεt, t ∈ Z, (1)

σ2
t = α0 +

p
∑

i=1

αiX
2
t−i +

q
∑

j=1

βjσ
2
t−j , t ∈ Z, (2)
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where the process (σt)t∈Z is non-negative. The sequence (εt)t∈Z is referred to
as the driving noise sequence. GARCH(p, 0) processes are called ARCH(p)
processes. The case of a GARCH(0, q) process is excluded since in that case,
the volatility equation (2) decouples from the observed process Xt and the
driving noise sequence. Note that in some articles (including the original
paper by Bollerslev (1986)) the definition of p and q for GARCH processes
is interchanged and the process defined in (1) with volatility given by (2) is
referred to as GARCH(q, p) rather than GARCH(p, q).

It is a desirable property that σt should depend only on the past innova-
tions (εt−h)h∈N, i.e. be measurable with respect to the σ-algebra generated
by (εt−h)h∈N. If this condition holds, we shall call the GARCH(p, q) process
causal. Then Xt is measurable with respect to the σ-algebra σ(εt−h : h ∈ N0)
generated by (εt−h)h∈N0 . Also, σt is independent of (εt+h)h∈N0 , and Xt is in-
dependent of σ(εt+h : h ∈ N), for fixed t. Often the requirement of causality
is added to the definition of GARCH processes. However, since we shall be
mainly interested in strictly stationary solutions which turn out to be auto-
matically causal for GARCH processes, we have dropped the requirement at
this point.

The requirement that all the coefficients α1, . . . , αp and β1, . . . , βq are non-
negative ensures that σ2

t is non-negative, so that σt can indeed be defined
as the square root of σ2

t . The parameter constraints can be slightly relaxed
to allow for some negative parameters, but such that σ2

t will still be non-
negative, see Nelson and Cao (1992). In the present paper, we shall however
always assume non-negative coefficients.

The paper is organized as follows: in Section 2 we collect the criteria un-
der which strictly stationary and weakly stationary solutions to the GARCH
equations exist. The ARCH(∞) representation for GARCH processes is given
in Section 3. In Section 4, we focus on conditions ensuring finiteness of mo-
ments, and give the autocorrelation function of the squared observations.
Section 5 is concerned with the strong mixing property and an application to
the limit behaviour of the sample autocorrelation function when sufficiently
high moments exist. In Section 6 we shortly mention the tail behaviour of
stationary solutions and their continuity properties. GARCH processes in-
dexed by the integers are addressed in Section 7. Finally, some concluding
remarks are made in Section 8.

For many of the results presented in this paper, it was tried to give at
least a short sketch of the proof, following often the original articles, or the
exposition given by Straumann (2005).

2 Stationary Solutions

Recall that a sequence (Yt)t∈Z of random vectors in R
d is called strictly

stationary, if for every t1, . . . , tk ∈ Z, the distribution of (Yt1+h, . . . , Ytk+h)
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does not depend on h for h ∈ N0. When speaking of a strictly stationary
GARCH(p, q) process, we shall mean that the bivariate process (Xt, σt)t∈N0

is strictly stationary.

2.1 Strict stationarity of ARCH(1) and GARCH(1, 1)

Now suppose that (p, q) = (1, 1) or that (p, q) = (1, 0), that (εt)t∈Z is i.i.d.,
and that (Xt, σt)t∈Z satisfy (1), (2). Hence we have a GARCH(1, 1)/ARCH(1)
process, whose volatility process satisfies

σ2
t = α0 + β1σ

2
t−1 + α1σ

2
t−1ε

2
t−1 = α0 + (β1 + α1ε

2
t−1)σ

2
t−1, (3)

where β1 := 0 if q = 0. Denoting

At = β1 + α1ε
2
t , Bt = α0, and Yt = σ2

t+1, (4)

it follows that (Yt)t∈Z = (σ2
t+1)t∈Z is the solution of the random recurrence

equation Yt = AtYt−1 +Bt, where (At, Bt)t∈Z is i.i.d. As we shall see, every
strictly stationary solution (σ2

t )t∈Z of (3) can be expressed as an appropriate
function of the driving noise sequence (εt)t∈Z, so that stationarity of (σ2

t )t∈Z

implies stationarity of (σ2
t , εt)t∈Z and hence of (Xt, σt). Thus, the question

of existence of strictly stationary solutions of the GARCH(1, 1) process can
be reduced to the study of strictly stationary solutions of (3). Since we will
need multivariate random reccurence equations for the treatment of higher
order GARCH processes, we give their definition already in R

d. So let d ∈ N,
and suppose (At, Bt)t∈Z is an i.i.d. sequence, where At is a (d× d)-random
matrix and Bt is a d-dimensional random vector. The difference equation

Yt = AtYt−1 +Bt, t ∈ Z, (5)

is then called a random recurrence equation (with i.i.d. coefficients), where
the solution (Yt)t∈Z is a sequence of d-dimensional random vectors. Every
such solution then satisfies

Yt = AtYt−1 + Bt

= AtAt−1Yt−2 +AtBt−1 +Bt = · · ·

=

(

k
∏

i=0

At−i

)

Yt−k−1 +
k

∑

i=0

⎛

⎝

i−1
∏

j=0

At−j

⎞

⎠Bt−i (6)

for all k ∈ N0, with the usual convention that
∏−1

j=0At−j = 1 for the prod-
uct over an empty index set. Letting k → ∞, it is reasonable to hope
that for a stationary solution, limk→∞

(

∏k
i=0 At−i

)

Yt−k−1 = 0 a.s. and
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that
∑k

i=0

(

∏i−1
j=0At−j

)

Bt−i converges almost surely as k → ∞. In the
GARCH(1, 1) and ARCH(1) case, this is indeed the case: let At, Bt and
Yt as in (4). By (6), we have

σ2
t+1 = Yt =

(

k
∏

i=0

At−i

)

σ2
t−k + α0

k
∑

i=0

i−1
∏

j=0

At−j .

Since this is a sum of non-negative components, it follows that
∑∞

i=0

∏i−1
j=0 At−j

converges almost surely for each t, and hence that
∏k

i=0 At−i converges al-
most surely to 0 as k → ∞. Hence if (σ2

t )t∈Z is strictly stationary, then
(

∏k
i=0 At−i

)

σ2
t−k converges in distribution and hence in probability to 0 as

k → ∞. So in the ARCH(1) and GARCH(1, 1) case, there is at most one
strictly stationary solution (σ2

t )t∈Z = (Yt−1)t∈Z, given by

Yt :=
∞
∑

i=0

⎛

⎝

i−1
∏

j=0

At−j

⎞

⎠Bt−i, t ∈ Z. (7)

On the other hand, it is clear that if (7) converges a.s. for some and hence
all t ∈ Z, where (At, Bt)t∈Z are the i.i.d. coefficients of the random recur-
rence equation (5) in R

d, then Yt, defined by (7), defines a strictly stationary
solution of (5).

We have seen that existence of a strictly stationary GARCH(1, 1)/ARCH(1)
process implies almost sure convergence of

∏k
i=0 A−i to 0 as k → ∞. For the

converse, we cite the following result:

Proposition 1 (Goldie and Maller (2000), Theorem 2.1)
Let d = 1 and (At, Bt)t∈Z be i.i.d. in R × R. Suppose that P (B0 = 0) < 1,
P (A0 = 0) = 0, that

∏n
i=0A−i converges almost surely to zero as n → ∞,

and that
∫

(1,∞)

log q
TA(log q)

P|B0|(dq) < ∞, (8)

where P|B0| denotes the distribution of |B0| and TA(y) :=
∫ y

0
P (|A0| <

e−x) dx for y ≥ 0. Then
∑∞

i=0

(

∏i−1
j=0 At−j

)

Bt−i converges almost surely
absolutely for every t ∈ Z.

In the GARCH(1, 1) / ARCH(1) case, we have B0 = α0 > 0 and (8) clearly
holds. Observe that

∑∞
i=0

(

∏i−1
j=0 At−j

)

Bt−i converges trivially almost surely
if P (A0 = 0) > 0, in which case also

∏∞
i=0 At−i = 0 a.s. Hence we see that

a strictly stationary solution of GARCH(1, 1) / ARCH(1) exists if and only
if

∏k
i=0 A−i converges almost surely to 0 as k → ∞. If P (A0 = 0) > 0

this is clearly the case, so suppose that β1 > 0 or that P (ε20 > 0) = 1.
Denoting Wt := logAt,

∏∞
i=0 A−i = 0 a.s. is then equivalent to the almost
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sure divergence to −∞ of the random walk Sn :=
∑n

i=0W−n. If EW+
0 < ∞,

then it is well known that Sn → −∞ if and only if EW+
0 < EW−

0 ≤ ∞, i.e.
either EW−

0 = ∞ or E|W0| < ∞ with EW0 < 0. Furthermore, Sn cannot
diverge almost surely to −∞ as n → ∞ if EW−

0 < EW+
0 = ∞. Observe that

in the GARCH(1, 1) case we have β1 > 0, so that W0 ≥ log β1 > −∞, hence
EW−

0 < ∞, and it follows that there exists a strictly stationary solution of
the GARCH(1, 1) process if and only if E log(β1+α1ε

2
0) < 0. In the ARCH(1)

case, however,EW−
0 = ∞ can happen. If EW−

0 = ∞, it is known from Kesten
and Maller (1996) and Erickson (1973), that Sn → −∞ a.s. if and only if

∫

(0,∞)

x

E(W−
0 ∧ x)

dP (W+
0 ≤ x) < ∞.

With W0 = logα1 + log ε20, the latter condition can be easily seen to be
independent of α1 > 0. Summing up, we have the following characterisation
of stationary solutions of the GARCH(1, 1) and ARCH(1) equations. For the
GARCH(1, 1) case, and for the ARCH(1) case with E log+(ε20) < ∞ this is
due to Nelsen (1990). The ARCH(1) case with E log+(ε20) = ∞ was added
by Klüppelberg et al. (2004). Here, as usual, for a real number x we set
log+(x) = log(max(1, x)), so that log+(ε20) = (log ε20)

+.

Theorem 1 (Nelsen (1990), Theorem 2, Klüppelberg et al. (2004),
Theorem 2.1)
(a) The GARCH(1, 1) process with α0, α1, β1 > 0 has a strictly stationary
solution if and only if

−∞ < E log(β1 + α1ε
2
0) < 0. (9)

This solution is unique, and its squared volatility is given by

σ2
t = α0

∞
∑

i=0

i−1
∏

j=0

(β1 + α1ε
2
t−1−j). (10)

(b) The ARCH(1) process with β1 = 0 and α1, α0 > 0 has a strictly stationary
solution if and only if one of the following cases occurs:

(i) P (ε0 = 0) > 0.
(ii) E| log ε20| < ∞ and E log ε20 < − logα1, i.e. (9) holds.
(iii) E(log ε20)

+ < ∞ and E(log ε20)
− = ∞.

(iv) E(log ε20)+ = E(log ε20)− = ∞ and

∫ ∞

0

x

(∫ x

0

P (log ε20 < −y) dy
)−1

dP (log ε20 ≤ x) < ∞. (11)

In each case, the strictly stationary solution is unique, and its squared volatil-
ity is given by (10).
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Observe that condition (9) depends on ε20, α1 and β1, while conditions (i),
(iii) and (iv) in the ARCH case depend on ε20 only.

Example 1 (a) Suppose that (εt)t∈Z is i.i.d. with Eε20 ∈ (0,∞), and suppose
that either β1 > 0 (GARCH(1, 1)) or that E| log ε20| < ∞. Since

E log(β1 + α1ε
2
0) ≤ logE(β1 + α1ε

2
0) = log(β1 + E(ε20)α1)

by Jensen’s inequality, a sufficient condition for a strictly stationary solution
to exist is that E(ε20)α1 +β1 < 0. Now suppose that ε0 is standard normally
distributed. If β1 = 0, then

E log(α1ε
2
0) = logα1 +

4√
2π

∫ ∞

0

log(x)e−x2/2 dx = log(α1)−(CEM +log(2)),

where CEM := limN→∞
∑N

n=1
1
n − log(N) ≈ 0.57721566 is the Euler-

Mascheroni constant. Hence, the ARCH(1) process with standard normal
noise has a strictly stationary solution if and only

α1 < 2 exp(CEM ) ≈ 3.562.

Since limβ1↓0E log(β1 + α1ε
2
0) = E log(α1ε

2
0), it follows that for every

α1 < 2 exp(CEM ) there exists some β(α1) > 0 such that the GARCH(1, 1)
process with parameters α0, α1 and β1 ∈ (0, β(α1)) and standard normal in-
novations has a strictly stationary solution. In particular, strictly stationary
solutions of the GARCH(1, 1) process with α1 + β1 > 1 do exist. However,
observe that while α1 may be bigger than 1, β1 < 1 is a necessary condition
for a strictly stationary solution to exist.
For normal noise, E(log(β1 + α1ε

2
0)) can be expressed in terms of confluent

and generalised hypergeometric functions, which in turn can be calculated
numerically. See Nelsen (1990), Theorem 6, for details.
(b) Consider the ARCH(1) process with α1 > 0, and let (εt)t∈Z be i.i.d.
such that the distribution of ε0 has atoms at ±

√

2 − E2(2) with mass
1/4 each, and an absolutely continuous component with density fε(x) =
(4|x|(log |x|)2)−11(−1/e,1/e)(x). Here, En(x) =

∫ ∞
1
e−xt/tn dt denotes the

exponential integral, and it holds E2(2) ≈ 0.0375. Since
∫ 1/e

−1/e fε(x) dx =
∫ −1

−∞(2y2)−1 dy = 1/2, fε indeed defines a probability distribution. Moreover,
since ε0 is symmetric, we have Eε0 = 0 and

Eε20 =
1
2

∫ 1/e

0

x

(log x)2
dx+

1
2
(2−E2(2)) =

1
2

∫ −1

−∞

e2y

y2
dy+

1
2
(2−E2(2)) = 1.

The absolutely continuous component of log ε20 can be easily seen to have den-
sity x �→ (2x2)−11(−∞,−1)(x), so that E(log ε20)

− = ∞. Since E(log ε20)
+ <

∞, the ARCH(1) process with α1 > 0 and the given distribution of the
(εt)t∈Z has a unique strictly stationary solution by Case (iii) of the previous
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Theorem.
(c) Let (εt)t∈Z be i.i.d. with marginal density

fε(x) =

⎧

⎨

⎩

(2|x|(log |x|)3/2)−1, |x| > e,
(4|x|(log |x|)2)−1, 0 < |x| < 1/e,
0, else.

Then the density of log ε20 is given by

flog ε2(x) =

⎧

⎨

⎩

x−3/2, x > 1,
(2x2)−1, x < −1,
0, x ∈ [−1, 1].

We conclude that E(log ε20)
+ = E(log ε20)

− = ∞, and it is easily checked that
(11) is satisfied. Hence, a unique strictly stationary solution of the ARCH(1)
process with driving noise (εt)t∈Z exists.

2.2 Strict stationarity of GARCH(p, q)

For higher order GARCH processes, one has to work with multidimensional
random recurrence equations. Consider a GARCH(p, q) process (Xt)t∈Z with
volatility (σt)t∈Z and driving noise sequence (εt)t∈Z. Let p̃ := max(p, 2),
q̃ := max(q, 2) and define the random (p̃+ q̃ − 1)–vectors Yt and Bt by

Yt = (σ2
t+1, . . . , σ

2
t−p̃+2, X

2
t , . . . , X

2
t−q̃+2)

′ (12)

and Bt = (α0, 0, . . . , 0)′ ∈ R
p̃+q̃−1 ,

respectively. Further, let βq+1 = β2 = 0 if q ≤ 1, and α2 = 0 if p = 1, and
define the random (p̃+ q̃ − 1) × (p̃+ q̃ − 1)-matrix At by

At =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

β1 + α1ε
2
t β2 · · · βq̃−1 βq̃ α2 · · · αp̃−1 αp̃

1 0 · · · 0 0 0 0 0 0
0 1 · · · 0 0 0 0 0 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · 0 0
ε2t 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 1 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (13)

These matrices where introduced by Bougerol and Picard (1992a). It is then
easy to see that each strictly stationary solution of the GARCH equations
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(1), (2) gives rise to a strictly stationary solution of the random recurrence
equation (5) with Yt, Bt and At as defined in (12) and (13), and vice versa.
Observe that for p = q = 1 and for (p, q) = (1, 0), the random recurrence
equation with At and Bt as in (12) and (13) differs from the one with At and
Bt as in (4). In fact, the former is a random recurrence equation in R

3, while
the latter is one-dimensional.

Strict stationarity of multivariate random recurrence equations is studied
in terms of the top Lyapunov exponent. Let ‖ · ‖ be any vector norm in R

d.
For a matrix M ∈ R

d×d, the corresponding matrix norm ‖M‖ is defined by

‖M‖ := sup
x∈R,x �=0

‖Mx‖
‖x‖ .

Definition 1 Let (An)n∈Z be an i.i.d. sequence of d × d random matrices,
such that E log+ ‖A0‖ < ∞. Then the top Lyapunov exponent associated
with (An)n∈Z is defined by

γ := inf
n∈N0

E

(

1
n+ 1

‖A0A−1 · · ·A−n‖
)

.

Furstenberg and Kesten (1960) showed that

γ = lim
n→∞

1
n+ 1

log ‖A0A−1 · · ·A−n‖ (14)

almost surely, and an inspection of their proof shows that γ is independent
of the chosen vector norm (hence matrix norm).

The existence of stationary solutions of random recurrence equations can
be described neatly in terms of strict negativity of the associated top Lya-
punov exponent. Namely, Bougerol and Picard (1992b) have shown that
so called irreducible random recurrence equations with i.i.d. coefficients
(At, Bt)t∈Z, such that E log+ ‖A0‖ < ∞ and E log+ ‖B0‖ < ∞, admit a
nonanticipative strictly stationary solution if and only if the top Lyapunov
exponent associated with (At)t∈Z is strictly negative. Here, nonanticipative
means that Yt is independent of (At+h, Bt+h)h∈N for each t. For GARCH(p, q)
cases, it is easier to exploit the positivity of the coefficients in the matrix At

rather than to check that the model is irreducible. The result is again due to
Bougerol and Picard:

Theorem 2 (Bougerol and Picard (1992a), Theorem 1.3)
Let (εt)t∈Z be an i.i.d. sequence of random variables such that E(log ε20)

+ <
∞. Let α0, . . . , αp, β1, . . . , βq be GARCH(p, q) parameters, and let the (p̃+ q̃−
1)×(p̃+ q̃−1) random matrices At as well as the (p̃+ q̃−1)–vectors Bt be de-
fined as in (13) and (12), respectively. Then the corresponding GARCH(p, q)
process admits a strictly stationary solution if and only if the top Lyapunov
exponent γ associated with the sequence (At)t∈Z is strictly negative. This so-
lution is unique, and the random vector Yt defined in (12) satisfies (7).
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The fact that every strictly stationary solution must be unique and of
the form (7) follows with a refined argument similar to the GARCH(1, 1)
case, using that every element in the vectors Yt and in the matrices At

must be non-negative. In particular this shows that every strictly station-
ary solution must be causal (the argument here does not require the as-
sumption of finite log-moments). Further, existence of a strictly stationary
solution implies limk→∞ ‖A0A−1 · · ·A−k‖ = 0 a.s. Since (An)n∈Z is i.i.d. and
E log+ ‖A0‖ < ∞, this in turn implies strict negativity of the top Lyapunov
exponent γ (see Bougerol and Picard (1992b), Lemma 3.4). That γ < 0 im-
plies convergence of (7) can be seen from the almost sure convergence in (14),
which implies

∥

∥

∥

∥

∥

∥

⎛

⎝

k−1
∏

j=0

At−j

⎞

⎠Bt−k

∥

∥

∥

∥

∥

∥

≤ Cte
γk/2

for some random variable Ct. Hence, the series (7) converges almost surely
and must be strictly stationary. That strict negativity of the top Lyapunov
exponent implies convergence of (7) and hence the existence of strictly sta-
tionary solutions is true for a much wider class of random recurrence equa-
tions, see e.g. Kesten (1973), Vervaat (1979), Brandt (1986) or Bougerol and
Picard (1992b).

Due to its importance, we state the observation made after Theorem 2
again explicitly:

Remark 1 A strictly stationary solution to the GARCH equations (1) and
(2) is necessarily unique and the corresponding vector Yt defined in (12)
satisfies (7). In particular, every strictly stationary GARCH process is causal.

For matrices, it may be intractable to obtain explicit expressions for the
top Lyapunov exponent and hence to check whether it is strictly negative
or not. Often, one has to use simulations based on (14) to do that. If the
noise sequence has finite variance, however, Bollerslev gave a handy sufficient
condition for the GARCH process to have a strictly stationary solution, which
is easy to check (part (a) of the following theorem). Bougerol and Picard
showed that the boundary values in this condition can still be attained under
certain conditions, and they have also given a necessary condition for strictly
stationary solutions to exist:

Corollary 1 (Bollerslev (1986), Theorem 1, Bougerol and Picard
(1992a), Corollaries 2.2, 2.3)
Let (εt)t∈Z be the driving noise sequence of a GARCH(p, q) process, and sup-
pose that 0 < Eε20 < ∞. Then the following hold:
(a) If E(ε20)

∑p
i=1 αi +

∑q
j=1 βj < 1, then the GARCH(p, q) process admits a

unique strictly stationary solution.
(b) If P (ε0 = 0) = 0, ε0 has unbounded support, p, q ≥ 2 and α1, . . . , αp > 0,
β1, . . . , βq > 0, and E(ε20)

∑p
i=1 αi +

∑q
j=1 βj = 1, then the GARCH(p, q)

process admits a unique strictly stationary solution.
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(c) If
∑q

j=1 βj ≥ 1, then no strictly stationary solution of the GARCH(p, q)
process exists.

For the proof of Corollary 1, one may assume that Eε20 = 1. The general
result then follows by an easy transformation. If Eε20 = 1, Bougerol and
Picard (1992a) prove (b) by showing that the spectral radius ρ(E(A0)) of the
matrix E(A0) is equal to 1. Recall that the spectral radius ρ(C) of a square
matrix C is defined by

ρ(C) = sup {|λ| : λ eigenvalue of C}.

Since A0 is almost surely not bounded, neither has zero columns nor zero
rows, and has non-negative entries, it follows from Theorem 2 of Kesten and
Spitzer (1984) that γ < log ρ(E(A0)) = 0. The proofs of (a) and (c) are
achieved by similar reasoning, using estimates between the top Lyapunov
exponent and the spectral radius. In particular, in case (a) one has γ ≤
log ρ(E(A0)) < 0.

For real data one often estimates parameters αi and βj such that
∑p

i=1 αi+
∑q

j=1 βj is close to one, when assuming noise with variance 1. In analogy to
the integrated ARMA (ARIMA) process, Engle and Bollerslev (1986) call
GARCH processes for which

∑p
i=1 αi+

∑q
j=1 βj = 1 integrated GARCH(p, q)

processes, or IGARCH(p, q) processes, for short. Observe that Corollary 1(b)
shows that IGARCH processes may have a strictly stationary solution, unlike
ARIMA processes where a unit root problem occurs.

Remark 2 Let ε0, p, q and α1, . . . , αp, β1, . . . , βq be as in Corollary 1(b).
Then there exists δ > 0 such that for all α̃i ≥ 0, ˜βj ≥ 0 with |α̃i − αi| < δ

(i = 1, . . . , p) and |˜βj −βj| < δ (j = 1, . . . , q), the GARCH(p, q) process with
parameters α0, α̃1, . . . , α̃p, ˜β1, . . . , ˜βq and noise sequence (εt)t∈Z admits a
unique strictly stationary solution. In particular, there exist strictly station-
ary GARCH(p, q) processes for which E(ε20)

∑p
i=1 α̃i +

∑q
j=1

˜βj > 1. This
follows immediately from Definition 1 and Theorem 2, since for the parame-
ters of Corollary 1(b), the top Lyapunov exponent γ is strictly negative.

2.3 Ergodicity

Let Y = (Yt)t∈Z be a strictly stationary time series of random vectors in R
k.

Then Y can be seen as a random element in (Rk)Z, equipped with its Borel-σ-
algebra B((Rk)Z). Let the backshift operator ΦBS : (Rk)Z → (Rk)Z be given
by ΦBS((zi)i∈Z) = (zi−1)i∈Z. Then the time series (Yt)t∈Z is called ergodic
if ΦBS(Λ) = Λ for Λ ∈ B((Rk)Z) implies P (Y ∈ Λ) ∈ {0, 1}. See e.g. Ash
and Gardner (1975) for this and further properties of ergodic time series. In
particular, it is known that if (gn)n∈Z is a sequence of measurable functions
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gn : (Rk)Z → R
d such that gn−1 = gn ◦ ΦBS and Y = (Yt)t∈Z is strictly

stationary and ergodic with values in R
k, then (gn(Y ))n∈Z is also strictly

stationary and ergodic (see e.g. Brandt et al. (1990), Lemma A 1.2.7). Since
the sequence (At, Bt)t∈Z is i.i.d. and hence strictly stationary and ergodic for
a GARCH process, it follows that every strictly stationary GARCH process is
ergodic, since it can be expressed via (7). This is due to Bougerol and Picard
(1992a), Theorem 1.3.

2.4 Weak stationarity

Recall that a time series (Zt)t∈Z of random vectors in R
d is called weakly

stationary or wide-sense stationary, if E‖Zt‖2 < ∞ for all t ∈ Z, E(Zt) ∈ R
d

is independent of t ∈ Z, and the covariance matrices satisfy

Cov(Zt1+h, Zt2+h) = Cov(Zt1 , Zt2)

for all t1, t2, h ∈ Z. Clearly, every strictly stationary sequence which satisfies
E‖Z0‖2 < ∞ is also weakly stationary. For causal GARCH processes, we
shall see that the converse is true also, i.e. that every causal weakly stationary
GARCH process is also strictly stationary.

Let (Xt, σt) be a GARCH process such that σt is independent of εt, which
is in particular satisfied for causal solutions. Then if P (ε0 = 0) < 1, it
follows from (1) and the independence of σt and εt that for given r ∈ (0,∞),
E|Xt|r < ∞ if and only if E|εt|r < ∞ and Eσrt < ∞. Suppose Eε20 ∈ (0,∞),
and that (Xt, σt) is a GARCH(p, q) process such that Eσ2

t = Eσ2
t′ < ∞ for

all t, t′ ∈ Z. Then (2) shows that

E(σ2
0) = α0 +

p
∑

i=1

αiE(σ2
0)E(ε20) +

q
∑

j=1

βjE(σ2
0).

Hence we see that a necessary condition for a causal weakly stationary so-
lution to exist is that E(ε20)

∑p
i=1 αi +

∑q
j=1 βj < 1. Now suppose that

(σt)t∈Z is a causal weakly stationary solution, and for simplicity assume that
Eε20 = 1. With Yt, Bt and At as in (12) and (13), Yt must satisfy (6). Note
that then

∑∞
i=0

(

∏i−1
j=0 At−j

)

Bt−i converges a.s. to the strictly stationary

solution by Corollary 1. By (6), this implies that
(

∏k
i=0 At−i

)

Yt−k−1 con-
verges almost surely to some finite random variable as k → ∞. If this limit
can be seen to be 0, then it follows that the weakly stationary solution must
coincide with the strictly stationary. As remarked after Corollary 1, the spec-
tral radius of E(A0) is less than 1. Hence there is some N ∈ N such that
‖(EA0)N‖ = ‖E(A0 · · ·A−N+1)‖ < 1. By causality and weak stationarity,
this implies that E

((

∏k
i=0At−i

)

Yt−k−1

)

converges to 0 as k → ∞, and since
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each of the components of
(

∏k
i=0 At−i

)

Yt−k−1 is positive, Fatou’s lemma
shows that its almost sure limit must be 0, so that every causal weakly station-
ary solution is also strictly stationary. Conversely, if (Yt)t∈Z is a strictly sta-
tionary solution and E(ε20)

∑p
i=1 αi +

∑q
j=1 βq < 1 with Eε20 = 1 for simplic-

ity, it follows from ‖(EA0)N‖ < 1 that
∑∞

i=0E
((

∏i−1
j=0 At−j

)

Bt−i

)

is finite,
and since each of its components is positive, this implies that E‖Yt‖ < ∞ for
the strictly stationary solution. Summing up, we have the following character-
isation of causal weakly stationary solutions, which was derived by Bollerslev
(1986).

Theorem 3 (Bollerslev (1986), Theorem 1)
Let (εt)t∈Z be such that Eε20 < ∞. Then the GARCH(p, q) process (Xt, σt)t∈Z

admits a causal weakly stationary solution if and only E(ε20)
∑p

i=1 αi +
∑q

j=1 βj < 1. In that case, the causal weakly stationary solution is unique
and coincides with the unique strictly stationary solution. It holds

E(σ2
t ) =

α0

1 − E(ε20)
∑p

i=1 αi −
∑q

j=1 βj
, E(X2

t ) = E(σ2
t )E(ε20). (15)

3 The ARCH(∞) Representation and the Conditional
Variance

Often it can be helpful to view a GARCH(p, q) process as an ARCH process of
infinite order. In particular, from the ARCH(∞) representation one can easily
read off the conditional variance of Xt given its infinite past (Xs : s < t).
Originally, Engle (1982) and Bollerslev (1986) defined ARCH and GARCH
processes in terms of the conditional variance. Equation (18) below then
shows that this property does hold indeed, so that the definition of GARCH
processes given here is consistent with the original one of Engle and Bollerslev.

Theorem 4 (Bollerslev (1986), pp. 309–310)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process driven by (εt)t∈Z,
such that Eε20 < ∞ and E(ε20)

∑p
i=1 αi +

∑q
j=1 βj < 1. Then there is a

sequence (ψj)j∈N0 of real constants such that ψ0 > 0, ψj ≥ 0 for all j,
∑∞

j=0 ψj < ∞, and

σ2
t = ψ0 +

∞
∑

i=1

ψiX
2
t−i. (16)

The constants are determined by
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ψ0 =
α0

1 −
∑q

j=1 βj
,

∞
∑

j=1

ψjz
j =

∑p
i=1 αiz

i

1 −
∑q

j=1 βjz
j
, z ∈ C, |z| ≤ 1. (17)

In particular, σ2
t is measurable with respect to the infinite past (Xs : s ≤

t− 1), and the conditional expectation and variance of Xt given (Xs : s < t)
are given by

E(Xt|Xs : s < t) = E(ε0)σt and V (Xt|Xs : s < t) = V (ε0)σ2
t , (18)

respectively.

For example, if (εt)t∈Z is i.i.d. standard normal, then conditionally on (Xs :
s < t), Xt is N(0, σ2

t ) distributed, since σ2
t is a Borel function of (Xs : s < t).

ARCH(∞) models were introduced in more generality by Robinson (1991).
The explicit expression in (16) can be found in Bollerslev (1986) or Nelson
and Cao (1992). It can be derived defining

St := σ2
t − E(σ2

t ), Zt := X2
t − E(X2

t ), t ∈ Z. (19)

Then (2) is equivalent to

St −
q

∑

j=1

βjSt−j =
p

∑

i=1

αiZt−i. (20)

This is an ARMA equation for (St)t∈Z such that supt∈Z
E|Zt| < ∞ and

E(St) = E(Zt) = 0. Since
∑q

j=1 βj < 1, this ARMA equation is causal,
and it follows that St =

∑∞
j=1 ψjZt−j where (ψj)j∈N are given by (17). An

easy calculation prevails that ψj ≥ 0, and resubstituting σ2
t and X2

t in this
ARMA equation shows (16). Hence σt is measurable with respect to the σ-
algebra generated by (Xs : s < t), while εt is independent of this σ-algebra
by causality. This then implies (18).

In the literature there exist many other examples of ARCH(∞) models
apart from GARCH(p, q). For more information and references regarding
ARCH(∞) models, see Giraitis et al. (2006) and (2008).

4 Existence of Moments and the Autocovariance
Function of the Squared Process

It is important to know whether the stationary solution has moments of
higher order. For example, in Theorem 3, we have seen that the strictly
stationary solution has finite second moments if and only if E(ε20)

∑p
i=1 αi +
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∑q
j=1 βj < 1, and we have given an explicit expression for Eσ2

t and EX2
t .

However, one is also interested in conditions ensuring finiteness of moments of
higher order, the most important case being finiteness of Eσ4

t and EX4
t . For

the GARCH(1, 1) process with normal innovations, a necessary and sufficient
condition for such moments to exist has been given by Bollerslev (1986),
and extended by He and Teräsvirta (1999b) to general noise sequences. Ling
(1999) and Ling and McAleer (2002) give a necessary and sufficient condition
for moments of higher order to exist. For ARCH(p) processes, a necessary and
sufficient condition for higher order moments to exist was already obtained
earlier by Milhøj (1985).

Observe that if P (ε0 = 0) < 1, then by independence of Xt and σt for
strictly stationary and hence causal solutions, the m’th moment of Xt =
σtεt exists if and only Eσmt < ∞ and E|εt|m < ∞. Hence we shall only
be concerned with moment conditions for σ2

t . In most cases, εt will be a
symmetric distribution, so that the odd moments of εt and hence Xt will be
zero. The main concern is hence on even moments of GARCH processes.

4.1 Moments of ARCH(1) and GARCH(1, 1)

The following theorem gives a complete characterisation when the (possible
fractional) moment of a GARCH(1, 1) or ARCH(1) process exists:

Theorem 5 (Bollerslev (1986), Theorem 2, and He and Teräsvirta
(1999b), Theorem 1)
Let (Xt, σt) be a strictly stationary GARCH(1, 1) or ARCH(1) process as in
(1), (2). Let m > 0. Then the (fractional) m’th moment E(σ2m

t ) of σ2
t exists

if and only if
E(β1 + α1ε

2
0)

m < 1. (21)

If m is a positive integer and this condition is satisfied, and μj := E(σ2j
t )

denotes the j’th moment of σ2
t , then μm can be calculated recursively by

μm = (1 − E(β1 + α1ε
2
0)

m)−1
m−1
∑

j=0

(

m

j

)

αm−j
0 E(β1 + α1ε

2
0)

jμj . (22)

The (2m)’th moment of Xt is given by

E(X2m
t ) = μmE(ε2m0 ).

That condition (21) is necessary and sufficient for finiteness of E(σ2m
t )

(m ∈ (0,∞)) can be easily seen from representation (10): for if E(β1 +
α1ε

2
0)m < 1 and m ∈ [1,∞), then Minkowski’s inequality shows that
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(E(σ2m
t ))1/m ≤ α0

∞
∑

i=0

(E(β1 + α1ε
2
0)

m)i/m < ∞,

and for m < 1 one uses similarly E(U + V )m ≤ EUm + EV m for posi-
tive random variables U, V . Conversely, if E(σ2m

t ) < ∞, then E
∏i−1

j=0(β1 +
α1ε

2
t−1−j)

m must converge to 0 as i → ∞, which can only happen if (21)
holds. Finally, if m is an integer and (21) holds, then (22) follows easily by
raising (2) to the m’th power and taking expectations.

Example 2 For an integer m, E(σ2m
t ) is finite if and only if

∑m
j=0

(

m
j

)

βm−j
1

αj1Eε
2j
t < 1. If εt is standard normally distributed, this means that

∞
∑

j=0

(

m

j

)

βm−j
1 αj1

j
∏

i=1

(2i− 1) < 1.

For example, the fourth moment of σt exists if and only if β2
1 +2β1α1 +3α2

1 <
1.

As an immediate consequence of Theorem 5, one sees that GARCH pro-
cesses do not have finite moments of all orders if ε0 has unbounded support,
which is a first indication that GARCH processes will generally have heavy
tails:

Corollary 2 Let (Xt, σt : t ∈ Z) be a strictly stationary GARCH(1, 1) or
ARCH(1) process and assume that P (α1ε

2
0 + β1 > 1) > 0. Then there is

r ≥ 1, such that Eσ2r
0 = E|X0|2r = ∞.

4.2 Moments of GARCH(p, q)

For GARCH processes of higher order, Ling (1999) and Ling and McAleer
(2002) give necessary and sufficient conditions for even moments of σt to be
finite. In order to state their result, we need the notion of the Kronecker
product of two matrices. For an (m×n)-matrix C = (cij)i=1,...,m,j=1,...,n and
a (p × r)-matrix D, the Kronecker product C ⊗ D is the (mp × nr)-matrix
given by

C ⊗D =

⎛

⎜

⎝

c11D · · · c1nD
...

. . .
...

cm1D · · · cmnD

⎞

⎟

⎠
.

See e.g. Lütkepohl (1996) for elementary properties of the Kronecker product.
We then have:
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Theorem 6 (Ling and McAleer (2002), Theorem 2.1)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process as in (1), (2),
and assume that α1 + β1 > 0. Let At be the (p̃+ q̃ − 1) × (p̃+ q̃ − 1) matrix
of (13). Let m ∈ N. Then the m’th moment of σ2

t is finite if and only if the
spectral radius of the matrix E(A⊗m

t ) is strictly less than 1.

Originally, Ling and McAleer (2002) formulated their result in terms of
the spectral radius of a matrix corresponding to another state space repre-
sentation of GARCH processes than the At-matrix defined in (13). The proof,
however, is quite similar. We shortly sketch the argument:
Suppose that ρ(E(A⊗m

t )) = lim supn→∞ ‖(E(A⊗m
t ))n‖1/n < 1. Then there is

λ ∈ (0, 1) such that ‖(E(A⊗m
t ))n‖ ≤ λn for large enough n, so that the supre-

mum of all elements of (E(A⊗m
t ))n decreases exponentially as n → ∞. The

same is then true for all elements of (E(A⊗m′
t ))n for every m′ ∈ {1, . . . , n}.

Now take the m’th Kronecker power of the representation (7) for the vector
Yt defined in (12). For example, for m = 2, one has (since Bt = Bt−i in (12))

Y ⊗2
t =

∞
∑

i1=0

∞
∑

i2=0

⎛

⎝

⎛

⎝

i1−1
∏

j1=0

At−j1

⎞

⎠Bt

⎞

⎠ ⊗

⎛

⎝

⎛

⎝

i2−1
∏

j2=0

At−j2

⎞

⎠Bt

⎞

⎠

=
∞
∑

i1=0

∞
∑

i2=i1

⎛

⎝

i1−1
∏

j1=0

A⊗2
t−j1

⎞

⎠

⎛

⎝

i2−1
∏

j2=i1

(Id ⊗At−j2)

⎞

⎠B⊗2
t

+
∞
∑

i1=1

i1−1
∑

i2=0

⎛

⎝

i2−1
∏

j2=0

A⊗2
t−j2

⎞

⎠

⎛

⎝

i1−1
∏

j1=i2

(At−j1 ⊗ Id)

⎞

⎠B⊗2
t ,

where Id denotes the (p̃ + q̃ − 1) × (p̃ + q̃ − 1) identity matrix. Taking
expectations and using the exponential decay of the elements, which are
all non-negative, this then shows that E(Y ⊗m

t ) is finite, and hence that
E(σ2m

t ) < ∞. The converse is established along similar lines: finiteness of
E(σ2m

t ) implies finiteness of E(Y ⊗m
t ). Using the fact that all appearing ma-

trices and vectors have non-negative entries, this then implies finiteness of
∑∞

i=0(E(A⊗m
t ))iB⊗m

0 as argued by Ling and McAleer (2002), and making
use of the assumption α1 + β1 > 0, this can be shown to imply finiteness of
∑∞

i=0 ‖(E(A⊗m
t ))i‖, showing that ρ(E(A⊗m

t )) < 1.
To check whether the spectral radius of the matrix E(A⊗m

t ) is less than
1 or not may be tedious or only numerically achievable. A simple sufficient
condition for the existence of moments can however be obtained by devel-
oping the ARCH(∞) representation (16) into a Volterra series expansion, as
described by Giraitis et al. (2006) and (2008). Accordingly, a sufficient con-
dition for the m’th moment of σ2

t in an ARCH(∞) process to exist is that
∑∞

j=1 ψj(E(|ε0|2m))1/m < 1. This was shown by Giraitis et al. (2000) for
m = 2 and observed to extend to hold for general m ≥ 1 by Giraitis et al.
(2006). With (17), this gives for the GARCH(p, q) process:
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Proposition 2 (Giraitis et al. (2006), Theorem 2.1)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process as in (1), (2),
let m ∈ [1,∞), and suppose that 0 < E|ε0|2m < ∞. Then

(

∑p
i=1 αi

1 −
∑q

j=1 βj

)m

E|ε0|2m < 1

is a sufficient condition for E(σ2m
0 ) < ∞.

Observe that 0 < E|ε0|2m < ∞ implies
∑q

j=1 βj < 1 by Corollary 1(c), so
that the expressions in the condition above are well-defined.

In econometrics, the kurtosis is often seen as an indicator for tail heaviness.
Recall that the kurtosis KR of a random variable R with ER4 < ∞ is defined
by KR = ER4

(ER2)2 . If (Xt, σt) is a stationary GARCH process which admits
finite fourth moment, then if follows from Jensen’s inequality that

EX4
t = E(ε4t )E(σ4

t ) ≥ E(ε4t )(E(σ2
t ))

2 = Kε0(E(X2
t ))2,

so that KX0 ≥ Kε0 . This shows that the kurtosis of the stationary solution is
always greater or equal than the kurtosis of the driving noise sequence, giving
another indication that GARCH processes lead to comparatively heavy tails.

While Theorem 6 gives a necessary and sufficient condition for even mo-
ments to exist, it does not give any information about the form of the moment.
The most important higher order moment is the fourth moment of σt, and
an elegant method to determine Eσ4

t was developed by Karanasos (1999). To
illustrate it, suppose that (Xt, σt)t∈Z is a strictly stationary GARCH(p, q)
process as in (1), (2), such that E(σ4

t ) < ∞, and denote

w := Eε20, v := Eε40, f := Eσ4
0 and g := Eσ2

0 =
α0

1 − w
∑p

i=1 αi −
∑q

j=1 βj
,

where we used (15). Then w, v, and g are known and we want to determine
f . For i ∈ N, denote further

λi := E(σ2
tX

2
t−i) and ci := E(σ2

t σ
2
t−i).

Since E(X2
t |εt−h : h ∈ N) = wσ2

t , it further holds for i ∈ N,

wλi = E(X2
tX

2
t−i), wci = E(X2

t σ
2
t−i), and f = E(X2

t σ
2
t )/w = E(X4

t )/v.

Then, taking expectations in each of the equations
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X2
t σ

2
t = X2

t

(

α0 +
p

∑

i=1

αiX
2
t−i +

q
∑

i=1

βiσ
2
t−i

)

,

σ2
t σ

2
t−j = σ2

t−j

(

α0 +
p

∑

i=1

αiX
2
t−i +

q
∑

i=1

βiσ
2
t−i

)

, j = 1, . . . , q,

σ2
tX

2
t−j = X2

t−j

(

α0 +
p

∑

i=1

αiX
2
t−i +

q
∑

i=1

βiσ
2
t−i

)

, j = 1, . . . , p,

one obtains

wf = α0wg +
p

∑

i=1

wαiλi +
q

∑

i=1

wβici, (23)

cj = α0g + (wαj + βj)f +
j−1
∑

i=1

(wαj−i + βj−i)ci

+
p−j
∑

i=1

αj+iλi +
q−j
∑

i=1

βj+ici, j = 1, . . . , q, (24)

λj = α0wg + (vαj + wβj)f +
j−1
∑

i=1

(wαj−i + βj−i)λi

+
p−j
∑

i=1

wαj+iλi +
q−j
∑

i=1

wβj+ici, j = 1, . . . , p, (25)

where αi = 0 for i > p and βi = 0 for i > q. Substituting cq from (24) and
λp from (25) into (23), one obtains a system of (p + q − 1) equations for
the unknown variables (f, c1, . . . , cq−1, λ1, . . . , λp−1). See Karanasos (1999),
Theorem 3.1, for more information. For another approach to obtain necessary
conditions for the fourth moment to exist and to obtain its structure, we refer
to He and Teräsvirta (1999a), Theorem 1.

4.3 The autocorrelation function of the squares

If the driving noise process of a strictly and weakly stationary GARCH pro-
cess has expectation Eε0 = 0, then EXt = E(ε0)E(σt) = 0, and for h ∈ N it
follows from (18) that

E(XtXt−h) = E E(XtXt−h|Xs : s < t) = E(Xt−hE(ε0)σt) = 0,

so that (Xt)t∈Z is (weak) White Noise (provided Eε20 �= 0), i.e. a weakly
stationary sequence whose elements are uncorrelated. This uncorrelatedness
is however not preserved in the squares of the GARCH process. Rather do
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the squares (X2
t )t∈Z satisfy an ARMA equation. This was already observed

by Bollerslev (1986), (1988). More precisely, we have:

Theorem 7 (Bollerslev (1986), Section 4)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process such that Eσ4

0 <
∞, Eε40 < ∞ and Var(ε20) > 0. Define

ut := X2
t − (Eε2t )σ

2
t = (ε2t − E(ε2t ))σ

2
t , t ∈ Z. (26)

Then (ut)t∈Z is a White Noise sequence with mean zero and variance E(σ4
0)

Var(ε20), and

St := σ2
t − α0

1 − (Eε20)
∑p

i=1 αi −
∑q

j=1 βj
, t ∈ Z,

and

Wt := X2
t − α0Eε

2
0

1 − (Eε20)
∑p

i=1 αi −
∑q

j=1 βj
, t ∈ Z,

satisfy the causal ARMA(max(p, q), p − 1) and causal ARMA(max(p, q), q)
equations

St −
max(p,q)
∑

i=1

((Eε20)αi + βi)St−i =
p

∑

i=1

αiut−i, t ∈ Z,

and

Wt −
max(p,q)
∑

i=1

((Eε20)αi + βi)Wt−i = ut −
q

∑

j=1

βjut−j , t ∈ Z,

respectively. Here, αi = 0 for i > p and βj = 0 for j > q. In particular, the
autocovariance and autocorrelation functions of (σ2

t )t∈Z and that of (X2
t )t∈Z

are those of the corresponding ARMA processes.

The fact that (ut)t∈Z is White Noise follows in complete analogy to
the White Noise property of (Xt)t∈Z by using (18). The ARMA repre-
sentations then follow by inserting (26) into (2), and they are causal by
Theorem 3. Observe that the ARMA equation for (St)t∈Z is actually an
ARMA(max(p, q), p′−1)-equation driven by (ut−p′)t∈Z, where p′ := min{j ∈
{1, . . . , p} : αj �= 0}. For general expressions for the autocoviarance functions
of ARMA processes, see Brockwell and Davis (1991), Section 3.3.
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5 Strong Mixing

Mixing conditions describe some type of asymptotic independence, which
may be helpful in proving limit theorems, e.g. for the sample autocorrela-
tion function or in extreme value theory. There exist many types of mixing
conditions, see e.g. Doukhan (1994) for an extensive treatment. For GARCH
processes, under weak assumptions one has a very strong notion of mixing,
namely β-mixing, which in particular implies strong mixing: let Y = (Yt)t∈Z

be a strictly stationary time series in R
d, defined on a probability space

(Ω,F , P ). Denote by F0
−∞ the σ-algebra generated by (Ys : s ≤ 0) and by

F∞
t the σ-algebra generated by (Ys : s ≥ t), and for k ∈ N let

α
(SM)
k := sup

C∈F0
−∞,D∈F∞

k

|P (C ∩D) − P (C)P (D)|,

β
(SM)
k :=

1
2

sup
I

∑

i=1

J
∑

j=1

|P (Ci ∩Dj) − P (Ci)P (Dj)|,

where in the definition of β(SM)
k the supremum is taken over all pairs of

finite partitions {C1, . . . , CI} and {D1, . . . , DJ} of Ω such that Ci ∈ F0
−∞

for each i and Dj ∈ F∞
k for each j. The constants α(SM)

k and β(SM)
k are the

α-mixing coefficients and β-mixing coefficients, respectively, and (Yt)t∈Z is
called strongly mixing (or α-mixing) if limk→∞ α

(SM)
k = 0, and β-mixing (or

absolutely regular) if limk→∞ β
(SM)
k = 0. It is strongly mixing with geometric

rate if there are constants λ ∈ (0, 1) and c such that α(SM)
k ≤ cλk for every

k, i.e. if αk decays at an exponential rate, and β-mixing with geometric rate
is defined similarly. Since

α
(SM)
k ≤ 1

2
β

(SM)
k ,

β-mixing implies strong mixing.
Based on results of Mokkadem (1990), Boussama (1998) showed that

GARCH processes are beta mixing with geometric rate under weak assump-
tions, see also Boussama (2006). The proof hereby relies on mixing criteria for
Markov chains as developed by Feigin and Tweedie (1985), see also Meyn and
Tweedie (1996). Observe that the sequence Y = (Yt)t∈N0 of random vectors
defined by (12) defines a discrete time Markov chain with state space R

p̃+q̃−1
+ .

Boussama (1998) then shows that under suitable assumptions on the noise
sequence this Markov chain is geometrically ergodic, i.e. there is a constant
λ ∈ (0, 1) such that

lim
n→∞

λ−n‖pn(y, ·) − π(·)‖TV = 0.
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Here, pn(y,E) for y ∈ R
p̃+q̃−1
+ and E ∈ B(Rp̃+q̃−1

+ ) denotes the n-step tran-
sition probability from y to E, i.e.

pn(y,E) = P (Yn ∈ E|Y0 = y),

π denotes the initial distribution of Y0 which is chosen to be the stationary
one, and ‖ · ‖TV denotes the total variation norm of measures. Since geo-
metric ergodicity implies β-mixing of (Yt)t∈Z with geometric rate, using the
causality it can be shown that this in turn implies β-mixing of (σt, εt)t∈Z

and hence of (Xt)t∈Z. Originally, the results in Boussama (1998) and (2006)
are stated under the additional assumption that the noise sequence has finite
second moment, but an inspection of the proof shows that it is sufficient to
suppose that E|ε0|s < ∞ for some s > 0. The next Theorem gives the precise
statements. See also Basrak et al. (2002), Corollary 3.5, and Mikosch and
Straumann (2006), Theorem 4.5 and Proposition 4.10.

Theorem 8 (Boussama (1998), Théorème 3.4.2)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(p, q) process as in (1), (2),
and suppose the noise sequence is such that ε0 is absolutely continuous with
Lebesgue density being strictly positive in a neighbourhood of zero, and such
that there exists some s ∈ (0,∞) such that E|ε0|s < ∞. Let Yt be defined as
in (12). Then (Yt)t∈Z is β-mixing with geometric rate. In particular, (σ2

t )t∈Z,
(X2

t )t∈Z and (Xt)t∈Z are β-mixing and hence strongly mixing with geometric
rate.

An important application of strong mixing is the asymptotic normality
of the sample autocovariance and autocorrelation function, under suitable
moment conditions. Recall that the sample autocovariance function of a time
series (Zt)t∈Z based on observations Z1, . . . , Zn is defined by

γZ,n(h) :=
1
n

n−h
∑

t=1

(Zt − Zn)(Zt+h − Zn), h ∈ N0,

where Zn := 1
n

∑n
t=1 Zt denotes the sample mean. Similarly, the sample

autocorrelation function is given by

ρZ,n(h) :=
γZ,n(h)
γZ,n(0)

, h ∈ N0.

If now (Zt)t∈Z is a strictly stationary strongly mixing time series with ge-
ometric rate such that E|Zt|4+δ < ∞ for some δ > 0, then for each
h ∈ N0, also (ZtZt+h)t∈Z is strongly mixing with geometric rate and
E|ZtZt+h|2+δ/2 < ∞. Then a central limit theorem applies, showing that√
n
∑n

j=1(ZtZt+h − E(ZtZt+h)) converges in distribution to a mean zero
normal random variable as n → ∞, see e.g. Ibragimov and Linnik (1971),
Theorem 18.5.3. More generally, using the Cramér-Wold device, one can show
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that the vector (
√
n
∑n

j=1(ZtZt+h − E(ZtZt+h)))h=0,...,m converges for ev-
ery m ∈ N to a multivariate normal distribution. Standard arguments as
presented in Brockwell and Davis (1991), Section 7.3, then give multivariate
asymptotic normality of the sample autocovariance function and hence of the
autocorrelation function via the delta method. Applying these results to the
GARCH process, we have:

Corollary 3 Suppose that (Xt, σt)t∈Z is a strictly stationary GARCH pro-
cess whose noise sequence (εt)t∈Z is such that ε0 is absolutely continuous with
Lebesgue density being strictly positive in a neighbourhood of zero.
(a) If there is δ > 0 such that E|Xt|4+δ < ∞, then the sample autoco-
variance and sample autocorrelation function of (Xt)t∈Z are asymptotically
normal with rate n1/2, i.e. for every m ∈ N there exists a multivariate nor-
mal random vector (V0, . . . , Vm) with mean zero such that (

√
n(γn,X(h) −

γX(h)))h=0,...,m converges in distribution to (V0, . . . , Vm) as n → ∞, and
(
√
n(ρn,X(h)−ρX(h)))h=1,...,m converges to (γX(0))−1(Vh−ρX(h)V0)h=1,...,m

as n → ∞. Here, γX and ρX denote the true autocovariance and autocorre-
lation function of (Xt)t∈Z, respectively.
(b) If there is δ > 0 such that E|Xt|8+δ < ∞, then the sample autocovariance
and sample autocorrelation functions of (X2

t )t∈Z are asymptotically normal
with rate n1/2.

The above statement can for example be found in Basrak et al. (2002), The-
orems 2.13 and 3.6. In practice one often estimates GARCH processes with
parameters which are close to IGARCH. Hence the assumption on finiteness
of E|Xt|4+δ is questionable. Indeed, in cases when EX4

t = ∞, one often gets
convergence of the sample autocovariance and autocovariance functions to
stable distributions, and the rate of convergence is different from

√
n. For the

ARCH(1) case, this was proved by Davis and Mikosch (1998), extended by
Mikosch and Stărică (2000) to the GARCH(1, 1) case, and by Basrak et al.
(2002) to general GARCH(p, q). See also Davis and Mikosch (2008).

6 Some Distributional Properties

In this section we shortly comment on two other properties of the strictly
stationary solution, namely tail behaviour and continuity properties. We have
already seen that the kurtosis of a GARCH process is always greater than or
equal to the kurtosis of the driving noise sequence. Furthermore, Corollary 2
shows that under any reasonable assumption, a GARCH(1, 1) process will
never have moments of all orders. Much more is true. Based on Kesten’s
(Kesten (1973)) powerful results on the tail behaviour of random recurrence
equations (see also Goldie (1991) for a simpler proof in dimension 1), one can
deduce that GARCH processes have Pareto tails under weak assumptions.
For the ARCH(1) process this was proved by de Haan et al. (1989), for
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GARCH(1, 1) by Mikosch and Stărică (2000), and for general GARCH(p, q)
processes by Basrak et al. (2002). For a precise statement of these results, we
refer to Corollary 1 in the article of Davis and Mikosch (2008) in this volume.
For example, for a GARCH(1, 1) process with standard normal noise, it holds
for the stationary solutions (Xt, σt)t∈Z,

lim
x→∞

x2κP (σ0 > x) = cσ,

lim
x→∞

x2κP (|X0| > x) = cσE(|ε0|2κ), lim
x→∞

x2κP (X0 > x) =
cσ
2
E(|ε0|2κ).

Here, κ is the unique solution in (0,∞) to the equation

E(α1ε
2
0 + β1)κ = 1,

and cσ is a strictly positive constant.
Regarding continuity properties of stationary solutions of GARCH(p, q)

processes, we shall restrict us to the case of GARCH(1, 1) and ARCH(1).
Observe that in that case, the strictly stationary solution satisfies the random
recurrence equation

σ2
t = α0 + (β1 + α1ε

2
t−1)σ

2
t−1.

Hence if ε0 is absolutely continuous, so is log(β1 + α1ε
2
t−1) + log σ2

t−1 by in-
dependence of εt−1 and σt−1, and we conclude that σ2

t must be absolutely
continuous. It follows that absolute continuity of ε0 leads to absolute con-
tinuity of the stationary σt and hence of the stationary Xt. Excluding the
case when ε20 is constant, i.e. when the distribution of σ2

t is a Dirac mea-
sure, one might wonder whether the stationary distribution σt will always
be absolutely continuous, regardless whether ε0 is absolutely continuous or
not. For stationary distributions of the related continuous time GARCH pro-
cesses (COGARCH) introduced by Klüppelberg et al. (2004), this is indeed
the case, see Klüppelberg et al. (2006). For the discrete time GARCH(1, 1)
process, the author is however unaware of a solution to this question. At
least there is the following positive result which is an easy consequence of
Theorem 1 of Grincevicius (1980):

Theorem 9 (Grincevicius (1980), Theorem 1)
Let (Xt, σt)t∈Z be a strictly stationary GARCH(1, 1) or ARCH(1) process.
Then σ0 is continuous with respect to Lebesgue measure, i.e. cannot have
atoms, unless σ0 is degenerate to a constant, i.e. unless ε20 is constant. Con-
sequently, X0 does not have atoms unless ε20 is constant or ε0 has an atom
at zero.

Actually, Grincevičius’ result applies to more general situations, but in the
GARCH case says that if σ2

0 = α0

∑∞
i=1

∏i−1
j=1(β1 +α1ε

2
−j) has an atom, then

there must exist a sequence (Sn)n∈N0 such that
∏∞

n=1 P (α0+(β1+α1ε
2
n)Sn =
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Sn−1) > 0. By the i.i.d. assumption on (εn)n∈Z, this can be seen to happen
only if ε20 is constant.

7 Models Defined on the Non-Negative Integers

We defined a GARCH process as a time series indexed by the set Z of integers.
This implies that the process has been started in the infinite past. It may seem
more natural to work with models which are indexed by the non-negative
integers N0. Let (εt)t∈N0 be a sequence of i.i.d. random variables, and p ∈ N,
q ∈ N0. Further, let α0 > 0, α1, . . . , αp−1 ≥ 0, αp > 0, β1, . . . , βq−1 ≥ 0 and
βq > 0 be non-negative parameters. Then by a GARCH(p, q) process indexed
by N0, we shall mean a process (Xt)t∈N0 with volatility process (σt)t∈N0 which
is a solution to the equations

Xt = σtεt, t ∈ N0, (27)

σ2
t = α0 +

p
∑

i=1

αiX
2
t−i +

q
∑

j=1

βjσ
2
t−j , t ≥ max(p, q). (28)

The process is called causal if additionally σ2
t is independent of (εt+h)h∈N0 for

t = 0, . . . ,max(p, q). By (28), the latter independence property then easily
extends to hold for all t ∈ N0.

Recall that every strictly stationary GARCH(p, q) process indexed by Z

is causal by Remark 1. When restricting such a process to N0, it is clear
that we obtain a causal strictly stationary GARCH process indexed by N0.
Conversely, suppose that (Xt, σt)t∈N0 is a strictly stationary GARCH process
indexed by N0. Like any strictly stationary process indexed by N0, it can be
extended to a strictly stationary process (Xt, σt)t∈Z, see Kallenberg (2002),
Lemma 10.2. With εt = Xt/σt for t < 0 (observe that σ2

t ≥ α0), one sees that
also (Xt, σt, εt)t∈Z is strictly stationary. Hence (εt)t∈Z must be i.i.d., and (27)
and (28) continue to hold for t ∈ Z. Since (Xt, σt)t∈Z is strictly stationary, it
is causal, and hence so is (Xt, σt)t∈N0 .

We have seen that there is an easy correspondence between strictly sta-
tionary GARCH processes defined on the integers and strictly stationary
GARCH processes defined on N0. This justifies the restriction to GARCH
processes indexed by Z, which are mathematically more tractable. Further-
more, strictly stationary GARCH processes indexed by N0 are automatically
causal.
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8 Conclusion

In the present paper we have collected some of the mathematical properties
of GARCH(p, q) processes (Xt, σt)t∈Z. The existence of strictly and weakly
stationary solutions was characterised, as well as the existence of moments.
The GARCH process shares many of the so called stylised features observed
in financial time series, like a time varying volatility or uncorrelatedness of
the observations, while the squared observations are not uncorrelated. The
autocorrelation of the squared sequence was in fact seen to be that of an
ARMA process. Stationary solutions of GARCH processes have heavy tails,
since they are Pareto under weak assumptions. On the other hand, there
are some features which are not met by the standard GARCH(p, q) process,
such as the leverage effect, to name just one. In order to include these and
similar effects, many different GARCH type models have been introduced,
such as the EGARCH model by Nelson (1991), or many other models. We
refer to the article by Teräsvirta (2008) for further information regarding
various extensions of GARCH processes.

Acknowledgement I would like to thank Richard Davis and Thomas Mikosch for careful
reading of the paper and many valuable suggestions.
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ARCH(∞) Models and Long Memory
Properties

Liudas Giraitis, Remigijus Leipus and Donatas Surgailis

Abstract ARCH(∞)-models are a natural nonparametric generalization of
the class of GARCH(p, q) models which exhibit a rich covariance structure
(in particular, hyperbolic decay of the autocovariance function is possible).
We discuss stationarity, long memory properties and the limit behavior of
partial sums of ARCH(∞) processes as well as some of their modifications
(linear ARCH and bilinear models).

1 Introduction

A random process (usually interpreted as financial log-return series) (rt) =
(rt)t∈Z is said to satisfy the ARCH(∞) equations if there exists a sequence
of standard (zero mean and unit variance) iid random variables (εt) and a
deterministic sequence bj ≥ 0, j = 0, 1, . . . , such that

rt = σtεt, σ2
t = b0 +

∞
∑

j=1

bjr
2
t−j , t ∈ Z. (1)
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Moreover, we always assume that (rt) is causal, that is, for any t, rt has
a representation as a measurable function of the present and past values
εs, s ≤ t. The last property implies that εt is independent of rs, s < t and
therefore rt have zero conditional mean and a (typically random) conditional
variance σ2

t :
E[rt|rs, s < t] = 0, Var[rt|rs, s < t] = σ2

t .

The class of ARCH(∞) processes includes the parametric ARCH and GARCH
models of (Engle (1982)) and (Bollerslev (1986)) (see review by (Teräsvirta
(2008))). For instance, the GARCH(p, q) process

rt = σtεt, σ2
t = α0 +

p
∑

i=1

βiσ
2
t−i +

q
∑

j=1

αjr
2
t−j , (2)

can be written as (1) with

σ2
t = (1 − β(1))−1α0 + (1 − β(L))−1α(L)r2t , (3)

where α(L) = α1L + · · · + αqL
q, β(L) = β1L + · · · + βpL

p and L stands for
the back-shift operator, LjXt = Xt−j . Equation (3) yields the ARCH(∞)
representation of the GARCH(p, q) model with positive exponentially de-
caying weights bj defined by the generating function α(z)/(1 − β(z)) =
∑∞

i=1 biz
i; b0 = (1 − β(1))−1α0.

The ARCH(∞) process was introduced by Robinson (1991) and later
studied in Kokoszka and Leipus (2000), Giraitis et al. (2000) (see also the
review papers Giraitis et al. (2006), Berkes et al. (2004)). In contrast to
GARCH(p, q), an ARCH(∞) process can have autocovariances Cov(r2k, r

2
0)

decaying to zero at the rate k−γ with γ > 1 arbitrarily close to 1. That
is, the squares r2t of an ARCH(∞) process with finite fourth moment have
short memory in the sense of absolutely summable autocovariances. Numer-
ous empirical studies (Dacorogna et al. (1993), Ding et al. (1993), Baillie et
al. (1996), Ding and Granger (1996), Breidt et al. (1998), Andersen et al.
(2001)) confirm that the sample autocorrelations of absolute powers of re-
turns series and volatilities are non-negligible for very large lags, which is
often referred to as the long memory phenomenon of asset returns. The last
fact can be alternatively explained by structural changes in GARCH or linear
models (Granger and Hyung (2004), Mikosch and Stărică (2000) and (2003),
Liu (2000), Leipus et al. (2005)). Several stationary ARCH-type models were
proposed to capture the long memory and other empirical “stylized facts” of
asset returns. The long memory of the squared process, in the sense of power-
law decay of the autocovariance function, was rigorously established for some
stochastic volatility models (Harvey (1998), Robinson (2001), Robinson and
Zaffaroni (1997) and (1998), Surgailis and Viano (2002)), the Linear ARCH
(LARCH) model (Giraitis et al. (2000) and (2004)) and the bilinear model
(Giraitis and Surgailis (2002)).
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A stationary process (Xt) with finite variance is said to have covariance
long memory if the series

∑

t∈Z
|Cov(X0, Xt)| diverges; otherwise (Xt) ex-

hibits covariance short memory. We also say that a stationary process (Xt)
has distributional long memory (respectively, distributional short memory)
if its normalized partial sum process 1

(

A−1
n

∑[nτ ]
t=1 (Xt −Bn) : τ ∈ [0, 1]

)

,
converges, in the sense of weak convergence of the finite dimensional distribu-
tions, as n → ∞, to a random process (Z(τ))τ∈[0,1] with dependent increments
(respectively, to a random process with independent increments). Covariance
long memory and distributional long memory are related though generally
different notions. These and other definitions of long memory (long-range de-
pendence) can be found in Beran (1994), Cox (1984), Giraitis and Surgailis
(2002) and other papers.

2 Stationary ARCH(∞) Process

2.1 Volterra representations

A formal recursion of (1) yields the following Volterra series expansion of r2t :

r2t = ε2tσ
2
t = ε2t b0

(

1 +
∞
∑

k=1

∞
∑

j1,··· ,jk=1

bj1 · · · bjk
ε2t−j1 · · · ε2t−j1−···−jk

)

. (4)

By taking the expectation on both sides and using the independence of the
εt’s, one obtains

Er2t = b0

{

1 +
∞
∑

k=1

(
∞
∑

j=1

bj

)k}

=
b0

1 −
∑∞

j=1 bj
.

Let B =
∑∞

j=1 bj . The condition

B < 1 (5)

is necessary and sufficient for the existence of a unique stationary solution
of (1) with Er2t < ∞, see Kokoszka and Leipus (2000), Giraitis et al. (2000),
Zaffaroni (2000). In a similar way,

λ1/2 B < 1, λ := Eε40 (6)

is sufficient for the existence of a stationary solution (rt) with finite fourth
moment Er4t < ∞. However, condition (6) is not necessary for the existence
of such a solution. In the case of GARCH(1,1) (see (12) below) condition (6)

1 [s] denotes the integer part of s.
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translates into αλ1/2 +β < 1, while a fourth order stationary solution to (12)
exists under the weaker condition

(α+ β)2 + α2(λ − 1) < 1, (7)

see Karanasos (1999), He and Teräsvirta (1999) or Davis and Mikosch (2008).
A relevant sufficient and necessary condition in the general case of ARCH(∞)
can be obtained by centering the innovations in the (nonorthogonal) represen-
tation (4), i.e. by replacing the ε2j ’s by κζj + 1 = ε2j , where the standardized
ζj = (ε2j − Eε2j)/κ, κ

2 = Var(ε20) have zero mean and unit variance. This
leads to the following orthogonal Volterra representation of (r2t ) (Giraitis and
Surgailis (2002)):

r2t = μ+ κμ
∞
∑

k=1

∑

sk<···<s2<s1≤t

gt−s1hs1−s2 · · ·hsk−1−sk
ζs1 · · · ζsk

, (8)

where μ = Er2t = b0/(1 − B), hj = κgj, j ≥ 1, and where gj , j ≥ 0, are the
coefficients of the generating function

∞
∑

j=0

gjz
j =

(

1 −
∞
∑

i=1

biz
i

)−1

. (9)

Let H2 =
∑∞

j=1 h
2
j . The series (8) converges in mean square if and only if

B < 1, H < 1. (10)

Condition (10) is sufficient and necessary for the existence of a stationary
ARCH(∞) solution with finite fourth moment (Giraitis and Surgailis (2002)).
By orthogonality, it also follows that

Cov(r2t , r
2
0) = κ2μ2

∞
∑

k=1

∑

sk<···<s1≤0

g−s1gt−s1h
2
s1−s2 · · ·h2

sk−1−sk

= κ2μ2
∑

s≤0

gsgt−s

∞
∑

k=1

H2(k−1)

=
κ2μ2

1 −H2

∞
∑

s=0

gsgs+t. (11)

For the GARCH(1,1) process specified as

rt = εtσt, σ2
t = α0 + αr2t−1 + βσ2

t−1 (12)

condition (10) is equivalent to (7), gj = α(α+ β)j−1, and (8) becomes
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r2t = μ+ μκζt

(

1 +
∞
∑

k=1

(ακ/γ)k
∑

sk<···<s1<t

γt−skζs1 · · · ζsk

)

+ μ

∞
∑

k=1

(ακ/γ)k
∑

sk<···<s1<t

γt−skζs1 · · · ζsk
, (13)

where γ = α+ β, μ = α0/(1 − γ). Representation (13) yields the covariance
function of the squared GARCH(1,1) process as a function of the parameters
α0, α, β, λ, which was first obtained in Teräsvirta (1996). An alternative ap-
proach to the problem of the existence of fourth order stationary solution of
ARCH(∞) was discussed in Kazakevičius et al. (2004). Doukhan et al. (2006)
discuss vector-valued ARCH(∞) process.

2.2 Dependence structure, association, and central limit
theorem

Equation (11) can be applied to study summability and decay properties of
the covariance function of (r2t ) (Giraitis and Surgailis (2002)). Summability
of the bj ’s implies summability of the gj’s in (9) which in turn implies by
(11) that

∞
∑

k=−∞
Cov(r2k, r

2
0) < ∞. (14)

(Note that Cov(r2k, r
2
0) ≥ 0 for all k, which follows from (11) and also from

the associativity property of (r2t ), see below.) Therefore, the squares (r2t ) of a
stationary solution of ARCH(∞) with finite fourth moment have covariance
short memory. Giraitis et al. (2000), Giraitis and Surgailis (2002) also prove
that hyperbolic decay bj ∼ Cj−γ with γ > 1 implies2

Cov(r2k, r
2
0) � k−γ . (15)

Thus, even though condition (10) implies (14), it allows for a hyperbolic
rate of decay in (15), with γ > 1 arbitrarily close to 1. The last property is
called intermediate memory (Brockwell and Davis (1991), p. 465). A class of
ARCH(∞) processes with intermediate memory was discussed in Davidson
(2004).

Further insight into the dependence properties of (r2t ) with finite fourth
moment can be obtained from the moving average representation

2 xk ∼ yk means xk/yk → 1 while xk � yk means that there are positive constants C1

and C2 such that C1yk < xk < C2yk for all k large enough.
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r2t = Er2t +
∞
∑

j=0

gjνt−j , (16)

where (gj)j≥0 are defined in (9) and νt = σ2
t (ε2t − Eε2t ) = r2t − σ2

t are mar-
tingale differences, satisfying Eν2

t < ∞, E[νt|rs, s < t] = 0. Representation
(16) is a direct consequence of (8), from which νt can also be expressed as a
Volterra series in the standardized variables ζs, s < t. Note that (16) yields
the same covariance formula as (11). In the literature, (16) is sometimes ob-
tained without sufficient justification, by treating (νt) as “innovations” and
formally inverting the equation r2t −

∑∞
j=1 bjr

2
t−j = b0 +νt, see the discussion

in Davidson (2004). It is important to realize that the definition of (νt) per
se assumes that (rt) is a causal solution of (1) and the martingale property
of (νt) implies Eσ2

t < ∞, or B < 1, thereby excluding the IGARCH case
(see below), for which the sum of the coefficients B = 1. On the other hand,
even if the fourth moment is finite as in (16), the νt’s are not independent,
meaning that “higher order” dependence and distributional properties of (16)
may be very different from the usual moving average in iid random variables.

Squared ARCH(∞) processes have the important property of association.
A stochastic process (Xt) is said to be associated (or positively correlated) if

Cov(f(Xt1 , . . . , Xtn), g(Xt1 , . . . , Xtn)) ≥ 0

holds for any coordinate nondecreasing functions f, g : Rn → R and any
t1, . . . , tn, n = 1, 2, . . . . In particular, the autocovariance function of an as-
sociated process is nonnegative. Association is a very strong property, un-
der which uncorrelatedness implies independence similarly to the Gaussian
case. A well-known result due to Newman and Wright (1981) says that if
(Xt) is strictly stationary, associated, and

∑

t∈Z Cov(X0, Xt) < ∞ then its
partial sums process converges to a standard Brownian motion in the Sko-
rokhod space D[0, 1] with the sup-topology. It is well known that indepen-
dent random variables are associated, and that this property is preserved
by coordinate-nondecreasing (nonlinear) transformations. In particular, the
squared ARCH(∞) process of (4) is a coordinate-nondecreasing transforma-
tion of the iid sequence (ε2t ): since all bj ’s are nonnegative, r2t can only increase
if any of the ε2s, s ≤ t on the right-hand side of (4) is replaced by a larger
quantity. Therefore the squared ARCH(∞) process (4) is associated. The
same conclusion holds for any nondecreasing function of (r2t ), in particular,
for fractional powers (|rt|δ) with arbitrary δ > 0.

An immediate consequence from (14), the association property and the
above mentioned Newman-Wright theorem is the following functional central
limit theorem for the squares of ARCH(∞):

(

n−1/2

[nτ ]
∑

t=1

(r2t − Er2t )
)

τ∈[0,1]

→D[0,1] (σW (τ))τ∈[0,1] , (17)
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where (W (τ)) is a standard Brownian motion and σ2 equals the sum in (14).
According to our terminology, the squares (r2t ) of a stationary solution of
ARCH(∞) with finite fourth moment have distributional short memory. This
result is quite surprising given the rather complicated nonlinear structure
of ARCH(∞). Giraitis et al. (2000) obtained a similar result by using finite
memory approximations to ARCH(∞).

2.3 Infinite variance and integrated ARCH(∞)

One of the surprising features of ARCH equations is the fact that they may
admit a stationary solution which may have arbitrarily heavy power tails,
even if the iid “shocks” εt are light-tailed, e.g. N(0, 1) (see Klivečka and Sur-
gailis (2007)). Bougerol and Picard (1992) obtained sufficient and necessary
conditions for the existence of a causal stationary solution of GARCH(p, q),
possibly with infinite variance, in terms of the top Lyapunov exponent γ of
an associated vector stochastic recurrence equation. The GARCH(1, 1) case
was first discussed by Nelson (1990). In general, γ is not known explicitly
in terms of the coefficients of the GARCH(p, q), the only exception being
the GARCH(1,1) case where γ = E log(αε2 + β) (Nelson (1990)). The tail
behavior of a stationary solution of GARCH(p, q) process was discussed in
Basrak et al. (2002), Mikosch and Stărică (2000) (see also Davis and Mikosch
(2008) and Lindner (2008) in this volume).

Sufficient conditions for the existence of stationary ARCH(∞) processes
without moment conditions were obtained in Kazakevičius and Leipus (2002).
They observed that the volatility can be written as

σ2
t = b0

(

1 +
∞
∑

n=1

σ2
t,n

)

,

the convergence of the series being equivalent to the existence of a stationary
solution rt = εtσt, where

σ2
t,n =

n
∑

k=1

∑

i1,··· ,ik≥1
i1+···+ik=n

bi1bi2 · · · bikε2t−i1ε
2
t−i1−i2 · · · ε2t−i1−···−ik

, n ≥ 1,

σ2
t,n = 0, n ≤ 0, satisfy the recurrence equation

σ2
t,n = ε2t−n

n
∑

i=1

biσ
2
t,n−i, n ≥ 1.

The stationarity condition of Kazakevičius and Leipus (2002) (which applies
also to the case Eε20 = ∞) essentially reduces to the condition
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R > 1, (18)

where
R =

(

lim sup n

√

σ2
0,n

)−1

constitutes the (nonrandom) convergence radius of the random power series
∑∞

n=1 σ
2
0,nz

n. In the GARCH(p, q) case, − logR = γ coincides with the top
Lyapunov exponent and condition (18) translates to the condition γ < 0
of Bougerol and Picard (1992). Similarly to GARCH case, the convergence
radius R cannot be explicitly determined in terms of the coefficients bj of
ARCH(∞) and therefore the above result does not provide a constructive
answer to the question as to the existence of an infinite variance stationary
solution to ARCH(∞) except for the case B = 1, see below. Kazakevičius
and Leipus (2002) also proved the uniqueness of the stationary solution under
condition (18) and some additional condition on the coefficients bj which is
satisfied, for example, if bj ultimately decrease monotonically.

An important class of ARCH(∞) processes with infinite variance are In-
tegrated ARCH(∞), or IARCH(∞), defined as a solution to (1) with

B = 1 (19)

(recall that Eε2t = 1). For the GARCH(p, q) process, condition (19) becomes
the unit root condition

∑q
i=1 αi +

∑p
j=1 βj = 1. Thus, the IGARCH(∞)

model is a generalization of the Integrated GARCH(p, q) model introduced
in Engle and Bollerslev (1986) in order to explain the so-called IGARCH
effect of return data when the estimated parameters of the GARCH(p, q)
sum up to a value close to 1. Bougerol and Picard (1992) proved that in the
IGARCH(p, q) case, the Lyapunov exponent γ < 0 and therefore equation
(1) has a stationary solution.

The above result was extended to the IARCH(∞) equation in Kazakevičius
and Leipus (2003), under the additional assumption that the coefficients bj
in (1) decay exponentially. The last condition is crucial in the proof of R > 1
in Kazakevičius and Leipus (2003), and is also satisfied in the case of the
IGARCH(p, q) discussed in Bougerol and Picard (1992). Kazakevičius and
Leipus (2003) also proved that if the exponential decay condition of the bj ’s
is not satisfied (as in the FIGARCH case), then R = 1. However, contrary to
the GARCH situation, condition (18) is not necessary for the existence of a
stationary solution to ARCH(∞); see Giraitis et al. (2006).

An interesting example of an IARCH process is the FIGARCH process
defined by

rt = σtεt, σ2
t = b0 + (1 − (1 − L)d)r2t , (20)

where b0 > 0 and (1 − L)d, 0 < d < 1, is the fractional differencing operator.
This model, introduced by Baillie et al. (1996) in order to capture the long
memory effect in volatility, allows for a hyperbolic decay of the coefficients
bj which are positive, summable, and satisfy the unit root condition (19).
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However, the FIGARCH equation has no stationary solution with Er2t <
∞. In general the question of the existence of a stationary solution to (20)
with infinite variance remains open. But under additional assumptions on
the distribution of εt (cf. (20)) it has been shown in Douc et al. (2008) that
a non-zero stationary solution exists (related arguments were used also in
Robinson and Zaffaroni (2006)).

See Giraitis et al. (2000), Kazakevičius and Leipus (2003), Mikosch and
Stărică (2000) and (2003), Davidson (2004) for a discussion of the controver-
sies surrounding the FIGARCH.

3 Linear ARCH and Bilinear Model

The Linear ARCH (LARCH) model, introduced by Robinson (1991), is de-
fined by the equations

rt = σtεt, σt = α+
∞
∑

j=1

βjrt−j , (21)

where (εt) is an iid sequence, with zero mean and unit variance, and the

coefficients βj satisfy B2 =
{

∑∞
j=1 β

2
j

}1/2

< ∞. The particular case

rt = σtεt, σt = (1 − L)−drt corresponds to the LARCH equation with
FARIMA(0, d, 0) coefficients.

The main advantage of LARCH is that it allows for modelling of long
memory as well as some characteristic asymmetries (the “leverage effect”).
Both these properties cannot be modeled by the classical ARCH(∞) with
finite fourth moment. Condition B2 < ∞ is weaker than the assumption
B < ∞ for the ARCH(∞) model (1). Neither α nor the βj ’s are assumed
positive and, unlike (1), σt (not σ2

t ), is a linear combination of the past
values of rt, rather than their squares. Note that σ2

t = Var[rt|rs, s < t] is
the conditional variance of the causal (rt). Contrary to ARCH(∞), in the
LARCH model σt may be negative or vanish and so it lacks some of the
usual volatility interpretation.

Long memory properties of the LARCH model were studied in Giraitis et
al. (2000) and (2004). Similarly as in the ARCH(∞) case, it is easy to show
that a second order strictly stationary solution (rt) to (21) exists if and only
if

B2 < 1, (22)

in which case it can be represented by the convergent orthogonal Volterra
series
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rt = σtεt, σt = α
(

1 +
∞
∑

k=1

∞
∑

j1,··· ,jk=1

βj1 · · ·βjk
εt−j1 · · · εt−j1−···−jk

)

. (23)

Whence, or directly from the LARCH equations (21), relation

Cov(σt, σ0) =
α2

1 −B2
2

∞
∑

j=1

βjβt+j (24)

immediately follows. Note (24) coincides with the covariance of the linear
filter with coefficients βj(α/(1 −B2

2))1/2. In particular, if

βj ∼ cjd−1 (j → ∞) (25)

for some c > 0, 0 < d < 1/2, the sequence (σt) has covariance long memory
similar to FARIMA(0, d, 0) models.

The proof of long memory of (r2t ) is more involved and uses the com-
binatorial formalism of diagrams, see Giraitis et al. (2000). As is shown in
this paper, under some additional boundedness condition on B2 in (22), the
squared LARCH process of (21), (25) exhibits both covariance and distribu-
tional long memory, since

Cov(r2k, r
2
0) ∼ Ck2d−1, k → ∞, (26)

and the normalized partial sum process of (r2t ) tends to a fractional Brownian
motion with Hurst parameter H = d + 1/2 ∈ (1/2, 1). Similar results under
increasingly stringent bounds on B2 in (22) were proved in Giraitis et al.
(2000) for arbitrary powers (rkt ), k = 2, 3, . . . . Berkes and Horvàth (2003)
and Beran (2006) obtained the limit distribution of sums of general nonlinear
functions of LARCH process.

The above results suggest certain similarities between the long memory
properties of LARCH and a linear moving average process with coefficients βj
in (25). In fact, the first term of the expansion (23) (corresponding to k = 1)
is exactly the linear process

∑∞
j=1 βjεt−j , up to constant α. The nonlinearity

of the LARCH appears when analyzing the behavior of higher-order multiple
sums in (23). It turns out that every term

∑

j1,··· ,jk
βj1 · · ·βjk

εt−j1 · · · εt−jk

behaves similarly as the first (linear) term and contributes to the asymptotic
constant C in (26), although these “contributions decay geometrically” with
k.

A natural generalization of the LARCH model is the heteroscedastic bi-
linear equation (Giraitis and Surgailis (2002)):

Xt = c0 +
∞
∑

j=1

cjXt−j + σtζt, σt = a0 +
∞
∑

j=1

ajXt−j , (27)
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where (ζt) are standard iid, with zero mean and unit variance, and aj , cj, j ≥
0, are real (not necessary nonnegative) coefficients. Clearly, aj = 0, j ≥ 1,
in (27) gives a (linear) AR(∞) equation, while cj = 0, j ≥ 0, results in the
LARCH equation (21). Moreover, the ARCH(∞) model in (1) also turns out
to be a special case of (27), by putting Xt = r2t , ζt = (ε2t − Eε20)/

√

Var(ε20).
Equation (27) appears naturally when studying the class of processes with
the property that the conditional mean μt = E[Xt|Xs, s < t] is a linear
combination ofXs, s < t, and the conditional variance σ2

t = Var[Xt|Xs, s < t]
is the square of a linear combination of Xs, s < t, as it is in the case of a
causal solution (Xt) of (27):

σ2
t =

(

a0 +
∞
∑

j=1

ajXt−j

)2

, μt = c0 +
∞
∑

j=1

cjXt−j .

The bilinear model (27) in the cases c0 �= 0 and c0 = 0 has different properties.
The first case (to which ARCH(∞) reduces) does not essentially allow for
long memory, see Giraitis and Surgailis (2002). The second case reduces to
a linear filter of LARCH. Indeed, let νt = σtζt, then (Xt) in (27) satisfies
the autoregressive equation Xt =

∑∞
j=1 cjXt−j + νt. By inverting the last

equation, one obtains

Xt =
∞
∑

j=0

gjνt−j , (28)

where G(z) = (1 − C(z))−1 =
∑∞

j=0 gjz
j , C(z) =

∑∞
j=1 cjz

j . With (28) in
mind, equation (27) can be rewritten as the LARCH equation

νt = σtζt, σt = a0 +
∞
∑

j=1

hjνt−j (29)

with coefficients hj given byH(z) =
∑∞

j=1 hjz
j = A(z)G(z). Under condition

H2 =
∑∞

j=1 h
2
j < 1 (and some additional assumptions on the coefficients

aj , cj , see Giraitis and Surgailis (2002)), equation (29) has a unique stationary
causal solution (νt) given by a convergent Volterra series which can be sub-
stituted into (28), yielding a corresponding solution of the bilinear equation
(27), viz.

Xt = a0

∞
∑

k=1

∑

sk<···<s1≤t

gt−s1hs1−s2 · · ·hsk−1−sk
ζs1 · · · ζsk

. (30)

The fact that the conditional mean μt =
∑∞

j=1 gjνt−j and the conditional
variance σt = a0+

∑∞
j=1 hjνt−j of the stationary process in (30) admit moving

average representations in the martingale difference sequence (νt) suggests
that (μt) and/or (σt) may exhibit covariance long memory, provided the
filter coefficients decay slowly:
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gj ∼ C1j
d1−1, hj ∼ C2j

d2−1, (31)

with some Ci �= 0, 0 < di < 1/2, i = 1, 2. The above mentioned pa-
per presents concrete examples of generating functions of the form C(z) =
1 − P1(z)(1 − z)d1 , A(z) = P2(z)(1 − z)d1−d2 , where Pi(z), i = 1, 2 satisfy
some root conditions, for which the corresponding G(z), H(z) satisfy (31).
Consequently, the process (Xt) in (27) may exhibit double long memory (i.e.
long memory both in the conditional mean and in the conditional variance).

Let us finally mention, that heteroscedastic models with non-zero condi-
tional mean (combinations of the type ARMA-ARCH) have been studied in
the econometrics literature; see e.g. Beran (2006), Ling and Li (1998), Li et
al. (2002), Teyssière (1997). The last paper also discusses econometric aspects
of double long memory.
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A Tour in the Asymptotic Theory of
GARCH Estimation

Christian Francq and Jean-Michel Zakoïan

Abstract The main estimation methods of the univariate GARCH models
are reviewed. A special attention is given to the asymptotic results and the
quasi-maximum likelihood method.

1 Introduction

In comparison with other volatility models (e.g. the standard stochastic
volatility model) GARCH models are simple to estimate, which has greatly
contributed to their popularity. The volatility being a function of the past
observations, the likelihood function has an explicit form which makes it easy
to handle. A variety of alternative estimation methods can also be considered.

Least squares and quasi-maximum likelihood estimations in ARCH models
were considered in the seminal paper Engle (1982). The asymptotic properties
of the quasi-maximum likelihood estimator (QMLE) received broad interest
in the last 20 years. Pioneering work established consistency and asymptotic
normality under strong assumptions on the parameter space and the true pa-
rameter value. The problem of finding weak assumptions for the consistency
and asymptotic normality of the QMLE in GARCH models has attracted
a lot of attention in the statistics literature. The first papers limited their
scope to ARCH (see Weiss (1986)) or GARCH(1,1) models (see Lee and
Hansen (1994), Lumsdaine (1996)). See Berkes and Horváth (2003), Berkes
and Horváth (2004), Berkes et al. (2003), Francq and Zakoïan (2004), Hall
and Yao (2003), for recent references on the QMLE of general GARCH(p, q)
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models. See Straumann (2005) for a recent comprehensive monograph on the
estimation of GARCH models.

Numerous GARCH-type models have been introduced and it is simply
not possible to consider the estimation of all of them. In this article we limit
ourselves to the standard GARCH(p, q) model given by the equations

{

εt =
√
htηt

ht = ω0 +
∑q

i=1 α0iε
2
t−i +

∑p
j=1 β0jht−j, t ∈ Z = {0,±1, . . .} (1)

where

ω0 > 0, α0i ≥ 0 (i = 1, . . . , q), β0j ≥ 0 (j = 1, . . . , p),

{ηt, t ∈ Z} are iid random variables such that Eη2
1 = 1.

We assume that ε1, . . . , εn are observations from the process (εt, t ∈ Z),
assumed to be a strictly stationary, ergodic and nonanticipative solution of
Model (1). Conditions for stationarity are obtained (see Lindner (2008)) from
the vector representation

zt = bt +A0t−1zt−1, (2)

where, for p ≥ 2 and q ≥ 2,

zt = (ht, . . . , ht−p+1, ε
2
t−1, . . . , ε

2
t−q+1)

′ ∈ R
p+q−1,

bt = (ω, 0, . . . , 0)′ ∈ R
p+q−1,

A0t =

⎛

⎜

⎜

⎝

τ ′t β0p α
′
02:q−1 α0q

Ip−1 0 0 0
ξ′t 0 0 0
0 0 Iq−2 0

⎞

⎟

⎟

⎠

,

with

τt = (β01 + α01η
2
t , β02, . . . , β0p−1)′ ∈ R

p−1,

ξt = (η2
t , 0, . . . , 0)′ ∈ R

p−1,

α02:q−1 = (α02, . . . , α0q−1)′ ∈ R
q−2.

A nonanticipative solution (εt) of model (1) is such that εt is a measurable
function of the (ηt−i, i ≥ 0). Bougerol and Picard (1992) showed that the
model has a (unique) strictly stationary non anticipative solution if and only
if

γ(A0) < 0,

where γ(A0) is the top Lyapunov exponent of the sequence (A0t), that is
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γ(A0) = lim
t→∞

1
t

log ‖A0tA0t−1 . . . A01‖ a.s.

where ‖·‖ denotes any norm on the space of the (p+q−1)×(p+q−1)matrices.
In addition, the strictly stationary solution is ergodic as a measurable function
of the (ηt−i, i ≥ 0). Let us mention two important consequences of γ(A0) < 0:
(i)

∑p
j=1 β0j < 1, and (ii) for some s > 0, E|ε1|2s < ∞ (see Lemma 2.3 in

Berkes et al. (2003) for the proof). The latter property is crucial to avoid
unnecessary moment conditions in the proof of the asymptotic properties of
the QMLE.

Throughout the orders p and q are assumed to be known. The vector of
parameters is denoted by

θ = (θ1, . . . , θp+q+1)′ = (ω, α1, . . . , αq, β1, . . . , βp)′

and it belongs to a parameter space Θ ⊂]0,+∞[×[0,∞[p+q. The true param-
eter value θ0 = (ω0, α01, . . . , α0q, β01, . . . , β0p)′ is unknown.

We review the main estimation methods, with special attention to the
quasi-maximum likelihood method. The focus will be on asymptotic results
rather than on small-sample and numerical issues. We start, in Section 2, by
considering the Least-Squares estimator (LSE) for ARCH(q) models, which
is simple to compute but requires high moment assumptions. Then we turn
to QMLE in Section 3. Section 4 is devoted to efficiency issues. In Section 5
we consider alternative estimators. Finally we discuss in Section 6 the case
where some GARCH coefficients are equal to zero, putting the true parameter
value on the boundary of the parameter space.

2 Least–Squares Estimation of ARCH Models

In this section we assume p = 0. The LSE is obtained from the AR(q) repre-
sentation for ε2t :

ε2t = ω0 +
q

∑

i=1

α0iε
2
t−i + ut, (3)

where ut = ε2t −ht = (η2
t −1)ht. The sequence (ut,Ft−1)t is thus a martingale

difference when Eε21 = Eh1 < ∞ and Ft−1 denotes the σ-field generated by
{ηu, u < t}. Let ε0, . . . , ε1−q denote arbitrary initial values. Introducing the
vector Z ′

t−1 =
(

1, ε2t−1, . . . , ε
2
t−q

)

, we get from (3)

Y = Xθ0 + U

where
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X =

⎛

⎜

⎝

Z ′
n−1
...
Z ′

0

⎞

⎟

⎠
, Y =

⎛

⎜

⎝

ε2n
...
ε21

⎞

⎟

⎠
, U =

⎛

⎜

⎝

un
...
u1

⎞

⎟

⎠
.

When X ′X is non-singular (which can be shown to hold, a.s. for large enough
n, under Assumption A3 given below) the LSE of θ0 is thus given by:

θ̂LSn = (ω̂, α̂1, . . . , α̂q)′ = (X ′X)−1X ′Y.

The LSE of s20 = Var(u1) is

ŝ2n =
1

n− q − 1
‖Y −Xθ̂LSn ‖2 =

1
n− q − 1

n
∑

t=1

{

ε2t − ω̂ −
q

∑

i=1

α̂iε
2
t−i

}2

.

It is worth mentioning that the LSE is asymptotically equivalent to the Yule-
Walker estimator of the AR(q) model (3) (see Chapter 8 in Brockwell and
Davis (1991)) and to the Whittle estimator studied by Giraitis and Robinson
(2001), Mikosch and Straumann (2002), Straumann (2005).

The consistency and asymptotic normality of the LSE require some addi-
tional assumptions. For identifiability we assume that the distribution of ηt
is centered and nondegenerate, i.e. P (η2

1 = 1) �= 1. If E(ε41) < +∞, the LSE
can be shown to be strongly consistent (see Bose and Mukherjee (2003)):

θ̂LSn → θ0, ŝ2n → s20, a.s. as n → ∞.

If, in addition E(ε81) < +∞ the estimator of θ0 is asymptotically normal (see
also Bose and Mukherjee (2003)); more precisely,

√
n(θ̂LSn − θ0)

d→ N
{

0, (Eη4
1 − 1)A−1BA−1

}

, (4)

where
A = Eθ0(ZqZ

′
q), B = Eθ0(h

2
q+1ZqZ

′
q)

are non-singular matrices. Note that the vector Zq does not depend on the
initial values ε0, . . . , ε1−q. Consistent estimators of the matrices A and B are
straightforwardly obtained by replacing the theoretical moments by empirical
ones.

In the framework of linear regression models, it is well known that for
heteroscedastic observations the ordinary LSE is outperformed by the quasi-
generalized least squares estimator (QGLSE); see e.g. Hamilton (1994) Chap-
ter 8. In our framework the QGLSE is defined by

θ̂QGLS
n = (X ′Ω̂X)−1X ′Ω̂Y,

where Ω̂ is a consistent estimator of Ω = Diag(h−2
n , . . . , h−2

1 ). If θ̂LSn is
computed in a first step, then Ω̂ can be obtained by replacing ht by
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ω̂ +
∑q

i=1 α̂iε
2
t−i in Ω. Then the two-stage least squares estimator θ̂QGLS

n

is consistent and asymptotically normal

√
n(θ̂QGLS

n − θ0)
d→ N

{

0, (Eη4
1 − 1)J−1

}

, J = Eθ0(h
−2
q+1ZqZ

′
q), (5)

under the moment assumption Eε41 < ∞ when all the ARCH coefficients are
strictly positive, and under a slightly stronger moment assumption in the
general case; see Bose and Mukherjee (2003), Gouriéroux (1997).

The moment conditions can be made explicit using the vector representa-
tion (2). It is shown in Chen and An (1998) that E(ε41) < +∞ if and only
if ρ {E(A01 ⊗A01)} < 1 where ⊗ denotes the Kronecker product and ρ(A)
the spectral radius of a square matrix A. More generally, if Eη2m

1 < ∞ for
some positive integer m then E(ε2m1 ) < +∞ if and only if ρ

{

E(A⊗m
01 )

}

< 1,
where A⊗m

01 stands for the kronecker product of A01 by itself m times. As
can be seen in Table 1, the moment conditions imply strong reduction of the
admissible parameter space. It is the main advantage of the QMLE to avoid
such restrictions.

Table 1 Conditions for strict stationarity and for the existence of moments of the
ARCH(1) model when ηt follows a N (0, 1) or Student distributions normalized in such
a way that Eη21 = 1 (Stν stands for a normalized Student distribution with ν degrees of
freedom)

Strict stationarity Eε2t <∞ Eε4t <∞ Eε8t <∞
Normal α01 < 3.562 α01 < 1 α01 < 0.577 α01 < 0.312
St3 α01 < 7.389 α01 < 1 No No
St5 α01 < 4.797 α01 < 1 α01 < 0.333 No
St9 α01 < 4.082 α01 < 1 α01 < 0.488 α01 < 0.143

Note that, as in the case of linear regression models, the QGLSE is at least
as efficient as the LSE. Indeed, setting D = hq+1A

−1Zq − h−1
q+1J

−1Zq, the
matrix

Eθ0DD
′ = A−1Eθ0(h

2
q+1ZqZ

′
q)A

−1 + J−1Eθ0(h
−2
q+1ZqZ

′
q)J

−1

−A−1Eθ0(ZqZ
′
q)J

−1 − J−1Eθ0(ZqZ
′
q)A

−1

= A−1BA−1 − J−1

is semi-positive definite.

3 Quasi–Maximum Likelihood Estimation

Gaussian quasi-maximum likelihood estimation has become a very popular
method for GARCH models. The basic idea of this approach is to maximize
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the likelihood function written under the assumption that the noise (ηt) is
Gaussian. Since εt is then Gaussian conditionally on the past ε’s and σ’s, the
likelihood function factorizes under a very tractable form which is maximized
to produce the QMLE. The Gaussianity of the noise is inessential for the
asymptotic properties of the QMLE. We start by considering the case of pure
GARCH models, corresponding to the practical situation where a GARCH
is estimated on the log-returns.

3.1 Pure GARCH models

Conditionally on initial values ε0, . . . , ε1−q, σ̃
2
0 , . . . , σ̃

2
1−p, let us define recur-

sively

σ̃2
t = σ̃2

t (θ) = ω +
q

∑

i=1

αiε
2
t−i +

p
∑

j=1

βj σ̃
2
t−j

for t = 1, . . . , n. Due to the initial values, the sequence (σ̃2
t ) is not stationary,

but can be viewed (see Francq and Zakoïan (2004)) as an approximation of
the strictly stationary, ergodic and nonanticipative solution of

σ2
t = σ2

t (θ) = ω +
q

∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j ∀t,

under the assumption
∑p

j=1 βj < 1. Note that σ2
t (θ0) = ht. The Gaussian

quasi-likelihood of the observations ε1, . . . , εn is the function

L̃n(θ) =
n
∏

t=1

1
√

2πσ̃2
t

exp
(

− ε2t
2σ̃2

t

)

.

A QMLE of θ0 is defined as any measurable solution θ̂QML
n of

θ̂QML
n = arg max

θ∈Θ
L̃n(θ) = arg min

θ∈Θ
l̃n(θ), (6)

where

l̃n(θ) = n−1
n

∑

t=1

�̃t, and �̃t = �̃t(θ) =
ε2t
σ̃2
t

+ log σ̃2
t .

Let Aθ(z) =
∑q

i=1 αiz
i and Bθ(z) = 1 −

∑p
j=1 βjz

j with Aθ(z) = 0 if q = 0
and Bθ(z) = 1 if p = 0.

The paper Berkes et al. (2003) was the first one where the GARCH(p, q)
QMLE was captured in a mathematically rigorous way under weak condi-
tions. Several technical assumptions made in Berkes et al. (2003) were relaxed
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by Francq and Zakoïan (2004) and Straumann (2005). The two latter papers
show that, under the following assumptions

A1: θ0 ∈ Θ and Θ is compact,
A2: γ(A0) < 0 and ∀ θ ∈ Θ,

∑p
j=1 βj < 1,

A3: η2
t has a non-degenerate distribution with Eη2

1 = 1,
A4: if p > 0, Aθ0(z) and Bθ0(z) have no common root, Aθ0(1) �= 0,

and α0q + β0p �= 0,

the QMLE is strongly consistent,

θ̂QML
n → θ0, a.s. as n → ∞. (7)

Note that in A2 the condition for strict stationarity is imposed on the true
value of the parameter only. To show where Assumptions A1-A4 are used we
present the scheme of proof of (7), the reader being referred to Francq and
Zakoïan (2004) and Straumann (2005) for a detailed proof. From the second
part of A2 and the compactness of Θ, we have supθ∈Θ

∑p
i=1 βj < 1. This

inequality is used to show that almost surely σ̃2
t (θ) − σ2

t (θ) → 0 uniformly
in θ ∈ Θ as t → ∞, and to show that the initial values do not matter
asymptotically:

lim
n→∞

sup
θ∈Θ

∣

∣

∣̃ln(θ) − ln(θ)
∣

∣

∣ = 0 a.s.

where ln(θ) is a stationary ergodic sequence defined by replacing σ̃2
t (θ) by

σ2
t (θ) in l̃n(θ). Then the first condition in A2 and the ergodic theorem show

that l̃n(θ) converges a.s. to the asymptotic criterion Eθ0l1(θ). For any random
variable X , let X+ = max(X, 0) and X− = max(−X, 0). Note that Eθ0l

+
1 (θ)

can be equal to +∞, but Eθ0 l
−
1 (θ) is always finite (because infθ∈Θ ω > 0)

and Eθ0 l
+
1 (θ0) is also finite (because under A2 we have Eθ0h

s
t < ∞ for some

s > 0, see Berkes et al. (2003) and Nelson (1990) for a proof of this result).
Under the identifiability assumptions A3 and A4, Eθ0l1(θ) ≥ Eθ0l1(θ0) with
equality if and only if θ = θ0. These are the main arguments to show that
(7) holds. The rest of the proof does not require additional assumptions.

Notice that the condition Eη1 = 0 is not required. The assumption that
Eη2

1 = 1 is made for identifiability reasons and is not restrictive provided
Eη2

1 < ∞; see Berkes and Horváth (2003). The identifiability condition A4
excludes that all coefficients α0i be zero when p > 0, as well as the overi-
dentification of both orders p and q. However, other situations where some
coefficients α0i or β0j vanish are allowed. This is worth-noting since it is no
longer the case for the asymptotic normality (AN).

Indeed, the main additional assumption required for the AN is that θ0
belongs to the interior

◦
Θ of Θ. The case where θ0 belongs to the boundary

of Θ will be considered below. Following Francq and Zakoïan (2004), under
Assumptions A1-A4 and

A5: θ0 ∈
◦
Θ,
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A6: Eη4
1 < ∞,

the QMLE is asymptotically normal; more precisely

√
n(θ̂QML

n − θ0)
d→ N

{

0, (Eη4
1 − 1)J−1

}

, J = Eθ0

1
σ4

1

∂σ2
1

∂θ

∂σ2
1

∂θ′
(θ0). (8)

It is shown in Francq and Zakoïan (2004) that σ−2
1 (∂σ2

1/∂θ) admits moments
of any order. For simplicity we give the arguments in the GARCH(1,1) case.
We have σ2

t = ω + αε2t−1 + βσ2
t−1 = ω(1 − β)−1 + α

∑∞
i=0 β

iε2t−i−1. Thus
σ−2

1 (∂σ2
1/∂ω) and σ−2

1 (∂σ2
1/∂α) are bounded, and therefore admit moments

of any order. We have already seen that the strict stationarity condition A2
implies the existence of some s ∈ (0, 1) such that Eθ0 |ε1|2s < ∞. Using
∂σ2

t /∂βj =
∑∞

k=1 kβ
k−1(ω + αε2t−1−k), σ

2
t ≥ ω + βk(ω + αε2t−1−k), and the

elementary inequality x/(1 + x) ≤ xs for all x ≥ 0, we obtain for any d > 0

∥

∥

∥

∥

1
σ2
t

∂σ2
t

∂β

∥

∥

∥

∥

d

≤
∥

∥

∥

∥

∥

1
β

∞
∑

k=1

kβk
(

ω + αε2t−k−1

)

ω + βk
(

ω + αε2t−k−1

)

∥

∥

∥

∥

∥

d

≤ 1
β

∞
∑

k=1

k

∥

∥

∥

∥

∥

∥

{

βk
(

ω + αε2t−k−1

)

ω

}s/d
∥

∥

∥

∥

∥

∥

d

≤ 1
ωs/dβ

{

Eθ0

(

ω + αε21
)s
}1/d ∞

∑

k=1

k|β|sk/d < ∞, (9)

where ‖X‖dd = E|X |d for any random variable X . The idea of exploiting
the inequality x/(1 + x) ≤ xs for all x > 0 is due to Boussama (1998).
Finally σ−2

1 (∂σ2
1/∂θ) admits moments of any order, and J is well defined. The

identifiability assumptions A3 and A4 entail the invertibility of J (see (ii)
of the proof of Theorem 2.2 in Francq and Zakoïan (2004)). The consistency
(7) of the QMLE, Assumption A5 and a Taylor expansion of ∂ l̃n(·)/∂θ yield

0 =
√
n
∂ l̃n(θ̂QML

n )
∂θ

=
√
n
∂ l̃n(θ0)
∂θ

+

(

∂2l̃n(θ∗ij)
∂θi∂θj

)

√
n
(

θ̂QML
n − θ0

)

where the θ∗ij are between θ̂QML
n and θ0. The AN in (8) is then obtained by

showing that

√
n
∂ l̃n(θ0)
∂θ

=
1√
n

n
∑

t=1

(1 − η2
t )

1
σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′
(θ0) + oP (1)

d→ N
{

0, (Eη4
1 − 1)J

}

, (10)

and
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n−1
n

∑

t=1

∂2

∂θi∂θj
�̃t(θ∗ij) → J(i, j) in probability. (11)

The convergence (10) follows from the central limit theorem for martingale
differences given by Billingsley (1961). To show (11), a new Taylor expansion
and already given arguments are employed.

It is worth-noting that no moment assumption is required for the observed
process. This is particularly interesting for financial series, for which the exis-
tence of fourth and even second-order moments is questionable. The moment
assumption A6 on the iid process (ηt) is obviously necessary for the existence
of the variance of the Gaussian distribution in (8). In the ARCH case we find
the same asymptotic variance as for the QGLSE; see (5). Note also that the
iid assumption on (ηt) can be replaced by a martingale difference assumption
at the price of additional moment assumptions; see Escanciano (2007).

Tables 2 and 3 illustrate the asymptotic accuracy obtained from using
the LSE and the QMLE for several ARCH(1) models with Gaussian errors
and parameter ω0 = 1. When a sequence of random vectors Xn converges in
law to a Gaussian distribution, we denote by Varas(Xn) the variance of this
Gaussian distribution. In view of (4), the asymptotic variance of the LSE in
Table 2 is explicitly given by

Varas{
√
n(θ̂LSn − θ0)} = 2A−1BA−1,

where
A =

(

1 Eθ0ε
2
1

Eθ0ε
2
1 Eθ0ε

4
1

)

, B =
(

Eθ0σ
4
2 Eθ0σ

4
2ε

2
1

Eθ0σ
4
2ε

2
1 Eθ0σ

4
2ε

4
1

)

,

with

Eθ0ε
2
1 =

ω0

1 − α01
, Eθ0ε

4
1 = 3Eθ0σ

4
1 =

3ω2
0(1 + α01)

(1 − 3α2
01)(1 − α01)

.

The other terms of the matrix B are obtained using σ4
2 = (ω0 + α01ε

2
1)

2 and
computing the moments of order 6 and 8 of ε21. For an ARCH(1) model, the
asymptotic variance of the QMLE is given by

Varas{
√
n(θ̂QML

n − θ0)} = 2J−1, J = Eθ0

⎛

⎝

1
(ω0+α01ε21)

2
ε21

(ω0+α01ε21)2

ε21
(ω0+α01ε21)

2
ε41

(ω0+α01ε21)2

⎞

⎠ ,

but it seems impossible to obtain J explicitly as a function of θ0 = (ω0, α01)′.
For this reason, the asymptotic variance in Table 3 is approximated by 2Ĵ−1,
where

Ĵ−1 =
1
N

N
∑

t=1

⎛

⎝

1
(ω0+α01ε2t )2

ε2t
(ω0+α01ε2t )2

ε2t
(ω0+α01ε2t )2

ε4t
(ω0+α01ε2t )2

⎞

⎠ ,
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and ε1, . . . , εN is a simulation of length N = 10, 000 of the ARCH(1) model
with parameter θ0 and the N (0, 1) distribution for ηt. Due to the moment
conditions the asymptotic variance of the LSE does not exist for α01 > 0.312
(see Table 1). Even when α01 is sufficiently small so that all moments exist
up to a sufficiently large order, the asymptotic accuracy is much better with
the QMLE than with the LSE.

Table 2 Asymptotic covariance matrix of the LSE of an ARCH(1) model

α01 0.1 0.2 0.3

Varas{√n(θ̂LS
n − θ0)}

(

3.98 −1.85
−1.85 2.15

) (

8.03 −5.26
−5.26 5.46

) (

151.0 −106.5
−106.5 77.6

)

Table 3 Approximation of the asymptotic variance of an ARCH(1) QMLE

α01 0.1 0.5 0.95

̂Varas{√n(θ̂QML
n − θ0)}

(

3.46 −1.34
−1.34 1.87

) (

4.85 −2.15
−2.15 3.99

) (

6.61 −2.83
−2.83 6.67

)

In passing we mention that Jensen and Rahbek (2004a) considers the
QMLE α̂ in ARCH(1) models of the form ht = ω0 + α01ε

2
t−1, when the scale

parameter ω0 is known. In Jensen and Rahbek (2004a), (2004b), consistency
and AN of α̂ are established even when α01 is outside the strict stationarity
region. Although the assumption that ω0 is known does not correspond to
any realistic situation, these results are interesting from a theoretical point
of view.

3.2 ARMA–GARCH models

Assuming that the log-returns follow a GARCH model may be found re-
strictive. The autocorrelations of certain log-returns are incompatible with
a GARCH model, and lead practitioners to specify the conditional mean. In
this section we limit ourselves to ARMA specifications with GARCH errors.
The GARCH process is not directly observed and the observations, which
represent log-returns, are now denoted by r1, . . . , rn. The (rt) process satis-
fies an ARMA(P,Q)-GARCH(p, q) model of the form

⎧

⎨

⎩

rt − c0 =
∑P

i=1 a0i(rt−i − c0) + εt −
∑Q

j=1 b0jεt−j

εt =
√
htηt

ht = ω0 +
∑q

i=1 α0iε
2
t−i +

∑p
j=1 β0jht−j

(12)
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where (ηt) and the coefficients ω0, α0i and β0j are defined as in (1), and where
c0, a0i and b0j are real parameters. If one allows for an ARMA part, one
considerably extends the range of applications, but this approach also entails
serious technical difficulties in the proof of asymptotic results. References for
the estimation of ARMA-GARCH processes are Francq and Zakoïan (2004),
Ling and Li (1997), Ling and Li (1998), Ling and McAleer (2003).

In Francq and Zakoïan (2004) it is shown that the consistency of the QMLE
holds under assumptions similar to the pure GARCH case. In particular,
the observed process does not need a finite variance for the QMLE to be
consistent. However the assumption Eη1 = 0 is required.

The extension of the AN is more costly in terms of moments. This is
not very surprising since in the case of pure ARMA models with iid innova-
tions, the QMLE is asymptotically normal only when these innovations admit
second-order moments; see Brockwell and Davis (1991). With GARCH inno-
vations the AN is established in Francq and Zakoïan (2004) under a fourth-
moment condition on the observed process or equivalently on the GARCH
process.

4 Efficient Estimation

An important issue is the possible efficiency loss of the QMLE, resulting from
the use of an inappropriate Gaussian error distribution. In practice, the true
error distribution is if course unknown and the MLE cannot be computed.
However, it is interesting to consider the MLE in comparison with the QMLE,
as a gauge of (in)efficiency. In particular we will see that, contrary to common
belief, the QMLE can be efficient even if the underlying error distribution is
not Gaussian.

In this section we limit ourselves to pure GARCH models. The proof of the
results of this section can be found in Francq and Zakoïan (2006). See also
Berkes and Horváth (2004), Straumann (2005) for results in a more general
setting.

We assume that the error process (ηt) is iid, endowed with a positive
density f which is known. Conditionally on initial values, the likelihood is
given by

Ln,f(θ) = Ln,f(θ; ε1, . . . , εn) =
n
∏

t=1

1
σ̃t
f

(

εt
σ̃t

)

.

A MLE of θ is defined as any measurable solution θ̂ML
n of

θ̂ML
n = arg max

θ∈Θ
Ln,f(θ). (13)
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Recall that f is supposed to be positive. Assume that f is derivable and write
g(y) = yf ′(y)/f(y). The following conditions on the smoothness of f and g
are introduced:

A7: There is a δ1 > 0 such that supy∈R
|y|1±δ1f(y) < ∞;

A8: There exist 0 < C0, δ2 < ∞ such that |g(y)| ≤ C0(|y|δ2 + 1)
for all y ∈ (−∞,∞).

Such conditions are obviously satisfied for the standard normal distribution.
For the Student distribution with ν degree of freedom, we have f(x) = K(y2+
ν)−(1+ν)/2 where K is a positive constant and g(y) = −y2(1 + ν)/(y2 + ν).
Assumptions A7 and A8 are thus satisfied with ν > 0, for 0 < δ1 ≤ min{ν, 1}
and δ2 ≥ 0. Under A1, A2, A4, A7, A8 the ML estimator is strongly
consistent,

θ̂ML
n → θ0, a.s. as n → ∞.

It should be noted that no moment assumption is needed for the iid process
(ηt). For the QMLE, it was crucial to assume the existence of the first two
moments, and an assumption such as Eη2

1 = 1 was required for identifiabil-
ity reasons. Here, because the density f is fixed, there is no identification
problem. For instance, the volatility

√
ht can not be multiplied by a positive

constant c �= 1 and the noise ηt with density f can not be changed in the new
noise η∗t = ηt/c, because the density of η∗t would not be f . Obviously when
the assumption Eη2

1 = 1 is relaxed, ht is no more the conditional variance
of εt given the past, but as in Berkes and Horváth (2004), one can interpret
ht as a conditional scaling parameter of εt. The assumption that the density
f is entirely known is clearly not realistic for the applications. Straumann
(2005) considers the situation where the density f belongs to a known class
of densities parameterized by a nuisance parameter ν, for instance a normal-
ized Student distribution Stν with ν degrees of freedom and unit variance.
Berkes and Horváth (2004) consider a very general framework in which the
function f involved in the definition (13) is not necessarily the true density
of ηt. Under some regularity assumptions, Straumann (2005) and Berkes and
Horváth (2004) showed that this (non Gaussian) QMLE converges almost
surely to

θ∗0 = (dω, dα1, . . . , dαq, β1, . . . , βp)
′
, d > 0. (14)

When the density f is misspecified and non Gaussian, d is generally not equal
to 1 and θ̂ML

n is inconsistent.
For the asymptotic normality of the MLE, it is necessary to strengthen

the smoothness assumptions in A7 and A8. Assume that g is twice derivable
and let g(0)(y) = g(y), g(1)(y) = g′(y) and g(2)(y) = g′′(y).

A9: There is 0 < C0 < ∞ and 0 ≤ κ < ∞ such that |ykg(k)(y)| ≤
C0(|y|κ + 1) for all y ∈ (−∞,∞) and such that E|η1|κ < ∞
for k = 0, 1, 2.

A10: Ĩf =
∫

{1 + g(y)}2
f(y)dy < ∞, and limy→±∞ y2f ′(y) = 0.
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The assumptions on the density f are mild and are satisfied for various
standard distributions, such as (i) the standard Gaussian distribution, for any
δ1 ∈ (0, 1], δ2 ≥ 2 and κ ≥ 2; (ii) the Student distribution with parameter
ν > 0, for δ1 ≤ min{ν, 1}, δ2 ≥ 0 and κ < ν; (iii) the density displayed in
(16) below with δ1 ≤ 2a, δ2 ≥ 2 and κ ≥ 2. If A1, A2, A4, A5 and A7-A10
hold, then

√
n
(

θ̂ML
n − θ0

)

d→ N
(

0,
4
Ĩf
J−1

)

, as n → ∞. (15)

It is worth-noting that, contrary to the QMLE (see Berkes and Horváth
(2003)), the MLE can be

√
n-consistent even when Eη4

1 = ∞. The asymp-
totic distributions in (8) and (15) allow to quantify the efficiency loss due
to the use of Gaussian likelihood. The asymptotic variances differ only by a
scaling factor, which is independent of the GARCH orders and coefficients.
Interestingly, the QMLE is not always inefficient when the error distribution
is not normal. More precisely, under the assumptions required for (8) and
(15), the QMLE has the same asymptotic variance as the MLE when the
density of ηt is of the form

f(y) =
aa

Γ (a)
exp(−ay2)|y|2a−1, a > 0, Γ (a) =

∫ ∞

0

ta−1 exp(−t)dt.

(16)
Figure 1 displays the graph of this density for different values of a. When
the density f does not belong to this family of distributions, the QMLE is
asymptotically inefficient in the sense that

Varas
√
n
{

θ̂QML
n − θ0

}

− Varas
√
n
{

θ̂ML
n − θ0

}

=

(

Eη4
1 − 1 − 4

Ĩf

)

J−1

is positive definite. Table 4 illustrates the loss of efficiency of the QMLE in the
case of the Student distribution with ν degrees of freedom (rescaled so that
they have the required unit variance). The Asymptotic Relative Efficiency
(ARE) of the MLE with respect to the QMLE is (for ν > 3)

ARE = Varas
√
n
(

θ̂QML
n − θ0

){

Varas
√
n
(

θ̂QML
n − θ0

)}−1

=
ν(ν − 1)

ν(ν − 1) − 12
.

An efficient estimator can be constructed from the QMLE in two steps.
The method consists, in a first step, of running one Newton-Raphson iteration
with the QMLE, or any other

√
n-consistent preliminary estimator θ̃n of θ0,

as starting point:
√
n(θ̃n − θ0) = OP (1). The second step does not require

any optimization procedure. Let În,f be any weakly consistent estimator of
If (θ0). Then the sequence (θ̄n) defined by
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Fig. 1 Graph of the density defined by (16) for several values of a > 0. When ηt has a
density of this form the QMLE has the same asymptotic variance as the MLE.

θ̄n = θ̄n,f = θ̃n + Î−1
n,f

1
n

∂

∂θ
logLn,f(θ̃n)

has the same asymptotic distribution (15) as the MLE, under the same

Table 4 ARE of the MLE with respect to the QMLE when the density f of ηt is the
normalized Student distribution with ν degrees of freedom and unit variance: f(y) =
√

ν/ν − 2fν(y
√

ν/ν − 2), where fν denotes the standard Student density with ν degrees
of freedom

ν 5 6 7 8 9 10 20 30 ∞
ARE 2.5 1.66 1.4 1.27 1.2 1.15 1.03 1.01 1

assumptions. In concrete situations, f is unknown and θ̄n is not feasible.
A feasible estimator is obtained by replacing the unknown error density f
by an estimator, which can be obtained from the standardized residuals
η̂t = εt/σt(θ̂QML

n ), t = 1, . . . , n. A non parametric kernel density estimator f̂
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can for instance be used. An issue is whether θ̄n,f̂ is an adaptive estimator, in
the sense that it inherits the asymptotic optimality properties of θ̄n,f . Adap-
tive estimation in GARCH models has been studied by several authors; see
e.g Drost and Klaassen (1997), Engle and González-Rivera (1991), Ling and
McAleer (2003), Linton (1993). From these references, adaptiveness holds
in the sense that the volatility parameters can be estimated up to a scale
parameter, with the same asymptotic precision as if the error distribution
were known; see Drost and Klaassen (1997). However, adaptive estimation
of all GARCH coefficients is not possible. Efficiency losses of the QMLE
and semi-parametric estimators, with respect to the MLE, are quantified in
González-Rivera and Drost (1999) and illustrated numerically in Drost and
Klaassen (1997), Engle and González-Rivera (1991).

5 Alternative Estimators

It is known that parameter estimation is not standard for ARMA models
with infinite variance innovations; see Mikosch et al. (1995). Indeed, with the
notation of Section 3.2, the score vector εt∂εt/∂ϑ has a finite variance I when
Eε21 < ∞ and the εt are iid. In the presence of conditionally heteroscedas-
tic innovations, or more generally when the εt are not iid, the existence of
fourth-order moments is required for the existence of I. Thus the moment
condition Er41 < ∞ seems necessary for the asymptotic normality of the LSE
of the ARMA-GARCH models defined by (12). Similarly, it can be shown
that the variance of the quasi-maximum likelihood score vector may not ex-
ist when Er21 = +∞. We have seen in Section 3.2 that moment conditions
are not needed for the consistency of the QMLE. For statistical inference,
consistency is however not sufficient, and the asymptotic distribution of the
estimator is generally required. The asymptotic distributions of the LSE and
QMLE are unknown when Er41 = +∞. Sections 5.1 and 5.2 present alter-
native estimators which require less moment assumptions on the observed
process rt. The estimators defined in Sections 5.3 and 5.4 allow one to reduce
the moment assumptions on the iid process (ηt). Section 5.5 is devoted to
the Whittle estimator. It will be seen that this estimator is less attractive for
GARCH models than for ARMA models. The moment estimators mentioned
in Section 5.6 seem particularly interesting to allow for GARCH-type effects
without imposing a fully specified model. To save space we only present the
main ideas of these estimation methods. The precise assumptions and asymp-
totic variance matrices can be found in the corresponding references.
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5.1 Self–weighted LSE for the ARMA parameters

To estimate the ARMA parameters

ϑ0 = (c0, a01, . . . a0P , b01, . . . , b0Q)′

of the ARMA-GARCH model (12), Ling (2003) considered the self-weighted
LSE (SWL) defined by

ϑ̂SWL
n = arg min

ϑ∈Ψ
n−1

n
∑

t=1

ω2
t ε̃

2
t (ϑ),

where the weights ωt are positive measurable functions of rt−1, rt−2, . . . , Ψ is
a compact subspace of R

P+Q+1, and ε̃t(ϑ) are the ARMA residuals computed
for the value ϑ of the ARMA parameter and with fixed initial values. Take
for instance ω−1

t = 1 +
∑t−1

k=1 k
−1−1/s|rt−k| with E|r1|2s < ∞ and s ∈ (0, 1).

It can be shown that there exist constants K > 0 and ρ ∈ (0, 1) such that

|ε̃t| ≤ K (1 + |ηt|)
(

1 +
t−1
∑

k=1

ρk|rt−k|
)

and
∣

∣

∣

∣

∂ε̃t
∂ϑi

∣

∣

∣

∣

≤ K

t−1
∑

k=1

ρk|rt−k|.

It follows that

|ωtε̃t| ≤ K (1 + |ηt|)
(

1 +
∞
∑

k=1

k1+1/sρk

)

,

∣

∣

∣

∣

ωt
∂ε̃t
∂ϑi

∣

∣

∣

∣

≤ K

(

1 +
∞
∑

k=1

k1+1/sρk

)

.

Thus

E

∣

∣

∣

∣

ω2
t ε̃t

∂ε̃t
∂ϑi

∣

∣

∣

∣

2

≤ K4E (1 + |η1|)2
( ∞
∑

k=1

k1+1/sρk

)4

< ∞,

which entails a finite variance for the SWL score vector ω2
t ε̃t∂ε̃t/∂ϑ. Ling

(2006) then deduced the asymptotic normality of
√
n(ϑ̂SWL

n − ϑ0), allowing
for the case Er21 = ∞.

5.2 Self–weighted QMLE

To obtain an AN estimator of the parameter ϕ0 = (ϑ′0, θ
′
0)

′ in the ARMA-
GARCH model (12) under mild moment assumptions on the observed pro-
cess, Ling (2006) proposed the self-weighted QMLE

ϕ̂SWQ
n = arg min

ϕ∈Φ
n−1

n
∑

t=1

ωt�̃t(ϕ),
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where �̃t(ϕ) = ε̃2t (ϑ)/σ̃2
t (ϕ) + log σ̃2

t (ϕ) with obvious notations. To under-
stand the principle of this estimator, let us note that the minimized criterion
generally converges to a limit criterion l(ϕ) = Eϕωt�t(ϕ) satisfying

l(ϕ) − l(ϕ0) = Eϕ0ωt

{

log
σ2
t (ϕ)

σ2
t (ϕ0)

+
σ2
t (ϕ0)
σ2
t (ϕ)

− 1
}

+ Eϕ0ωt
{εt(ϑ) − εt(ϑ0)}2

σ2
t (ϕ)

+ Eϕ0ωt
2ηtσt(ϕ0){εt(ϑ) − εt(ϑ0)}

σ2
t (ϕ)

.

The last expectation (when it exists) is zero because ηt is centered and is
independent of the other random variables involved in the expectation. From
the inequality x− 1 ≥ log x, we have

Eϕ0ωt

{

log
σ2
t (ϕ)

σ2
t (ϕ0)

+
σ2
t (ϕ0)
σ2
t (ϕ)

− 1
}

≥ Eϕ0ωt

{

log
σ2
t (ϕ)

σ2
t (ϕ0)

+ log
σ2
t (ϕ0)
σ2
t (ϕ)

}

.

Hence under the usual identifiability assumptions, l(ϕ) ≥ l(ϕ0) with equality
if and only if ϕ = ϕ0. Note that the orthogonality between ηt and the weight
ωt is essential.

Ling (2006) showed consistency and AN of ϕ̂SWQ
n under the assumption

E|r1|s < ∞ for some s > 0.

5.3 Lp–estimators

The weighted estimators of the previous sections require the moment assump-
tion Eη4

1 < ∞. Practitioners often claim that financial series do not admit
(even low-order) moments. In GARCH processes an infinite variance can be
obtained either by relaxing the parameters constraint or by allowing an infi-
nite variance for ηt. In the GARCH(1,1) case the two sets of assumptions

i) :
{

α01 + β01 ≥ 1
Eη2

1 = 1 or ii) : Eη2
1 = ∞

imply an infinite variance for εt. Under i), and the strict stationarity as-
sumption, the asymptotic distribution of the QLME is generally Gaussian
(see Section 3), whereas the usual estimators have non standard asymptotic
distributions or are even non-consistent under ii); see Berkes and Horváth
(2003), Hall and Yao (2003), Mikosch and Straumann (2002). It is therefore
of interest to define alternative estimators enjoying a Gaussian asymptotic
distribution under ii), or even under the more general situation where both
α01 + β01 > 1 and Eη2

1 = ∞ are allowed for.
Note that a GARCH model is generally defined under the standardization

Eη2
1 = 1. When the existence of Eη2

1 is relaxed, one can identify the GARCH
coefficients by imposing that the median of η2

1 be τ = 1. In the framework of
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ARCH(q) models, Horváth and Liese (2004) consider Lp-estimators, including
the L1-estimator

θ̂L1
n = arg min

θ
n−1

n
∑

t=1

ωt

∣

∣

∣

∣

∣

ε2t − ω −
q

∑

i=1

αiε
2
t−1

∣

∣

∣

∣

∣

,

where, for example, ω−1
t = 1 +

∑p
i=1 ε

2
t−i + ε4t−i. When η2

t has a density, con-
tinuous and positive around its median τ = 1, the consistency and asymptotic
normality of θ̂L1

n is shown in Horváth and Liese (2004), without any moment
assumption.

5.4 Least absolute deviations estimators

In the framework of ARCH and GARCH models, Peng and Yao (2003) stud-
ied several least absolute deviations estimators. An interesting specification
is the following

θ̂LADn = arg min
θ

n−1
n

∑

t=1

∣

∣log ε2t − log σ̃2
t (θ)

∣

∣ . (17)

With this estimator it is convenient to define the GARCH parameters under
the condition that the median of η2

1 is equal to 1. It entails a reparametrization
of standard GARCH models. Consider, for instance, a GARCH(1,1) model
with parameters ω0, α01 and β01, and a Gaussian noise ηt. Since the median
of η2

1 is τ = 0.4549..., the median of the square of η∗t = ηt/
√
τ is 1, and the

model is rewritten as

εt = σtη
∗
t , σ2

t = τω0 + τα01ε
2
t−1 + β01σ

2
t−1.

It is interesting to note that the error terms log η∗2t = log ε2t − log σ̃2
t (θ) are

iid with median 0 when θ = θ0. Intuitively, this is the reason why it is not
necessary to use weights in the sum (17). Under the moment assumption
Eε21 < ∞ and certain regularity assumptions, it is shown in Peng and Yao
(2003) that there exists a local solution of (17) which is weakly consistent
and AN, with the standard rate of convergence n1/2. This convergence holds
even in the case of heavy-tailed errors : no condition on the moments of η1
beyond Eη2

1 = 1 is imposed.
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5.5 Whittle estimator

Whittle estimation is a standard method for ARMA models, working in the
spectral domain of the process; see Brockwell and Davis (1991), Section 10.8
for further details. It is well known that, under the moment assumption Eε41 <
∞, the square of a GARCH(p, q) model satisfies an ARMA(p ∧ q, q) model

φθ0(L)ε2t = ω0 + ψθ0(L)ut, (18)

where L denotes the lag operator,

φθ0(z) = 1 −
p∧q
∑

i=1

(α0i + β0i)zi, ψθ0(z) = 1 −
p

∑

i=1

β0iz
i, ut = (η2

t − 1)σ2
t .

Thus, the spectral density of ε2t is

fθ0(λ) =
Eu2

t

2π

∣

∣ψθ0(e−iλ)
∣

∣

2

|φθ0(e−iλ)|2
.

Denote by γ̂ε2(h) the sample autocovariance of ε2t at lag h. At the Fourier
frequencies λj = 2πj/n ∈ (−π, π], the periodogram

In(λj) =
∑

|h|<n

γ̂ε2(h)e−ihλj , j ∈ J =
{[

−n
2

]

+ 1, . . . ,
[n

2

]}

,

can be considered as a non parametric estimator of 2πfθ0(λj). Let

ut(θ) =
φθ(L)
ψθ(L)

{

ε2t − ωφ−1
θ (1)

}

.

It can be shown that

Eu2
1(θ) =

Eu2
1(θ0)
2π

∫ π

−π

fθ0(λ)
fθ(λ)

dλ ≥ Eu2
1(θ0)

with equality if and only if θ = θ0; see Brockwell and Davis (1991) Proposition
10.8.1. In view of this inequality, it seems natural to consider the so-called
Whittle estimator

θ̂Wn = arg min
θ

1
n

∑

j∈J

In(λj)
fθ(λj)

.

For ARMA models with iid innovations the Whittle estimator has the same
asymptotic behavior as the QMLE and LSE. For GARCH processes the Whit-
tle estimator has still the same asymptotic behavior as the LSE, but simu-
lations studies indicate that the Whittle estimator, for normal and student
noises (ηt), is less accurate than the QMLE. Moreover Giraitis and Robinson
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(2001), Mikosch and Straumann (2002), Straumann (2005) have shown that
consistency requires the existence of Eε41, and asymptotic normality requires
Eε81 < ∞.

5.6 Moment estimators

A sequence (εt) is called weak white noise if the εt’s are centered and uncor-
related, but not necessarily independent. In contrast, a sequence of centered
and independent random variables is sometimes called strong white noise.
The GARCH process is a leading example of weak white noise, but there
exist numerous other examples of weak white noises satisfying (18). Consider
for example the process vt = ηtηt−1 where (ηt) is iid N (0, 1). This process
is clearly weak white noise. Straightforward computations show that v2

t sat-
isfies a weak MA(1) representation of the form v2

t = 1 + ut + θut−1, where
(ut) is weak white noise. Although (vt) does not belong to the class of the
strong GARCH models defined by (1), it can be called weak GARCH, in
the sense that (vt) is a white noise and (v2

t ) satisfies an ARMA model. The
ARMA representations (18) of these weak GARCH models are estimated in
Francq and Zakoïan (2000) by LS, under moment and mixing conditions, but
without imposing a particular parametric model for (εt).

The generalized method of moment (GMM) approach is particularly rel-
evant (see Rich et al. (1991)) to estimate ARCH models without assuming
strong assumptions on the noise (ηt).

To finish this non exhaustive list of alternative GARCH estimators, let us
mention the existence of Bayesian estimators, using Monte Carlo integration
with importance sampling for the computation of the posterior expectations;
see Geweke (1989).

6 Properties of Estimators when some GARCH
Coefficients are Equal to Zero

To obtain the AN of the QMLE of GARCH models, a crucial assumption
is that the true parameter vector has strictly positive components. When
some components are equal to zero, the parameter, which is constrained to
have nonnegative components, lies at the boundary of the parameter space
and then, Assumption A5 in Section 3.1 is not satisfied. This assumption
is a serious limitation to the estimation theory of GARCH. Indeed it could
be particularly useful to derive the asymptotic distribution of the QMLE
of a GARCH(p, q) model when, for instance, the underlying process is a
GARCH(p− 1, q), or a GARCH(p, q− 1) process. Tests of the significance of
the coefficients and tests of conditional homoscedasticity constitute typical



A Tour in the Asymptotic Theory of GARCH Estimation 105

situations where we have to study the QMLE when the parameter is at the
boundary.

In this section we study the asymptotic behaviour of the QMLE for
GARCH processes, when the true parameter may have zero coefficients. We
first see, by means of an elementary example, why the asymptotic distribution
of the QMLE cannot be Gaussian when one or several GARCH coefficients
are equal to zero.

6.1 Fitting an ARCH(1) model to a white noise

The QMLE of an ARCH(1) model is obtained by minimizing the criterion

ln(ω, α) = n−1
n

∑

t=2

�t(ω, α), �t(ω, α) =
ε2t
σ2
t

+ log σ2
t ,

where σ2
t = ω + αε2t−1. In absence of constraints on the coefficients, the

value of σ2
t could be negative (this is the case when α < 0, ω > 0 and

ε2t−1 > −ω/α). In such a situation, �t(ω, α), and thus the objective function
ln(ω, α), are not defined. This is the reason why the minimization is made
under the constraints ω > 0 and α ≥ 0. The QMLE estimator

(ω̂n, α̂n) = arg min
ω>0, α≥0

ln(ω, α)

then satisfies α̂n ≥ 0 almost surely, for all n. When the process is a white
noise, then α01 = 0 and with probability one

√
n(α̂n − α01) =

√
nα̂n ≥ 0, ∀n.

In this case
√
n(α̂n − α01) cannot converge in law to any non-degenerate

Gaussian distribution N (m, s2) with s2 > 0. Indeed

lim
n→∞

P
{√

n(α̂n − α01) < 0
}

= 0 whereas P
{

N (m, s2) < 0
}

> 0.

For the same reason, when the true value of a general GARCH parameter
has zero components, the asymptotic distribution cannot be Gaussian, for
the QMLE or for any other estimator which takes into account the positivity
constraints.
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6.2 On the need of additional assumptions

To prove the existence of the information matrix involved in the asymptotic
distribution of the QMLE, we have to show that the variance of the vector
σ−2
t (θ0)∂σ2

t (θ0)/ ∂θ, and the expectation of the matrix

Jt =
1

σ4
t (θ0)

(

∂σ2
t (θ0)
∂θ

∂σ2
t (θ0)
∂θ′

)

are finite. A bound for these norms can be shown to be of the form Kc−1

or Kc−2, where K is a constant and c > 0 is the smallest component of θ0.
Obviously, the proof breaks down when one or several components of θ0 are
equal to zero.

To see this technical problem more clearly, let us consider the ARCH(1)
example. If ω0α01 > 0 then the expectation of Jt is finite because

EJt = E
1

(ω0 + α01ε21)2

(

1 ε21
ε21 ε

4
1

)

≤
(

ω−2
0 ω−1

0 α−1
01

ω−1
0 α−1

01 α−2
01

)

,

where the last inequality has to be taken componentwise. However, if α01 = 0

EJt =
1
ω2

0

E

(

1 ε21
ε21 ε

4
1

)

is finite when Eε41 < ∞ only.
Such extra moment assumptions seem necessary for ARCH models and for

the GARCH(1,1), but can sometimes be avoided for more complex GARCH
models. Consider for example a strictly stationary GARCH(p, q) process with
α01 > 0 and β01 > 0. Then, because

∑p
j=1 β0j < 1, the following ARCH(∞)

expansion holds σ2
t (θ0) = c0 +

∑∞
j=1 b0jε

2
t−j with c0 > 0 and b0j > 0 for

all j; see Giraitis et al. (2008) for a review on ARCH(∞) models. Similar
expansions hold for the derivatives ∂σ2

t /∂θi. Thus every term ε2t−j appearing
in the numerator of this ratio {∂σ2

t /∂θ}/σ2
t is also present in the denominator.

In such a situation the moment assumption Eε41 < ∞ is not necessary for the
existence of EJt.

6.3 Asymptotic distribution of the QMLE on the
boundary

For simplicity, let us take a parameter space of the form

Θ = [ω, ω] × [0, α1] × · · · × [0, βp]
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where ω > 0 and α1, . . . , βp > 0. We assume that

A11: θ0 ∈ (ω, ω) × [0, α1) × · · · × [0, βp),

allowing for zero GARCH coefficients, but excluding the case where θ0 is on
the upper boundary of Θ. When Θ is not a product of intervals, Assumption
A11 must be modified appropriately. We now define the "local" parameter
space

Λ = Λ(θ0) = Λ1 × · · · × Λp+q+1,

where Λ1 = R, and, for i = 2, . . . , p+ q+1, Λi = R if θ0i �= 0 and Λi = [0,∞)
if θ0i = 0. In view of the positivity constraints, the random vector

√
n(θ̂n−θ)

belongs to Λ with probability one.
We already know that the QMLE is consistent under A1–A4, even when

θ0 is on the boundary of Θ. If in addition A6, A11 and either

A12: Eε61 < ∞
or alternatively

A12’: σ2
t (θ0) = c0 +

∑∞
j=1 b0jε

2
t−j with b0j > 0 for all j ≥ 1

hold, then

√
n(θ̂QML

n − θ0)
d→ λΛ := arg inf

λ∈Λ
{λ− Z}′ J {λ− Z} , (19)

with Z ∼ N
(

0, (Eη4
1 − 1)J−1

)

.

When θ0 ∈
◦
Θ, we have Λ = R

p+q+1 and we retrieve the standard result
because λΛ = Z ∼ N

(

0, (Eη4
1 − 1)J−1

)

. When θ0 is on the boundary, the
asymptotic distribution of

√
n(θ̂QML

n − θ0) is more complex than a Gaussian.
This is the law of the projection of the Gaussian vector Z on the convex
cone Λ. The reader is referred to Andrews (1999) for similar results on a
general framework, and to Francq and Zakoïan (2007) for the proof of (19).
For fitting ARCH(q) models, Jordan (2003) allows a parameter belonging to
the boundary of a non compact set, and a DGP which is not necessarily an
ARCH process, but requires in particular the moment assumption Eε81 < ∞.

6.4 Application to hypothesis testing

An important consequence of the non Gaussian behavior of the QMLE is
that the Wald and Likelihood-Ratio (LR) tests do not have the standard χ2

asymptotic distribution. As an illustration consider the ARCH(2) case with
θ0 = (ω0, 0, 0). We have

Z =

⎛

⎝

Z1

Z2

Z3

⎞

⎠ ∼ N

⎧

⎨

⎩

0, (Eη4
1 − 1)J−1 =

⎛

⎝

(Eη4
1 + 1)ω2

0 −ω0 −ω0

−ω0 1 0
−ω0 0 1

⎞

⎠

⎫

⎬

⎭
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and we can show that

λΛ =

⎛

⎝

Z1 + ωZ−
2 + ωZ−

3

Z+
2

Z+
3

⎞

⎠ , Z+
i = max{Zi, 0} and Z−

i = min{Zi, 0}.

We can see that, asymptotically, we have α̂1 = 0 (or α̂2 = 0) with probability
1/2, and α̂1 = α̂2 = 0 with probability 1/4. Consequently, for the test of the
null hypothesis H0 : α1 = α2 = 0, the Wald statistic Wn = n

(

α̂2
1 + α̂2

2

)

has
a discrete component, and thus cannot be the usual χ2

2. More precisely, it is
easy to see that under H0

Wn
d→ W ∼ 1

4
δ0 +

1
2
χ2

1 +
1
4
χ2

2.

One can show that the LR test has the same nonstandard asymptotic dis-
tribution (in the Gaussian case), whereas the Lagrange Multiplier (LM) test
conserves its usual χ2 asymptotic distribution, even when H0 puts θ0 on the
boundary of the parameter space; see Demos and Sentana (1998), Francq and
Zakoïan (2007). This is not very surprising, since the likelihood of the con-
strained model is equal to that of the unconstrained model when α̂1 = α̂2 = 0,
but the score is not necessarily zero when α̂1 = α̂2 = 0 (see Figure 2).

α α
α̂ = α01 = 0 α01 = 0 α̂

Fig. 2 Projected Log-likelihood (full line) α �→ logLn(ω̂, α) of an ARCH(1) model with
α01 = 0. In the right-hand graph we have â > 0, ∂ logLn(ω̂, α)/∂α = 0 and the score
∂ logLn(ω̂, 0)/∂α > 0. In the left-hand graph we have α̂ = 0 and ∂ logLn(ω̂, α)/∂α =
∂ logLn(ω̂, 0)/∂α < 0. In both cases the score is almost surely non null.

Another important consequence of the non standard asymptotic distri-
bution (19), is that the Wald, LM and LR tests do not have the same local
asymptotic power. The Wald test generally outperforms the LM test in terms
of local asymptotic power. This is not surprising because the LM test do not
take into account the one-sided nature of the alternatives. It is of course pos-
sible to derive one-sided versions of the LM test; see e.g. Demos and Sentana
(1998).
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7 Conclusion

Since many financial series exhibit heavy-tailed marginal distributions, it is
particularly important to obtain estimation procedures which do not hinge
on high-order moment assumptions. The QMLE is the most popular method
for estimating GARCH models. In the general ARMA-GARCH case, the con-
sistency is obtained without moment assumption on the observed process εt,
even when the parameter is on the boundary of the parameter space (a situa-
tion frequently encountered in test problems). In the pure GARCH case with

θ0 ∈
◦
Θ the AN is also obtained without moment assumption on εt, but ad-

dition assumptions are required in the general ARMA-GARCH case. When
θ0 is on the boundary of the parameter space, the asymptotic distribution
of the QMLE is no longer Gaussian, but is that of the projection of a Gaus-
sian vector on a convex cone. The main drawbacks of the QMLE are that
i) the estimator is not explicit and it requires a numerical optimization, ii)
the AN requires the existence of fourth-order moments for the iid process
ηt, iii) the estimator is in general inefficient, iv) the AN requires moments
assumptions on εt in the general ARMA-GARCH case, v) a fully parametric
specification is required. Concerning the point iii) it is however interesting to
note that the QMLE is not only efficient in the Gaussian case, but also when
the distribution of ηt belongs to the class defined in Section 4. At least in
the ARCH case, a two-step LSE should respond satisfactorily to the point i),
but with a cost in terms of moment conditions. Weighted Lp and least abso-
lute deviations estimators have been recently developed to alleviate the point
ii). The MLE is a fully satisfactory response to the points ii) and iii), but
requires a complete specification of the error distribution, unless adaptive es-
timators be employed. Also very recently, self-weighted LSE and self-weighted
QMLE have been developed to respond to the point iv). Methods based on
orthogonality conditions, such as the GMM, are simple and obviously more
robust to model misspecifications, and are therefore worthwhile procedures
for considering the points i) and v).
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Practical Issues in the Analysis of
Univariate GARCH Models

Eric Zivot

Abstract This chapter gives a tour through the empirical analysis of uni-
variate GARCH models for financial time series with stops along the way to
discuss various practical issues associated with model specification, estima-
tion, diagnostic evaluation and forecasting.

1 Introduction

There are many very good surveys covering the mathematical and statisti-
cal properties of GARCH models. See, for example, Bera and Higgins (1995),
Bollerslev et al. (1994), Pagan (1996), Palm (1996), Diebold and Lopez (1996)
and Teräsvirta (2008). There are also several comprehensive surveys that fo-
cus on the forecasting performance of GARCH models including Poon and
Granger (2003), Poon (2005), and Andersen et al. (2006). However, there are
relatively few surveys that focus on the practical econometric issues associ-
ated with estimating GARCH models and forecasting volatility. This chapter,
which draws heavily from Zivot and Wang (2005), gives a tour through the
empirical analysis of univariate GARCH models for financial time series with
stops along the way to discuss various practical issues. Multivariate GARCH
models are discussed in the chapter by Silvennoinen and Teräsvirta (2008).
The plan of this chapter is as follows. Section 2 reviews some stylized facts of
asset returns using example data on Microsoft and S&P 500 index returns.
Section 3 reviews the basic univariate GARCH model. Testing for GARCH
effects and estimation of GARCH models are covered in Sections 4 and 5.
Asymmetric and non-Gaussian GARCH models are discussed in Section 6,
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Asset Mean Med Min Max Std. Dev Skew Kurt JB
Daily Returns

MSFT 0.0016 0.0000 -0.3012 0.1957 0.0253 -0.2457 11.66 13693
S&P 500 0.0004 0.0005 -0.2047 0.0909 0.0113 -1.486 32.59 160848

Monthly Returns
MSFT 0.0336 0.0336 -0.3861 0.4384 0.1145 0.1845 4.004 9.922
S&P 500 0.0082 0.0122 -0.2066 0.1250 0.0459 -0.8377 5.186 65.75
Notes: Sample period is 03/14/86 - 06/30/03 giving 4365 daily observations.

Table 1 Summary Statistics for Daily and Monthly Stock Returns.

and long memory GARCH models are briefly discussed in Section 7. Section
8 discusses volatility forecasting, and final remarks are given Section 9 1.

2 Some Stylized Facts of Asset Returns

Let Pt denote the price of an asset at the end of trading day t. The continu-
ously compounded or log return is defined as rt = ln(Pt/Pt−1). Figure 1 plots
the daily log returns, squared returns, and absolute value of returns of Mi-
crosoft stock and the S&P 500 index over the period March 14, 1986 through
June 30, 2003. There is no clear discernible pattern of behavior in the log
returns, but there is some persistence indicated in the plots of the squared
and absolute returns which represent the volatility of returns. In particular,
the plots show evidence of volatility clustering - low values of volatility fol-
lowed by low values and high values of volatility followed by high values. This
behavior is confirmed in Figure 2 which shows the sample autocorrelations
of the six series. The log returns show no evidence of serial correlation, but
the squared and absolute returns are positively autocorrelated. Also, the de-
cay rates of the sample autocorrelations of r2t and |rt| appear much slower,
especially for the S&P 500 index, than the exponential rate of a covariance
stationary autoregressive-moving average (ARMA) process suggesting pos-
sible long memory behavior. Monthly returns, defined as the sum of daily
returns over the month, are illustrated in Figure 3. The monthly returns
display much less volatility clustering than the daily returns.

Table 1 gives some standard summary statistics along with the Jarque-
Bera test for normality. The latter is computed as

JB =
T

6

(

ŝkew
2
+

( ̂kurt − 3)2

4

)

, (1)

1 All of the examples in the paper were constructed using S-PLUS 8.0 and
S+FinMetrics 2.0. Script files for replicating the examples may be downloaded from
http://faculty.washington.edu/ezivot
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Fig. 1 Daily returns, squared returns and absolute returns for Microsoft and the S&P 500
index.

where ŝkew denotes the sample skewness and ̂kurt denotes the sample kur-
tosis. Under the null that the data are iid normal, JB is asymptotically dis-
tributed as chi-square with 2 degrees of freedom. The distribution of daily
returns is clearly non-normal with negative skewness and pronounced excess
kurtosis. Part of this non-normality is caused by some large outliers around
the October 1987 stock market crash and during the bursting of the 2000 tech
bubble. However, the distribution of the data still appears highly non-normal
even after the removal of these outliers. Monthly returns have a distribution
that is much closer to the normal than daily returns.

3 The ARCH and GARCH Model

Engle (1982) showed that the serial correlation in squared returns, or condi-
tional heteroskedasticity, can be modeled using an autoregressive conditional
heteroskedasticity (ARCH) model of the form
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Fig. 2 Sample autocorrelations of rt, r2t and |rt| for Microsoft and S&P 500 index.

yt = Et−1[yt] + εt, (2)
εt = ztσt, (3)

σ2
t = a0 + a1ε

2
t−1 + · · · + apε

2
t−p, (4)

where Et−1[·] represents expectation conditional on information available at
time t− 1, and zt is a sequence of iid random variables with mean zero and
unit variance. In the basic ARCH model zt is assumed to be iid standard
normal. The restrictions a0 > 0 and ai ≥ 0 (i = 1, . . . , p) are required for
σ2
t > 0. The representation (2) - (4) is convenient for deriving properties of

the model as well as for specifying the likelihood function for estimation. The
equation for σ2

t can be rewritten as an AR(p) process for ε2t

ε2t = a0 + a1ε
2
t−1 + · · · + apε

2
t−p + ut, (5)

where ut = ε2t−σ2
t is a martingale difference sequence (MDS) since Et−1[ut] =

0 and it is assumed that E(ε2t ) < ∞. If a1 + · · ·+ ap < 1 then εt is covariance
stationary, the persistence of ε2t and σ2

t is measured by a1 + · · · + ap and
σ̄2 = var(εt) = E(ε2t ) = a0/(1 − a1 − · · · − ap).
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Fig. 3 Monthly Returns, Squared Returns and Sample Autocorrelations of Squared Re-
turns for Microsoft and the S&P 500.

An important extension of the ARCH model proposed by Bollerslev (1986)
replaces the AR(p) representation in (4) with an ARMA(p, q) formulation

σ2
t = a0 +

p
∑

i=1

aiε
2
t−i +

q
∑

j=1

bjσ
2
t−j , (6)

where the coefficients ai (i = 0, · · · , p) and bj (j = 1, · · · , q) are all assumed
to be positive to ensure that the conditional variance σ2

t is always positive.2
The model in (6) together with (2)-(3) is known as the generalized ARCH or
GARCH(p, q) model. The GARCH(p, q) model can be shown to be equivalent
to a particular ARCH(∞) model. When q = 0, the GARCH model reduces to
the ARCH model. In order for the GARCH parameters, bj (j = 1, · · · , q), to
be identified at least one of the ARCH coefficients ai (i > 0) must be nonzero.
Usually a GARCH(1,1) model with only three parameters in the conditional
variance equation is adequate to obtain a good model fit for financial time

2 Positive coefficients are sufficient but not necessary conditions for the positivity of condi-
tional variance. See Nelson (1992) and Conrad and Haag (2006) for more general conditions.
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series. Indeed, Hansen and Lunde (2004) provided compelling evidence that is
difficult to find a volatility model that outperforms the simple GARCH(1,1).

Just as an ARCH model can be expressed as an AR model of squared
residuals, a GARCH model can be expressed as an ARMA model of squared
residuals. Consider the GARCH(1,1) model

σ2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1. (7)

Since Et−1(ε2t ) = σ2
t , (7) can be rewritten as

ε2t = a0 + (a1 + b1)ε2t−1 + ut − b1ut−1, (8)

which is an ARMA(1,1) model with ut = ε2t − Et−1(ε2t ) being the MDS
disturbance term.

Given the ARMA(1,1) representation of the GARCH(1,1) model, many
of its properties follow easily from those of the corresponding ARMA(1,1)
process for ε2t . For example, the persistence of σ2

t is captured by a1 + b1 and
covariance stationarity requires that a1 + b1 < 1. The covariance stationary
GARCH(1,1) model has an ARCH(∞) representation with ai = a1b

i−1
1 , and

the unconditional variance of εt is σ̄2 = a0/(1 − a1 − b1).
For the general GARCH(p, q) model (6), the squared residuals εt be-

have like an ARMA(max(p, q), q) process. Covariance stationarity requires
∑p

i=1 ai +
∑q

j=1 bi < 1 and the unconditional variance of εt is

σ̄2 = var(εt) =
a0

1 −
(

∑p
i=1 ai +

∑q
j=1 bi

) . (9)

3.1 Conditional mean specification

Depending on the frequency of the data and the type of asset, the conditional
mean Et−1[yt] is typically specified as a constant or possibly a low order
autoregressive-moving average (ARMA) process to capture autocorrelation
caused by market microstructure effects (e.g., bid-ask bounce) or non-trading
effects. If extreme or unusual market events have happened during sample
period, then dummy variables associated with these events are often added
to the conditional mean specification to remove these effects. Therefore, the
typical conditional mean specification is of the form

Et−1[yt] = c+
r

∑

i=1

φiyt−i +
s

∑

j=1

θjεt−j +
L
∑

l=0

β′
lxt−l + εt, (10)

where xt is a k × 1 vector of exogenous explanatory variables.
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In financial investment, high risk is often expected to lead to high returns.
Although modern capital asset pricing theory does not imply such a simple
relationship, it does suggest that there are some interactions between ex-
pected returns and risk as measured by volatility. Engle, Lilien and Robins
(1987) proposed to extend the basic GARCH model so that the conditional
volatility can generate a risk premium which is part of the expected returns.
This extended GARCH model is often referred to as GARCH-in-the-mean
or GARCH-M model . The GARCH-M model extends the conditional mean
equation (10) to include the additional regressor g(σt), which can be an ar-
bitrary function of conditional volatility σt. The most common specifications
are g(σt) = σ2

t , σt, or ln(σ2
t ).

3.2 Explanatory variables in the conditional variance
equation

Just as exogenous variables may be added to the conditional mean equa-
tion, exogenous explanatory variables may also be added to the conditional
variance formula (6) in a straightforward way giving

σ2
t = a0 +

p
∑

i=1

aiε
2
t−i +

q
∑

j=1

bjσ
2
t−j +

K
∑

k=1

δ′kzt−k,

where zt is a m × 1 vector of variables, and δ is a m × 1 vector of posi-
tive coefficients. Variables that have been shown to help predict volatility are
trading volume, macroeconomic news announcements (Lamoureux and Las-
trapes (1990a), Flannery and Protopapadakis (2002), Bomfin (2003)), implied
volatility from option prices and realized volatility (Taylor and Xu (1997),
Blair et al. (2001)), overnight returns (Gallo and Pacini (1997), Martens
(2002)), and after hours realized volatility (Chen et al. (2008))

3.3 The GARCH model and stylized facts of asset
returns

Previously it was shown that the daily returns on Microsoft and the S&P 500
exhibited the “stylized facts” of volatility clustering as well as a non-normal
empirical distribution. Researchers have documented these and many other
stylized facts about the volatility of economic and financial time series. Boller-
slev et al. (1994) gave a complete account of these facts. Using the ARMA
representation of GARCH models shows that the GARCH model is capable
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of explaining many of those stylized facts. The four most important ones are:
volatility clustering, fat tails, volatility mean reversion, and asymmetry.

To understand volatility clustering, consider the GARCH(1, 1) model in
(7). Usually the GARCH coefficient b1 is found to be around 0.9 for many
daily or weekly financial time series. Given this value of b1, it is obvious that
large values of σ2

t−1 will be followed by large values of σ2
t , and small values

of σ2
t−1 will be followed by small values of σ2

t . The same reasoning can be
obtained from the ARMA representation in (8), where large/small changes
in ε2t−1 will be followed by large/small changes in ε2t .

It is well known that the distribution of many high frequency financial time
series usually have fatter tails than a normal distribution. That is, extreme
values occur more often than implied by a normal distribution. Bollerslev
(1986) gave the condition for the existence of the fourth order moment of a
GARCH(1, 1) process. Assuming the fourth order moment exists, Bollerslev
(1986) showed that the kurtosis implied by a GARCH(1, 1) process with
normal errors is greater than 3, the kurtosis of a normal distribution. He and
Teräsvirta (1999a) and He and Teräsvirta (1999b) extended these results to
general GARCH(p, q) models. Thus a GARCH model with normal errors can
replicate some of the fat-tailed behavior observed in financial time series. A
more thorough discussion of extreme value theory for GARCH is given by
Davis and Mikosch (2008). Most often a GARCH model with a non-normal
error distribution is required to fully capture the observed fat-tailed behavior
in returns. These models are reviewed in sub-Section 6.2.

Although financial markets may experience excessive volatility from time
to time, it appears that volatility will eventually settle down to a long run
level. Recall, the unconditional variance of εt for the stationary GARCH(1, 1)
model is σ̄2 = a0/(1 − a1 − b1). To see that the volatility is always pulled
toward this long run, the ARMA representation in (8) may be rewritten in
mean-adjusted form as:

(ε2t − σ̄2) = (a1 + b1)(ε2t−1 − σ̄2) + ut − b1ut−1. (11)

If the above equation is iterated k times, it follows that

(ε2t+k − σ̄2) = (a1 + b1)k(ε2t − σ̄2) + ηt+k,

where ηt is a moving average process. Since a1 + b1 < 1 for a covariance
stationary GARCH(1, 1) model, (a1 + b1)k → 0 as k → ∞. Although at
time t there may be a large deviation between ε2t and the long run variance,
ε2t+k − σ̄2 will approach zero “on average” as k gets large; i.e., the volatility
“mean reverts” to its long run level σ̄2. The magnitude of a1 + b1 controls the
speed of mean reversion. The so-called half-life of a volatility shock, defined
as ln(0.5)/ ln(a1 + b1), measures the average time it takes for |ε2t − σ̄2| to
decrease by one half. Obviously, the closer a1 + b1 is to one the longer is
the half-life of a volatility shock. If a1 + b1 > 1, the GARCH model is non-
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stationary and the volatility will eventually explode to infinity as k → ∞.
Similar arguments can be easily constructed for a GARCH(p, q) model.

The standard GARCH(p, q) model with Gaussian errors implies a sym-
metric distribution for yt and so cannot account for the observed asymmetry
in the distribution of returns. However, as shown in Section 6, asymmetry can
easily be built into the GARCH model by allowing εt to have an asymmetric
distribution or by explicitly modeling asymmetric behavior in the conditional
variance equation (6).

3.4 Temporal aggregation

Volatility clustering and non-Gaussian behavior in financial returns is typi-
cally seen in weekly, daily or intraday data. The persistence of conditional
volatility tends to increase with the sampling frequency3. However, as shown
in Drost and Nijman (1993), for GARCH models there is no simple aggre-
gation principle that links the parameters of the model at one sampling fre-
quency to the parameters at another frequency. This occurs because GARCH
models imply that the squared residual process follows an ARMA type pro-
cess with MDS innovations which is not closed under temporal aggregation.
The practical result is that GARCH models tend to be fit to the frequency at
hand. This strategy, however, may not provide the best out-of-sample volatil-
ity forecasts. For example, Martens (2002) showed that a GARCH model fit
to S&P 500 daily returns produces better forecasts of weekly and monthly
volatility than GARCH models fit to weekly or monthly returns, respectively.

4 Testing for ARCH/GARCH Effects

The stylized fact of volatility clustering in returns manifests itself as au-
tocorrelation in squared and absolute returns or in the residuals from the
estimated conditional mean equation (10). The significance of these autocor-
relations may be tested using the Ljung-Box or modified Q-statistic

MQ(p) = T (T + 2)
p

∑

j=1

ρ̂2
j

T − j
, (12)

3 The empirical result that aggregated returns exhibit smaller GARCH effects and ap-
proach Gaussian behavior can be explained by the results of Diebold (1988) who showed
that a central limit theorem holds for standardized sums of random variables that follow
covariance stationary GARCH processes.
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where ρ̂j denotes the j-lag sample autocorrelation of the squared or absolute
returns. If the data are white noise then the MQ(p) statistic has an asymptotic
chi-square distribution with p degrees of freedom. A significant value for
MQ(p) provides evidence for time varying conditional volatility.

To test for autocorrelation in the raw returns when it is suspected that
there are GARCH effects present, Diebold and Lopez (1996) suggested using
the following heteroskedasticity robust version of (12)

MQHC(p) = T (T + 2)
p

∑

j=1

1
T − j

(

σ̂4

σ̂4 + γ̂j

)

ρ̂2
j ,

where σ̂4 is a consistent estimate of the squared unconditional variance of
returns, and γ̂j is the sample autocovariance of squared returns.

Since an ARCH model implies an AR model for the squared residuals ε2t ,
Engle (1982) showed that a simple Lagrange multiplier (LM) test for ARCH
effects can be constructed based on the auxiliary regression (5). Under the
null hypothesis that there are no ARCH effects, a1 = a2 = · · · = ap = 0, the
test statistic

LM = T · R2 (13)

has an asymptotic chi-square distribution with p degrees of freedom, where T
is the sample size and R2 is computed from the regression (5) using estimated
residuals. Even though the LM test is constructed from an ARCH model, Lee
and King (1993) show that it also has power against more general GARCH
alternatives and so it can be used as a general specification test for GARCH
effects.

Lumsdaine and Ng (1999), however, argued that the LM test (13) may
reject if there is general misspecification in the conditional mean equation
(10). They showed that such misspecification causes the estimated residuals
ε̂t to be serially correlated which, in turn, causes ε̂2t to be serially correlated.
Therefore, care should be exercised in specifying the conditional mean equa-
tion (10) prior to testing for ARCH effects.

4.1 Testing for ARCH effects in daily and monthly
returns

Table 2 shows values of MQ(p) computed from daily and monthly squared
returns and the LM test for ARCH, for various values of p, for Microsoft
and the S&P 500. There is clear evidence of volatility clustering in the daily
returns, but less evidence for monthly returns especially for the S&P 500.
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MQ(p) r2t LM
Asset p 1 5 10 1 5 10

Daily Returns

MSFT 56.81
(0.000)

562.1
(0.000)

206.8
(0.000)

56.76
(0.000)

377.9
(0.000)

416.6
(0.000)

S&P 500 87.59
(0.000)

415.5
(0.000)

456.1
(0.000)

87.52
(0.000)

311.4
(0.000)

329.8
(0.000)

Monthly Returns

MSFT 0.463
(0.496)

17.48
(0.003)

31.59
(0.000)

0.455
(0.496)

16.74
(0.005)

33.34
(0.000)

S&P 500 1.296
(0.255)

2.590
(0.763)

6.344
(0.786)

1.273
(0.259)

2.229
(0.817)

5.931
(0.821)

Notes: p-values are in parentheses.

Table 2 Tests for ARCH Effects in Daily Stock Returns

5 Estimation of GARCH Models

The general GARCH(p, q) model with normal errors is (2), (3) and (6) with
zt ∼ iid N(0, 1). For simplicity, assume that Et−1[yt] = c. Given that εt
follows Gaussian distribution conditional on past history, the prediction error
decomposition of the log-likelihood function of the GARCH model conditional
on initial values is

logL =
T
∑

t=1

lt = −T
2

log(2π) − 1
2

T
∑

t=1

log σ2
t − 1

2

T
∑

t=1

ε2t
σ2
t

, (14)

where lt = − 1
2 (log(2π) + log σ2

t ) − 1
2
ε2t
σ2

t
. The conditional loglikelihood (14) is

used in practice since the unconditional distribution of the initial values is
not known in closed form4. As discussed in McCullough and Renfro (1999)
and Brooks et al. (2001), there are several practical issues to consider in
the maximization of (14). Starting values for the model parameters c, ai
(i = 0, · · · , p) and bj (j = 1, · · · , q) need to be chosen and an initialization
of ε2t and σ2

t must be supplied. The sample mean of yt is usually used as the
starting value for c, zero values are often given for the conditional variance
parameters other than a0 and a1, and a0 is set equal to the unconditional
variance of yt5. For the initial values of σ2

t , a popular choice is

σ2
t = ε2t =

1
T

T
∑

s=1

ε2s, t ≤ 0,

4 Diebold and Schuermann (1993) gave a computationally intensive numerical procedure
for approximating the exact log-likelihood.
5 Setting the starting values for all of the ARCH coefficients ai (i = 1, . . . , p) to zero may
create an ill-behaved likelihood and lead to a local minimum since the remaining GARCH
parameters are not identified.
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where the initial values for εs are computed as the residuals from a regression
of yt on a constant.

Once the log-likelihood is initialized, it can be maximized using numerical
optimization techniques. The most common method is based on a Newton-
Raphson iteration of the form

θ̂n+1 = θ̂n − λnH(θ̂n)−1s(θ̂n),

where θn denotes the vector of estimated model parameters at iteration
n, λn is a scalar step-length parameter, and s(θn) and H(θn) denote the
gradient (or score) vector and Hessian matrix of the log-likelihood at it-
eration n, respectively. The step length parameter λn is chosen such that
lnL(θn+1) ≥ lnL(θn). For GARCH models, the BHHH algorithm is often
used. This algorithm approximates the Hessian matrix using only first deriva-
tive information

−H(θ) ≈ B(θ) =
T
∑

t=1

∂lt
∂θ

∂lt
∂θ′

.

In the application of the Newton-Raphson algorithm, analytic or numerical
derivatives may be used. Fiorentini et al. (1996) provided algorithms for
computing analytic derivatives for GARCH models.

The estimates that maximize the conditional log-likelihood (14) are called
the maximum likelihood (ML) estimates. Under suitable regularity condi-
tions, the ML estimates are consistent and asymptotically normally dis-
tributed and an estimate of the asymptotic covariance matrix of the ML
estimates is constructed from an estimate of the final Hessian matrix from
the optimization algorithm used. Unfortunately, verification of the appropri-
ate regularity conditions has only been done for a limited number of simple
GARCH models, see Lumsdaine (1992), Lee and Hansen (1993), Jensen and
Rahbek (2004), Kristensen and Rahbek (2005) and Straumann (2005). In
practice, it is generally assumed that the necessary regularity conditions are
satisfied.

In GARCH models for which the distribution of zt is symmetric and the
parameters of the conditional mean and variance equations are variation free,
the information matrix of the log-likelihood is block diagonal. The implica-
tion of this is that the parameters of the conditional mean equation can be
estimated separately from those of the conditional variance equation without
loss of asymptotic efficiency. This can greatly simplify estimation. An com-
mon model for which block diagonality of the information matrix fails is the
GARCH-M model.
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5.1 Numerical accuracy of GARCH estimates

GARCH estimation is widely available in a number of commercial software
packages (e.g. EVIEWS, GAUSS, MATLAB, Ox, RATS, S-PLUS, TSP) and
there are also a few free open source implementations. Fiorentini et al. (1996),
McCullough and Renfro (1999), and Brooks et al. (2001) discussed numer-
ical accuracy issues associated with maximizing the GARCH log-likelihood.
They found that starting values, optimization algorithm choice, and use of
analytic or numerical derivatives, and convergence criteria all influence the
resulting numerical estimates of the GARCH parameters. McCullough and
Renfro (1999) and Brooks et al. (2001) studied estimation of a GARCH(1,1)
model from a variety of commercial statistical packages using the exchange
rate data of Bollerslev and Ghysels (1996) as a benchmark. They found that
it is often difficult to compare competing software since the exact construc-
tion of the GARCH likelihood is not always adequately described. In general,
they found that use of analytic derivatives leads to more accurate estimation
than procedures based on purely numerical evaluations.

In practice, the GARCH log-likelihood function is not always well be-
haved, especially in complicated models with many parameters, and reaching
a global maximum of the log-likelihood function is not guaranteed using stan-
dard optimization techniques. Also, the positive variance and stationarity
constraints are not straightforward to implement with common optimization
software and are often ignored in practice. Poor choice of starting values can
lead to an ill-behaved log-likelihood and cause convergence problems. There-
fore, it is always a good idea to explore the surface of the log-likelihood by
perturbing the starting values and re-estimating the GARCH parameters.

In many empirical applications of the GARCH(1,1) model, the estimate
of a1 is close to zero and the estimate of b1 is close to unity. This situation
is of some concern since the GARCH parameter b1 becomes unidentified if
a1 = 0, and it is well known that the distribution of ML estimates can be-
come ill-behaved in models with nearly unidentified parameters. Ma et al.
(2007) studied the accuracy of ML estimates of the GARCH parameters a0,
a1 and b1 when a1 is close to zero. They found that the estimated standard
error for b1 is spuriously small and that the t-statistics for testing hypotheses
about the true value of b1 are severely size distorted. They also showed that
the concentrated loglikelihood as a function of b1 exhibits multiple maxima.
To guard against spurious inference they recommended comparing estimates
from pure ARCH(p) models, which do not suffer from the identification prob-
lem, with estimates from the GARCH(1,1). If the volatility dynamics from
these models are similar then the spurious inference problem is not likely to
be present.
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5.2 Quasi-maximum likelihood estimation

Another practical issue associated with GARCH estimation concerns the cor-
rect choice of the error distribution. In particular, the assumption of con-
ditional normality is not always appropriate. However, as shown by Weiss
(1986) and Bollerslev and Woolridge (1992), even when normality is inap-
propriately assumed, maximizing the Gaussian log-likelihood (14) results
in quasi-maximum likelihood estimates (QMLEs) that are consistent and
asymptotically normally distributed provided the conditional mean and vari-
ance functions of the GARCH model are correctly specified. In addition,
Bollerslev and Woolridge (1992) derived an asymptotic covariance matrix
for the QMLEs that is robust to conditional non-normality. This matrix is
estimated using

H(θ̂QML)−1B(θ̂QML)H(θ̂QML)−1, (15)

where θ̂QML denotes the QMLE of θ, and is often called the “sandwich” esti-
mator. The coefficient standard errors computed from the square roots of the
diagonal elements of (15) are sometimes called “Bollerslev-Wooldridge” stan-
dard errors. Of course, the QMLEs will be less efficient than the true MLEs
based on the correct error distribution. However, if the normality assumption
is correct then the sandwich covariance is asymptotically equivalent to the
inverse of the Hessian. As a result, it is good practice to routinely use the
sandwich covariance for inference purposes.

Engle and González-Rivera (1991) and Bollerslev and Woolridge (1992)
evaluated the accuracy of the quasi-maximum likelihood estimation (QMLE)
of GARCH(1,1) models. They found that if the distribution of zt in (3) is
symmetric, then QMLE is often close to the MLE. However, if zt has a skewed
distribution then the QMLE can be quite different from the MLE.

A detailed description of the asymptotic theory of GARCH estimation can
be found in Francq and Zakoïan (2008).

5.3 Model selection

An important practical problem is the determination of the ARCH order
p and the GARCH order q for a particular series. Since GARCH models
can be treated as ARMA models for squared residuals, traditional model
selection criteria such as the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) can be used for selecting models. For
daily returns, if attention is restricted to pure ARCH(p) models it is typically
found that large values of p are selected by AIC and BIC. For GARCH(p, q)
models, those with p, q ≤ 2 are typically selected by AIC and BIC. Low
order GARCH(p,q) models are generally preferred to a high order ARCH(p)
for reasons of parsimony and better numerical stability of estimation (high
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order GARCH(p, q) processes often have many local maxima and minima).
For many applications, it is hard to beat the simple GARCH(1,1) model.

For more details on general model selection procedures and its properties
it is referred to Leeb and Pötscher (2008).

5.4 Evaluation of estimated GARCH models

After a GARCH model has been fit to the data, the adequacy of the fit can
be evaluated using a number of graphical and statistical diagnostics. If the
GARCH model is correctly specified, then the estimated standardized residu-
als ε̂t/σ̂t should behave like classical regression residuals; i.e., they should not
display serial correlation, conditional heteroskedasticity or any type of non-
linear dependence. In addition, the distribution of the standardized residuals
ε̂t/σ̂t should match the specified error distribution used in the estimation.

Graphically, ARCH effects reflected by serial correlation in ε̂2t/σ̂
2
t can be

uncovered by plotting its SACF. The modified Ljung-Box statistic (12) can
be used to test the null of no autocorrelation up to a specific lag, and Engle’s
LM statistic (13) can be used to test the null of no remaining ARCH effects6.
If it is assumed that the errors are Gaussian, then a plot of ε̂t/σ̂t against time
should have roughly ninety five percent of its values between ±2; a normal
qq-plot of ε̂t/σ̂t should look roughly linear7; and the JB statistic should not
be too much larger than six.

5.5 Estimation of GARCH models for daily and
monthly returns

Table 3 gives model selection criteria for a variety of GARCH(p, q) fitted to
the daily returns on Microsoft and the S&P 500. For pure ARCH(p) models,
an ARCH(5) is chosen by all criteria for both series. For GARCH(p, q) models,
AIC picks a GARCH(2,1) for both series and BIC picks a GARCH(1,1) for
both series8.

Table 4 gives QMLEs of the GARCH(1,1) model assuming normal errors
for the Microsoft and S&P 500 daily returns. For both series, the estimates

6 These tests should be viewed as indicative, since the distribution of the tests are influenced
by the estimation of the GARCH model. For valid LM tests, the partial derivatives of
σ2

t with respect to the conditional volatility parameters should be added as additional
regressors in the auxiliary regression (5) based on estimated residuals.
7 If an error distribution other than the Gaussian is assumed, then the qq-plot should be
constructed using the quantiles of the assumed distribution.
8 The low log-likelihood values for the GARCH(2,2) models indicate that a local maximum
was reached.
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(p, q) Asset AIC BIC Likelihood
(1,0) MSFT -19977 -19958 9992

S&P 500 -27337 -27318 13671
(2,0) MSFT -20086 -20060 10047

S&P 500 -27584 -27558 13796
(3,0) MSFT -20175 -20143 10092

S&P 500 -27713 -27681 13861
(4,0) MSFT -20196 -20158 10104

S&P 500 -27883 -27845 13947
(5,0) MSFT -20211 -20166 10113

S&P 500 -27932 -27887 13973
(1,1) MSFT -20290 -20264 10149

S&P 500 -28134 -28109 14071
(1,2) MSFT -20290 -20258 10150

S&P 500 -28135 -28103 14072
(2,1) MSFT -20292 -20260 10151

S&P 500 -28140 -28108 14075
(2,2) MSFT -20288 -20249 10150

S&P 500 -27858 -27820 13935

Table 3 Model Selection Criteria for Estimated GARCH(p,q) Models.

of a1 are around 0.09 and the estimates of b1 are around 0.9. Using both
ML and QML standard errors, these estimates are statistically different from
zero. However, the QML standard errors are considerably larger than the ML
standard errors. The estimated volatility persistence, a1 + b1, is very high for
both series and implies half-lives of shocks to volatility to Microsoft and the
S&P 500 of 15.5 days and 76 days, respectively. The unconditional standard
deviation of returns, σ̄ =

√

a0/(1 − a1 − b1), for Microsoft and the S&P 500
implied by the GARCH(1,1) models are 0.0253 and 0.0138, respectively, and
are very close to the sample standard deviations of returns reported in Table
1.

Estimates of GARCH-M(1,1) models for Microsoft and the S&P 500, where
σt is added as a regressor to the mean equation, show small positive coeffi-
cients on σt and essentially the same estimates for the remaining parameters
as the GARCH(1,1) models.

Figure 4 shows the first differences of returns along with the fitted one-
step-ahead volatilities, σ̂t, computed from the GARCH(1,1) and ARCH(5)
models. The ARCH(5) and GARCH(1,1) models do a good job of captur-
ing the observed volatility clustering in returns. The GARCH(1,1) volatili-
ties, however, are smoother and display more persistence than the ARCH(5)
volatilities.

Graphical diagnostics from the fitted GARCH(1,1) models are illustrated
in Figure 5. The SACF of ε̂2t/σ̂2

t does not indicate any significant autocorrela-
tion, but the normal qq-plot of ε̂t/σ̂t shows strong departures from normality.
The last three columns of Table 4 give the standard statistical diagnostics of
the fitted GARCH models. Consistent with the SACF, the MQ statistic and
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GARCH Parameters Residual Diagnostics
Asset a0 a1 b1 MQ(12) LM(12) JB

Daily Returns

MSFT
2.80e−5

(3.42e−6)
[1.10e−5]

0.0904
(0.0059)
[0.0245]

0.8658
(0.0102)
[0.0371]

4.787
(0.965)

4.764
(0.965)

1751
(0.000)

S&P 500
1.72e−6

(2.00e−7)
[1.25e−6]

0.0919
(0.0029)
[0.0041]

0.8990
(0.0046)
[0.0436]

5.154
(0.953)

5.082
(0.955)

5067
(0.000)

Monthly Returns

MSFT 0.0006
[0.0006]

0.1004
[0.0614]

0.8525
[0.0869]

8.649
(0.733)

6.643
(0.880)

3.587
(0.167)

S&P 500 3.7e−5

[9.6e−5]
0.0675
[0.0248]

0.9179
[0.0490]

3.594
(0.000)

3.660
(0.988)

72.05
(0.000)

Notes: QML standard errors are in brackets.

Table 4 Estimates of GARCH(1,1) Model with Diagnostics.

Fig. 4 One-step ahead volatilities from fitted ARCH(5) and GARCH(1,1) models for
Microsoft and S&P 500 index.
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Engle’s LM statistic do not indicate remaining ARCH effects. Furthermore,
the extremely large JB statistic confirms nonnormality.

Table 4 also shows estimates of GARCH(1,1) models fit to the monthly
returns. The GARCH(1,1) models fit to the monthly returns are remarkable
similar to those fit to the daily returns. There are, however, some important
differences. The monthly standardized residuals are much closer to the normal
distribution, especially for Microsoft. Also, the GARCH estimates for the
S&P 500 reflect some of the characteristics of spurious GARCH effects as
discussed in Ma et al. (2007). In particular, the estimate of a1 is close to
zero, and has a relatively large QML standard error, and the estimate of b1
is close to one and has a very small standard error.

Fig. 5 Graphical residual diagnostics from fitted GARCH(1,1) models to Microsoft and
S&P 500 returns.
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6 GARCH Model Extensions

In many cases, the basic GARCH conditional variance equation (6) under
normality provides a reasonably good model for analyzing financial time se-
ries and estimating conditional volatility. However, in some cases there are
aspects of the model which can be improved so that it can better capture
the characteristics and dynamics of a particular time series. For example,
the empirical analysis in the previous Section showed that for the daily re-
turns on Microsoft and the S&P 500, the normality assumption may not be
appropriate and there is evidence of nonlinear behavior in the standardized
residuals from the fitted GARCH(1,1) model. This Section discusses several
extensions to the basic GARCH model that make GARCH modeling more
flexible.

6.1 Asymmetric leverage effects and news impact

In the basic GARCH model (6), since only squared residuals ε2t−i enter the
conditional variance equation, the signs of the residuals or shocks have no
effect on conditional volatility. However, a stylized fact of financial volatility
is that bad news (negative shocks) tends to have a larger impact on volatility
than good news (positive shocks). That is, volatility tends to be higher in a
falling market than in a rising market. Black (1976) attributed this effect to
the fact that bad news tends to drive down the stock price, thus increasing
the leverage (i.e., the debt-equity ratio) of the stock and causing the stock to
be more volatile. Based on this conjecture, the asymmetric news impact on
volatility is commonly referred to as the leverage effect.

6.1.1 Testing for asymmetric effects on conditional volatility

A simple diagnostic for uncovering possible asymmetric leverage effects is the
sample correlation between r2t and rt−1. A negative value of this correlation
provides some evidence for potential leverage effects. Other simple diagnos-
tics, suggested by Engle and Ng (1993), result from estimating the following
test regression

ε̂2t = β0 + β1ŵt−1 + ξt,

where ε̂t is the estimated residual from the conditional mean equation (10),
and ŵt−1 is a variable constructed from ε̂t−1 and the sign of ε̂t−1. A significant
value of β1 indicates evidence for asymmetric effects on conditional volatility.
Let S−

t−1 denote a dummy variable equal to unity when ε̂t−1 is negative, and
zero otherwise. Engle and Ng consider three tests for asymmetry. Setting
ŵt−1 = S−

t−1 gives the Sign Bias test; setting ŵt−1 = S−
t−1ε̂t−1 gives the
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Negative Size Bias test; and setting ŵt−1 = S+
t−1ε̂t−1 gives the Positive Size

Bias test.

6.1.2 Asymmetric GARCH models

The leverage effect can be incorporated into a GARCH model in several ways.
Nelson (1991) proposed the following exponential GARCH (EGARCH) model
to allow for leverage effects

ht = a0 +
p

∑

i=1

ai
|εt−i| + γiεt−i

σt−i
+

q
∑

j=1

bjht−j, (16)

where ht = log σ2
t . Note that when εt−i is positive or there is “good news”, the

total effect of εt−i is (1+γi)|εt−i|; in contrast, when εt−i is negative or there is
“bad news”, the total effect of εt−i is (1−γi)|εt−i|. Bad news can have a larger
impact on volatility, and the value of γi would be expected to be negative. An
advantage of the EGARCH model over the basic GARCH model is that the
conditional variance σ2

t is guaranteed to be positive regardless of the values
of the coefficients in (16), because the logarithm of σ2

t instead of σ2
t itself is

modeled. Also, the EGARCH is covariance stationary provided
∑q

j=1 bj < 1.
Another GARCH variant that is capable of modeling leverage effects is

the threshold GARCH (TGARCH) model, 9 which has the following form

σ2
t = a0 +

p
∑

i=1

aiε
2
t−i +

p
∑

i=1

γiSt−iε
2
t−i +

q
∑

j=1

bjσ
2
t−j , (17)

where
St−i =

{

1 if εt−i < 0
0 if εt−i ≥ 0 .

That is, depending on whether εt−i is above or below the threshold value of
zero, ε2t−i has different effects on the conditional variance σ2

t : when εt−i is
positive, the total effects are given by aiε2t−i; when εt−i is negative, the total
effects are given by (ai + γi)ε2t−i. So one would expect γi to be positive for
bad news to have larger impacts.

Ding et al. (1993) extended the basic GARCH model to allow for leverage
effects. Their power GARCH (PGARCH(p, d, q)) model has the form

σdt = a0 +
p

∑

i=1

ai(|εt−i| + γiεt−i)d +
q

∑

j=1

bjσ
d
t−j , (18)

9 The original TGARCH model proposed by Zakoïan (1994) models σt instead of σ2
t . The

TGARCH model is also known as the GJR model because Glosten et al. (1993) proposed
essentially the same model.
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GARCH(1, 1) σ2
t = A+ a1(|εt−1| + γ1εt−1)2

A = a0 + b1σ̄2

σ̄2 = a0/[1 − a1(1 + γ2
1 ) − b1]

TGARCH(1, 1) σ2
t = A+ (a1 + γ1St−1)ε2t−1

A = a0 + b1σ̄2

σ̄2 = a0/[1 − (a1 + γ1/2) − b1]

PGARCH(1, 1, 1) σ2
t = A+ 2

√
Aa1(|εt−1| + γ1εt−1)

+a21(|εt−1| + γ1εt−1)2, A = (a0 + b1σ̄)2

σ̄2 = a20/[1 − a1/
√

2/π − b1]2

EGARCH(1, 1) σ2
t = A exp{a1(|εt−1| + γ1εt−1)/σ̄}

A = σ̄2b1 exp{a0}
σ̄2 = exp{(a0 + a1

√

2/π)/(1 − b1)}
Table 5 News impact curves for asymmetric GARCH processes. σ̄2 denotes the uncondi-
tional variance.

where d is a positive exponent, and γi denotes the coefficient of leverage
effects. When d = 2, (18) reduces to the basic GARCH model with leverage
effects. When d = 1, the PGARCH model is specified in terms of σt which
tends to be less sensitive to outliers than when d = 2. The exponent d may
also be estimated as an additional parameter which increases the flexibility of
the model. Ding et al. (1993) showed that the PGARCH model also includes
many other GARCH variants as special cases.

Many other asymmetric GARCH models have been proposed based on
smooth transition and Markov switching models. See Franses and van Dijk
(2000) and Teräsvirta (2008) for excellent surveys of these models.

6.1.3 News impact curve

The GARCH, EGARCH, TGARCH and PGARCH models are all capable of
modeling leverage effects. To clearly see the impact of leverage effects in these
models, Pagan and Schwert (1990), and Engle and Ng (1993) advocated the
use of the so-called news impact curve. They defined the news impact curve
as the functional relationship between conditional variance at time t and the
shock term (error term) at time t−1, holding constant the information dated
t − 2 and earlier, and with all lagged conditional variance evaluated at the
level of the unconditional variance. Table 5 summarizes the expressions defin-
ing the news impact curves, which include expressions for the unconditional
variances, for the asymmetric GARCH(1,1) models.
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Asset corr(r2t , rt−1) Sign Bias Negative Size Bias Positive Size Bias

Microsoft −0.0315
−0.4417
(0.6587)

−6.816
(0.000)

3.174
(0.001)

S&P 500 −0.098
2.457

(0.014)
−11.185
(0.000)

1.356
(0.175)

Notes: p-values are in parentheses.

Table 6 Tests for Asymmetric GARCH Effects.

Model a0 a1 b1 γ1 BIC
Microsoft

EGARCH
−0.7273
[0.4064]

0.2144
[0.0594]

0.9247
[0.0489]

−0.2417
[0.0758]

-20265

TGARCH
3.01e−5

[1.02e−5]
0.0564
[0.0141]

0.8581
[0.0342]

0.0771
[0.0306]

-20291

PGARCH 2
2.87e−5

[9.27e−6]
0.0853
[0.0206]

0.8672
[0.0313]

−0.2164
[0.0579]

-20290

PGARCH 1
0.0010
[0.0006]

0.0921
[0.0236]

0.8876
[0.0401]

−0.2397
[0.0813]

-20268

S&P 500

EGARCH
−0.2602
[0.3699]

0.0720
[0.0397]

0.9781
[0.0389]

−0.3985
[0.4607]

-28051

TGARCH
1.7e−6

[7.93e−7]
0.0157
[0.0081]

0.9169
[0.0239]

0.1056
0.0357

-28200

PGARCH 2
1.78e−6

[8.74e−7]
0.0578
[0.0165]

0.9138
[0.0253]

−0.4783
[0.0910]

-28202

PGARCH 1
0.0002

[2.56e−6]
0.0723
[0.0003]

0.9251
[8.26e−6]

−0.7290
[0.0020]

-28253

Notes: QML standard errors are in brackets.

Table 7 Estimates of Asymmetric GARCH(1,1) Models.

6.1.4 Asymmetric GARCH models for daily returns

Table 6 shows diagnostics and tests for asymmetric effects in the daily re-
turns on Microsoft and the S&P 500. The correlation between r2t and rt−1 is
negative and fairly small for both series indicating weak evidence for asym-
metry. However, the Size Bias tests clearly indicate asymmetric effects with
the Negative Size Bias test giving the most significant results.

Table 7 gives the estimation results for EGARCH(1,1), TGARCH(1,1) and
PGARCH(1,d,1) models for d = 1, 2. All of the asymmetric models show sta-
tistically significant leverage effects, and lower BIC values than the symmetric
GARCH models. Model selection criteria indicate that the TGARCH(1,1) is
the best fitting model for Microsoft, and the PGARCH(1,1,1) is the best
fitting model for the S&P 500.

Figure 6 shows the estimated news impact curves based on these models.
In this plot, the range of εt is determined by the residuals from the fitted
models. The TGARCH and PGARCH(1,2,1) models have very similar NICs
and show much larger responses to negative shocks than to positive shocks.
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Since the EGARCH(1,1) and PGARCH(1,1,1) models are more robust to
extreme shocks, impacts of small (large) shocks for these model are larger
(smaller) compared to those from the other models and the leverage effect is
less pronounced.

Fig. 6 News impact curves from fitted asymmetric GARCH(1,1) models for Microsoft and
S&P 500 index.

6.2 Non-Gaussian error distributions

In all the examples illustrated so far, a normal error distribution has been
exclusively used. However, given the well known fat tails in financial time
series, it may be more appropriate to use a distribution which has fatter tails
than the normal distribution. The most common fat-tailed error distribu-
tions for fitting GARCH models are: the Student’s t distribution; the double
exponential distribution; and the generalized error distribution.

Bollerslev (1987) proposed fitting a GARCH model with a Student’s t
distribution for the standardized residual. If a random variable ut has a Stu-
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dent’s t distribution with ν degrees of freedom and a scale parameter st, the
probability density function (pdf) of ut is given by

f(ut) =
Γ [(ν + 1)/2]

(πν)1/2Γ (ν/2)
s
−1/2
t

[1 + u2
t/(stν)](ν+1)/2

,

where Γ (·) is the gamma function. The variance of ut is given by

var(ut) =
stν

ν − 2
, v > 2.

If the error term εt in a GARCH model follows a Student’s t distribution
with ν degrees of freedom and vart−1(εt) = σ2

t , the scale parameter st should
be chosen to be

st =
σ2
t (ν − 2)
ν

.

Thus the log-likelihood function of a GARCH model with Student’s t dis-
tributed errors can be easily constructed based on the above pdf.

Nelson (1991) proposed to use the generalized error distribution (GED)
to capture the fat tails usually observed in the distribution of financial time
series. If a random variable ut has a GED with mean zero and unit variance,
the pdf of ut is given by

f(ut) =
ν exp[−(1/2)|ut/λ|ν ]
λ · 2(ν+1)/νΓ (1/ν)

,

where

λ =
[

2−2/νΓ (1/ν)
Γ (3/ν)

]1/2

,

and ν is a positive parameter governing the thickness of the tail behavior of
the distribution. When ν = 2 the above pdf reduces to the standard normal
pdf; when ν < 2, the density has thicker tails than the normal density; when
ν > 2, the density has thinner tails than the normal density.

When the tail thickness parameter ν = 1, the pdf of GED reduces to the
pdf of double exponential distribution:

f(ut) =
1√
2
e−

√
2|ut|.

Based on the above pdf, the log-likelihood function of GARCH models with
GED or double exponential distributed errors can be easily constructed. See
to Hamilton (1994) for an example.

Several other non-Gaussian error distribution have been proposed. Fer-
nandez and Steel (1998) introduced the asymmetric Student’s t distribution
to capture both skewness and excess kurtosis in the standardized residuals.
Venter and de Jongh (2002) proposed the normal inverse Gaussian distribu-
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Model a0 a1 b1 γ1 v BIC
Microsoft

GARCH 3.39e−5

[1.52e−5]
0.0939
[0.0241]

0.8506
[0.0468]

6.856
[0.7121

-20504

TGARCH 3.44e−5

[1.20e−5]
0.0613
[0.0143]

0.8454
[0.0380]

0.0769
[0.0241]

7.070
[0.7023]

-20511

S&P 500

GARCH 5.41e−7

[2.15e−7]
0.0540
[0.0095]

0.0943
[0.0097]

5.677
[0.5571]

-28463

PGARCH
d = 1

0.0001
[0.0002]

0.0624
[0.0459]

0.9408
[0.0564]

−0.7035
[0.0793]

6.214
[0.6369]

-28540

Notes: QML standard errors are in brackets.

Table 8 Estimates of Non Gaussian GARCH(1,1) Models.

tion. Gallant and Tauchen (2001) provided a very flexible seminonparametric
innovation distribution based on a Hermite expansion of a Gaussian density.
Their expansion is capable of capturing general shape departures from Gaus-
sian behavior in the standardized residuals of the GARCH model.

6.2.1 Non-Gaussian GARCH models for daily returns

Table 8 gives estimates of the GARCH(1,1) and best fitting asymmetric
GARCH(1,1) models using Student’s t innovations for the Microsoft and
S&P 500 returns. Model selection criteria indicated that models using the
Student’s t distribution fit better than the models using the GED distribu-
tion. The estimated degrees of freedom for Microsoft is about 7, and for the
S&P 500 about 6. The use of t-distributed errors clearly improves the fit of
the GARCH(1,1) models. Indeed, the BIC values are even lower than the val-
ues for the asymmetric GARCH(1,1) models based on Gaussian errors (see
Table 7). Overall, the asymmetric GARCH(1,1) models with t-distributed
errors are the best fitting models. The qq-plots in Figure 7 shows that the
Student’s t distribution adequately captures the fat-tailed behavior in the
standardized residuals for Microsoft but not for the S&P 500 index.

7 Long Memory GARCH Models

If returns follow a GARCH(p, q) model, then the autocorrelations of the
squared and absolute returns should decay exponentially. However, the SACF
of r2t and |rt| for Microsoft and the S&P 500 in Figure 2 appear to decay much
more slowly. This is evidence of so-called long memory behavior. Formally, a
stationary process has long memory or long range dependence if its autocor-
relation function behaves like
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Fig. 7 QQ-plots of Standardized Residuals from Asymmetric GARCH(1,1) models with
Student’s t errors.

ρ(k) → Cρk
2d−1 as k → ∞,

where Cρ is a positive constant, and d is a real number between 0 and 1
2 .

Thus the autocorrelation function of a long memory process decays slowly at
a hyperbolic rate. In fact, it decays so slowly that the autocorrelations are
not summable:

∞
∑

k=−∞
ρ(k) = ∞.

It is important to note that the scaling property of the autocorrelation func-
tion does not dictate the general behavior of the autocorrelation function.
Instead, it only specifies the asymptotic behavior when k → ∞ . What this
means is that for a long memory process, it is not necessary for the auto-
correlation to remain significant at large lags as long as the autocorrelation
function decays slowly. Beran (1994) gives an example to illustrate this prop-
erty.

The following subsections describe testing for long memory and GARCH
models that can capture long memory behavior in volatility. Explicit long
memory GARCH models are discussed in Teräsvirta (2008).
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7.1 Testing for long memory

One of the best-known and easiest to use tests for long memory or long
range dependence is the rescaled range (R/S) statistic, which was originally
proposed by Hurst (1951), and later refined by Mandelbrot (1975) and his
coauthors. The R/S statistic is the range of partial sums of deviations of a
time series from its mean, rescaled by its standard deviation. Specifically,
consider a time series yt, for t = 1, · · · , T . The R/S statistic is defined as

QT =
1
sT

⎡

⎣ max
1≤k≤T

k
∑

j=1

(yj − ȳ) − min
1≤k≤T

k
∑

j=1

(yj − ȳ)

⎤

⎦ , (19)

where ȳ = 1/T
∑T

i=1 yi and sT =
√

1/T
∑T

i=1(yi − ȳ)2. If yt is iid with finite
variance, then

1√
T
QT ⇒ V,

where ⇒ denotes weak convergence and V is the range of a Brownian bridge
on the unit interval. Lo (1991) gives selected quantiles of V .

Lo (1991) pointed out that the R/S statistic is not robust to short range
dependence. In particular, if yt is autocorrelated (has short memory) then
the limiting distribution of QT/

√
T is V scaled by the square root of the

long run variance of yt. To allow for short range dependence in yt, Lo (1991)
modified the R/S statistic as follows

Q̃T =
1

σ̂T (q)

⎡

⎣ max
1≤k≤T

k
∑

j=1

(yj − ȳ) − min
1≤k≤T

k
∑

j=1

(yj − ȳ)

⎤

⎦ , (20)

where the sample standard deviation is replaced by the square root of the
Newey-West (Newey and West (1987)) estimate of the long run variance with
bandwidth q.10 Lo (1991) showed that if there is short memory but no long
memory in yt, Q̃T also converges to V , the range of a Brownian bridge.
Breidt et al. (1998) found that (20) is effective for detecting long memory
behavior in asset return volatility.

7.2 Two component GARCH model

In the covariance stationary GARCH model the conditional volatility will
always mean revert to its long run level unconditional value. Recall the mean
reverting form of the basic GARCH(1, 1) model in (11). In many empirical

10 The long-run variance is the asymptotic variance of
√
T (ȳ − μ).
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applications, the estimated mean reverting rate â1 + b̂1 is often very close to
1. For example, the estimated value of a1 + b1 from the GARCH(1,1) model
for the S&P 500 index is 0.99 and the half life of a volatility shock implied
by this mean reverting rate is ln(0.5)/ ln(0.956) = 76.5 days. So the fitted
GARCH(1,1) model implies that the conditional volatility is very persistent.

Engle and Lee (1999) suggested that the high persistence and long memory
in volatility may be due to a time-varying long run volatility level. In partic-
ular, they suggested decomposing conditional variance into two components

σ2
t = qt + st, (21)

where qt is a highly persistent long run component, and st is a transitory short
run component. Long memory behavior can often be well approximated by a
sum of two such components. A general form of the two components model
that is based on a modified version of the PGARCH(1, d, 1) is

σdt = qdt + sdt , (22)

qdt = α1|εt−1|d + β1q
d
t−1, (23)

sdt = a0 + α2|εt−1|d + β2s
d
t−1. (24)

Here, the long run component qt follows a highly persistent PGARCH(1, d, 1)
model and the transitory component st follows another PGARCH(1, d, 1)
model. For the two components to be separately identified the parameters
should satisfy 1 < (α1 + β1) < (α2 + β2). It can be shown that the reduced
form of the two components model is

σdt = a0 + (α1 + α2)|εt−1|d − (α1β2 + α2β1)|εt−2|d

+ (β1 + β2)σdt−1 − β1β2σ
d
t−2,

which is in the form of a constrained PGARCH(2, d, 2) model. However, the
two components model is not fully equivalent to the PGARCH(2, d, 2) model
because not all PGARCH(2, d, 2) models have the component structure. Since
the two components model is a constrained version of the PGARCH(2, d, 2)
model, the estimation of a two components model is often numerically more
stable than the estimation of an unconstrained PGARCH(2, d, 2) model.

7.3 Integrated GARCH model

The high persistence often observed in fitted GARCH(1,1) models sug-
gests that volatility might be nonstationary implying that a1 + b1 = 1, in
which case the GARCH(1,1) model becomes the integrated GARCH(1,1) or
IGARCH(1,1) model. In the IGARCH(1,1) model the unconditional vari-
ance is not finite and so the model does not exhibit volatility mean rever-
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Asset Q̃T

r2t |rt|
Microsoft 2.3916 3.4557
S&P 500 2.3982 5.1232

Table 9 Modified R/S Tests for Long Memory.

a0 α1 β1 α2 β2 v BIC
Microsoft

2.86e−6

[1.65e−6]
0.0182
[0.0102]

0.9494
[0.0188]

0.0985
[0.0344]

0.7025
[0.2017]

-20262

1.75e−6

5.11e−7
0.0121
[0.0039]

0.9624
[0.0098]

0.0963
[0.0172]

0.7416
[0.0526]

6.924
[0.6975]

-20501

S&P 500
3.2e−8

[1.14e−8]
0.0059
[0.0013]

0.9848
[0.0000]

0.1014
[0.0221]

0.8076
[0.0001]

−28113

1.06e−8

[1.26e−8]
0.0055
[0.0060]

0.9846
[0.0106]

0.0599
[0.0109]

0.8987
[0.0375]

5.787
[0.5329]

−28457

Notes: QML standard errors are in brackets.

Table 10 Estimates of Two Component GARCH(1,1) Models.

sion. However, it can be shown that the model is strictly stationary provided
E[ln(a1z

2
t + b1)] < 0. If the IGARCH(1,1) model is strictly stationary then

the parameters of the model can still be consistently estimated by MLE.
Diebold and Lopez (1996) argued against the IGARCH specification for

modeling highly persistent volatility processes for two reasons. First, they
argue that the observed convergence toward normality of aggregated returns
is inconsistent with the IGARCH model. Second, they argue that observed
IGARCH behavior may result from misspecification of the conditional vari-
ance function. For example, a two components structure or ignored structural
breaks in the unconditional variance (Lamoureux and Lastrapes (1990a) and
Mikosch and Starica (2004)) can result in IGARCH behavior.

7.4 Long memory GARCH models for daily returns

Table 9 gives Lo’s modified R/S statistic (20) applied to r2t and |rt| for Mi-
crosoft and the S&P 500. The 1% right tailed critical value for the test is
2.098 (Lo (1991) Table 5.2) and so the modified R/S statistics are significant
at the 1% level for both series providing evidence for long memory behavior
in volatility.

Table 10 shows estimates of the two component GARCH(1,1) with d = 2,
using Gaussian and Student’s t errors, for the daily returns on Microsoft and
the S&P 500. Notice that the BIC values are smaller than the BIC values
for the unconstrained GARCH(2,2) models given in Table 3, which confirms
the better numerical stability of the two component model. For both series,
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the two components are present and satisfy 1 < (α1 + β1) < (α2 + β2). For
Microsoft, the half-lives of the two components from the Gaussian (Student’s
t) models are 21 (26.8) days and 3.1 (3.9) days, respectively. For the S&P
500, the half-lives of the two components from the Gaussian (Student’s t)
models are 75 (69.9) days and 7.3 (16.4) days, respectively.

8 GARCH Model Prediction

An important task of modeling conditional volatility is to generate accurate
forecasts for both the future value of a financial time series as well as its con-
ditional volatility. Volatility forecasts are used for risk management, option
pricing, portfolio allocation, trading strategies and model evaluation. Since
the conditional mean of the general GARCH model (10) assumes a traditional
ARMA form, forecasts of future values of the underlying time series can be
obtained following the traditional approach for ARMA prediction. However,
by also allowing for a time varying conditional variance, GARCH models can
generate accurate forecasts of future volatility, especially over short horizons.
This Section illustrates how to forecast volatility using GARCH models.

8.1 GARCH and forecasts for the conditional mean

Suppose one is interested in forecasting future values of yT in the standard
GARCH model described by (2), (3) and (6). For simplicity assume that
ET [yT+1] = c. Then the minimum mean squared error h− step ahead forecast
of yT+h is just c, which does not depend on the GARCH parameters, and the
corresponding forecast error is

εT+h = yT+h − ET [yT+h].

The conditional variance of this forecast error is then

varT (εT+h) = ET [σ2
T+h],

which does depend on the GARCH parameters. Therefore, in order to produce
confidence bands for the h−step ahead forecast the h−step ahead volatility
forecast ET [σ2

T+h] is needed.
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8.2 Forecasts from the GARCH(1,1) model

For simplicity, consider the basic GARCH(1, 1) model (7) where εt = ztσt
such that zt ∼ iid (0, 1) and has a symmetric distribution. Assume the model
is to be estimated over the time period t = 1, 2, · · · , T . The optimal, in
terms of mean-squared error, forecast of σ2

T+k given information at time T is
ET [σ2

T+k] and can be computed using a simple recursion. For k = 1,

ET [σ2
T+1] = a0 + a1ET [ε2T ] + b1ET [σ2

T ] (25)

= a0 + a1ε
2
T + b1σ

2
T ,

where it assumed that ε2T and σ2
T are known11. Similarly, for k = 2

ET [σ2
T+2] = a0 + a1ET [ε2T+1] + b1ET [σ2

T+1]

= a0 + (a1 + b1)ET [σ2
T+1].

since ET [ε2T+1] = ET [z2
T+1σ

2
T+1] = ET [σ2

T+1]. In general, for k ≥ 2

ET [σ2
T+k] = a0 + (a1 + b1)ET [σ2

T+k−1]

= a0

k−1
∑

i=0

(a1 + b1)i + (a1 + b1)k−1(a1ε
2
T + b1σ

2
T ). (26)

An alternative representation of the forecasting equation (26) starts with the
mean-adjusted form

σ2
T+1 − σ̄2 = a1(ε2T − σ̄2) + b1(σ2

T − σ̄2),

where σ̄2 = a0/(1− a1 − b1) is the unconditional variance. Then by recursive
substitution

ET [σ2
T+k] − σ̄2 = (a1 + b1)k−1(E[σ2

T+1] − σ̄2). (27)

Notice that as k → ∞, the volatility forecast in (26) approaches σ̄2 if the
GARCH process is covariance stationary and the speed at which the forecasts
approaches σ̄2 is captured by a1 + b1.

The forecasting algorithm (26) produces forecasts for the conditional vari-
ance σ2

T+k. The forecast for the conditional volatility, σT+k, is usually defined
as the square root of the forecast for σ2

T+k.
The GARCH(1,1) forecasting algorithm (25) is closely related to an expo-

nentially weighted moving average (EWMA) of past values of ε2t . This type
of forecast is commonly used by RiskMetrics (Morgan (1997)). The EWMA
forecast of σ2

T+1 has the form

11 In practice, a0, a1, b1, εT and σ2
T are the fitted values computed from the estimated

GARCH(1,1) model instead of the unobserved “true” values.
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σ2
T+1,EWMA = (1 − λ)

∞
∑

s=0

λsε2t−s (28)

for λ ∈ (0, 1). In (28), the weights sum to one, the first weight is 1 − λ, and
the remaining weights decline exponentially. To relate the EWMA forecast
to the GARCH(1,1) formula (25), (28) may be re-expressed as

σ2
T+1,EWMA = (1 − λ)ε2T + λσ2

T,EWMA = ε2T + λ(σ2
T,EWMA − ε2T ),

which is of the form (25) with a0 = 0, a1 = 1 − λ and b1 = λ. Therefore, the
EWMA forecast is equivalent to the forecast from a restricted IGARCH(1,1)
model. It follows that for any h > 0, σ2

T+h,EWMA = σ2
T,EWMA. As a result,

unlike the GARCH(1,1) forecast, the EWMA forecast does not exhibit mean
reversion to a long-run unconditional variance.

8.3 Forecasts from asymmetric GARCH(1,1) models

To illustrate the asymmetric effects of leverage on forecasting, consider (cf.
(17)) the TGARCH(1,1) at time T

σ2
T = a0 + a1ε

2
T−1 + γ1ST−1ε

2
T−1 + b1σ

2
T−1.

Assume that εt has a symmetric distribution about zero. The forecast for
T + 1 based on information at time T is

ET [σ2
T+1] = a0 + a1ε

2
T + γ1ST ε

2
T + b1σ

2
T ,

where it assumed that ε2T , ST and σ2
T are known. Hence, the TGARCH(1,1)

forecast for T + 1 will be different than the GARCH(1,1) forecast if ST = 1
(εT < 0). The forecast at T + 2 is

ET [σ2
T+2] = a0 + a1ET [ε2T+1] + γ1ET [ST+1ε

2
T+1] + b1ET [σ2

T+1]

= a0 +
(γ1

2
+ a1 + b1

)

ET [σ2
T+1],

which follows since ET [ST+1ε
2
T+1] = ET [ST+1]ET [ε2T+1] = 1

2ET [σ2
T+1]. No-

tice that the asymmetric impact of leverage is present even if ST = 0. By
recursive substitution for the forecast at T + h is

ET [σ2
T+h] = a0 +

(γ1

2
+ a1 + b1

)h−1

ET [σ2
T+1], (29)

which is similar to the GARCH(1,1) forecast (26). The mean reverting form
(29) is
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ET [σ2
T+h] − σ̄2 =

(γ1

2
+ a1 + b1

)h−1 (
ET [σ2

T+h] − σ̄2
)

where σ̄2 = a0/(1 − γ1
2 − a1 − b1) is the long run variance.

Forecasting algorithms for σdT+h in the PGARCH(1, d, 1) and for lnσ2
T+h

in the EGARCH(1,1) follow in a similar manner and the reader is referred to
Ding et al. (1993), and Nelson (1991) for further details.

8.4 Simulation-based forecasts

The forecasted volatility can be used together with forecasted series values to
generate confidence intervals of the forecasted series values. In many cases,
the forecasted volatility is of central interest, and confidence intervals for the
forecasted volatility can be obtained as well. However, analytic formulas for
confidence intervals of forecasted volatility are only known for some special
cases (see Baillie and Bollerslev (1992)). In models for which analytic formulas
for confidence intervals are not known, a simulation-based method can be
used to obtain confidence intervals for forecasted volatility from any GARCH
that can be simulated. To obtain volatility forecasts from a fitted GARCH
model, simply simulate σ2

T+k from the last observation of the fitted model.
This process can be repeated many times to obtain an “ensemble” of volatility
forecasts. The point forecast of σ2

T+k may then be computed by averaging
over the simulations, and a 95% confidence interval may be computed using
the 2.5% and 97.5% quantiles of the simulation distribution, respectively.

8.5 Forecasting the volatility of multiperiod returns

In many situations, a GARCH model is fit to daily continuously compounded
returns rt = ln(Pt) − ln(Pt−1), where Pt denotes the closing price on day t.
The resulting GARCH forecasts are for daily volatility at different horizons.
For risk management and option pricing with stochastic volatility, volatility
forecasts are needed for multiperiod returns. With continuously compounded
returns, the h−day return between days T and T + h is simply the sum of h
single day returns

rT+h(h) =
h

∑

j=1

rT+j .

Assuming returns are uncorrelated, the conditional variance of the h−period
return is then



146 E. Zivot

varT (rT+h(h)) = σ2
T (h) =

h
∑

j=1

varT (rT+j) = ET [σ2
T+1] + · · · + ET [σ2

T+h].

(30)
If returns have constant variance σ̄2, then σ2

T (h) = hσ̄2 and σT (h) =
√
hσ̄.

This is known as the “square root of time” rule as the h−day volatility
scales with

√
h. In this case, the h−day variance per day, σ2

T (h)/h, is con-
stant. If returns are described by a GARCH model then the square root
of time rule does not necessarily apply. To see this, suppose returns follow
a GARCH(1,1) model. Plugging the GARCH(1,1) model forecasts (27) for
ET [σ2

T+1], . . . , ET [σ2
T+h] into (30) gives

σ2
T (h) = hσ̄2 + (E[σ2

T+1] − σ̄2)
[

1 − (a1 + b1)h

1 − (a1 + b1)

]

For the GARCH(1,1) process the square root of time rule only holds if
E[σ2

T+1] = σ̄2. Whether σ2
T (h) is larger or smaller than hσ̄2 depends on

whether E[σ2
T+1] is larger or smaller than σ̄2.

8.6 Evaluating volatility predictions

GARCH models are often judged by their out-of-sample forecasting ability,
see Clements (2005) for an overview. This forecasting ability can be measured
using traditional forecast error metrics as well as with specific economic con-
siderations such as value-at-risk violations, option pricing accuracy, or port-
folio performance. Out-of-sample forecasts for use in model comparison are
typically computed using one of two methods. The first method produces
recursive forecasts. An initial sample using data from t = 1, . . . , T is used to
estimate the models, and h−step ahead out-of-sample forecasts are produced
starting at time T. Then the sample is increased by one, the models are re-
estimated, and h−step ahead forecasts are produced starting at T + 1. This
process is repeated until no more h−step ahead forecasts can be computed.
The second method produces rolling forecasts. An initial sample using data
from t = 1, . . . , T is used to determine a window width T, to estimate the
models, and to form h−step ahead out-of-sample forecasts starting at time
T. Then the window is moved ahead one time period, the models are re-
estimated using data from t = 2, . . . , T + 1, and h−step ahead out-of-sample
forecasts are produced starting at time T + 1. This process is repeated until
no more h−step ahead forecasts can be computed.
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8.6.1 Traditional forecast evaluation statistics

Let Ei,T [σ2
T+h] denote the h−step ahead forecast of σ2

T+h at time T from
GARCH model i using either recursive or rolling methods. Define the corre-
sponding forecast error as ei,T+h|T = Ei,T [σ2

T+h] − σ2
T+h. Common fore-

cast evaluation statistics based on N out-of-sample forecasts from T =
T + 1, . . . , T +N are

MSEi =
1
N

T+N
∑

j=T+1

e2i,j+h|j ,

MAEi =
1
N

T+N
∑

j=T+1

∣

∣ei,j+h|j
∣

∣ ,

MAPEi =
1
N

T+N
∑

j=T+1

∣

∣ei,j+h|j
∣

∣

σj+h
.

The model which produces the smallest values of the forecast evaluation
statistics is judged to be the best model. Of course, the forecast evaluation
statistics are random variables and a formal statistical procedure should be
used to determine if one model exhibits superior predictive performance.

Diebold and Mariano (1995) proposed a simple procedure to test the null
hypothesis that one model has superior predictive performance over another
model based on traditional forecast evaluation statistics. Let {e1,j+h|j}T+N

T+1 ,

and {e2,j+h|j}T+N
T+1 denote forecast errors from two different GARCH mod-

els. The accuracy of each forecast is measured by a particular loss func-
tion L(ei,T+h|T ), i = 1, 2. Common choices are the squared error loss
function L(ei,T+h|T ) =

(

ei,T+h|T
)2 and the absolute error loss function

L(ei,T+h|T ) =
∣

∣ei,T+h|T
∣

∣ . The Diebold-Mariano (DM) test is based on the
loss differential

dT+h = L(e1,T+h|T ) − L(e2,T+h|T ).

The null of equal predictive accuracy is H0 : E[dT+h] = 0.The DM test
statistic is

S =
d̄

(

âvar(d̄)
)1/2

, (31)

where d̄ = N−1
∑T+N

j=T+1 dj+h, and âvar(d̄) is a consistent estimate of the
asymptotic variance of

√
Nd̄. Diebold and Mariano (1995) recommend using

the Newey-West estimate for âvar(d̄) because the sample of loss differentials
{dj+h}T+N

T+1 are serially correlated for h > 1. Under the null of equal predictive
accuracy, S has an asymptotic standard normal distribution. Hence, the DM
statistic can be used to test if a given forecast evaluation statistic (e.g. MSE1)
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for one model is statistically different from the forecast evaluation statistic
for another model (e.g. MSE2).

Forecasts are also often judged using the forecasting regression

σ2
T+h = α+ βEi,T [σ2

T+h] + ei,T+h. (32)

Unbiased forecasts have α = 0 and β = 1, and accurate forecasts have high
regression R2 values. In practice, the forecasting regression suffers from an
errors-in-variables problem when estimated GARCH parameters are used to
form Ei,T [σ2

T+h] and this creates a downward bias in the estimate of β. As a
result, attention is more often focused on the R2 from (32).

An important practical problem with applying forecast evaluations to
volatility models is that the h−step ahead volatility σ2

T+h is not directly
observable. Typically, ε2T+h (or just the squared return) is used to proxy
σ2
T+h since ET [ε2T+h] = ET [z2

T+hσ
2
T+h] = ET [σ2

T+h]. However, ε2T+h is a very
noisy proxy for σ2

T+h since var(ε2T+h) = E[σ4
T+h](κ−1), where κ is the fourth

moment of zt, and this causes problems for the interpretation of the forecast
evaluation metrics.

Many empirical papers have evaluated the forecasting accuracy of com-
peting GARCH models using ε2T+h as a proxy for σ2

T+h. Poon (2005) gave a
comprehensive survey. The typical findings are that the forecasting evalua-
tion statistics tend to be large, the forecasting regressions tend to be slightly
biased, and the regression R2 values tend to be very low (typically below
0.1). In general, asymmetric GARCH models tend to have the lowest fore-
cast evaluation statistics. The overall conclusion, however, is that GARCH
models do not forecast very well.

Andersen and Bollerslev (1998) provided an explanation for the apparent
poor forecasting performance of GARCH models when ε2T+h is used as a
proxy for σ2

T+h in (32). For the GARCH(1,1) model in which zt has finite
kurtosis κ, they showed that the population R2 value in (32) with h = 1 is
equal to

R2 =
a2
1

1 − b21 − 2a1b1
,

and is bounded from above by 1/κ. Assuming zt ∼ N(0, 1), this upper bound
is 1/3.With a fat-tailed distribution for zt the upper bound is smaller. Hence,
very lowR2 values are to be expected even if the true model is a GARCH(1,1).
Moreover, Hansen and Lunde (2004) found that the substitution of ε2T+h for
σ2
T+h in the evaluation of GARCH models using the DM statistic (31) can

result in inferior models being chosen as the best with probability one. These
results indicate that extreme care must be used when interpreting forecast
evaluation statistics and tests based on ε2T+h. If high frequency intraday data
are available, then instead of using ε2T+h to proxy σ2

T+h Andersen and Boller-
slev (1998) suggested using the so-called realized variance
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Fig. 8 Predicted Volatility from GARCH(1,1) Models

RV m
t+h =

m
∑

j=1

r2t+h,j ,

where {rT+h,1, . . . , rT+h,m} denote the squared intraday returns at sampling
frequency 1/m for day T + h. For example, if prices are sampled every 5
minutes and trading takes place 24 hours per day then there are m = 288
5-minute intervals per trading day. Under certain conditions (see Andersen
et al. (2003)), RVm

t+h is a consistent estimate of σ2
T+h as m → ∞. As a result,

RV m
t+h is a much less noisy estimate of σ2

T+h than ε2T+h and so forecast
evaluations based on RV m

t+h are expected to be much more accurate than
those based on ε2T+h. For example, in evaluating GARCH(1,1) forecasts for
the Deutschemark-US daily exchange rate, Andersen and Bollerslev (1998)
reported R2 values from (32) of 0.047, 0.331 and 0.479 using ε2T+1, RV

24
T+1

and RV 288
T+1, respectively.
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8.7 Forecasting the volatility of Microsoft and the
S&P 500

Fig. 9 Predicted Volatility from Competing GARCH Models.

Figure 8 shows h−day ahead volatility predictions (h = 1, . . . , 250) from
the fitted GARCH(1,1) models with normal errors for the daily returns on
Microsoft and the S&P 500. The horizontal line in the figures represents the
estimated unconditional standard deviation from the fitted models. At the
beginning of the forecast period, σ̂T < ̂σ̄ for both series and so the forecasts
revert upward toward the unconditional volatility. The speed of volatility
mean reversion is clearly shown by the forecast profiles. The forecasts for
Microsoft revert to the unconditional level after about four months, whereas
the forecasts for the S&P 500 take over one year.

Figure 9 shows the volatility forecasts from the asymmetric and long mem-
ory GARCH(1,1) models, and Table 11 gives the unconditional volatility from
the estimated models. For Microsoft, the forecasts and unconditional volatil-
ities from the different models are similar. For the S&P 500, in contrast, the

Microsoft: Asymmetric Models
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0.0125
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Jul Sep Nov Jan Mar May
2003 2004

Jul Sep Nov Jan Mar May
2003 2004

Jul Sep Nov Jan Mar May
2003 2004

GARCH
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S&P 500: Asymmetric Models S&P 500: Long Memory Models
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Error pdf GARCH TGARCH PGARCH

MSFT Gaussian
Student’s t

0.0253
0.0247

0.0257
0.0253

0.0256
0.0250

S&P 500 Gaussian
Student’s t

0.0138
0.0138

0.0122
0.0128

0.0108
0.0111

Table 11 Unconditional Volatilities from Estimated GARCH(1,1) Models.

forecasts and unconditional volatilities differ considerably across the models.

9 Final Remarks

This chapter surveyed some of the practical issues associated with estimating
univariate GARCH models and forecasting volatility. Some practical issues
associated with the estimation of multivariate GARCH models and forecast-
ing of conditional covariances are given in Silvennoinen and Teräsvirta (2008).
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Semiparametric and Nonparametric
ARCH Modeling

Oliver B. Linton∗

Abstract This paper surveys nonparametric approaches to modelling dis-
crete time volatility. We cover functional form, error shape, memory, and
relationship between mean and variance.

1 Introduction

The key properties of financial time series appear to be: (a) Marginal dis-
tributions have heavy tails and thin centres (Leptokurtosis); (b) the scale
or spread appears to change over time; (c) Return series appear to be al-
most uncorrelated over time but to be dependent through higher moments.
See Mandelbrot (1963) and Fama (1965) for some early discussions. The tra-
ditional linear models like the autoregressive moving average class do not
capture all these phenomena well. This is the motivation for using nonlinear
models. This chapter is about the nonparametric approach.

2 The GARCH Model

Stochastic volatility models are of considerable current interest in empirical
finance following the seminal work of Engle (1982). Perhaps still the most
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popular version is Bollerslev’s (1986) GARCH(1,1) model in which the con-
ditional variance σ2

t of a martingale difference sequence yt is

σ2
t = ω + βσ2

t−1 + γy2
t−1, (1)

where the ARCH(1) process corresponds to β = 0. This model has been
extensively studied and generalized in various ways, see the review of Boller-
slev, Engle, and Nelson (1994). Following Drost and Nijman (1993), we can
give three interpretations to (1). The strong form GARCH(1,1) process arises
when

yt
σt

= εt (2)

is i.i.d. with mean zero and variance one, where σ2
t is defined in (1). The most

common special case is where εt are also standard normal. The semi-strong
form arises when for εt in (2)

E(εt |Ft−1 ) = 0 and E(ε2t − 1 |Ft−1 ) = 0, (3)

where Ft−1 is the sigma field generated by the entire past history of the y
process. Finally, there is a weak form in which σ2

t is defined as a projection on
a certain subspace, so that the actual conditional variance may not coincide
with (1). The properties of the strong GARCH process are well understood,
and under restrictions on the parameters θ = (ω, β, γ) it can be shown to be
strictly positive with probability one, to be weakly and/or strictly stationary,
and to be geometrically mixing and ergodic. The weaknesses of the model are
by now well documented.

3 The Nonparametric Approach

There are several different ways in which nonparametric components have
been introduced into stochastic volatility models. This work was designed
to overcome some of the restrictiveness of the parametric assumptions in
Gaussian strong GARCH models.

3.1 Error density

Estimation of the strong GARCH process usually proceeds by specifying that
the error density εt is standard normal and then maximizing the (conditional
on initial values) Gaussian likelihood function. It has been shown that the
resulting estimators are consistent and asymptotically normal under a variety
of conditions. It is not required that the error terms actually be normal or
even i.i.d., but if this condition does not hold the resulting estimator is not
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efficient. In many cases, there is evidence that the standardized residuals from
estimated GARCH models are not normally distributed, especially for high
frequency financial time series. Engle and Gonzalez-Rivera (1991) initiated
the study of semiparametric models in which εt is i.i.d. with some density f
that may be non-normal, thus suppose that

yt = εtσt

σ2
t = ω + βσ2

t−1 + γy2
t−1,

where εt is i.i.d. with density f of unknown functional form. There is evidence
that the density of the standardized residuals εt = yt/σt is non-Gaussian. One
can obtain more efficient estimates of the parameters of interest by estimating
f nonparametrically. Linton (1993) and Drost and Klaassen (1997) develop
kernel based estimates and establish the semiparametric efficiency bounds for
estimation of the parameters. In some cases, e.g., if f is symmetric about zero,
it is possible to adaptively estimate some parameters, i.e., one can achieve
the same asymptotic efficiency as if one knew the error density. Hafner and
Rombouts (2006) have recently treated a number of multivariate cases and
show that it is not generally possible to adapt, although one can achieve a
semiparametric efficiency bound. These methods can often deliver efficiency
gains but may not be robust to say dependent or time varying εt. In practice,
the estimated density is quite heavy tailed but close to symmetric for stock
returns. These semiparametric models can readily be applied to deliver value
at risk and conditional value at risk measures based on the estimated density.

3.2 Functional form of volatility function

Another line of work has been to question the specific functional form of the
volatility function, since estimation is not robust with respect to its specifi-
cation. The news impact curve is the relationship between σ2

t and yt−1 = y
holding past values σ2

t−1 constant at some level σ2. This is an important
relationship that describes how new information affects volatility. For the
GARCH process, the news impact curve is

m(y, σ2) = ω + γy2 + βσ2. (4)

It is separable in σ2, i.e., ∂m(y, σ2)/∂σ2 does not depend on y, it is an
even function of news y, i.e., m(y, σ2) = m(−y, σ2), and it is a quadratic
function of y with minimum at zero. The evenness property implies that
cov(y2

t , yt−j) = 0 for εt with distribution symmetric about zero.
Because of limited liability, we might expect that negative and positive

shocks have different effects on the volatility of stock returns, for example.
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The evenness of the GARCH process news impact curve rules out such ‘lever-
age effects’. Nelson (1991) introduced the Exponential GARCH model to ad-
dress this issue. Let ht = log σ2

t and let ht = ω+ γ [θεt−1 + δ |εt−1|] + βht−1,
where εt = yt/σt is i.i.d. with mean zero and variance one. This allows asym-
metric effect of past shocks εt−j on current volatility, i.e., the news impact
curve is allowed to be asymmetric. For example, cov(y2

t , yt−j) �= 0 even when
εt is symmetric about zero. An alternative approach to allowing asymmet-
ric news impact curve is the Glosten, Jeganathan and Runkle (1994) model
σ2
t = ω + βσ2

t−1 + γy2
t−1 + δy2

t−11(yt−1 < 0).
There are many different parametric approaches to modelling the news

impact curve and they can give quite different answers in the range of
perhaps most interest to practitioners. This motivates a nonparametric ap-
proach, because of the greater flexibility in functional form thereby allowed.
The nonparametric ARCH literature apparently begins with Pagan and
Schwert (1990) and Pagan and Hong (1991). They consider the case where
σ2
t = σ2(yt−1), where σ(·) is a smooth but unknown function, and the multi-

lag version σ2
t = σ2(yt−1, yt−2, . . . , yt−d). This allows for a general shape to

the news impact curve and nests all the parametric ARCH processes. Under
some general conditions on σ(·) (for example that σ(·) does not grow at a
more than quadratic rate in the tails) the process y is geometrically strong
mixing. Härdle and Tsybakov (1997) applied local linear fit to estimate the
volatility function together with the mean function and derived their joint
asymptotic properties. The multivariate extension is given in Härdle, Tsy-
bakov and Yang (1996). Masry and Tjøstheim (1995) also estimate nonpara-
metric ARCH models using the Nadaraya-Watson kernel estimator. Lu and
Linton (2006) extend the CLT to processes that are only near epoch depen-
dent. Fan and Yao (1998) have discussed efficiency issues in this model, see
also Avramidis (2002). Franke, Neumann, and Stockis (2004) have considered
the application of bootstrap for improved inference. In practice, it is neces-
sary to include many lagged variables in σ2(.) to match the dependence found
in financial data. The problem with this is that nonparametric estimation of
a multi-dimension regression surface suffers from the well-known “curse of di-
mensionality”: the optimal rate of convergence decreases with dimensionality
d, see Stone (1980). In addition, it is hard to describe, interpret and under-
stand the estimated regression surface when the dimension is more than two.
Furthermore, even for large d this model greatly restricts the dynamics for
the variance process since it effectively corresponds to an ARCH(d) model,
which is known in the parametric case not to capture the dynamics well. In
particular, if the conditional variance is highly persistent, the non-parametric
estimator of the conditional variance will provide a poor approximation, as
reported in Perron (1998). So not only does this model not capture adequately
the time series properties of many datasets, but the statistical properties of
the estimators can be poor, and the resulting estimators hard to interpret.

Additive models offer a flexible but parsimonious alternative to nonpara-
metric models, and have been used in many contexts, see Hastie and Tibshi-
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rani (1990). Suppose that

σ2
t = cv +

d
∑

j=1

σ2
j (yt−j) (5)

for some unknown functions σ2
j . The functions σ2

j are allowed to be of general
functional form but only depend on yt−j . This class of processes nests many
parametric ARCH models. Again, under growth conditions the process y can
be shown to be stationary and geometrically mixing. The functions σ2

j can
be estimated by special kernel regression techniques, such as the method of
marginal integration, see Linton and Nielsen (1995) and Tjøstheim and Aues-
tad (1994). The best achievable rate of convergence for estimates of σ2

j (.) is
that of one-dimensional nonparametric regression, see Stone (1985). Masry
and Tjøstheim (1995) develop estimators for a class of time series models
including (5). Yang, Härdle, and Nielsen (1999) proposed an alternative non-
linear ARCH model in which the conditional mean is again additive, but the
volatility is multiplicative σ2

t = cv
∏d

j=1 σ
2
j (yt−j). Kim and Linton (2004)

generalize this model to allow for arbitrary [but known] transformations, i.e.,
G(σ2

t ) = cv +
∑d

j=1 σ
2
j (yt−j), where G(.) is a known function like log or

level. The typical empirical findings are that the news impact curves have an
inverted asymmetric U-shape.

These models address the curse of dimensionality but they are rather re-
strictive with respect to the amount of information allowed to affect volatility,
and in particular do not nest the GARCH(1,1) process. Linton and Mammen
(2005) proposed the following model

σ2
t (θ,m) =

∞
∑

j=1

ψj(θ)m(yt−j), (6)

where θ ∈ Θ ⊂ R
p andm is an unknown but smooth function. The coefficients

ψj(θ) satisfy at least ψj(θ) ≥ 0 and
∑∞

j=1 ψj(θ) < ∞ for all θ ∈ Θ. A special
case of this model is the Engle and Ng (1993) PNP model where

σ2
t = βσ2

t−1 +m(yt−j),

where m(.) is a smooth but unknown function. This model nests the simple
GARCH (1,1) model but permits more general functional form: it allows for
an asymmetric leverage effect, and as much dynamics as GARCH(1,1). Es-
timation methods for these models are based on iterative smoothing. Linton
and Mammen (2005) show that the news impact curves for daily and weekly
S&P500 data are quite asymmetric with non-quadratic tails and is not min-
imal at zero but at some positive return. Below we show their estimator,
denoted PNP here, in comparison with a common parametric fit, denoted
AGARCH.

Yang (2006) introduced a semiparametric index model
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Fig. 1 Partially nonparametric (PNP) (with pointwise confidence band) and parametric
fit of news impact curve for weekly Standard & Poors 500 data.

σ2
t = g

⎛

⎝

∞
∑

j=1

νj(yt−j ; θ)

⎞

⎠ ,

where νj(y; θ) are known functions for each j satisfying some decay condition
and g is smooth but unknown. This process nests the GARCH(1,1) when g
is the identity, but also the quadratic model considered in Robinson (1991).

Finally, we should mention some work by Audrino and Bühlmann (2001):
their model is that σ2

t = Λ(yt−1, σ
2
t−1) for some smooth but unknown func-

tion Λ(.), and includes the PNP model as a special case. They proposed an
estimation algorithm. However, they did not establish the distribution the-
ory of their estimator, and this may be very difficult to establish due to the
generality of the model.

3.3 Relationship between mean and variance

The above discussion has centered on the evolution of volatility itself, whereas
one is often very interested in the mean as well. One might expect that risk
and return should be related, Merton (1973). The GARCH-in-Mean process
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captures this idea, it is
yt = g(σ2

t ; b) + εtσt,

for various functional forms of g e.g., linear and log-linear and for some given
specification of σ2

t . Engle, Lilien and Robbins (1987) introduced this model
and applied it to the study of the term Structure. Here, b are parameters
to be estimated along with the parameters of the error variance. Some au-
thors find small but significant effects. Again, the nonparametric approach
is well motivated here on grounds of flexibility. Pagan and Hong (1991) and
Pagan and Ullah (1988) consider a case where the conditional variance is
nonparametric (with a finite number of lags) but enters in the mean equation
linearly or log linearly. Linton and Perron (2002) studied the case where g
is nonparametric but σ2

t is parametric, for example GARCH. The estimation
algorithm was applied to stock index return data. Their estimated g function
was non-monotonic for daily S&P500 returns.

3.4 Long memory

Another line of work has argued that conventional models involve a depen-
dence structure that does not fit the data well enough. The GARCH(1,1)
process σ2

t = ω + βσ2
t−1 + γy2

t−1 is of the form

σ2
t = c0 +

∞
∑

j=1

cjy
2
t−j (7)

for constants cj satisfying cj = γβj−1, provided the process is weakly sta-
tionary, which requires γ+β < 1. These coefficients decay very rapidly so the
actual amount of memory is quite limited. There is some empirical evidence
on the autocorrelation function of y2

t for high frequency returns data that
suggests a slower decay rate than would be implied by these coefficients, see
Bollerslev and Mikkelson (1996). Long memory models essentially are of the
form (7) but with slower decay rates. For example, suppose that cj = j−θ for
some θ > 0. The coefficients satisfy

∑∞
j=1 c

2
j < ∞ provided θ > 1/2. Frac-

tional integration (FIGARCH) leads to such an expansion. There is a single
parameter called d that determines the memory properties of the series, and

(1 − L)dσ2
t = ω + γσ2

t−1(ε
2
t−1 − 1),

where (1 − L)d denotes the fractional differencing operator. When d = 1 we
have the standard IGARCH model. For d �= 1 we can define the binomial
expansion of (1 − L)−d in the form given above. See Robinson (1991) and
Bollerslev and Mikkelson (1996) for models. The evidence for long memory
is often based on sample autocovariances of y2

t , and this may be questionable
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when only few moments of yt exist, see Mikosch and Stărică (2002). See
Giraitis et al. (2008) for a nice review.

3.5 Locally stationary processes

Recently, another criticism of GARCH processes has come to the fore, namely
their usual assumption of stationarity. The IGARCH process (where β+ γ =
1) is one type of nonstationary GARCH model but it has certain undesirable
features like the non-existence of the variance. An alternative approach is to
model the coefficients of a GARCH process as changing over time, thus

σ2
t = ω(xtT ) + β(xtT )σ2

t−1 + γ(xtT )(yt−1 − μt−1)2,

where ω, β, and γ are smooth but otherwise unknown functions of a variable
xtT . When xtT = t/T, this class of processes is nonstationary but can be
viewed as locally stationary along the lines of Dahlhaus (1997), provided
the memory is weak, i.e., β(·) + γ(·) < 1. In this way the unconditional
variance exists, i.e., E[σ2

t ] < ∞, but can change slowly over time as can the
memory. Engle and Rangel (2006) impose some restrictions that makes the
unconditional variance σ2(t/T ) = ω(t/T )/(1 − β(t/T ) − γ(t/T )) vary over
time but the coefficients β(t/T ) and γ(t/T ) are assumed to be constant.
Dahlhaus and Subba Rao (2006) have recently provided a comprehensive
theory of such processes and about inference methods for the ARCH special
case. See Čížek and Spokoiny (2008) for a further review.

3.6 Continuous time

Recently there has been much work on nonparametric estimation of contin-
uous time processes, see for example Bosq (1998). Given a complete record
of transaction or quote prices, it is natural to model prices in continuous
time (e.g., Engle (2000)). This matches with the vast continuous time finan-
cial economic arbitrage-free theory based on a frictionless market. Under the
standard assumptions that the return process does not allow for arbitrage and
has a finite instantaneous mean, the asset price process, as well as smooth
transformations thereof, belong to the class of special semi-martingales, as
detailed by Back (1991). Under some conditions, the semiparametric GARCH
processes we reviewed can approximate such continuous time processes as the
sampling interval increases. Work on continuous time is reviewed elsewhere
in this volume, so here we just point out that this methodology can be viewed
as nonparametric and as a competitor of the discrete time models we outlined
above.



Semiparametric and Nonparametric ARCH Modeling 165

4 Conclusion

In conclusion, there have been many advances in the application of nonpara-
metric methods to the study of volatility, and many difficult problems have
been overcome. These methods have offered new insights into functional form,
dependence, tail thickness, and nonstationarity that are fundamental to the
behaviour of asset returns. They can be used by themselves to estimate quan-
tities of interest like value at risk. They can also be used as a specification
device enabling the practitioner to see with respect to which features of the
data their parametric model is a good fit.
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Varying Coefficient GARCH Models

Pavel Čížek and Vladimir Spokoiny

Abstract This paper offers a new method for estimation and forecasting
of the volatility of financial time series when the stationarity assumption is
violated. We consider varying–coefficient parametric models, such as ARCH
and GARCH, whose coefficients may arbitrarily vary with time. This includes
global parametric, smooth transition, and change–point models as special
cases. The method is based on an adaptive pointwise selection of the largest
interval of homogeneity with a given right–end point, which is obtained by a
local change–point analysis. We construct locally adaptive volatility estimates
that can perform this task and investigate them both from the theoretical
point of view and by Monte Carlo simulations. Additionally, the proposed
method is applied to stock–index series and shown to outperform the standard
parametric GARCH model.

1 Introduction

A growing amount of econometrical and statistical research is devoted to
modeling financial time series and their volatility, which measures dispersion
at a point in time (e.g., conditional variance) and which is one of crucial quan-
tities in risk management and derivative pricing. Although financial markets
have been recently experiencing many shorter and longer periods of insta-
bility or uncertainity such as Asian crisis in 1997, Russian crisis in 1998,
start of the European currency in 1999, the “dot–Com” technology–bubble
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crash (2000–2002), or the terrorist attacks (September, 2001) and the war
in Iraq (2003), mostly used econometric models are typically based on the
assumption of time homogeneity. This includes conditional heteroscedastic-
ity models such as ARCH (cf. Engle (1982)) and GARCH (cf. (Bollerslev
(1986)), stochastic volatility models (Taylor (1986)), and many of their de-
scendants. On the other hand, the market and institutional changes have long
been assumed to cause structural breaks in financial time series, which was
confirmed in stock–price and exchange–rate series, for example, by Andreou
and Ghysels (2002) and Herwatz and Reimers (2001), respectively. Moreover,
ignoring these breaks can adversely affect the modeling, estimation, and fore-
casting of volatility as suggested by Diebold and Inoue (2001), Mikosch and
Stărică (2004), Pesaran and Timmermann (2004), and Hillebrand (2005), for
instance. Such findings led to the development of the change–point analysis
in the context of conditional heteroscedasticity models; see for example, Chu
(1995), Chen and Gupta (1997), Lin and Yang (2000), Kokoszka and Leipus
(2000), or Andreou and Ghysels (2006).

An alternative approach lies in relaxing the assumption of time homogene-
ity and allowing some or all model parameters to vary over time (Fan and
Zhang (1999); Cai et al. (2000); Fan et al. (2003)). Without structural as-
sumptions about the transition of model parameters over time, time–varying
models have to be estimated nonparametrically, for example, under the iden-
tification condition that their parameters are smooth functions of time. In
this chapter, we follow a more general strategy based on the assumption that
a time series can be locally, that is over short periods of time, approximated
by a parametric model. As suggested by Spokoiny (1998), such a local ap-
proximation can form a starting point in the search for the longest period of
stability (homogeneity), that is, for the longest time interval in which the se-
ries is described by the given parametric model. This strategy in the context
of the local constant approximation of the volatility process was employed
for by Härdle et al. (2003), Mercurio and Spokoiny (2004), and Spokoiny and
Chen (2007).

Here we generalize the method of Mercurio and Spokoiny (2004) so that it
can identify intervals of homogeneity for more complex parametric model of
volatility. The main benefit of such a generalization consists in the possibility
to forecast over a longer time horizon: the assumption of a constant volatility
is fulfilled only for short time intervals, whereas parametric models like ARCH
and GARCH mimic the majority of stylized facts about financial time series
and can reasonably fit the data over rather long periods of time in many
practical situations. Allowing for time dependence of model parameters offers
then much more flexibility in modeling the real–life financial time series,
which can be both with or without structural breaks since global parametric
models are included as a special case.

Moreover, the proposed adaptive local parametric modeling unifies the
change–point and varying–coefficient approaches. First, since finding the
longest time–homogeneous interval for a parametric model at any point in
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time corresponds to detecting the most recent change–point in a time series,
this approach is analogous to the change–point modeling as in Mikosch and
Stărică (1999, 2004), for instance, but it does not require prior information
such as the number of changes or the minimal time interval between two
neighboring changes. Second, since the selected interval used for estimation
necessarily differs at each time point, the model coefficients can vary arbitrar-
ily over time. In comparison to varying–coefficient models assuming smooth
development of parameters over time (Cai et al. (2000)), our approach how-
ever allows for structural breaks in the form of sudden jumps in parameter
values.

The rest of the chapter is organized as follows. In Section 2, we discuss
the two main ingredients of the method: parameter estimation of conditional
heteroscedasticity models and the test of homogeneity for these models. Sec-
tion 3 introduces the adaptive estimation procedure and discusses the choice
of its parameters. The performance of the proposed methods is demonstrated
on an application to real stock–index series in Section 4.

2 Conditional Heteroscedasticity Models

Let St be an observed asset–price process in discrete time, t = 1, 2, . . ., and
Rt are the corresponding returns, Rt = log(St/St−1). We model this process
via the conditional heteroscedasticity assumption

Rt = σtεt , (1)

where {εt}t≥1 is a sequence of independent standard Gaussian random vari-
ables and σt is the volatility process.

Standard ways of modeling the volatility process σt rely on one or an-
other parametric assumption. A large class of parametric models is built
around the ARCH (Engle (1982)) and GARCH (Bollerslev (1986)) models.
The ARCH(p) model is described by the equation

σ2
t = ω + α1R

2
t−1 + . . .+ αpR

2
t−p.

Its main disadvantage is that the order p of this autoregressive type equation
has to be relatively large in order to capture the main stylized facts of the
financial time series. The more general GARCH(p, q) model is described by
an ARMA–type equation

σ2
t = ω +

p
∑

i=1

αiR
2
t−i +

q
∑

j=1

βjσ
2
t−j . (2)
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An attractive feature of this model is that, even with very few coefficients, one
can model most stylized facts of financial time series like volatility clustering
or excessive curtosis, for instance. A number of GARCH extensions were pro-
posed to make the model even more flexible; for example, EGARCH (Nelson
(1991)), QGARCH (Sentana (1995)), TGARCH (Glosten, Jagannathan, and
Runkle (1993)), and APARCH (Ding, Granger, and Engle (1993)) that ac-
count for asymmetries in a volatility process and (fractionally) integrated ver-
sions of GARCH (Nelson (1990); Baillie, Bollerslev, and Mikkelsen (1996)).
Further developments include stochastic volatility models which include an
additional random noise component on the right–hand side of (2) or its al-
ternatives.

All these models can be put into a common class of generalized linear
volatility models:

Rt ∼ N (0, σ2
t ), σ2

t = g(Xt), Xt = ω +
p

∑

i=1

αih(Rt−i) +
q

∑

j=1

βjXt−j , (3)

where g and h are known functions and Xt is a latent process (structural vari-
able) that models volatility coefficient σ2

t via transformation g. For example,
we mostly concentrate on the GARCH case, which is described by g(u) = u
and h(r) = r2. In what follows, we denote Yt = h(Rt) and write the model
equation in the linear form

Xt = ω +
p

∑

i=1

αiYt−i +
q

∑

j=1

βjXt−j . (4)

In particular, the GARCH(1,1) model reads as Xt = ω + αYt−1 + βXt−1.
Usually all the coefficients are assumed nonnegative, that is, ω ≥ 0, αi ≥ 0,
βj ≥ 0 for i = 1, . . . , p and j = 1, . . . , q. The condition

∑p
i=1 αi+

∑q
j=1 βj < 1

ensures ergodicity of the process Xt.
Model (3) is time–homogeneous in the sense that the volatility process

follows the same structural equation at each time point. In other words,
parameters ω, {αi}pi=1, and {βj}qj=1 are constant over time. Even though the
conditional heteroscedasticity models can often fit data well over a longer
period of time, the assumption of homogeneity is too restrictive in practical
applications: to guarantee sufficient amount of data for sufficiently precise
estimation, these models are often applied for time spans of many years. The
strategy pursued in this paper requires only local time homogeneity, which
means that at each time point t there is a (possibly rather short) interval
[t−m, t], where the volatility process σt is well described by model (3). This
strategy aims then both at finding an interval of homogeneity (preferably as
long as possible) and at the estimation of the corresponding value σt.

To facilitate such a time–adaptive estimation, the estimation of model (3)
(Section 2.1) and a test of homogeneity of a given time interval (Section 2.2)
have to be described in more details.
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2.1 Model estimation

This section discusses the parameter estimation for the conditional het-
eroscedasticity model (3) using the observations Rt from some time interval
I = [t0, t1].

The volatility process σ2
t is described by equation σ2

t = g(Xt), where the
structural process Xt fulfills the linear constraint (3). Neglecting the (typi-
cally small) influence of initial conditions in the ergodic case, the process at
time t is determined by the parameter vector θ = (ω, α1, . . . , αp, β1, . . . , βq)�

and past values of Xt and Yt. Therefore, we use notation Xt = Xt(θ),

Xt(θ) = ω +
p

∑

i=1

αiYt−i +
q

∑

j=1

βjXt−j(θ), (5)

for t ∈ I. Later, we additionally use symbol θ(t) to indicate the dependence
of parameters on time t.

For estimating the parameter θ, we apply the quasi maximum likelihood
(quasi–MLE) approach which guarantees efficiency under the normality of
innovations and consistency under rather general moment conditions (e.g.,
Hansen and Lee (1994)). The quasi log–likelihood for model (3) on an interval
I can be represented in the form

LI(θ) =
∑

t∈I
�
(

Rt, g{Xt(θ)}
)

with �(r, u) = −0.5
{

log(u) + r2/u
}

. We define the quasi–MLE estimate θ̃I
of the parameter θ by maximizing the log–likelihood LI(θ),

θ̃I = argmax
θ∈Θ

LI(θ) = argmax
θ∈Θ

∑

t∈I
�
(

Rt, g{Xt(θ)}
)

, (6)

and denote by LI(θ̃I) the corresponding maximum.

2.2 Test of homogeneity against a change–point
alternative

Using interval I = [t0, t1] further, we want to test now whether the observed
returns Rt follow a parametric model (3) within I. We consider the supre-
mum likelihood ratio (LR) test introduced by Andrews (1993) against a
change–point alternative within I. Although in the context of conditional
heteroscedasticity models, there are other tests of homogeneity against a
change–point alternative (e.g., Kokozska and Leipus (1999, 2000)), the LR–
type tests are preferable both from the theoretical perspective (development
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of theory) and practical point of view (performance in finite samples; see
Kokoszka and Teyssiere (2005).

The null hypothesis for I means that the observations {Rt}t∈I follow the
parametric model (3) with a parameter θ(t) = θ∗. The null hypothesis yields
the parametric estimate θ̃I due to (6) and the corresponding fitted log–
likelihood LI(θ̃I). The change–point alternative given by a set T (I) of possi-
ble change points within I can be described as follows. Every point τ ∈ T (I)
splits the interval I in two subintervals J = [t0, τ ] and Jc = I \J = [τ+1, t1].
A change–point alternative with a location at τ ∈ T (I) means that θ(t) = θ1

for t ∈ J and θ(t) = θ2 for t ∈ Jc with two different values θ1 and θ2,
θ1 �= θ2. Under such an alternative, the observations {Rt}t∈I are associated
with the log–likelihood LJ(θ1) + LJc(θ2).

To test against a single change–point alternative with a known fixed τ ∈
T (I), the LR test statistic can be be used:

TI,τ = 2[ max
θ1,θ2∈Θ

{LJ(θ1) + LJc(θ2)} − max
θ∈Θ

LI(θ)]

= 2[LJ(θ̃J) + LJc(θ̃Jc) − LI(θ̃I)].

Considering an unknown change point τ ∈ T (I), the change–point test for
interval I can be defined as the maximum (supremum) of the LR statistics
over all τ ∈ T (I):

TI = max
τ∈T (I)

TI,τ . (7)

A change point is detected within I if the test statistic TI exceeds a critical
value z.

The supremum LR test was proposed and studied by Andrews (1993).
To guarantee the convergence to a parameter–independent asymptotic dis-
tribution, the distance between T (I) and the end points of interval I has to
increase with the interval length |I| = t1 − t0 + 1. Specifically, it should hold
for some δ > 0 that

min{t1 − max{τ : τ ∈ T (I)},min{τ : τ ∈ T (I)} − t0} > δ|I|. (8)

This asymptotic result is however almost useless for our purposes because
the proposed adaptive procedure applies such a change–point test for very
short intervals (even less than 20 observations). The choice of finite–sample
critical values for this test statistics will be further discussed in Sections 3
and critical values specific to the ARCH(1) and GARCH(1,1) models will be
obtained in Section 4.
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3 Adaptive Nonparametric Estimation

An obvious feature of model (3) is that the parametric structure of the pro-
cess is assumed constant over the whole sample and cannot thus incorporate
changes and structural breaks in the model. A natural generalization leads
to models whose coefficients may vary with time. Cai et al. (2000) considered
the following varying–coefficient model

Rt ∼ N (0, σ2
t ), σ2

t = g(Xt), Xt = ω(t) +
p

∑

i=1

αi(t)Yt−i +
q

∑

j=1

βj(t)Xt−j ,

where ω(t), αi(t), and βj(t) are functions of time and have to be estimated
from the observations Rt. Naturally, this is only possible under some addi-
tional assumptions on these functions, which are typically (i) varying coef-
ficients are smooth functions of time (Cai et al. (2000)) and (ii) varying co-
efficients are piecewise constant (piecewise smooth) functions (Mikosch and
Stărică (1999, 2004)).

Our approach is based on a more general structural assumption: at each
point T , there exists an interval of homogeneity I(T ) = [t, T ] in which
the volatility Xt nearly follows the parametric conditional heteroscedastic-
ity specification (4). This particularly means that, within the interval I(T ),
the returns {Rt}t∈I(T ) can be assumed to be driven by the parametric model
(3) with some parameter θ = θ(T ). The adaptive pointwise method applied
here permits selecting I(T ) and the corresponding θ(T ) independently at ev-
ery point T , which allows us to incorporate the mentioned special cases (i)
and (ii) in a unified way. Specifically, the idea of the method is to find the
longest interval, where the data do not contradict the hypothesis of model
homogeneity. Starting at each time T with a very short interval, the search
is done by successive extending and testing of interval I(T ) on homogeneity
against a change–point alternative. If the hypothesis of homogeneity is not
rejected for a given I(T ), a larger interval is taken and tested again. Hence,
the main difference between this method and that of Mikosch and Stărică
(1999) is that we do not aim to detect all change points in a given time series
but focus on the local change–point analysis near the point of estimation.
This allows restricting to local alternatives with only one change point.

In the rest of this section, the adaptive pointwise estimation procedure
is rigorously described (Section 3.1). Further, the choice of parameters and
implementation of the adaptive procedure is described in Section 3.2 (in
particular, the choice of critical values is dealt with in Section 3.2.2).
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3.1 Adaptive choice of the interval of homogeneity

This section proposes an adaptive method for the pointwise selection of the
longest interval of homogeneity for the conditional heteroscedastic model (3).
Let T be the point of interest and let I be a sequence of intervals [tk, T ], k =
0, . . . ,K, defined by time points T > t0 > . . . > tK = 1 (specific proposals
for the choice of these points are discussed later in this section). We aim
to successively test every interval Ik = [tk, T ] ∈ I on homogeneity, where
k increases from 2 to K. This ensures that we find the most recent change
point, and consequently, that we can search only one change point at a time.
Additionally, sets T (Ik) of possible change–points that we test for within Ik
are defined such that T (Ik) does not intersect with Ik−2, T (Ik) ∩ Ik−2 = ∅,
which can be achieved by setting T (Ik) = Ik−1\Ik−2, for instance. Therefore,
at the step k, we check for a possible change only points which have not
yet been tested at previous steps. The rejection of the time–homogeneity
hypothesis in Ik then means a detection of a change point and rejection of
the time-homogeneity of Ik, and at the same time, acceptance of Ik−2 as the
longest time–homogeneous interval.

The procedure reads as follows.

Initialization. Set k = 2.
Iteration. Select interval Ik = [tk, T ].
Testing homogeneity. Test the hypothesis of homogeneity within Ik

against a change-point alternative as described in Section 2.2 by com-
paring the test statistic TIk

with the critical value zk.
Loop. If a change point is detected for Ik, then set Îk = Ik−2 = [tk−2, T ],

set Îl = Îk, l = k + 1, . . . ,K, and terminate. Otherwise, accept Îk = Ik,
increase k by one, and continue with the iteration step until k > K.

In the description of the adaptive procedure above, Îk denotes the latest
accepted interval after the first k steps of the procedure. The corresponding
quasi–MLE estimate on Îk is then θ̂k = θ̃Îk

. The final adaptively selected
interval Î(T ) at T is the latest accepted interval from the whole procedure,
that is, Î(T ) = ÎK . The corresponding adaptive pointwise estimate θ̂(T ) of
θ(T ) is then defined as θ̂(T ) = θ̃Î(T ).

3.2 Parameters of the method and the implementation
details

To run the proposed procedure, one has to fix some of its parameters and
ingredients. This especially concerns the choice of tested intervals Ik, and
for every Ik, a subset T (Ik) of tested change point locations within Ik (Sec-
tion 3.2.1). The most important ingredient of the method is a collection of the
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critical values zk. Their choice and related computational issues are discussed
in Sections 3.2.2–3.2.3.

3.2.1 Set of intervals

This section presents our way of selecting the sets Ik and T (Ik) for k =
1, . . . ,K. Note however that our proposal is just an example and the method
will apply under rather general conditions on these sets. In what follows,
similarly to Spokoiny and Chen (2007), we fix some geometric grid {mk =
[m0a

k], k = 0, . . . ,K} with an initial length m0 ∈ N and a multiplier a > 1
to define intervals Ik = [tk, T ] = [T −mk, T ], k = 0, . . . ,K. For every interval
Ik, the subset T (Ik) of considered change point locations is then defined as
Ik−1\Ik−2, which guarantees that T (Ik) ∩ T (Il) = ∅ for l �= k. Note that all
intervals depend on the reference end point T .

Our experiments show that results are rather insensitive to the choice of
the parameters a and m0. Results presented in Section 4 employ a multiplier
a = 1.25 and the initial length m0 = 10.

3.2.2 Choice of the critical values zk

The proposed estimation method can be viewed as a hierarchic multiple
testing procedure. The parameters zk are thus selected to provide the pre-
scribed error level under the null hypothesis, that is, in the parametric time–
homogeneous situation. Because the proposed adaptive choice of the interval
of homogeneity is based on the supremum LR test applied sequentially in
rather small samples, the asymptotic properties of the supremum LR statis-
tics TI defined in (7) for a single interval I (Andrews (1993)) are not appli-
cable. Instead of asymptotic bounds, we therefore choose the critical values
using the Monte–Carlo simulations and the theoretical concept presented in
this section.

In what follows we assume that the considered set I of intervals together
with the sets of considered change points, T (I), I ∈ I, are fixed. The param-
eters zk are then selected so that they provide the below prescribed features
of the procedure under the parametric (time–homogeneous) model (3) with
some fixed parameter vector θ∗.

Let Î be the selected interval and θ̂ be the corresponding adaptive estimate
for data generated from a time–homogeneous parametric model. Both the
interval Î and estimate θ̂ depends implicitly on the critical values zk. Under
the null hypothesis, the desirable feature of the adaptive procedure is that,
with a high probability, it does not reject any interval Ik and selects the
largest possible interval IK . Equivalently, the selected interval Îk after the
first k steps and the corresponding adaptive estimate θ̂k should coincide with
a high probability with their non–adaptive counterparts Ik and θ̃k = θ̃Ik

.



178 P. Čížek and V. Spokoiny

Following Spokoiny and Chen (2007), this condition can be stated in the
form

Eθ∗

∣

∣

∣2{LIk
(θ̂k) − LIk

(θ̃k)}
∣

∣

∣

r

≤ ρRr(θ∗), k = 1, . . . ,K, (9)

where ρ is a given positive constant and Rr(θ∗) is the risk of the parametric
estimation:

Rr(θ∗) = max
k≤K

eθ∗
∣

∣2LIk

(

θ̃k,θ
∗)∣
∣

r
.

In total, (9) states K conditions on the choice of K parameters zk that im-
plicitly enter in the definition of the θ̂’s. There are two ways to determine
the values of zk by Monte Carlo simulations so that they satisfy (9). One
possibility is to fix the values zk for each interval sequentially starting from
z1, k = 1, . . . ,K. An alternative way is to apply the critical values which
linearly depend on log(|Ik|), zk = a+ b log(|IK |/|Ik|), where |Ik| denotes the
length of interval Ik (Spokoiny and Chen (2007)).

3.2.3 Selecting the parameters r and ρ by minimizing the forecast
error

The choice of critical values determined from (9) additionally depends on
two “metaparameters” r and ρ. A simple strategy is to use a conservative
values for these parameters and the corresponding set of critical values. On
the other hand, the two parameters are global in the sense that they are
independent of T . Hence, one can also determine them in a data–driven way
by minimizing some global forecasting error. For instance, being interested
in prediction at time T , we can compute the prediction of the conditional
volatility in a period T + h, h > 0, using the (locally estimated) parametric
model with the estimated parameters θ̂(T ). Different values of r and ρ may
lead to different estimates θ̂r,ρ(T ) and hence to different volatility forecasts
σ̂2
r,ρ(T + h|T ). Following Cheng et al. (2003), the data driven choice of r and
ρ can be done by minimizing the following objective function:

(r̂, ρ̂) = argmin
r,ρ

∑

T

∑

h∈H
Λ
(

R2
T+h, σ̂

2
r,ρ(T + h|T )

)

, (10)

where Λ(·, ·) is a loss function and H is the forecasting horizon set. For exam-
ple, one can take Λ(v, v′) = |v− v′| or Λ(v, v′) = |v− v′|2. For daily data, the
forecasting horizon could be one day, H = {1}, or two weeks, H = {1, . . . , 10}.
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4 Real–Data Application

In the real data application, we limit ourselves to the simplest conditional
heteroscedasticity models: varying–coefficient constant volatility, ARCH(1),
and the GARCH(1,1) models (for the sake of brevity, referred to also as the
local constant, local ARCH, and local GARCH approximations). We first
study the finite–sample critical values for the test of homogeneity by means
of Monte Carlo simulations (Section 4.1). Later, we demonstrate the per-
formance of the proposed pointwise adaptive estimation procedure discussed
in Sections 3 for real data (Section 4.2). Throughout this section, we iden-
tify the GARCH(1,1) models by triplets (ω, α, β): for example, (1, 0.1, 0.3)–
model. Simpler models, constant volatility and ARCH(1), are then indicated
by α = β = 0 and β = 0, respectively.

Table 1 Upper bounds on critical values z(|I|) of the sequential supremum LR test defined
by the intercept b0 and slope b1 of a line (11) for various parameter values of the ARCH(1)
and GARCH(1,1) models; r = 1, ρ = 1.

Model (ω, α, β) z(10) Slope z(570)

(0.1, 0.0, 0.0) 15.4 -0.55 5.5

(0.1, 0.2, 0.0) 16.6 -0.40 9.4
(0.1, 0.4, 0.0) 23.4 -0.74 10.1
(0.1, 0.6, 0.0) 30.8 -1.05 11.9
(0.1, 0.8, 0.0) 73.6 -3.37 16.4

(0.1, 0.1, 0.8) 19.5 -0.29 14.3
(0.1, 0.2, 0.7) 26.3 -0.68 14.1
(0.1, 0.3, 0.6) 25.1 -0.58 14.6
(0.1, 0.4, 0.5) 28.9 -0.74 15.6
(0.1, 0.5, 0.4) 29.8 -0.83 14.9
(0.1, 0.6, 0.3) 34.4 -1.05 15.5
(0.1, 0.7, 0.2) 27.1 -0.66 15.2
(0.1, 0.8, 0.1) 29.2 -0.75 15.7

4.1 Finite–sample critical values for the test of
homogeneity

A practical application of the proposed adaptive procedure requires critical
values for the test of local homogeneity of a time series. Since we rely on the
supremum of the LR ratio test in a nonlinear model, and additionally, the
test is applied sequentially in rather small samples, the only way to obtain
a reasonable approximation of the critical values is to simulate them. Given
an upper bound on the average risk between the adaptive and parametric
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estimates under the null hypothesis of time homogeneity, which defined in
(9) by two constants r and ρ, we determine upper bounds for critical values
that are linearly proportional to the interval length:

zk = b0 + b1k = c0 + c1 log(|IK |/|Ik|) (11)

for a given r and ρ. Since the critical values are generally decreasing with
the interval length, the linear approximation cannot be used for an arbitrarily
long interval. On the other hand, simulations show that the sequential nature
of the search for the longest interval of homogeneity has only a small influ-
ence on the critical values: the critical values of independent supLR tests per-
formed separately at various interval lengths and of a sequentially performed
sequence of supLR tests are close to each other. Hence, we recommend to
simulate critical values up to a certain interval length, e.g., |I| = 500, and
to use the critical values obtained for the latest interval considered also for
longer intervals if needed.

Unfortunately, the dependence on the parameters of the underlying model
cannot be eliminated (in contrast to the case of local constant approxima-
tion). We simulated the critical values for ARCH(1) and GARCH(1,1) models
with different values of underlying parameters; see Table 1 for critical values
corresponding to r = 1 and ρ = 1. The adaptive estimation was performed
sequentially on intervals with length ranging from |I0| = 10 to |IK | = 570
observations using a geometric grid with the initial interval length m0 = 10
and multiplier a = 1.25, see Section 3.1. (Note however that the results are
not sensitive to the choice of a.)

Generally, the critical values seem to increase with the values of the ARCH
parameter or the sum of the ARCH and GARCH parameters. To deal with
the dependence of the critical values on the underlying model parameters, we
propose to choose the largest (most conservative) critical values correspond-
ing to the any estimated parameter in the analyzed data. For example, if the
largest estimated parameters of GARCH(1,1) are α̂ = 0.3 and β̂ = 0.8, one
should use z(10) = 25.1 and z(570) = 14.6. Note however that the proposed
adaptive search procedure is not overly sensitive to this choice.

4.2 Stock index S&P 500

The proposed adaptive pointwise estimation method will be now applied to
real time series consisting of the log–returns of the Standard & Poors 500
(S&P 500) stock index. To compare the local constant, local ARCH, and local
GARCH with the standard parametric GARCH estimation1 and predictions,
we summarize the results concerning both parametric and adaptive methods

1 The parametric GARCH is estimated at each time point using last two years of data
(500 observations).
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by looking at absolute prediction errors one–day ahead averaged over one
month throughout this section, see (10) for Λ(v, v′) = |v − v′|. Note that,
to compute the prediction errors, we approximate the underlying volatility
by squared returns. Despite being noisy, this approximation is unbiased and
provides usually the correct ranking of methods (Andersen and Bollerslev
(1998); Awartani and Corradi (2005)).
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Fig. 1 The log–returns of S&P 500 from January 1, 2000 till December 31, 2004.

Now we concentrate on the S&P 500 stock index considered from January
1, 2000, to December 31, 2004, see Figure 1. This period is marked by many
substantial events affecting the financial markets, ranging from September
11, 2001, terrorist attacks and the war in Iraq (2003) to the crash of the
technology stock–market bubble (2000–2002). For the sake of simplicity, a
particular time period is selected. The estimation results for years 2003 and
2004, where the first one represent a more volatile period (war on terrorism
in Iraq) and the latter one is a less volatile period, are summarized on Fig. 2.
It depicts the ratios of monthly prediction errors of all adaptive methods to
the parametric GARCH (r = 0.5 and ρ = 1.5 for all methods).

In the beginning of 2003, which together with previous year 2002 corre-
sponds to a more volatile period (see Figure 1), all adaptive methods detected
rather quickly a structural break. Despite having just small amount of data
after the break, all adaptive methods perform in the first half of 2003 as
well as the parametric GARCH; the local constant approximation seems to
be slightly better than other models though. In the middle of year 2003,
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Fig. 2 The ratio of the absolute prediction errors of the three pointwise adaptive methods
to the parametric GARCH for predictions one period ahead averaged over one month
horizon. The S&P 500 index is considered from January, 2003 to December, 2004.

the local constant and local ARCH models are able to detect another struc-
tural change, possibly less pronounced than the one at the beginning of 2003
because of its late detection by the adaptive GARCH. Around this period,
the local ARCH and local GARCH shortly performs slightly worse than the
parametric GARCH. From the end of 2003 and in year 2004, all adaptive
methods starts to outperform the parametric GARCH, where the reduction
of the prediction errors due to the adaptive estimation amounts to 20% on
average. Both local constant, local ARCH, and local GARCH methods ex-
hibit a short period of instability in the first months of 2004, where their
performance temporarily worsens to the level of parametric GARCH. This
corresponds to “uncertainty” of the adaptive methods about the length of
the interval of homogeneity. After this short period, the performance of all
adaptive methods is comparable, although the local constant performs overall
best of all methods (closely followed by local ARCH) judged by the global
prediction error.

It seems that the benefit of pointwise adaptive estimation is most pro-
nounced during periods of stability that follow an unstable period (i.e., in
year 2004 here) rather than during a presumably rapidly changing environ-
ment. The reason is that, despite possible inconsistency of parametric meth-
ods under change points, the adaptive methods tend to have rather large
variance when the intervals of time homogeneity become very short.
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5 Conclusion

In this chapter, we extend the idea of adaptive pointwise estimation to more
complex parametric models and demonstrate its use on the estimation of
varying–coefficient conditional–heteroscedasticity models. The methodology
is readily available for a wide class of conditional heteroscedasticity models,
even though we concentrated on (G)ARCH models specifically. In the con-
text of pointwise adaptive (G)ARCH estimation, we demonstrated that, on
the one hand, the adaptive procedure, which itself depends on a number of
auxiliary parameters, is rather insensitive to the choice of these parameters,
and on the other hand, it facilitates the global selection of these parameters
by means of fit or forecasting criteria.
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Extreme Value Theory for GARCH
Processes

Richard A. Davis and Thomas Mikosch

Abstract We consider the extreme value theory for a stationary GARCH
process with iid innovations. One of the basic ingredients of this theory is
the fact that, under general conditions, GARCH processes have power law
marginal tails and, more generally, regularly varying finite-dimensional distri-
butions. Distributions with power law tails combined with weak dependence
conditions imply that the scaled maxima of a GARCH process converge in
distribution to a Fréchet distribution. The dependence structure of a GARCH
process is responsible for the clustering of exceedances of a GARCH process
above high and low level exceedances. The size of these clusters can be de-
scribed by the extremal index. We also consider the convergence of the point
processes of exceedances of a GARCH process toward a point process whose
Laplace functional can be expressed explicitly in terms of the intensity mea-
sure of a Poisson process and a cluster distribution.

1 The Model

We consider a GARCH process (Xt)t∈Z of order (p, q) (GARCH(p, q)) given
by the equations1
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1 Following the tradition in time series analysis, we index any stationary sequence (At)
by the integers Z. For practical purposes, one would consider the sequence (Xt)t∈N corre-
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Xt = σt Zt , σ2
t = α0 +

p
∑

i=1

αiX
2
t−i +

q
∑

j=1

βj σ
2
t−j , t ∈ Z . (1)

In order to avoid ambiguity as regards the order (p, q) we assume that
αpβq �= 0 and that all coefficients αi and βj are non-negative. Since we
are not interested in the trivial solution Xt ≡ 0 a.s. to (1) we also assume
α0 > 0. Throughout, the noise or innovations sequence (Zt)t∈Z is an iid se-
quence with mean zero and unit variance.2 We refer to (σt) as the volatility
sequence of the GARCH process.

2 Strict Stationarity and Mixing Properties

To develop a reasonable extension of extreme value theory for iid sequences,
the assumption of strict stationarity is often required. Therefore, we will al-
ways assume that there exists a unique strictly stationary causal3 solution
(Xt) to (1). Notice that stationarity4 of the GARCH process (Xt) is equiv-
alent to stationarity of the volatility sequence (σt). Necessary and sufficient
conditions for the existence and uniqueness of a stationary ergodic solution to
(1) are given in Nelson (1990) for the GARCH(1, 1) case and for the general
GARCH(p, q) case in Bougerol and Picard (1992); cf. Lindner (2008). These
conditions will be discussed in Section 3.

Under general conditions such as the existence of a Lebesgue density of
Z in some neighborhood of the origin, a stationary GARCH process (Xt) is
strongly mixing, i.e.,

sup
C∈F0

−∞ ,D∈F∞
t

|P (C ∩D) − P (C)P (D)| = αt → 0 , as t → ∞ ,

where Fb
a, a ≤ b, is the σ-field generated by (Xs)a≤s≤b with the obvious

modifications for infinite a or b. Moreover, the mixing rate αt decays to 0 ge-
ometrically. These properties (under conditions on the distribution of Z more
general than mentioned above) follow from work by Mokkadem (1990), cf.
Doukhan (1994), Boussama (1998). Mokkadem (1990) and Boussama (1998)
show that the process is in fact β − mixing. See Lindner (2008) for more
details about the proof of strong mixing for GARCH processes.

sponding to observations at the times t = 1, 2, . . .. If (At) is strictly stationary we write A
for a generic element of the sequence.
2 A standardization like unit variance of Z is necessary in order to avoid a trade-off in the
scaling between σt and Zt which would lead to non-identifiability of the parameters of the
model (1).
3 This means that Xt has representation as a measurable function of the past and present
noise values Zs, s ≤ t.
4 In what follows, we will use stationarity as a synonym for strict stationarity.
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Substantial insight into the probabilistic structure of a GARCH process
(Xt) is gained by embedding the squares X2

t and σ2
t into a stochastic re-

currence equation. This procedure offers one a way to find conditions for
stationarity of (Xt), but also for its marginal tail behavior and, in turn, for
its extreme value behavior and the existence of moments.

3 Embedding a GARCH Process in a Stochastic
Recurrence Equation

By the definition of a GARCH, the quantities Xt and σt are inextricably
linked. Therefore any statement about the existence of the stationary se-
quence (Xt) and its distributional properties is also a statement about the
corresponding properties of the stationary sequence (σt), and vice versa.
Therefore one important approach to the understanding of the structure of a
GARCH process is to express σt as a measurable function of past and present
values Zs, s ≤ t. We refer to such a representation as a causal solution of (1).

Similarly to the representation of a causal ARMA process as a linear pro-
cess of past values of the noise (see Brockwell and Davis (1991)) such a
representation can be obtained by iterating the defining difference equation
(1) for σ2

t . Indeed, writing

Yt =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

σ2
t+1

...

σ2
t−q+2

X2
t

...

X2
t−p+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, At =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1Z
2
t + β1 β2 · · · βq−1 βq α2 α3 · · · αp
1 0 · · · 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 · · · 0

...
...

. . .
...

...
...

...
. . .

...

0 0 · · · 1 0 0 0 · · · 0

Z2
t 0 · · · 0 0 0 0 · · · 0

0 0 · · · 0 0 1 0 · · · 0

...
...

. . .
...

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Bt = (α0, 0, . . . , 0)′ ,

we see that ((At,Bt)) is an iid sequence, Yt−1 and (At,Bt) are independent,
where the At’s are iid random (p+ q− 1)× (p+ q− 1) matrices and the Bt’s
iid (p+ q− 1)-dimensional random vectors. Then (Yt) satisfies the following
vector stochastic recurrence equation (SRE):

Yt = AtYt−1 + Bt , t ∈ Z . (2)
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Iteration of the SRE (2) yields a unique stationary solution of the form

Yt = Bt +
∞
∑

i=1

At · · ·At−i+1 Bt−i , t ∈ Z . (3)

The crucial condition for the a.s. convergence of the infinite series in (3),
hence for the existence of a strictly stationary solution to (2), is negativity
of the top Lyapunov exponent given by

γ = inf
n≥1

n−1 E log ‖An · · ·A1‖ , (4)

where ‖·‖ is the operator norm corresponding to a given norm in R
p+q−1, see

Bougerol and Picard (1992). By virtue of (3) the process (Yt) has represen-
tation Yt = f((Zs)s≤t) for some measurable function f . Therefore standard
ergodic theory yields that (Yt) is an ergodic process, see Krengel (1985).

In general, the top Lyapunov coefficient γ cannot be calculated explicitly,
but a well known sufficient condition for γ < 0 is given by

p
∑

i=1

αi +
q

∑

j=1

βj < 1 , (5)

see p. 122 in Bougerol and Picard (1992). Interestingly, (5) is also neces-
sary and sufficient for the finiteness of var(Xt), hence for the second order
stationarity of (Xt).

Example 1 (The GARCH(1,1) case)
This case is a real exception in the class of all GARCH processes since it is
possible to calculate the Lyapunov coefficient explicitly. This is due to the
fact that (2) essentially collapses into the one-dimensional SRE

σ2
t+1 = α0 + (α1Z

2
t + β1)σ2

t , (6)

where At = α1Z
2
t + β1, hence

γ = n−1E log(An · · ·A1) = E logA = E log(α1 Z
2 + β1) .

Then, following Nelson (1990), the conditions E log(α1 Z
2 + β1) < 0 and

α0 > 0 are necessary and sufficient for the existence of a stationary causal
non-degenerate solution to (1). ��

4 The Tails of a GARCH Process

The embedding of the squares X2
t and σ2

t of a stationary GARCH process
(Xt) and its volatility sequence (σt) into the SRE (2) also allows one to use
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classical theory about the tails of the solution to this SRE. Such a theory
was developed by Kesten (1973), see also Goldie (1991) for an alternative
approach, cf. Embrechts et al. (1997), Section 8.4.

Theorem 1 (Basrak et al. (2002))
Consider the process (Yt) in (3) obtained from embedding a stationary
GARCH process into the SRE (2). Assume that Z has a positive density on R

such that E(|Z|h) < ∞ for h < h0 and E(|Z|h0) = ∞ for some h0 ∈ (0,∞].5
Then there exist κ > 0 and a finite-valued function w on the unit sphere

S
p+q−2 = {x ∈ R

p+q−1 : |x| = 1}

for any fixed norm | · | in R
p+q−1 such that

for all x ∈ S
p+q−2 , lim

x→∞
xκ P ((x,Y) > x) = w(x) exists .

Moreover, if x ∈ S
p+q−2 has non-negative components then w(x) > 0.

Furthermore, Y is regularly varying with index κ, 6 i.e., there exist a
constant c > 0 and a random vector Θ on the unit sphere S

p+q−2 such that
for every t > 0

xκ P (|Y| > tx , Y/|Y| ∈ · ) w→ c t−κ P (Θ ∈ · ) , as x → ∞ ,

where w→ denotes weak convergence on the Borel σ-field of S
p+q−2.

If we specify x to be a unit vector an immediate consequence is the following
result.

Corollary 1 Under the conditions on the distribution of Z in Theorem 1,
the tails of the marginal distribution of a stationary GARCH process exhibit
power law behavior: there exist κ > 0 and positive constants c|X| and cσ such
that7

P (|X | > x) ∼ c|X| x
−2κ and P (σ > x) ∼ cσ x

−2 κ .

With the exception of the GARCH(1, 1) case it is unknown how to evaluate
cσ, see Goldie (1991).

Applying a result by Breiman (1965), cf. Davis and Mikosch (2008), Sec-
tion 4, one can also derive the relations8

5 A condition such as E(|Z|h0) = ∞ is needed. It means that the distribution of Z is spread
“sufficiently far out”. Indeed, if Z is supported on too short an interval in the neighborhood
of the origin, then P (|X| > x) may decay to zero exponentially fast as x→ ∞, see Goldie
and Grübel (1996).
6 Basrak et al. (2002) proved this result under the condition that κ is not an even integer.
Boman and Lindskog (2007) removed this condition.
7 We write f(x) ∼ g(x) as x → ∞ for two functions f and g whenever f(x)/g(x) → 1 as
x→ ∞.
8 Here x± = max(±x, 0) for x ∈ R.
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P (X > x) = P (σ Z+ > x) ∼ E((Z+)2 κ)P (σ > x) ,

P (X ≤ −x) = P (−σ Z− ≤ −x) ∼ E((Z−)2 κ)P (σ > x) .

In the case of the general SRE model (2), the value of κ is determined as the
solution to a complicated equation (see Kesten (1973)) which cannot be solved
explicitly. As regards the general GARCH(p, q) model, one can estimate the
tail index κ from observations of the GARCH process by using the tools of
extreme value statistics, see Drees (2000) and Resnick and Stărică (1998), cf.
Embrechts et al. (1997), Chapter 6, Resnick (2007). The GARCH(1, 1) case
again offers a more tractable form for κ.

Example 2 (The GARCH(1,1) case)
In this case, the SRE (2) collapses to the one-dimensional equation (6). Then
direct calculation shows that Kesten’s result yields κ as the unique solution
(which exists under the conditions of Theorem 1) to the equation

E[Aκ] = E[(α1 Z
2 + β1)κ] = 1 . (7)

This equation can be solved for κ by numerical and/or simulation methods
for fixed values of α1 and β1 from the stationarity region of a GARCH(1, 1)
process and assuming a concrete density for Z. In the case α1 = 0.1, Table 1
reports a small study for 2κ-values (the tail index of X and σ), assuming
a standard normal or a unit variance student distribution with 4 degrees of
freedom.

We mention that the inequality

E[(α1 Z
2 + β1)κ] ≥ 1 (8)

already implies that both E(σ2κ) and E(|X |2κ) are infinite. Indeed, since
α0 > 0

E(σ2κ
t ) > E(σ2 κ

t−1 (α1 Z
2
t−1 + β1)κ) = E(σ2 κ

t )E((α1 Z
2 + β1)κ) .

By virtue of (8) this relation is impossible unless E(σ2κ) = ∞. On the other
hand, if

E[(α1 Z
2 + β1)κ] < 1 (9)

a simple moment calculation involving Minkowski’s inequality and represen-
tation (3) for Yt = σ2

t imply that E(|X |2κ) = E(|Z|2κ)E(σ2κ) < ∞. Similar
arguments for the existence of moments of the solution to a one-dimensional
SRE can be found in Ling and McAleer (2002) and have been extended to
GARCH and AGARCH models in Ling and McAleer (2002), cf. Lindner
(2008). ��

Example 3 (Integer valued κ and IGARCH)
Assume that we are in the GARCH(1, 1) framework of Example 2. Since
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Table 1 Results for 2κ when α1 = 0.1. Top: Standard normal noise. Bottom: Unit variance
student noise with 4 degrees of freedom.

β1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

2κ 2.0 12.5 16.2 18.5 20.2 21.7 23.0 24.2 25.4 26.5

β1 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

2κ 11.9 11.3 10.7 9.9 9.1 8.1 7.0 5.6 4.0

β1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

2κ 2.0 3.68 3.83 3.88 3.91 3.92 3.93 3.93 3.94 3.94

β1 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

2κ 3.65 3.61 3.56 3.49 3.41 3.29 3.13 2.90 2.54

the solution κ of (7) is unique if it exists, it is possible to give necessary
and sufficient conditions for tails of the form P (|X | > x) ∼ c|X| x

−2k for
k = 1, 2, . . .. By virtue of the discussion of the consequences of the conditions
(8) and (9) we may also conclude that E(X2k) < ∞ if and only if E[(α1 Z

2 +
β1)k] < 1.

Relation (7) turns into

1 = E[(α1 Z
2 + β1)k] = βk1

k
∑

l=0

(

k

l

)

(α1/β1)l E(Z2l) . (10)

For example, choosing k = 1 and recalling that E(Z2) = 1, (10) turns into
the equation α1 + β1 = 1 which defines the integrated GARCH (IGARCH)
model of Engle and Bollerslev (1986). It is a well known fact that a stationary
IGARCH(p, q) process has infinite variance marginals.9 In the IGARCH(1,1)
case, Kesten’s result yields the more sophisticated result P (|X | > x) ∼
c|X| x

−2. In applications to real-life data one often observes that the sum
of the estimated parameters α̂1 + ̂β1 is close to 1 implying that moments
slightly larger than two might not exist for a fitted GARCH process. An
alternative explanation for this IGARCH effect are non-stationarities in the
observed data as discussed in Mikosch and Stărică (2004).

For k = 2, (10) turns into the equation

1 = (α1 + β1)2 + α2
1 (E(Z4) − 1) ,

9 This follows immediately by taking expectations in the defining equation (1) for σ2
t and

recalling that α0 > 0.
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implying that P (|X | > x) ∼ c|X| x
−4. Moreover, following the discussion

above, the condition

1 > (α1 + β1)2 + α2
1 (E(Z4) − 1)

is necessary and sufficient for E(X4) < ∞. ��

5 Limit Theory for Extremes

5.1 Convergence of maxima

Generally, the asymptotic tail behavior of the marginal distribution of a sta-
tionary mixing sequence sequence (At) is the key factor in determining the
weak limit behavior of the sequence of partial maxima

Mn(A) = max
i=1,...,n

Ai , n ≥ 1 . (11)

This property is well documented in various monographs on the topic, see
e.g., Leadbetter et al. (1983), Galambos (1987), Resnick (1987), Embrechts et
al. (1997). In particular, for an iid sequence (At) with tail P (A > x) ∼ c x−α

for some constant c > 0 it follows that

(c n)−1/αMn(A) d→ Yα , (12)

where Yα has the Fréchet distribution function,

Φα(x) =

{

0, x ≤ 0,
e −x−α

, x > 0 .
(13)

Now if (At) is a stationary sequence that satisfies a general mixing condition
and the marginal distribution has the same tail behavior as above (i.e., P (A >
x) ∼ c x−α), then one often can show the existence of θA ∈ (0, 1] such that

(c n)−1/αMn(A) d→ θ
1/α
A Yα , (14)

The parameter θA is called the extremal index and measures the level of
clustering for extremes. The case θA = 1 corresponds to no clustering in
which case the limiting behavior of Mn(A) is the same as for the maxima of
an iid sequence. The reciprocal of the extremal index 1/θA of a stationary
sequence (At) has the interpretation as the expected size of clusters of high
level exceedances in the sequence. For iid At’s, 1/θA = 1, see (11), and there
is no clustering of exceedances of high levels.
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Returning to the GARCH setting, we assume that the conditions of The-
orem 1 are satisfied. Then we know that P (|X | > x) ∼ c|X| x

−2κ for some
κ, c|X| > 0, and we can even specify the value of κ in the GARCH(1, 1) case
by solving the equation (7). The limit relation (12) is not directly applicable
to the maxima Mn(|X |) of the sequence (|Xt|) because of the dependence
in the sequence. However, it was mentioned in Section 2 that, under general
conditions on the distribution of Z, the sequence (Xt), hence (|Xt|) is strong
mixing with geometric rate. Using this asymptotic independence condition it
can be shown10 that

(c|X| n)−1/(2κ)Mn(|X |) d→ θ
1/(2κ)
|X| Y2 κ (15)

where Y2κ has the Fréchet distribution given in (13) and the extremal index
θ|X| is strictly less than one. In the aforementioned literature, it has also been
shown that results analogous to (15) hold for the maxima of the sequences
(σt) and (Xt) (at least when Z is symmetric) with the corresponding positive
tail constants cσ, cX in (15) and extremal indices θσ, θX ∈ (0, 1) in (14).

Since the extremal index θ|X| is strictly less than one for a GARCH process,
the expected size of clusters of high level exceedances is 1/θ|X| > 1. This is
in sharp contrast to the case of stochastic volatility processes (see Davis and
Mikosch (2008)), which have extremal indices that are equal to one and hence
possess no clustering of extremes. Formulae for calculating the value of θ|X|
for a general GARCH(p, q) process are unknown, but in the ARCH(1) and
GARCH(1, 1) cases more explicit expressions for θ|X|, θX and θσ exist. For
example, in the GARCH(1, 1) case,

θσ =
∫ ∞

1

P

⎛

⎝sup
t≥1

t
∏

j=1

(α1 Z
2
j + β1) ≤ y−1

⎞

⎠κ y−κ−1 dy .

The right hand expression can be evaluated by Monte-Carlo simulations, see
e.g. Haan et al. (1989) for the ARCH(1) case with standard normal noise Z,
cf. Embrechts et al. (1997), Section 8.1, where one can also find some advice
as to how the extremal index of a stationary sequence can be estimated from
data.

5.2 Convergence of point processes

Advanced insight into the limit structure of the extremes of a stationary
sequence (At) is provided by the weak convergence of the point processes

10 See Haan et al. (1989) for ARCH(1); cf. Embrechts et al. (1997), Section 8.4, or Davis
and Mikosch (1998); Mikosch and Stărică (2000) for GARCH(1,1), and Basrak et al. (2002)
in the general GARCH(p, q) case.
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Nn(·) =
n

∑

t=1

εAt/an
(·)

toward a point process, whose points can be expressed in terms of products
of Poisson points with independent points from a clustered distribution. Here
εx denotes Dirac measure at x: for any set B ⊂ R

εx(B) =

{

1 , x ∈ B ,

0 , x �∈ B ,

and (an) is a suitably chosen sequence of positive constants. For example, for
a GARCH process (Xt), (an) can be chosen such that

P (X > an) ∼ n−1 .

Convergence in distribution,Nn
d→ N , of the sequence of point processes (Nn)

toward the point processN is explained in standard books on point processes,
see e.g. Kallenberg (1983), Daley and Vere–Jones (1988), Resnick (1987).
Resnick’s book describes the close relationship between the convergence of
(Nn) and extreme value theory. For example, choosing the set B = (x,∞],
Nn

d→ N implies for the order statistics A(1) ≤ · · · ≤ A(n) = Mn(A) of the
sample A1, . . . , An that

P (Nn(x,∞) < k) = P (a−1
n A(n−k+1) ≤ x)

→ P (N(x,∞) < k)

=
k−1
∑

i=0

P (N(x,∞) = i) , x ∈ R .

Similar relations can be established for the joint convergence of finitely many
order statistics in a sample, the joint convergence of the scaled minima
a−1
n A(1) and maxima a−1

n Mn(A), and various other results for extremes can
be derived as well. Among others, the distribution of N determines the ex-
tremal index θA mentioned in Section 5.1.

The limit distribution of (a−1
n Mn(A)) is determined by the distribution of

the limiting point process N . For ARCH(1), GARCH(1, 1) and the general
GARCH(p, q) processes (Xt) and their absolute values (|Xt|) the form of the
limit point process N was determined in Davis and Mikosch (1998), Mikosch
and Stărică (2000) and Basrak et al. (2002), respectively. The Laplace func-
tional of the limit point process N can be expressed explicitly in terms of
the intensity measure of a Poisson process and the distribution of clusters.
However, the general form of this representation has little practical value for
probability computations.
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5.3 The behavior of the sample autocovariance function

Basic measures of the dependence in a stationary time series (At) are the
autocovariance and autocorrelation functions (ACVF and ACF) given respec-
tively by

γA(h) = cov(A0, Ah) and ρA(h) = corr(A0, Ah) =
γA(h)
γA(0)

, h ≥ 0 .

Here we have assumed that γA(0) = var(A) ∈ (0,∞). Log-return series (Xt)
usually have zero autocorrelations and therefore it is also common to consider
the ACVFs and ACFs, γ|X|i and ρ|X|i, i = 1, 2, of the absolute values |Xt|
and the squared returns X2

t .
Since the ACVF and ACF of a stationary sequence (At) are in general

unknown functions it is common to estimate them by their sample analogs
(sample ACVF and sample ACF) given at lag h ≥ 0 by

γ̂A(h) =
1
n

n−h
∑

t=1

(At −An) (At+h −An)

and

ρ̂A(h) =
γ̂A(h)
γ̂A(0)

=
∑n−h

t=1 (At −An) (At+h −An)
∑n

t=1(At −An)2
,

where An = n−1
∑n

t=1At denotes the sample mean.
For non-linear processes (At) the limit theory for the sample ACVF and

sample ACF is strongly influenced by heavy tails in the marginal distribution
ofAt. This has been reported early on in Davis and Resnick (1996) for bilinear
processes. In contrast, the sample ACF of a linear process (such as ARMA and
FARIMA) consistently estimates the ACF of a Gaussian linear process with
the same coefficients as the original linear process even when the distribution
of A has such heavy tails that the variance of the process is infinite, in which
case, the ACVF and the ACF are not defined. Interestingly, however, the rates
of convergence in this heavy tailed case compare favorably to the usual

√
n-

rates in the finite variance case, see Davis and Resnick (1985a, 1985b, 1986),
cf. Brockwell and Davis (1991), Section 13.3.

The limit theory for the sample ACVF and ACF of a GARCH process (Xt),
its absolute values and squares was studied in Davis and Mikosch (1998) in the
ARCH(1) case, for GARCH(1,1) in Mikosch and Stărică (2000) and in Basrak
et al. (2002) for the general GARCH(p, q) case as well as for solutions to
SREs. The proofs of these results are based on the point process convergence
results mentioned in Section 5.2, hence they are closely related to extreme
value theory for GARCH processes. The limit distribution and the rates of
convergence of the sample ACFs ρ̂X(h), ρ̂|X|(h) and ρ̂X2(h) critically depend
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on the tail index 2κ of the marginal distribution of a GARCH process, see
Corollary 1. In particular, the following results hold.

1. If 2κ ∈ (0, 2) then ρ̂X(h) and ρ̂|X|(h) have non-degenerate limit distribu-
tions. The same statement holds for ρ̂X2(h) when 2κ ∈ (0, 4).

2. If 2κ ∈ (2, 4) then both ρ̂X(h), ρ̂|X|(h) converge in probability to their de-
terministic counterparts ρX(h), ρ|X|(h), respectively, at the rate n1−2/(2κ)

and the limit distribution, depending on an infinite variance stable dis-
tribution, is complex and difficult to describe.

3. If 2κ ∈ (4, 8), then

n1−4/(4κ)(ρ̂X2(h) − ρX2(h)) d→ Sκ(h) ,

where the random variable Sκ(h) is a function of infinite variance stable
random variables.

4. If 2κ > 4 then the good mixing properties of the GARCH process (see
Section 2) and standard central limit theory for stationary sequences (see
e.g., Ibragimov and Linnik (1971) or Doukhan (1994)) imply that (ρ̂X(h))
and (ρ̂|X|(h)) have Gaussian limits at

√
n-rates. The corresponding result

holds for (X2
t ) when 2κ > 8.

These results show that the limit theory for the sample ACF of a GARCH
process is rather complicated when low moments of the process do not exist.
There is empirical evidence based on extreme value statistics indicating that
log-return series might not have finite 4th or 5th moment,11 and then the limit
results above would show that the usual confidence bands for the sample ACF
based on the central limit theorem and the corresponding

√
n-rates are far

too optimistic in this case.
It is worth noting that for stochastic volatility models, an alternative class

of models to the GARCH for modeling log-returns, the situation is markedly
different. If the noise in the stochastic volatility process is chosen so that the
marginal distribution matches the power law tail of the GARCH with index
2κ, then

(n/ lnn)1/(2κ)ρ̂X(h) and (n/ lnn)1/(4κ)ρ̂X2(h)

converge in distribution for 2κ ∈ (0, 2) and 2κ ∈ (0, 4), respectively. This
illustrates the good large sample behavior of the sample ACF for stochastic
volatility models even if ρX and ρX2 are not defined (see Davis and Mikosch
(2001, 2008)) and illustrates another key difference between stochastic volatil-
ity and GARCH processes.

11 See e.g. Embrechts et al. (1997), Chapter 6, and Mikosch (2003).
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Multivariate GARCH Models
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Abstract This article contains a review of multivariate GARCH models.
Most common GARCH models are presented and their properties consid-
ered. This also includes nonparametric and semiparametric models. Existing
specification and misspecification tests are discussed. Finally, there is an em-
pirical example in which several multivariate GARCH models are fitted to
the same data set and the results compared.

1 Introduction

Modelling volatility in financial time series has been the object of much at-
tention ever since the introduction of the Autoregressive Conditional Het-
eroskedasticity (ARCH) model in the seminal paper of Engle (1982). Subse-
quently, numerous variants and extensions of ARCH models have been pro-
posed. A large body of this literature has been devoted to univariate models;
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see for example Bollerslev et al. (1994), Palm (1996), Shephard (1996), and
several chapters of this Handbook for surveys of this literature.

While modelling volatility of the returns has been the main centre of atten-
tion, understanding the comovements of financial returns is of great practical
importance. It is therefore important to extend the considerations to multi-
variate GARCH (MGARCH) models. For example, asset pricing depends on
the covariance of the assets in a portfolio, and risk management and asset
allocation relate for instance to finding and updating optimal hedging posi-
tions. For examples, see Bollerslev et al. (1988), Ng (1991), and Hansson and
Hordahl (1998). Multivariate GARCH models have also been used to inves-
tigate volatility and correlation transmission and spillover effects in studies
of contagion, see Tse and Tsui (2002) and Bae et al. (2003).

What then should the specification of an MGARCH model be like? On one
hand, it should be flexible enough to be able to represent the dynamics of the
conditional variances and covariances. On the other hand, as the number of
parameters in an MGARCH model often increases rapidly with the dimen-
sion of the model, the specification should be parsimonious enough to enable
relatively easy estimation of the model and also allow for easy interpretation
of the model parameters. However, parsimony often means simplification, and
models with only a few parameters may not be able to capture the relevant
dynamics in the covariance structure. Another feature that needs to be taken
into account in the specification is imposing positive definiteness (as covari-
ance matrices need, by definition, to be positive definite). One possibility is
to derive conditions under which the conditional covariance matrices implied
by the model are positive definite, but this is often infeasible in practice. An
alternative is to formulate the model in a way that positive definiteness is
implied by the model structure (in addition to some simple constraints).

Combining these needs has been the difficulty in the MGARCH litera-
ture. The first GARCH model for the conditional covariance matrices was
the so-called VEC model of Bollerslev et al. (1988), see Engle et al. (1984)
for an ARCH version. This model is a very general one, and a goal of the
subsequent literature has been to formulate more parsimonious models. Fur-
thermore, since imposing positive definiteness of the conditional covariance
matrix in this model is difficult, formulating models with this feature has
been considered important. Furthermore, constructing models in which the
estimated parameters have direct interpretation has been viewed as benefi-
cial.

In this paper, we survey the main developments of the MGARCH litera-
ture. For another such survey, see Bauwens et al. (2006). This paper is orga-
nized as follows. In Section 2, several MGARCH specifications are reviewed.
Statistical properties of the models are the topic of Section 3, whereas test-
ing MGARCH models is discussed in Section 4. An empirical comparison of
a selection of the models is given in Section 5. Finally, some conclusions and
directions for future research are provided in Section 6.
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2 Models

Consider a stochastic vector process {rt} with dimension N × 1 such that
Ert = 0. Let Ft−1 denote the information set generated by the observed
series {rt} up to and including time t−1. We assume that rt is conditionally
heteroskedastic:

rt = H
1/2
t ηt (1)

given the information set Ft−1, where the N × N matrix Ht = [hijt] is the
conditional covariance matrix of rt and ηt is an iid vector error process such
that Eηtη

′
t = I. This defines the standard multivariate GARCH framework,

in which there is no linear dependence structure in {rt}. In financial appli-
cations, rt is most often viewed as a vector of log-returns of N assets.

What remains to be specified is the matrix process Ht. Various parametric
formulations will be reviewed in the following subsections. We have divided
these models into four categories. In the first one, the conditional covariance
matrix Ht is modelled directly. This class includes, in particular, the VEC
and BEKK models to be defined in Section 2.1 that were among the first para-
metric MGARCH models. The models in the second class, the factor models,
are motivated by parsimony: the process rt is assumed to be generated by
a (small) number of unobserved heteroskedastic factors. Models in the third
class are built on the idea of modelling the conditional variances and cor-
relations instead of straightforward modelling of the conditional covariance
matrix. Members of this class include the Constant Conditional Correlation
(CCC) model and its extensions. The appeal of this class lies in the intuitive
interpretation of the correlations, and models belonging to it have received
plenty of attention in the recent literature. Finally, we consider semi- and
nonparametric approaches that can offset the loss of efficiency of the para-
metric estimators due to misspecified structure of the conditional covariance
matrices. Multivariate stochastic volatility models are discussed in a separate
chapter of this Handbook, see Chib et al. (2008).

Before turning to the models, we discuss some points that need attention
when specifying an MGARCH model. As already mentioned, a problem with
MGARCH models is that the number of parameters can increase very rapidly
as the dimension of rt increases. This creates difficulties in the estimation of
the models, and therefore an important goal in constructing new MGARCH
models is to make them reasonably parsimonious while maintaining flexibil-
ity. Another aspect that has to be imposed is the positive definiteness of
the conditional covariance matrices. Ensuring positive definiteness of a ma-
trix, usually through an eigenvalue-eigenvector-decomposition, is a numeri-
cally difficult problem, especially in large systems. Yet another difficulty with
MGARCH models has to do with the numerical optimization of the likelihood
function (in the case of parametric models). The conditional covariance (or
correlation) matrix appearing in the likelihood depends on the time index
t, and often has to be inverted for all t in every iteration of the numerical
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optimization. When the dimension of rt increases, this is both a time con-
suming and numerically unstable procedure. Avoiding excessive inversion of
matrices is thus a worthy goal in designing MGARCH models. It should be
emphasized, however, that practical implementation of all the models to be
considered in this chapter is of course feasible, but the problem lies in devis-
ing easy to use, automated estimation routines that would make widespread
use of these models possible.

2.1 Models of the conditional covariance matrix

The VEC-GARCH model of Bollerslev et al. (1988) is a straightforward gen-
eralization of the univariate GARCH model. Every conditional variance and
covariance is a function of all lagged conditional variances and covariances,
as well as lagged squared returns and cross-products of returns. The model
may be written as follows:

vech(Ht) = c +
q

∑

j=1

Ajvech(rt−jr
′
t−j) +

p
∑

j=1

Bjvech(Ht−j) , (2)

where vech(·) is an operator that stacks the columns of the lower triangular
part of its argument square matrix, c is an N(N+1)/2×1 vector, and Aj and
Bj are N(N + 1)/2 ×N(N + 1)/2 parameter matrices. In fact, the authors
introduced a multivariate GARCH–in-mean model, but in this chapter we
only consider its conditional covariance component. The generality of the
VEC model is an advantage in the sense that the model is very flexible, but
it also brings disadvantages. One is that there exist only sufficient, rather
restrictive, conditions for Ht to be positive definite for all t, see Gouriéroux
(1997), Chapter 6. Besides, the number of parameters equals (p+ q)(N(N +
1)/2)2+N(N+1)/2, which is large unless N is small. Furthermore, as will be
discussed below, estimation of the parameters is computationally demanding.

Bollerslev et al. (1988) presented a simplified version of the model by as-
suming that Aj and Bj in (2) are diagonal matrices. In this case, it is possible
to obtain conditions for Ht to be positive definite for all t, see Bollerslev et al.
(1994). Estimation is less difficult than in the complete VEC model because
each equation can be estimated separately. But then, this ‘diagonal VEC’
model that contains (p+ q+ 1)N(N + 1)/2 parameters seems too restrictive
since no interaction is allowed between the different conditional variances and
covariances.

A numerical problem is that estimation of parameters of the VEC model is
computationally demanding. Assuming that the errors ηt follow a multivari-
ate normal distribution, the log-likelihood of the model (1) has the following
form:
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T
∑

t=1

�t(θ) = c− (1/2)
T
∑

t=1

ln |Ht| − (1/2)
T
∑

t=1

r′
tH

−1
t rt. (3)

The parameter vector θ has to be estimated iteratively. It is seen from (3)
that the conditional covariance matrix Ht has to be inverted for every t in
each iteration, which may be tedious when the number of observations is
large and when, at the same time, N is not small. An even more difficult
problem, is how to ensure positive definiteness of the covariance matrices. In
the case of the VEC model there does not seem to exist a general solution
to this problem. The problem of finding the necessary starting-values for Ht

is typically solved by using the estimated unconditional covariance matrix as
the initial value.

A model that can be viewed as a restricted version of the VEC model is
the Baba-Engle-Kraft-Kroner (BEKK) model defined in Engle and Kroner
(1995). It has the attractive property that the conditional covariance matrices
are positive definite by construction. The model has the form

Ht = CC ′ +
q

∑

j=1

K
∑

k=1

A′
kjrt−jr

′
t−jAkj +

p
∑

j=1

K
∑

k=1

B′
kjHt−jBkj , (4)

where Akj , Bkj , and C are N × N parameter matrices, and C is lower
triangular. The decomposition of the constant term into a product of two
triangular matrices is to ensure positive definiteness of Ht. The BEKK model
is covariance stationary if and only if the eigenvalues of

∑q
j=1

∑K
k=1 Akj ⊗

Akj +
∑p

j=1

∑K
k=1 Bkj ⊗Bkj , where ⊗ denotes the Kronecker product of two

matrices, are less than one in modulus. Whenever K > 1 an identification
problem arises because there are several parameterizations that yield the
same representation of the model. Engle and Kroner (1995) give conditions
for eliminating redundant, observationally equivalent representations.

Interpretation of parameters of (4) is not easy. But then, consider the first
order model

Ht = CC ′ + A′rt−1r
′
t−1A + B′Ht−1B. (5)

Setting B = AD, where D is a diagonal matrix, (5) becomes

Ht = CC ′ + A′rt−1r
′
t−1A + DE[A′rt−1r

′
t−1A|Ft−2]D. (6)

It is seen from (6) that what is now modelled are the conditional variances
and covariances of certain linear combinations of the vector of asset returns
rt or ‘portfolios’. Kroner and Ng (1998) restrict B = δA, where δ > 0 is a
scalar.

A further simplified version of (5) in which A and B are diagonal matrices
has sometimes appeared in applications. This ‘diagonal BEKK’ model triv-
ially satisfies the equation B = AD. It is a restricted version of the diagonal
VEC model such that the parameters of the covariance equations (equations
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for hijt, i �= j) are products of the parameters of the variance equations
(equations for hiit). In order to obtain a more general model (that is, to relax
these restrictions on the coefficients of the covariance terms) one has to allow
K > 1. The most restricted version of the diagonal BEKK model is the scalar
BEKK one with A = aI and B = bI, where a and b are scalars.

Each of the BEKK models implies a unique VEC model, which then gen-
erates positive definite conditional covariance matrices. Engle and Kroner
(1995) provide sufficient conditions for the two models, BEKK and VEC,
to be equivalent. They also give a representation theorem that establishes
the equivalence of diagonal VEC models (that have positive definite covari-
ance matrices) and general diagonal BEKK models. When the number of
parameters in the BEKK model is less than the corresponding number in the
VEC model, the BEKK parameterization imposes restrictions that makes the
model different from that of VEC model. Increasing K in (4) eliminates those
restrictions and thus increases the generality of the BEKK model towards
the one obtained from using pure VEC model. Engle and Kroner (1995) give
necessary conditions under which all unnecessary restrictions are eliminated.
However, too large a value of K will give rise to the identification problem
mentioned earlier.

Estimation of a BEKK model still involves somewhat heavy computations
due to several matrix inversions. The number of parameters, (p + q)KN2 +
N(N+1)/2 in the full BEKK model, or (p+q)KN+N(N+1)/2 in the diag-
onal one, is still quite large. Obtaining convergence may therefore be difficult
because (4) is not linear in parameters. There is the advantage, however,
that the structure automatically ensures positive definiteness of Ht, so this
does not need to be imposed separately. Partly because numerical difficulties
are so common in the estimation of BEKK models, it is typically assumed
p = q = K = 1 in applications of (4).

Parameter restrictions to ensure positive definiteness are not needed in the
matrix exponential GARCH model proposed by Kawakatsu (2006). It is a
generalization of the univariate exponential GARCH model of Nelson (1991)
and is defined as follows:

vech(lnHt − C) =
q

∑

i=i

Aiηt−i +
q

∑

i=1

Fi(|ηt−i| − E|ηt−i|)

+
p

∑

i=1

Bivech(lnHt−i − C) , (7)

where C is a symmetric N × N matrix, and Ai, Bi, and Fi are parameter
matrices of sizesN(N+1)/2×N ,N(N+1)/2×N(N+1)/2, andN(N+1)/2×
N , respectively. There is no need to impose restrictions on the parameters to
ensure positive definiteness, because the matrix ln Ht need not be positive
definite. The positive definiteness of the covariance matrix Ht follows from
the fact that for any symmetric matrix S, the matrix exponential defined as
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exp(S) =
∞
∑

i=0

Si

i!

is positive definite. Since the model contains a large number of parameters,
Kawakatsu (2006) discusses a number of more parsimonious specifications.
He also considers the estimation of the model, hypothesis testing, the inter-
pretation of the parameters, and provides an application. How popular this
model will turn out in practice remains to be seen.

2.2 Factor models

Factor models are motivated by economic theory. For instance, in the arbi-
trage pricing theory of Ross (1976) returns are generated by a number of
common unobserved components, or factors; for further discussion see Engle
et al. (1990) who introduced the first factor GARCH model. In this model
it is assumed that the observations are generated by underlying factors that
are conditionally heteroskedastic and possess a GARCH-type structure. This
approach has the advantage that it reduces the dimensionality of the problem
when the number of factors relative to the dimension of the return vector rt
is small.

Engle et al. (1990) define a factor structure for the conditional covariance
matrix as follows. They assume that Ht is generated by K (< N) underlying,
not necessarily uncorrelated, factors fk,t as follows:

Ht = Ω +
K
∑

k=1

wkw
′
kfk,t , (8)

where Ω is an N × N positive semi-definite matrix, wk, k = 1, . . . ,K, are
linearly independent N × 1 vectors of factor weights, and the fk,t’s are the
factors. It is assumed that these factors have a first-order GARCH structure:

fk,t = ωk + αk(γ′
krt−1)2 + βkfk,t−1 ,

where ωk, αk, and βk are scalars and γk is an N × 1 vector of weights. The
number of factorsK is intended to be much smaller than the number of assets
N , which makes the model feasible even for a large number of assets. Consis-
tent but not efficient two-step estimation method using maximum likelihood
is discussed in Engle et al. (1990). In their application, the authors con-
sider two factor-representing portfolios as the underlying factors that drive
the volatilities of excess returns of the individual assets. One factor consists
of value-weighted stock index returns and the other one of average T-bill re-
turns of different maturities. This choice is motivated by principal component
analysis.
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Diebold and Nerlove (1989) propose a model similar to the one formulated
in Engle et al. (1990). However their model is rather a stochastic volatility
model than a GARCH one, and hence we do not discuss its properties here;
see Sentana (1998) for a comparison of this model with the factor GARCH
one.

In the factor ARCH model of Engle et al. (1990) the factors are generally
correlated. This may be undesirable as it may turn out that several of the
factors capture very similar characteristics of the data. If the factors were
uncorrelated, they would represent genuinely different common components
driving the returns. Motivated by this consideration, several factor models
with uncorrelated factors have been proposed in the literature. In all of them,
the original observed series contained in rt are assumed to be linked to un-
observed, uncorrelated variables, or factors, zt through a linear, invertible
transformation W :

rt = Wzt ,

where W is thus a nonsingular N×N matrix. Use of uncorrelated factors can
potentially reduce their number relative to the approach where the factors
can be correlated. The unobservable factors are estimated from the data
through W . The factors zt are typically assumed to follow a GARCH process.
Differences between the factor models are due to the specification of the
transformation W and, importantly, whether the number of heteroskedastic
factors is less than the number of assets or not.

In the Generalized Orthogonal (GO–) GARCH model of van der Weide
(2002), the uncorrelated factors zt are standardized to have unit uncondi-
tional variances, that is, Eztz

′
t = I. This specification extends the Orthog-

onal (O–) GARCH model of Alexander and Chibumba (1997) in that W is
not required to be orthogonal, only invertible. The factors are conditionally
heteroskedastic with GARCH-type dynamics. The N ×N diagonal matrix of
conditional variances of zt is defined as follows:

Hz
t = (I − A − B) + A � (zt−1z

′
t−1) + BHz

t−1 , (9)

where A and B are diagonal N × N parameter matrices and � denotes
the Hadamard (i.e. elementwise) product of two conformable matrices. The
form of the constant term imposes the restriction Eztz

′
t = I. Covariance

stationarity of rt in the models with uncorrelated factors is ensured if the
diagonal elements of A + B are less than one. Therefore the conditional
covariance matrix of rt can be expressed as

Ht = WHz
t W ′ =

N
∑

k=1

w(k)w
′
(k)h

z
k,t , (10)

where w(k) are the columns of the matrix W and hzk,t are the diagonal el-
ements of the matrix Hz

t . The difference between equations (8) and (10) is
that the factors in (10) are uncorrelated but then, in the GO–GARCH model
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it is not possible to have fewer factors than there are assets. This is possible
in the O–GARCH model but at the cost of obtaining conditional covariance
matrices with a reduced rank.

van der Weide (2002) constructs the linear mapping W by making use of
the singular value decomposition of Ertr

′
t = WW ′. That is,

W = UΛ1/2V ,

where the columns of U hold the eigenvectors of Ertr
′
t and the diagonal ma-

trix Λ holds its eigenvalues, thus exploiting unconditional information only.
Estimation of the orthogonal matrix V requires use of conditional informa-
tion; see van der Weide (2002) for details.

Vrontos et al. (2003) have suggested a related model. They state their Full
Factor (FF–) GARCH model as above but restrict the mapping W to be an
N×N invertible triangular parameter matrix with ones on the main diagonal.
Furthermore, the parameters in W are estimated directly using conditional
information only. Assuming W to be triangular simplifies matters but is
restrictive because, depending on the order of the components in the vector
rt, certain relationships between the factors and the returns are ruled out.

Lanne and Saikkonen (2007) put forth yet another modelling proposal. In
their Generalized Orthogonal Factor (GOF–) GARCH model the mapping
W is decomposed using the polar decomposition:

W = CV ,

where C is a symmetric positive definite N ×N matrix and V an orthogonal
N ×N matrix. Since Ertr

′
t = WW ′ = CC ′, the matrix C can be estimated

making use of the spectral decomposition C = UΛ1/2U ′, where the columns
of U are the eigenvectors of Ertr

′
t and the diagonal matrix Λ contains its

eigenvalues, thus using unconditional information only. Estimation of V re-
quires the use of conditional information, see Lanne and Saikkonen (2007)
for details.

An important aspect of the GOF–GARCH model is that some of the fac-
tors can be conditionally homoskedastic. In addition to being parsimonious,
this allows the model to include not only systematic but also idiosyncratic
components of risk. Suppose K (≤ N) of the factors are heteroskedastic,
while the remaining N −K factors are homoskedastic. Without loss of gen-
erality we can assume that the K first elements of zt are the heteroskedastic
ones, in which case this restriction is imposed by setting that the N − K
last diagonal elements of A and B in (9) equal to zero. This results in the
conditional covariance matrix of rt of the following form (ref. eq. (10)):
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Ht =
K
∑

k=1

w(k)w
′
(k)h

z
k,t +

N
∑

k=K+1

w(k)w
′
(k)

=
K
∑

k=1

w(k)w
′
(k)h

z
k,t + Ω. (11)

The expression (11) is very similar to the one in (8), but there are two im-
portant differences. In (11) the factors are uncorrelated, whereas in (8), as
already pointed out, this is not generally the case. The role of Ω in (11) is
also different from that of Ω in (8). In the factor ARCH model Ω is required
to be a positive semi-definite matrix and it has no particular interpretation.
For comparison, the matrix Ω in the GOF–GARCH model has a reduced
rank directly related to the number of heteroskedastic factors. Furthermore,
it is closely related to the unconditional covariance matrix of rt. This re-
sults to the model being possibly considerably more parsimonious than the
factor ARCH model; for details and a more elaborate discussion, see Lanne
and Saikkonen (2007). Therefore, the GOF–GARCH model can be seen as
combining the advantages of both the factor models (having a reduced num-
ber of heteroskedastic factors) and the orthogonal models (relative ease of
estimation due to the orthogonality of factors).

2.3 Models of conditional variances and correlations

Correlation models are based on the decomposition of the conditional co-
variance matrix into conditional standard deviations and correlations. The
simplest multivariate correlation model that is nested in the other conditional
correlation models, is the Constant Conditional Correlation (CCC–) GARCH
model of Bollerslev (1990). In this model, the conditional correlation matrix
is time-invariant, so the conditional covariance matrix can be expressed as
follows:

Ht = DtPDt , (12)

where Dt = diag(h1/2
1t , . . . , h

1/2
Nt ) and P = [ρij ] is positive definite with ρii =

1, i = 1, . . . , N . This means that the off-diagonal elements of the conditional
covariance matrix are defined as follows:

[Ht]ij = h
1/2
it h

1/2
jt ρij , i �= j ,

where 1 ≤ i, j ≤ N . The models for the processes {rit} are members of the
class of univariate GARCH models. They are most often modelled as the
GARCH(p,q) model, in which case the conditional variances can be written
in a vector form
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ht = ω +
q

∑

j=1

Ajr
(2)
t−j +

p
∑

j=1

Bjht−j , (13)

where ω is N × 1 vector, Aj and Bj are diagonal N × N matrices, and
r

(2)
t = rt �rt. When the conditional correlation matrix P is positive definite

and the elements of ω and the diagonal elements of Aj and Bj positive,
the conditional covariance matrix Ht is positive definite. Positivity of the
diagonal elements of Aj and Bj is not, however, necessary for P to be pos-
itive definite unless p = q = 1, see Nelson and Cao (1992) for discussion of
positivity conditions for hit in univariate GARCH(p,q) models.

An extension to the CCC–GARCH model was introduced by Jeantheau
(1998). In this Extended CCC– (ECCC–) GARCH model the assumption that
the matrices Aj and Bj in (13) are diagonal is relaxed. This allows the past
squared returns and variances of all series to enter the individual conditional
variance equations. For instance, in the first-order ECCC–GARCH model,
the ith variance equation is

hit = ωi + a11r
2
1,t−1 + . . .+ a1Nr

2
N,t−1 + b11h1,t−1 + . . .+ b1NhN,t−1,

i = 1, . . . , N.

An advantage of this extension is that it allows a considerably richer au-
tocorrelation structure for the squared observed returns than the standard
CCC–GARCH model. For example, in the univariate GARCH(1,1) model the
autocorrelations of the squared observations decrease exponentially from the
first lag. In the first-order ECCC–GARCH model, the same autocorrelations
need not have a monotonic decline from the first lag. This has been shown
by He and Teräsvirta (2004) who considered the fourth-moment structure of
first- and second-order ECCC–GARCH models.

The estimation of MGARCH models with constant correlations is compu-
tationally attractive. Because of the decomposition (12), the log-likelihood in
(3) has the following simple form:

T
∑

t=1

�t(θ) = c− (1/2)
T
∑

t=1

N
∑

i=1

ln |hit| − (1/2)
T
∑

t=1

log |P |

−(1/2)
T
∑

t=1

r′
tD

−1
t P−1D−1

t rt. (14)

From (14) it is apparent that during estimation, one has to invert the condi-
tional correlation matrix only once per iteration. The number of parameters
in the CCC– and ECCC–GARCH models, in addition to the ones in the uni-
variate GARCH equations, equals N(N − 1)/2 and covariance stationarity is
ensured if the roots of det(I −

∑q
j=1 Ajλ

j −
∑p

j=1 Bjλ
j) = 0 lie outside the

unit circle.
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Although the CCC–GARCH model is in many respects an attractive pa-
rameterization, empirical studies have suggested that the assumption of con-
stant conditional correlations may be too restrictive. The model may there-
fore be generalized by retaining the previous decomposition but making the
conditional correlation matrix in (12) time-varying. Thus,

Ht = DtPtDt. (15)

In conditional correlation models defined through (15), positive definiteness
of Ht follows if, in addition to the conditional variances hit, i = 1, . . . , N ,
being well-defined, the conditional correlation matrix Pt is positive definite
at each point in time. Compared to the CCC–GARCH models, the advantage
of numerically simple estimation is lost, as the correlation matrix has to be
inverted for each t during every iteration.

Due to the intuitive interpretation of correlations, there exist a vast num-
ber of proposals for specifying Pt. Tse and Tsui (2002) imposed GARCH type
of dynamics on the conditional correlations. The conditional correlations in
their Varying Correlation (VC–) GARCH model are functions of the condi-
tional correlations of the previous period and a set of estimated correlations.
More specifically,

Pt = (1 − a− b)S + aSt−1 + bPt−1 ,

where S is a constant, positive definite parameter matrix with ones on the
diagonal, a and b are non-negative scalar parameters such that a + b ≤ 1,
and St−1 is a sample correlation matrix of the past M standardized residuals
ε̂t−1, . . . , ε̂t−M , where ε̂t−j = ̂D−1

t−jrt−j , j = 1, . . . ,M . The positive definite-
ness of Pt is ensured by construction if P0 and St−1 are positive definite. A
necessary condition for the latter to hold is M ≥ N . The definition of the
‘intercept’ 1 − a − b corresponds to the idea of ‘variance targeting’ in Engle
and Mezrich (1996).

Kwan et al. () proposed a threshold extension to the VC–GARCH model.
Within each regime, indicated by the value of an indicator or threshold vari-
able, the model has a VC–GARCH specification. Specifically, the authors par-
tition the real line into R subintervals, r0 = −∞ < l1 < . . . < lR−1 < lR = ∞,
and define an indicator variable st ∈ F∗

t−1, the extended information set. The
rth regime is defined by lr−1 < st ≤ lr, and both the univariate GARCH mod-
els and the dynamic correlations have regime-specific parameters. Kwan et
al. () also apply the same idea to the BEKK model and discuss estimation of
the number of regimes. In order to estimate the model consistently, one has
to make sure that each regime contains a sufficient number of observations.

Engle (2002) introduced a Dynamic Conditional Correlation (DCC–)
GARCH model whose dynamic conditional correlation structure is simi-
lar to that of the VC–GARCH model. Engle considered a dynamic matrix
process

Qt = (1 − a− b)S + aεt−1ε
′
t−1 + bQt−1 ,
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where a is a positive and b a non-negative scalar parameter such that a+b < 1,
S is the unconditional correlation matrix of the standardized errors εt, and
Q0 is positive definite. This process ensures positive definiteness but does not
generally produce valid correlation matrices. They are obtained by rescaling
Qt as follows:

Pt = (I � Qt)−1/2Qt(I � Qt)−1/2.

Both the VC– and the DCC–GARCH model extend the CCC–GARCH
model, but do it with few extra parameters. In each correlation equation, the
number of parameters is N(N −1)/2+2 for the VC–GARCH model and two
for in the DCC–GARCH one. This is a strength of these models but may also
be seen as a weakness when N is large, because all N(N − 1)/2 correlation
processes are restricted to have the same dynamic structure.

To avoid this limitation, various generalizations of the DCC–GARCH
model have been proposed. Billio and Carporin (2006) suggested a model that
imposes a BEKK structure on the conditional correlations. Their Quadratic
Flexible DCC (GFDCC) GARCH model where the matrix process Qt is de-
fined as

Qt = C ′SC + A′εt−1ε
′
t−1A + B′Qt−1B , (16)

where the matrices A, B, and C are symmetric, and S is the unconditional
covariance matrix of the standardized errors εt. To obtain stationarity, C ′SC
has to be positive definite and the eigenvalues of A + B must be less than
one in modulus. The number of parameters governing the correlations in the
GFDCC–GARCH model in its fully general form is 3N(N + 1)/2 which is
unfeasible in large systems. The authors therefore suggested several special
cases: One is to group the assets according to their properties, sector, or
industry and restricting the coefficient matrices to be block diagonal following
the partition. Another is to restrict the coefficient matrices to be diagonal
with possibly suitable partition.

Cappiello et al. (2006) generalized the DCC–GARCH model in a similar
manner, but also including asymmetric effects. In their Asymmetric Gener-
alized DCC (AG–DCC) GARCH model the dynamics of Qt is the following:

Qt = (S − A′SA − B′SB − G′S−G) + A′εt−1ε
′
t−1A

+B′Qt−1B + G′ε−
t−1ε

−′
t−1G , (17)

where A, B, and G are N ×N parameter matrices, ε− = I{εt<0} �εt, where
I is an indicator function, and S and S− are the unconditional covariance
matrices of εt and ε−

t , respectively. Again, the number of parameters increases
rapidly with the dimension of the model, and restricted versions, such as
diagonal, scalar, and symmetric, were suggested.

In the VC–GARCH as well as the DCC–GARCH model, the dynamic
structure of the time-varying correlations is a function of past returns. There
is another class of models that allows the dynamic structure of the correla-
tions to be controlled by an exogenous variable. This variable may be either



214 A. Silvennoinen and T. Teräsvirta

an observable variable, a combination of observable variables, or a latent vari-
able that represents factors that are difficult to quantify. One may argue that
these models are not pure vector GARCH models because the conditioning
set in them can be larger than in VC–GARCH or DCC–GARCH models.
The first one of these models to be considered here is the Smooth Transition
Conditional Correlation (STCC–) GARCH model.

In the STCC–GARCH model of Silvennoinen and Teräsvirta (2005), the
conditional correlation matrix varies smoothly between two extreme states
according to a transition variable. The following dynamic structure is imposed
on the conditional correlations:

Pt = (1 −G(st))P(1) +G(st)P(2) ,

where P(1) and P(2), P(1) �= P(2), are positive definite correlation matrices
that describe the two extreme states of correlations, and G(·) : R → (0, 1),
is a monotonic function of an observable transition variable st ∈ F∗

t−1. The
authors define G(·) as the logistic function

G(st) =
(

1 + e−γ(st−c)
)−1

, γ > 0 , (18)

where the parameter γ determines the velocity and c the location of the tran-
sition. In addition to the univariate variance equations, the STCC–GARCH
model has N(N − 1) + 2 parameters. The sequence {Pt} is a sequence of
positive definite matrices because each Pt is a convex combination of two
positive definite correlation matrices. The transition variable st is chosen by
the modeller to suit the application at hand. If there is uncertainty about an
appropriate choice of st, testing the CCC–GARCH model can be used as tool
for judging the relevance of a given transition variable to the dynamic condi-
tional correlations. A special case of the STCC–GARCH model is obtained
when the transition variable is calendar time. The Time Varying Conditional
Correlation (TVCC–) GARCH model was in its bivariate form introduced by
Berben and Jansen (2005).

A recent extension of the STCC–GARCH model, the Double Smooth Tran-
sition Conditional Correlation (DSTCC–) GARCH model by Silvennoinen
and Teräsvirta (2007) allows for another transition around the first one:

Pt = (1 −G2(s2t))
{

(1 −G1(s1t))P(11) +G1(s1t)P(21)

}

+G2(s2t)
{

(1 −G1(s1t))P(12) +G1(s1t)P(22)

}

. (19)

For instance, one of the transition variables can simply be calendar time. If
this is the case, one has the Time Varying Smooth Transition Conditional
Correlation (TVSTCC–) GARCH model that nests the STCC–GARCH as
well as the TVCC–GARCH model. The interpretation of the extreme states
is the following: At the beginning of the sample, P(11) and P(21) are the two
extreme states between which the correlations vary according to the transition
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variable s1t and similarly, P(12) and P(22) are the corresponding states at
the end of the sample. The TVSTCC–GARCH model allows the extreme
states, constant in the STCC–GARCH framework, to be time-varying, which
introduces extra flexibility when modelling long time series. The number of
parameters, excluding the univariate GARCH equations, is 2N(N − 1) + 4
which restricts the use of the model in very large systems.

The Regime Switching Dynamic Correlation (RSDC–) GARCH model
introduced by Pelletier (2006) falls somewhere between the models with con-
stant correlations and the ones with correlations changing continuously at
every period. The model imposes constancy of correlations within a regime
while the dynamics enter through switching regimes. Specifically,

Pt =
R
∑

r=1

I{Δt=r}P(r) ,

where Δt is a (usually first-order) Markov chain independent of ηt that can
take R possible values and is governed by a transition probability matrix
Π , I is the indicator function, and P(r), r = 1, . . . , R, are positive definite
regime-specific correlation matrices. The correlation component of the model
has RN(N − 1)/2 − R(R − 1) parameters. A version that involves fewer
parameters is obtained by restricting the R possible states of correlations to
be linear combinations of a state of zero correlations and that of possibly
high correlations. Thus,

Pt = (1 − λ(Δt))I + λ(Δt)P ,

where I is the identity matrix (‘no correlations’), P is a correlation matrix
representing the state of possibly high correlations, and λ(·) : {1, . . . , R} →
[0, 1] is a monotonic function ofΔt. The number of regimes R is not a parame-
ter to be estimated. The conditional correlation matrices are positive definite
at each point in time by construction both in the unrestricted and restricted
version of the model. If N is not very small, Pelletier (2006) recommends
two-step estimation. First estimate the parameters of the GARCH equations
and, second, conditionally on these estimates, estimate the correlations and
the switching probabilities using the EM algorithm of Dempster et al. (1977).

2.4 Nonparametric and semiparametric approaches

Non- and semiparametric models form an alternative to parametric estima-
tion of the conditional covariance structure. These approaches have the ad-
vantage of not imposing a particular (possibly misspecified) structure on the
data. One advantage of at least a few fully parametric multivariate GARCH
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models is, however, that they offer an interpretation of the dynamic struc-
ture of the conditional covariance or correlation matrices. Another is that
the quasi-maximum likelihood estimator is consistent when the errors are
assumed multivariate normal. However, there may be considerable efficiency
losses in finite samples if the returns are not normally distributed. Semipara-
metric models combine the advantages of a parametric model in that they
reach consistency and sustain the interpretability, and those of a nonparamet-
ric model which is robust against distributional misspecification. Nonpara-
metric models, however, suffer from the ‘curse of dimensionality’: due to the
lack of data in all directions of the multidimensional space, the performance
of the local smoothing estimator deteriorates quickly as the dimension of the
conditioning variable increases, see Stone (1980). For this reason, it has been
of interest to study methods for dimension-reduction or to use a single, one-
dimensional conditioning variable. Developments in semi- and nonparametric
modelling are discussed in detail in two separate chapters of this Handbook,
see Linton (2008) andFranke et al. (2008).

One alternative is to specify a parametric model for the conditional covari-
ance structure but estimate the error distribution nonparametrically, thereby
attempting to offset the efficiency loss of the quasi-maximum likelihood esti-
mator compared to the maximum likelihood estimator of the correctly spec-
ified model. In the semiparametric model of Hafner and Rombouts (2007)
the data are generated by any particular parametric MGARCH model and
the error distribution is unspecified but estimated nonparametrically. Their
approach leads to the log-likelihood

T
∑

t=1

�t(θ) = c− (1/2)
T
∑

t=1

ln |Ht| +
T
∑

t=1

ln g(H−1/2
t rt) , (20)

where g(·) is an unspecified density function of the standardized residuals
ηt such that E[ηt] = 0 and E[ηtη

′
t] = I. This model may be seen as a

multivariate extension of the semiparametric GARCH model by Engle and
Gonzalez-Rivera (1991). A flexible error distribution blurs the line between
the parametric structure and the distribution of the errors. For example, if
the correlation structure of a semiparametric GARCH model is misspecified,
a nonparametric error distribution may absorb some of the misspecification.
The nonparametric method for estimating the density g is discussed in detail
in Hafner and Rombouts (2007). They assume that g belongs to the class
of spherical distributions. Even with this restriction their semiparametric
estimator remains more efficient than the maximum likelihood estimator if
the errors zt are non-normal.

Long and Ullah (2005) introduce an approach similar to the previous one
in that the model is based on any parametric MGARCH model. After es-
timating a parametric model, the estimated standardized residuals η̂t are
extracted. When the model is not correctly specified, these residuals may
have some structure in them, and Long and Ullah (2005) use nonparamet-
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ric estimation to extract this information. This is done by estimating the
conditional covariance matrix using the Nadaraya-Watson estimator

Ht = ̂H
1/2
t

∑T
τ=1 η̂τ η̂

′
τKh(sτ − st)

∑T
τ=1Kh(sτ − st)

̂H
1/2
t , (21)

where ̂Ht is the conditional covariance matrix estimated parametrically from
an MGARCH model, st ∈ F∗

t−1 is an observable variable that the model is
conditioned on, ε̂t = ̂D−1

t rt,Kh(·) = K(·/h)/h,K(·) is a kernel function, and
h is the bandwidth parameter. Positive definiteness of ̂Ht ensures positive
definiteness of the semiparametric estimator Ht.

In the Semi-Parametric Conditional Correlation (SPCC–) GARCH model
of Hafner et al. (2005), the conditional variances are modelled parametrically
by any choice of univariate GARCH model, where ε̂t = ̂D−1

t rt is the vector
consisting of the standardized residuals. The conditional correlations Pt are
then estimated using a transformed Nadaraya-Watson estimator:

Pt = (I � Qt)−1/2Qt(I � Qt)−1/2 ,

where

Qt =
∑T

τ=1 ε̂τ ε̂
′
τKh(sτ − st)

∑T
τ=1Kh(sτ − st)

. (22)

In (22), st ∈ F∗
t−1 is a conditioning variable, Kh(·) = K(·/h)/h, K(·) is a

kernel function, and h is the bandwidth parameter.
Long and Ullah (2005) also suggest estimating the covariance structure in

a fully nonparametric fashion so that the model is not an MGARCH model,
but merely a parameter-free multivariate volatility model. The estimator of
the conditional covariance matrix is

Ht =
∑T

τ=1 rτr
′
τKh(sτ − st)

∑T
τ=1Kh(sτ − st)

,

where st ∈ F∗
t−1 is a conditioning variable, Kh(·) = K(·/h)/h, K(·) is a

kernel function, and h is the bandwidth parameter. This approach ensures
positive definiteness of Ht.

The choice of the kernel function is not important and it could be any
probability density function, whereas the choice of the bandwidth parameter
h is crucial, see for instance Pagan and Ullah (1999), Sections 2.4.2 and 2.7.
Long and Ullah (2005) consider the choice of an optimal fixed bandwidth,
whereas Hafner et al. (2005) discuss a way of choosing a dynamic bandwidth
parameter such that the bandwidth is larger in the tails of the marginal
distribution of the conditioning variable st than it is in the mid-region of the
distribution.
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3 Statistical Properties

Statistical properties of multivariate GARCH models are only partially
known. For the development of statistical estimation and testing theory, it
would be desirable to have conditions for strict stationarity and ergodicity
of a multivariate GARCH process, as well as conditions for consistency and
asymptotic normality of the quasi-maximum likelihood estimator. The results
that are available establish these properties in special cases and sometimes
under strong conditions.

Jeantheau (1998) considers the statistical properties and estimation theory
of the ECCC–GARCH model he proposes. He provides sufficient conditions
for the existence of a weakly stationary and ergodic solution, which is also
strictly stationary. This is done by assuming Ertr

′
t < ∞. It would be useful to

have both a necessary and a sufficient condition for the existence of a strictly
stationary solution, but this question remains open. Jeantheau (1998) also
proves the strong consistency of the QML estimator for the ECCC–GARCH
model. Ling and McAleer (2003) complement Jeantheau’s results and also
prove the asymptotic normality of the QMLE in the case of the ECCC–
GARCH model. For the global asymptotic normality result, the existence of
the sixth moment of rt is required. The statistical properties of the second-
order model are also investigated in He and Teräsvirta (2004), who provide
sufficient conditions for the existence of fourth moments, and, furthermore,
give expressions for the fourth moment as well as the autocorrelation function
of squared observations as functions of the parameters.

Comte and Lieberman (2003) study the statistical properties of the BEKK
model. Relying on a result in Boussama (1998), they give sufficient, but
not necessary conditions for strict stationarity and ergodicity. Applying
Jeantheau’s results, they provide conditions for the strong consistency of
the QMLE. Furthermore, they also prove the asymptotic normality of the
QMLE, for which they assume the existence of the eighth moment of rt. The
fourth-moment structure of the BEKK and VEC models is investigated by
Hafner (2003), who gives necessary and sufficient conditions for the existence
of the fourth moments and provides expressions for them. These expressions
are not functions of the parameters of the model. As the factor models listed
in Section 2.2 are special cases of the BEKK model, the results of Comte and
Lieberman (2003) and Hafner (2003) also apply to them.

4 Hypothesis Testing in Multivariate GARCH Models

Testing the adequacy of estimated models is an important part of model
building. Existing tests of multivariate GARCH models may be divided into
two broad categories: general misspecification tests and specification tests.
The purpose of the tests belonging to the former category is to check the
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adequacy of an estimated model. Specification tests are different in the sense
that they are designed to test the model against a parametric extension. Such
tests have been constructed for the CCC–GARCH model, but obviously not
for other models. We first review general misspecification tests.

4.1 General misspecification tests

Ling and Li (1997) derived a rather general misspecification test for multi-
variate GARCH models. It is applicable for many families of GARCH models.
The test statistic has the following form:

Q(k) = Tγ′
k
̂Ω−1
k γk , (23)

where γk = (γ1, ..., γk)′ with

γj =

∑T
t=j+1(r

′
t
̂H−1

t rt −N)(r′
t−j

̂H−1
t−jrt−j −N)

∑T
t=1(r

′
t
̂H−1

t rt −N)2
(24)

j = 1, . . . , k, ̂Ht is an estimator of Ht, and ̂Ωk is the estimated covariance
matrix of γk, see Ling and Li (1997) for details. Under the null hypothesis H0

that the GARCH model is correctly specified, that is, ηt ∼ IID(0, I), statistic
(23) has an asymptotic χ2 distribution with k degrees of freedom. Under H0,
Er′

tH
−1
t rt = N , and therefore the expression (24) is the jth-order sample

autocorrelation between r′tH
−1
t rt = η′

tηt and r′
t−jH

−1
t−jrt−j = η′

t−jηt−j .
The test may thus be viewed as a generalization of the portmanteau test
of Li and Mak (1994) for testing the adequacy of a univariate GARCH

model. In fact, when N = 1, (23) collapses into the Li and Mak statistic.
The McLeod and Li (1983) statistic (Ljung-Box statistic applied to squared
residuals), frequently used for evaluating GARCH models, is valid neither in
the univariate nor in the multivariate case, see Li and Mak (1994) for the
univariate case.

A simulation study by Tse and Tsui (1999) indicates that the Ling and Li
portmanteau statistic (24) often has low power. The authors show examples
of situations in which a portmanteau test based on autocorrelations of pairs
of individual standardized residuals performs better. The drawback of this
statistic is, however, that its asymptotic null distribution is unknown, and
the statistic tends to be undersized. Each test is based only on a single pair
of residuals.

Duchesne (2004) introduced the test which is a direct generalization of
the portmanteau test of Li and Mak (1994) to the VEC–GARCH model (2).
Let η̂t denote the maximum likelihood estimator of the error vector ηt in
the VEC–GARCH model. The idea is to derive the asymptotic distribution
of ĉj = vech(η̂tη̂

′
t−j), where j = 1, . . . , k, under the null hypothesis that
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{ηt} ∼ NID(0, I). Once this has been done, one can combine the results
and obtain the asymptotic null distribution of ĉ(k) = (ĉ′1, ..., ĉ

′
k)

′, where the
vectors ĉj , j = 1, . . . , k, are asymptotically uncorrelated when the null holds.
This distribution is normal since the asymptotic distribution of each ĉk is
normal. It follows that under the null hypothesis,

QD(k) = T ĉ′(k)
̂Ω−1
k ĉ(k)

d→ χ2(kN(N + 1)/2) , (25)

where ̂Ωk is a consistent estimator of the covariance matrix of ĉ(k), defined in
Duchesne (2004). This portmanteau test statistic collapses into the statistic of
Li and Mak (1994) when N = 1. When {ηt} = {εt}, that is, when Ht ≡ σ2I,
the test (25) is a test of no multivariate ARCH. For N = 1, it is then identical
to the well known portmanteau test of McLeod and Li (1983).

Yet another generalization of univariate tests can be found in Kroner
and Ng (1998). Their misspecification tests are suitable for any multivari-
ate GARCH model. Let

Gt = rtr
′
t − ̂Ht ,

where ̂Ht has been estimated from a GARCH model. The elements of
Gt = [gijt] are ‘generalized residuals’. When the model is correctly speci-
fied, they form a matrix of martingale difference sequences with respect to
the information set Ft−1 that contains the past information until t− 1. Thus
any variable xs ∈ Ft−1 is uncorrelated with the elements of Gt. Tests based
on these misspecification indicators may then be constructed. This is done
for each gijt separately. The suggested tests are generalizations of the sign-
bias and size-bias tests of Engle and Ng (1993). The test statistics have an
asymptotic χ2 distribution with one degree of freedom when the null hy-
pothesis is valid. If the dimension of the model is large and there are several
misspecification indicators, the number of available tests may be very large.

Testing the adequacy of the CCC–GARCH model has been an object of
interest since it was found that the assumption of constant correlations may
sometimes be too restrictive in practice. Tse (2000) constructed a Lagrange
multiplier (LM) test of the CCC–GARCH model against the following alter-
native, Pt, to constant correlations:

Pt = P + Δ � rt−1r
′
t−1 , (26)

where Δ is a symmetric parameter matrix with the main diagonal elements
equal to zero. This means that the correlations are changing as functions of
the previous observations. The null hypothesis is H0 : Δ = 0 or, expressed
as a vector equation, vecl(Δ) = 0.2 Equation (26) does not define a particu-
lar alternative to conditional correlations as Pt is not necessarily a positive

2 The operator vecl(·) stacks the columns of the strictly lower triangular part (excluding
main diagonal elements) of its argument matrix.
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definite matrix for every t. For this reason we interpret the test as a general
misspecification test.

Bera and Kim (2002) present a test of a bivariate CCC–GARCH model
against the alternative that the correlation coefficient is stochastic. The test
is an Information Matrix test and as such an LM or score test. It is designed
for a bivariate model, which restricts its usefulness in applications.

4.2 Tests for extensions of the CCC–GARCH model

The most popular extension of the CCC–GARCH model to-date is the DCC–
GARCH model of Engle (2002). However, there does not seem to be any pub-
lished work on developing tests of constancy of correlations directly against
this model.

As discussed in Section 2.3, Silvennoinen and Teräsvirta (2005) extend the
CCC–GARCH into a STCC–GARCH model in which the correlations fluctu-
ate according to a transition variable. They construct an LM test for testing
the constant correlation hypothesis against the smoothly changing correla-
tions. Since the STCC–GARCH model is only identified when the correlations
are changing, standard asymptotic theory is not valid. A good discussion of
this problem can be found in Hansen (1996). The authors apply the technique
in Luukkonen et al. (1988) in order to circumvent the identification problem.
The null hypothesis is γ = 0 in (18), and a linearization of the correlation
matrix Pt by the first-order Taylor expansion of (18) yields

P ∗
t = P(1) − stP

∗
(2).

Under H0, P ∗
(2) = 0 and the correlations are thus constant. The authors use

this fact to build their LM-type test on the transformed null hypothesis H ′
0 :

vecl(P ∗
(2)) = 0 (the diagonal elements of P ∗

(2) equal zero by definition). When
H ′

0 holds, the test statistic has an asymptotic χ2 distribution withN(N−1)/2
degrees of freedom. The authors also derive tests for the constancy hypothesis
under the assumption that some of the correlations remain constant also
under the alternative. Silvennoinen and Teräsvirta (2007) extend the Taylor
expansion based test to the situation where the STCC–GARCH model is
the null model and the alternative is the DSTCC–GARCH model. This test
collapses into the test of the CCC–GARCH model against STCC–GARCH
model when G1(s1t) ≡ 1/2 in (19).
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5 An Application

In this section we compare some of the multivariate GARCH models con-
sidered in previous sections by fitting them to the same data set. In order
to keep the comparison transparent, we only consider bivariate models. Our
observations are the daily returns of S&P 500 index futures and 10-year bond
futures from January 1990 to August 2003. This data set has been analyzed
by Engle and Colacito (2006).3 There is no consensus in the literature about
how stock and long term bond returns are related. Historically, the long-
run correlations have been assumed constant, an assumption that has led
to contradicting conclusions because evidence for both positive and negative
correlation has been found over the years (short-run correlations have been
found to be affected, among other things, by news announcements). From a
theoretical point of view, the long-run correlation between the two should be
state-dependent, driven by macroeconomic factors such as growth, inflation,
and interest rates. The way the correlations respond to these factors may,
however, change over time.

For this reason it is interesting to see what the correlations between the
two asset returns obtained from the models are and how they fluctuate over
time. The focus of reporting results will therefore be on conditional correla-
tions implied by the estimated models, that is, the BEKK–, GOF–, DCC–,
DSTCC–, and SPCC–GARCH ones. In the last three models, the individual
GARCH equations are simply symmetric first-order ones. The BEKK model
is also of order one with K = 1. All computations have been performed using
Ox, version 4.02, see Doornik (2002), and our own source code.

Estimation of the BEKK model turned out to be cumbersome. Conver-
gence problems were encountered in numerical algorithms, but the iterations
seemed to suggest diagonality of the coefficient matrices A and B. A diagonal
BEKK model was eventually estimated without difficulty.

In the estimation of the GOF–GARCH model it is essential to obtain
good initial estimates of the parameters; for details, see Lanne and Saikkonen
(2007). Having done that, we experienced no difficulties in the estimation
of this model with a single factor. Similarly, no convergence problems were
encountered in the estimation of the DCC model of Engle (2002).

The DSTCC–GARCH model makes use of two transition variables. Be-
cause the DSTCC framework allows one to test for relevance of a variable, or
variables, to the description of the dynamic structure of the correlations, we
relied on the tests in Silvennoinen and Teräsvirta (2005) and Silvennoinen
and Teräsvirta (2007) described in Section 4.2, to select relevant transition
variables. Out of a multitude of variables, including both exogenous ones
and variables constructed from the past observations, prices or returns, the

3 The data set in Engle and Colacito (2006) begins in August 1988, but our sample starts
from January 1990 because we also use the time series for a volatility index that is available
only from that date onwards.



Multivariate GARCH Models 223

Chicago Board Options Exchange volatility index (VIX) that represents the
market expectations of 30-day volatility turned out to lead to the strongest
rejection of the null hypothesis, measured by the p-value. Calendar time
seemed to be another obvious transition variable. As a result, the first-order
TVSTCC–GARCH model was fitted to the bivariate data.

The semiparametric model of Hafner et al. (2005) also requires a choice of
an indicator variable. Because the previous test results indicated that VIX
is informative about the dynamics of the correlations, we chose VIX as the
indicator variable. The SPCC–GARCH model was estimated using a stan-
dard kernel smoother with an optimal fixed bandwidth, see Pagan and Ullah
(1999), Sections 2.4.2 and 2.7, for discussion on the choice of constant band-
width.

The estimated conditional correlations are presented in Figure 1, whereas
Table 1 shows the sample correlation matrix of the estimated time-varying
correlations. The correlations from the diagonal BEKK model and the DCC–
GARCH model are very strongly positively correlated, which is also obvious
from Figure 1. The second-highest correlation of correlations is the one be-
tween the SPCC–GARCH and the GOF–GARCH model. The time-varying
correlations are mostly positive during the 1990’s and negative after the turn
of the century. In most models, correlations seem to fluctuate quite randomly,
but the TVSTCC–GARCH model constitutes an exception. This is due to
the fact that one of the transition variables is calendar time. Interestingly,
in the beginning of the period the correlation between the S&P 500 and
bond futures is only mildly affected by the expected volatility (VIX) and
remains positive. Towards the end, not only does the correlation gradually
turn negative, but expected volatility seems to affect it very strongly. Rapid
fluctuations are a consequence of the fact that the transition function with
VIX as the transition variable has quite a steep slope. After the turn of the
century, high values of VIX generate strongly negative correlations.

Although the estimated models do not display fully identical correlations,
the general message in them remains more or less the same. It is up to the user
to select the model he wants to use in portfolio management and forecasting.
A way of comparing the models consists of inserting the estimated covariance
matrices Ht, t = 1, . . . , T , into the Gaussian log-likelihood function (3) and
calculate the maximum value of log-likelihood. These values for the estimated
models appear in Table 1.

The models that are relatively easy to estimate seem to fit the data less
well than the other models. The ones with a more complicated structure
and, consequently, an estimation procedure that requires care, seem to at-
tain higher likelihood values. However, the models do not make use of the
same information set and, besides, they do not contain the same number of
parameters. Taking this into account suggests the use of model selection cri-
teria for assessing the performance of the models. Nevertheless, rankings by
Akaike’s information criterion (AIC) and the Bayesian information criterion
(BIC) are the same as the likelihood-based ranking; see Table 1. Note that
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in theory, rankings based on a model selection criterion favour the SPCC
model. This is because no penalty is imposed on the nonparametric correla-
tion estimates that improve the fit compared to constant correlations.

Nonnested testing as a means of comparison is hardly a realistic option
here since the computational effort would be quite substantial. Out-of-sample
forecasting would be another way of comparing models. However, the models
involved would be multivariate and the quantities to be forecast would be
measures of (unobserved) volatilities and cross-volatilities. This would give
rise to a number of problems, beginning from defining the quantities to be
forecast and appropriate loss functions, and from comparing forecast vectors
instead of scalar forecasts. It appears that plenty of work remains to be done
in that area.

diag BEKK GOF DCC TVSTCC SPCC

diag BEKK 1.0000
GOF 0.7713 1.0000
DCC 0.9875 0.7295 1.0000
TVSTCC 0.7577 0.7381 0.7690 1.0000
SPCC 0.6010 0.8318 0.5811 0.7374 1.0000

log-likelihood -6130 -6091 -6166 -6006 -6054
AIC 12275 12198 12347 12041 12120
BIC 12286 12211 12359 12062 12130

Table 1 Sample correlations of the estimated conditional correlations. The lower part
of the table shows the log-likelihood values and the values of the corresponding model
selection criteria.

6 Final Remarks

In this review, we have considered a number of multivariate GARCH mod-
els and highlighted their features. It is obvious that the original VEC model
contains too many parameters to be easily applicable, and research has been
concentrated on finding parsimonious alternatives to it. Two lines of develop-
ment are visible. First, there are the attempts to impose restrictions on the
parameters of the VEC model. The BEKK model and the factor models are
examples of this. Second, there is the idea of modelling conditional covari-
ances through conditional variances and correlations. It has led to a number
of new models, and this family of conditional correlation models appears to
be quite popular right now. The conditional correlation models are easier to
estimate than many of their counterparts and their parameters (correlations)
have a natural interpretation.
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Fig. 1 Conditional correlations implied by the estimated models: Diagonal BEKK, GOF–
GARCH, DCC–GARCH, TVSTCC–GARCH, and SPCC–GARCH.
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As previously discussed, there is no statistical theory covering all
MGARCH models. This may be expected, since models in the two main
categories differ substantially from each other. Progress has been made in
some special situations, and these cases have been considered in previous
sections.

Estimation of multivariate GARCH models is not always easy. BEKK
models appear more difficult to estimate than the CCC-GARCH model and
its generalizations. While it has not been the objective of this review to cover
algorithms for performing the necessary iterations, Brooks et al. (2003) com-
pared four software packages for estimating MGARCH models. They used a
single bivariate dataset and only fitted a first-order VEC-GARCH model to
the data. A remarkable thing is that already the parameter estimates result-
ing from these packages are quite different, not to mention standard deviation
estimates. The estimates give rather different ideas of the persistence of con-
ditional volatility. These differences do not necessarily say very much about
properties of the numerical algorithms used in the packages. It is more likely
that they reflect the estimation difficulties. The log-likelihood function may
contain a large number of local maxima, and different starting-values may
thus lead to different outcomes. See Silvennoinen (2008) for more discussion.
The practitioner who may wish to use these models in portfolio management
should be aware of these problems.

Not much has been done as yet to construct tests for evaluating MGARCH
models. A few tests do exist, and a number of them have been considered in
this review.

It may be that VEC and BEKK models, with the possible exception of
factor models, have already matured and there is not much that can be im-
proved. The situation may be different for conditional correlation models.
The focus has hitherto been on modelling the possibly time-varying correla-
tions. Less emphasis has been put on the GARCH equations that typically
have been GARCH(1,1) specifications. Designing diagnostic tools for testing
and improving GARCH equations may be one of the challenges for the future.
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Stochastic Volatility: Origins and
Overview

Neil Shephard and Torben G. Andersen ∗

Abstract Stochastic volatility is the main way time-varying volatility is
modelled in financial markets. The development of stochastic volatility is
reviewed, placing it in a modeling and historical context. Some recent trends
in the literature are highlighted.

1 Introduction

Stochastic volatility (SV) models are used heavily within the fields of financial
economics and mathematical finance to capture the impact of time-varying
volatility on financial markets and decision making. The development of the
subject has been highly multidisciplinary, with results drawn from financial
economics, probability theory and econometrics blending to produce methods
that aid our understanding of option pricing, efficient portfolio allocation and
accurate risk assessment and management.

Time-varying volatility is endemic in financial markets. This has been
known for a long time, with early comments including Mandelbrot (1963) and
Fama (1965). It was also clear to the founding fathers of modern continuous-
time finance that homogeneity was an unrealistic if convenient simplification,
e.g. Black and Scholes (1972, p. 416), wrote “... there is evidence of non-
stationarity in the variance. More work must be done to predict variances
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using the information available.” Heterogeneity has deep implications for the
theory and practice of financial economics and econometrics. In particular,
asset pricing theory implies that higher rewards are required as an asset is
exposed to more systematic risk. Of course, such risks may change through
time in complicated ways, and it is natural to build stochastic models for
the temporal evolution in volatility and codependence across assets. This
allows us to explain, for example, empirically observed departures from Black-
Scholes-Merton option prices and understand why we should expect to see
occasional dramatic moves in financial markets. More generally, they bring
the application of financial economics closer to the empirical reality of the
world we live in, allowing us to make better decisions, inspire new theory and
improve model building.

Autoregressive conditionally heteroskedasticity (ARCH) processes are of-
ten described as SV, but we do not follow that nomenclature. The essen-
tial feature of ARCH models is that they explicitly model the conditional
variance of returns given past returns observed by the econometrician. This
one-step-ahead prediction approach to volatility modeling is very powerful,
particularly in the field of risk management. It is convenient from an econo-
metric viewpoint as it immediately delivers the likelihood function as the
product of one-step-ahead predictive densities.

In the SV approach the predictive distribution of returns is specified in-
directly, via the structure of the model, rather than directly. For a small
number of SV models this predictive distribution can be calculated explicitly
but, invariably, for empirically realistic representations it has to be computed
numerically. This move away from direct one-step-ahead predictions has some
advantages. In particular, in continuous time it is more convenient, and per-
haps more natural, to model directly the volatility of asset prices as having its
own stochastic process without worrying about the implied one-step-ahead
distribution of returns recorded over an arbitrary time interval convenient for
the econometrician, such as a day or a month. This does, however, raise some
difficulties as the likelihood function for SV models is not directly available,
much to the frustration of econometricians in the late 1980s and early 1990s.

Since the mid-1980s continuous-time SV has dominated the option pricing
literature but early on econometricians struggled with the difficulties of es-
timating and testing these models. Only in the 1990s were novel simulation
strategies developed to efficiently estimate SV models. These computation-
ally intensive methods enable us, given enough coding and computing time,
to efficiently estimate a broad range of fully parametric SV models. This has
led to refinements of the models, with many earlier tractable models being re-
jected from an empirical viewpoint. The resulting enriched SV literature has
brought us much closer to the empirical realities we face in financial markets.

From the late 1990s SV models have taken center stage in the econo-
metric analysis of volatility forecasting using high-frequency data based on
realized volatility and related concepts. The reason is that the econometric
analysis of realized volatility is tied to continuous-time processes, so SV is
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central. The close connection between SV and realized volatility has allowed
financial econometricians to harness the enriched information set available
through high-frequency data to improve, by an order of magnitude, the ac-
curacy of their volatility forecasts over that traditionally offered by ARCH
models based on daily observations. This has broadened the applications of
SV into the important arena of risk assessment and asset allocation.

Below, we provide a selective overview of the SV literature. The exposi-
tion touches on models, inference, options pricing and realized volatility. The
SV literature has grown organically, with a variety of contributions playing
important roles for particular branches of the literature, reflecting the highly
multidisciplinary nature of the research.

2 The Origin of SV Models

The modern treatment of SV is typically cast in continuous time, but many
older contributions employ discrete-time models. Specifically, the early econo-
metric studies tended to favor discrete-time specifications, while financial
mathematicians and financial economists often cast the problems in a dif-
fusive setting when addressing portfolio choice and derivatives pricing. In
response, econometricians have more recently developed practical inference
tools for continuous-time SV models. We start with a description of some
important early studies cast in a discrete-time setting and then cover the
continuous-time formulations.

A central intuition in the SV literature is that asset returns are well ap-
proximated by a mixture distribution where the mixture reflects the level of
activity or news arrivals. Clark (1973) originates this approach by specifying
asset prices as subordinated stochastic processes directed by the increments
to an underlying activity variable. Ignoring mean returns and letting the di-
recting process being independent of the return innovations he stipulates,

Yi = Xτi , i = 0, 1, 2, ..., (1)

where Yi denotes the logarithmic asset price at time i and yi = Yi − Yi−1

the corresponding continuously compounded return over [i − 1, i], Xi is a
normally distributed random variable with mean zero, variance σ2

X · i, and
independent increments, and τi is a real-valued process initiated at τ0 = 0
with non-negative and non-decreasing sample paths, i.e., it constitutes a time
change. Clark focuses on the case where the increments to τi represent inde-
pendent draws from a stationary distribution with finite variance, implying
the subordinated return process also has independent increments with zero
mean. More generally, as long as the time change process is independent of
the price innovations, the asset returns are serially uncorrelated, albeit depen-
dent, even if the time change increments are not stationary or independent.
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In fact, we have

yi|(τi − τi−1) ∼ N(0, σ2
X · (τi − τi−1)). (2)

Thus, marginally, the asset returns follow a normal mixture, implying a sym-
metric but fat tailed distribution. The directing or mixing process, τt, t ≥ 0,
is naturally interpreted as an indicator of the intensity of price-relevant in-
formation flow over the interval [0, t]. Specifications of this type are generally
referred to as Mixture of Distributions Hypotheses (MDH). They induce het-
eroskedastic return volatility and, if the time-change process is positively seri-
ally correlated, also volatility clustering. Clark explores the i.i.d. time-change
specification only and relates the time-change to trading volume. Many sub-
sequent studies pursue the serially correlated volatility extension empirically
and seek to identify observable market proxies for the latent time-change
process. Complete specification of the joint dynamic distribution of return
variation and related market variables allows for a more structurally oriented
approach to stochastic volatility modeling, see, e.g., Epps and Epps (1976),
Tauchen and Pitts (1983), Andersen (1996), and Leisenfeld (2001).

For future reference, it is convenient to cast the Clark formulation in equiv-
alent continuous-time notation. To emphasize that the log-price process as
specified is a martingale, we denote it M . We may then restate equation (1)
in a manner which implies the identical distribution for discretely sampled
data,

Mt = Wτt , t ≥ 0, (3)

where W is Brownian motion (BM) and W and τ are independent processes.
Technically, as long as (for each t) E

√
τt < ∞, M is a martingale since this

is necessary and sufficient to ensure that E |Mt| < ∞.
Asset pricing theory asserts that securities exposed to systematic risk have

expected positive excess returns relative to the risk-free interest rate. As
a result, asset prices will not generally be martingales. Instead, assuming
frictionless markets, a weak no-arbitrage condition implies that the asset
price will be a special semimartingale, see, e.g., Back (1991). This leads to
the more general formulation,

Y = Y0 +A+M, (4)

where the finite variation process, A, constitutes the expected mean return.
If the asset represents a claim on the broader market portfolio, a simple
and popular specification for A is At = rf t + βτt, with rf denoting the
risk-free rate and β representing a risk premium due to the undiversifiable
variance risk. This means that the distributional MDH result in equation (2)
generalizes to Yt|τt ∼ N(rf t+ βτt, τt).

Clark’s main purpose was to advocate the MDH as an alternative to the
empirically less attractive stable processes. Although his framework lends
itself to the appropriate generalizations, he did not seek to accommodate the
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persistence in return volatility. In fact, only about a decade later we find
a published SV paper explicitly dealing with volatility clustering, namely
Taylor (1982). Taylor models the risky part of returns as a product process,

mi = Mi −Mi−1 = σiεi. (5)

ε is assumed to follow an autoregression with zero mean and unit variance,
while σ is some non-negative process. He completes the model by assuming
ε ⊥⊥ σ and

σi = exp(hi/2), (6)

where h is a non-zero mean Gaussian linear process. The leading example of
this is the first order autoregression,

hi+1 = μ+ φ (hi − μ) + ηi, (7)

where η is a zero mean, Gaussian white noise process. In the modern SV
literature the model for ε is typically simplified to an i.i.d. process, as the
predictability of asset prices is incorporated in the A process rather than in
M . The resulting model is now often called the log-normal SV model if ε
is also assumed to be Gaussian. Finally, we note that M is a martingale as
long as E (σi) < ∞, which is satisfied for all models considered above if h is
stationary.2

A key feature of SV, not discussed by Taylor, is that it can accommodate
an asymmetric return-volatility relation, often termed a statistical leverage
effect in reference to Black (1976), even if it is widely recognized that the
asymmetry is largely unrelated to any underlying financial leverage. The ef-
fect can be incorporated in discrete-time SV models by negatively correlating
the Gaussian εi and ηi so that the direction of returns impact future move-
ments in the volatility process, with price drops associated with subsequent
increases in volatility. Leverage effects also generate skewness, via the dynam-
ics of the model, in the distribution of (Mi+s −Mi) |σi for s ≥ 2, although
(Mi+1 −Mi) |σi continues to be symmetric. This is a major impetus for the
use of these models in pricing of equity index options for which skewness
appears endemic.

We now move towards a brief account of some early contributions to the
continuous-time SV literature. In that context, it is useful to link the above
exposition to the corresponding continuous-time specifications. The counter-

2 Taylor’s discussion of the product process was predated by a decade in the unpublished
Rosenberg (1972). This remarkable paper appears to have been lost to the modern SV liter-
ature until recently, but is now available in Shephard (2005). Rosenberg introduces product
processes, empirically demonstrating that time-varying volatility is partially predictable,
and thus moving beyond Clark’s analysis on this critical dimension. He also explores a
variety of econometric methods for analyzing heteroskedasticity only reintroduced into the
literature much later. Finally, he studies an SV model which in some respects is a close
precursor of ARCH models even if he clearly does not recognize the practical significance
of restrictions on his system that would lead to an ARCH representation.
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part to the (cumulative) product process for the martingale component in
equation (5) is given by the Itô stochastic integral representation,

Mt =
∫ t

0

σsdWs, (8)

where the non-negative spot volatility σ is assumed to have càdlàg sample
paths. Note that this allows for jumps in the volatility process. Moreover,
SV models given by (8) have continuous sample paths even if σ does not. A
necessary and sufficient condition for M to constitute a martingale is that

E
√

∫ t

0 σ
2
sds < ∞. The squared volatility process is often termed the spot vari-

ance. There is no necessity for σ and W to be independent, but when they are
we obtain the important simplification that Mt|

∫ t

0 σ
2
sds ∼ N

(

0,
∫ t

0 σ
2
sds

)

.
This makes it evident that the structure is closely related to the MDH or
time-change representation (3) of Clark. The directing process is labeled In-
tegrated Variance, i.e., IVt =

∫ t

0
σ2
sds, and arises naturally as a quantity of

key interest in practical applications.
An early application of continuous-time SV models was the unpublished

work by Johnson (1979) who studied option pricing using time-changing
volatility. While this project evolved into Johnson and Shanno (1987), a well
known paper on the use of continuous-time SV models for option pricing
is Hull and White (1987) who allow the spot volatility process to follow a
general diffusion. In their approach the spot variation process is given as the
solution to a univariate stochastic differential equation,

dσ2 = α(σ2)dt+ ω(σ2)dB, (9)

where B is a second Brownian motion and α(.) and ω(.) are deterministic
functions which can be specified quite generally but must ensure that σ2

remains strictly positive. By potentially correlating the increments of W and
B, Hull and White provide the first coherent leverage model in financial
economics. They compute option prices by numerical means for the special
case,

dσ2 = ασ2dt+ ωσ2dB. (10)

This formulation is quite similar to the so-called GARCH diffusion which
arises as the diffusion limit of a sequence of GARCH(1,1) models, see Nelson
(1990), and has been used for volatility forecasting. Another related repre-
sentation is the square-root process which belongs to the affine model class
and allows for analytically tractable pricing of derivatives, as discussed in
more detail later. Wiggins (1987) also starts from the general univariate dif-
fusion (9) but then focuses on the special case where log volatility follows a
Gaussian Ornstein-Uhlenbeck (OU) process,

d log σ2 = α(μ − log σ2)dt+ ωdB, α > 0. (11)
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The log-normal SV model of Taylor (1982) can be thought of as an Euler
discretization to this continuous-time model over a unit time period. Ito’s
formula implies that this log-normal OU model can be written as

dσ2 =
{

θ − α log σ2
}

σ2dt+ ωσ2dB. (12)

It is evident that it resembles the previous models in important respects
although it is also distinctly different in the drift specification.

The initial diffusion-based SV models specify volatility to be Markovian
with continuous sample paths. This is a constraint on the general SV struc-
ture (8) which requires neither of these assumptions. Research in the late
1990s and early 2000s has shown that more complex volatility dynamics are
needed to model either options data or high-frequency return data. Lead-
ing extensions to the model are to allow jumps in the volatility SDE, e.g.,
Barndorff-Nielsen and Shephard (2001) and Eraker et al. (2003) or to model
the volatility process as a function of a number of separate stochastic pro-
cesses or factors, e.g., Chernov et al. (2003), Barndorff-Nielsen and Shephard
(2001).

A final noteworthy observation is that SV models and time-changed Brow-
nian motions provide fundamental representations for continuous-time mar-
tingales. If M is a process with continuous martingale sample paths then
the celebrated Dambis-Dubins-Schwartz Theorem, e.g., Rogers and Williams
(1996, p. 64), ensures that M can be written as a time-changed BM with the
time-change being the quadratic variation (QV) process ,

[M ]t = p− lim
n

∑

j=1

(

Mtj −Mtj−1

)2
, (13)

for any sequence of partitions t0 = 0 < t1 < ... < tn = t with supj{tj −
tj−1} → 0 for n → ∞. What is more, as M has continuous sample paths, so
must [M ]. Under the stronger condition that [M ] is absolutely continuous, M
can be written as a stochastic volatility process. This latter result, known as
the martingale representation theorem, is due to Doob (1953). Taken together
this implies that time-changed BMs are canonical in continuous sample path
price processes and SV models arise as special cases. In the SV case we thus
have,

[M ]t =
∫ t

0

σ2
sds. (14)

Hence, the increments to the quadratic variation process are identical to the
corresponding integrated return variance generated by the SV model.
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3 Second Generation Model Building

3.1 Univariate models

3.1.1 Jumps

All the work discussed previously assumes that the asset price process is
continuous. Yet, theory asserts that discrete changes in price should occur
when significant new information is revealed. In fact, equity indices, Treasury
bonds and foreign exchange rates all do appear to jump at the moment sig-
nificant macroeconomic or monetary policy news are announced. Likewise,
individual stock prices often react abruptly to significant company-specific
news like earnings reports, see, e.g. Andersen et al. (2007) and Johannes and
Dubinsky (2006). As long as these jumps are unknown in terms of timing
and/or magnitude this remains consistent with the no-arbitrage semimartin-
gale setting subject only to weak regularity conditions. The cumulative sum
of squared price jumps contribute to the return quadratic variation, thus
generating distinct diffusive (integrated variance) and jump components in
volatility.

Moreover, empirical work using standard SV models, extended by adding
jumps to the price process, document significant improvements in model fit,
e.g., Andersen et al. (2002) and Eraker et al. (2003). This follows, of course,
earlier theoretical work by Merton (1976) on adding jumps to the Black-
Scholes diffusion. Bates (1996) was particularly important for the option
pricing literature as he documents the need to include jumps in addition
to SV for derivatives pricing, at least when volatility is Markovian.

Another restrictive feature of the early literature was the absence of jumps
in the diffusive volatility process. Such jumps are considered by Eraker et al.
(2003) who deem this extension critical for adequate model fit. A very differ-
ent approach for SV models was put forth by Barndorff-Nielsen and Shephard
(2001) who build volatility models from pure jump processes. In particular,
in their simplest model, σ2 represent the solution to the SDE

dσ2
t = −λσ2

t dt+ dzλt, λ > 0, (15)

where z is a subordinator with independent, stationary and non-negative
increments. The unusual timing convention for zλt ensures that the stationary
distribution of σ2 does not depend on λ. These non-Gaussian OU processes
are analytically tractable as they belong to the affine model class discussed
below.

Geman et al. (2002) provide a new perspective within the general setting by
defining the martingale component of prices as a time-change Lévy process,
generalizing Clark’s time-change of Brownian motion. Empirical evidence in
Barndorff-Nielsen and Shephard (2006) suggest these rather simple models
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may potentially perform well in practice. Note, if one builds the time-change
of the pure jump Lévy process from of an integrated non-Gaussian OU process
then the resulting process will not have any Brownian components in the
continuous-time price process.

3.1.2 Long memory

In the first generation of SV models the volatility process was given by a
simple SDE driven by a BM. This implies that spot volatility is a Markov
process. There is considerable empirical evidence that, whether volatility is
measured using high-frequency data over a few years or using daily data
recorded over decades, the dependence in the volatility structure decays at
a rapid rate for shorter lags, but then at a much slower hyperbolic rate at
longer lags. Moreover, consistent with the hypothesis that long memory is
operative in the volatility process, the estimates for the degree of fractional
integration appear remarkably stable irrespective of the sampling frequencies
of the underlying returns or the sample period, see Andersen and Bollerslev
(1997). As an alternative, it is possible to approximate the long memory
feature well by specifying the (log) volatility process via a sum of first-order
autoregressive components, leading to multi-factor SV models as pursued by,
e.g., Chernov et al. (2003).

The literature has been successful in directly accommodating the longer
run volatility dependencies through both discrete-time and continuous-time
long memory SV models. In principle, this is straightforward as it only re-
quires specifying a long-memory model for σ. Breidt et al. (1998) and Harvey
(1998) study discrete-time models where log volatility is modeled as a frac-
tionally integrated process. They show this can be handled econometrically
by quasi-likelihood estimators which are computationally simple, although
not fully efficient. In continuous time Comte and Renault (1998) model log
volatility as a fractionally integrated BM. More recent work includes the
infinite superposition of non-negative OU processes introduced by Barndorff-
Nielsen (2001). The two latter models have the potential advantage that they
can be used for options pricing without excessive computational effort.

3.2 Multivariate models

Diebold and Nerlove (1989) cast a multivariate SV model within the factor
structure used in many areas of asset pricing. Restated in continuous time,
their model for the (N × 1) vector of martingale components of the log asset
price vector takes the form,
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M =
J

∑

j=1

(

β(j)F(j)

)

+G, (16)

where the factors F(1),F(2),...,F(J) are independent univariate SV models,
J < N , and G is a correlated (N × 1) BM, and the (N × 1) vector of factor
loadings, β(j), remains constant through time. This structure has the advan-
tage that the martingale component of time-invariant portfolios assembled
from such assets will inherit this basic factor structure. Related papers on
the econometrics of this model structure and their empirical performance
include King et al. (1994) and Fiorentini et al. (2004).

A more limited multivariate discrete-time model was put forth by Harvey
et al. (1994) who suggest having the martingale components be given as a
direct rotation of a p-dimensional vector of univariate SV processes. Another
early contribution was a multivariate extension of Jacquier et al. (1994) which
evolved into Jacquier et al. (1999). In recent years, the area has seen a dra-
matic increase in activity as is evident from the chapter on multivariate SV
in this handbook, cf. Chib et al. (2008).

4 Inference Based on Return Data

4.1 Moment–based inference

A long standing difficulty for applications based on SV models was that the
models were hard to estimate efficiently in comparison with their ARCH
cousins due to the latency of the volatility state variable. In ARCH models,
by construction, the likelihood (or quasi-likelihood) function is readily avail-
able. In SV models this is not the case which early on inspired two separate
approaches. First, there is a literature on computationally intensive methods
which approximate the efficiency of likelihood-based inference arbitrarily well,
but at the cost of using specialized and time-consuming techniques. Second,
a large number of papers have built relatively simple, inefficient estimators
based on easily computable moments of the model. We briefly review the sec-
ond literature before focusing on the former. We will look at the simplification
high frequency data brings to these questions in Section 6.

The task is to carry out inference based on a sequence of returns y =
(y1, ..., yT )′ from which we will attempt to learn about θ = (θ1, ..., θK)′, the
parameters of the SV model. The early SV paper by Taylor (1982) calibrated
the discrete-time model using the method of moments. Melino and Turnbull
(1990) improve the inference by relying on a larger set of moment conditions
and combining them more efficiently as they exploit the generalized method
of moments (GMM) procedure. The quality of the (finite sample) GMM infer-
ence is quite sensitive to both the choice of the number of moments to include
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and the exact choice of moments among the natural candidates. Andersen and
Sørensen (1996) provide practical guidelines for the GMM implementation
and illustrate the potentially sizeable efficiency gains in the context of the
discrete-time lognormal SV model. One practical drawback is that a second
inference step is needed to conduct inference regarding the realizations of the
latent volatility process. A feasible approach is to use a linear Kalman filter
approximation to the system, given the first stage point estimates for the
parameters, and extract the volatility series from the filter. However, this is
highly inefficient and the combination of a two-step approach and a relatively
crude approximation renders it hard to assess the precision of the inference
for volatility.

Harvey et al. (1994) apply the natural idea of using the Kalman filter
for joint quasi-likelihood estimation of the model parameters and the time-
varying volatility for the log-normal SV model defined via (5) and (7). This
method produces filtered as well as smoothed estimates of the underlying
volatility process. The main drawback is that the method is quite inefficient
as the linearized system is highly non-Gaussian.

For continuous-time SV models, it is generally much harder to derive the
requisite closed form solutions for the return moments. Nonetheless, Meddahi
(2001) provides a general approach for generating moment conditions for the
full range of models that fall within the so-called Eigenfunction SV class.
A thorough account of the extensive literature on moment-based SV model
inference, including simulation-based techniques, is given in Renault (2008).

4.2 Simulation–based inference

Within the last two decades, a number of scholars have started to develop and
apply simulation-based inference devices to tackle SV models. Concurrently
two approaches were brought forward. The first was the application of Markov
chain Monte Carlo (MCMC) techniques. The second was the development of
indirect inference or the so-called efficient method of moments. To discuss
these methods it is convenient to focus on the simplest discrete-time log-
normal SV model given by (5) and (7).

MCMC allows us to simulate from high dimensional posterior densities,
such as the smoothing variables h|y, θ, where h = (h1, ..., hT )′ are the discrete
time unobserved log-volatilities. Shephard (1993) notes that SV models are
a special case of a Markov random field so MCMC can be used for simula-
tion of h|y, θ. Hence, the simulation output inside an EM algorithm can be
used to approximate the maximum likelihood estimator of θ. However, the
procedure converges slowly. Jacquier et al. (1994) demonstrate that a more
elegant inference may be developed by becoming Bayesian and using the
MCMC algorithm to simulate from h, θ|y. Once the ability to compute many
simulations from this T +K dimensional random variable (there are K pa-
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rameters), one can discard the h variables and simply record the many draws
from θ|y. Summarizing these draws allows for fully efficient parametric infer-
ence in a relatively sleek way. Later, Kim et al. (1998) provide an extensive
discussion of alternative methods for implementing the MCMC algorithm.
This is a subtle issue and can make a large difference to the computational
efficiency of the methods.

Kim et al. (1998) also introduce a genuine filtering method for recursively
sampling from

h1, ..., hi|y1, ..., yi−1, θ, i = 1, 2, ..., T. (17)

These draws enable estimation, by simulation, of E
(

σ2
i |y1, ..., yt−1, θ

)

as well
as the corresponding density and the density of yi|y1, ..., yt−1, θ using the so-
called particle filter, see, e.g., Gordon et al. (1993) and Pitt and Shephard
(1999). These quantities are useful inputs for financial decision making as
they are derived conditionally only on current information. Moreover, they
allow for computation of marginal likelihoods for model comparison and for
one-step-ahead predictions for specification testing. 3 Although these MCMC
based papers are couched in discrete time, it is also noted that the general
approach can be adapted to handle models operating with data generated
at higher frequencies through data augmentation. This strategy was imple-
mented for diffusion estimation by Jones (1998), Eraker (2001), Elerian et al.
(2001), and Roberts and Stramer (2001).

The MCMC approach works effectively under quite general circumstances,
although it is dependent on the ability to generate appropriate and effi-
cient proposal densities for the potentially complex conditional densities that
arise during the recursive sampling procedure. An alternative is to develop a
method that maximizes a simulation based estimate of the likelihood func-
tion. This may require some case-by-case development but it has been im-
plemented for a class of important discrete-time models by Danielsson and
Richard (1993) using the Accelerated Gaussian Importance Sampler. The
procedure was further improved through improved simulation strategies by
Fridman and Harris (1998) and Leisenfeld and Richard (2003). A formal
approach for simulated maximum likelihood estimation of diffusions is de-
veloped by Pedersen (1995) and simultaneously, with a more practical ori-
entation, by Santa-Clara (1995). Later refinements and applications for SV
diffusion models include Elerian et al. (2001), Brandt and Santa-Clara (2002),
Durham and Gallant (2002), and Durham (2003).

Another successful approach for diffusion estimation was developed via a
novel extension to the Simulated Method of Moments of Duffie and Singleton
(1993). Gouriéroux et al. (1993) and Gallant and Tauchen (1996) propose to
fit the moments of a discrete-time auxiliary model via simulations from the
underlying continuous-time model of interest, thus developing the approach
into what is now termed Indirect Inference or the Efficient Method of Mo-

3 A detailed account of the particle filter is given by Johannes and Polson in this handbook,
cf. Johannes and Polson (2008).
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ments (EMM). The latter approach may be intuitively explained as follows.
First, an auxiliary model is chosen to have a tractable likelihood function
but with a generous parameterization that should ensure a good fit to all sig-
nificant features of the time series at hand. For financial data this typically
involves an ARMA-GARCH specification along with a dynamic and richly
parameterized (semi-nonparametric or SNP) representation of the density
function for the return innovation distribution. The auxiliary model is esti-
mated by (quasi-) likelihood from the discretely observed data. This provides
a set of score moment functions which, ideally, encode important information
regarding the probabilistic structure of the actual data sample. Next, a very
long sample is simulated from the continuous-time model. The underlying
continuous-time parameters are varied in order to produce the best possi-
ble fit to the quasi-score moment functions evaluated on the simulated data.
If the underlying continuous-time model is correctly specified it should be
able to reproduce the main features of the auxiliary score function extracted
from the actual data. It can be shown, under appropriate regularity, that the
method provides asymptotically efficient inference for the continuous-time
parameter vector. A useful side-product is an extensive set of model diagnos-
tics and an explicit metric for measuring the extent of failure of models which
do not adequately fit the quasi-score moment function. Gallant et al. (1997)
provide an in-depth discussion and illustration of the use of these methods
in practice. Moreover, the task of forecasting volatility conditional on the
past observed data (akin to filtering in MCMC) or extracting volatility given
the full data series (akin to smoothing in MCMC) may be undertaken in the
EMM setting through the reprojection method developed and illustrated in
Gallant and Tauchen (1998).

An early use of Indirect Inference for SV diffusion estimation is Engle
and Lee (1996) while EMM has been extensively applied with early work
exploring short rate volatility (Andersen and Lund (1997)), option pricing
under SV (Chernov and Ghysels (2000)), affine and quadratic term structure
models (Dai and Singleton (2000), Ahn et al. (2002)), SV jump-diffusions
for equity returns (Andersen et al. (2002)) and term structure models with
regime-shifts (Bansal and Zhou (2002)).

An alternative approach to estimation of spot volatility in continuous time
is given by Foster and Nelson (1996). They develop an asymptotic distribution
theory for a local variance estimator, computed from the lagged data,

̂σ2
t = h−1

M
∑

j=1

(

Yt−hj/M − Yt−h(j−1)/M

)2
. (18)

They study the behavior of the estimator as M → ∞ and h ↓ 0 under a set of
regularity conditions, ruling out, e.g., jumps in price or volatility. This “double
asymptotics” yields a Gaussian limit theory as long as h ↓ 0 and M → ∞ at
the correct, connected rates. This is related to the realized volatility approach
detailed in a separate section below although, importantly, the latter focuses
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on the integrated volatility rather than the spot volatility and thus avoids
some of the implementation issues associated with the double limit theory.

5 Options

5.1 Models

As discussed previously, the main impetus behind the early SV diffusion mod-
els was the desire to obtain a realistic basis for option pricing. A particularly
influential contribution was Hull and White (1987) who studied a diffusion
with leverage effects. Assuming volatility risk is fully diversifiable, they price
options either by approximation or by simulation. The results suggest that SV
models are capable of producing smiles and skews in option implied volatili-
ties as often observed in market data. Renault (1997) studies these features
systematically and confirms that smiles and smirks emerge naturally from
SV models via leverage effects.

The first analytic SV option pricing formula is by Stein and Stein (1991)
who model σ as a Gaussian OU process. European option prices may then be
computed using a single Fourier inverse which, in this literature, is deemed
“closed form.” A conceptual issue with the Gaussian OU model is that it
allows for a negative volatility process. Heston (1993) overcomes this by em-
ploying a version of the so-called square root volatility process. Bates (1996)
extends the framework further to allow for jumps in the underlying price
and shows that these are critical for generating a reasonable fit to option
prices simultaneously across the strike and time-to-maturity spectrum. An-
other closed-form option pricing solution is given by Nicolato and Venardos
(2003) who rely on the non-Gaussian OU SV models of Barndorff-Nielsen
and Shephard (2001).

All models above belong to the affine class advocated by Duffie et al.
(2000). These models are used extensively because they provide analytically
tractable solutions for pricing a wide range of derivative securities. The gen-
eral case involves solving a set of ordinary differential equations inside a
numerical Fourier inverse but this may be done quickly on modern comput-
ers. These developments have spurred more ambitious inference procedures
for which the parameters of affine SV models for both the underlying asset
and the risk-neutral dynamics governing market pricing are estimated jointly
from data on options and the underlying. Chernov and Ghysels (2000) es-
timate the affine SV diffusions for the actual and risk-neutral measures si-
multaneously using EMM. Pan (2002) exploits at-the-money options while
allowing for an affine SV jump-diffusion representation under the actual and
risk-neutral measure. Her inference is conducted via GMM, exploiting the
closed-form expressions for the joint conditional moment-generating function
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of stock returns and volatility developed in Duffie et al. (2000); see also Sin-
gleton (2001). Eraker (2004) expands the model specification, using MCMC
based inference, to include a wider cross-section of option strikes and allowing
for jumps in the volatility process as well. Finally, it is possible to develop
option pricing on time-change Lévy processes, see, e.g., Carr and Wu (2004)
who develop the derivatives pricing in a setting inspired by Geman et al.
(2002).

6 Realized Volatility

A couple of relatively recent developments have moved SV models towards
the center of volatility research. This process is related to the rapid increase
in research under the general heading of realized volatility.

One major change is the advent of commonly available and very infor-
mative high-frequency data, such as minute-by-minute return data or entire
records of quote and/or transaction price data for particular financial instru-
ments. The first widely disseminated data of this type were foreign exchange
quotes gathered by Olsen & Associates, discussed in detail in the seminal work
of Dacorogna et al. (2001). Later scholars started using tick-by-tick data from
the main equity and futures exchanges in the U.S. and Europe. This natu-
rally moved the perspective away from fixed time intervals, such as a day,
and into the realm where, at least in theory, one thinks of inference regarding
the price process over different horizons based on ever changing information
sets. This type of analysis is, of course, ideally suited to a continuous-time
setting as any finite-horizon distribution then, in principle, may be obtained
through time aggregation. Moreover, this automatically ensures modeling co-
herence across different sampling frequencies. Hence, almost by construction,
volatility clustering in continuous time points us towards SV models.

A related development is the rapidly accumulating theoretical and empiri-
cal research on how to exploit this high-frequency data to estimate the incre-
ments of the quadratic variation (QV) process and then to use this estimate
to project QV into the future in order to predict future levels of volatility.
This literature deals with various aspects of so-called realized variation, also
often more generically referred to as realized volatility. This section briefly
introduces some of the main ideas, leaning on contributions from Andersen
et al. (2001) and Barndorff-Nielsen and Shephard (2002). A more detailed
account is given in the chapter by Andersen and Benzoni in this handbook
(cf. Andersen and Benzoni (2008)).

In realized variation theory, high-frequency data are used to estimate the
QV process. We let δ denote a time period between high-frequency observa-
tions and define the realized QV process as,
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[Yδ]t =
�t/δ�
∑

j=1

{Y (δj) − Y (δ (j − 1))}2
. (19)

Then, by the definition of the QV process, as δ ↓ 0,

[Yδ]t
p→[Y ]t, (20)

which the probability literature has shown to be well behaved if Y is a semi-
martingale. If the expected return process has continuous sample paths, then
[Y ] = [M ], and if additionally M is a SV process then [Yδ]t

p→
∫ t

0
σ2
sds.

In practice, it is preferable to measure increments of the quadratic variation
process over one full trading day (or week). This measure is often referred
to as the daily realized variance while its square root then is denoted the
daily realized volatility, following the terminology of the financial mathemat-
ics literature. This should not be confused with the more generic terminology
that refers to all transformations of realized quadratic variation measures
as realized volatility. The main reason for aggregating the realized variation
measures to a daily frequency is the presence of pronounced and systematic
intraday patterns in return volatility. These stem from highly regular, but
dramatic, shifts in the quote and transactions intensity across the trading
day as well as the release of macroeconomic and financial news according to
specific time tables. Often, new information creates short-run dynamics akin
to a price discovery process with an immediate price jump followed by a brief
burst in volatility, see, e.g., Andersen and Bollerslev (1998). As a result, the
intraday volatility process displays rather extreme variation and contains var-
ious components with decidedly low volatility persistence. Consequently, the
direct modeling of the ultra high-frequency volatility process is both complex
and cumbersome. Yet, once the return variation process is aggregated into a
time series of daily increments, the strong inter-daily dependence in return
volatility is brought out very clearly as the systematic intraday variation, to
a large extent, is annihilated by aggregation across the trading day. In fact,
the evidence for inter-daily volatility persistence is particularly transparent
from realized volatility series compared to the traditional volatility measures
inferred from daily return data.

Andersen et al. (2001) show that a key input for forecasting the volatility
of future asset returns should be predictions of the future daily quadratic
return variation. Recall from Ito’s formula that, if Y is a continuous sample
path semimartingale then

Y 2
t = [Y ]t + 2

∫ t

0

YsdYs = [Y ]t + 2
∫ t

0

YsdAs + 2
∫ t

0

YsdMs. (21)

Letting Ft denote the filtration generated by the continuous history of Yt up
to time t and exploiting that M is a martingale, we have
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E(Y 2
t |F0) = E ([Y ]t|F0) + 2E

(∫ t

0

YsdAs|F0

)

. (22)

In practice, over small intervals of time, the second term is small, so that

E(Y 2
t |F0) � E ([Y ]t|F0) . (23)

This implies that forecasting future squared daily returns can be done effec-
tively through forecasts for future realized QV increments. A natural pro-
cedure estimates a time series model directly from the past observable re-
alized daily return variation and uses it to generate predictions for future
realized variances, as implemented through an ARFIMA model for realized
log volatility in Andersen et al. (2003). The incorporation of long memory
through fractional integration proves particularly important for forecast per-
formance while only a few autoregressive lags are needed to accommodate
shorter run dependencies. Hence, long lags of appropriately weighted (hy-
perbolically decaying) realized log volatilities prove successful in forecasting
future volatility.

A potential concern with this approach is that the QV theory only tells
us that [Yδ]

p→[Y ], but does not convey information regarding the likely size
of the measurement error, [Yδ]t − [Y ]t. Jacod (1994) and Barndorff-Nielsen
and Shephard (2002) strengthen the consistency result to provide a central
limit theory for the univariate version of this object. They show that the
measurement errors are asymptotically uncorrelated and

δ−1/2 ([Yδ]t − [Y ]t)
√

2
∫ t

0 σ
4
sds

d→N(0, 1). (24)

The latter also develop a method for consistently estimating the integrated
quarticity,

∫ t

0
σ4
sds, from high-frequency data, thus enabling feasible inference

on the basis of the above result. This analysis may help simplify parametric
estimation as we obtain estimates of the key volatility quantities that SV
models directly parameterize. In terms of volatility forecasting, the use of
long lags of weighted realized volatilities tends to effectively diversify away
the impact of measurement errors so that the predictive performance is less
adversely impacted than one may suspect, see Andersen et al. (2006).

In the very recent past there have been various elaborations to this lit-
erature. We briefly mention two. First, there has been interest in studying
the impact of market microstructure effects on the estimates of realized vari-
ance. This causes the estimator of the QV to become biased. Leading papers
on this topic are Hansen and Lunde (2006), Zhang et al. (2005), Bandi and
Russell (2006) and Barndorff-Nielsen et al. (2008). Second, one can estimate
the QV of the continuous component of prices in the presence of jumps us-
ing the so-called realized bipower variation process. This was introduced by
Barndorff-Nielsen and Shephard (2004).
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Probabilistic Properties of Stochastic
Volatility Models

Richard A. Davis and Thomas Mikosch

Abstract We collect some of the probabilistic properties of a strictly sta-
tionary stochastic volatility process. These include properties about mixing,
covariances and correlations, moments, and tail behavior. We also study
properties of the autocovariance and autocorrelation functions of stochas-
tic volatility processes and its powers as well as the asymptotic theory of
the corresponding sample versions of these functions. In comparison with the
GARCH model (see Lindner (2008)) the stochastic volatility model has a
much simpler probabilistic structure which contributes to its popularity.

1 The Model

We consider a stochastic volatility process (Xt)t∈Z given by the equations

Xt = σt Zt , t ∈ Z , (1)

where (σt)t∈Z is a strictly stationary sequence of positive random variables
which is independent of the iid noise sequence (Zt)t∈Z.1 We refer to (σt)t∈Z
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1 It is common to assume the additional standardization conditions EZt = 0 and var(Zt) =
1. These conditions are important for example in order to avoid identification problems for
the parameters of the model. In most parts of this article, these additional conditions are
not needed. Moreover, in Sections 4 and 5 we will also consider results when var(Z) = ∞
or E|Z| = ∞.
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as the volatility sequence. Following the tradition in time series analysis, we
index the stationary sequences (Xt), (Zt), (σt) by the set Z of the integers.
For practical purposes, one would consider e.g., the sequence (Xt)t∈N corre-
sponding to observations at the times t = 1, 2, . . ..

2 Stationarity, Ergodicity and Strong Mixing

2.1 Strict stationarity

The independence of the noise (Zt) and the volatility sequence (σt) allow for
a much simpler probabilistic structure than that of a GARCH process which
includes explicit feedback of the current volatility with previous volatilities
and observations. This is one of the attractive features of stochastic volatility
models. For example, the mutual independence of the sequences (Zt) and
(σt) and their strict stationarity immediately imply that (Xt) is strictly sta-
tionary.2 Conditions for the existence of a stationary GARCH process are
much more difficult to establish, see Nelson (1990) and Bougerol and Picard
(1992), cf. Lindner (2008).

A convenient way of constructing a positive stationary volatility sequence
(σt) is to assume that Yt = log σt, t ∈ Z, is a stationary sequence (Yt) with
certain nice properties. An obvious candidate is the class of causal linear
processes given by

Yt =
∞
∑

i=0

ψi ηt−i , t ∈ Z , (2)

where (ψt) is a sequence of deterministic coefficients with ψ0 = 1 and (ηt) is
an iid sequence of random variables. It immediately follows by an application
of Kolmogorov’s 3-series theorem (cf. Billingsley (1995), Petrov (1995)) that,
if Eη = 0 and var(η) < ∞, the infinite series (2) converges a.s. if and only if
∑

j ψ
2
j < ∞. The class of processes (2) includes short memory ARMA as well

as long memory fractional ARIMA processes. We refer to Brockwell and Davis
(1991) for an extensive treatment of such processes, see also the discussion
in Section 3 below. Moreover, if we further specify η to be centered normal
and if we assume that

∑

j ψ
2
j < ∞ then the sequence (σt) is stationary with

log-normal marginals.
In what follows, we always assume that (σt), hence (Xt), is a (strictly)

stationary sequence.

2 We refer to stationarity as strict stationarity and we write A for a generic element of any
stationary sequence (At).
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2.2 Ergodicity and strong mixing

If (σt) is stationary ergodic, then the sequence (Xt) inherits ergodicity as
well. This applies e.g., if σt = f((ηt+h)h∈Z) for a measurable function f and
an iid sequence (ηt), and in particular for the model (2). These facts follow
from standard ergodic theory, cf. Krengel (1985).

The process (Xt) also inherits more subtle properties of the volatility se-
quence such as certain mixing properties. We illustrate this in the case of
strong mixing. Recall that a stationary sequence (At)t∈Z is strongly mixing if
it satisfies the property

sup
B∈F0

−∞ , C∈F∞
t

|P (B ∩ C) − P (B)P (C)| =: αt → 0 , t → ∞ ,

where Fb
a is the σ-field generated by At, a ≤ t ≤ b, with the obvious modifi-

cations for a = −∞ and b = ∞. The function (αt) is called the mixing rate
function of (At). Its decay rate to zero as t → ∞ is a measure of the range of
dependence or of the memory in the sequence (At). If (αt) decays to zero at
an exponential rate, then (At) is said to be strongly mixing with geometric
rate. In this case, the memory between past and future dies out exponentially
fast. A recent survey on strong mixing and its interrelationship with other
mixing conditions can be found in Bradley (2005), see also the collection of
surveys on dependence Doukhan et al. (2004), Eberlein et al. (1986) and the
overviews on mixing properties of time series models in Fan and Yao (2003).

The rate function (αt) is closely related to the decay of the autocovariance
and autocorrelation functions (ACVF and ACF) of the stationary process
(At) given by

γA(h) = cov(A0, Ah) and ρA(h) = corr(A0, Ah) , h ≥ 0 , (3)

where we assume that γA(0) = var(A) < ∞. For example, if E(|A|2+δ) < ∞
for some δ > 0, then

|ρA(h)| ≤ c α
δ/(2+δ)
h h ≥ 0 , (4)

for some constant c > 0, see Ibragimov and Linnik (1971), Theorem 17.2.2.
In some special cases one can also conclude from the decay rate to zero of
the ACVF about the convergence rate to zero of (αt). For example, if (At) is
a Gaussian causal ARMA process it is well known (cf. Brockwell and Davis
(1991)) that ρA(h) → 0 exponentially fast which in turn implies that αt → 0
exponentially fast; see Pham and Tran (1985).3

3 Pham and Tran (1985) proved the result for β-mixing which implies strong mixing. They
also prove the result for general classes of linear processes with exponentially decaying
coefficients ψi and iid noise (ηi) more general than Gaussian noise.
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Since strong mixing is defined via σ-fields, strong mixing of the log-
volatility sequence (Yt) immediately transfers to sequences of measurable
functions of the Yt’s. For example, if (Yt) is strongly mixing with rate func-
tion (αt), so are (σt) and (σ2

t ) with the same rate function. Moreover, the
stochastic volatility process (Xt) inherits strong mixing from (σt) essentially
with the same rate. This can be established using the following simple cal-
culation. Since (σt) and (Zt) are independent, we have for any Borel sets
B ∈ F0

−∞ and C ∈ F∞
t that

| P (B ∩ C) − P (B)P (C)| (5)

= | E[f(. . . , σ−1, σ0)g(σk, σk+1, . . .)] − E[f(. . . , σ−1, σ0)] E[g(σk, σk+1, . . .)]| ,

where

f(. . . , σ−1, σ0) = P ((. . . , X−1, X0) ∈ A | σs, s ≤ 0) ,

g(σt, σt+1, . . .) = P ((Xt, Xt+1, . . .) ∈ B | σs, s ≥ t) ,

and standard results about strong mixing (cf. Doukhan (1994)) show that
the right-hand side in (5) is bounded by 4αt. Finally, we conclude that all
sequences (Xt), (σt), (σ2

t ), (Yt) essentially have the same strong mixing prop-
erties.

Moreover, a sequence generated by measurable transformations of the form
f(σt, . . . , σt+h) or g(Xt, . . . , Xt+h) for any h ≥ 0 and measurable functions
f , g is stationary and inherits the strong mixing property with the same
rate as (Yt). This immediately follows from the definitions of stationarity
and strong mixing. In particular, the sequences of powers (σpt ) and (|Xt|p)
for any positive p have mixing rates comparable to those of (σt) and (Xt),
respectively.

3 The Covariance Structure

A first check of the dependence structure in a stationary sequence (At) usually
focuses on the ACVF γA or the ACF ρA, see (3). Since a stochastic volatility
process (Xt) is a highly non-Gaussian process its covariance structure is not
very informative. In fact, as shown below, (Xt) is uncorrelated yet dependent.
Insight about the nature of the dependence in stochastic volatility processes
can be obtained by studying the correlation function of powers of the process
and volatility process given by (|Xt|p) and (σpt ) for some p > 0, respectively.

In what follows, we focus on volatility sequences (σt) of the form (2) with
iid random variables ηi since it has the attractive property that we get explicit
representations for γX . Assuming EZ = 0, var(Z) = 1, and E exp{2|Y |} <
∞, direct calculation yields
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γX(h) = ρX(h) = 0 , h > 0 , var(X) = var(σ) , (6)

var(σ) =
∞
∏

j=0

mη(2ψj) −
∞
∏

j=0

m2
η(ψj) , (7)

where mη(z) = Ee zη denotes the moment generating function of η. If η is
centered normal with variance τ2 > 0, then we have mη(z) = exp{0.5 τ2 z2}.
Hence

var(σ) = exp{var(Y )}(exp{var(Y )} − 1) . (8)

We observe that (Xt) is a white noise sequence. This fact is very much in
agreement with real-life return data. However, this observation is not very
informative. Therefore it has become common in financial time series analysis
to study the ACVFs/ACFs of the absolute values, squares and other powers
of absolute return data as well. The present state of research on GARCH
processes does not allow one to get explicit formulae for the ACVF of the
absolute returns. In a stochastic volatility model one can exploit the inde-
pendence between (σt) and (Zt) in order to get explicit formulae for γ|X| at
least in the model (2) with iid noise (ηi).

In what follows, we focus on this model with iid centered normal noise with
variance τ2 > 0 and calculate the corresponding ACVFs and ACFs. Recall
that the ACVF of (Yt) is then given by

γY (h) = τ2
∞
∑

i=0

ψiψi+h , h ≥ 0 . (9)

Calculations similar to those leading to equations (6) and (8) yield for any
p > 0 and h > 0,

γ|X|p(h) = (E(|Z|p))2 γσp(h) ,

γσp(h) = Ee p (Y0+Yh) − (Ee p Y )2

= exp
{

(pτ)2
∞
∑

i=0

ψ2
i

}[

exp
{

(pτ)2
∞
∑

i=0

ψi ψi+h

}

− 1
]

= e p2 γY (0)
[

e p2 γY (h) − 1
]

,

where we have assumed that E(|Z|p) < ∞. Since γY (h) → 0 as h → ∞ a
Taylor series argument yields4

4 We write f(h) ∼ g(h) as h → ∞ for two functions f and g whenever f(h)/g(h) → 1 as
h→ ∞.
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γσp(h) ∼ p2 e p2 γY (0) γY (h) , h → ∞ . (10)

Similarly,

var(σp) = e p2 γY (0)
(

e p2 γY (0) − 1
)

,

var(|X |p) = E(|Z|2p) e p2 γY (0)
(

e p2 γY (0) − 1
)

+ var(|Z|p) e p2 γY (0) ,

where we have assumed that E(|Z|2p) < ∞. Finally, we can calculate the
ACFs of (|Xt|p) and (σpt ) for h > 0:

ρσp(h) =
e p2 γY (h) − 1
e p2 γY (0) − 1

∼ p2

e p2 γY (0) − 1
γY (h) , (11)

ρ|X|p(h) =
(E(|Z|p))2

E(|Z|2p) + var(|Z|p) (e p2 γY (0) − 1)−1
ρσp(h) . (12)

The ACVF (9) of the linear causal Gaussian process (Yt) in (2) may decay
to zero arbitrarily fast. In particular, if (Yt) is a causal ARMA process, the
ACVF decays to zero at an exponential rate. On the other hand, if (Yt) is a
FARIMA(p, d, q) process with d ∈ (0, 1), γY (h) ∼ consthd−1. In particular,
the sequence (Yt) exhibits long-range dependence or long memory in the sense
that the ACVF is not absolutely summable. Otherwise, as in the ARMA case,
the sequence (Yt) is referred to as a process with short-range dependence or
short memory. We refer to Brockwell and Davis (1991) and Samorodnitsky
and Taqqu (1994) for extensive discussions on long memory processes, in
particular on FARIMA processes and their properties. See also the more
recent treatment of long memory phenomena in Doukhan et al. (2004).

We conclude from the discussion above and from formulae (10)–(12) that
γσp inherits the asymptotic behavior of the ACVF γY and, in turn, γ|X|p
inherits the asymptotic behavior of γσp . Since γY may decay to zero at any
rate we conclude that the ACVF of the processes (|Xt|p) may decay to zero at
any rate as well. This allows one to model the ACVF behavior of an absolute
return series in a flexible way, in contrast to the GARCH case. Indeed, under
general conditions on the noise, a GARCH process (At) is φ-mixing with a
geometric rate, see Mokkadem (1990), Boussama (1998), cf. Doukhan (1994).
In particular, it is strongly mixing with a rate function (αt) which decays to
zero exponentially fast. Then an appeal to (4) yields for any measurable
function f on R that γf(A)(h) → 0 at an exponential rate as h → ∞, given
that γf(A) is well defined.
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4 Moments and Tails

In this section we consider some of the marginal distributional characteristics
of a stochastic volatility process. It is straightforward that for any p > 0,

E(|X |p) = E(|Z|p)Eσp ,

and this pth moment of X is finite if and only if the pth moments of Z
and σ are finite. This naturally leads to some restrictions on the moments of
the noise (ηi) in model (2): the tails of η must not be too heavy, otherwise
Eσp = ∞ for all p > 0. This excludes in particular subexponential distri-
bution for η for which mη(p) = ∞ for all p > 0. The subexponential class
includes distributions with a power law tail (such as the student and Pareto
distributions) as well as moderately heavy-tailed distributions such as the
Weibull distribution P (η > x) = exp{−c xτ}, x > 0, for some τ ∈ (0, 1),
c > 0, and the log-normal distributions. We refer to Embrechts et al. (1997)
for an extensive treatment of subexponential distributions .

In various cases the analysis of the moments of a stochastic volatility model
can be refined by a study of the asymptotic tail behavior of the distribution
of X . The close relation between the moments and the tails can be seen e.g.,
from the fact that for any non-negative random variable A,

EA =
∫ ∞

0

P (A > x) dx . (13)

Our particular interest focuses on non-negative random variables with
power law tails of the form

P (A > x) = x−α L(x) , x > 0 , (14)

where α > 0 and L is a slowly varying function which is defined by the
asymptotic relation L(cx)/L(x) → 1 as x → ∞, for all c > 0. The class of
slowly varying functions includes constants, logarithms, iterated logarithms,
powers of logarithms. Since for every δ > 0 there exist positive constants x0

and c1, c2 such that

c1 x
−δ ≤ L(x) ≤ c2 x

δ , x ≥ x0 , (15)

the contribution of L to the tail in (14) is negligible compared to the power
law x−α. The function on the right-hand side of (14) is said to be regularly
varying with index −α, and we will also say that the distribution of A is
regularly varying with index α. It is an easy exercise to combine relations
(15) and (13) to conclude that

E(Aα+δ)

{

< ∞ , δ > 0 ,

= ∞ , δ < 0 ,
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whereas E(Aα) may be finite or infinite, depending on the slowly varying
function L. For an extensive treatment of slowly varying and regularly varying
functions and distributions and their properties, we refer the reader to the
classical encyclopedia by Bingham et al. (1987) and to Resnick (1987).

From the definition it is evident that regularly varying distributions have
heavy tails especially for small α. Therefore they are capable of capturing
the probabilities of rare erratic events such as crashes, eruptions, bursts,
and other phenomena which cannot be adequately described by commonly
used distributions such as the normal, exponential and gamma. Examples
of regularly varying distributions include the Pareto and Burr distributions
which are standard models for large claims in (re)insurance applications (see
Embrechts et al. (1997), Chapter 2), the ON-OFF distributions of Internet
teletraffic models (see Leland et al. (1993), Willinger et al. (1995), Mikosch et
al. (2002)), the one-dimensional marginals of GARCH and infinite variance
stable processes (see Goldie (1991), Embrechts et al. (1997) for the tails
of GARCH processes, Feller (1971) and Samorodnitsky and Taqqu (1994)
for the tails of stable processes). There exists empirical evidence that the
distribution of log-returns is well approximated in its left and right tails by
regularly varying distributions (possibly with different tail indices on the left
and on the right) such as the generalized Pareto distribution with positive
shape parameter (see Embrechts et al. (1997), Chapter 6, Mikosch (2003)).

The observation that log-return data have power law tails goes back at
least to the 1960s. For example, Mandelbrot (1963) suggested that infinite
variance stable distributions might be appropriate models. The latter class
of distributions is regularly varying with index α < 2, see Feller (1971) and
Samorodnitsky and Taqqu (1994). Since Mandelbrot’s contributions were not
based on rigorous statistical analysis there has been an ongoing discussion
about the value α and whether power law tails make sense for financial data at
all. A detailed statistical analysis of the tail index α of return data depends on
conditions such as strict stationarity which is unlikely to be satisfied for large
samples, whereas the estimation of α requires large samples (sizes of 1000
observations and more are desirable, see Embrechts et al. (1997), Chapters 6
and 7). Since changes in the distribution of returns are likely in large samples
it is a rather difficult task to decide a value of α that is appropriate for
the entire segment of a long series. Nevertheless, there is a strong belief by
many researchers that return data have power law tails. Using extreme value
statistics for estimating the tail index α, one often finds α to be well below
5 or 6 yet greater than 2.

Since returns may have heavy-tailed distributions it is natural to ask for
conditions on the stochastic volatility process which ensure the existence of
power law tails in the marginal distribution. Recall that Xt

d= X = σ Z,
where σt

d= σ and Zt
d= Z are independent random variables. In this context

it is useful to recall an elementary result of Breiman (1965). Let A, B be
non-negative random variables such that A is regularly varying with index α
and E(Bα+δ) < ∞ for some δ > 0. Then
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P (AB > x) ∼ E(Bα)P (A > x) , x → ∞ .

In particular, AB is regularly varying with index α. Thus the product inherits
the heavier tail of the two factors.5

An immediate consequence is that

P (X > x) = P (Z+ σ > x) ∼ E(σα)P (Z+ > x) , x → ∞ , (16)

provided Z+ = max(0, Z) has a regularly varying distribution with index
α > 0 and E(σα+δ) < ∞ for some δ > 0. The latter condition is satisfied
in model (2) with iid normal noise. Then σ is lognormal, hence all moments
E(σp), p > 0, are finite. Analogously,

P (X ≤ −x) = P (Z− σ ≥ x) ∼ E(σα)P (Z− > x) , x → ∞ ,

provided Z− = max(0,−Z) has a regularly varying distribution with index
α and E(σα+δ) < ∞ for some δ > 0. The case of σ and Z with heavy tails of
the same order of magnitude is rather involved. As a matter of fact, if both σ
and Z+ are regularly varying with index α > 0, then X+ is regularly varying
with the same index but the form of the slowly varying function L in the tail
is in general not known, see Embrechts and Goldie (1980).

Breiman’s result (16) tells us that a power law tail for X may result from
a heavy tail of the volatility σ or of the noise Z. Since we observe neither
σ nor Z we can only judge about their distributional tail on the basis of
a model such as the stochastic volatility model or the GARCH process. In
the GARCH case power law tails of P (Xt > x) are more the rule than the
exception:6 even for light-tailed Z (such as Gaussian noise) the volatility σ
will typically have power law tails.

The tail behavior of the marginal distribution of a stationary sequence (Xt)
is essential for its extremal behavior. In particular, power law behavior for
the tail P (X > x) often results in the fact that scaled maxima maxt=1,...,nXt

converge in distribution to a Fréchet distributed random variable. We study
the convergence of the extremes of a stochastic volatility process in Davis
and Mikosch (2008b). There we consider the case of regularly varying X , but
also some light-tailed X and the corresponding extreme value theory.

5 Asymptotic Theory for the Sample ACVF and ACF

In this section we briefly study the asymptotic behavior of the sample mean,
and the sample ACVFs of the stochastic volatility process (Xt), its absolute

5 Of course, E(Bα+δ) <∞ for some δ > 0 and regular variation of A with index α imply
that P (B > x) = o(P (A > x)) as x→ ∞.
6 See the article about the extremes of a GARCH process in Davis and Mikosch (2008a).
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values (|Xt|) and its squares. Recall that the sample ACVF and the sample
ACF of a stationary sequence (At) are given by

γ̂A(h) =
1
n

n−h
∑

t=1

(At −An) (At+h −An) , ρ̂A(h) =
γ̂A(h)
γA(0)

, 0 ≤ h < n ,

respectively, where An = n−1
∑n

t=1At denotes the mean of the sample
A1, . . . , An. If (σt), hence (Xt), is stationary ergodic, then the ergodic the-
orem (cf. Krengel (1985)) implies that the sample ACVFs at a fixed lag h,
γ̂σ(h), γ̂X(h), γ̂|X|i(h), i = 1, 2, converge a.s. to their corresponding determin-
istic counterparts γσ(h), γX(h), γ|X|i(h), i = 1, 2, provided that the limiting
covariances exist and are finite. The corresponding sample ACFs at a fixed
lag h will then converge a.s. to their deterministic counterparts as well.

Central limit theory for functionals of a stochastic volatility process (Xt)
is often easily established. In what follows, we give some examples which are
not exhaustive but illustrative of the techniques that are involved. Assume
that the log-volatility process (Yt) is given by the representation (2) for an iid
sequence (ηi) and that var(σ) < ∞, EZ = 0 and var(Z) = 1. We introduce
the filtration Gt = σ(Zs , ηs , s ≤ t). Then (Xt) is adapted to (Gt), var(X) < ∞
and (recall that ψ0 = 1)

E(Xt | Gt−1) = e
∑∞

i=1 ψi ηt−i E(Zt e ηt) = 0 a.s.

Hence (Xt) constitutes a finite variance martingale difference sequence and
therefore the central limit theorem for stationary ergodic martingale se-
quences applies (see Billingsley (1968)):

√
n Xn

d→ N(0, E(σ2)) .

Similarly, for h > 0, (XtXt+h) is adapted to the filtration (Gt+h), and if in
addition E(σ4) < ∞ we have

var(XtXt+h) = E(σ2
0σ

2
h) < ∞

and

E(XtXt+h | Gt+h−1) = XtE(Xt+h | Gt+h−1) = 0 a.s.

Therefore (XtXt+h) is a mean zero finite variance stationary ergodic martin-
gale difference sequence. The ergodic theorem and the central limit theorem
for stationary martingale differences yield

√
n γ̂X(h) =

√
n

n
∑

t=1

XtXt+h −
√
n(Xn)2 + oP (1)
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=
√
n

n
∑

t=1

XtXt+h + oP (1)

d→ N(0, E(σ2
0σ

2
h)) .

Central limit theory can be derived for the sample means of the absolute
values and squares of (Xt) as well as for γ̂|X|i , i = 1, 2, under additional strong
mixing conditions. In Section 2.2 we have learned that (Xt) inherits strong
mixing with a certain rate function (αt) from the log-volatility sequence (σt).
Given that the rate condition

∞
∑

t=1

α
δ/(2+δ)
t < ∞ (17)

holds for some δ > 0, one can apply a classical central limit theorem, see
Ibragimov and Linnik (1971). Condition (17) is satisfied if αt → 0 at an ex-
ponential rate. It is satisfied e.g., for Gaussian ARMA log-volatility processes
(Yt) in (2). The central limit theorem applies to any strongly mixing sequence
(At) with rate function (αt) satisfying the conditions (17) and E(|A|2+ε) < ∞
for some ε > 0. In particular, it is applicable to At = σt and At = |Xt|p for
any p > 0, but also for At = |XtXt+h|p for any p > 0. We omit further
details.

It is also possible to derive limit theory with non-Gaussian limits for the
ACVFs/ACFs of stochastic volatility processes (Xt), their absolute values and
squares when standard moment conditions such as var(X) < ∞ fail. Davis
and Mikosch (2001a) (see also Davis and Mikosch (2001b)) prove for regularly
varying Z with index α ∈ (0, 2) and a Gaussian log-volatility process (Yt) in
(2) that the scaled sample ACVF γ̂X(h) at the fixed lag h ≥ 0 converges
in distribution to an infinite variance α-stable limit (see Samorodnitsky and
Taqqu (1994) for a discussion of stable distributions) at a rate which depends
on the tail of Z. Notice that in this case, X is regularly varying with index
α and therefore var(X) = ∞, see Section 4. In particular, the notions of
ACVF/ACF are not defined. However, the sample ACF at a fixed lag h,
ρ̂X(h), converges to zero even when the ACF is not defined. The rate at which
this convergence happens is of the order n1/α, hence it is much faster than
the common

√
n-rates for Gaussian central limit theory. Analogous results

apply to the sample ACFs of the absolute values |Xt| and the squares X2
t . In

the case of the squares one has to alter the condition of regular variation: Z
must be regularly varying with index α ∈ (0, 4). Since, on the one hand, it has
become common to study the sample ACFs of squared returns and, on the
other hand, return series may have infinite moments of low order, the limit
theory for the sample ACVFs/ACFs can be quite important in situations
when one lacks sufficiently high moments.

We mention in passing that the limit theory for the sample ACVFs/ACFs
of a stochastic volatility process, its absolute values and squares very much
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parallels the corresponding theory for an iid sequence, also in the infinite
variance situation. Moreover, the limit theory for a heavy-tailed GARCH pro-
cess (Xt) is of a completely different nature, see Davis and Mikosch (1998),
Mikosch and Stărică (2000) and Basrak et al. (2002); cf. Davis and Mikosch
(2001b) and Mikosch (2003) for overviews. In particular, if the marginal dis-
tribution of a GARCH process is regularly varying with index α ∈ (2, 4)
the sample ACF ρ̂X converges to 0 at a rate much slower than

√
n and if

α ∈ (0, 2) the sample ACF has a non-degenerate limit distribution without
any normalization. The latter property would lead to completely different
graphs for the sample ACFs for disjoint time intervals. This is another prop-
erty which highlights a crucial difference between the stochastic volatility and
GARCH models for returns.
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1 Introduction

Estimators based on the Method of Moments (MM) or the Generalized
Method of Moments (GMM) have been widely applied since the early days
of the Stochastic Volatility (SV) literature. There are at least two explana-
tions for the popularity of these approaches. First, moments of financial time
series have always been of primary interest as such moments are associated
not only with volatility forecasting but also important aspects of the return
distribution such as heavy tails and return-volatility asymmetries, see e.g.,
Rosenberg (1972) and Black (1976). Second, besides modeling issues, MM
approaches are popular for their simplicity as the exact likelihood function
is difficult to evaluate in a context of parametric volatility models within the
class of hidden Markov models.

The simplicity argument often raises the criticism of lack of statistical
efficiency (see e.g. Shephard (2005), p. 13). However, in the context of highly
nonlinear dynamic models with fat tails and latent variables, asymptotic
efficiency of the maximum likelihood (ML) estimator is not always warranted.
Moreover, when efficient estimation is a well-defined target, there are at least
two different arguments for the defense of moment-based estimation.

Tractable analytic expressions for moments are no longer an issue since
simulations may provide accurate Monte Carlo counterparts to any moment
of interest. The benefits of a general Simulated Method of Moments (SMM)
approach have been widely documented in the last decade by the literature on
Indirect Inference (I.I) and Efficient Method of Moments (EMM) initiated by
Smith (1993) and later developed by Gouriéroux, Monfort and Renault (1993)
(GMR) and Gallant and Tauchen (1996) (GT). As noted by Shephard (2005),
“throughout their development of this rather general fully parametric method,
both GMR and GT had very much in mind the task of performing reasonably
efficient inference on SV models”. The key point is that the efficiency of ML
is reached by MM whenever the chosen moments are rich enough to span
the likelihood score vector (see Carrasco and Florens (2002) and Carrasco,
Chernov, Florens and Ghysels (2007) for a recent reappraisal of this classical
result). The value added by simulation based approaches is that we may
exploit a variety of moments without limitations due to a lack of closed-form
expressions.

A second reason why alleged statistical inefficiency of MM may not be
a sufficient motivation to abandon it is closely related to the motivation of
SV modeling. It is natural to identify and estimate volatility models through
their ability to reproduce the moments of interest which they have been de-
signed to capture. Of course, GMM implementations should select the set
of moments intelligently to improve estimation accuracy. However, the mo-
ments of financial interest should remain at the core of the procedure, both for
meaningful statistical identification as well as robustness to misspecification.
In fact, multivariate SV models may be spuriously identified by assumptions
about probability distributions that have little to do with the moment struc-
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ture these models are supposed to focus on. Generally, financial theory has
little to say about moments of orders beyond two, three or four. Moreover, fi-
nancial loss functions are typically less concerned with efficient inference than
with robust estimation of some moments of interest related for instance to risk
premiums, Value at Risk, and expected shortfall. In this respect, by perform-
ing allegedly efficient estimation in a fully parametric model which inevitably
has been specified rather arbitrarily, one runs the risk of contaminating the
estimation of the parameters of interest through likely misspecification of
some features of the model. This is a reason why semi-parametric identifi-
cation and inference, as provided by MM, might be an attractive option for
many purposes in the context of SV models.

Note that the two above arguments may seem to be at odds. Point one
requires a specific data generation process for simulation whereas the sec-
ond point focuses on semi-parametric procedures. The two points must be
essentially understood as applying to different circumstances. However, it is
to some extent possible to devise a simulation-based MM while maintaining
the semi-parametric philosophy of GMM (see e.g. Dridi, Guay and Renault
(2007)). Consequently, there are several reasons to view moment based esti-
mation as a valuable tool and not simply a naive method employed because
efficient inference is too complicated. We organize the review of relevant MM
estimation methods according to their objectives.

Section 2 focuses on parameters of interest for volatility forecasting. As
noted in the pioneering work of Rosenberg (1972), regression models of vari-
ance fluctuations are the right tool for that. Section 3 briefly reviews the
implication of SV model specification in terms of higher order moments:
skewness, kurtosis, variance of the variance, leverage and feedback effects.
Section 4 is devoted to continuous time stochastic volatility models. These
models often impose restrictions on the higher order return moments and
facilitate the development of tools for analyzing data from other sources like
option prices or high frequency data on returns and transaction dates. Section
5 is devoted to simulation-based methods of moments while some concluding
remarks are assembled in Section 6.

The main limitation of this chapter is that we focus on endogenous mod-
eling of volatility. With the notable exception of random durations between
trades or quotes, we never consider observed explanatory variables for the
volatility of returns other than the past realizations of returns themselves.
Hence, we will not cover "economic’ models of volatility such as in Schwert
(1989) and more recently Engle, Ghysels and Sohn (2006). Moreover, for a
comprehensive treatment of GMM estimation and inference in time series
models, we refer the reader to Hall (2005). This elegant book provides the
methodological details not covered here and includes an example of stochastic
volatility models.
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2 The Use of a Regression Model to Analyze
Fluctuations in Variance

The title of this section is borrowed from Rosenberg (1972), a seminal albeit
unpublished paper, recently reprinted in Shephard (2005). Shephard (2005)
points out that Rosenberg (1972) is "by far the closest precursor of the ARCH
class of models”. We show below that what Rosenberg labeled the “regression
model” actually encompasses most of the nowadays popular SV models as
well as the GARCH model as a limiting case.

2.1 The linear regression model for conditional variance

The key contribution of Rosenberg (1972) is to be the first to realize that fat
tails observed in asset prices changes zt+1 = log(Pt+1

Pt
) can be explained by a

decomposition:
zt+1 = mt + σtεt+1 (1)

where in his words (but different notation) “ the εt are serially independent
random variables with identical distribution function F (·) having mean equal
to zero, variance equal to one, and kurtosis equal to κ. The variables σt,
which are the variances of price changes, obey a stochastic process that can
be forecasted. The εt+1 are contemporaneously independent of the σt ”.

Then, in strikingly modern terms, he notes that “if the variance (. . . ) was
an observable variable, it would be possible to regress it directly upon ex-
planatory variables (. . . ). In reality, the variance is not observed, but the
observed squared price change is a realization of the underlying distribution
with expected value equal to the variance and, accordingly, provides a means
to carry out the regression”. Starting from a vector xt = (xkt)1≤k≤K of K ex-
planatory (or predetermined) variables, he writes down an “additive model":

σ2
t = x′tb+ ut (2)

where the disturbances ut are assumed to be serially independent with mean
zero and variance σ2

u. He also mentions explicitly that “in the absence of
operational measurements of the exogenous factors influencing this variance”,
it is possible “to employ a moving average of realized squared price changes
as an estimate of the prevailing variance”, leading to the model:

σ2
t = ω +

p
∑

i=1

αiy
2
t+1−i +

q
∑

j=1

βjσ
2
t−j + ut (3)

where
yt+1 = zt+1 −mt = σtεt+1 (4)



Moment–Based Estimation of Stochastic Volatility Models 273

is the innovation of the return process and ω denotes an unknown intercept. In
particular in the case where ut is exactly zero, he produces the GARCH(p, q).
He explicitly mentions this degenerate case by noting that it gives an upper
bound to the kurtosis of the standardized return innovation εt+1 for a given
value of the kurtosis of the return innovation yt+1. Expresssed differently, he
anticipates the key comparison by Kim, Shephard and Chib (1998) between
a genuine SV model ( non-zero ut ) with Gaussian innovations and an heavy
tailed version of the GARCH model.

Of course, as noted by Shephard (2005), what was missing in Rosenberg
(1972) and was the main insight of Engle (1982), is that "the degenerate
GARCH case is key as it produces a one-step ahead conditional model for
returns given past data, which (...) immediately yields a likelihood function".
By contrast, when the error term ut in the regression equation (3) is non
zero, this equation only provides what Drost and Nijman (1993) have called
a weak GARCH(p, q) : the linear projection σ∗2

t of σ2
t ( or equivalently, as

put in Drost and Nijman (1993), of y2
t+1) on past y2

t+1−i, i ≥ 1, is driven by
a dynamic akin to the GARCH(p, q) model:

σ∗2
t = ω +

p
∑

i=1

αiy
2
t+1−i +

q
∑

j=1

βjσ
∗2
t−j (5)

Following Francq and Zakoïan (2000), we associate weak GARCH with a no-
tion of volatility dynamics based on linear projections on past squared returns
only, while Drost and Nijman (1993), for the sake of temporal aggregation,
also consider linear projections on past returns themselves. Irrespective of
this definitional choice, the above linear weakening of the GARCH property
destroys its main advantage since the (quasi) maximum likelihood approach
does not provide a consistent estimator anymore (see Meddahi and Renault
(2004) for compelling Monte Carlo evidence). The only way to generate a
consistent estimator from the weak GARCH model (5) is to note that it pro-
vides a linear ARMA[max(p, q), q] representation for squared returns since
with ζt+1 = y2

t+1 − σ∗2
t , we have:

y2
t+1 = ω +

max(p,q)
∑

i=1

γiy
2
t+1−i −

q
∑

j=1

βjζt+1−j + ζt+1 + ut

where, for the purpose of characterizing the volatility persistence, the pa-
rameters of interest are now the γis. In particular, γi = αi + βi for
i = 1, ..,min(p, q). Note that in general the yts may be return innovations
rather than returns themselves but, by a common abuse of language, we call
them returns from now on. As noted by Rosenberg (1972), the case where all
the βjs are assumed to be zero (the weak ARCH(p) case) allows a simple GLS
estimation while in the general case (non-zero βjs) there is a classical errors-
in-variables problem: least squares estimation of the regression parameters
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γis in the regression equation (8) may not be consistent due to contempora-
neous correlation between the y2

t+1−i and the "errors" ζt+1−j . The right way
to address this estimation issue is, as shown by Francq and Zakoïan (2000),
to use instead the minimization of the sum of the squared linear innovations
of the ARMA process (y2

t ) as they can be computed from ζt and ut . One
potential drawback of any MM estimation based on the regression model (3),
including the least squares (LS) approach of Francq and Zakoïan (2000), is
that a standard GMM theory can be applied only if asset returns have a fi-
nite fourth moment. In fact, Francq and Zakoïan (2000) require finite fourth
moment for consistency and finite eight moment for asymptotic normality of
the LS estimator.

In contrast, quasi-maximum GARCH likelihood theory implies both con-
sistency and asymptotic normality, as long as the standardized innovation
εt has a finite fourth moment (see e.g. Francq and Zakoïan (2004)). The
existence of a finite fourth moment for returns themselves is a much more
restrictive condition. For instance, when the error process (ut) in (3) itself
has finite forth moment (ut ≡ 0 in the GARCH case), the required condition
can be expressed as an inequality restriction about the coefficients (αi)1≤i≤p

and (βj)1≤j≤q which coincides with the standard one for a GARCH(p, q)
model. In the simplest case of a conditionally Gaussian return process with
p = q = 1, this condition (as established for GARCH(1, 1) by Bollerslev
(1986)) is:

(α+ β)2 + 2α2 < 1 .

2.2 The SR–SARV(p) model

Drost and Nijman (1993) introduce the weak GARCH concept to exploit the
temporal aggregation properties of linear ARMA models. However, a draw-
back is that much of the useful structure of the volatility model is lost when
it comes to parameter estimation. The purpose of this section is to show that
a general regression model like (3) provides conditional moment restrictions
much more powerful for inference than the linear ARMA structure of squared
returns alone. Moreover, these conditional moment restrictions characterize
a class of stochastic volatility processes, labeled SR–SARV(p), which share
the advantage of weak GARCH in terms of temporal aggregation.

To develop the argument, let ηt+1 denote the forecast error when y2
t+1 is

forecasted by σ2
t :

y2
t+1 = σ2

t + ηt+1 (6)

E[ηt+1 |yt−h, h ≥ 0] = 0 (7)

Note that, in general, σ2
t denotes the conditional expectation of y2

t+1 given an
information set strictly larger than the one generated by values of observed
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past returns yt−h, h ≥ 0, precisely because ut �= 0. However, the conditional
moment restriction (7) can always be deduced by the law of iterated expecta-
tions. For the sake of inference from observed past returns, let us rewrite (3)
in terms of squared returns and their forecast errors. We get the regression
equation:

y2
t+1 = ω +

max(p,q)
∑

i=1

γiy
2
t+1−i −

q
∑

j=1

βjηt+1−j + ηt+1 + ut (8)

The modern way to address the aforementioned errors-in-variables problem
stressed by Rosenberg (1972)) is to deduce from (8) the following conditional
moment restrictions that identify both the volatility persistence parameters
γis and the unconditional variance ω[1 −

∑max(p,q)
i=1 γi]−1:

E[y2
t+1 − ω −

max(p,q)
∑

i=1

γiy
2
t+1−i|(yt−j , j ≥ q)] = 0 (9)

The restrictions (9) belong to the class of "Multiperiod Conditional Moment
Restrictions" studied by Hansen, Heaton and Ogaki (1988). Basically, they
characterize the ARMA[max(p, q), q] structure of squared returns. Without
heteroskedasticity in squared returns, the efficiency bound for GMM estima-
tion of the autoregressive parameters γi would coincide with the asymptotic
covariance matrix of the gaussian maximum likelihood. Unfortunately, the
squared returns are typically highly heteroskedastic and in turn, theMA error
in equation (9), [ut−

∑q
j=1 βjηt+1−j +ηt+1], will be severely heteroskedastic,

rendering the characterization of the efficiency bound (see Hansen, Heaton
and Ogaki (1988)) more complicated. The moment restrictions (9) represent
all what we know, which is more than given by the weak-GARCH struc-
ture but less than assumed via the standard GARCH specification (which
basically corresponds to ut ≡ 0). Consequently, it is natural to introduce a
class of stochastic volatility processes in between weak GARCH and standard
GARCH, as propsed by Meddahi and Renault (2004):

Definition 1 A stationary martingale difference sequence (yt) is a SR–
SARV(p) if there exists (p + 1) real numbers ω, γ1, ..., γp, such that all the
roots of the complex polynomial [1 −

∑p
i=1 γiz

i] are outside the unit circle
and:

E[y2
t+1 − ω −

p
∑

i=1

γiy
2
t+1−i|(yt−j , j ≥ p)] = 0

Note that the definition requires the martingale difference property only
with respect to the natural filtration based on past values of (yt). This does
not prevent us from interpreting the definition with respect to a wider con-
ditioning set Jt. Andersen (1994) considered the general class of SARV mod-
els where a function of the volatility process is a polynomial of an AR(1)
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process. In the case of SR–SARV(1), it is easy to see that the volatility pro-
cess σt is actually the square root of an AR(1) process (hence the acronym
SR–SARV(1) proposed by Andersen(1994)) defined by the optimal forecast
E[y2

t+1|Jt] of y2
t+1. More generally, Meddahi and Renault (2004) show that the

SR−SARV (p) property can be characterized by the fact that σ2
t = E[y2

t+1|Jt]
is a linear combination of the p components of an invertible VAR(1) process
whose innovation process is a martingale difference sequence. In turn, this
implies that the conditional variance process σ2

t is ARMA(p, p − 1) (σ2
t is

AR(1) in the case of SR–SARV(1)) but provides much richer information,
via the above moment restrictions than the weak linear ARMA structure for
the task of MM inference.

In summary, the weak GARCH of Drost and Nijman (1993) and the SR-
SARV of Meddahi and Renault (2004) are two alternative ways to relax the
GARCH definition, in order to restore robustness with respect to temporal
aggregation. While the former only maintains the GARCH structure for lin-
ear projections, the latter can be interpreted as maintaining it, up to some
exogenous shock which makes volatility stochastic. More precisely, let us as-
sume that:

σ2
t = ht + kt (10)

where ht is driven by a GARCH(p, q) equation:

ht = ω +
p

∑

i=1

αiy
2
t+1−i +

q
∑

j=1

βjht−j (11)

and, for sake of expositional simplicity, (kt) is a non-negative i.i.d. sequence
independent from the process (ht). Then, we again obtain Rosenberg’s re-
gression model (3) with:

ut = kt −
q

∑

j=1

βjkt−j − (1 −
q

∑

j=1

βj)E(kt)

Since the regression model (3) implies the conditional moment restriction (9)
which in turn corresponds to the SR–SARV(max(p, q)) property, a possible
interpretation of the latter is a GARCH plus shock model (10) and (11).
This interpretation is used (in the particular case p = q = 1) in Franses, Van
der Leij and Paap (2008) to test for GARCH(1, 1) within the more general
stochastic volatility model by testing that the variance of the shock kt is zero.
In particular, they find that fitting a GARCH(1, 1) when it is rejected tends
to inflate the estimates controlling the fatness of the tail for the standardized
innovations, in accordance with Rosenberg’s comment on the limiting case
ut ≡ 0. While Franses, Van der Leij and Paap (2008) run this test in a
parametric likelihood framework, Aguilar and Renault (2008) perform it with
a MM approach based on (9) as well as higher order conditional moment
restrictions to capture the excess kurtosis induced by a non-zero ut. These
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higher order moments are described in Section 3 below. Although beyond the
scope of this chapter, the likelihood-based test of EGARCH versus stochastic
volatility proposed by Kobayashi and Shi (2005) is also best interpreted in
the context of Exponential SARV which we study next.

2.3 The Exponential SARV model

As stressed by Engle (1995) and highlighted in the previous section, esti-
mating volatility models by time-series techniques via ARMA models for
squared returns is generally very inefficient since these models feature "in-
novations sequences which not only have time-varying variances but have
bounded support which differs over time". This may motivate a preliminary
log-transformation of the conditional variance, as also proposed by Rosenberg
(1972), before fitting an ARMA model. For instance, while σ2

t was AR(1) in
the case of the SR–SARV(1) model studied above, Taylor (1986) put forth
the so-called log-normal SARV (1) model defined as:

yt+1 = σtεt+1 (12)
log σ2

t = ω + φ log σ2
t−1 + ut

where the innovation ut of the volatility equation is assumed to be a Gaussian
white noise process with variance σ2

u. While the assumption of Gaussianity of
ut justifies the terminology of log-normal SARV model, we can more gener-
ally interpret this model semiparametrically and, following Andersen (1994),
denote it Exponential-SARV, since now the volatility process appears as the
exponential of an AR(1) process. Although it is often assumed that a dis-
tributional assumption is necessary for estimation of the SARV model (12),
Francq and Zakoïan (2006) point out this is not necessary since:

1. As already noted by Ruiz (1994), a simple transformation of (12) as:

log y2
t+1 = log σ2

t + log ε2t+1

allows to see log y2
t+1 as an AR(1) plus noise that is an ARMA(1, 1). This

ARMA(1, 1) representation allows Francq and Zakoïan to get a consistent
LS estimator of the parameters of interest up to an arbitrary value for the
expectation of log ε2t+1. This variable is clearly defined only up to some
additive constant because εt+1 is defined up to a scaling factor.

2. The main result of Francq and Zakoïan (2006) is that an ARMA(m,m)
model is valid for any power [log y2

t+1]
m , m = 1, 2, . . . . This remark

allows them to devise more accurate weighted LS estimators in the spirit
of overidentified GMM.

Of course, there is no such thing as a free lunch. Deciding to write a
regression equation in terms of log-variance instead of variance comes at a
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price which is the loss of a versatile semi-parametric link between the lin-
ear correlation structure of squared returns (rather than log-square returns)
and moments of their unobserved conditional variance. It is however worth
knowing that, when considering the necessity of a distributional assumption,
the log-normality of conditional variance appears to be a rather realistic one
according to Andersen et al. (2001, 2003).

The simple formulas of moment of a log-normal distribution actually al-
low to easily compute, when ut in (12) is log-normal, all the autocorrelations
ρy2(j) at any positive lag j between squared returns y2

t and y2
t−j and to show

that ρy2(j) is proportional to [exp(ξφj) − 1] where ξ = V ar(log σ2
t ) = σ2

u

1−φ2 .
Taylor (1986), page 75, argues that this autocorrelation function is very sim-
ilar to something like Cφj with 0 < C < 1, that is the autocorrelation
function of an ARMA(1, 1) process with positive roots for both the AR and
MA polynomials. In other words, the autocorrelogram of the squared return
process implied by the log-normal SARV (1) model (12) would be able to
mimic the one implied by the SR–SARV(1). However, it is problematic to
justify a parametric nonlinear model through its ability to approximate fea-
tures of a semiparametric linear model. Moreover Carnero, Pena and Ruiz
(2004) verify that the behavior of the two autocorrelations functions can be
rather different. The parametric specification tightly constrains the higher
order moments in a way that may be at odds with some well documented
empirical evidence, as shown in the next subsection.

At least, if one accepts the log-normal specification, it allows a rather
easy computation of many nonlinear moments and thus opens the door for
moment-based estimation. First proposed by Taylor (1986) and Melino and
Turnbull (1990), the GMM estimation of the log-normal SARV(1) model has
been thoroughly studied through Monte Carlo experiments by Andersen and
Sørensen (1996). Their key observation is twofold:

First, since the assumption of Gaussianity allows an explicit computation
of moments of any order, asymptotic efficiency considerations would lead
to consider the largest possible set of moments to match. However, it is
well known that due to fat tails in the return series, higher-order sample
moments may have a very erratic finite sample behavior. This is the reason
why one may be better off to match only a subset of the universe of possible
moments. For simplicity Andersen and Sørensen (1996) choose to match only
selected subsets of the universe of moments previously considered by Jacquier,
Polson and Rossi (1994). This universe of 24 moments includes not only the
aforementioned ARMA(1,1)-like structure through autocovariances between
squared returns at any lag j = 1, .., 10 but also similar quantities for absolute
returns as well as the first four unconditional moments of absolute returns.

The second key conclusion in Andersen and Sørensen (1996) is that when
the efficient GMM weighting matrix is estimated more precisely and inde-
pendently of the moments to match, "inclusion of additional moments almost
uniformly improves estimation performance". They noted that this observa-
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tion is in line with Altonji and Segal (1996) but had not at their disposal at
that time the recent literature on continuously updated GMM (introduced
by Hansen, Heaton and Yaron (1996)) and empirical likelihood to lessen the
impact of perverse correlation between sample counterparts of the GMM ef-
ficient moment selection matrix and the moments to match. Antoine, Bonnal
and Renault (2006) show that continuously updated GMM allows to annihi-
late such perverse correlation in the estimation of the Jacobian matrix and
they propose a way to also remove this perverse correlation in the estima-
tion of the weighting matrix. By computing higher order biases, Newey and
Smith (2004) implicitly show that, in terms of higher order asymptotics, both
improvements are performed automatically by empirical likelihood.

An additional difficulty comes with the fact that some matched moments
are absolute values, which present a point of non-differentiability at zero,
making problematic the practical computation of the Jacobian matrix. Even
though this problem does not matter asymptotically because the necessary
derivatives exist almost everywhere, it may be a serious concern in practice
due to floating point accuracy of computer calculations. Since Melino and
Turnbull (1990), there has been however a general agreement that absolute
values are highly informative moments worth incorporating. Hall (2005) (p.
336–337) provides detailed practical strategies to tackle the local non differ-
entiability problem.

2.4 Other parametric SARV models

While elementary formulas of moments of log-normal variables allowed us
in the previous section to compute the autocorrelation of squared returns
from the one of log-volatility assumed to be Gaussian, one may question the
log-normality of volatility and rather prefer alternative transformations of
the volatility process which are not as easy to deal with. Note however that
autocorrelation of squared returns and autocorrelations of squared volatility
are always tightly related by the general model (1). Under the simplifying
assumption that the processes (σt) and (εt) are globally independent (see
Section 3.2 below for a discussion of this assumption) we have for all positive
lags j:

Cov[y2
t , y

2
t−j ] = Cov[σ2

t , σ
2
t−j ] (13)

The autocovariances are identical, while the aucorrelations will differ by a
scale factor due to a different variance. Hence, it is the decay in the auto-
correlation structure that is relevant. On the maintained assumption that
the squared volatility process σ2

t can be seen as a well defined instantaneous
transformation σ2

t = H(ft) of a Gaussian and stationary process ft, how can
we compute its autocorrelation function? Granger and Newbold (1976) give
an elegant solution to this problem under the very general assumption that
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the function H(·) can be expanded in a series of Hermite polynomials. For
sake of notational simplicity, let us assume without loss of generality that the
Gaussian process ft has zero mean and unit variance. Of course, in practice,
this would simply warrant the introduction of two additional parameters for
GMM estimation. If (Pi, i = 0, 1, ...) denotes the sequence of Hermite polyno-
mials ordered by increasing degrees, let us assume for simplicity an expansion
of finite degree:

σ2
t = H(ft) =

M
∑

i=0

αiPi(ft) (14)

The key point is that, since Hermite polynomials provide an orthogonal basis
of functions for the scalar product defined by the expectation of product of
functions of jointly Gaussian variables, the autocovariance function of squared
volatilities is available in closed form. More precisely, knowing that if U and
V are distributed as bivariate Normal with zero means, unit variances and a
correlation coefficient ρ we have:

E[Pi(U)Ph(U)] = 0 i �= h

E[Pi(U)Ph(U)] = i! i = h

E [Pi(U)|V ] = ρiPi(V )

and we deduce easily:

Cov[σ2
t , σ

2
t−j ] =

M
∑

i=0

α2
i i!ρ

i
f (j)

where ρf (j) denotes the correlation between ft and ft−j . Thus the autocor-
relation function of the squared volatility process is given by:

Corr[σ2
t , σ

2
t−j ] = [

M
∑

i=0

α2
i i!]

−1
M
∑

i=0

α2
i i!ρ

i
f (j) (15)

Of course, for the purpose of MM estimation, this can be directly related to
the correlation function of the squared return process by using (13) jointly
with a straightforward computation of the variance of squared returns based
on kurtosis coefficients of the various components (see next section). As far
as squared volatilities are concerned, (15) shows that they feature less per-
sistence than the underlying Gaussian process as soon as the transformation
is nonlinear, since M > 1 implies:

Corr[σ2
t , σ

2
t−j ] < ρf (j)

Overall, as developed by Meddahi(2001), equation (14), considered for a given
M and parameters (αi)0≤i≤M in some given subset of RM+1 provides a ver-
satile parametric SARV model which generalizes the log-normal SARV model
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without giving up the advantages of "linear forecasting" as in the linear SARV
model. Note however that the space of parameters must be defined through a
set of non trivial nonlinear constraints to ensure non-negativity of the volatil-
ity process. Meddahi (2001) actually focuses on the particular case where the
"factor" ft is an AR(1) Gaussian process (ρf (j) = ρjf with 0 < ρf < 1).
The key linearity property is that, thanks to the eigenfunction property of
Hermite polynomials, Pi(ft) is an AR(1) process with autoregressive coef-
ficient ρif . Since the Hermite polynomials are uncorrelated, this model can
be viewed as a multifactor model, each of them being a SR–SARV(1). For
instance, P0(ft) + P2(ft) = f2

t is an AR(1) process with nonnegative values
and autocorrelation coefficient ρ2

f .
An important difference relative to the SR–SARV(1) models considered

in the first section is that we deal now with fully parametric models, mak-
ing moment based estimation more questionable in terms of efficiency. Note
however that for large M , we can theoretically capture all the functions of a
latent Gaussian factor which are square integrable. Moreover, one may also
consider alternative orthogonal bases of polynomials, such as the sequence of
Laguerre polynomials, associated to a factor ft driven by an AR(1) Gamma
process in order to maintain the eigenfunction property ( see Gouriéroux and
Jasiak (2006)). In this respect, one may hope to capture all the polynomial
SARV models considered by Andersen (1994) while remaining be true to the
linear features of SR-SARV. This approach is thus somewhat similar in spirit
to SemiNonParametric (SNP) expansions considered in Section 5 below for
the purpose of efficient simulation-based estimation.

3 Implications of SV Model Specification for Higher
Order Moments

3.1 Fat tails and variance of the variance

We work in this subsection under the maintained hypothesis of model (1):

yt+1 = σtεt+1 (16)

where (εt+1) is an independent white noise process, with mean zero, unit
variance and kurtosis κ. The process (εt+1) as a whole is assumed to be
independent of the volatility process (σt). This assumption will be relaxed in
the next subsection dealing with the leverage effect.
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3.1.1 Kurtosis, persistent volatility and volatile volatility

The kurtosis coefficient of the return process (yt+1) is easily deduced from
the above assumptions:

E(y4
t+1)

[E(y2
t+1)]2

= κ

[

1 +
V ar(σ2

t )
[E(σ2

t )]2

]

(17)

The decomposition (17), first put forward by Clark (1973) shows that they are
two ways to accommodate well documented leptokurtic features of financial
time series: either contemplating probability distributions for the standard-
ized innovation ε with a large kurtosis coefficient κ, or specifying a volatility
process (σ2

t ) with a large coefficient of variation. Of course, the decomposition
is not unique. A well known example is the observational equivalence between
a Student-t innovation ε and then a normal innovation combined with an ad-
ditional noise term in the volatility process to remove the square-root of the
chi-square induced by the denominator of the Student-t. As already noted by
Rosenberg (1972): for a given observed kurtosis of returns, the kurtosis of the
standardized innovation is minimized when we minimize the noise impact in
the variance process. Let us now focus on how to capture a high level of kur-
tosis through the specification of the volatility process, for a given kurtosis κ
of the standardized innovation.

Since E(σ2
t ) = V ar(yt) is invariant to model specification, the focus of

our interest is the variance of the variance V ar(σ2
t ). Consider the standard

variance decomposition:

V ar(σ2
t ) = V ar[E

(

σ2
t

∣

∣σ2
τ , τ < t)] + E[V ar

(

σ2
t

∣

∣σ2
τ , τ < t)] (18)

It shows then, when focusing on variance predictability (or volatility persis-
tence) to accommodate fat tails, we overlook another component. Fat tails
may be accommodated through high variance V ar(σ2

t ) of the variance, not
only via high volatility persistence, that is much randomness in volatility pre-
dictions E

(

σ2
t

∣

∣ σ2
τ , τ < t), but also through the second term in (18), namely

a high (average) variance of the variance.
These two goals are not as distinct as they may appear. This can be

illustrated by an eigenfunctions decomposition of the type (14) considered
above. It implies that:

E
(

σ2
t

∣

∣σ2
τ , τ < t) =

M
∑

i=0

αiρ
iPi(ft−1)

and thus:

V ar[E
(

σ2
t

∣

∣σ2
τ , τ < t)] =

M
∑

i=0

α2
i ρ

2ii! (19)

while the total variance is:
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V ar(σ2
t ) =

M
∑

i=0

α2
i i! (20)

Therefore, by focusing on observed high levels of volatility persistence as
measured by (19), we are tempted to put the maximum weight on the first
factor (M = 1) since the role of additional factors i > 1 is dampened by
exponential weighting ρi. Yet, it may be detrimental to neglect the benefits of
additional factors (M > 1) in the total variance (20) of the variance. Meddahi
(2001) provides evidence that the estimates reported in the literature for one-
factor models typically suffer from this lack of degree of freedom and thus,
cannot well accommodate fat tails.

3.1.2 Conditional moment restrictions

A practical implication of the above considerations is that, contrary to the
early literature, it is worth considering regression models for capturing jointly
not only fluctuations in the conditional variance (as in Section 2 above) but
also fluctuations in the volatility of volatility. While general eigenfunction-
based models like (14) may also be relevant in this context, we rather focus on
the natural extension of the SR-SARV model introduced above by adding a
quadratic specification of the conditional variance of the conditional variance:

V ar
(

σ2
t

∣

∣σ2
τ , τ < t) = a+ bσ2

t−1 + cσ4
t−1 (21)

For simplicity, we concentrate on a SR− SARV (1) model:

E
(

σ2
t

∣

∣σ2
τ , τ < t) = ω + γσ2

t−1 (22)

The semi-parametric model defined jointly by (21) and (22) nests many pop-
ular SV models, which are characterized by constraints on the parameters
(a, b, c) as well as some additional restrictions:

1. The GARCH(1,1) specification implies a = b = 0.
2. The Non-Gaussian Ornstein-Uhlenbeck-based SV model of Barndorff-

Nielsen and Shephard (2001) implies b = c = 0.
3. The Heston (1993) model, a special case of the affine model of Duffie, Pan

and Singleton (2000) implies c = 0. The value of a and b can be found in
Cox, Ingersoll an Ross (1985), formula (19).

For the purpose of efficient semi-parametric estimation, it is worthwhile
to apply GMM jointly to the conditional moment restrictions implied by
(21) and (22). To obtain these, it helps realizing that the above specification
means that the bivariate process (σ2

t , σ
4
t ) is a vector autoregressive process of

order 1. In particular, the squared conditional variance process admits affine
prediction formulas:
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E
(

σ4
t

∣

∣σ2
τ , τ < t) = a+ ω2 + (b+ 2ωγ)σ2

t−1 + (c+ γ2)σ4
t−1

Then, from yt+1 = σtεt+1 and Eε4t+1 = κ, we deduce :

E
[

y4
t+1 − (c+ γ2)y4

t

∣

∣ (yt−j, j ≥ 1)] = κ(a+ ω2) + κ(b + 2ωγ)σ2
t−1 (23)

It is clear from (23) that the three parameters a, b and κ cannot be identi-
fied separately. This is closely related to the observational equivalence issue
described above concerning the indeterminacy of the decomposition (17).
However, when plugging the linear SARV(1) dynamics (22) into (23), one
obtains additional moment restrictions (see (25) below) to identify c and to
improve the accuracy of the estimation of ω and γ. Basically, these additional
restrictions provide relevant information about the conditional heteroskedas-
ticity at play in the linear auto-regression equation (22). GMM estimation of
the parameters ω, γ, c and ς will therefore be performed jointly on a couple
of multiperiod conditional moment restrictions:

E
[

y2
t+1 − ω − γy2

t

∣

∣ (yt−j , j ≥ 1)] = 0 (24)

E
[

y4
t+1 − (c+ γ + γ2)y4

t + γ(c+ γ2)y4
t−1

∣

∣ (yt−j , j ≥ 2)] = ς (25)

where ς denotes the only function of a, b and κ that we can identify. Of course,
the caveat made in Subsection 2.1 is even more relevant here. The standard
GMM approach works for the above set of conditional moment restrictions
only if asset returns have finite moments until order eight at least. Using
past returns as instruments may require further strengthening such moment
conditions.

3.2 Skewness, feedback and leverage effects

Throughout Section 2, regression models for analyzing variance fluctuations
were motivated by forecasting squared returns. Moreover, in line with the
GARCH philosophy, conditional moment restrictions like (9) are typically
used with lagged squared returns as instruments. Nelson (1991) was among
the first to emphasize that there is no reason to expect the relevant con-
ditioning information to be fully encapsulated by the past squared returns
alone. In particular, the signs of past returns are informative if the relation-
ship between past returns and future volatilities is asymmetric. Indeed, the
first models of volatility clustering whereby large price movements are fol-
lowed by large volatilities needed to be refined: a decline in current prices
has relatively more effect on future volatilities than an increase in prices
of the same size. Nelson (1991) related this stylized fact, well-documented
for equity indices, to early work of Black (1976) who had attributed the
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asymmetric return-volatility relationship to changes in financial leverage or
debt-to-equity ratios.

Moreover focusing, as in Section 2, on volatility forecasting as distinct
from return forecasting is at odds with the asset pricing literature. A non-
negligible component of asset returns is a risk premium that should be related
to the quantity of risk. If the latter is predictable, the former should be
predictable as well. Engle, Lillien and Robbins (1987) introduced GARCH-
in-Mean models with a time-varying risk premium that is a strictly increasing
function of time-varying volatility. As first noted by French, Schwert and
Stambaugh (1987), this approach provides a second explanation, along with
the leverage effect, for the volatility asymmetry. If volatility is priced, an
anticipated increase in volatility will raise the required rate of return, and
necessitate an immediate asset price decline in order to allow for higher future
returns. This causality from volatility to prices has been labeled the volatility
feedback effect. Although it suggests a causal effect opposite to the leverage
effect, which involves the reverse causality from returns to volatility, the two
may be observationally equivalent if the causality lag is smaller than the time
between return observations.

Bollerslev, Litvinova and Tauchen (2006) use high frequency data to try to
disentangle leverage from volatility feedback effects. Relying on absolute high-
frequency returns as a simple volatility proxy, their results for five-minute re-
turns on S&P 500 futures data from the Chicago Mercantile Exchange clearly
support the notion of a highly significant prolonged leverage effect at the in-
traday level: irrespective of the financial interpretation, there is compelling
evidence that current returns and future volatilities are negatively correlated.
The decay in absolute values of correlations is slow and these negative cor-
relations remain significant for at least five days. In sharp contrast, there
is little or no evidence for a delayed volatility feedback that is a negative
correlation between current volatility and future returns. However, since the
correlation between current returns and current volatility is even more strik-
ingly negative than with respect to future volatilities, the authors conclude
that this can be interpreted as evidence in favor of an instantaneous volatility
feedback effect.

However, an alternative interpretation of the Bollerslev, Litvinova and
Tauchen (2006) results may be found in the conditional skewness of asset re-
turns. To illustrate the potential role for conditional skewness, let us consider
the extreme case where there is no risk premium (mt = 0) in returns. Then
the conditional covariance at time t between the next return and its squared
value can be written as:

Covt[y2
t+1, yt+1] = σ3

tEt[ε3t+1]

In other words, the observed strongly negative correlation between return and
its contemporaneous volatility may be due to negative conditional skewness.
Additional work is needed to disentangle the two effects. Finally, it is worth
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noting that such negative skewness is implied by a leverage effect at higher
frequencies. Let us imagine for instance, still in the zero risk premium case,
a negative correlation between current return and future squared returns as
typically implied by leverage effect:

Covt[yt+1, σ
2
t+1] < 0 =⇒ Covt[yt+1, y

2
t+2] < 0

Then, with a twice lower frequency, the conditional skewness of returns will
be computed as:

Et[(yt+1 + yt+2)3] = Covt[(yt+1 + yt+2), (yt+1 + yt+2)2]

and may be negative simply due to leverage while there is no skewness at the
higher frequency:

Et[(yt+1)3] = Covt[yt+1, y
2
t+1] = 0

Et[(yt+2)3] = Covt[yt+2, y
2
t+2] = 0

As far as moment-based inference is concerned, the conditional moment re-
strictions introduced in former sections may be completed respectively by:

Et[(yt+1)(y2
t+2)] = 0

and/or by:
Et[(y3

t+1)] = 0

to respectively test (or account) for zero leverage and/or zero skewness.

4 Continuous Time Models

We emphasized in Section 2 that both the weak-GARCH and the SR-SARV
model are robust to time aggregation. Even more interestingly, as respectively
shown by Drost and Werker (1996) and Meddahi and Renault (2004), they
can be seen as resulting from discrete time sampling in a continuous time
diffusion model with stochastic volatility, insofar as the factors spanning the
stochastic volatility process have a linear drift. We will consider more gen-
erally in this section a typical continuous time SV model for log-prices p(t)
with stochastic volatility and finite jump activity:

dp (t) = μ (t) dt+ σ (t) dW (t) + κ (t) dq (t) (26)

where μ (t) is a continuous and locally bounded variation process and σ (t)
is a strictly positive and càdlàg stochastic volatility process and W (t) is a
Wiener process, dq (t) is a counting process with dq (t) = 1 corresponding
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to a jump at t and dq (t) = 0 if no jump. The (possibly time-varying) jump
intensity is λ (t) and κ (t) is the jump size.

There is a vast literature on the estimation of continuous time SV mod-
els. We will therefore be selective in our coverage. In this section we focus
on moment-based estimation involving measures of realized volatility while
simulation-based MM estimators will be described in the next section.

4.1 Measuring volatility

The volatility measure appearing in equation (28) is not observable but can
be estimated from data. Estimation, which comes with sampling error, is
based on the increment of the quadratic variation over some horizon H, that
is

QVt,t+H =
∫ t+H

t

σ2 (s) ds+
∑

{s∈[t,t+H]:dq(s)=1}
κ2 (s) . (27)

Note that in the absence of jumps, the quadratic variation equals the inte-
grated variance over the period H, namely σ[2]

t,t+H defined as:

σ
[2]
t,t+H =

∫ t+H

t

σ2 (s) ds. (28)

There is now a well established asymptotic theory which pertains to statis-
tics based on samples over finite intervals involving data observed at ever
increasing frequency (see Jacod (1994, 1997), Barndorff-Nielsen and Shep-
hard (2002) as well as the recent survey by Barndorff-Nielsen and Shephard
(2007)). To proceed with estimation we define the (discrete) daily log return
as rt,t−1 = lnPt − lnPt−1 = pt − pt−1 where the t refers to daily sampling
(henceforth we will refer to the time index t as daily sampling). The intra-
daily return is then denoted rt,t−1/M = pt − pt−1/M where 1/M is the (intra-
daily) sampling frequency. It is possible to consistently estimate QVt,t+H in
(27) by summing squared intra-daily returns, yielding the so-called realized
variance, namely:

RVM
t,t+H =

MH
∑

j=1

(

r(t+H)−j/M,(t+H)−(j−1)/M

)2
. (29)

To facilitate the presentation we simplify notation by focusing exclusively
on one-day (H = 1) quadratic variation and related measures which will be
introduced shortly. Moreover, we will henceforth drop the superscript M.
Hence, we write RVt,t+1 instead of RVM

t,t+1 and let all limits and convergence
in distribution arguments apply to M → ∞ although M does not explicitly
appear in the simplified notation. Jacod (1994, 1997) and Barndorff-Nielsen
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and Shephard (2002) show that the error of realized variance is asymptotically

RVt,t+1 −QVt,t+1
√

2σ[4]
t,t+1/M

∼ N (0, 1) (30)

where σ[4]
t,t+1 =

∫ t+1

t σ(s)4ds. In the absence of jumps a feasible asymptotic
distribution is obtained by replacing σ[4]

t with a sample equivalent, namely,

RQt,t+1 = (M/3)
M
∑

j=1

(

rt−j/M,t−(j−1)/M

)4 (31)

which is called the realized quarticity. In the presence of jumps various al-
ternative measures of volatility like bipower variation have been proposed,
see the recent survey by Barndorff-Nielsen and Shephard (2007) for further
discussion.

Early work by Andreou and Ghysels (2002) as well as a recent contribution
of Ghysels, Mykland and Renault (2007) have noted that while in the limit
in-sample observations suffice to estimate current realized variation, there are
efficiency gains for any finite sample configuration, that is, there are gains
to be made in practical applications of extracting realized volatility to use
realized volatility from the previous days. This means that measurement of
volatility and modeling of volatility are mutually intertwined since refined
measures of volatility involve prediction models with possibly a price to pay
in terms of additional assumptions. Moreover, when it comes to prediction,
it is quite important to prefilter non-persistent shocks (jumps) thanks to
alternative volatility measurements like bipower variation (see e.g. Andersen,
Bollerslev and Diebold (2007)).

4.2 Moment-based estimation with realized volatility

There is a substantial literature on the estimation of SV models using (daily)
returns data. Can we possibly estimate stochastic volatility models such as in
(26) using realized volatility. The answer is affirmative, at least if we restrict
attention to specific models allowing for closed-form solutions to the moments
of volatility.

Let us first consider for the sake of notational simplicity a linear SARV
model with only one factor. In continuous time, such a model is generally
defined as:

dp(t) = σ(t)dW1(t) (32)
dσ2(t) = k(θ − σ2(t))dt + ξ(t)dW2(t)
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where (W1(t),W2(t))′ is a bivariate Brownian motion (W1(t) and W2(t) are
standard Brownian motions which are possibly correlated). Note that we
don’t need to be specific about the diffusion term ξ(t) for the volatility pro-
cess. The key moments conditions below (35) and (37) only depend on the
linear drift k(θ − σ2(t)). Only when it comes to the variance of the variance
do we need to be more specific about a functional dependence between the
process ξ(t) and the spot volatility process σ(t).

Meddahi and Renault (2004) show that (32) implies that the daily return
process yt+1 = rt,t+1 = pt+1 − pt is a SR–SARV(1). More precisely, yt+1 =
σtεt+1with:

σ2
t = (1/k)(1 − e−k)σ2(t) + [1 − (1/k)(1 − e−k)]θ (33)

σ2
t inherits the linear autoregressive structure implied by the drift in (32). It

implies a linear autoregression for volatility as in equation (22) with γ = e−k

and ω = θ(1 − e−k). From daily return data, this allows for estimation of
the parameters k and θ via the conditional moment restrictions (24). Higher
orders p of volatility autoregressive dynamics (and associated MM estimation
based on (9) with q = p) would similarly appear when considering p factors
with linear drifts within a diffusion setting like (32). It takes the form of a
simple generalization of (33) with σ2

t expressed as an affine function of the p
continuous time factors (see Meddahi and Renault (2004), Prop 2.1.).

However, with high-frequency intraday data, Bollerslev and Zhou (2002)
have proposed using time series of daily realized variances directly for GMM
estimation. The key is that σ2

t represents the conditional expectation at time
t of the integrated variance σ[2]

t,t+1. Thus, with the common notation Et for
the conditional expectation operator at time t, equation (22) simply tells us
that:

Et−1[Et(σ
[2]
t,t+1)] = ω + γEt−1(σ

[2]
t−1,t)

or by the Law of Iterated Expectations:

Et−1[σ
[2]
t,t+1 − ω − γσ

[2]
t−1,t] = 0 (34)

which is exactly the conditional moment restriction (6) of Bollerslev and Zhou
(2002). To get a moment restriction based on observed realized variances,
Bollerslev and Zhou (2002) noted that, due to the zero drift assumption in
log-price p(t), realized variance RVt,t+1 is not only a consistent but also a
“Et-unbiased” estimator of integrated variance σ

[2]
t,t+1. Therefore, equation

(34) is also valid for realized variances:

Et−1[RVt,t+1 − ω − γRVt−1,t] = 0 (35)

Bollerslev and Zhou (2002) consider also more generally the case where the
spot squared volatility process σ2(t) is the sum of two processes like above:
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σ2(t) = V1(t) + V2(t) (36)
dV1(t) = k1(θ1 − V1(t))dt+ ξ1(t)dW21(t)
dV2(t) = k2(θ2 − V2(t))dt+ ξ2(t)dW22(t)

As shown by Meddahi and Renault (2004), this two-factors volatility model
implies a SR–SARV(2) model for daily returns, again thanks to the linearity
of the drift of the volatility factors. Again, from the ARMA(2,2) structure
of squared returns in the SR–SARV(2) case (conditional moment restriction
based on (9) with q = p = 2), Bollerslev and Zhou (2002) (see their appendix
B) are able to deduce similar moment conditions extending (35) to the two-
factors case. They are even able to accomodate a Poisson jump component
with constant intensity and log-normal jump size. Consistent with other re-
cent findings in the literature, their empirical results suggest the presence of
multiple volatility factors and/or jumps. Note that, irrespective of the num-
ber of factors, doing MM estimation from (35) as Bollerslev and Zhou (2002)
do with five-minute returns data, should be more accurate than the MM
estimators based on (24), because between two “Et -unbiased” estimator of
integrated variance σ[2]

t,t+1, namely y2
t+1 and RVt,t+1, the latter is least volatile

(less noisy). Note also that, for instance in the one-factor case, an alternative
way to use the information brought by five-minute returns would have been
to directly apply (24) to five-minute returns:

Et−kδ[r2t−(k−1)δ,t−(k−2)δ − ω(δ) − γ(δ)r2t−kδ,t−(k−1)δ ] = 0 (37)

with ω(δ) = e−kδ and γ(δ) = θ(1 − e−kδ). Under the maintained assumption
that the continuous time model (32) is well-specified, the MM estimator of
the structural parameters k and θ obtained from (37) makes more efficient
use of the available information (five-minute returns) than the one derived
from (35). Why then rather using (35)? Three kinds of explanations may be
put forward.

1. High-frequency data are delicate to use directly, due to many kinds of
potential problems, including measurement errors, microstructure noise,
missing data and the cost of manipulating massive time series.

2. High-frequency data involve irregular and possibly random times of sam-
pling.

3. Last but not least, five-minute returns are hardly informative about the
autocorrelation patterns of squared returns, because the informative con-
tent of moment conditions like (37) is blurred by very strong intraday
seasonality in volatility. Andersen and Bollerslev (1997) bring compelling
evidence that intraday seasonality destroys the autocorrelation patterns
in absolute/squared returns when high-frequency data are used, thus pro-
ducing non-sensical parameter estimates for many studies estimating typ-
ical ARCH or SV models.
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However, explanations (i) and/or (iii) leave open the issue of choosing the
best aggregator, instead of focusing exclusively on daily realized variances.
Explanation (ii) motivates explicitly taking into account the presence of irreg-
ular and random arrival times of the return data in the moment conditions.
While the aggregator choice may in particular incorporate features of the in-
traday seasonality, a direct empirical study of volatility dynamics from tick by
tick data providing quote changes at random times must incorporate a time-
of-day dummy (see e.g. Renault and Werker (2008)). While a more thorough
discussion of intraday seasonality is beyond the scope of this chapter, the two
issues of daily aggregation of intraday data and random sampling times for
volatility measurement will be respectively addressed in Subsections 4.3 and
4.4 below.

Bollerslev and Zhou (2002) go one step further than MM based on (35)
by using not only the linear SARV structure (22) provided by the linear drift
in (32) but also a Heston (1993) square root specification of the volatility
process, that is ξ2(t) is an affine function of σ2(t). As already mentioned in
Section 2, these joint assumptions provide a linear vectorial autoregressive
structure for (σ2

t , σ
4
t ) conformable to (21) and (22). As stated in Section 2

Et(σ4
t+1) is an affine function of σ2

t and σ4
t , and Bollerslev and Zhou (2002)

obtain a similar result for Et[(σ
[2]
t,t+1)

2]. More precisely, it is an affine func-
tion of σ2(t) and σ4(t) by their formula (A7), and in turn of σ2

t and σ4
t by

applying (33) above again. The key issue is then to deduce a conditional
moment restriction about observed returns. While this had been made possi-
ble in Section 2 by assuming a constant conditional kurtosis, Bollerslev and
Zhou (2002) circumvent the difficulty by proceeding as if squared realized
variance (RVt,t+1)2 was an Et-unbiased estimator of squared integrated vari-
ance (σ[2]

t,t+1)
2. Since Et[RVt,t+1] = Et[σ

[2]
t,t+1] , this approximation requires

that the conditional variances are near identical:

Vt[RVt,t+1] ≈ Vt[σ
[2]
t,t+1] (38)

Sidestepping technicalities, this approximation is applicable for a large num-
ber of intraday observations, M , due to the convergence result (30). First,
it is worth knowing that this convergence is stable (see Jacod and Shiryaev
(1987), Chap. 8) which, intuitively, allows us to use the convergence result
for moments involving jointly the converging sequence and functions of the
volatility process. Then, we can heuristically deduce from (30) that:

Vt[RVt,t+1] = Vt[σ
[2]
t,t+1] + (2/M)Et[σ

[4]
t,t+1] + o(1/M) (39)

or almost equivalently:

Vt[RVt,t+1] = Vt[σ
[2]
t,t+1] + (2/M)Et[RQt,t+1] + o(1/M) (40)
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A formal derivation of (39) and (40) from (30) requires showing that the
(conditional) covariance between σ[2]

t,t+1 and the squared asymptotic standard
normal error is of order less than (1/M) (see also Andersen, Bollerslev and
Meddahi (2005) for an unconditional version of (40)). Corradi and Distaso
(2006) recently put forward a more formal analysis in a double asymptotic
setting. Still, they only consider unconditional moments.

In order to compare with the Section 2 approach of MM directly on asset
returns (M = 1) rather than on realized variances (with a large M), note
that with the assumptions of Section 2, we would have:

Vt[RVt,t+1] = Vt[y2
t+1] = (κ− 1)σ4

t

while:
(2/M)Et[RQt,t+1] = (2/3)Et[y4

t+1] = (2/3)κσ4
t

In other words, not only the term (2/M)Et[RQt,t+1] would not be a negli-
gible error in the difference between Vt[RVt,t+1] and Vt[σ

[2]
t,t+1] but it would

coincide with the former in case of conditional normality of returns (κ = 3).
As already explained, high-frequency data allow us to obtain an unbiased es-
timator, RVt,t+1 of σ[2]

t,t+1 which is much less volatile than the daily squared
return and in the limit has no more volatility than σ[2]

t,t+1. This is achieved by
cumulating, say, M equally-spaced intraday return observations. Intuitively,
this enables us to divide the spread 2Et[RQt,t+1] by a factor of M . The
Bollerslev and Zhou (2002) approximation is then clearly valid as they apply
it with five-minutes returns. In a similar vein Garcia, Lewis, Pastorello and
Renault (2006) add moment conditions based on the third conditional mo-
ment of integrated volatility as it helps to better identify the asymmetry and
leverage effects. They also use option price data via the Heston (1993) option
pricing model. Bollerslev, Gibson and Zhou (2004) adopted a very similar
approach, but considered a so-called model-free approach to recover implied
volatilities. There is clearly a trade-off between model-free and model-based
approaches to recover implied volatilities. While a model-free approach is ro-
bust to misspecification, it requires theoretically continuous strikes for option
prices or practically a very liquid market like the S & P 500 option market.
In contrast, model-based approaches may be sensitive to misspecification but
they require only a few option prices.

4.3 Reduced form models of volatility

The most successful volatility forecasting models before the advent of high
frequency data were ARCH-type models. These are roughly speaking time se-
ries models applied to squared returns. It is therefore also not surprising that
today the most successful models are time series models applied to realized
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volatility models. These are pure forecasting models, and therefore do not
relate to any explicit diffusion model. The bulk of these models use daily ag-
gregates ranging from realized volatility appearing in equation (29) or similar
measures that separate jumps from the continuous component. These models
are reviewed in Andersen et al. (2006) and Barndorff-Nielsen and Shephard
(2007).

Volatility forecasting typically involves predictions over multiple horizons,
e.g., via Value-at-Risk computations for risk management purposes, whereas
the data is sampled potentially at intra-daily frequency. An approach partic-
ularly adept at handling such situations is the the mixed data sampling, or
MIDAS approach of Ghysels, Santa-Clara and Valkanov (2005). There have
been many successful applications in the context of volatility forecasting,
including Forsberg and Ghysels (2006), Ghysels, Santa-Clara and Valkanov
(2006) and Ghysels and Sinko (2006). A generic MIDAS regression model is
as follows:

RVM
t,t+H = a+ b

τ
∑

j=1

ψj(θ)Xt−j + εt (41)

for various regressorsX and the parameters are a function of a small set of hy-
perparameters θ. Various polynomial specifications are discussed in Ghysels,
Sinko and Valkanov (2006). The regressors can be sampled at any frequency,
not necessarily daily, and the horizon is also arbitrary. The most powerful pre-
dictive regressors usually involve absolute returns, such as realized absolute
values, as documented by Forsberg and Ghysels (2006). Chen and Ghysels
(2008) provide an example of a semi-parametric MIDAS regression where X
is replaced by an unknown function of high frequency returns, i.e. m(rt−j/M )
and a polynomial that captures both daily and intra-daily decay patterns.

4.4 High frequency data with random times separating
successive observations

In this section we assume that the asset price Pt is observed at irregularly
spaced dates t0, t1, ..., tn, with 0 = t0 < t1 < ... < tn. We denote by δi, i =
1, ..., n the ith duration (δi = ti − ti−1) and, for sake of notational simplicity,
we assume that returns have a zero conditional mean. We also assume that
we control for intraday volatility patterns, either via an intraday seasonal
correction factor, or by focusing on the same given time interval every day.

In his simplest volatility model, Engle (2000) assumes that the variable
σ2
i−1 defined as:

σ2
i−1 =

hi−1

δi

where hi−1 = V ar[yti |ytj , δj , j ≤ i− 1; δi] follows a GARCH(1,1)-type equa-
tion. More precisely, under the assumption:
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E[yti |ytj , δj , j ≤ i− 1; δi] = 0 (42)

Engle (2000) specifies:

σ2
i−1 = ω + α(yti−1/

√

δi−1)2 + βσ2
i−2 (43)

In other words, in order to take into account the unequally spaced feature of
the returns, Engle (2000) assumes that the variance per time unit σ2

i follows
a GARCH(1,1) equation. In contrast, Ghysels and Jasiak (1998) specify a
GARCH equation for the total variance process h∗i defined by;

h∗i−1 = V ar[yti |ytj , δj , j ≤ i− 1] (44)

However, in order to take into account the unequally spaced nature of the
returns, Ghysels and Jasiak (1998) assume a time-varying parameter GARCH
equation with:

h∗i−1 = ωi−1 + αi−1(yti−1)
2 + βi−1h

∗
i−2 (45)

where the parameters ωi−1, αi−1, βi−1 are functions of the expected duration
Ψi−1 = E[δi|ytj , δj , j ≤ i− 1]. The functional forms adopted by Ghysels and
Jasiak (1998) are inspired by the weak GARCH representation of a GARCH
diffusion model put forward by Drost and Werker (1996) in the case of equally
spaced observation (δi = δ ∀ i). More precisely, Ghysels and Jasiak (1998)
postulate an extended validity of temporal aggregation formulas for weak
GARCH by assuming:

αi + βi = exp(−kΨi) .

It is worth stressing several differences between Engle (2000) and Ghysels
and Jasiak (1998). In contrast with Ghysels and Jasiak (1998), Engle (2000)
includes the current duration in the conditioning information. By the law of
iterated expectation, h∗i−1 is only the best forecast of hi−1 given past returns
and durations.

To better illuminate the differences between the two approaches, it is worth
revisiting the exact discretization of the continuous time model (32). Since
for any given duration δ :

E[σ2(t+ δ)|σ2(τ, τ ≤ t)] = θ + exp(−kδ)(σ2(t) − θ)

A simple computation shows that when the processes W, σ and the durations
are mutually independent:

V ar[yti |ytj , δj , j ≤ i− 1; δi] = θδi + c(kδi)(σ2
i−1 − θ)δi

where c(δ) = (1/δ)[1 − exp(−δ)]. For small durations, the function c(·) is
almost one, which shows that, in the line of Engle (2000) it is rather natural
to focus on the conditional variance by unit of time hi−1. Meddahi, Renault
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and Werker (2006) show that in this setting:

hi−1 = ωi + γihi−2 + ηi−1

where

γi = exp(−kδi−1)
c(kδi)
c(kδi−1)

, ωi = θ(1− γi), E[ηi−1|ytj , δj , j ≤ i− 1; δi] = 0 .

Therefore, for the volatility per unit of time defined as in Engle (2000), we
end up with something like an AR(1) structure of volatility, conformable to
the spirit of SR-SARV(1), but with a time varying autoregressive coefficient
along the lines of Ghysels and Jasiak (1998). In terms of conditional moment
restrictions valid for inference on the structural parameters of interest, Med-
dahi, Renault and Werker (2006) put forward the following generalization of
(24):

E[(yti/
√

δi)2 − ωi − γi(yti−1/
√

δi−1)2|ytj , δj , j ≤ i− 2] = 0

Recall, however, that such restrictions are valid only when the durations are
assumed to be independent from the volatility process. Renault and Werker
(2008) show that, more often than not, there is a significant negative corre-
lation between volatility and current duration. As a result, the conditional
volatility of future return given past information and current duration is sig-
nificantly smaller than the spot volatility multiplied by expected duration.
Renault and Werker (2008) propose a setting to extend the above conditional
moment restrictions to such a case of endogenous durations. One complica-
tion is that the expectation of functions of durations like c(·) above involves
the Laplace transform of the conditional distribution of durations. In other
words, a semi-parametric moment approach is more difficult to maintain.
Renault and Werker (2008) circumvent this difficulty by assuming that with
high frequency data, the spot volatility process can be viewed as a martingale.

5 Simulation–Based Estimation

For a parametric stochastic volatility model, the simulation tool and Monte
Carlo integration provide a versatile minimum distance estimation principle
well suited to accommodate latent volatility factors. The general approach
is labeled Simulation-based Indirect Inference (SII). It can take advantage of
any instrumental piece of information that identifies the structural param-
eters. Examples include the Simulated Method of Moments (SMM) and its
simulated-score matching version, leading to the so-called Efficient Method
of Moments (EMM). However, since the simulator is governed by the struc-
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tural model, the classical trade-off between efficiency and robustness should
be revisited.

5.1 Simulation-based bias correction

Let θ denote a vector of p unknown parameters. We want to build an accurate
estimator ˜θT of θ from an observed sample path of length T . Let us assume
that we have at our disposal some initial estimator, denoted by ˜βT . Note that
we use on purpose a letter β different from θ to stress that the estimator ˜βT
may give a very inaccurate assessment of the true unknown θ0 it is supposed
to estimate. In particular this estimator is possibly severely biased: its expec-
tation bT (θ0) does not coincide with θ0. The notation bT (θ0) indicates that
the so-called binding function (Gouriéroux and Monfort (1992)) depends on
at least two things: not only on the true unknown value of the parameters of
interest but also on the sample size. We will consider here a bias correction
procedure that can be seen as a form of parametric bootstrap performed in
a non-linear state space model of the general form:

yt = r1[y(0, t− 1), y∗(0, t), ε1t, θ], t = 1, ..., T (46)
y∗t = r2[y(0, t− 1), y∗(0, t− 1), ε2t, θ], t = 1, ..., T

where εt = (ε′1t, ε
′
2t)

′ is a white-noise process whose marginal distribution
Pε is known, (y∗t ) is a process of latent variables, typically latent volatil-
ity factors, and r1and r2 are two known functions. The parametric model
(46) recursively defines the observed endogenous variables through a path
y∗(0, T ) = (y∗t )0≤t≤T of latent ones, making path simulations possible. More
precisely, from independent random draws εht , t = 1, ...T and h = 1, ..., H in
Pε, we can now compute recursively:

y∗ht (θ) = r2[yh(0, t− 1)(θ), y∗h(0, t− 1)(θ), εh2t, θ], t = 1, ..., T ;h = 1, ..., H

yht (θ) = r1[yh(0, t− 1)(θ), y∗h(0, t)(θ), εh1t, θ], t = 1, ..., T ;h = 1, ..., H

Note that, due to the presence of a dynamic process of latent state vari-
ables, the draw of yht (θ) at each given t is conditional on past simulated
yh(0, t − 1)(θ) and not on past observed y(0, t − 1). Hence the terminology
path simulations (see Gouriéroux and Monfort (1996)). In the spirit of para-
metric bootstrap, that is resampling from a preliminary estimator, ˜βT gives
rise to H bootstrap samples yh(0, T )(˜βT ), h = 1, ..., H. On each bootstrap
sample, the same estimation procedure can be applied to get H estimators
denoted as βhT (˜βT ), h = 1, ..., H. These estimations characterize the boot-
strap distribution of ˜βT and allow for instance to approximate the unknown
expectation bT (θ0) by bT (˜βT ). Of course, bT (˜βT ) is not known in general
but may be approximated at any desired level of accuracy, from the Monte
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Carlo average 1
H

∑H
h=1 β

h
T (˜βT ), for H sufficiently large. The bias-corrected

bootstrap estimator is then defined as:

˜θT = ˜βT − [bT (˜βT ) − ˜βT ] . (47)

However, this parametric bootstrap procedure hinges on a sensible initial es-
timator, ˜βT , so that we are confident that the estimated bias [bT (˜βT ) − ˜βT ]
provides a good assessment of the true bias [bT (θ0) − θ0]. For this reason
Gouriéroux, Renault and Touzi (2000) propose an alternative iterative pro-
cedure which, at step j, improves upon an estimator ˜θjT by computing ˜θj+1

T

as:
˜θj+1
T = ˜θjT + λ[˜βT − bT (˜θjT )] (48)

for some given updating parameter λ between 0 and 1. In other words, at each
step, a new set of simulated paths yh(0, T )(˜θjT ), h = 1, ..., H , is built and it
provides a Monte Carlo assessment bT (˜θjT ) of the expectation of interest. It
is worth reminding that this does not involve new random draws of the noise
ε. Note that (47) corresponds to the first iteration of (48) in the particular
case λ = 1 with a starting value ˜θ1T = ˜βT . While this preliminary estimator is
indeed a natural starting value, the rationale for considering λ smaller than
1 is to increase the probability of convergence of the algorithm, possibly at
the cost of slower convergence (if faster update would also work). Incidently,
if this algorithm converges, the limit defines an estimator ˜θT which solves,

bT (˜θT ) = ˜βT . (49)

Gouriéroux, Renault and Touzi (2000) study more generally the properties of
the estimator (49) which represents a special case of SII estimators developed
in the next subsection. The intuition is quite clear. Let us call ˜βT the naive
estimator. Our preferred estimator ˜θT is the value of unknown parameters θ,
which, if it had been the true one, would have generated a naive estimator
which, on average, would have coincided with our actual naive estimator.
In particular, if the bias function [bT (θ) − θ] is linear with respect to θ, we
deduce bT [E( ˜θT )] = E( ˜βT ) = bT (θ0) and thus our estimator is unbiased.
Otherwise, unbiasedness is only approximately true to the extent a linear ap-
proximation of the bias is reasonable. Noting that in the context of stationary
first order autoregressive processes, the negative bias of the OLS estimator of
the correlation coefficient becomes more severely non-linear in the near unit
root case, Andrews (1993) proposed a median-unbiased estimator based on
the principle (49) with median replacing expectation. The advantage of the
median is that it is immune to non-linear monotonic transformations, while
the drawback is that it is hard to generalize to a multi-parameter setting. As
for linear autoregressive processes, estimation of SARV models with highly
persistent volatility may result in a significant downward bias in the estimates
of volatility persistence. Pastorello, Renault and Touzi (2000) document how
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the bias correction procedure is useful for volatility models with (log)linear
drift as specified in prior sections.

5.2 Simulation-based indirect inference

The key intuition of indirect inference is that defining an indirect estimator of
the parameters of interest via an initial estimator ˜βT and a binding function
bT (·) by solving the equation:

bT (˜θT ) = ˜βT

is worthwhile beyond the bias-correction setting studied above. The vector
β of so-called instrumental parameters must identify the structural parame-
ters θ but does not need to bear the same interpretation. In the early linear
simultaneous equations literature, an example of indirect inference was put
forth under the label "Indirect Least Squares" : the instrumental parameters
β, the coefficients of the reduced form, are estimated by OLS, while solving
equation (49) provides a consistent estimator of the structural parameters θ.
However, this historical example is too simple to display all the features of
Indirect Inference as more generally devised by Smith (1993) and Gouriéroux,
Monfort and Renault (1993) for two reasons:

First, the binding function is not in general available in closed form and
can be characterized only via Monte Carlo integration. Moreover, by contrast
with the simple linear example, the binding function, in general, depends on
the sample size T.

Second, most interesting examples allow for overidentification of the struc-
tural parameters, for instance through a multitude of instrumental variables
in the simultaneous equation case. This is the reason why we refer henceforth
to the auxiliary parameters β as instrumental parameters and assume that
the dimension of β is larger than (or equal to) the one of θ.

The key idea is that, as already explained in the former subsection, our
preliminary estimation procedure for instrumental parameters not only gives
us an estimation ˜βT computed from the observed sample path but also can
be applied to each simulated path yh(0, T )(θ), h = 1, ..., H. Thus, we end up,
possibly for each value of θ, with a set of H “estimations”βhT (θ), h = 1, ..., H.
Averaging them, we get a Monte Carlo binding function:

βT,H(θ) =
1
H

H
∑

h=1

βhT (θ) .

The exact generalization of what we did in the previous subsection amounts to
define the binding function bT (θ) as the probability-limit (w.r.t. the random
draw of the process ε) of the sequence βT,H(θ) when H goes to infinity.



Moment–Based Estimation of Stochastic Volatility Models 299

However, for most non-linear models, the instrumental estimators βhT (θ) are
not really reliable for finite T but only for a sample size T going to infinity.
It is then worth realizing that when T goes to infinity, for any given h =
1, ..., H, βhT (θ) should tend towards the so-called asymptotic binding function
b(θ) which is also the limit of the finite sample binding function bT (θ).

Therefore, as far as consistency of estimators when T goes to infinity is
concerned, a large number H of simulations is not necessary and we will define
more generally an indirect estimator ˜θT as solution of a minimum distance
problem:

min
θ

[˜βT − βT,H(θ)]′ΩT [˜βT − βT,H(θ)] (50)

where ΩT is a positive definite matrix converging towards a deterministic
positive definite matrix Ω. In case of a completed Monte Carlo integration
(H large) we end up with an approximation of the exact binding function-
based estimation method:

min
θ

[˜βT − bT (θ)]′ΩT [˜βT − bT (θ)] (51)

which generalizes the bias-correction procedure of the previous subsection.
As above, we may expect good finite sample properties of such an indirect
estimator since, intuitively, the finite sample bias is similar in the two quanti-
ties which are matched against each other and thus should cancel out through
the differencing procedure.

In terms of asymptotic theory, the main results under standard regularity
conditions (see Gouriéroux, Monfort and Renault (1993)) are:

1. The indirect inference estimator ˜θT converges towards the true unknown
value θ0 insofar as the asymptotic binding function identifies it:

b(θ) = b(θ0) =⇒ θ = θ0 .

2. The indirect inference estimator ˜θT is
√
T - asymptotically normal insofar

as the asymptotic binding function first-order identifies the true value via
a full-column rank for:

∂b

∂θ′
(θ0) .

3. We get an indirect inference estimator with a minimum asymptotic vari-
ance if and only if the limit-weighting matrix Ω is proportional to the
inverse of the asymptotic variance Σ∞ of

√
T [˜βT − bT (θ0)].

4. The asymptotic variance of the efficient indirect inference estimator is
the inverse of [∂b

′
∂θ (θ0)(ΣH)−1 ∂b

∂θ′ (θ
0)] with ΣH = (1 + 1

H )Σ∞.

An implication of these results is that, as far as asymptotic variance of the
indirect inference estimator is concerned, the only role of a finite number H
of simulations is to multiply the optimal variance (obtained with H = ∞) by
a factor (1 + 1

H ). Actually, when computing the indirect inference estimator
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(50), one may be reluctant to use a very large H since it involves, for each value
of θ within a minimization algorithm, computing H instrumental estimators
βhT (θ), h = 1, ..., H. In the next subsection, we introduce several techniques
for replacing these H computations by only one. However, this comes at the
price which is the likely loss of the nice finite sample properties of (50) and
(51).

In conclusion, let us stress that indirect inference is able, beyond finite
sample biases, to correct for any kind of misspecification bias. The philosophy
of this method is basically to estimate a simple model, possibly wrong, to get
easily an instrumental estimator ˜βT while a direct estimation of structural
parameters θ would have been a daunting task. Therefore, what really matters
is to use an instrumental parameters vector β which captures the key features
of the parameters of interest θ, while being much simpler to estimate. For
instance, Pastorello, Renault and Touzi (2000) as well as Engle and Lee (1996)
have proposed to first estimate a GARCH model as an instrumental model to
indirectly recover an estimator of the structural model of interest, a stochastic
volatility model much more difficult to estimate directly due to the presence of
latent variables and possibly a continuous time specification. Other natural
examples are models with latent variables such that an observed variable
provides a convenient proxy. An estimator based on this proxy suffers from a
misspecification bias but we end up with a consistent estimator by applying
the indirect inference matching. For instance, Pastorello, Renault and Touzi
(2000) use Black and Scholes implied volatilities as a proxy of realizations of
the latent spot volatility process.

5.3 Simulated method of moments

Simulated method of moments (SMM), as introduced by Ingram and Lee
(1991) and Duffie and Singleton (1993), is the simulation-based counterpart
of GMM designed to take advantage of the informational content of given
moment restrictions:

E{K[yt, z(1, t)] | z(1, t)} = k[z(1, t), θ0]

where z(1, t) stands for a vector of predetermined variables. The role of simu-
lations in this context is to provide a Monte Carlo assessment of the popula-
tion conditional moment function k[z(1, t), θ] when it is not easily available in
closed form. Thus, the natural way to extend GMM via a Monte Carlo evalu-
ation of the population moment is to minimize, over the unknown parameter
vector θ, a norm of the sample mean of:

Zt{K[yt, z(1, t)] −
1
H

H
∑

h=1

K[yht (θ), z(1, t)]}
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where Zt is a matrix of chosen instruments, that is a fixed matrix function
of z(1, t). It is then clear that the minimization program which is considered
is a particular case of (50) above with:

˜βT =
1
T

T
∑

t=1

ZtK[yt, z(1, t)]

and βT,H(θ) defined accordingly. In other words, we reinterpret SMM as a par-
ticular case of indirect inference, when the instrumental parameters to match
are simple moments rather than themselves defined through some structural
interpretations. Note however that the moment conditions for SMM could
be slightly more general since the function K[yt, z(1, t)] itself could depend
on the unknown parameters θ. In any case, the general asymptotic theory
sketched above for SII is still valid.

By contrast with general SII as presented above, an advantage of SMM is
that the instrumental parameters to match, as simple moments, are in general
easier to compute than estimated auxiliary parameters βhT (θ), h = 1, ..., H,
derived from some computationally demanding extremum estimation proce-
dure. Gallant and Tauchen (1996) have taken advantage of this remark to
propose a practical computational strategy for implementing indirect infer-
ence when the estimator ˜βT of the instrumental parameters is obtained as a
M-estimator solution of:

max
β

1
T

T
∑

t=1

qt[y(0, t), z(1, t), β] .

The key idea is then to define the moments to match through the (pseudo)-
score vector of this M-estimator. Let us denote:

K[y(0, t), z(1, t), β] =
∂qt
∂β

[y(0, t), z(1, t), β] (52)

and consider a SMM estimator of θ obtained as a minimizer of the norm of
a sample mean of:

K[y(0, t), z(1, t), ˜βT ] − 1
H

H
∑

h=1

K[yh(0, t)(θ), z(1, t), ˜βT ] .

For a suitable GMM metric, such a minimization defines a so-called simulated-
score matching estimator ˜θT of θ. In the spirit of Gallant and Tauchen (1996),
the objective function qt which defines the initial estimator ˜βT typically is the
log-likelihood of some auxiliary model. However, this feature is not needed
for the validity of the asymptotic theory sketched below. Several remarks are
in order.
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(i) By contrast with a general SMM criterion, the minimization above does
not involve the choice of any instrumental variable. Typically, over-
identification will be achieved by choosing an auxiliary model with a
large number of instrumental parameters β rather than by choosing
instruments.

(ii) By definition of ˜βT , the sample mean of K[y(0, t), z(1, t), β] defined by
(52) takes the value zero for β = ˜βT . In other words, the minimization
program above amounts to:

min
θ

‖ 1
TH

T
∑

t=1

H
∑

h=1

∂qt
∂β

[yh(0, t)(θ), z(1, t), ˜βT ] ‖ΩT (53)

where the notation ‖ · ‖ΩT stands for a norm computed with a suitable
GMM metric ΩT .

(iii) It can be shown (see Gouriéroux, Monfort and Renault (1993)) that un-
der the same assumptions as for the asymptotic theory of SII, the score
matching estimator is consistent asymptotically normal. We get a score
matching estimator with a minimum asymptotic variance if and only
if the limit-weighting matrix Ω is proportional to the inverse of the
asymptotic conditional variance of

√
T
∑T

t=1
∂qt

∂β [y(0, t), z(1, t), b(θ0)].
Then the resulting efficient score matching estimator is asymptotically
equivalent with the efficient indirect inference estimator.

(iv) Due to this asymptotic equivalence, the score-matching estimator can
be seen as an alternative to the efficient SII estimator characterized in
the previous subsection. This alternative is often referred to as Efficient
Method of Moments (EMM) since, when qt[y(0, t), z(1, t), b(·)] is the
log-likelihood of some auxiliary model, the estimator is as efficient as
maximum likelihood under correct specification of the auxiliary model.
More generally, the auxiliary model is designed to approximate the true
data generating process as closely as possible and Gallant and Tauchen
(1996) propose the Semi-Non-Parametric (SNP) modeling to this end.
These considerations and the terminology EMM should not lead to be-
lieve that Score-Matching is more efficient than Parameter-Matching
Indirect Inference. The two estimators are asymptotically equivalent
even though the Score Matching approach makes more transparent the
required spanning property of the auxiliary model to reach the Cramér
Rao efficiency bound of the structural model. Starting with the semi-
nal papers of Gallant, Hsieh and Tauchen (1997) in discrete time and
Andersen and Lund (1997) in continuous time, a large literature of es-
timation of stochastic volatilty models by EMM has been developed
within the last ten years. Chernov and Ghysels (2000) have been one
step further by using simultaneously data on the return process with
stochastic volatility and on prices of options contracts written on this
return.
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(v) Another alleged advantage of score matching with respect to parameter
matching in SII is its low computational cost. The fact is that with a
large number of instrumental parameters β, as it will typically be the
case with a SNP auxiliary model, it may be costly to maximize H times
the log-likelihood of the auxiliary model (for each value of θ along an op-
timization algorithm) with respect to β to compute βhT (θ), h = 1, ..., H.
By contrast, the program (53) minimizes only once the norm of a vec-
tor of derivatives with respect to β. However it is worth realizing that
not only is this cheaper computation likely to destroy the expected nice
finite sample properties of SII put forward in the previous subsection,
but also that the point is not really about a choice between match-
ing (instrumental) parameters β or matching the (instrumental) score
∑T

t=1
∂qt

∂β . The key issue is rather how to use H simulated paths, each
of length T, as explained below.

(vi) The sum of TH terms considered in the definition (53) of the score-
matching estimator is akin to considering only one simulated path
y1(0, TH)(θ) of size TH built from random draws as above. From such a
simulated path, estimation of instrumental parameters would have pro-
duced a vector β1

TH(θ) that could have been used for indirect inference,
that is to define an estimator ˜θT solution of:

min
θ

[˜βT − β1
TH(θ)]′ΩT [˜βT − β1

TH(θ)] . (54)

This parameter matching estimator is not more computationally de-
manding than the corresponding score matching estimator computed
from the same simulated path as solution of:

min
θ

‖ 1
TH

TH
∑

t=1

∂qt
∂β

[yh(0, t)(θ), z(1, t), ˜βT ] ‖ΩT (55)

Actually, they are even numerically identical in the case of just-identifi-
cation (dim β = dim θ). More generally, the four estimators (50), (54),
(53), (55) are asymptotically equivalent when T goes to infinity and
the GMM weighting matrix are efficiently chosen accordingly. However,
it is quite obvious that only (50) performs the right finite sample bias
correction by matching instrumental parameters values estimated on
both observed and simulated paths of lengths T. The trade off is thus
between giving up finite sample bias correction or paying the price for
computing H estimated instrumental parameters.
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5.4 Indirect inference in presence of misspecification

The econometrician’s search for a well-specified parametric model (“quest for
the Holy Grail” as stated by Monfort (1996)) and associated efficient esti-
mators even remain popular when maximum likelihood estimation becomes
intractable due to highly non-linear structure including latent variables as
typically the stochastic volatility models. The efficiency property of EMM
and more generally of SMM and SII when the set of instrumental parameters
to match is sufficiently large to span the likelihood score is often advocated
as if the likelihood score was well specified. However, the likely misspecifi-
cation of the structural model requires a generalization of the theory of SII
as recently proposed by Dridi, Guay and Renault (2007). As for maximum
likelihood with misspecification (see White (1982), Gouriéroux, Monfort and
Trognon (1984)), such a generalization entails two elements.

First, asymptotic variance formulas are complicated by the introduction of
sandwich formulas. Ignoring this kind of correction is even more detrimental
than for QMLE since two types of sandwich formulas must be taken into
account, one for the data generating process (DGP) and one for the simulator
based on the structural model, which turns out to be different from the DGP
in case of misspecification.

Secondly, and even more importantly, misspecification may imply that we
consistently estimate a pseudo-true value, which is poorly related to the true
unknown value of the parameters of interest. Dridi, Guay and Renault (2007)
put forward the necessary (partial) encompassing property of the instrumen-
tal model (through instrumental parameters β) by the structural model (with
parameters θ) needed to ensure consistency toward true values of (part of)
the components of the estimated θ in spite of misspecification. The difficult
issue is that, since structural parameters are recovered from instrumental
ones by inverting a binding function β = b(θ), all the components are in
general interdependent. The requirement of encompassing typically means
that, if one does no want to proceed under the maintained assumption that
the structural model is true, one must be parsimonious with respect to the
number of moments to match or more generally to the scope of empirical
evidence that is captured by the instrumental parameters β.

For instance, in an unpublished working paper, Dridi and Renault (see also
Dridi’s PhD thesis, University of Toulouse) show that for volatility leverage
effects incorrectly modeled as return skewness or vice versa, only well focused
instrumental parameters enable consistent estimation of the volatility persis-
tence while supposedly efficient moment matching like EMM based on a SNP
score generator would provide inconsistent estimators. Generally speaking,
robustness to misspecification requires an instrumental model choice strat-
egy quite opposite to the one commonly used for a structural model: the
larger the instrumental model, the larger the risk of contamination of the es-
timated structural parameters of interest by what is wrong in the structural
model. Of course there is no such thing as a free lunch: robustness to misspec-
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ification through a parsimonious and well-focused instrumental model comes
at the price of efficiency loss. Efficiency loss means not only lack of asymp-
totic accuracy of structural parameters estimates but also lack of power of
specification tests. By contrast, an important advantage of the SNP score
matching is to provide a battery of specification tests which, unfortunately,
more often than not will lead to the conclusion that the structural model
performs poorly in some directions and thus the allegedly efficient estimator
must be viewed with a healthy dose of skepticism.

6 Concluding Remarks

Twenty years ago, the GARCH model and its many variants became tem-
porarily dominant in the econometrics of financial time series. In these mod-
els, the conditional volatility is perfectly fitted by past observations, whereas
the SV models allow for additional uncertainty in the volatility. As observed
by Shephard (2005) about GARCH modelling, "this one-step ahead predic-
tion approach to volatility modeling is very powerful, particularly in the field
of risk management". Moreover, "it is convenient from an econometric view-
point as it immediately delivers the likelihood function as the product of
one-step ahead predictive densities". By contrast, the SV model is generally
considered difficult to estimate even though it has regained some popular-
ity recently because of the development of computationally intensive esti-
mation methods, especially MCMC. In contrast, this chapter has reviewed
alternative moment-based inference approaches to SV models. Besides their
simplicity, the MM methods have the advantage of focusing on conditional
moment restrictions which are excessively strict within a GARCH setting but
are conveniently relaxed by adopting the SV framework.

Inspection of the burgeoning literature on SV leads us to conjecture that
this chapter will need many complements in the next few years. As often in a
survey paper, we have overlooked recent developments that sound promising.
Let us sketch five important issues that are absent in this survey.

(i) The main reason why, in spite of involved technical issues, the SV
approach has not been fully subsumed by GARCH is its usefulness for option
pricing. There are at least two deep reasons for that. First, mainstream option
pricing model are written in continuous time and SV models can naturally
fit within the continuous time setting while the one-step ahead approach of
GARCH is at odds with changes in the sampling frequency. Second, option
markets are not redundant due to incompleteness of the underlying asset
market. Latent volatility factors are an excellent way to accommodate such
incompleteness. I acknowledge that econometrics of option pricing is largely
absent from the present survey. One of the reasons for that is the current
relatively minor role of moment based approaches in option pricing. The
fact is that, while a key feature of MM is to be semi-parametric, option
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pricing appears parametric in nature since one needs a risk neutral probability
measure to price a multitude of derivative contracts. However, the recent new
approach to GMM in terms of empirical likelihood may bridge the gap, as
shown recently by Gagliardini, Gouriéroux and Renault (2007).

(ii) Another way to bridge the gap between option pricing and the MM
approach to SV models is to characterize option prices as functions of mo-
ments of the appropriately defined notion of realized volatility. The presence
of jumps and leverage effects may complicate the matter (see Ji, Renault and
Yoon (2008)). Moreover, as mentioned in Section 4.2 of this survey, moment-
based estimation with realized volatility is still in its infancy. We clearly need
further work, for instance with the double asymptotic methodology of Cor-
radi and Distaso (2006), to be able to write conditional moment restrictions
about the appropriate notion of realized volatility in the presence of multiple
latent volatility factors, leverage effects and jumps.

(iii) The aforementioned discussion about the appropriate notion of re-
alized volatility paves the way for an even more general discussion about
the suitable aggregators of high frequency data. Even though this issue has
been briefly discussed in Section 4 of this survey, much more is needed. Be-
sides the mentioned intraday patterns of seasonality in volatility, one should
also take advantage of high frequency data to capture the possibly asymmet-
ric responses to news (Andersen, Bollerslev, Diebold and Vega (2003,2007),
Chen and Ghysels (2008)), the informational content of random dates of
quote changes (Renault and Werker (2008)), the difference between Lévy-
type jumps and sequences of jumps in crash periods, etc.

(iv) As acknowledged in the introduction, one should go even further by
taking into account all the explanatory power for the volatility of returns of
all observed variables other than the past realizations of returns themselves.
Note that this is another advantage of the SV approach relative to GARCH.
Since the focus is on the conditional variance given possibly latent condition-
ing information, it paves the way for incorporating any additional source of
observed relevant information that may help to filter the volatility measure
of interest.

(v) An even simpler way to increase the relevant conditioning information
is to consider a set of joint asset returns, that is to write down a multivariate
SV model. While multivariate issues are essentially absent in the present sur-
vey, the MM inference approach to SARV models put forward here is readily
extended to a multivariate setting (see Doz and Renault (2006)). This is nat-
ural as the demands of parsimony suggest capturing volatility via common
factors that are SV, since they are latent, even if they may be modeled as
GARCH (see Diebold and Nerlove (1989)). Second, as for the literature on
Factor Analysis, a key issue for multivariate volatility modeling with com-
mon factors is identification. It is then important to characterize the set
of conditional moment restrictions that are needed for identification. This
semi-parametric approach to identification is more satisfactory for our un-
derstanding of volatility dynamics than a fully parametric one. The point
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is that a likelihood approach may spuriously identify the volatility factors
through tight constraints among higher order moments enforced by the like-
lihood function but may have nothing to do with the actual volatility process.
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Parameter Estimation and
Practical Aspects of
Modeling Stochastic Volatility

Borus Jungbacker and Siem Jan Koopman

Abstract Estimating parameters in a stochastic volatility (SV) model is a
challenging task and therefore much research is devoted in this area of es-
timation. This chapter presents an overview and a practical guide of the
quasi-likelihood and the Monte Carlo likelihood methods of estimation. The
concepts of the methods are straightforward and the implementation is based
on Kalman filter, smoothing, simulation smoothing, mode calculation and
Monte Carlo simulation. These methods are general, transparent and com-
putationally fast; therefore, they provide a feasible way for the estimation of
parameters in SV models. Various extensions of the SV model are considered
and some details are provided for the effective implementation of the Monte
Carlo methods. Some empirical illustrations are given to show that the meth-
ods can be successful in measuring the unobserved volatility in financial time
series.

1 Introduction

Volatility models are concerned with the analysis of time-varying character-
istics of the variance in financial return series. The daily closure log prices of
an asset or an index evolve usually as a random walk or a process close to it;
therefore, the relative price changes often behave as a white noise series. This
empirical finding is consistent with economic theory. When markets operate
efficiently, all current information is consolidated in the price. The current
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asset price is then also the best forecast for the future asset price. The dy-
namics in the mean of asset prices can therefore be treated as not existing.
On the other hand, it is well established that the unobserved volatility in
asset returns is subject to a dynamic process. For example, a well-known em-
pirical feature in finance and economics is the temporary clustering of large
shocks in a series of daily returns. The clustering of such shocks implies serial
correlation in the squared returns.

Although various ad hoc treatments are available for analyzing time-
varying features in volatility, a model-based approach has become the indus-
try standard. The observation-driven class of models for volatility dynamics
is the well-known generalized autoregressive conditional heteroscedasticity
(GARCH) model as developed and popularized by Engle (1982) and Boller-
slev (1986). Their applications in empirical finance literature are exhaus-
tive and their extensions in the econometrics and statistics literature are
widespread; see Zivot (2008). The parameter-driven counterpart of GARCH
is the class of stochastic volatility (SV) models as formulated by Taylor (1986)
and Harvey et al. (1994). In various empirical studies it has been shown that
the SV model provides a basis for more accurate forecasts of volatility than
those provided by GARCH models; see Koopman et al. (2005). Furthermore,
SV models have a closer connection with financial economics theory. For ex-
ample, in the option pricing literature, the asset price is usually modeled by
a stochastic differential equation (SDE) such as

d logP (t) = μ(t)dt+ σ(t)dB1(t), (1)
d log σ2(t) =

{

γ + (φ− 1) log σ2(t)
}

dt+ ση dB2(t),

where P (t) is the asset price at time t, μ(t) is a drift term and σ(t) is the
volatility of the asset price at time t. The drift term μ(t) is likely to be small
and is in practice often set to zero. The stochastic properties of the mean
and variance of P (t) are determined by the independent Brownian motions
Bi(t), for i = 1, 2, and the unknown fixed coefficients γ, φ and ση. The basic
SV model is a discrete-time version of the SDE (1).

The estimation of parameters in discretized SV models is not standard
since a closed-form expression for the likelihood function does not exist; there-
fore, different approaches have been considered for inference in SV models.
Estimation can be based on approximations (quasi-maximum likelihood), nu-
merical methods for evaluating the likelihood (numerical integration) or sim-
ulation methods. Much focus in the econometrics and statistics literature is
on the use of Bayesian Markov chain Monte Carlo (MCMC) methods for
inference, see, for example, Jacquier et al. (1994) and Kim et al. (1998). In
this chapter we focus on the Monte Carlo method of evaluating the likelihood
function of the SV model. In particular, we adopt the methods of Shephard
and Pitt (1997) and Durbin and Koopman (1997) based on importance sam-
pling. Although these methods are not applicable in all situations, they are
computationally fast (in comparison with most other simulation methods)
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and relatively easy to implement. So when importance sampling methods can
be implemented successfully, they can be regarded as an effective estimation
methodology for SV models. Other estimation methods that have generated
interest are the method of moments developed by Andersen and Sorensen
(1996), frequency-domain estimation considered by Breidt et al. (1998) and
the likelihood approaches explored by Fridman and Harris (1998) and Brock-
well (2007). A general overview of the SV literature is given by the collection
of articles in the book of Shepard (2005).

Consider a time series of asset log-returns yt that is assumed to have
constant mean μ and a time-variance variance expht. The observations are
typically sampled at daily intervals. The basic version of the discretized SV
model for yt is given by

yt = μ+ exp(1
2ht)εt, εt ∼ NID(0, 1),

ht+1 = γ + φht + ηt, ηt ∼ NID(0, σ2
η),

(2)

for t = 1, . . . , n and where εt and ηs are independent of each other at all
time points t, s = 1, . . . , n. This basic SV model is a nonlinear time series
model since both ht and εt in the multiplication exp(1

2ht)εt are stochastic. It
is usually assumed that the log-volatility process is stationary but persistent,
that is, 0 < φ < 1 is typically larger than 0.8. The unconditional mean of
the log-volatility process is (1 − φ)−1γ and can be interpreted as the long-
term log variance of the asset return series yt. The unconditional variance of
the log-volatility process is (1 − φ2)−1σ2

η and is sometimes referred to as the
“volatility of volatility.” Furthermore, the stochastic time-varying variance of
the log returns yt conditional on ht is given by σ2

t = E(yt − μ)2 = expht,
for t = 1, . . . , n, where ht can be any stationary autoregressive process. The
conditional log density p(yt|ht) is then given by

log p(yt|ht) = −1
2

log 2π − 1
2
ht −

1
2

exp(−ht)(yt − μ)2, t = 1, . . . , n. (3)

The unknown coefficients that need to be estimated are γ, φ and ση and are
collected in the parameter vector ψ.

The SV model is a nonlinear and non-Gaussian time series model with
an observation equation and a state equation. The observation equation de-
scribes the relationship between the observations and the latent factors, while
the state equation provides a model description for the dynamic properties of
the latent factors. Denote y = (y1, . . . , yn)′, where yt is the scalar observation
at time t for t = 1, . . . , n, and denote θ = (θ1, . . . , θn)′, where θt is the so-
called signal at time t that is only determined by the latent factors. For the
SV model (2), we have simply θt = ht. Furthermore, the observation density
is given by p(y|θ) and the signal density is given by p(θ). For the classes of
SV models in this chapter, the conditional independence assumption applies
to the density p(y|α), that is,
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p(y|θ) =
n
∏

t=1

p(yt|θt).

The model densities p(y|θ) and p(θ) depend on a set of unknown coefficients.
In the case of (2), these are γ, φ and ση. The estimation of these coeffi-
cients will be based on maximum likelihood. The likelihood function can be
expressed as

p(y) =
∫

p(θ, y)dθ =
∫

p(y|θ)p(θ)dθ. (4)

which is an n-fold integral and is typically not tractable except in the most
trivial cases. An analytical expression for p(y) is therefore not available for
the SV class of models. We need to rely on numerical techniques for the
evaluation of p(y). In this Chapter we consider the method of Monte Carlo
integration based on importance sampling. A straightforward Monte Carlo
estimator of p(y) in (4) is p̃(y) = M−1

∑M
m=1 p(y|θm) where θm is a draw from

p(θ) and with p̃(y) → p(y) as M → ∞. However, this Monte Carlo estimator
is not efficient since many draws from p(θ) will make no contribution to p(y|θ)
and hence the estimate will be poor even for extremely high values of M .

In this article we opt for two approaches that overcome the problems as
described above. First we consider a linearization of the nonlinear obser-
vation equation. This will lead to a transformation of yt that has a linear
observation equation. Obviously, this approach is an approximation to the
SV model. Second we consider the Monte Carlo evaluation of the likelihood
function. The method of importance sampling is considered for the evalua-
tion of (4). In both approaches, state-space methods for the linear Gaussian
state-space model play a prominent role. We therefore consider a general
state-space representation of the SV model although the implications of the
results presented for the SV model will be given explicitly. The state-space
algorithms are instrumental but do not need to be discussed in much detail
since we only need to apply them. As a service to the reader, the algorithms
are briefly discussed in the Appendix. Since the SV model is discussed within
a more general setting, various extensions of the SV model can be consid-
ered as special cases too. The general method applies to each of them but
there are some differences in detail which will be reported. To illustrate the
effectiveness of the methods, some empirical illustrations are given for stock
index return series and for exchange rate series.

2 A Quasi-Likelihood Analysis Based on Kalman Filter
Methods

The basic SV model (2) is intrinsically a nonlinear model owing to the mul-
tiplication of two stochastic variables in the observation equation, that is,
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yt − μ = exp(1
2ht)εt. Since the sample mean of the log returns yt is a con-

sistent estimator of μ, we can replace μ by the sample mean. Harvey et al.
(1994) have pointed out that the basic SV model (2) can be analyzed on the
basis of a linearized version of the model. For this purpose, we consider scalar
xt as the transformation of yt and given by

xt = log(yt − ȳ)2, ȳ = n−1
n

∑

t=1

yt, (5)

for t = 1, . . . , n. Given the basic SV model for yt, a reasonable suggestion of
a model for xt is given by

xt = κ1 + ht + ut, ht+1 = γ + φht + ηt, (6)

where ut = log ε2t − κ1 is distributed by the centered logχ2 density with one
degree of freedom. The mean and variance of log ε2t are given by κ1 and κ2,
respectively. In this case, κ1 ≈ −1.27 and κ2 = π2 / 2. Model (6) is linear
and the observation disturbance has a non-Gaussian density.

However, we may consider ut also as a sequence of independent noise terms
with mean zero and variance κ2 to avoid the need to treat the density function
of ut explicitly. Linear methods can then be applied to obtain estimators of
ht that belong to the class of minimum mean squares linear estimators. The
metric for estimation can nevertheless be chosen as the Gaussian likelihood
function. Such an approach will be referred to as a quasi-maximum likelihood
analysis. It effectively considers model (6) with Gaussian disturbance terms
for the transformed series xt, that is,

xt = κ1 + ht + ut, ht+1 = γ + φht + ηt, (7)
ut ∼ NID(0, κ2), ηt ∼ NID(0, σ2

η),

for t = 1, . . . , n. This linearized SV model is an example of the linear Gaussian
state space model with the state equation for ht and the observation equation
for xt. Although the SV model usually has the log volatility ht modeled as
an autoregressive (AR) process (mean-reverting), the state-space framework
allows it to be modeled by many other linear Gaussian time series processes.

In the state-space formulation, we define θt as the signal and αt as the
state vector. A general observation equation for xt can be given by

xt = θt + ut, ut ∼ NID(0, Ht), (8)

for t = 1, . . . , n. The dynamic properties of the signal are modeled by

θt = ct + Ztαt, αt+1 = dt + Ttαt + ηt, ηt ∼ NID(0, Qt), (9)

for t = 1, . . . , n, where system vectors ct and dt and system matrices Zt,
Ht, Tt and Qt are fixed and known functions of parameter vector ψ. The
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observation xt and signal θt are scalar variables, while the state vector αt
together with the disturbance vector ηt have dimensions q×1. It follows that
model (7) is represented by xt = θt + ut, where θt = ht + κ1 is modeled by
(9) with ct = κ1, Zt = 1, Ht = κ2, αt = ht, dt = γ, Tt = φ and Qt = σ2

η.
The linearized SV model is therefore a time-invariant case of the general
linear Gaussian state space model (8) and (9). The Kalman filter and related
methods can be applied to this state-space model; see the Appendix.

Stationary autoregressive moving averages processes as well as nonstation-
ary linear processes for the signal θt can be formulated as (9). The system
vectors and matrices in (9) have appropriate dimensions and the variance
matrix Qt is positive-semidefinite. The initial state vector is normally dis-
tributed with mean a and variance matrix P . The disturbances ηt are serially
independent and are independent of the initial state vector for t = 1, . . . , n.
The joint property of a sequence of n state vectors can be expressed by the
multivariate normal density

α ∼ N(d,Ω), (10)

where

α = (α′
1, . . . , α

′
n)′ , d = T

(

a′, d′1, . . . , d
′
n−1

)′
, Ω = Tdiag(P1, Q1, . . . , Qn−1)T ′,

with

T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I 0 0 · · · 0 0
T1 I 0 . . . 0 0
T2T1 T2 I 0 0

. . .
...

Tn−2 . . . T1 Tn−2 . . . T2 Tn−2 . . . T3 I 0
Tn−1 . . . T1 Tn−1 . . . T2 Tn−1 . . . T3 · · · Tn−1 I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (11)

for t = 1, . . . , n.
It further follows that θ = (θ1, . . . , θn)′ has a multivariate normal distri-

bution given by

θ ∼ N(μ, Ψ), μ = c+ Zd, Ψ = ZΩZ ′, (12)

where

θ = c+ Zα, c = (c′1, . . . , c
′
n)′, Z = diag(Z1, . . . , Zn).

The log density of the signal is given by

log p(θ) = −n
2

log 2π − 1
2

log |Ψ | − 1
2
(θ − μ)′Ψ−1(θ − μ). (13)

The prediction error decomposition can be used to evaluate (13). Most of
the commonly used linear Gaussian time series models, including autoregres-
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sive moving average models, can be represented in state-space form with a
positive-definite variance matrix Ψ .

Define n× 1 vector x = (x1, . . . , xn)′, then

x = θ + u, u ∼ N(0, H), (14)

with u = (u1, . . . , un)′ and H = diag(H1, . . . , Hn). In case of (7), we have
Ht = κ2 for t = 1, . . . , n and H = κ2In. The linear Gaussian observation
density is given by

p(x|θ) = N(θ,H) =
n
∏

t=1

p(xt|θt). (15)

We have shown that the linearized SV model can be represented by the
general linear Gaussian state space model with signal density p(θ) and ob-
servation density p(x|θ).

2.1 Kalman filter for prediction and likelihood
evaluation

The linear Gaussian state-space model as formulated in (8) and (9) can be
analyzed using computationally efficient and fast recursive algorithms. These
methods can be applied to any linear time series model in which the dynamics
can be represented in the Markovian form. The computations are carried out
by so-called order-n operations, where n is the number of observations. The
main attractions of the state-space approach are its generality, its effective
treatment of missing observations, its handling of other messy features in time
series analysis and its natural way of carrying out one-step-ahead prediction
and long-term forecasting.

The Kalman filter is given in the Appendix. It evaluates the estima-
tor of the state vector αt conditional on the past observations Xt−1 =
{x1, . . . , xt−1} together with its conditional variance as given by

at = E(αt|Xt−1), Pt = Var(αt|Xt−1) = E[(αt−at|Xt−1)(αt−at|Xt−1)′],

respectively, for t = 1, . . . , n. It follows that the prediction of the signal is
given by ct + Ztat with mean square error ZtPtZ

′
t. Further, the observation

prediction error and its conditional variance are given by

vt = xt−E(xt|Xt−1) = xt−ct−Ztat, Ft = E(vtv′t|Xt−1) = ZtPtZ
′
t+Ht,

respectively, for t = 1, . . . , n. The prediction error decomposition allows the
log-likelihood function �(ψ) to be evaluated analytically as
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�(ψ) = −n
2

log 2π − 1
2

n
∑

t=1

logFt −
1
2

n
∑

t=1

v′tF
−1
t vt,

where ψ is the parameter vector containing the coefficients γ, φ and ση. By
maximizing the log likelihood �(ψ) with respect to ψ, we obtain estimates
for the unknown coefficients. Analytical expressions for the estimates at the
maximum of �(ψ) are not available and therefore we rely on numerical op-
timization methods such as quasi-Newton methods; see Nocedal and Wright
(1999). In the case where x is modeled by the Gaussian density p(x|θ) as in
(14), the estimate of ψ is referred to as the maximum likelihood estimate.
However, in the case of the linearized SV model (7) for xt, the estimate of
ψ, obtained by maximizing the Gaussian likelihood function, is referred to
as the quasi-maximum likelihood estimate since the assumption of a logχ2

density for ut is replaced by the assumption of a Gaussian density.
Interest in the analysis of log returns often focuses on the forecasting of

volatility for the purpose of, for example, determining option prices in the
short-term future. Volatility forecasting is based on the prediction of the
future signal conditional on the observed time series Xn = {x1, . . . , xn},
together with its conditional variance, as defined by

̂θn+j|n = E(θn+j |Xn), Vn+j|n = V ar(θn+j |Xn), j = 1, 2, 3 . . . .

The forecasts of the signal from a general state-space model can also be
obtained by the Kalman filter. This is due to the ability of the Kalman filter
to deal with missing observations whether they occur within sample or out
of sample; see the Appendix.

2.2 Smoothing methods for the conditional mean,
variance and mode

The actual measurement of the unobserved volatility given all observed log
returns is referred to as smoothing or signal extraction in the state-space
terminology. More specifically, we aim to evaluate the estimated log volatility
as defined by the conditional mean of θ conditional on the observed log returns
x (or Xn). These smoothed estimators can be obtained within the general
framework of the state-space model as follows. Given parameter estimates
of ψ, the unconditional mean, variance and covariance of observation x and
signal θ are given by

E(x) = μ, Var(x) = Σ = Ψ +H, Cov(θ, x) = Ψ. (16)

It follows from the standard lemma of the multivariate normal density that
the conditional means and variances are given by
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E(θ|x) = ̂θ = μ+ ΨΣ−1 (x− μ) , Var(θ|x) = V = Ψ − ΨΣ−1Ψ. (17)

The Kalman filter and smoother evaluate the conditional mean E(θt|x) and
variance Var(θt|x) in a recursive and computationally efficient way for a linear
Gaussian state-space model, see the Appendix. More specifically, the smooth-
ing algorithm is a backwards-operating recursion that accommodates output
of the Kalman filter and it evaluates the quantities

̂θt = E(θt|x), Vt = Var(θt|x), t = 1, . . . , n.

The evaluation of Vt enables the construction of confidence intervals for ̂θt
for t = 1, . . . , n.

Since all densities are Gaussian, the conditional or posterior mode of
p(θ|x), denoted by ˜θ, is equivalent to the conditional mean of p(θ|x), that
is, ˜θ = E(θ|x). After some minor manipulations, it follows from the first
equation in (17) that

˜θ =
(

Ψ−1 +H−1
)−1 (

H−1x+ Ψ−1μ
)

. (18)

It should be emphasized that the Kalman filter and smoother effectively
computes ˜θ for the linear Gaussian state-space model.

2.3 Practical considerations for analyzing the linearized
SV model

The linearized SV model (7) provides a full statistical analysis of log returns
by using standard state-space methods. The embedding of the model within
the general state-space framework also allows the treatment of messy features
in the time series such as missing values, irregularly spaced data, outliers and
breaks; see Harvey et al. (1998). Furthermore, the methods are computation-
ally efficient and fast. The necessary computations can be carried out by
software packages such as the user-friendly STAMP program of Koopman
et al. (2007) and the SsfPack library for Ox and S-PLUS; see Koopman et al.
(1999) and Zivot et al. (2004).

However, there is the practical inconvenience that the log returns are trans-
formed by taking logs of the squares (mean-adjusted) as in (5). In the case
where the return is very small or even zero (whether or not it is mean-
adjusted), this transformation can clearly lead to numerical problems. The
problem is often referred to as the inlier problem and has been investigated
by Breidt and Carriquiry (1996). They found that a transformation (based
on a Taylor series) suggested by Fuller (1996) has proved to be more stable.
This transformation is given by
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xt = log(y2
t + s) − s

y2
t + s

, t = 1, . . . , n,

where s is the sample variance of yt scaled by a small multiple, say, 0.02.
In practical work, this transformation of xt is preferred over (5). In the ap-
proaches described below, we do not require a transformation since the meth-
ods work with the untransformed process; see also the discussion in Davis and
Rodriguez-Yam (2005).

The mean κ1 and variance κ2 of log ε2t are considered as given in the quasi-
maximum likelihood procedure. These moments have known values and do
not need to be estimated. However, from Monte Carlo simulation studies it
has emerged that the small-sample properties for the estimates of ψ improve
when κ1 and κ2 are assumed unknown and are estimated together with the
coefficients in ψ.

Despite the effectiveness of the linearized SV model, it is unsatisfactory in
that the underlying assumptions of the SV model are not properly treated by
the approximation. Therefore, other methods have been developed to analyze
the SV model without linearization. The remaining part of this contribution
presents and discusses methods for the treatment of the SV model based on
the nonlinear formulation (2).

3 A Monte Carlo Likelihood Analysis

Given the nonlinear property of the SV model (2), the likelihood function of
the SV model does not have a convenient and analytical expression in terms
of parameter vector ψ. The likelihood function can be expressed generally by

�(ψ) = p(y;ψ) =
∫ ∞

−∞
p(y, θ;ψ)dθ, (19)

where y and θ are vectors formed by stacking the observations and states yt
and θt, respectively, as defined earlier. Given the potentially high dimensional
vectors y and θ, direct numerical evaluation of the integral is not feasible.
We therefore consider Monte Carlo methods for the evaluation of likelihood
function (19). In particular, the method of importance sampling is explored
in detail. For this purpose we adopt the trivial identity

p(y;ψ) =
∫

p(y, θ;ψ)dθ =
∫

p(y, θ;ψ)
f(θ; y, ψ)

f(θ; y, ψ)dθ = Ef

(

p(y, θ;ψ)
f(θ; y, ψ)

)

,

(20)
where Ef (·) denotes expectation with respect to some proposal density
f(θ; y, ψ) that is chosen to be as close as possible to p(θ|y;ψ) but has conve-
nient properties. The expectation Ef (·) can be evaluated by sampling from
f(θ; y, ψ) and averaging the importance weights p(y, θ;ψ) / f(θ; y, ψ).
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In the case where we choose f(θ; y, ψ) = p(θ|y;ψ), expression (20) reduces
obviously to p(y;ψ), which cannot be evaluated analytically. Furthermore,
exact sampling from p(θ|y;ψ) is usually not feasible in the context of non-
Gaussian and nonlinear state-space models such as the SV model (2). For the
importance sampling evaluation of (20), we need to find a proposal density
f(θ; y, ψ) that is sufficiently close to p(θ|y;ψ) but from which it is relatively
easy to simulate. In most practical applications of importance sampling, the
proposal density is found within the class of linear Gaussian densities. In the
context of state-space models, the proposal f(θ; y, ψ) is usually set equal to
the multivariate normal N(˜θ, V ), where ˜θ is some location measure of θ and
V is an appropriate variance matrix. The notation deliberately suggests that
location and scale are related to (18) and the second equation of (17), respec-
tively, as will become apparent later. Sampling from this multivariate normal
density can be carried out by the simulation smoother; see the Appendix.
This method is fast and straightforward and it provides the means for the
evaluation of the likelihood (19) by importance sampling.

The remainder of this section discusses the construction of an effective
proposal density, sampling from this density and the practical details of eval-
uating the likelihood function (20) by importance sampling. Other aspects
of analyzing an SV model are also discussed, including the measurement and
forecasting of volatility.

3.1 Construction of a proposal density

We adopt a multivariate normal density as the proposal density with its mean
equal to the mode of the smoothing density p(θ|y) and its curvature equal
to that of p(θ|y) at the mode. This choice of the proposal density f(θ; y) is
made since it may be sufficiently close to the smoothing density p(θ|y). It
requires us to find the mode ̂θ, by maximizing the smoothing density p(θ|y)
with respect to θ, and its Hessian matrix G, that is f(θ; y) = N(̂θ, V ), where
V = −G−1. For the basic SV model (2) we consider the general nonlinear
non-Gaussian observation model p(y|θ) and the linear Gaussian signal vector
p(θ). For this class of models, an analytical expression for the posterior mode
̂θ of p(θ|y) is not available. We therefore obtain the mode by maximizing
p(θ|y) with respect to θ using the Newton–Raphson method of optimization;
see Nocedal and Wright (1999) for a treatment of numerical optimization
methods. The dimension of θ is typically n× 1, so matrix dimensions can be
high and straightforward matrix manipulations become infeasible; therefore
efficient algorithms need to be considered.

For a given guess g of the solution for ̂θ, the Newton–Raphson method
proposes the new guess as
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g+ = g −
[

p̈(θ|y)|θ=g

]−1

ṗ(θ|y)|θ=g , (21)

where we define

ṗ(·|·) =
∂ log p(·|·)

∂θ
, p̈(·|·) =

∂2 log p(·|·)
∂θ∂θ′

. (22)

Since log p(θ|y) = log p(y|θ) + log p(θ) − log p(y), we have

ṗ(θ|y) = ṗ(y|θ) − Ψ−1(θ − μ), p̈(θ|y) = p̈(y|θ) − Ψ−1. (23)

The conditional independence assumption of the observation model implies
that p̈(y|θ) is a block diagonal matrix.

The Newton–Raphson updating step reduces to

g+ = g −
[

p̈(y|θ)|θ=g − Ψ−1
]−1 (

ṗ(y|θ)|θ=g − Ψ−1{g − μ}
)

=
[

Ψ−1 − p̈(y|θ)|θ=g

]−1 (

ṗ(y|θ)|θ=g − p̈(y|θ)|θ=g g + Ψ−1μ
)

=
(

Ψ−1 +A−1
)−1 (

A−1x+ Ψ−1μ
)

, (24)

where
A = −

[

p̈(y|θ)|θ=g

]−1

, x = g +A ṗ(y|θ)|θ=g . (25)

We note the similarity of (24) and (18). In the case where p̈(y|θ) is negative-
semidefinite for all θ, it follows that the Kalman filter and smoother can be
used to compute g+ by applying it to a state-space model with observation
equation (14) for xt as in (25) andH = A. The computation of E(θ|x) for this
model returns g+ as a result. This approach was taken by Shephard and Pitt
(1997), Durbin and Koopman (1997) and So (2003). The mode ̂θ for a non-
Gaussian nonlinear observation model is obtained by the Newton–Raphson
method where for each step the Kalman filter and smoother computes the
new guess g+. The Hessian matrix of the mode estimator ̂θ is given by G =
p̈(θ|x) = −Ψ−1 −A−1.

This approach of finding the mode ̂θ is clearly not valid when p(x|θ) is not
log-concave, so p̈(x|θ) is not negative-definite. This implies that the variance
matrix H for the observation model (14) is not positive-definite. However, it
was argued by Jungbacker and Koopman (2007) that in cases where p̈(y|θ)
is not negative-definite, the Kalman filter and smoothing recursions can still
be used for the computation of (24). The special structure of variance matrix
Ψ = ZΩZ ′ of the signal θ nevertheless allows the use of decompositions based
on triangular matrices such as T in (11). Hence, it can be shown that the
Kalman and smoothing recursions can also be used for the general model.

Although matrix Ψ +A can be indefinite, the Hessian matrix −Ψ−1 −A−1

should always be seminegative-definite for θ at or in the close neighborhood of
̂θ by construction. In cases where the Hessian matrix is not negative-definite,



Parameter Estimation and Practical Aspects of Modeling Stochastic Volatility 325

the Newton–Raphson step does not progresses to the maximum of p(θ|y) with
respect to θ. To enforce global convergence, the algorithm can be modified by
line-search and other numerical methods; see Nocedal and Wright (1999). In
general, line-search strategies often speed up the maximization and stabilize
the algorithm. A line search can be implemented by introducing the scalar
0 < λ ≤ 1 in (21) and defining

g+
λ = g − λ

[

p̈(θ|y)|θ=g

]−1

ṗ(θ|y)|θ=g . (26)

The line search consists of finding a value for λ so that

p(θ|y)|θ=g+
λ
> p(θ|y)|θ=g .

By combining (26) and (21), the line search computations are straightforward
and are given by

g+
λ = g + λ(g+ − g),

where g+ = g+
λ

∣

∣

λ=1
is computed by (24) only once for different values of 0 <

λ ≤ 1. Global convergence is ensured when an appropriate set of regularity
conditions for the line search is fulfilled; see Nocedal and Wright (1999) for
a detailed discussion. To check these conditions, it is usually necessary to
evaluate the score function.

The score vector of p(θ|y) is defined in (22) and is given by (23), that is,

∂ log p(θ|y)
∂θ

= ṗ(θ|y) = ṗ(y|θ) − Ψ−1(θ − μ).

The score can also be evaluated by the Kalman filter and smoother algo-
rithms; see Jungbacker and Koopman (2007). Given the computational device
for evaluating the score, other maximization methods may also be considered
to obtain the mode of p(θ|y). It is noted that different numerical problems can
occur during the maximization of p(θ|y) with respect to the high-dimensional
vector θ. Although line-search methods can stabilize the Newton–Raphson
method, it may be necessary to switch to other score-based or quasi-Newton
optimization methods. Therefore, this computationally efficient method of
computing the score is important in practical work.

3.2 Sampling from the importance density and Monte
Carlo likelihood

The likelihood function �(ψ) = p(y) =
∫

p(θ, y)dθ is estimated via impor-
tance sampling using the expression
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̂�(ψ) = M−1
M
∑

i=1

p(θi, y)
f(θi; y)

, θi ∼ f(θi; y). (27)

The computation of (27) requires algorithms to sample from the importance
density f(θi; y) and to evaluate for i = 1, . . . ,M the so-called importance
weight p(θi, y) / f(θi; y). In cases where the observation density p(y|θ) is log-
concave, the importance density can be represented as a linear Gaussian state
space model and the simulation smoothers of de Jong and Shephard (1995)
and Durbin and Koopman (2002) can be used to simulate from f(θ; y) in
a computationally efficient way. The derivations of these methods rely on a
properly defined linear Gaussian observation equation with positive definite
matrices for Σ and H = A. In the general case, in particular when p(y|θ) is
not log-concave, simulations can be carried out by the modified simulation
smoother proposed by Jungbacker and Koopman (2007), see Appendix. We
note that the Hessian of p(θ|y) is evaluated at θ = ̂θ and therefore matrix G
is guaranteed to be negative definite and V is positive definite as a result.

The computation of (27) further requires evaluating the importance weight
p(θi, y) / f(θi; y) for i = 1, . . . ,M . Given the linear Gaussian signal vector θ,
the evaluation of the nominator is based on the identity p(θ, y) = p(y|θ)p(θ),
where p(y|θ) is defined by the model and is usually straightforward to com-
pute. The density of the signal p(θ) for θ = θi is evaluated by the Kalman
filter since θ = c + Zα has the Markov property and the prediction error
decomposition can be applied to p(θ). Given the draw θi ∼ f(θ; y) with
f(θ; y) = N(̂θ, V ) obtained from the simulation smoother, the denominator
f(θi; y) in (27) can be evaluated using the output of the simulation smoother;
see the Appendix.

The estimator (27) is subject to Monte Carlo error. A strong law of large
numbers insists that ̂�(ψ) → �(ψ) as M → ∞ with a rate of convergence
depending on the precision of the proposal density; see Geweke (1989). The
choice of M can be relatively small when an accurate proposal density is
chosen. To identify appropriate proposal densities we may rely on a set of
tests and diagnostics; see Koopman et al. (2007). In practical work, it is
often sufficient to take M equal to 100 or 500.

For the purpose of parameter estimation, we maximize the Monte Carlo
estimator of the likelihood function ̂�(ψ) in (27) with respect to the un-
known vector ψ. The Newton–Raphson method can be used to maximize the
likelihood function directly; see also the discussion in Section 2. During the
numerical search, the same random seed is used each time the Monte Carlo
likelihood function (27) is computed for a different ψ. This ensures that ̂�(ψ)
is continuous in ψ.
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4 Some Generalizations of SV Models

The basic SV model (2) was the motivating example for the discussion of
estimation methods in the previous section. However, these methods can also
be adopted for a wider set of SV models. Some generalizations of the SV
model are presented in this section together with the details of implementing
the estimation methods.

We consider the observed time series of asset log returns yt which are
typically sampled at daily intervals but not necessarily. A general SV model
is given by

yt = μt + σtεt, εt ∼ IID(0, 1), t = 1, . . . , n, (28)

where σt is the unobserved volatility process and μt is the possibly time
varying mean of log returns. In this chapter we assume

σt = σ exp
(

1
2
θt

)

,

where θt is an unobserved linear Gaussian process and σ2 is a fixed unknown
parameter.

4.1 Basic SV model

In the basic SV model (2) the log-volatility process θt is assumed to be the
Gaussian AR process as given by θt = ht, where

ht+1 = φ1ht + . . .+ φpht+1−p + ξt, ξt ∼ NID(0, σ2
ξ ), t = 1, . . . , n,

(29)
and with p = 1. The AR(1) process for ht is given by (29) with p = 1 and is
assumed to be independent of the Gaussian innovation sequence for εt. The
mean is fixed, that is, μt = μ. Alternative specifications for μt and θt are
discussed below.

The quasi-maximum likelihood analysis of the basic SV model is discussed
in Section 2. It is made clear that such an analysis can be fully based on
standard state-space methods applied to a linear Gaussian model. The trans-
formation y∗t = log(yt−ȳ)2 as in (5), for t = 1, . . . , n, leads to the linear model
(6) for xt = y∗t , where the disturbance ut + κ1 = log ε2t is logχ2-distributed.
The quasi-likelihood approach then replaces the logχ2 by a Gaussian density
for ut with mean and variance equal to those of the logχ2 density. However,
Sandmann and Koopman (1998) considered model (6) as a linear model with
the non-Gaussian logχ2 density given by
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log p(y∗t |θt) = −1
2

log 2π +
1
2

(zt − exp zt) , zt = y∗t − θt, t = 1, . . . , n,

where θt = ht. We can adopt the Monte Carlo likelihood analysis of Section 2.
The methods presented are fairly easy to implement in this case. The posterior
mode calculations require expressions for

ṗ(y∗t |θt) =
∂

∂θt
log p(y∗t |θt), p̈(y∗t |θt) =

∂2

∂θt∂θ′t
log p(y∗t |θt), t = 1, . . . , n.

In the case of the logχ2 density p(y∗t |θt), we have

ṗ(y∗t |θt) =
1
2

(exp zt − 1) , p̈(y∗t |θt) = −1
2

exp zt, t = 1, . . . , n.

It follows that we can obtain the posterior mode via the Newton–Raphson
updating steps (24) with the tth element of x given by xt = gt+1− exp(−zt)
and the tth diagonal element of A given by At = 2 exp(−zt). Once the pos-
terior mode ˜θ has been obtained, simulation from the multivariate normal
density N(˜θ, V ) can take place via the simulation smoother and the Monte
Carlo likelihood estimator (27) can be computed as a result. Further, it can
be numerically maximized with respect to parameter vector ψ.

However, it is preferred to apply the methods of Section 3 directly on
the SV model without transforming the log returns; see Shephard and Pitt
(1997). In this case we need to treat the nonlinear observation model with
a Gaussian density for εt. The conditional density p(yt|θt) of the basic SV
model is given by (3) with ht = θt. The posterior mode can be obtained as
described in the previous paragraph but the derivatives of the model density
are different and are given by

ṗ(yt|θt) =
1
2
{

exp(−θt)(yt − μ)2 − 1
}

, p̈(yt|θt) = −1
2

exp(−θt)(yt − μ)2,

for t = 1, . . . , n. The methods for a Monte Carlo likelihood analysis can be
implemented in a way similar to what has just been described.

4.2 Multiple volatility factors

In empirical work it has been observed that volatility often exhibits long-
range dependence; see Andersen et al. (2003). Ideally, log volatility θt is
modeled by a fractionally integrated process; see Granger and Joyeau (1980).
Inference for the SV model (28) with a long-memory process for θt is often
based on the spectral likelihood function; see Breidt et al. (1998) and Ray and
Tsay (2000). Exact maximum likelihood methods were recently considered
by Brockwell (2007). In our framework, we can approximate the long-range
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dependence in the log volatility θt by considering it as a sum of independent
autoregressive factors, that is,

θt =
q

∑

i=1

hit,

where each hit represents the autoregressive process (29). The most com-
monly used specification is the two-factor model (q = 2), where one factor
models the long-run dependence and the other the short-run dependence.
The details of a Monte Carlo likelihood analysis are not different from those
for a basic SV model since p(yt|θt) remain unaltered.

4.3 Regression and fixed effects

It is often desirable to include regression effects in the specification of the
volatility. Tsiakas (2006) introduced dummy effects to account for a seasonal
pattern in the volatility of his periodic SV model. Koopman et al. (2005)
considered a regression variable that contains information on the unobserved
log-volatility process. Such regression effects can be incorporated into the SV
model by extending the log-volatility signal specification by

θt = W θ
t β + ht,

where ht is the autoregressive process (29), W θ
t is a 1×kθ vector of covariates

and β is a kθ × 1 vector of regression coefficients.
The estimation of regression effects in the volatility process can be carried

out in two ways. First, the coefficients in β can be treated as unknown param-
eters and incorporated in the parameter vector ψ. The Monte Carlo likelihood
function (27) is maximized with respect to ψ that includes β. The methods
of Section 3 can be applied straightforwardly. Second, the state vector αt in
the signal model (9) can be augmented so that it includes the coefficients in
β. In this case (9) becomes

αt =
(

ht
β

)

, θt = (1,W θ
t )αt, αt+1 =

[

φ 0
0 I

]

αt +
(

ξt
0

)

, Qt =
[

σ2
ξ 0
0 0

]

,

for t = 1, . . . , n, where ht is taken here as an AR process of order p = 1. The
initial variance matrix of the state vector P is block-diagonal with the two
blocks given by σ2

ξ / (1−φ2) and qI, where q → ∞ and I is the kθ×kθ identity
matrix. The diffuse prior for β reflects that β is fixed and unknown. State-
space methods can be adjusted to handle diffuse prior conditions exactly;
see Chapter 5 in Durbin and Koopman (2001). The Monte Carlo likelihood
analysis of Section 3 also applies in this case. Depending on which way β is
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estimated, the estimates will not be the same since the conditional likelihood
approach produces a Monte Carlo maximum likelihood estimate, while the
marginal likelihood approach produces a Monte Carlo conditional mean of β
given the observations y; however, the differences are likely to be small. A
similar discussion applies to linear Gaussian state-space models; see de Jong
(1991).

Finally, regressors for the expected return can be included by the specifi-
cation

μt = μ+Wμ
t δ,

where μ is an unknown fixed constant, Wμ
t is a 1 × kμ vector of covariates

and δ is a kμ × 1 vector of regression coefficients. In this case we can regard
model (28) as a regression model with SV errors. We include μ and δ in ψ
and estimate ψ by Monte Carlo maximum likelihood using the methods of
Section 3.

4.4 Heavy-tailed innovations

The excess kurtosis found in financial time series is often larger than can be
explained by the basic SV model. This is caused by the fact that the excess
kurtosis in the SV model is generated solely by randomness in the volatility.
The model can be generalized by assuming that the innovations εt have a
scaled t distribution. In this way, the dynamic properties of log volatility and
and the thickness of tails are modeled separately. Examples of this approach
can be found in Fridman and Harris (1998), Liesenfeld and Jung (2000) and
Lee and Koopman (2004). We consider the SV model (28) with a scaled
t distribution for εt. Its observation density is given by

log p(yt|θt) = log
Γ (ν2 + 1

2 )
Γ (ν2 )

− 1
2

{

log σ2(ν − 2) + θt + (ν + 2) log
(

1 +
y2
t

(ν − 2)σ2
t

)}

,

for t = 1, . . . , n, while the first and the second derivative with respect to θt
are given by

ṗ(yt|θt) =
1
2

+
1
2

(ν + 1)y2
t

(ν − 2)σ2
t + y2

t

, p̈(yt|θt) = −1
2
σ2
t (ν − 2)(ν + 1)y2

t

{(ν − 2)σ2
t + y2

t }
2 ,

for t = 1, . . . , n. The further details of a Monte Carlo likelihood analysis for
this model are not different from those provided for a basic SV model in
Section 3.
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4.5 Additive noise

The basic SV model assumes that there is only one source of error. The SV
model with additive noise assumes that there is an additional Gaussian noise
term with constant variance, more specifically

μt = ζt, ζt ∼ NID(0, σ2
ζ ).

This model was used in the context of high-frequency returns in Jungbacker
and Koopman (2005). In the special case σ2

ζ = 0 this model reduces to the
basic SV model. The observation density is given by

log p(yt|θt) = −1
2

log 2π − 1
2

log
(

σ2
ζ + σ2

t

)

− 1
2

y2
t

(σ2
ζ + σ2

t )
,

while the first and the second derivative with respect to θt are given by

ṗ(yt|θt) =
σ2
t

2(σ2
t + σ2

ζ )

{

y2
t

(σ2
t + σ2

ζ )
− 1

}

and

p̈(yt|θt) =
σ2
t

2(σ2
t + σ2

ζ )

{

σ2
t + y2

t

(σ2
t + σ2

ζ )
− σ2

t y
2
t

(σ2
t + σ2

ζ )2
− 1

}

,

for t = 1, . . . , n, respectively. Since p̈(yt|θt) is not necessarily negative for
all t = 1, . . . , n, the observation density is not necessarily log-concave. We
therefore need to rely on the arguments of Jungbacker and Koopman (2007)
to carry out a Monte Carlo likelihood analysis. However, the methods and
techniques have not changed intrinsically and the descriptions in Section 3
still apply.

4.6 Leverage effects

The leverage effect occurs if a negative return increases the volatility more
than a positive return of the same magnitude decreases it; see the seminal
paper of Black (1976) where this phenomenon was described originally. The
leverage effect is incorporated in the SV model by allowing correlation be-
tween the innovations of the state and the observation equation; see Yu (2005)
for a detailed discussion. The SV model with leverage and based on an AR(1)
process for log volatility is given by

yt = σ exp(
1
2
ht)εt, ht+1 = φht + ξt,

(

εt
ξt

)

∼ NID
(

0,
[

1 σξρ
σξρ σ2

ξ

])

,
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for t = 1, . . . , n. The correlation coefficient ρ is typically negative, implying
that negative shocks in the return are accompanied by positive shocks in the
volatility and vice versa.

The general formulation of the SV model with leverage requires both ht
and ξt with t = 1, . . . , n in θ since ht appears directly in the observation
equation and ξt is required to measure the correlation with εt. The variance
matrix Ψ of the signal θ in (12) is therefore singular and the methods of
Section 3 clearly break down. We treat this problem by following Jungbacker
and Koopman (2007) and reformulate the model by

yt = σ exp(
1
2
h∗t ) {ε∗t + sign(ρ)ξ2t} , ε∗t ∼ NID(0, 1 − |ρ|),

where

h∗t+1 = φh∗t + σξ (ξ1,t + ξ2t) , ξ1t ∼ NID(0, 1 − |ρ|), ξ2t ∼ NID(0, |ρ|),

for t = 1, . . . , n, with h∗1 ∼ N{0, σ2
ξ(1 − φ2)−1}. The disturbances ε∗t , ξ1t

and ξ2t are mutually and serially independent disturbances for t = 1, . . . , n.
The signal vector for this model formulation contains h∗t and ξ2t with t =
1, . . . , n and the corresponding variance matrix Ψ is nonsingular as required.
In terms of the general formulation (9), we have αt = (h∗t , σξξ2,t)

′, ξt =
σξ(ξ1,t , ξ2,t+1)′ and

θt = αt, αt+1 =
[

φ 1
0 0

]

αt + ξt,
ξt ∼ NID

{

0, σ2
ξdiag(1 − |ρ|, |ρ|)

}

,

α1 ∼ NID
{

0, σ2
ξdiag([1 − φ2]−1, |ρ|)

}

,

for t = 1, . . . , n. The observations y1, . . . , yn have the conditional density
log p(y|θ) =

∑n
t=1 log p(yt|θt), where

log p(yt|θt) = c−1
2
h∗t−

1
2
σ−2 exp(−h∗t )(1−|ρ|)−1{yt−σ exp(

1
2
h∗t )sign(ρ)ξ2,t}2,

for t = 1, . . . , n, where c is some constant. Expressions for the 2 × 1 vec-
tor ṗ(yt|θt) and the 2 × 2 matrix p̈(yt|θt), as defined in (22), can be ob-
tained straightforwardly. It turns out that density p(y|θ) is not necessarily
log-concave. The Monte Carlo estimator (27) of the likelihood function can
be evaluated by using the methods of Section 3 and by adopting the argu-
ments of Jungbacker and Koopman (2007), who also presented an empirical
illustration.
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4.7 Stochastic volatility in mean

As investors require a larger expected return if the risk is large, it seems
reasonable to expect a positive relationship between volatility and returns.
Empirical evidence however points to a negative influence of volatility on re-
turns; see French et al. (1987). This effect can be explained by assuming a
positive relationship between expected return and ex ante volatility. Koop-
man and Hol-Uspensky (2002) proposed capturing this so-called volatility
feedback effect by including volatility as a regression effect in the mean:

μt = a+ byt−1 + dσ exp
(

1
2
θt

)

,

where a, b, d and σ2 are parameters. We assume that both mean and variance
processes are stationary. The volatility feedback effect coefficient d is typically
negative, if not zero.

The observation density is given by

log p(yt|θt) = −1
2

log 2π − 1
2

log σ2 − 1
2
ht −

(

yt − a− byt−1 − dσ2
t

)2

2σ2
t

,

while the first and the second derivative with respect to θt are given by

ṗ(yt|θt) = −1
2

+
(

yt − a− byt−1 − dσ2
t

)

d+

(

yt − a− byt−1 − dσ2
t

)2

2σ2
t

and
p̈(yt|θt) = −1

2
− d2σ2

t − ṗ(yt|θt),

for t = 1, . . . , n, respectively. It can be shown that density p(y|θ) is log-
concave, so p̈(yt|θt) < 0 for all t = 1, . . . , n. The further details of a Monte
Carlo likelihood analysis for this model are therefore not different from those
provided for a basic SV model in Section 3.

5 Empirical Illustrations

Three financial time series are analyzed to illustrate the methods presented in
this chapter. The daily returns of the Standard & Poor’s 500 (S&P500) stock
index (January 3, 1991 to October 20, 2006: 3,985 observations, weekends
and holidays excluded), the daily changes in the US dollar–pound sterling
exchange rates and the daily changes in the US dollar–Japanese yen exchange
rates (both for January 3, 1990 to October 20, 2006: 4,383 observations,
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weekends excluded but with missing values for holidays). These time series
are obtained from Datastream and are presented graphically in Fig. 1.

1992 1994 1996 1998 2000 2002 2004 2006

−5

0

5 S&P500

1990 1992 1994 1996 1998 2000 2002 2004 2006

−2.5

0.0

2.5 Dollar−Pound

1990 1992 1994 1996 1998 2000 2002 2004 2006

−2.5

2.5

Dollar−Yen

Fig. 1 Daily returns of S&P500 and daily changes of dollar–pound and dollar–yen ex-
change rate series

5.1 Standard & Poor’s 500 stock index: volatility
estimation

The volatility in the S&P500 returns is subject to some breaks: low volatility
before 1997, high volatility between 1997 and 2004 with peaks in the after-
math of September 11, 2001 and moderate volatility from the end of 2003.
Further, the clustering of periods with low and high volatility is clearly vis-
ible in the series. An exploratory data analysis is carried out firstly and the
STAMP program of Koopman et al. (2007) is used for the analysis, estimation
and signal extraction on the basis of the linearized SV model. The estimation
results and the estimated volatility are indicative of the salient features in
the volatility of S&P500 returns.

The Monte Carlo likelihood methods of Section 3 are used for the esti-
mation of parameters with M = 100. Various SV models are considered for
this purpose. First, the parameters in the SV models with log volatility mod-
eled by a single AR(1) term (basic SV) and by two AR(1) terms (multiple
volatility factors) are estimated by Monte Carlo maximum likelihood and the
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results are presented in the second and third columns of Table 1. The stan-
dard errors of the estimates are based on the information matrix, which is
evaluated numerically. The estimated coefficients are reported together with
their standard errors in parentheses and it appears that for both models the
estimates are significantly different from zero. However, the estimated autore-
gressive coefficients are close to unity and it is known that standard errors
for parameter estimates close to boundary values are not reliable; see also the
extensive literature on unit root testing. However, the likelihood ratio test
value for the inclusion of a second AR(1) term in the SV model with multiple
volatility factors is 18.8 and has a p value of 0.0001. The estimated volatil-
ities are presented in Fig. 2. The main patterns reflect the salient features
of the dynamics in volatility. The volatility increase in 1997, the peak in the
early years of the twenty-first century and the slowdown in 2003 can be ob-
served clearly from the estimated volatility patterns. The distinct difference
between the estimated volatility patterns of the one- and two-factor volatil-
ities is that the signal is noisier for the multiple-factor SV model; however,
the main patterns are similar. Given the likelihood improvement, the noisier
volatility estimate for the two-factor model appears to provide a better local
estimate of the underlying volatility.

The basic SV model with a t density for εt is also considered for the
S&P500 series. The parameter estimates can be found in the fourth column
of Table 1. It is expected that the large shocks in the return series will be cap-
tured more effectively in the tails of the t density and therefore the estimated
volatility is more persistent and smoother. The estimation results confirm
this. The estimated value for φ is 0.995, which is slightly larger than the
value of 0.991 for the basic SV model. Furthermore, the estimate of σ2

ξ (the
volatility of volatility) has a smaller value for the SV model with t density
than for the basic SV model and hence the estimated volatility is smoother.
This is confirmed by the bottom graph in Fig. 2. The estimated underlying
volatility pattern for the S&P500 return series is smoothest for the SV model
with t density.

5.2 Standard & Poor’s 500 stock index: regression
effects

SV models can incorporate regression effects in different ways as shown in
Section 4. The SV in the mean model is considered to investigate the feedback
between returns and volatility. For this purpose we consider daily excess
returns for the S&P500 stock index series where excess return is defined as
the return minus the risk-free return. The estimation is carried out using the
Monte Carlo likelihood methods for which some details are given in Section 4.
The estimation results are presented in the final column of Table 1. Apart
from the basic SV parameters, the parameters of interest are a, b and d,
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Fig. 2 Estimated volatilities σt for S&P500 returns and for three stochastic volatility
(SV ) models: basic, with two factors and with t density

Table 1 Monte Carlo maximum likelihood estimates of parameters (with standard errors)
for stochastic volatility (SV) models applied to S&P 500 daily returns (SV-t : SV model
with t density; for the SV in mean model applied to excess returns, the deviations are from
risk-free returns)

Coefficients Basic SV SV–2 factors SV-t SV in mean
φ 0.991

(0.003)
0.998
(0.001)

0.995
(0.002)

0.976
(0.006)

σ2
ξ 0.0127

(0.003)
0.0014
(0.0008)

0.006
(0.00186)

0.028
(0.006)

φ — 0.93
(0.029)

— —

σ2
ξ — 0.028

(0.01)
— —

σ2 0.681
(0.129)

0.643
(0.227)

0.695
(0.17401)

0.672
(0.072)

ν — — 10.651
(2.1058)

—

a — — — 0.072
(0.018)

b — — — 0.051
(0.016)

d — — — −0.038
(0.025)
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which are estimated significantly except parameter d; however, the estimate
of d is not too far away from its significance level and it is a negative value.
This confirms the empirical findings of French et al. (1987) and Koopman
and Hol-Uspensky (2002), among others.

An alternative volatility indicator is the daily price range defined as Zβ
t =

log(max(logPrt) − min(logPrt)) where Prt is the vector of realized stock
prices within a certain day t. This daily S&P500 stock index price range is
also indicative of the amount of volatility and can be used to detect volatility
in daily returns. We therefore consider the SV model with θ = ht +Zβ

t β, the
estimation results for which are presented in Table 2. Although similar results
are obtained as for the SV models without the inclusion of the covariate Zβ

t

in the signal θt, the estimates for β are rather mixed. The SV model with one
volatility factor produces a highly significant and positive estimate for β, the
model with two volatility factors produces a highly significant but negative
estimate for β, while the SV model with a t density produces an insignificant
estimate for β. Further research and empirical evidence is required to assess
the increased performance of incorporating range-based volatility measures
in SV models.

Table 2 Monte Carlo maximum likelihood estimates of parameters (with standard errors)
from SVX models for S&P 500 returns

Coefficients Basic SV SVX SVX–2 factors SVX-t
φ 0.991

(0.003)
0.991

(0.0029)
0.998

(0.0009)
0.996

(0.0019)

σ2
ξ 0.0127

(0.003)
0.0124
(0.003)

0.0014
(0.0008)

0.006
(0.0017)

φ — — 0.929
(0.029)

—

σ2
ξ — — 0.031

(0.011)
—

σ2 0.681
(0.129)

0.71
(0.234)

0.564
(0.267)

0.911
(0.256)

ν — — — 10.541
(0.351)

β — 0.0156
(0.003)

−0.033
(0.005)

0.002
(0.002

5.3 Daily changes in exchange rates: dollar–pound and
dollar–yen

For the analysis of volatility in exchange rate series, the interest focuses solely
on the signal extraction of volatility. For this purpose we have considered the
exchange rates for pound sterling and Japanese yen, both against the US
dollar. Three different SV model specifications are applied to the two daily
change series. The first model is the basic SV model, the second is the SV
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model with additive noise and the third is the SV model with a t density
for the model equation. In all cases the estimation methods of Section 3
are used. In the case of the SV with noise model, the observation density
p(y|θ) is not log-concave and the recent modifications need to be applied.
The implementation in all three cases has been successful and the estimation
results are presented in Table 3. The persistency of the volatility clearly
increases for an SV model with a t density, while the additive noise does
not seem to affect the dynamic properties of volatility. Although the additive
noise is highly significant for the dollar–yen series, it is not significant for the
dollar–pound series. This empirical finding may be explained by factors such
as trading volumes and information flows.

Table 3 Monte Carlo maximum likelihood estimates of parameters (with standard errors)
from SV models for daily changes in exchange rates (SV-t : SV model with t density; SVN :
SV model with additive noise

Dollar–pound Dollar–yen
Coefficients Basic SV SVN SV-t Basic SV SVN SV-t
φ 0.977

(0.00606)
0.977

(0.00609)
0.986

(0.00435)
0.934
(0.02)

0.933
(0.02)

0.987
(0.0041)

σ2
ξ 0.0179

(0.00477)
0.0200
(0.0075)

0.00976
(0.00294)

0.0521
(0.018)

0.115
(0.037)

0.0064
(0.002)

σ2 0.265
(0.0245)

0.248
(0.0487)

0.274
(0.0306)

0.371
(0.0222)

0.224
(0.031)

0.404
(0.041)

σ2
ζ — 0.0144

(0.0348)
— — 0.115

(0.021)
—

ν — — 10.459
(1.843)

— — 6.561
(0.681)

The estimated volatilities obtained from the three models and the two
exchange series are presented in Fig. 3 for the dollar–pound series and in
Fig. 4 for the dollar–yen series. The salient features of the volatility for both
series are clearly captured and it is interesting that the volatility patterns for
both series are distinct from each other. In the early years of the 1990s, the
dollar–pound series is subject to higher volatility. After 1994, the volatility
is moderate for 10 years but increases somewhat from 2004. Throughout
the 1990s, the volatility is relatively high for the dollar–yen series and the
volatility of volatility is also high. A clearly high period of volatility occurred
during the Asian financial crises in the late 1990s. However, in the early years
of the new millennium, the volatility stabilizes and seems to behave more in
par with the dollar–pound series. This may be indicative of the convergence of
international financial markets that is discussed in the economics and finance
literature.

The differences in the estimated volatilities for the three models are similar
for both exchange series. The volatility patterns for the SV model with noise
also turn out to be noisier than those obtained for the basic SV model.
The smoothed patterns of volatility are obtained from the SV model with a
t density. Given the estimation results presented in Table 3, the estimated
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Fig. 3 Volatility estimates for daily changes in dollar–pound exchange rates
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Fig. 4 Volatility estimates for daily changes in dollar–yen exchange rates



340 B. Jungbacker and S.J. Koopman

volatility patterns confirm that the different SV models capture different
features of volatility in the series.

6 Conclusions

This chapter has reviewed parameter estimation methods for the basic SV
model. We have restricted ourselves to estimation methods based on the lin-
earization of the SV model and methods based on Monte Carlo simulations.
In the former case, fast and linear estimation methods for the standard linear
Gaussian state-space model can be adopted, such as the Kalman filter and
the associated smoothing algorithm. Classical maximum likelihood methods
are used for parameter estimation and for which standard software tools are
available. In the latter case, Monte Carlo simulations are used for the evalu-
ation of the likelihood function that is expressed as an integral. A convenient
analytical expression is not available and therefore one needs to rely on nu-
merical methods. Importance sampling methods have been suggested as a
feasible way to evaluate the likelihood function so that it can be maximized
numerically with respect to a set of parameters. The details of this approach
were discussed in this chapter and particularly in Section 3. This chapter fur-
ther reviewed some interesting extensions of the SV model, including models
with explanatory variables, with additive noise, with leverage and with a
t density for the observation model. It was shown that parameters in these
more general SV models can also be estimated by the Monte Carlo methods
discussed in this chapter. The empirical results illustrate that the general
SV models and the associated methods can successfully capture interesting
aspects of volatility.

Acknowledgement We gratefully thank the editors for their insightful comments on an
earlier draft of this chapter. All remaining errors are ours.

Appendix: State-Space Methods

In this chapter we consider the linear Gaussian state space model with

• State equation:

αt+1 = dt + Ttαt + ηt, ηt ∼ NID(0, Qt).

• Initial condition: α1 ∼ N(a, P ).
• Signal equation:

θt = ct + Ztαt.
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• Observation equation:

xt = θt + ut, ut ∼ NID(0, Ht), t = 1, . . . , n.

The system vectors ct and dt and system matrices Zt, Ht, Tt and Qt are fixed
and known functions of parameter vector ψ. The observation xt and signal
θt are assumed to be scalar variables, while the state vector αt together with
the disturbance vector ηt have dimensions q × 1. All state-space quantities
have appropriate dimensions.

Kalman filter

The Kalman filter equations are given by

vt = xt − ct − Ztat, Ft = Ht + ZtPtZ
′
t,

Kt = TtPtZ
′
tF

−1
t ,

at+1 = dt + Ttat +Ktvt, Pt+1 = TtPtT
′
t −KtFtK

′
t +Qt,

t = 1, . . . , n,

(30)
for t = 1, . . . , n. The Kalman filter is initialized by a1 = a and P1 = P , where
a and P are the mean and variance of the initial state vector α1, respectively.
The quantities of the Kalman filter are usually stored so they can be used for
other purposes such as smoothing. The Kalman filter is a forwards recursion.
The one-step-ahead prediction errors vt and their variances Ft are used for the
evaluation of the Gaussian likelihood function and as residuals for diagnostic
checking.

Smoothing algorithm

Once the Kalman filter has been carried out and the quantities Kt, Ft and
vt have been stored for t = 1, . . . , n, the smoothing recursions enable the
estimation of the smoothed estimate of θt and its variance matrix given by
̂θt = E(θt|y) and Vt = E(θt − ̂θt)(θt − ̂θt)′. The recursions operate backwards
and are given by

̂θt = xt −Htut, Vt = HtDtHt,
ut = F−1

t vt −K ′
trt Dt = F−1

t −K ′
tNtKt,

rt−1 = Z ′
tut + T ′

trt, Nt−1 = Z ′
tDtZt + T ′

tNtTt − Z ′
tK

′
tNtTt − T ′

tNtKtZt,
(31)

for t = n, n− 1, . . . , 1 and with the initializations rn = 0 and Nn = 0.
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Simulation smoothing algorithm

Once the Kalman filter has been carried out and the quantities Kt, Ft and
vt have been stored for t = 1, . . . , n, the simulation smoothing recursions en-
able the generation of draws from the density f(θ; y). The recursions operate
backwards as in smoothing and are given by

Ct = BtB
′
t = H−1

t − F−1
t −K ′

tNtKt, Rt = C−1
t (H−1

t Zt −K ′
tNtTt),

ot ∼ N(0, I), wt = Btot, ut = Ht(wt + F−1
t vt −K ′

trt),
rt−1 = Z ′

tH
−1
t ut −R′

twt + T ′
trt, Nt−1 = R′

tCtRt − Z ′
tH

−1
t Zt + T ′

tNtTt,
(32)

for t = n, n − 1, . . . , 1 and with the initializations rn = 0 and Nn = 0. The
simulation θi from p(θ|y) is computed by ̂θ+ (u′1, . . . , u

′
n)′, where ̂θ = E(θ|y)

and is obtained from the smoothing algorithm. Given the simulation θi, the
importance density function f(θi; y) in (27) can be evaluated by

f(θi; y) = exp

(

−mn
2

log 2π −
n

∑

t=1

log |Ht| −
n

∑

t=1

log |Bt| −
1
2

n
∑

t=1

oi ′
t o

i
t

)

.

(33)
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Stochastic Volatility Models with Long
Memory

Clifford M. Hurvich and Philippe Soulier

Abstract In this contribution, we consider models in discrete time that con-
tain a latent process for volatility. The most well-known model of this type
is the Long-Memory Stochastic Volatility (LMSV) model. We describe its
main properties, discuss parametric and semiparametric estimation for these
models, and give some generalizations and applications.

1 Introduction

In this contribution we consider models for long memory in volatility. There
are a variety of ways to construct such models. Our primary focus here will
be on models in discrete time that contain a latent process for volatility. The
most well-known model of this type is the Long-Memory Stochastic Volatil-
ity (LMSV) model, proposed independently by Breidt, Crato and de Lima
(1998) and Harvey (1998). It is a long-memory generalization of the Stochas-
tic Volatility (SV) model of Taylor (1986). The LMSV model is appropriate
for describing series of financial returns at equally-spaced intervals of time.
The model implies that returns are a finite-variance martingale difference
sequence, hence uncorrelated, while power transformations of the absolute
returns have slowly decaying autocorrelations, in keeping with the empiri-
cal findings of Ding, Granger and Engle (1993). We will present the LMSV
model, explain its basic properties, and give a survey of existing theoretical
results. A variety of generalizations of the model have been considered, and
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some of these will be briefly discussed, but in order to enhance readability
we will focus on a basic form of the model.

An important distinction between ARCH-type models and SV-type mod-
els is that the former are observation-driven, giving an expression for the
one-step-ahead conditional variance in terms of observables and model pa-
rameters, while the latter are driven by a latent (unobserved) process which
stands as a proxy for volatility but which does not represent the conditional
variance. Thus, for the LMSV model it is necessary to use and develop ap-
propriate techniques in order to carry out basic activities such as forecasting
of squared returns, or aggregates of these (i.e., the realized volatility; see,
e.g., Andersen, Bollerslev, Diebold and Labys (2001)), as well as estimation
of parameters.

For simplicity, we will assume that the latent long-memory process is sta-
tionary and Gaussian, and is independent of the multiplying shock series
(see Equation (1) below). We will consider parameter estimation, forecast-
ing, smoothing, as well as semiparametric estimation and hypothesis testing
for the long memory parameter. Besides presenting theoretical results, we
will also discuss questions of computational efficiency.

There are several definitions of long memory, which are not equivalent in
general (see Taqqu (2003)). For simplicity, we will say here that a weakly
stationary process has long memory if its autocovariances {cr} satisfy

cr ∼ K1r
2d−1

(K1 > 0) as r → ∞, or if its spectral density f(ω), ω ∈ [−π, π] satisfies

f(ω) ∼ K2|ω|−2d

(K2 > 0) as ω → 0, where d ∈ (0, 1/2) is the memory parameter.

2 Basic Properties of the LMSV Model

The LMSV model for a stationary series of returns {rt} takes the form

rt = exp(Yt/2)et (1)

where {et} is a series of i.i.d. shocks with zero mean, finite variance, and
{Yt} is a zero-mean stationary Gaussian long-memory process, independent
of {et}, with memory parameter d ∈ (0, 1/2). Since {et} is a martingale
difference sequence, so is {rt}. It follows that {rt} is a white noise sequence
with zero mean. As is the case for most existing volatility models, the LMSV
model is nonlinear, in that it cannot be represented as a linear combination
of an i.i.d. series.
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To study persistence properties of volatility, Ding, Granger and Engle
(1993) used power transformations of absolute returns. Using the properties of
the lognormal distribution, (see for example Harvey (1998), equation (12.9);
cf. Robinson and Zaffaroni (1997) and (1998), Robinson (2001) it is possible
to derive an explicit expression for the autocorrelations of {|rt|c} for any
positive c such that E[|et|2c] is finite. The expression implies that the {|rt|c}
have long memory with the same memory parameter d, for all such c. It
follows that if E[|et|4] is finite and M is a fixed positive integer representing
the degree of aggregation, the realized volatility {RVk} given by

RVk =
kM
∑

t=(k−1)M+1

r2t

has long memory with memory parameter d.
For estimation, it is convenient to work with the logarithms of the squared

returns, {Xt} = {log r2t }, which have the signal plus noise representation

Xt = μ+ Yt + ηt, (2)

where μ = E[log e2t ] and {ηt} = {log e2t − E[log e2t ]} is an i.i.d. process inde-
pendent of {Yt}. Thus, the log squared returns {Xt} are expressed as the sum
of the long-memory process {Yt}, the signal, and the i.i.d. process {ηt}, the
noise, which is independent of the signal. It follows from (2) that the autoco-
variances of {Xt} are equal to those of {Yt} for all nonzero lags. Therefore,
the autocorrelations of {Xt} are proportional to those of {Yt}. Furthermore,
the spectral density of {Xt} is given by

fX(ω) = fY (ω) + σ2
η/(2π), (3)

where σ2
η = var(ηt), assumed to be finite, and hence we have

fX(ω) ∼ K2|ω|−2d

(K2 > 0) as ω → 0. Thus, the log squared returns {Xt} have long memory
with memory parameter d.

3 Parametric Estimation

In both Harvey (1998) and Breidt, Crato and de Lima (1998) it is assumed
that {Yt} is generated by a finite-parameter model. This model is taken to
be the ARFIMA(0, d, 0) model in Harvey (1998) and the ARFIMA(p, d, q)
model in Breidt, Crato and de Lima (1998). Given any finite-parameter long-
memory specification for {Yt} in the LMSV model, we face the problem
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of estimating the model parameters based on observations r1, . . . , rn. Full
maximum likelihood is currently infeasible from a computational point of view
since it would involve an n-dimensional integral. Since long-memory models
do not have a state-space representation, it is not possible to directly use a
variety of techniques that have been successfully implemented for estimation
of autoregressive stochastic volatility models (see, e.g., Harvey, Ruiz and
Shephard (1994). We consider here two variants of Gaussian quasi maximum
likelihood (QML), in the time and frequency domains. Both are based on the
log squared returns, {Xt}nt=1, and both are presumably inefficient compared
to the (infeasible) full maximum likelihood estimator.

The time domain Gaussian QML estimator is based on treating the {Xt}
as if they were Gaussian, even though in general they will not be Gaussian.
Then we can write −2 times the log likelihood function as

L(θ) = log |Σx,θ| + (x− μx)′Σ−1
x,θ(x− μx) (4)

where x = (x1, . . . , xn)′, θ denotes the parameter vector (consisting of the
parameters in the model for {Yt} together with σ2

η), and μx, Σx,θ are, re-
spectively, the expected value of x and the covariance matrix for x under the
model θ. Deo (1995) has established the

√
n-consistency and asymptotic nor-

mality of the time domain Gaussian QML estimator. Beyond this theoretical
result, there are few if any empirical results available on the performance
of this estimator, largely due to computational obstacles, i.e., the calcula-
tion of the entries of Σx,θ, the determinant |Σx,θ| and the quadratic form
(x− μx)′Σ−1

x,θ(x − μx). These obstacles can be surmounted, however.
In fact, L(θ) may be calculated in O(n log3/2 n) operations, in the case

where {Yt} is assumed to obey an ARFIMA(p, d, q) model. This is achieved
by using the Fast Fourier Transform (FFT), which is readily available in
standard software such as Matlab and S–Plus. We briefly sketch the approach,
described in detail in Chen, Hurvich and Lu (2006). Since {Xt} is weakly
stationary, the entries of Σx,θ are constant along the diagonals, i.e., Σx,θ is
a Toeplitz matrix. The entire matrix is determined by the autocovariances
of {Xt} at lags 0, . . . , n− 1. However, it is important here to avoid actually
computing the full matrix Σx,θ since this would require at least n2 operations,
resulting in extremely slow performance when n is large, say, in the hundreds
or thousands. Since the autocovariances of {Xt} are identical to those of
{Yt}, calculation of the entries of Σx,θ reduces essentially to the calculation
of the autocovariances of an ARFIMA(p, d, q) model. Analytical expressions
for these autocovariances were obtained by Sowell (1992). These expressions
involve the hypergeometric function. Numerically, the autocovariances can be
computed to any desired degree of accuracy in O(n log n) operations using
the algorithm of Bertelli and Caporin (2002). Chen, Hurvich and Lu (2006)
present a preconditioned conjugate gradient (PCG) algorithm for computing
the quadratic form in (4) in O(n log3/2 n) operations. They also present an
accurate approximation to the determinant term in (4) due to Böttcher and
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Silbermann (1999) which can be computed in O(1) operations. The PCG
method for calculating the likelihood is faster than the O(n2) that would be
required based on the algorithm of Levinson (1946) as advocated by Sowell
(1992).

Breidt, Crato and de Lima (1998) proposed to estimate the parameters of
the LMSV model from {Xt} using the Whittle approximation to the likeli-
hood function. Given data x1, . . . , xn, define the periodogram

Ij = |
n

∑

t=1

xt exp(−iωjt)|2/(2πn) j = 1, . . . , n− 1 ,

where ωj = 2πj/n are the Fourier frequencies. Mean correction in the defi-
nition above is not necessary since it would not change the values of Ij for
j > 0. The Whittle approximation for −2 log likelihood is

LW (θ) =
�(n−1)/2�

∑

j=1

{log fX,θ(ωj) + Ij/fX,θ(ωj)}

where fX,θ(ωj) is the spectral density forX at frequency (ωj) under the model
θ. It is easy to compute LW (θ) since {Ij} can be computed in O(n log n)
operations using the FFT, and since fX,θ is the sum of a constant and an
ARFIMA spectral density, which has a simple analytical form. Breidt, Crato
and de Lima established the consistency of the Whittle estimator. Hosoya
(1997) presents results on the

√
n-consistency and asymptotic normality of

the Whittle estimator. Perez and Ruiz (2001) have studied the empirical
properties of the Whittle estimator for LMSV models.

4 Semiparametric Estimation

In a preliminary econometric analysis, it is often of interest to try to gauge
the existence and strength of long memory without imposing a fully paramet-
ric model. An easily implemented semiparametric estimator of d is the log-
periodogram regression estimator d̂GPH of Geweke and Porter-Hudak (1983),
obtained as −1/2 times the least-squares slope estimate in a linear regression
of {log Ij}mj=1 on {log |1 − exp(−iωj)|}mj=1, where m tends to ∞ more slowly
than n. The

√
m-consistency and asymptotic normality of d̂GPH assuming

Gaussianity were obtained by Robinson (1995a) with trimming of low fre-
quencies, and by Hurvich, Deo and Brodsky (1998) without trimming. The
latter paper also showed that under suitable regularity conditions the opti-
mal choice of m, minimizing the asymptotic mean squared error, is of order
n4/5. The regularity conditions were imposed on the short-memory compo-
nent of the spectral density. For any weakly stationary process with memory
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parameter d and spectral density f , the short-memory component is defined
by f∗(ω) = |1 − exp(−iω)|2df(ω). The results described above do not apply
directly to the estimator d̂GPH based on the log squared returns {Xt} in the
LMSV model, since in general {Xt} will be non-Gaussian (and nonlinear).

For the LMSV model, Deo and Hurvich (2001) established the
√
m-

consistency and asymptotic normality of d̂GPH based on {Xt} under suitable
smoothness conditions on the short-memory part of the spectral density of
the signal {Yt}. Under these conditions the short-memory part of the spectral
density of the log squared returns {Xt} behaves like C+ωβ as ω → 0+ where
C > 0 and β = 2d ∈ (0, 1). The resulting MSE-optimal choice for m is of or-
der n2β/(2β+1) and the corresponding mean squared error of d̂GPH is of order
n−2β/(2β+1). Thus, in the LMSV case the optimal rate of convergence of the
mean squared error of d̂GPH depends on d and becomes slower as d decreases.
This is due to the presence of the noise term in (3) which induces a negative
bias in d̂GPH . For a given value of d, the bias becomes more severe as larger
values of m are used. Even for d close to 0.5, this bias is still problematic as
the optimal rate of convergence becomes of order n−2/3, much slower than
the O(n−4/5) rate attained in the Gaussian case, under suitable smoothness
conditions.

Hurvich and Ray (2003) introduced a local Whittle estimator of d based
on log squared returns in the LMSV model. Hurvich, Moulines and Soulier
(2005) established theoretical properties of this semiparametric estimator
d̂LW , which is a generalization of the Gaussian semiparametric estimator
d̂GSE (Künsch (1987); Robinson (1995b). The results of Arteche (2004) imply
that in the LMSV context the GSE estimator suffers from a similar limitation
as the GPH estimator: in order to attain

√
m-consistency and asymptotic nor-

mality the bandwidth m in d̂GSE cannot approach ∞ faster than n2β/(2β+1),
where β = 2d. The local Whittle estimator avoids this problem by directly
accounting for the noise term in (3). From (3), it follows that as ω → 0+ the
spectral density of the log squared returns behaves as

fX(ω) ∼ Gω−2d(1 + h(d, θ, ω))

where G = f∗
Y (0), f∗

Y (ω) = |ω|2dfY (ω), h(d, θ, ω) = θω2d , and θ =
σ2
η/{2πf∗

Y (0)}. We assume here (as did Deo and Hurvich (2001) as well as
Hurvich, Deo and Brodsky (1998)) that f∗

Y satisfies a local Lipschitz condition
of order 2, as would be the case if {Yt} is a stationary invertible ARFIMA
or fractional Gaussian noise process.

The local Whittle contrast function, based on the observations x1, . . . , xn,
is defined as

Ŵm(d̃, G̃, θ̃) =
m
∑

j=1

{

log
(

G̃ω−2d̃
j (1 + h(d̃, θ̃, ωj)

)

+
Ij

G̃ω−2d̃
j (1 + h(d̃, θ̃, ωj))

}

.

Concentrating G̃ out of Ŵm yields the profile likelihood
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Ĵm(d̃, θ̃) = log

⎛

⎝

1
m

m
∑

j=1

ω2d̃
j Ij

1 + h(d̃, θ̃, ωj)

⎞

⎠+m−1
m
∑

j=1

log{ω−2d̃
j (1+h(d̃, θ̃, ωj))}.

The local Whittle estimator is any minimizer of the empirical contrast func-
tion Ĵm over the admissible set Dn × Θn (which may depend on the sample
size n):

(d̂LW , θ̂LW ) = arg min
(d̃,θ̃)∈Dn×Θn

Ĵm(d̃, θ̃).

Under suitable regularity conditions, Hurvich, Moulines and Soulier (2005)
show that if m → ∞ faster than n4d/(4d+1)+δ for some arbitrarily small δ > 0
and if m5/n4 log2m → 0, then m1/2(d̂LW − d) is asymptotically Gaussian
with zero mean and variance (1+d)2/(16 d2). The first condition on m above
is a lower bound, implying that the m for d̂LW must increase faster than the
upper bound on m needed for

√
m(d̂GPH − d) to be asymptotically Gaussian

with zero mean. Nevertheless, if we allowm to increase sufficiently quickly, the
estimator d̂LW attains the rate (to within a logarithmic term) of Op(

√
n−4/5),

essentially the same rate as attained by d̂GPH in the Gaussian case and much
faster than the rate attained by either d̂GPH or d̂GSE in the LMSV case.

Accurate finite-sample approximations to the variance of d̂LW are given
in Hurvich and Ray (2003).

Sun and Phillips (2003) proposed a nonlinear log-periodogram regression
estimator d̂NLP of d, using Fourier frequencies ω1, . . . , ωm. They assumed a
model of form (3) in which the signal is a Gaussian long memory process
and the noise is a Gaussian white noise. This rules out most LMSV models,
since log e2t is typically non-Gaussian. They partially account for the noise
term {ηt} in (3), through a first-order Taylor expansion about zero of the
spectral density of the observations. They establish the asymptotic normality
ofm1/2(d̂NLP−d) under assumptions including n−4dm4d+1/2 → Const. Thus,
d̂NLP , with a variance of order n−4d/(4d+1/2), converges faster than the GPH
estimator, but unfortunately still arbitrarily slowly if d is sufficiently close to
zero.

Beyond estimation of d, a related problem of interest is semiparametric
testing of the null hypothesis d = 0 in the LMSV model, i.e., testing for long
memory in volatility. Most existing papers on LMSV models make use of the
assumption that d > 0 so the justification of the hypothesis test requires
additional work. The ordinary t-test based on either d̂GPH or d̂GSE was
justified in Hurvich and Soulier (2002) and Hurvich, Moulines and Soulier
(2005), respectively, without strong restrictions on the bandwidth.
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5 Generalizations of the LMSV Model

It is possible to relax the assumption that {Yt} and {et} are independent
in (1). A contemporaneous correlation between {et} and the shocks in the
model for {Yt} was allowed for in Hurvich, Moulines and Soulier (2005), as
well as Hurvich and Ray (2003), Surgailis and Viano (2002). See Hurvich
and Ray (2003) for more details on estimating the leverage effect, known in
the (exponential) GARCH models, where the sign of the return in period t
affects the conditional variance for period t+ 1.

It is possible to replace the Gaussianity assumption for {Yt} in the LMSV
model by a linearity assumption. This was done in Hurvich, Moulines and
Soulier (2005) and Arteche (2004), among others. Surgailis and Viano (2002)
showed that under linearity for {Yt} and other weak assumptions, powers of
the absolute returns have long memory, with the same memory parameter
as {Yt}. This result does not require any assumption about the dependence
between {Yt} and {et}.

It is also possible to relax the assumption that d < 1/2 in the LMSV
model. If d ∈ (1/2, 1) we can say that the volatility is mean reverting but not
stationary. Hurvich, Moulines and Soulier (2005) proved consistency of d̂LW
for d ∈ (0, 1) and proved the

√
m-consistency and asymptotic normality of

d̂LW for d ∈ (0, 3/4).

6 Applications of the LMSV Model

We briefly mention some applications of the LMSV and related models. Deo,
Hurvich and Lu (2006) consider using the (parametric) LMSV model to con-
struct forecasts of realized volatility. The forecast is given as a linear combi-
nation of present and past squared returns. The forecast weights are obtained
using the PCG algorithm.

A long memory stochastic duration (LMSD) model was introduced in Deo,
Hsieh and Hurvich (2005) to describe the waiting times (durations) between
trades of a financial asset. The LMSD model has the same mathematical form
as the LMSV model, except that the multiplying shocks have a distribution
with positive support.

Smoothing of the volatility in LMSV models was considered by Harvey
(1998), who gave a formula for the minimum mean squared error linear esti-
mator (MMSLE) of {Yt}nt=1 based on the observations {Xt}nt=1. Computation
of the coefficients in the linear combination involves the solution of a Toeplitz
system, and the MMSLE can be efficiently computed using the PCG algo-
rithm. Nevertheless, the MMSLE methodology suffers from some drawbacks,
as described (in the LMSD context) in Deo, Hsieh and Hurvich (2005).
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Extremes of Stochastic Volatility Models

Richard A. Davis and Thomas Mikosch

Abstract We consider extreme value theory for stochastic volatility processes
in both cases of light-tailed and heavy-tailed noise. First, the asymptotic
behavior of the tails of the marginal distribution is described for the two cases
when the noise distribution is Gaussian or heavy-tailed. The sequence of point
processes, based on the locations of the suitable normalized observations from
a stochastic volatility process, converges in distribution to a Poisson process.
From the point process convergence, a variety of limit results for extremes
can be derived. Of special note, there is no extremal clustering for stochastic
volatility processes in both the light- and heavy-tailed cases. This property is
in sharp contrast with GARCH processes which exhibit extremal clustering
(i.e., large values of the process come in clusters).

1 Introduction

The simple stochastic volatility process (Xt)t∈Z is given by the equation

Xt = σt Zt , t ∈ Z , (1)

where (Zt) is iid, (σt)t∈Z is the log-linear Gaussian process given by
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2 logσt =
∞
∑

j=0

ψjηt−j ,

with
∑∞

j=0 ψ
2
j < ∞, and the sequence (ηt) is iid N(0, τ2) and independent

of (Zt). If var(Zt) < ∞, then it is customary to assume that (Zt) is iid with
mean 0 and variance 1. In this article, we describe the limiting behavior of
the sample maxima,

Mn = max(X1, . . . , Xn) ,

of the strictly stationary stochastic volatility sequence (Xt) in the cases that
the noise (Zt) has either a light- or heavy-tailed distribution.

In Section 2, we describe the tail behavior of the marginal distribution of
X1. Point process convergence based on the normalized process is described
in Section 3. This provides the key result from which limiting behavior of the
extremes of (Xt) can be determined.

Interestingly, and unlike the situation for GARCH processes (see Davis
and Mikosch (2008a)), there is no extremal clustering for stochastic volatility
processes in both the light- and heavy-tailed cases. That is, large values of the
processes do not come in clusters. More precisely, the large sample behavior
of Mn is the same as that of the maxima of the associated iid sequence ( ̂Xt),
where ̂X

d= X .

2 The Tail Behavior of the Marginal Distribution

2.1 The light-tailed case

For the model given by (1), assume further that the noise (Zt) is iid N(0,1).
Notice that the log of the squares of the process, i.e.,

Yt = logX2
t (2)

is the superposition of a linear Gaussian process with iid log-χ2
1 distributed

noise. Since logZ2
t is distributed as the log of a χ2

1 random variable, its
cumulant generating function is given by

logEexp
{

λ logχ2
1

}

= λ log 2 + logΓ (1/2 + λ) − logΓ (1/2)

= λ logλ+ λ(log 2 − 1) + (log 2)/2 + h0(λ) ,

where the remainder h0(λ) = O(1/λ) as λ → ∞. The cumulant generating
function of Yt is



Extremes of Stochastic Volatility Models 357

κ(λ) = logEe λYt = λ2σ̃2/2 + λ log 2 + logΓ (1/2 + λ) − log Γ (1/2)
= λ2σ̃2/2 + λ logλ+ λ(log 2 − 1) + (log 2)/2 +O(1/λ),

where

σ̃2 = var

⎛

⎝

∞
∑

j=0

ψjηt−j

⎞

⎠ = τ2
∞
∑

j=0

ψ2
j . (3)

The following proposition, due to Breidt and Davis (1998), describes the
tail behavior of Yt. The proof of this result is based on the asymptotic nor-
mality of the Esscher transform of the distribution of Y which can be viewed
as the saddlepoint approximation to the cumulant generating function, see
Jensen (1995). This technique was also used by Feigin and Yashchin (1983)
and Davis and Resnick (1991).

Proposition 1 For the log-squared volatility process (Yt) defined in (2), we
have

P(Yt > x) ∼ σ̃2

√
π

exp
{

− x2

2σ̃2
+
x log x
σ̃2

+
(k − 1)x
σ̃2

− (k + σ̃2) log x
σ̃2

− log2 x

2σ̃2

− k2

2σ̃2
+O

(

log2 x

x

)}

,

as x → ∞, where k = log(2/σ̃2).

By symmetry of Xt,

P (Xt > x) =
1
2
P (|Xt| > x) =

1
2
P (logX2

t > 2 logx) ,

and then the asymptotic behavior of P (Xt > x) as x → ∞ is straightforward
from Proposition 1.

2.2 The heavy-tailed case

Now assume that Zt has regularly varying tail probabilities with index α > 0.
This means that the distribution of |Zt| is regularly varying with index α,
i.e.,

P (|Zt| > x) = L(x)x−α (4)

as x → ∞, where L(·) is a slowly varying function at infinity (see Section 4
of Davis and Mikosch (2008a)), and that the tail balancing condition,
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lim
x→∞

P (Zt > x)
P (|Zt| > x)

= p and lim
x→∞

P (Zt ≤ −x)
P (|Zt| > x)

= q , (5)

where p + q = 1 for some p ∈ [0, 1], holds. Then, by virtue of Breiman’s
result (see equation (16) in Davis and Mikosch (2008a)), the distribution of
Xt inherits the same tail behavior as Zt.

Proposition 2 Under the regularly varying and tail-balancing assumptions
(4) and (5), we have

P (Xt > x) ∼ E(σαt ) P (Zt > x) and P (Xt ≤ −x) ∼ E(σαt ) P (Zt ≤ −x) ,

as x → ∞ .

Proposition 2 remains valid even if log σt is not a linear Gaussian process.
In order to apply Breiman’s result, one only needs that σt is independent of
Zt and E(σα+ε

t ) < ∞ for some ε > 0.

3 Point Process Convergence

3.1 Background

The theory of point processes plays a central role in extreme value theory.
For example, the limiting distribution of order statistics, such as the kth
largest, is often easy to derive from the convergence of a particular sequence
of point processes. To illustrate this notion, suppose ( ̂Xt) is an iid sequence
of random variables with the same common distribution function F as Xt.
Further assume that there exist sequences of constants an > 0 and bn such
that

P (a−1
n (̂Mn − bn) ≤ x) = Fn(anx+ bn) → G(x) (6)

for all x, where ̂Mn = max( ̂X1, . . . , ̂Xn) andG is a nondegenerate distribution
function. Then by the extremal types theorem, G has to be an extreme value
distribution of which there are only three types, see Leadbetter et al. (1983).
Moreover, by taking logarithms and using a Taylor series expansion, (6) holds
if and only if for any x ∈ R,

n (1 − F (anx+ bn)) → − logG(x) .

or,1 equivalently, if for any x ∈ R,

nP (a−1
n ( ̂X1 − bn) > x) → − logG(x) . (7)

1 If G(x) = 0 we interpret − logG(x) as ∞.
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Now (7) can be strengthened to the statement,

nP (a−1
n ( ̂X1 − bn) ∈ B) → ν(B) (8)

for all suitably chosen Borel sets B, where the measure ν is defined by its
value on intervals of the form (a, b] as

ν(a, b] = logG(b) − logG(a) . (9)

The convergence in (8) can be connected with the convergence in distri-
bution of a sequence of point processes. For a bounded Borel set B in the
product space (0,∞) × R, define the sequence of point processes ( ̂Nn) by

̂Nn(B) = #{(j/n, a−1
n ( ̂Xj − bn)) ∈ B , j = 1, 2, . . .} .

If B is the rectangle (a, b]× (c, d] with 0 ≤ a < b < ∞ and −∞ < c < d < ∞,
then since the ̂Xj are iid, ̂Nn(B) has a binomial distribution with number of
trials [nb] − [na] ([s] = integer part of s), and probability of success

pn = P (a−1
n ( ̂X1 − bn) ∈ (c, d]) .

Provided ν(c, d] < ∞, it follows from (8) that ̂Nn(B) converges in distribution
to a Poisson random variable N(B) with mean μ(B) = (b−a) ν(c, d]. In fact,
we have the stronger point process convergence,

̂Nn
d→ N , (10)

where N is a Poisson process on (0,∞) × R with mean measure μ(dt, dx) =
dt× ν(dx) and d→ denotes convergence in distribution of point processes. For
our purposes, d→ for point processes means that for any collection of bounded2

Borel sets B1, . . . , Bk for which P (N(∂Bj) > 0) = 0, j = 1, . . . , k, we have

( ̂Nn(B1), . . . , ̂Nn(Bk))
d→ (N(B1), . . . , N(Bk))

on R
k, see Embrechts et al. (1997), Leadbetter et al. (1983), Resnick (1987).

As an application of (10), define ̂Mn,2 to be the second largest among
̂X1, . . . , ̂Xn. Since the event {a−1

n (̂Mn,2−bn) ≤ y} is the same as { ̂Nn((0, 1]×
(y,∞)) ≤ 1}, we conclude from (10) that

2 In some cases, especially the heavy-tailed case, the state space of the point process is often
defined to be (0,∞)× ([−∞,∞] \ {0}). On the second product space, the roles of zero and
infinity have been interchanged so that bounded sets are now those sets which are bounded
away from 0. With this convention, a bounded set on the product space is contained in
the rectangle [0, c] × ([−∞,−d] ∪ [d,∞]) for some positive and finite constants c and d.
Under this topology, the intensity measure for the Poisson process defined in Theorem 2
is ensured to be finite on all bounded Borel sets.
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P (a−1
n (̂Mn,2 − bn) ≤ y) = P ( ̂Nn((0, 1] × (y,∞)) ≤ 1)

→ P (N((0, 1] × (y,∞)) ≤ 1))

= G(y) (1 − logG(y)) .

Similarly, the joint limiting distribution of (̂Mn, ̂Mn,2) can be calculated by
noting that for y ≤ x, {a−1

n (̂Mn−bn) ≤ x, a−1
n (̂Mn,2−bn) ≤ y} = { ̂Nn((0, 1]×

(x,∞)) = 0, ̂Nn((0, 1] × (y, x]) ≤ 1}. Hence,

P (a−1
n (̂Mn − bn) ≤ x, a−1

n (̂Mn,2 − bn) ≤ y)

= P ( ̂Nn((0, 1] × (x,∞)) = 0, ̂Nn((0, 1] × (y, x]) ≤ 1)

→ P (N((0, 1] × (x,∞)) = 0, N((0, 1] × (y, x]) ≤ 1))

= G(y)(1 + logG(x) − logG(y)) .

3.2 Application to stochastic volatility models

The point process convergence in (10) can be extended to general stationary
time series provided a mixing condition and a local dependence condition
(such as D and D′ in Leadbetter et al. (1983)) hold. The mixing condition
governs how fast a certain class of events become independent as their time
separation increases. Typically, many time series models, including stochastic
volatility processes, satisfy a mixing condition such as strong mixing. (For
stochastic volatility processes, see the discussion for strong mixing given in
Section 2 of Davis and Mikosch (2008a).) On the other hand, the dependence
conditionD′ restricts the clustering of extremes. That is, given an observation
at time t is large, the probability that any of its neighboring observations
are also large is quite small. The stochastic volatility processes (Xt) given
in (1) with either light- or heavy-tailed noise satisfies generalized versions of
conditions D and D′; see Breidt and Davis (1998), Davis and Mikosch (2001).
Thus the point process convergence in (10) holds. This result is recorded in
the following two theorems whose proofs can be found in Breidt and Davis
(1998) for the light-tailed case (Theorem 1) and in Davis and Mikosch (2001)
for the heavy-tailed case (Theorem 2).

3.2.1 The light-tailed case

Theorem 1 Suppose (Xt) is the stochastic volatility process defined in (1),
where the noise (Zt) is iid N(0, 1) and the autocorrelation function
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ρ(h) = corr(log σ2
t , log σ2

t+h)

decays at the rate ρ(h) = o(1/ logh) as h → ∞. Let the constants an and bn
be defined by

an = σ̃ (2 logn)−1/2 = σ̃/(
√

2 dn) (11)

where dn = (logn)1/2, σ̃2 is given in (3), and

bn = c1dn + log dn + c2 + c3
log dn
dn

+ c4
1
dn
, (12)

where
c1 =

(

2σ̃2
)1/2

, c2 =
3
2

log 2 − 1
2

log σ̃2 − 1, c3 = − σ̃√
2
,

and
c4 = − 1

2(2σ̃2)1/2
(

1 + σ̃2 log(2π)
)

.

Then, with Yt = logX2
t , the limit in (8) holds with ̂X1 replaced with Y1 and

G(x) = exp{− exp{−x}} in (9). Moreover, Nn
d→ N , where Nn is the point

process defined by

Nn(B) = #{(j/n, a−1
n (Yj − bn)) ∈ B, j = 1, 2, . . .},

and N is a Poisson point process on (0,∞)×(−∞,∞) with intensity measure
dt× ν(dx).

The theorem shows that for a wide class of stochastic volatility models driven
with normal noise, the extremes of (Yt) can be normalized independently of
the covariance structure in (log σ2

t ), and the same limiting distribution is
obtained in all cases. In finite samples, however, the degree of dependence in
this linear process does affect the goodness-of-fit of the limiting distribution
(see Figure 1 of Breidt and Davis (1998)).

Defining the maximum of the log-squared volatility sequence by MY
n =

max(Y1, . . . , Yn), the limit distribution of the maxima can be determined
directly from the theorem in the way explained in Section 3.1 and is given by

P (a−1
n (MY

n − bn) ≤ x) = P (Nn((0, 1] × (x,∞)) = 0)

→ P (N((0, 1] × (x,∞)) = 0)

= e−e −x

, x ∈ R . (13)

The limit is the Gumbel distribution. It is one of the extreme value distribu-
tions, see Leadbetter et al. (1983).

The limiting distribution for the maxima M |X|
n = max(|X1|, . . . , |Xn|) of

the absolute values of the original (untransformed) volatility process (Xt)
can also be found from (13). Indeed, observe that for any x ∈ R,
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P (a−1
n (MY

n − bn) ≤ x)

= P (M |X|
n ≤ e 0.5 (an x+bn))

= P (e−0.5 bn (0.5 an)−1 (M |X|
n − e 0.5 bn) ≤ x+ o(1)) ,

where we used the Taylor expansion argument exp{0.5 an x} = 1+0.5 an x+
o(an). Another Taylor expansion yields as n → ∞

e 0.5 bn 0.5 an ∼ 2−3/4 σ̃−3/2 e−0.5 (log dn)1/2e σ̃ dn/
√

2 = ãn . (14)

Combining the arguments above and recalling that the Gumbel distribution
is continuous, we may conclude the following.

Corollary 1 Under the conditions of Theorem 1,

P (ã−1
n (M |X|

n − e 0.5 bn) ≤ x) → e−e −x

, x ∈ R ,

where ãn and bn are defined in (14) and (12), respectively.

One can also recover the limit distribution for the maxima MX
n =

max(X1, . . . , Xn) of the original series. The proof, which we sketch here,
follows the argument given in Haan et al. (1989) as adapted by Breidt and
Davis (1998). First note that Xt = |Xt| rt, where (rt) = (sign(Xt)) is an iid
sequence with P (rt = 1) = P (rt = −1) = 0.5 and independent of (|Xt|). For
x fixed, set Bn = Nn((0, 1] × (x,∞)), un = anx + bn, and v2

n = exp{un}. If
1 ≤ τ1 < τ2 < · · · denote the times at which (X2

t ) exceeds v2
n, then

P (MX
n ≤ vn) =

∞
∑

k=0

P
(

Bn = k,MX
n ≤ vn

)

=
∞
∑

k=0

P (Bn = k, rτ1 = −1, . . . , rτk
= −1) , (15)

because the event {Bn = k,MX
n ≤ vn} corresponds to the event that there

are exactly k exceedances of v2
n by X2

1 , . . . , X
2
n, where each such exceedance

corresponds to a negative sign of the respective noise term. Since Bn is inde-
pendent of the signs of the Xt and the random times τi depend only on |Xτi |
and are independent of (rτi), the right-hand side of (15) is equal to

∞
∑

k=0

P (Bn = k) 2−k →
∞
∑

k=0

P (N((0, 1] × (x,∞)) = k) 2−k

=
∞
∑

k=0

(e−x/2)k e−e −x

k!

= e−e−x/2 ,
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where the first equality follows from dominated convergence. Using a Taylor
series expansion on vn as above, we obtain the following limit result for MX

n .

Corollary 2 Under the conditions of Theorem 1,

P (ã−1
n (MX

n − e 0.5 bn) ≤ x) → e−e−x

, x ∈ R ,

where ãn and bn are defined in (14) and (12), respectively.

3.2.2 The heavy-tailed case

Theorem 2 Suppose (Xt) is the stochastic volatility process given by (1),
where Zt satisfies (4) and (5). Let an be the (1 − n−1)-quantile of |Xt|, i.e.,
an = inf{x : P (|Xt| > x) ≤ n−1} and define the point process Nn by

Nn(B) = #{(j/n, a−1
n Xj) ∈ B, j = 1, 2, . . .} .

Then Nn
d→ N , where N is a Poisson point process on (0,∞) × (−∞,∞)

with intensity measure dt× ν(dx), and

ν(dx) =
(

pαx−α−11(0,∞)(x) + q α (−x)−α−11(−∞,0)(x)
)

dx .

Moreover,

P (a−1
n Mn ≤ x) → e−px−α

, x > 0 ,

i.e., the limit is the Fréchet distribution which is one of the extreme value
distributions, see Embrechts et al. (1997), Leadbetter et al. (1983), Resnick
(1987).

For a stationary process (Xt) that satisfies a general mixing condition, one
can often show the existence of a θ ∈ (0, 1] such that

P (a−1
n (Mn − bn) ≤ x) → Gθ(x) ,

where the marginal distribution of the process satisfies (7). The parameter θ
is called the extremal index and measures the level of clustering of extremes
for stationary processes. One can interpret 1/θ as the mean cluster size of ex-
ceedances above a high threshold. For θ = 1, there is no clustering and so the
maxima behave asymptotically the same as the corresponding maxima of the
iid sequence with the same marginal distribution. For the stochastic volatility
process with either light- or heavy-tailed noise, it follows from Corollary 2
and Theorem 2 that the extremal index is always 1. In contrast, the extremal
index for the GARCH process is always less than one; see Davis and Mikosch
(2008b). So while both stochastic volatility and GARCH processes exhibit
volatility clustering, only the GARCH has clustering of extremes.
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Abstract We provide a detailed summary of the large and vibrant emerging
literature that deals with the multivariate modeling of conditional volatility
of financial time series within the framework of stochastic volatility. The
developments and achievements in this area represent one of the great suc-
cess stories of financial econometrics. Three broad classes of multivariate
stochastic volatility models have emerged: one that is a direct extension of
the univariate class of stochastic volatility model, another that is related to
the factor models of multivariate analysis and a third that is based on the
direct modeling of time-varying correlation matrices via matrix exponential
transformations, Wishart processes and other means. We discuss each of the
various model formulations, provide connections and differences and show
how the models are estimated. Given the interest in this area, further signif-
icant developments can be expected, perhaps fostered by the overview and
details delineated in this paper, especially in the fitting of high-dimensional
models.
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1 Introduction

A considerable amount of recent literature on financial econometrics has
emerged on the modeling of conditional volatility, spurred by the demand
for such models in areas such as portfolio and risk management. Much of
the early interest centered on multivariate versions of univariate generalized
autoregressive conditional heteroscedasticity (GARCH) models. These gen-
eralizations have been ably summarized in recent surveys, for example, those
of Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2007). More re-
cently, a large and prolific (parallel) body of literature has developed around
generalizations of the univariate stochastic volatility (SV) model. A number
of multivariate SV (MSV) models are now available along with clearly ar-
ticulated estimation recipes. Our goal in this paper is to provide a detailed
summary of these various model formulations, along with connections and
differences, and discuss how the models are estimated. We aim to show that
the developments and achievements in this area represent one of the great
success stories of financial econometrics. We note that our treatment does not
include any discussion of multivariate modeling of volatility that is relevant
for ultra-high-frequency data. Thus, there is no discussion of realized volatil-
ity (Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004)).

To fix notation and set the stage for our developments, the univariate SV
model that forms the basis for many MSV models is given by (Ghysels et al.
(1996), Broto and Ruiz (2004) and Shephard (2004)):

yt = exp(ht/2)εt, t = 1, . . . , n, (1)
ht+1 = μ+ φ(ht − μ) + ηt, t = 1, . . . , n− 1, (2)

h1 ∼ N
(

μ, σ2
η/(1 − φ2)

)

, (3)
(

εt
ηt

)

|ht ∼ N2(0,Σ), Σ =
(

1 0
0 σ2

η

)

, (4)

where yt is a univariate outcome, ht is a univariate latent variable and
N (μ, σ2) and Nm(μ,Σ) denote, respectively, a univariate normal distribu-
tion with mean μ and variance σ2, and an m-variate normal distribution
with mean vector μ and variance-covariance matrix Σ. In this model, condi-
tioned on the parameters (μ, φ, σ2

η), the first generating equation represents
the distribution of yt conditioned on ht, and the second generating equation
represents the Markov evolution of ht+1 given ht. The conditional mean of yt
is assumed to be zero because that is a reasonable assumption in the setting
of high-frequency financial data. The SV model is thus a state-space model,
with a linear evolution of the state variable ht but with a nonlinear mea-
surement equation (because ht enters the outcome model nonlinearly). Fur-
thermore, from the measurement equation we see that Var(yt|ht) = exp(ht),
which implies that ht may be understood as the log of the conditional vari-
ance of the outcome. To ensure that the evolution of these log volatilities is
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stationarity, one generally assumes that |φ| < 1. Many other versions of the
univariate SV model are possible. For example, it is possible to let the model
errors have a non-Gaussian fat-tailed distribution, to permit jumps, and in-
corporate the leverage effect (through a nonzero off-diagonal element in Σ).
The estimation of the canonical SV model and its various extensions was at
one time considered difficult since the likelihood function of these models is
not easily calculable. This problem has been fully resolved by the creative
use of Monte Carlo methods, primarily Bayesian Markov chain Monte Carlo
(MCMC) methods (Jacquier et al. (1994), Kim et al. (1998), Chib et al.
(2002) and Omori et al. (2007)). We refer the readers to Asai et al. (2006)
for a discussion of how this problem can be addressed in some special cases
by non-Bayesian methods. In this survey, on the other hand, we concentrate
on Bayesian methods but mention the full range of methods (Bayesian and
non-Bayesian) that have been tried for the various models.

In the multivariate case, when one is dealing with a collection of financial
time series denoted by yt = (y1t, . . . , ypt)′, the main goal is to model the
time-varying conditional covariance matrix of yt. There are several ways in
which this can be done. A typical starting point is the assumption of series-
specific log volatilities htj (j ≤ p) whose joint evolution is governed by a
first-order stationary vector autoregressive process:

ht+1 = μ+ Φ(ht − μ) + ηt, ηt|ht ∼ Np(0,Σηη), t = 1, . . . , n− 1,
h1 ∼ Np (μ,Σ0) ,

where ht = (h1t, . . . , hpt)′. To reduce the computational load, especially when
p is large, the log volatilities can be assumed to be conditionally independent.
In that case,

Φ = diag(φ11, ..., φpp) and
Σηη = diag(σ1,ηη, ..., σp,ηη)

are both diagonal matrices. We refer to the former specification as the VAR(1)
model and the latter as the IAR(1) (for independent autoregressive) model.
Beyond these differences, the various models primarily differ in the way in
which the outcomes yt are modeled. In one formulation, the outcomes are
assumed to be generated as

yt = V1/2
t εt, V1/2

t = diag (exp(h1t/2), . . . , exp(hpt/2)) , t = 1, . . . , n,

with the additional assumptions that
(

εt
ηt

)

|ht ∼ N2p(0,Σ), Σ =
(

Σεε O
O Σηη

)

and Σεε is a matrix in correlation (with units on the main diagonal). Thus,
conditioned on ht, Var(yt) = V1/2

t ΣεεV
1/2
t is time-varying (as required), but
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the conditional correlation matrix is Σεε, which is not time-varying. In the
sequel we refer to this model as the basic MSV model.

A second approach for modeling the outcome process is via a latent factor
approach. In this case, the outcome model is specified as

yt = Bf t + V1/2
t εt, V1/2

t = diag (exp(h1t/2), . . . , exp(hpt/2)) ,

where B is a p × q matrix (q ≤ p) called the loading matrix, and ft =
(f1t, ..., fqt) is a q × 1 latent factor at time t. For identification reasons, the
loading matrix is subject to some restrictions (that we present later in the
paper), and Σεε is the identity matrix. The model is closed by assuming that
the latent variables are distributed independently across time as

ft|ht ∼ Nq(0,Dt),

where
Dt = diag (exp(hp+1,t), . . . , exp(hp+q,t))

is a diagonal matrix that depends on additional latent variables hp+k,t. The
full set of log volatilities, namely,

ht = (h1t, . . . , hpt, hp+1,t, ..., hp+q,t),

are assumed to follow a VAR(1) or IAR(1) process. In this model, the variance
of yt conditional on the parameters and ht is

Var(yt|ht) = Vt + BDtB′

and as a result the conditional correlation matrix is time-varying.
Another way to model time-varying correlations is by direct modeling of

the variance matrix Σt = Var(yt). One such model is the Wishart process
model proposed by Philipov and Glickman (2006b), who assume that

yt|Σt ∼ Np(0,Σt),
Σt|ν,St−1 ∼ IWp(ν,St−1),

where IWp(ν0,Q0) denotes a p-dimensional inverted Wishart distribution
with parameters (ν0,Q0), and St−1 is a function of Σt−1. Several models
along these lines have been proposed as we discuss in Section 4.

The rest of the article is organized as follows. In Section 2, we first discuss
the basic MSV model along with some of its extensions. Section 3 is devoted
to the class of factor MSV models, while Section 4 deals with models in which
the dynamics of the covariance matrix are modeled directly and Section 5 has
our conclusions.



Multivariate Stochastic Volatility 369

2 Basic MSV Model

2.1 No-leverage model

As in the preceding section, let yt = (y1t, . . . , ypt)′ denote a set of observa-
tions at time t on p financial variables and let ht = (h1t, . . . , hpt)′ be the
corresponding vector of log volatilities. Then one approach to modeling the
conditional covariance matrix of yt is to assume that

yt = V1/2
t εt, t = 1, . . . , n, (5)

ht+1 = μ+ Φ(ht − μ) + ηt, t = 1, . . . , n− 1, (6)
h1 ∼ Np (μ,Σ0) , (7)

where
V1/2

t = diag (exp(h1t/2), . . . , exp(hpt/2)) ,

μ = (μ1, . . . , μp)′

and
(

εt
ηt

)

|ht ∼ N2p(0,Σ), Σ =
(

Σεε 0
0 Σηη

)

.

Of course, for identification purposes, the diagonal elements of Σεε must be 1,
which means that the matrix Σεε is a correlation matrix.

Analyses of this model are given by Harvey et al. (1994), Daníelsson (1998),
Smith and Pitts (2006) and Chan et al. (2006). Actually, Harvey et al. (1994)
dealt with a special case of this model in which Φ = diag(φ1, . . . , φp). To fit
the model, the measurement equation (5) is linearized by letting wit = log y2

it.
Because

E(log ε2it) = −1.27, Var(log ε2it) = π2/2, (8)

one now has (a non-Gaussian) linear measurement equation:

wt = (−1.27)1 + ht + ξt, (9)

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′, ξit = log ε2it + 1.27 and
1 = (1, . . . , 1)′. Although the new state error ξt does not follow a normal
distribution, approximate or quasi maximum likelihood (QML) estimates can
be obtained by assuming Gaussianity. Calculation of the (misspecified) Gaus-
sian likelihood also requires the covariance matrix of ξt. Harvey et al. (1994)
showed that the (i, j)th element of the covariance matrix of ξt = (ξ1t, . . . , ξpt)′

is given by (π2/2)ρ∗ij , where ρ∗ii = 1 and

ρ∗ij =
2
π2

∞
∑

n=1

(n− 1)!
{
∏n

k=1(1/2 + k − 1)}nρ
2n
ij . (10)
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The model was applied to four daily foreign exchange rates (pound/dollar,
Deutschemark/dollar, yen/dollar and Swiss franc/dollar). As mentioned in
Harvey et al. (1994), the preceding fitting method cannot be extended to the
leverage model considered below.

So et al. (1997) provide a similar analysis, but unlike Harvey et al.
(1994) the nondiagonal elements of Φ are not assumed to equal zero. Es-
timation of the parameters is again by the QML method which is imple-
mented through a computationally efficient and numerically well-behaved
expectation-maximization (EM) algorithm. The asymptotic variance-covari-
ance matrix of the resulting estimates is based on the information matrix.
Another related contribution is that of Daníelsson (1998), where the model

yt = V1/2
t εt, εt ∼ Np(0,Σεε),

ht+1 = μ+ diag(φ1, . . . , φp)(ht − μ) + ηt, ηt ∼ Np(0,Σηη)

is analyzed. The parameters of this model are estimated by the simulated
maximum likelihood method. The model and fitting method should be ap-
plied in the estimation of a bivariate model for foreign exchange rates
(Deutschemark/dollar, yen/dollar) and stock indices (S&P500 and Tokyo
stock exchange). On the basis of the log-likelihood values, they concluded that
the MSV model is superior to alternative GARCH models such as the vector
GARCH, diagonal vector GARCH (Bollerslev et al. (1988)), Baba–Engle–
Kraft–Kroner (BEKK) model (Engle and Kroner (1995)) and the constant
conditional correlation (CCC) model (Bollerslev (1990)).

Smith and Pitts (2006) considered a bivariate model without leverage that
is similar to the model of Daníelsson (1998). The model is given by

yt = V1/2
t εt, V1/2

t = diag(exp(h1t/2), exp(h2t/2)), εt ∼ N2(0,Σεε),
ht+1 = Ztα+ diag(φ1, φ2)(ht − Zt−1α) + ηt, ηt ∼ N2(0,Σηη),

h1 ∼ N2(Z1α1,Σ0),

where the (i, j)th element of Σ0 is the (i, j)th element of Σηη divided by
1 − φiφj to enforce the stationarity of ht − Ztα. To measure the effect on
daily returns in the yen/dollar foreign exchange of intervention by the Bank
of Japan, they included in Zt a variable that represents central bank inter-
vention which they modeled by a threshold model. The resulting model was
fit by Bayesian MCMC methods (Chib and Greenberg (1996), Chib (2001)).
Because the likelihood of the parameters is complex, sampling of the poste-
rior distributions in all applications of MCMC methods in MSV models is
indirectly achieved by sampling the posterior distribution of the parameters
and each of the latent variables. This tactic circumvents the computation of
the likelihood. For this tactic to work it is necessary to efficiently sample the
resulting high-dimensional posterior distribution. This is the challenge that
has to be surmounted on a model-by-model basis.
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To improve the efficiency of the MCMC algorithm, Smith and Pitts (2006)
sampled ht’s in blocks, as in Shephard and Pitt (1997); see also Watanabe and
Omori (2004). For simplicity, we describe their algorithm without the thresh-
old specification and without missing observations. Let Yt = {y1, . . . ,yt}
denote the set of observations until time t. Then the MCMC algorithm of
Smith and Pitts (2006) is given by:

1. Sample {ht}nt=1|ρ12, φ1, φ2, α,Σηη, Yn. Divide {ht}nt=1 into several blocks,
and sample a block at a time given other blocks. Let ha:b = (h′

a, . . . ,h
′
b)

′.
To sample a block ha:b given other hj ’s, we conduct a Metropolis–Hastings
(M-H) algorithm using a proposal density of the type introduced by Chib
and Greenberg (1994, 1998) and Chib (2001):

ha:b ∼ N2(b−a+1)

(

ĥa:b,

[

− ∂l(ha:b)
∂ha:b∂h′

a:b

]−1

ha:b=ĥa:b

)

,

where

l(ha:b) = const − 1
2

·
b

∑

t=a

(

1′ht + y′
tV

−1/2
t Σ−1

εε V−1/2
t yt

)

− 1
2
·

b+1
∑

t=a

{ht − Ztα− Φ(ht−1 − Zt−1α)}′ Σ−1
ηη {ht − Ztα− Φ(ht−1 − Zt−1α)} .

The proposal density is a Gaussian approximation of the conditional pos-
terior density based on a Taylor expansion of the conditional posterior
density around the mode ĥa:b. The mode is found numerically by the
Newton–Raphson method.

2. Sample ρ12|{ht}nt=1, φ1, φ2, α,Σηη, Yn using the M-H algorithm.
3. Sample φ1, φ2|{ht}nt=1, ρ12, α,Σηη, Yn using the M-H algorithm.
4. Sample α|{ht}nt=1, ρ12, φ1, φ2,Σηη, Yn ∼ N2(δ,Σ), where

δ = Σ
n

∑

t=2

(Zt − ΦZt−1)′Σ−1
ηη (ht − Φht−1) + Z′

1Σ
−1
0 h1,

Σ−1 =
n

∑

t=2

(Zt − ΦZt−1)′Σ−1
ηη (Zt − ΦZt−1) + Z′

1Σ
−1
0 Z1.

5. Sample Σηη|{ht}nt=1, ρ12, φ1, φ2, α, Yn using the M-H algorithm.

Bos and Shephard (2006) considered a similar model but with the mean
in the outcome specification driven by an r × 1 latent process vector αt:
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yt = Ztαt + Gtut,

αt+1 = Ttαt + Htut,

ut = V1/2
t εt, V1/2

t = diag(exp(h1t/2), . . . , exp(hqt/2)), εt ∼ Nq(0, I),
ht+1 = μ+ Φ(ht − μ) + ηt, ηt ∼ Nq(0,Σηη), ht = (h1t, . . . , hqt)′,

where Gtut and Htut are independent and the off-diagonal element of Φ
may be nonzero. Given {ht}nt=1, this is a linear Gaussian state-space model,

yt = Ztαt + u∗
t , u∗

t ∼ Np(0,GtVtG′
t),

αt+1 = Ttαt + v∗
t , v∗

t ∼ Nr(0,HtVtH′
t),

where u∗
t and v∗

t are independent. Bos and Shephard (2006) took a Bayesian
approach and conducted the MCMC simulation in two blocks. Let θ = (ψ, λ),
where ψ indexes the unknown parameters in Tt,Zt,Gt,Ht, and λ denotes
the parameter of the SV process of ut.

1. Sample θ, {αt}nt=1|{ht}nt=1, Yn.

– Sample θ|{ht}nt=1, Yn using a M-H algorithm or a step from the adap-
tive rejection Metropolis sampler by Gilks et al. (1995); see Bos and
Shephard (2006).

– Sample {αt}nt=1|θ, {ht}nt=1, Yn using a simulation smoother for a lin-
ear Gaussian state-space model; see de Jong and Shephard (1995)
and Durbin and Koopman (2002). We first sample disturbances of
the linear Gaussian state-space model and obtain samples of αt re-
cursively.

2. Sample {ht}nt=1|θ, {αt}nt=1, Yn. For t = 1, . . . , n, we sample ht one at a
time by the M-H algorithm with the proposal distribution

ht|ht−1,ht+1, θ ∼ Nq(μ+ QΦ′Σ−1
ηη {(ht+1 − μ) + (ht−1 − μ)} ,Q),

t = 2, . . . , n− 1,
hn|hn−1, θ ∼ Nq(μ,Σηη),

where Q−1 = Σ−1
ηη + Φ′−1Φ.

Although the sampling scheme which samples ht at a time is expected
to produce highly autocorrelated MCMC samples, the adaptive rejection
Metropolis sampling of θ seems to overcome some of the inefficiencies. Yu
and Meyer (2006) provide a survey of MSV models that proceed along these
lines and illustrate how the Bayesian software program WinBUGS can be
used to fit bivariate models.

It is worth mentioning that it is possible to relax the assumption that the
volatility process is VAR of order 1. In one notable attempt, So and Kwok
(2006) consider a MSV model where the volatility vector ht−μ follows a sta-
tionary vector autoregressive fractionally integrated moving average process,
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ARFIMA(p,d, q), such that

Φ(B)D(B)(ht+1 − μ) = Θ(B)ηt, ηt ∼ Np(0,Σηη), (11)

D(B) = diag((1 −B)d1 , . . . , (1 −B)dp), |di| < 1/2, (12)
Φ(B) = I − Φ1B − · · · − ΦpB

p, (13)
Θ(B) = I + Θ1B + · · · + ΘqB

q, (14)

where B is a backward operator such that Bjht = ht−j . The εt and ηt
are assumed to be independent. So and Kwok (2006) investigated statistical
properties of the model and proposed a QML estimation method as in Har-
vey et al. (1994). They linearized the measurement equation by taking the
logarithm of the squared returns and considered the linear state-space model

wt = (−1.27)1 + ht + ξt,

Φ(B)D(B)(ht+1 − μ) = Θ(B)ηt,

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′, wit = log y2
it, and ξit = log ε2it

for i = 1, . . . , n. The covariance matrix of ξt can be obtained as in Harvey
et al. (1994). To conduct the QML estimation, So and Kwok (2006) assumed
that ξt follows a normal distribution and obtained estimates based on the
linear Gaussian state-space model. However, since ht − μ follows a vector
ARFIMA(p,d, q) process, the conventional Kalman filter is not applicable as
the determinant and inverse of a large covariance matrix is required to calcu-
late the quasi-log-likelihood function. To avoid this calculation, So and Kwok
(2006) approximated the quasi-log-likelihood function by using a spectral
likelihood function based on a Fourier transform.

2.2 Leverage effects

Another extension of the basic MSV model is to allow for correlation between
εt and ηt by letting Σεη �= O. This extension is important because at least
for returns on stocks there is considerable evidence that the measurement
and volatility innovations are correlated (Yu (2005), Omori et al. (2007)).
That this correlation (the leverage effect) should be modeled is mentioned
by Daníelsson (1998) but this suggestion is not implemented in his empirical
study of foreign exchange rates and stock indices. One compelling work on
a type of leverage model is due to Chan et al. (2006), who considered the
model

yt = V1/2
t εt,

ht+1 = μ+ diag(φ1, . . . , φp)(ht − μ) + Ψ1/2ηt,

h1 ∼ Np(μ,Ψ1/2Σ0Ψ1/2),
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where the (i, j) element of Σ0 is the (i, j) element of Σηη divided by 1−φiφj
satisfying a stationarity condition such that

Σ0 = ΦΣ0Φ + Σηη

and

V1/2
t = diag (exp(h1t/2), . . . , exp(hpt/2)) ,

Ψ1/2 = diag
(
√

ψ2
1 , . . . ,

√

ψ2
p

)

,

(

εt
ηt

)

∼ N2p(0,Σ), Σ =
(

Σεε Σεη

Σηε Σηη

)

.

Actually, the model considered in Chan et al. (2006) had correlation between
εt and ηt−1, which is not correctly a model of leverage. Our discussion there-
fore modifies their treatment to deal with the model just presented, where
εt and ηt are correlated. Note that Σ is a 2p × 2p correlation matrix with
Σεη �= O. Now, following Wong et al. (2003) and Pitt et al. (2006), we repa-
rameterize Σ such that

Σ−1 = TGT, T = diag
(√

G11, . . . ,
√
Gpp

)

,

where G is a correlation matrix and Gii denotes the (i, i)th element of the
inverse matrix of G. Under this parameterization, we can find the posterior
probability that the strict lower triangle of the transformed correlation matrix
G is equal to zero. Let Jij = 1 if Gij �= 0 and Jij = 0 if Gij = 0 for
i = 1, . . . , 2p, j < i and S(J) denote the number of elements that are 1’s in
J = {Jij , i = 1, . . . , 2p, j < i}. Further let G{J=k} = {Gij : Jij = k ∈ J}
(k = 0, 1) and A denote a class of 2p× 2p correlation matrices. Wong et al.
(2003) proposed a hierarchical prior for G:

π(dG|J) = V (J)−1dG{J=1}I(G ∈ A), V (J) =
∫

G∈A
dG{J=1},

π(J|S(J) = l) =
V (J)

∑

J∗:S(J∗)=l

V (J∗)
,

π(S(J) = l|ϕ) =
(

p(2p− 1)
l

)

ϕl(1 − ϕ)p(2p−1)−l.

If we assume ϕ ∼ U(0, 1), the marginal prior probability π(S(J) = l) =
1/(p(2p − 1) + 1); see Wong et al. (2003) for the evaluation of V (J). Let
φ = (φ1, . . . , φp)′ and ψ = (ψ1, . . . , ψp)′ (ψj > 0, j = 1, . . . , p).

1. Sample φ|μ, {ht}nt=1, ψ,Σ, Yn where Yn = {y1, . . . ,yn}. Let Σij denote
the (i, j)th block of the 2p×2pmatrix Σ−1 and d be a vector that consists
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of the diagonal elements

n−1
∑

t=1

Ψ−1/2(ht − μ)
(

y′
tV

−1/2
t Σ12 + Ψ−1/2(ht+1 − μ)′Σ22

)

.

Propose a candidate

φ ∼ T NR(μφ,Σφ), R = {φ : φj ∈ (−1, 1), j = 1, . . . , p},

Σ−1
φ = Σ22 �

{

n−1
∑

t=1

Ψ−1/2(ht − μ)(ht − μ)′Ψ−1/2

}

,

μφ = Σφd,

where � is the element-by-element multiplication operator (Hadamard
product) and apply the M-H algorithm.

2. Sample μ|φ, {ht}nt=1, ψ,Σ, Yn ∼ Np(μ∗,Σ∗), where

Σ−1
∗ = (n− 1)(I − Φ)Ψ−1/2Σ22Ψ−1/2(I − Φ) + Ψ−1/2Σ−1

0 Ψ−1/2,

μ∗ = Σ∗

[

(I − Φ)Ψ−1/2
n−1
∑

t=1

{

Σ21V−1/2
t yt + Σ22Ψ−1/2(ht+1 − Φht)

}

+ Ψ−1/2Σ−1
0 Ψ−1/2h1

]

.

3. Sample ψ|φ, μ, {ht}nt=1,Σ, Yn. Let v = (ψ−1
1 , . . . , ψ−1

p ) and l(v) denote
the logarithm of the conditional probability density of v and v̂ denote
the mode of l(v). Then conduct the M-H algorithm using a truncated
multivariate t distribution on the region R = {v : vj > 0, j = 1, . . . , p}
with six degrees of freedom, location parameter v̂ and a covariance matrix
−{∂2l(v)/∂v∂v′}−1

v=v̂.
4. Sample {ht}nt=1|φ, μ, ψ,Σ, Yn. We divide {ht}nt=1 into several blocks, and

sample a block at a time given other blocks as in Smith and Pitts (2006).
Let ha:b = (h′

a, . . . ,h
′
b)

′. To sample a block ha:b given other hj ’s, we
conduct a M-H algorithm using a Chib and Greenberg (1994) proposal,

ha:b ∼ Np(b−a+1)

(

ĥa:b,

[

− ∂l(ha:b)
∂ha:b∂h′

a:b

]−1

ha:b=ĥa:b

)

,

l(ha:b) = const − 1
2

b
∑

t=a

1′ht −
1
2

b+1
∑

t=a

r′tΣ
−1rt,

rt =
(

V−1/2
t yt

Ψ−1/2{ht+1 − μ− Φ(ht − μ)}

)

,
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a Gaussian approximation of the conditional posterior density based on
Taylor expansion of the conditional posterior density around the mode
ĥa:b. The mode is found using the Newton–Raphson method numerically.
The analytical derivatives can be derived similarly as in the Appendix of
Chan et al. (2006).

5. Sample Σ|φ, μ, ψ, {ht}nt=1, Yn. Using the parsimonious reparameteriza-
tion proposed in Wong et al. (2003), we generate each element Gij one
at a time using the M-H algorithm.

Chan et al. (2006) applied the proposed estimation method to equities at
three levels of aggregation: (1) returns for eight different markets (portfolios of
stocks in NYSE, AMEX, NASDAQ and S&P500 indices); (2) returns for eight
different industries (portfolios of eight well-known and actively traded stocks
in petroleum, food products, pharmaceutical, banks, industrial equipment,
aerospace, electric utilities, and department/discount stores); (3) returns for
individual firms within the same industry. They found strong evidence of
correlation between εt and ηt−1 only for the returns of the eight different
markets and suggested that this correlation is mainly a feature of marketwide
rather than firm-specific returns and volatility.

Asai and McAleer (2006) also analyzed a MSV model with leverage effects,
letting

Φ = diag(φ1, . . . , φp),
Σεη = diag (λ1σ1,ηη, . . . , λpσp,ηη) .

The cross-asset leverage effects are assumed to be 0 (Corr(εit, ηjt) = 0, for
i �= j). As in Harvey and Shephard (1996), they linearized the measurement
equations and considered the following state-space model conditional on st =
(s1t, . . . , spt)′, where sit = 1 if yit is positive and sit = −1 otherwise:

log y2
it = hit + ζit, ζit = log ε2it, i = 1, . . . , p, t = 1, . . . , n,

ht+1 = μ̃+ μ∗
t + diag(φ1, . . . , φp)ht + η∗t ,

μ∗
t =

√

2
π
ΣεηΣ−1

εε st, η∗t ∼ Np(0,Ση∗
t η

∗
t
),

where E(ζit) = −1.27, and Cov(ζit, ζjt) = (π2/2)ρ∗ij given in (10). The matrix
Ση∗

t η
∗
t

and E(η∗t ζ′t) are given in Asai and McAleer (2006). They also consid-
ered an alternative MSV model with leverage effects and size effects given
by

ht+1 = μ̃+ Γ1yt + Γ2|yt| + Φht + ηt,

Γ1 = diag(γ11, . . . , γ1p), Γ2 = diag(γ21, . . . , γ2p),
|yt| = (|y1t|, . . . , |ypt|)′, Φ = diag(φ1, . . . , φp),
Σεη = O.
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This model is a generalization of a univariate model given by Daníelsson
(1994). It incorporates both leverage effects and the magnitude of the previ-
ous returns through their absolute values. Asai and McAleer (2006) fit these
two models to returns of three stock indices—S&P500 Composite Index, the
Nikkei 225 Index, and the Hang Seng Index—by an importance sampling
Monte Carlo maximum likelihood estimation method. They found that the
MSV model with leverage and size effects is preferred in terms of the Akaike
information criterion (AIC) and Bayesian information criterion (BIC) mea-
sures.

2.3 Heavy-tailed measurement error models

It has by now been quite well established that the tails of the distribution
of asset returns are heavier than those of the Gaussian. To deal with this
situation it has been popular to employ the Student t distribution as a re-
placement for the default Gaussian assumption. One reason for the popularity
of the Student t distribution is that it has a simple hierarchical form as a scale
mixture of normals. Specifically, if T is distributed as standard Student t with
ν degrees of freedom then T can be expressed as

T = λ−1/2Z, Z ∼ N (0, 1), λ ∼ G(ν/2, ν/2).

This representation can be exploited in the fitting, especially in the Bayesian
context. One early example of the use of the Student t distribution occurred in
Harvey et al. (1994), who assumed that in connection with the measurement
error εit that

εit = λ
−1/2
it εit, εt ∼ i.d.d. Np(0,Σεε), λit ∼ i.d.d. G(νi/2, νi/2),

where the mean is 0 and the elements of the covariance matrix are given by

Cov(εit, εjt) =

⎧

⎨

⎩

νi
νi − 2

, i = j,

E(λ−1/2
it )E(λ−1/2

jt )ρij , i �= j,

and E(λ−1/2
it ) =

(νi/2)1/2Γ ((νi − 1)/2)
Γ (νi/2)

.

Alternatively, the model can now be expressed as

yt = V1/2
t Λ−1/2

t εt, Λ−1/2
t = diag

(

1/
√

λ1t, . . . , 1/
√

λpt

)

.

Taking the logarithm of squared εit, one gets

log ε2it = log ε2it − logλit.
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They derived the QML estimators using the mean and covariance matrix of
(log ε2it, log ε2jt) using

E(logλit) = ψ′(ν/2) − log(ν/2), Var(log λit) = ψ′(ν/2),

and (8) and (10), where ψ and ψ′ are the digamma and trigamma functions.
On the other hand, Yu and Meyer (2006) considered a multivariate Student
t distribution for εt, in which case the measurement error has the form

T = λ
−1/2
t εt, εt ∼ Np(0, I), λt ∼ G(ν/2, ν/2).

They mentioned that this formulation was empirically better supported than
the formulation in Harvey et al. (1994). The model was fit by Bayesian
MCMC methods.

Another alternative to the Gaussian distribution is the generalized hyper-
bolic (GH) distribution introduced by Barndorff-Nielsen (1977). This family
is also a member of the scale mixture of normals family of distributions. In
this case, the mixing distribution is a generalized inverse Gaussian distribu-
tion. The GH distribution is a rich class of distributions that includes the
normal, normal inverse Gaussian, reciprocal normal inverse Gaussian, hyper-
bolic, skewed Student’s t, Laplace, normal gamma, and reciprocal normal hy-
perbolic distributions (Barndorff-Nielsen and Shephard (2001)). Aas and Haff
(2006) employed the univariate GH distributions (normal inverse Gaussian
distributions and univariate GH skew Student’s t distributions) and estimated
in the analysis of the total index of Norwegian stocks (TOTX), the SSBWG
hedged bond index for international bonds, the Norwegian kroner/euro ex-
change rate and the EURIBOR five-year interest rate. They found that the
GH skew Student’s t distribution is superior to the normal inverse Gaussian
distribution for heavy-tailed data, and superior to the skewed t distribution
proposed by Azzalini and Capitanio (2003) for very skewed data.

The random variable x ∼ GH(ν, α, β,m, δ,S) follows a multivariate GH
distribution with density

f(x) =
(γ/δ)νKν− p

2

(

α
√

δ2 + (x − m)′S−1(x − m)
)

exp{β′(x − m)}

(2π)
p
2Kν(δγ)

{

α−1
√

δ2 + (x − m)′S−1(x − m)
}

p
2−ν

,

(15)

γ ≡
√

α2 − β′Sβ ≥ 0, α2 ≥ β′Sβ,

ν, α ∈ R, β,m ∈ Rn, δ > 0,

where Kν is a modified Bessel function of the third kind, and S is a p × p
positive-definite matrix with determinant |S| = 1 (Protassov (2004), Schmidt
et al. (2006)). It can be shown that x can be expressed as

x = m + ztSβ +
√
ztS

1/2εt,



Multivariate Stochastic Volatility 379

where S1/2 is a p × p matrix such that S = S1/2S1/2′
and ε ∼ Np(0, I) and

zt ∼ GIG(ν, δ, γ) follows a generalized inverse Gaussian distribution which
we denote z ∼ GIG(ν, δ, γ) and whose density is given by

f(z) =
(γ/δ)ν

2Kν(δγ)
zν−1 exp

{

−1
2
(

δ2z−1 + γ2z
)

}

, γ, δ ≥ 0, ν ∈ R, z > 0,

where the range of the parameters is given by

δ > 0, γ2 ≥ 0, if ν < 0,
δ > 0, γ2 > 0, if ν = 0,
δ ≥ 0, γ2 > 0, if ν > 0.

For the generation of a random sample from GIG(ν, a, b), see Dagpunar
(1989), Doornik (2002) and Hörmann et al. (2004). The estimation of such a
multivariate distribution would be difficult and Protassov (2004) relied on the
EM algorithm with ν fixed and fit the five-dimensional normal inverse Gaus-
sian distribution to a series of returns on foreign exchange rates (Swiss franc,
Deutschemark, British pound, Canadian dollar and Japanese yen). Schmidt
et al. (2006) proposed an alternative class of distributions, called the multi-
variate affine GH class, and applied it to bivariate models for various asset
returns data (Dax, Cac, Nikkei and Dow returns). Other multivariate skew
densities have also been proposed, for example, in Arellano-Valle and Azzalini
(2006), Bauwens and Laurent (2005), Dey and Liu (2005) Azzalini (2005),
Gupta et al. (2004) and Ferreira and Steel (2004).

3 Factor MSV Model

3.1 Volatility factor model

A weakness of the preceding MSV models is that the implied conditional
correlation matrix does not vary with time. One approach for generating
time-varying correlations is via factor models in which the factors follow a
SV process. One type of factor SV model (that however does not lead to time-
varying correlations) was considered by Quintana and West (1987) and by
Jungbacker and Koopman (2006), who utilized a single factor to decompose
the outcome into two multiplicative components, a scalar common volatility
factor and a vector of idiosyncratic noise variables, as

yt = exp
(

ht
2

)

εt, εt ∼ Np(0,Σεε),

ht+1 = μ+ φ(ht − μ) + ηt, ηt ∼ N (0, σ2
η),
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where ht is a scalar. The first element in Σεε is assumed to be 1 for identifica-
tion reasons. By construction, the positivity of the variance of yt is ensured.
In comparison with the basic MSV model, this model has fewer parameters,
which makes it more convenient to fit. The downside of the model, however,
is that unlike the mean factor MSV model which we discuss below, the condi-
tional correlations in this model are time-invariant. Moreover, the correlation
between log volatilities is 1, which is clearly limiting.

In order to estimate the model, Jungbacker and Koopman (2006) applied
a Monte Carlo likelihood method to fit data on exchange rate returns of the
British pound, the Deutschemark and the Japanese yen against the US dollar.
They found that the estimate of φ is atypically low, indicating that the model
is inappropriate for explaining the movements of multivariate volatility.

A more general version of this type was considered by Harvey et al. (1994),
who introduced a common factor in the linearized state-space version of the
basic MSV model by letting

wt = (−1.27)1 + Θht + h + ξt, (16)
ht+1 = ht + ηt, ηt ∼ Nq(0, I), (17)

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′ and ht = (h1t, . . . , hqt)′ (q ≤
p). Furthermore, one assumes that

Θ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

θ11 0 · · · 0

θ21 θ22
. . .

...
...

. . . . . . 0
θq1 · · · θq,q−1 θqq
...

...
...

θp,1 · · · θp,q−1 θp,q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, h =

⎛

⎜

⎜

⎜

⎝

0
hq+1

...
hp

⎞

⎟

⎟

⎟

⎠

.

Harvey et al. (1994) estimated the parameters by the QML method. To make
the factor loadings interpretable, the common factors are rotated such that
Θ∗ = ΘR′ and h∗

t = Rht, where R is an orthogonal matrix.
Tims and Mahieu (2006) considered a similar but simpler model for the

logarithm of the range of the exchange rates in the context of an appli-
cation involving four currencies. Let wij denote a logarithm of the range
of foreign exchange rate of the currency i relative to the currency j, and
w = (w12, w13, w14, w23, w24, w34). Now assume that

wt = c + Zht + ξt, ξt ∼ Np(0,Σξξ),
ht+1 = diag(φ1, . . . , φq)ht + ηt, ηt ∼ Nq(0,Σηη),

where c is a 6 × 1 mean vector, Σηη is diagonal, ht = (h1t, . . . , h4t)′ and hjt
is a latent factor for the jth currency at time t and
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Z =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Since this is a linear Gaussian state-space model, the estimation of the pa-
rameters is straightforward by Kalman filtering methods.

Ray and Tsay (2000) introduced long-range dependence into the volatility
factor model by supposing that ht follows a fractionally integrated process
such that

yt = V1/2
t εt, V1/2

t = diag(exp(z′1ht/2), . . . , exp(z′qht/2)),

(1 − L)dht = ηt, εt ∼ Np(0,Σεε), ηt ∼ Nq(0,Σηη),

where zi (i = 1, . . . , q) are q × 1 vectors with q < p. In the fitting, the
measurement equation is linearized as in Harvey et al. (1994).

Calvet et al. (2006) generalized the univariate Markov-switching multifrac-
tal (MSM) model proposed by Calvet and Fisher (2001) to the multivariate
MSM and factor MSM models. The univariate model is given by

yt = (M1,tM2,t · · ·Mk,t)1/2εt, εt ∼ N (0, σ2),

where Mj,t (j ≤ k) are random volatility components, satisfying E(Mj,t) = 1.
Given Mt = (M1,t,M2,t, . . . ,Mk,t), the stochastic volatility of return yt is
given by σ2M1,tM2,t · · ·Mk,t. Each Mj,t follows a hidden Markov chain as
follows:

Mj,t drawn from distribution M,with probability γj ,
Mj,t = Mj,t−1,with probability 1 − γj ,

where γj = 1 − (1 − γ)(b
j−k), (0 < γ < 1, b > 1) and the distribution of M

is binomial, giving values m or 2 − m (m ∈ [1, 2]) with equal probability.
Thus, the MSM model is governed by four parameters (m,σ, b, γ), which are
estimated by the maximum likelihood method.

For the bivariate MSM model, we consider the vector of the random volatil-
ity component Mj,t = (M1

j,t,M
2
j,t)

′ (j ≤ k). Then, the bivariate model is
given by

yt = (M1,t � M2,t � · · · � Mk,t)
1/2 � εt, εt ∼ N2(0, V ),

where � denotes the element-by-element product. For each component Mj,t

in the bivariate model, Calvet et al. (2006) assumed that volatility arrivals
are correlated but not necessarily simultaneous. For details, let sij,t (i = 1, 2)
denote the random variable equal to 1 if there is an arrival on M i

j,t with prob-
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ability γj , and equal to 0 otherwise. Thus, each sij,t follows the Bernoulli dis-
tribution. At this stage, Calvet et al. (2006) introduced the correlation coeffi-
cient λ, giving the conditional probability P (s2j,t = 1|s1j,t = 1) = (1−λ)γj+λ.
They showed that arrivals are independent if λ = 0, and simultaneous if
λ = 1. Given the realization of the arrival vectors s1j,t and s2j,t, the construc-
tion of the volatility components Mj,t is based on a bivariate distribution
M = (M1,M2). If arrivals hit both series (s1j,t = s2j,t = 1), the state vector
Mj,t is drawn from M. If only one series i (i = 1, 2) receives an arrival, the
new component M i

j,t is sampled from the marginal M i of the bivariate distri-
bution M. Finally, Mj,t = Mj,t−1 if there is no arrival (s1j,t = s2j,t = 0). They
assumed that M has a bivariate binomial distribution controlled by m1 and
m2, in parallel fashion to the univariate case. Again, the closed-form solution
of the likelihood function is available. This approach can be extended to a
general multivariate case. As the number of parameters therefore grows at
least as fast as a quadratic function of p, Calvet et al. (2006) proposed not
only the multivariate MSM model but also the factor MSM model.

The factor MSM model based on q volatility factors f lt = (f l1,t, . . . , f lk,t)
′,

(f lj,t > 0) (l = 1, 2, . . . , q) is given by

yt = (M1,t � M2,t � · · · � Mk,t)
1/2 � εt, εt ∼ N2(0, V ),

Mj,t = (M1
j,t,M

2
j,t, . . . ,M

p
j,t)

′, (j ≤ k),

M i
j,t = Ci

(

f1
j,t

)wi
1
(

f2
j,t

)wi
2 · · ·

(

f qj,t
)wi

q
(

uij,t
)wi

q+1 ,

where the weights are nonnegative and add up to 1, and the constant Ci is
chosen to guarantee that E(M i

j,t) = 1, and is thus not a free parameter. Cal-
vet et al. (2006) specified the model as follows. For each vector f lt , f lj,t follows
a univariate MSM process with parameters (b, γ,ml). The volatility of each
asset i is also affected by an idiosyncratic shock ui

t = (ui1,t, . . . , u
i
k,t)

′, which
is specified by parameters (b, γ,mq+i). Draws of the factors f lj,t and idiosyn-
cratic shocks uij,t are independent, but timing of arrivals may be correlated.
Factors and idiosyncratic components thus follow the univariate MSM with
identical frequencies.

3.2 Mean factor model

Another type of factor MSV model is considered in Pitt and Shephard (1999),
who, following a model proposed in Kim et al. (1998), worked with the spec-
ification
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yt = Bft + V1/2
t εt, εt ∼ Np(0, I), (18)

ft = D1/2
t γt, γt ∼ Nq(0, I), (19)

ht+1 = μ+ Φ(ht − μ) + ηt, ηt ∼ Np+q(0,Σηη), (20)

where

Vt = diag(exp(h1t), . . . , exp(hpt)), (21)
Dt = diag (exp(hp+1,t), . . . , exp(hp+q,t)) , (22)
Φ = diag(φ1, . . . , φp+q), (23)

Σηη = diag(σ1,ηη, ..., σp+q,ηη) (24)

and ht = (h1t, . . . , hpt, hp+1,t, ..., hp+q,t). For identification purposes, the p×q
loading matrix B is assumed to be such that bij = 0 for (i < j, i ≤ q) and
bii = 1 (i ≤ q) with all other elements unrestricted. Thus, in this model,
each of the factors and each of the errors evolve according to univariate SV
models. A similar model was also considered by Jacquier et al. (1999) and
Liesenfeld and Richard (2003) but under the restriction that Vt is not time-
varying. Jacquier et al. (1999) estimated their model by MCMC methods,
sampling hit one at a time from its full conditional distribution, whereas
Liesenfeld and Richard (2003) showed how the maximum likelihood estima-
tion can be obtained by the efficient importance sampling method. For the
more general model described above, Pitt and Shephard (1999) also employed
a MCMC-based approach, now sampling ht along the lines of Shephard and
Pitt (1997). An even further generalization of this factor model was devel-
oped by Chib et al. (2006), who allowed for jumps in the observation model
and a fat-tailed t distribution for the errors εt. The resulting model and its
fitting are explained in Section 3.3. Alternative interesting approaches were
also proposed by Diebold and Nerlove (1989) and King et al. (1994) in the
framework of GARCH models using Kalman filter algorithms, but we omit
the details to focus on the MSV models.

Lopes and Carvalho (2007) considered a general model which nests the
models of Pitt and Shephard (1999) and Aguilar and West (2000), and ex-
tended it in two directions by (1) letting the matrix of factor loadings B
be time-dependent and (2) allowing Markov switching in the common factor
volatilities. The general model is given by (19)–(22), with

yt = Btft + V1/2
t εt, εt ∼ Np(0, I),

hf
t+1 = μfst

+ Φfhf
t + ηft , ηft ∼ Nq

(

0,Σf
ηη

)

,

where hf
t = (hp+1,t, . . . , hp+q,t)′, μf = (μp+1, . . . , μp+q)′, Φf = diag(φp+1,

. . . , φp+q) and Σf
ηη is the nondiagonal covariance matrix. Letting the pq −

q(q + 1)/2 unconstrained elements of vec(Bt) be bt = (b21,t, b31,t, . . . , bpq,t)′,
they assumed that each element of bt follows an AR(1) process. Following
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So et al. (1998), where the fitting was based on the work of Albert and
Chib (1993), they assumed μst followed a Markov switching model, where st
follows a multistate first-order Markovian process. Lopes and Carvalho (2007)
applied this model to two datasets: (1) returns on daily closing spot rates
for six currencies relative to the US dollar (Deutschemark, British pound,
Japanese yen, French franc, Canadian dollar, Spanish peseta), and (2) returns
on daily closing rates for four Latin American stock markets indices. In the
former application, they used q = 3 factors and in the latter case q = 2
factors.

Han (2006) modified the model of Pitt and Shephard (1999) and Chib
et al. (2006) by allowing the factors to follow an AR(1) process:

ft = c + Aft−1 + D1/2
t γt, γt ∼ Nq(0, I). (25)

The model was fit by adapting the approach of Chib et al. (2006) and applied
to a collection of 36 arbitrarily chosen stocks to examine the performance of
various portfolio strategies.

3.3 Bayesian analysis of mean factor MSV model

We describe the fitting of factor models in the context of the general model
of Chib et al. (2006). The model is given by

yt = Bft + Ktqt + V1/2
t Λ−1

t εt, εt ∼ Np(0, I), (26)

where Λt = diag(λ1t, . . . , λpt), qt is p independent Bernoulli “jump" random
variables and Kt = diag(k1t, . . . , kpt) are jump sizes. Assume that each el-
ement qjt of qt takes the value 1 with probability κj and the value 0 with
probability 1 − κj , and that each element ujt of ut = V1/2

t Λ−1
t εt follows an

independent Student t distribution with degrees of freedom νj > 2, which we
express in hierarchical form as

ujt = λ
−1/2
jt exp(hjt/2)εjt, λjt

i.i.d.∼ G
(νj

2
,
νj
2

)

, t = 1, 2, . . . , n. (27)

The εt and ft are assumed to be independent and
(

V1/2
t εt
ft

)

|Vt,Dt,Kt,qt ∼ Np+q

{

0,
(

Vt O
O Dt

)}

are conditionally independent Gaussian random vectors. The time-varying
variance matrices Vt and Dt are defined by (20) and (21). Chib et al. (2006)
assumed that the variables ζjt = ln(1 + kjt), j ≤ p, are distributed as
N (−0.5δ2j , δ

2
j ), where δ = (δ1, . . . , δp)′ are unknown parameters.
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We may calculate the number of parameters and latent variables as fol-
lows. Let β denote the free elements of B after imposing the identifying
restrictions. Let Σηη = diag(σ2

1 , . . . , σ
2
p) and Σf

ηη = diag(σ2
p+1, . . . , σ

2
p+q).

Then there are pq − (q2 + q)/2 elements in β. The model has 3(p + q) pa-
rameters θj = (φj , μj , σj) (1 ≤ j ≤ p + q) in the autoregressive processes
(20) of {hjt}. We also have p degrees of freedom ν = (ν1, . . . , νp), p jump
intensities κ = (κ1, . . . , κp) and p jump variances δ = (δ1, . . . , δp). If we let
ψ = (β, θ1, . . . , θp, ν, δ, κ) denote the entire list of parameters, then the di-
mension of ψ is 688 when p = 50 and q = 8. Furthermore, the model contains
n(p+ q) latent volatilities {ht} that appears nonlinearly in the specification
of Vt and Dt, 2np latent variables {qt} and {kt} associated with the jump
component and np scaling variables {λt}.

To conduct the prior-posterior analysis of this model, Chib et al. (2006) fo-
cused on the posterior distribution of the parameters and the latent variables:

π (β, {ft}, {θj}, {hj.}, {νj}, {λj.}, {δj}, {κj}, {ζj.}, {qj.}|Yn) , (28)

where the notation zj. is used to denote the collection (zj1, . . . , zjn). They

sampled this distribution by MCMC methods through the following steps:

1. Sample β. The full conditional distribution of β is given by

π(β|Yn, {hj.}, {ζj.}, {qj.}, {λj.}) ∝ p(β)
n
∏

t=1

Np(yt|Ktqt,Ωt),

where p(β) is the normal prior,

Ωt = V∗
t + BDtB′ and V∗

t = Vt � diag(λ−1
1t , . . . , λ

−1
pt ).

To sample from this density, Chib et al. (2006) employed the M-H algo-
rithm (Chib and Greenberg (1995)), following Chib and Greenberg (1994)
and taking the proposal density to be multivariate-t, T (β|m,Σ, v), where
m is the approximate mode of l = ln{

∏n
t=1 Np(yt|Ktqt,Ωt)}, and Σ is

minus the inverse of the second derivative matrix of l. Then, a proposal
value β∗ is drawn from T (m,Σ, v) and accepted with probability

α(β, β∗|ỹ, {hj.}, {λj.})

= min
{

1,
p(β∗)

∏n
t=1 Np (ỹt|0,V∗

t + B∗DtB∗′)T (β|m,Σ, v)
p(β)

∏n
t=1 Np ((ỹt|0,V∗

t + BDtB′)T (β∗|m,Σ, v)

}

,

where β is the current value. If the proposal value is rejected, the next
item of the chain is taken to be the current value β.

2. Sample {ft}. The distribution {ft}|Ỹn,B,h, λ can be divided into the
product of the distributions ft|ỹt,ht,h

f
t , λt,B, which have Gaussian dis-

tribution with mean f̂t = FtB′(V∗
t )−1ỹt and variance Ft =

{

B′(V∗
t )−1B

+D−1
t

}−1.
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3. Sample {θj} and {hj.}. Given {ft} and the conditional independence
of the errors in (20), the model separates into q conditionally Gaussian
state-space models. Let

zjt =
{

ln{(yjt − αjt − (exp(ζjt) − 1)qjt)2 + c} + ln(λjt), j ≤ p,
ln(f2

j−p,t + c), j ≥ p+ 1,

where c is an “offset" constant that is set to 10−6. Then from Kim et al.
(1998) it follows that the p+ q state-space models can be subjected to an
independent analysis for sampling the {θj} and {hj.}. In particular, the
distribution of zjt, which is hjt plus a logχ2 random variable with one
degree of freedom, may be approximated closely by a seven-component
mixture of normal distributions:

zjt|sjt, hjt ∼ N
(

hjt +msjt , v
2
sjt

)

,

hj,t+1 − μj = φj (hj,t − μj) + ηjt, j ≤ p+ q,

where sjt is a discrete component indicator variable with mass function
Pr(sjt = i) = qi, i ≤ 7, t ≤ n, and msjt , v2

sjt
and qi are parameters

that are reported in Chib et al. (2002). Thus, under this representation,
conditioned on the transformed observations

p ({sj.}, θ, {hj.}|z) =
p+q
∏

j=1

p (sj., θj ,hj.|zj.) ,

which implies that the mixture indicators, log volatilities and series-
specific parameters can be sampled series by series. Now, for each j, one
can sample (sj., θj ,hj.) by the univariate SV algorithm given by Chib
et al. (2002). Briefly, sj. is sampled from

p (sj.|zj.,hj.) =
n
∏

t=1

p (sjt|zjt, hjt) ,

where p(sjt|zjt, hjt) ∝ p(sjt)N
(

zjt|hjt +msjt , v
2
sjt

)

is a mass function
with seven points of support. Next, θj is sampled by the M-H algorithm
from the density π(θj |zj., sj.) ∝ p(θj)p(zj.|sj., θj), where

p (zj.|sj., θj) = p (zj1|sj., θj)
n
∏

t=2

p
(

zjt|F∗
j,t−1, sj., θj

)

(29)

and p(zjt|F∗
j,t−1, sj., θj) is a normal density whose parameters are ob-

tained by the Kalman filter recursions, adapted to the differing compo-
nents, as indicated by the component vector sj.. Finally, hj. is sampled



Multivariate Stochastic Volatility 387

from [hj.|zj., sj., θj ] by the simulation smoother algorithm of de Jong and
Shephard (1995).

4. Sample {νj}, {qj.} and {λj.}. The degrees-of-freedom parameters, jump
parameters and associated latent variables are sampled independently for
each time series. The full conditional distribution of νj is given by

Pr(νj |yj.,hj ,B, f ,qj., ζj.) (30)

∝ Pr(νj)
n
∏

t=1

T (yjt|αjt + {exp(ζjt) − 1}qjt, exp(hjt), νj),

and one can apply the Metropolis-Hastings algorithm in a manner anal-
ogous to the case of β. Next, the jump indicators {qj.} are sampled from
the two-point discrete distribution,

Pr(qjt = 1|yj.,hj.,B, f , νj , ζj., κj)
∝ κjT (yjt|αjt + {exp(ζjt) − 1}, exp(hjt), νj),

Pr(qjt = 0|yj.,hj.,B, f , νj , ζj., κj)
∝ (1 − κj)T (yjt|αjt, exp(hjt), νj),

followed by the components of the vector {λj.} from the density

λjt|yjt, hjt,B, f , νj , qjt, ψjt

∼ G
(

νj + 1
2

,
νj + (yjt − αjt − (exp(ζjt) − 1)qjt))2

2 exp(hjt)

)

.

5. Sample {δj} and {ζj.}. For simulation efficiency reasons, δj and ζj. must
also be sampled in one block. The full conditional distribution of δj is
given by

π(δj)
n
∏

t=1

N(αjt − 0.5δ2j qjt, δ
2
j q

2
jt + exp(hjt)λ−1

jt ) (31)

by the M-H algorithm. Once δj has been sampled, the vectors ζj.
are sampled, bearing in mind that their posterior distribution is up-
dated only when qjt is 1. Therefore, when qjt is 0, we sample ζjt from
N (−0.5δ2j , δ

2
j ), otherwise we sample from the distribution N (Ψjt(−0.5 +

exp(−hjt)λjtyjt), Ψjt), where Ψjt = (δ−2
j + exp(−hjt)λjt)−1. The algo-

rithm is completed by sampling the components of the vector κ indepen-
dently from κj |qj. ∼ β(u0j + n1j , u1j + n0j), where n0j is the count of
qjt = 0 and n1j = n− n0j is the count of qjt = 1.
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A complete cycle through these various distributions completes one tran-
sition of our Markov chain. These steps are then repeated G times, where G
is a large number, and the values beyond a suitable burn-in of say a 1,000
cycles are used for the purpose of summarizing the posterior distribution.

4 Dynamic Correlation MSV Model

Another way to model time-varying correlations is by constructing models
that model the correlations (or functions of correlations) directly. We describe
several such approaches in this section.

4.1 Modeling by reparameterization

One approach is illustrated by Yu and Meyer (2006) in the context of the
bivariate SV model:

yt = V1/2
t εt, εt ∼ N2(0,Σεε,t), Σεε,t =

(

1 ρt
ρt 1

)

,

ht+1 = μ+ diag(φ1, φ2)(ht − μ) + ηt, ηt ∼ N2

(

0, diag(σ2
1 , σ

2
2)
)

,

qt+1 = ψ0 + ψ1(qt − ψ0) + σρvt, vt ∼ N (0, 1),

ρt =
exp(qt) − 1
exp(qt) + 1

,

where h0 = μ and q0 = ψ0. The correlation coefficient ρt is then obtained
from qt by the Fisher transformation. Yu and Meyer (2006) estimated this
model by MCMC methods with the help of the WinBUGS program and found
that it was superior to other models, including the mean factor MSV model.
However, the generalization of this bivariate model to higher dimensions is not
easy because it is difficult to ensure the positive-definiteness of the correlation
matrix Σεε,t.

Another approach, introduced by Tsay (2005), is based on the Choleski
decomposition of the time-varying correlation matrix. Specifically, one can
consider the Choleski decomposition of the correlation matrix Σεε,t such that
Cov(yt|ht) = LtVtL′

t. The outcome model is then given by yt = LtV
1/2
t εt,

εt ∼ Np(0, I). As an example, when bivariate outcomes are involved we have

Lt =
(

1 0
qt 1

)

, Vt = diag(exp(h1t), exp(h2t)).

Then,



Multivariate Stochastic Volatility 389

y1t = ε1t exp(h1t/2),
y2t = qtε1t exp(h1t/2) + ε2t exp(h2t/2),

which shows that the distribution of yt is modeled sequentially. We first let
y1t ∼ N (0, exp(h1t)) and then we let y2t|y1t ∼ N (qty1t, exp(h2t)). Thus qt is
a slope of conditional mean and the correlation coefficient between y1t and
y2t is given by

Var(y1t) = exp(h1t),

Var(y2t) = q2t exp(h1t) + exp(h2t),
Cov(y1t, y2t) = qt exp(h1t),

Corr(y1t, y2t) =
qt

√

q2t + exp(h2t − h1t)
.

As suggested in Asai et al. (2006), we let qt follow an AR(1) process

qt+1 = ψ0 + ψ1(qt − ψ0) + σρvt, vt ∼ N (0, 1).

The generalization to higher dimensions is straightforward. Let

Lt =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 · · · 0

q21,t 1
. . .

...
...

. . . . . . 0
qp1,t · · · qp,p−1,t 1

⎞

⎟

⎟

⎟

⎟

⎠

, Vt = diag(exp(h1t), . . . , exp(hpt)),

and

y1t = ε1t exp(h1t/2),
y2t = q21,tε1t exp(h1t/2) + ε2t exp(h2t/2),

...
ypt = qp1,tε1t exp(h1t/2) + . . .+ qp,p−1,tεp−1,t exp(hp−1,t/2) + εpt exp(hpt/2),

Var(yit) =
i

∑

k=1

q2ik,t exp(hkt), qii,t ≡ 1, i = 1, . . . , p,

Cov(yit, yjt) =
i

∑

k=1

qik,tqjk,t exp(hkt), i < j, i = 1, . . . , p− 1,
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Corr(yit, yjt) =

i
∑

k=1

qik,tqjk,t exp(hkt)

√

√

√

√

i
∑

k=1

q2ik,t exp(hkt)
j

∑

k=1

q2jk,t exp(hkt)

, i < j,

where qit now follows the AR(1) process:

qi,t+1 = ψi,0 + ψi,1(qi,t − ψ0) + σi,ρvit, vit ∼ N (0, 1).

Jungbacker and Koopman (2006) considered a similar model with Lt = L and
estimated the parameters of the model by the Monte Carlo likelihood method.
As in the one-factor case, they used the data set for the daily exchange rate
returns of the British pound, the Deutschemark and the Japanese yen against
the US dollar.

4.2 Matrix exponential transformation

For any p× p matrix A, the matrix exponential transformation is defined by
the following power-series expansion:

exp(A) ≡
∞
∑

s=0

1
s!

As,

where A0 is equal to a p × p identity matrix. For any real positive-definite
matrix C, there exists a real symmetric p× p matrix A such that

C = exp(A).

Conversely, for any real symmetric matrix A, C = exp(A) is a positive-
definite matrix; see Lemma 1 of Chiu et al. (1996) and Kawakatsu (2006). If
At is a p× p real symmetric matrix, there exists a p× p orthogonal matrix
Bt and a p× p real diagonal matrix Ht of eigenvalues of A such that At =
BtHtB′

t and

exp(At) = Bt

( ∞
∑

s=0

1
s!

Hs
t

)

B′
t = Bt exp(Ht)B′

t .

Thus, we consider the matrix exponential transformation for the covariance
matrix Var(yt) = Σt = exp(At), where At is a p× p real symmetric matrix
such that At = BtHtB′

t (Ht = diag(h1t, . . . , hpt)). Note that
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Σt = BtVtB′
t, Vt = diag(exp(h1t), . . . , exp(hpt)),

Σ−1
t = B′

tV
−1
t Bt, |Σt| = exp

(

p
∑

i=1

hit

)

.

We model the dynamic structure of covariance matrices through αt =
vech(At). We may consider a first-order autoregressive process for αt,

yt|At ∼ Np(0, exp(At)),
αt+1 = μ+ Φ(αt − μ) + ηt, (Φ : diagonal),

αt = vech(At), ηt ∼ Np(p+1)/2(0,Σηη),

as suggested in Asai et al. (2006). The estimation of this model can be done
using a MCMC or a simulated maximum likelihood estimation, but it is not
straightforward to interpret the parameters.

4.3 Wishart process

4.3.1 Standard model

Another way to obtain a time-varying correlation matrix is by the approach
of Philipov and Glickman (2006a, 2006b), who assumed that the conditional
covariance matrix Σt follows an inverted Wishart distribution with parame-
ters that depend on the past covariance matrix Σt−1. In particular,

yt|Σt ∼ Np(0,Σt),
Σt|ν,St−1 ∼ IWp(ν,St−1),

where IW(ν0,Q0) denotes an inverted Wishart distribution with parameters
(ν0,Q0),

St−1 =
1
ν
A1/2

(

Σ−1
t−1

)d
A1/2′, (32)

A = A1/2A1/2′,

and A1/2 is a Choleski decomposition of a positive-definite symmetric matrix
A and −1 < d < 1. Asai and McAleer (2007) pointed out that it is also
possible to parameterize St−1 as ν−1

(

Σ−1
t−1

)d/2
A

(

Σ−1
t−1

)d/2′.
The conditional expected values of Σ−1

t and Σt are
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E
(

Σ−1
t |ν,St−1

)

= νSt−1 = A1/2
(

Σ−1
t−1

)d
A1/2′,

E (Σt|ν,St−1) =
1

ν − p− 1
S−1
t−1 =

ν

ν − p− 1
A−1/2 (Σt−1)

d A−1/2′,

respectively. Thus, the scale parameter d expresses the overall strength of
the serial persistence in the covariance matrix over time. On the basis of
the process of the logarithm of the determinant and asymptotic behavior of
expectation of the determinant, they assumed that |d| < 1, although it is
natural to assume that 0 < d < 1. Notice that when d = 0, for example, the
serial persistence disappears and we get

E
(

Σ−1
t |ν,St−1

)

= A,

E (Σt|ν,St−1) =
ν

ν − p− 1
A−1.

The matrix A in this model is a measure of the intertemporal sensitivity
and determines how the elements of the current period covariance matrix Σt

are related to the elements of the previous period covariance matrix. When
A = I, we note that

E
(

Σ−1
t |ν,St−1

)

=

⎧

⎨

⎩

Σ−1
t−1, d = 1,

I, d = 0,
Σt−1, d = −1.

Philipov and Glickman (2006b) estimated this model from a Bayesian ap-
proach and proposed a MCMC algorithm to estimate their models using
monthly return data of five industry portfolios (manufacturing, utilities, re-
tail/wholesale, financial and other) in NYSE, AMEX and NASDAQ stocks.
Under the prior

A ∼ IWp(ν0,Q0), d ∼ π(d), ν − p ∼ G(α, β)

with Σ0 assumed known, the MCMC algorithm is implemented as follows:

1. Sample Σt|{Σs}s�=t,A, ν, d, Yn (t = 1, . . . , n−1), where Yn = {y1, . . . ,yn}.
Given a current sampler Σt, we generate a candidate Σ∗

t ∼ Wp(ν̃, S̃t−1),
where Wp(ν̃, S̃t−1) denotes a Wishart distribution with parameters (ν̃,
S̃t−1),

ν̃ = ν(1 − d) + 1,

S̃t−1 = S−1
t−1 + yty′

t,

St−1 =
1
ν

(A1/2)
(

Σ−1
t−1

)d
(A1/2)′,

and accept it with probability
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min

⎧

⎨

⎩

|Σ∗
t |(νd−1)/2 exp

[

− 1
2 tr

{

νA−1 (Σ∗
t )

−d Σ−1
t+1

}]

|Σt|(νd−1)/2 exp
[

− 1
2 tr

{

νA−1 (Σt)
−d Σ−1

t+1

}] , 1

⎫

⎬

⎭

.

2. Sample Σn|{Σt}n−1
t=1 ,A, ν, d, Yn ∼ Wp(ν̃, S̃n−1).

3. Sample A|{Σt}nt=1, ν, d,y ∼ IWp(γ̃, Q̃), where γ̃ = nν + ν0, and

Q̃−1 = ν

{

n
∑

t=1

(

Σ−1
t

)−d/2
Σ−1

t

(

Σ−1
t−1

)−d/2

}

+ Q−1
0 .

4. Sample d from

π(d|{Σt}nt=1,A, ν,y)

∝ π(d) exp

[

νd

2

n
∑

t=1

log |Σt| −
1
2

n
∑

t=1

tr
{

S−1
t

(

Σ−1
t−1

)−d
}

]

.

To sample d, Philipov and Glickman (2006b) suggested discretizing the
conditional distribution; see Appendix A.2 of Philipov and Glickman
(2006b). Alternatively, we may conduct an independent M-H algorithm
using a candidate from a truncated normal distribution T N (0,1)(d̂, V̂d),
where T N (a,b)(μ, σ2) denote a normal distribution with mean μ and vari-
ance σ2 truncated on the interval (a, b), d̂ is a mode of conditional pos-
terior probability density π(d|{Σt}nt=1,A, ν,y) and

V̂d =
{

− ∂2 log π(d|{Σt}nt=1,A, ν, Yn)
∂d2

∣

∣

∣

∣

d=d̂

}−1

.

5. Sample ν from

π(ν|{Σt}nt=1,A, d,y)

∝(ν − p)α−1 exp{−β(ν − p)}
{

|νA−1|ν/2

2νp
∏p

j=1 Γ (ν+j−1
2 )

}n

× exp

[

−ν
2

n
∑

t=1

{

log |Qt| + tr
(

A−1Q−1
t

)}

]

.

As in the previous step, we may discretize the conditional distribution or
conduct an independent M-H algorithm using a candidate from a trun-
cated normal distribution T N (p,∞)(ν̂, V̂ν), where ν̂ is a mode of condi-
tional posterior probability density π(ν|{Σt}nt=1,A, d,y) and

V̂ν =
{

− ∂2 log π(ν|{Σt}nt=1,A, d, Yn)
∂ν2

∣

∣

∣

∣

ν=ν̂

}−1

.
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Asai and McAleer (2007) proposed two further models that are especially
useful in higher dimensions. Let Qt be a sequence of positive-definite matrices,
which is used to define the correlation matrix Σεε,t = Q∗−1/2

t QtQ
∗−1/2
t ,

where Q∗
t is a diagonal matrix whose (i, i)th element is the same as that of

Qt. Then the first of their dynamic correlation (DC) MSV models is given
by

yt = V1/2
t εt, εt ∼ Np(0,Σεε,t), Σεε,t = Q∗−1/2

t QtQ
∗−1/2
t ,

ht+1 = μ̃+ Φht + ηt, ηt ∼ Np (0,Σηη) , (Φ and Σηη : diagonal)
Qt+1 = (1 − ψ)Q̄ + ψQt + Ξt, Ξt ∼ Wp(ν,Λ).

Thus, in this model the MSV shocks are assumed to follow a Wishart pro-
cess, where Wp(ν,Λ) denotes a Wishart distribution with degrees-of-freedom
parameter ν and scale matrix Λ. The model guarantees that Pt is sym-
metric positive-definite under the assumption that Q̄ is positive-definite and
|ψ| < 1. It is possible to consider a generalization of the model by letting
Qt+1 = (11′ −Ψ)� Q̄+Ψ�Qt +Ξt, which corresponds to a generalization
of the dynamic conditional correlation (DCC) model of Engle (2002).

The second DC MSV model is given by

Qt+1|ν,St ∼ IWp(ν,St), St =
1
ν
Q−d/2

t AQ−d/2
t ,

where ν and St are the degrees of freedom and the time-dependent scale
parameter of the Wishart distribution, respectively, A is a positive-definite
symmetric parameter matrix, d is a scalar parameter and Q−d/2

t is defined
by using a singular value decomposition. The quadratic expression, together
with ν ≥ p, ensures that the covariance matrix is symmetric and positive-
definite. For convenience, it is assumed that Q0 = Ip. Although their model
is closely related to the models of Philipov and Glickman (2006a, 2006b), the
MCMC fitting procedures are different. Asai and McAleer (2007) estimated
these models using returns of the Nikkei 225 Index, the Hang Seng Index and
the Straits Times Index.

Gourieroux et al. (2004) and Gourieroux (2006) used an alternative ap-
proach and derived a Wishart autoregressive process. Let Yt and Γ denote,
respectively, a stochastic symmetric positive-definite matrix of dimension p×p
and a deterministic symmetric matrix of dimension p× p. A Wishart autore-
gressive process of order 1 is defined to be a matrix process (denoted by
WAR(1) process) with a conditional Laplace transform:

Ψt(Γ) = Et [exp{tr(ΓYt+1)}] =
exp

[

tr
{

M′−1MYt

}]

|I − 2ΣΓ|k/2 , (33)

where k is a scalar degree of freedom (k < p − 1), M is a p × p matrix of
autoregressive parameters and Σ is a p × p symmetric and positive-definite
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matrix such that the maximal eigenvalue of 2ΣΓ is less than 1. Here Et

denotes the expectation conditional on {Yt,Yt−1, . . . , }. It can be shown
that

Yt+1 = MYtM′ + kΣ + ηt+1,

where E(ηt+1) = O. The conditional probability density function of Yt+1 is
given by

f(Yt+1|Yt) =
|Yt+1|(k−p−1)/2

2kp/2Γp(k/2)|Σ|k/2 exp
[

−1
2
tr

{

Σ−1(Yt+1 + MYtM′)
}

]

×0 F1(k/2; (1/4)MYtM′Yt+1),

where Γp is the multidimensional gamma function and 0F1 is the hypergeo-
metric function of matrix augment; see Gourieroux et al. (2004) for details.
When K is an integer and Yt is a sum of outer products of k independent
vector AR(1) processes such that

Yt =
k

∑

j=1

xjtx′
jt, (34)

xjt = Mxj,t−1 + εjt, εjt ∼ Np(0,Σ),

we obtain the Laplace transform Ψt(Γ) given by (33). Gourieroux et al. (2004)
also introduced a Wishart autoregressive process of higher order. They esti-
mated the WAR(1) using a series of intraday historical volatility–covolatility
matrices for three stocks traded on the Toronto Stock Exchange. Finally,
Gourieroux (2006) introduced the continuous-time Wishart process as the
multivariate extension of the Cox–Ingersoll–Ross (CIR) model in Cox et al.
(1985).

4.3.2 Factor model

Philipov and Glickman (2006a) proposed an alternative factor MSV model
that assumes that the factor volatilities follow an unconstrained Wishart
random process. Their model has close ties to the model in Philipov and
Glickman (2006b), and is given by

yt = Bft + V1/2εt, εt ∼ Np(0, I),
ft|Σt ∼ Nq(0,Σt), Σt|ν,St−1 ∼ IWq(ν,St−1),

where St−1 is defined by (32). In other words, the conditional covariance
matrix Σt of the factor ft follows an inverse Wishart distribution whose pa-
rameter depends on the past covariance matrix Σt−1. They implemented the
model with q = 2 factors on return series data of 88 individual companies
from the S&P500.
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In another development, Carvalho and West (2006) proposed dynamic
matrix-variate graphical models, which are based on dynamic linear models
accommodated with the hyperinverse Wishart distribution that arises in the
study of graphical models (Dawid and Lauritzen (1993), Carvalho and West
(2006)). The starting point is the dynamic linear model

y′
t = X′

tΘt + u′
t, ut ∼ Np(0, vtΣ),

Θt = GtΘt−1 + Ωt, Ωt ∼ Nq×p(O,Wt,Σ),

where yt is the p × 1 vector of observations, Xt is a known q × 1 vector of
explanatory variables, Θt is the q × p matrix of states, ut is the p× 1 inno-
vation vector for observation, Ωt is the q × p innovation matrix for states,
Gt is a known q× q matrix and Σ is the p× p covariance matrix. Ωt follows
a matrix-variate normal with mean O (q × p), left covariance matrix Wt

and right covariance matrix Σ; in other words, any column ωit of Ωt has a
multivariate normal distribution Nq(0, σiiWt), while any row ωit of Ωt, ωi′t
has a multivariate normal distribution Np(0, wii,tΣ). Next, we suppose that
Σ ∼ HIWp(b,D), the hyperinverse Wishart distribution with a degree-of-
freedom parameter b and location matrix D. It should be noted that the dy-
namic linear model with Σ ∼ HIWp(b,D) can be handled from the Bayesian
perspective without employing simulation-based techniques. Finally, instead
of time-invariant Σ, Carvalho and West (2006) suggested a time-varying pro-
cess given by

Σt ∼ HIWp(bt,St),
bt = δbt−1 + 1,
St = δSt−1 + vtv′

t,

where vt is defined by Theorem 1 of Carvalho and West (2006). Intuitively,
vt is the residual from the observation equation. As Σt appears in both of
the observation and state equations, the proposed dynamic matrix-variate
graphical model can be considered as a variation of the “factor MSV model
with MSV error.” Setting δ = 0.97, Carvalho and West (2006) applied the
dynamic matrix-variate graphical models to two datasets; namely, (1) 11
international currency exchange rates relative to the US dollar and (2) 346
securities from the S&P500 stock index.

5 Conclusion

We have conducted a comprehensive survey of the major current themes in
the formulation of MSV models. In time, further significant developments can
be expected, perhaps fostered by the overview and details delineated in this
paper, especially in the fitting of high-dimensional models. Open problems
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remain, primarily in the modeling of leverage effects, especially in relation to
general specifications of cross-leverage effects embedded within multivariate
heavy-tailed or skewed error distributions. We also expect that interest in
the class of factor-based MSV models and DC models will grow as these
approaches have shown promise in the modeling of high-dimensional data.

References

Aas, K. and Haff, I. H. (2006): The generalized hyperbolic skew Student’s t-distribution.
Journal of Financial Econometrics 4, 275–309.

Aguilar, O. and West, M. (2000): Bayesian dynamic factor models and portfolio allocation.
Journal of Business and Economic Statistics 18, 338–357.

Albert, J. H. and Chib, S. (1993): Bayesian inference via Gibbs sampling of autoregressive
time series subject to Markov mean and variance shifts. Journal of Business and
Economic Statistics 11, 1–15.

Andersen, T., Bollerslev, T., Diebold, F. X. and Labys, P. (2003): Modeling and forecasting
realized volatility. Econometrica 71, 579–625.

Arellano-Valle, R. B. and Azzalini, A. (2006): On the unification of families of skew-normal
distributions. Scandinavian Journal of Statistics 33, 561–574.

Asai, M. and McAleer, M. (2006): Asymmetric multivariate stochastic volatility. Econo-
metric Reviews 25, 453–473.

Asai, M. and McAleer, M. (2007): The structure of dynamic correlations in multivariate
stochastic volatility models. Unpublished paper: Faculty of Economics, Soka Univer-
sity.

Asai, M., McAleer, M. and Yu, J. (2006). Multivariate stochastic volatility: A review.
Econometric Reviews 25, 145–175.

Azzalini, A. (2005): The skew-normal distribution and related multivariate families. Scan-
dinavian Journal of Statistics 32, 159–188.

Azzalini, A. and Capitanio, A. (2003). Distributions generated by perterbation of symmetry
with emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical
Society Series B 65, 367–389.

Barndorff-Nielsen, O. E. (1977): Exponentially decreasing distributions for the logarithm
of the particle size. Proceedings of the Royal Society London Series A Mathematical
and Physical Sciences 353, 401–419.

Barndorff-Nielsen, O. E. and Shephard, N. (2001): Non-Gaussian Ornstein-Uhlenbeck-
based models and some of their uses in financial economics. Journal of the Royal
Statistical Society Series B 63, 167–241.

Barndorff-Nielsen, O. E. and Shephard, N. (2004): Econometric analysis of realised co-
variation: High frequency based covariance, regression and correlation in financial
economics. Econometrica 72, 885–925.

Bauwens, L. and Laurent, S. (2005): A new class of multivariate skew densities, with appli-
cation to generalized autoregressive conditional heteroscedasticity models. Journal
of Business and Economic Statistics 23, 346–354.

Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006): Multivariate GARCH: A survey.
Journal of Applied Econometrics 21, 79–109.

Bollerslev, T. (1990): Modelling the coherence in the short-run nominal exchange rates:
A multivariate generalized ARCH model. Review of Economics and Statistics 72,
498–505.

Bollerslev, T., Engle, R. F. and Woodridge, J. (1988): A capital asset pricing model with
time varying covariances. Journal of Political Economy 96, 116–131.



398 S. Chib, Y. Omori and M. Asai

Bos, C. S. and Shephard, N. (2006): Inference for adaptive time series models: Stochastic
volatility and conditionally Gaussian state space form. Econometric Reviews 25,
219–244.

Broto, C. and Ruiz, E. (2004): Estimation methods for stochastic volatility models: A
survey. Journal of Economic Survey 18, 613–649.

Calvet, L. E. and Fisher, A. J. (2001): Forecasting multifractal volatility. Journal of Econo-
metrics 105, 27–58.

Calvet, L. E., Fisher, A. J. and Thompson, S. B. (2006): Volatility comovement: A multi-
frequency approach. Journal of Econometrics 131, 179–215.

Carvalho, C. M. and West, M. (2006): Dynamic matrix-variate graphical models. Bayesian
Analysis 1, 1–29.

Chan, D., Kohn, R. and Kirby, C. (2006): Multivariate stochastic volatility models with
correlated errors. Econometric Reviews 25, 245–274.

Chib, S. (2001): Markov chain Monte Carlo methods: Computation and inference. In:
Heckman, J. J. and Leamer, E. (Eds.): Handbook of Econometrics 5, 3569–3649.
North-Holland, Amsterdam.

Chib, S. and Greenberg, E. (1994): Bayes inference for regression models with ARMA(p, q)
errors. Journal of Econometrics 64, 183–206.

Chib, S. and Greenberg, E. (1995): Understanding the Metropolis-Hastings algorithm. The
American Statistician 49, 327–335.

Chib, S. and Greenberg, E. (1996): Markov chain Monte Carlo simulation methods in
econometrics. Econometric Theory 12, 409–431.

Chib, S. and Greenberg, E. (1998): Analysis of multivariate Probit models. Biometrika 85,
347–361.

Chib, S., Nardari, F. and Shephard, N. (2002): Markov chain Monte Carlo methods for
generalized stochastic volatility models. Journal of Econometrics 108, 281–316.

Chib, S., Nardari, F. and Shephard, N. (2006): Analysis of high dimensional multivariate
stochastic volatility models. Journal of Econometrics 134, 341–371.

Chiu, T., Leonard, T. and Tsui, K. (1996): The matrix-logarithmic covariance model.
Journal of the American Statistical Association 91, 198–210.

Cox, J., Ingersoll, J. and Ross, S. (1985): A theory of the term structure of interest rates.
Econometrica 53, 385–407.

Dagpunar, J. S. (1989): An easily implemented generalized inverse Gaussian generator.
Communications in Statistics Simulations 18, 703–710.

Daníelsson, J. (1994): Stochastic volatility in asset prices: Estimation with simulated max-
imum likelihood. Journal of Econometrics 64, 375–400.

Daníelsson, J. (1998): Multivariate stochastic volatility models: Estimation and a compar-
ison with VGARCH models. Journal of Empirical Finance 5, 155–173.

Dawid, A. P. and Lauritzen, S. L. (1993): Hyper-Markov laws in the statistical analysis.
Annals of Statistics 3, 1272–1317.

de Jong, P. and Shephard, N. (1995): The simulation smoother for time series models.
Biometrika 82, 339–350.

Dey, D. and Liu, J. (2005): A new construction for skew multivariate distributions. Journal
of Multivariate Analysis 95, 323–344.

Diebold, F. X. and Nerlove, M. (1989): The dynamics of exchange rate volatility: A mul-
tivariate latent-factor ARCH model. Journal of Applied Econometrics 4, 1–22.

Doornik, J. A. (2002): Object-Oriented Matrix Programming Using Ox (3rd ed.). Timber-
lake Consultants Press, London. http://www.nuff.ox.ac.uk/Users/Doornik.

Durbin, J. and Koopman, S. J. (2002): A simple and efficient simulation smoother for state
space time series analysis. Biometrika 89, 603–616.

Engle, R. F. (2002): Dynamic conditional correlation: A simple class of multivariate gener-
alized autoregressive conditional heteroskedasticity models. Journal of Business and
Economic Statistics 20, 339–350.

Engle, R. F. and Kroner, K. F. (1995): Multivariate simultaneous generalized ARCH.
Econometric Theory 11, 122–150.



Multivariate Stochastic Volatility 399

Ferreira, J. T. A. S. and Steel, M. F. J. (2004): Bayesian multivariate regression analysis
with a new class of skewed distributions. Statistics Research Report 419, University
of Warwick.

Ghysels, E., Harvey, A. C. and Renault, E. (1996): Stochastic volatility. In: G. S. M.
Rao, C. R. (Ed.): Statistical Models in Finance (Handbook of Statistics), 119–191.
North-Holland, Amsterdam.

Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995): Adaptive rejection Metropolis sampling
within Gibbs sampling. Applied Statistics 44, 455–472.

Gourieroux, C. (2006): Continuous time Wishart process for stochastic risk. Econometric
Reviews 25, 177–217.

Gourieroux, C., Jasiak, J. and Sufana, R. (2004): The Wishart autoregressive process of
multivariate stochastic volatility. Discussion paper: University of Toronto.

Gupta, A. K., González-Farías, G. and Domínguez-Molina, J. A. (2004): A multivariate
skew normal distribution. Journal of Multivariate Analysis 89, 181–190.

Han, Y. (2006): The economics value of volatility modelling: Asset allocation with a high
dimensional dynamic latent factor multivariate stochastic volatility model. Review
of Financial Studies 19, 237–271.

Harvey, A. C., Ruiz, E. and Shephard, N. (1994): Multivariate stochastic variance models.
Review of Economic Studies 61, 247–264.

Harvey, A. C. and Shephard, N. (1996): Estimation of asymmetric stochastic volatility
model for asset returns. Journal Journal of Business and Economic Statistics 14,
429–434.

Hörmann, W., Leydold, J. and Derflinger, G. (2004): Automatic Nonuniform Random
Variate Generation. Springer, Berlin.

Jacquier, E., Polson, N. G. and Rossi, P. E. (1994): Bayesian analysis of stochastic volatility
models (with discussion). Journal of Business and Economic Statistics 12, 371–389.

Jacquier, E., Polson, N. G. and Rossi, P. E. (1999): Stochastic volatility: Univariate and
multivariate extensions. CIRANO Working paper 99s–26, Montreal.

Jungbacker, B. and Koopman, S. J. (2006): Monte Carlo likelihood estimation for three
multivariate stochastic volatility models. Econometric Reviews 25, 385–408.

Kawakatsu, H. (2006): Matrix exponential GARCH. Journal of Econometrics 134, 95–128.
Kim, S., Shephard, N. and Chib, S. (1998): Stochastic volatility: Likelihood inference and

comparison with ARCH models. Review of Economic Studies 65, 361–393.
King, M., Sentana, E. and Wadhwani, S. (1994): Volatility and links between national

stock markets. Econometrica 62, 901–933.
Liesenfeld, R. and Richard, J.-F. (2003): Univariate and multivariate stochastic volatility

models: Estimation and diagnostics. Journal of Empirical Finance 10, 505–531.
Lopes, H. F. and Carvalho, C. M. (2007): Factor stochastic volatility with time varying

loadings and Markov switching regimes. Journal of Statistical Planning and Inference
137, 3082–3091.

Omori, Y., Chib, S., Shephard, N. and Nakajima, J. (2007): Stochastic volatility with
leverage: Fast and efficient likelihood inference. Journal of Econometrics 140, 425–
449.

Philipov, A. and Glickman, M. E. (2006a): Factor multivariate stochastic volatility via
Wishart processes. Econometric Reviews 25, 311–334.

Philipov, A. and Glickman, M. E. (2006b): Multivariate stochastic volatility via Wishart
processes. Journal of Business and Economic Statistics 24, 313–328.

Pitt, M. K., Chan, D. and Kohn, R. (2006): Efficient Bayesian inference for Gaussian copula
regression models. Biometrika 93, 537–554.

Pitt, M. K. and Shephard, N. (1999): Time varying covariances: a factor stochastic volatility
approach. In: Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. (Eds.):
Bayesian Statistics 6, 547–570. Oxford University Press, Oxford.

Protassov, R. S. (2004): EM-based maximum likelihood parameter estimation for multi-
variate generalized hyperbolic distributions with fixed λ. Statistics and Computing
14, 67–77.



400 S. Chib, Y. Omori and M. Asai

Quintana, J. M. and West, M. (1987): An analysis of international exchange rates using
multivariate DLMs. The Statistician 36, 275–281.

Ray, B. K. and Tsay, R. S. (2000): Long-range dependence in daily stock volatilities. Journal
of Business and Economic Statistics 18, 254–262.

Schmidt, R., Hrycej, T. and Stützle, E. (2006): Multivariate distribution models with
generalized hyperbolic margins. Computational Statistics and Data Analysis 50,
2065–20096.

Shephard, N. (2004): Stochastic Volatility: Selected Readings. Oxford University Press,
Oxford.

Shephard, N. and Pitt, M. K. (1997): Likelihood analysis of non-Gaussian measurement
time series. Biometrika 84, 653–667.

Smith, M. and Pitts, A. (2006): Foreign exchange intervention by the Bank of Japan:
Bayesian analysis using a bivariate stochastic volatility model. Econometric Reviews
25, 425–451.

So, M. K. P. and Kwok, W. Y. (2006): A multivariate long memory stochastic volatility
model. Physica A 362, 450–464.

So, M. K. P., Li, W. K. and Lam, K. (1997): Multivariate modelling of the autoregressive
random variance process. Journal of Time Series Analysis 18, 429–446.

So, M. K. P., Lam, K. and Li, W. K. (1998): A stochastic volatility model with Markov
switching. Journal of Business and Economic Statistics 16, 244–253.

Tims, B. and Mahieu, R. (2006): A range-based multivariate stochastic volatility model
for exchange rates. Econometric Reviews 25, 409–424.

Tsay, R. S. (2005). Analysis of Financial Time Series: Financial Econometrics (2nd ed.).
Wiley, New York.

Watanabe, T. and Omori, Y. (2004): A multi-move sampler for estimating non-Gaussian
times series models: Comments on Shephard and Pitt (1997). Biometrika 91, 246–
248.

Wong, F., Carter, C. and Kohn, R. (2003): Efficient estimation of covariance matrix selec-
tion models. Biometrika 90, 809–830.

Yu, J. (2005): On leverage in a stochastic volatility model. Journal of Econometrics 127,
165–178.

Yu, J. and Meyer, R. (2006): Multivariate stochastic volatility models: Bayesian estimation
and model comparison. Econometric Reviews 25, 361–384.



An Overview of Asset–Price Models

Peter J. Brockwell ∗

Abstract Discrete-parameter time-series models for financial data have re-
ceived, and continue to receive, a great deal of attention in the literature.
Stochastic volatility models, ARCH and GARCH models and their many
generalizations, designed to account for the so-called stylized features of fi-
nancial time series, have been under development and refinement now for
some thirty years. At the same time there has been a rapidly developing in-
terest in continuous-time models, largely as a result of the very successful
application of stochastic differential equation models to problems in finance,
exemplified by the derivation of the Black-Scholes-Merton (BSM) option-
pricing formula and its generalizations. In this overview we start with the
BSM option-pricing model in which the asset price is represented by geo-
metric Brownian motion. We then discuss the limitations of the model and
survey the various models which have been proposed to provide more real-
istic representations of empirically observed asset prices. In particular, the
observed non-Gaussian distributions of log returns and the appearance of
sharp changes in log asset prices which are not consistent with Brownian
motion paths have led to an upsurge of interest in Lévy processes and their
applications to financial modelling.
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1 Introduction

For approximately thirty years now, discrete-time models (including stochas-
tic volatility, ARCH, GARCH and their many generalizations) have been de-
veloped to reflect the so-called stylized features of financial time series. These
properties, which include tail heaviness, volatility clustering and serial depen-
dence without correlation, cannot be captured with traditional linear time se-
ries models. If Sn denotes the price of a stock or other financial asset at time
n, n = 0, 1, 2, . . ., then the series of log returns, {logSn − logSn−1, n ∈ IN},
is typically represented by either a discrete-time stochastic volatility model
or a GARCH process. These models have been studied intensively since their
introduction and a variety of parameter estimation techniques have been
developed. For an excellent review and comparison of these models see Shep-
hard (1996). For a more recent account of GARCH processes see the article
of Lindner (2008) in the current volume, and for stochastic volatility models
see the article of Davis and Mikosch (2008). Apart from the need to develop
models which capture the distinctive features of financial time series, much of
the motivation for developing these models derives from the key role played
by volatility in the pricing of options and the need to understand, quantify
and forecast its evolution in time.

In mathematical finance, most of the theoretical developments in the pric-
ing of contingent claims (or options) have been made in a continuous-time
framework, thanks to the power of Itô calculus, Girsanov’s theorem, mar-
tingale methods, and other tools associated with the analysis of stochastic
differential equations. In fact these developments, which permit the analysis
of quite complicated (‘exotic’) options, have also been a powerful stimulus
for the popularization and development of stochastic calculus itself. The cel-
ebrated work of Black and Scholes (1973) and Merton (1973) was based on a
geometric Brownian motion model for the asset price S(t) at time t (see (1.1)
below). Their results, besides winning the Nobel Economics Prize for Merton
and Scholes in 1997 (unfortunately Black died before the award was made),
inspired an explosion of interest, not only in the pricing of more complicated
financial derivatives, but also in the development of new continuous-time
models which, like the discrete-time ARCH, GARCH and stochastic volatil-
ity models, better reflect the observed properties of financial time series. This
development has resulted in a variety of models which are the subject of the
articles in this section of the Handbook.

In addition to their central role in option-pricing, time series models with
continuous time parameter are particularly well-suited to modelling irreg-
ularly spaced data (see e.g. Jones (1985)). Lévy-driven continuous-time au-
toregressive moving average (CARMA) models play a role in continuous time
analogous to that of ARMA models in discrete time, allowing a very flexible
range of autocorrelations and marginal distributions, suitable in particular
for the modelling of volatility as a continuous-time stationary series (see the
article by Brockwell (2008) in this volume).
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The use of continuous-time models in finance goes back to Bachelier (1900),
who used Brownian motion to represent the prices {S(t), t ≥ 0} of a stock
in the Paris Bourse. This model had the unfortunate feature of permitting
negative stock prices, a shortcoming which was eliminated in the geometric
Brownian motion model of Samuelson (1965), according to which S(t) satisfies
the Itô equation,

dS(t) = μS(t) dt+ σS(t) dW (t) with S(0) > 0. (1.1)

In this equation {W (t), t ≥ 0} is standard Brownian motion defined on a
complete probability space (Ω,F , P ) with filtration {Ft} where Ft is the
sub-σ-algebra of F generated by {W (s), 0 ≤ s ≤ t} and the null sets of F .
The solution of (1.1) satisfies

S(t) = S(0) exp
[

(μ− σ2/2)t+ σW (t)
]

, (1.2)

so that the log asset price in this model is Brownian motion and the log
return over the time-interval (t, t+Δ) is

log
S(t+Δ)
S(t)

= (μ− 1
2
σ2)Δ+ σ(W (t+Δ) −W (t)).

For disjoint intervals of length Δ the log returns are therefore independent
normally distributed random variables with mean (μ− σ2/2)Δ and variance
σ2Δ. The normality of the log returns is a conclusion which can easily be
checked against observed returns, and it is found that the deviations are
substantial for time intervals of the order of a day or less, becoming less
apparent as Δ increases. This is one of the reasons for developing the models
described in later sections.

The parameter σ2 in (1.1) is called the volatility parameter and its signif-
icance for option pricing was clearly demonstrated in the pricing by Black,
Scholes and Merton of a European call option. Such an option, if sold at time
0, gives the buyer the right, but not the obligation, to buy one unit of the
stock (with market price satisfying (1.1)) at the strike time T for the strike
price K. At time T the option has the cash value h(S(t)) = max(S(T )−K, 0)
since the option will be exercised only if S(T ) > K, in which case the holder
of the option can buy the stock at the price K and resell it instantly for S(T ).
However it is not clear at time 0, since S(T ) is random, what price the buyer
should pay for this privilege. Assuming (i) the existence of a risk-free asset
with price process,

B(t) = B(0) exp(rt), r > 0, (1.3)

(ii) the ability to buy and sell arbitrary (positive or negative) amounts of
the stock and the risk-free asset continuously with no transaction costs, and
(iii) an arbitrage-free market (i.e., a market in which it is impossible to make
a non-negative profit which is strictly positive with probability greater than
zero), Black, Scholes and Merton showed that there is a unique fair price for
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the option in the sense that both higher and lower prices introduce demon-
strable arbitrage opportunities. Details of the derivation can be found in most
books dealing with mathematical finance (e.g. Campbell, Lo and McKinlay
(1996), Mikosch (1998), Steele (2001), Shreve (2004), Björk (2004) and Kle-
baner (2005)). In the following paragraphs we give a sketch of two arguments,
following Mikosch (1998), leading to this fair price for the Black-Scholes-
Merton (henceforth BSM) model.

In the first argument, we attempt to construct a self-financing portfolio,
consisting at time t of at shares of the stock and bt shares of the risk-free
asset, where at and bt are random variables measurable with respect to Ft.
We require the value of this portfolio at time t, namely

V (t) = atS(t) + btB(t), (1.4)

to satisfy the self-financing condition,

dV (t) = at dS(t) + bt dB(t), (1.5)

and to match the value of the option at time T , i.e.,

V (T ) = h(S(T )) = max(S(T ) −K, 0). (1.6)

If such an investment strategy, {(at, bt), 0 ≤ t ≤ T } can be found, then V (0)
must be the fair value of the option at the purchase time t = 0. A higher price
for the option would allow the seller to pocket the difference δ and invest the
amount V (0) in such a way as to match the value of the option at time T .
Then at time T , if S(T ) < K the option will not be exercised and the portfolio
and the option will both have value zero. If S(T ) > K the seller sells the
portfolio for S(T )−K, then buys one stock for S(T ) and receivesK for it from
the holder of the option. Since there is no loss involved in this transaction,
the seller is left with a net profit of δ. The seller of the option therefore makes
a non-negative profit which is strictly positive with non-zero probability, in
violation of the no arbitrage assumption. Similarly a lower price than V (0)
would create an arbitrage opportunity for the buyer. In order to determine
V (t), at and bt we look for a smooth function v(t, x), t ∈ [0, T ], x > 0, such
that

V (t) = v(t, S(t)), t ∈ [0, T ], (1.7)

satisfies the conditions (1.5) and (1.6). Equating the expressions for V (t) −
V (0) obtained by applying Itô calculus to (1.5) and (1.7), we find that at =
∂v
∂x (t, S(t)), where the function v must satisfy the partial differential equation,

∂v

∂t
+

1
2
σ2x2 ∂

2v

∂x2
+ r

∂v

∂x
= rv, (1.8)

with boundary condition,
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v(T, x) = h(x) = max(x−K, 0), (1.9)

which, with (1.8), uniquely determines the function v and hence V (t), at and
bt = (V (t) − atS(t))/B(t) for each t ∈ [0, T ]. Thus we have arrived at an
investment strategy {(at, bt), 0 ≤ t ≤ T } which satisfies (1.5) and (1.6) and
which, under the assumed idealized trading conditions, can be implemented
in practice. Since at time T this portfolio has the same value as the option,
V (0) must be the fair value of the option at time t = 0; otherwise an arbitrage
opportunity would arise. The option is said to be hedged by the investment
strategy {(at, bt)}. A key feature of this solution (apparent from (1.8) and
(1.9)) is that both the strategy and the fair price of the option are independent
of μ, depending on S only through the volatility parameter σ2.

A particularly elegant and powerful way of arriving at the solution of (1.8)
and (1.9) is to use a second argument, based on the fact that for the BSM
model there is a unique probability measure Q which is equivalent to the
original probability measure P (i.e., it has exactly the same null sets) and
which, when substituted for P in the probability space on which the stock
prices are defined, causes the discounted price process {e−rtS(t)} to become
a martingale, i.e., to satisfy the condition,

EQ(e−rtS(t)|Fs) = e−rsS(s) for all s ≤ t, (1.10)

where EQ denotes expectation with respect to the new probability measure
Q. The probability measure Q is called the equivalent martingale measure or
EMM. It is unique for the BSM model, but for other models the questions of
its existence and uniqueness become serious issues.

The martingale-based argument leading to the BSM pricing formula is as
follows. Itô’s formula applied to the discounted price process,

S̃(t) := e−rtS(t),

gives
dS̃(t)
S̃(t)

= (μ− r)dt+ σdW (t) = σdW̃ (t), (1.11)

where W̃ (t) := (μ− r)t/σ +W (t). The solution of (1.11) satisfies

S̃(t) = S̃(0)eσW̃ (t)−σ2t/2,

which is an {Ft}-martingale if {W̃ (t), 0 ≤ t ≤ T } is standard Brownian mo-
tion adapted to {Ft}. However by Girsanov’s theorem this is the case under
the probability measure Q whose Radon-Nikodym derivative with respect to
P is

dQ
dP

= exp
(

−μ− r

σ
W (T ) − (μ− r)2

2σ2
T

)

. (1.12)
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Assuming the existence of a portfolio (1.4) which satisfies the self-financing
condition (1.5) and the boundary condition (1.6), the discounted portfolio
value is

Ṽ (t) = e−rtV (t). (1.13)

Applying Itô’s formula to this expression we obtain

dṼ (t) = −rṼ (t)dt+ e−rtdV (t) = at dS̃(t),

and hence, from (1.11),

Ṽ (t) = Ṽ (0) +
∫ t

0

asdS̃(s) = V (0) + σ

∫ t

0

asS̃(s)dW̃ (s). (1.14)

Since atS̃(t) ∈ Ft for each t ∈ [0, T ] and, under the probability measure Q,
W̃ is Brownian motion adapted to {Ft}, we conclude that Ṽ is an {Ft}-
martingale. Hence

Ṽ (t) = EQ[Ṽ (T )|Ft], t ∈ [0, T ],

and
V (t) = ertṼ (t) = EQ[e−r(T−t)h(S(T ))|Ft], (1.15)

where h(S(T )) is the value of the option at time T . For the European call
option h(S(T )) = max(S(T ) −K, 0) and a straightforward calculation using
(1.15) gives, in the notation of (1.7),

v(t, x) = xΦ(z1) −Ke−r(T−t)Φ(z2), (1.16)

where Φ is the standard normal cumulative distribution function,

z1 =
log(x/K) + (r + σ2/2)(T − t)

σ
√
T − t

and z2 = z1 − σ
√
T − t.

The quantity m = (μ−r)/σ which appears in the Radon-Nikodym derivative
dQ/dP is called the market price of risk and represents the excess, in units
of σ, of the instantaneous rate of return μ of the risky asset S over that of
the risk-free asset B. If m = 0 then Q = P and the model is said to be
risk-neutral.

Although the model (1.1) has many shortcomings as a representation of
asset prices, the remarkable achievement of Black, Scholes and Merton in
using it to derive a unique arbitrage-free option price has inspired enormous
interest and progress in the field of financial mathematics. As a result of their
pioneering work, research in continuous-time financial models has blossomed,
with much of it directed at the construction, estimation and analysis of more
realistic continuous-time models for the evolution of stock prices, and the
pricing of options based on such models. In the following sections we summa-
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rize the limitations of the BSM model and briefly discuss some of the models
which have been developed to provide more realistic representations of the
empirical data and to permit the analysis of more complicated contingent
claims.

2 Shortcomings of the BSM Model

Under the model (1.1) the sample-paths of the log asset prices are those
of Brownian motion. As already indicated, this implies that, for each fixed
Δ > 0, the log returns {logS((n + 1)Δ) − logS(nΔ), n = 0, 1, 2, . . .} are in-
dependent and identically distributed Gaussian random variables. However
inspection of empirical log asset prices, especially at time intervals Δ of one
day or less, reveals significant negative skewness of the distribution of these
increments and kurtosis which is significantly higher than the value 3, ap-
propriate for normally distributed random variables. In order to reflect these
observations we need to consider models for which the marginal distribution
of the increments are non-Gaussian.

Moreover, although the observed increments typically exhibit no significant
sample correlations, their squares and absolute values usually have autocor-
relation functions which are significantly different from zero, indicating the
need for models in which the increments are not independent as expected
under the BSM model.

The observed increments appear also not to be identically distributed.
Their estimated variances change with time in an apparently random man-
ner. Assuming the validity of the BSM model it is possible to estimate the
parameter σ2 per trading day on day n by computing the sum of squares

σ̂2
n :=

N
∑

i=1

(

logSn

(

i

N

)

− logSn

(

i− 1
N

))2

, (2.1)

where the summands are the squared increments of the log price over intervals
obtained by breaking the day into intervals of length 1/N days with N large.
The sequence σ̂2

n is known as the realized volatility per day. It is found in
practice to vary significantly from one day to the next. The sequence {σ̂2

n} of
realized volatilities exhibits clustering, i.e., periods of low values interrupted
by bursts of large values, and has the appearance of a positively correlated
stationary sequence, reinforcing the view that volatility is not constant as in
the BSM model and suggesting the need for a model in which volatility is
stochastic. Such observations are precisely those which led to the development
in discrete time of stochastic volatility, ARCH and GARCH models, and
suggest the need for analogous models with continuous time parameter.

If we were to assume the validity of the BSM model for stock prices and also
to adopt the widely-held view that in real-world markets there is no arbitrage,
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then the quoted price of stock options should be exactly as computed in
Section 1. This argument provides us with a consistency check on the BSM
model. Given the time to maturity T − t, the strike price K and the quoted
price Q(t) for a European call option at time t, then from the risk-free interest
rate r and the price at time t of the stock, equation (1.16) can be used
to calculate the implied volatility, σ2

t (K,T ) at time t. If the BSM model is
appropriate the implied volatility should be independent ofK and T , however
it is found in practice to depend on both. If we plot σt(·, T ) for fixed t and T
the graph usually has the appearance of a smile, the so-called volatility smile.
The non-constancy of implied volatility is another indicator of the need to
improve on the BSM model.

Finally, if we compare daily stock prices with daily values of simulated
Brownian motion having the corresponding estimated drift and volatility pa-
rameters, we find that the stock prices exhibit occasional jumps which are
much larger than the daily increments of the Brownian paths. This suggests
that a good model for stock prices and log stock prices should allow for the
possibility of jumps.

3 A General Framework for Option Pricing

The martingale argument of Section 1 was extended by Harrison and Pliska
(1981), to the much more general model in which the processes {S(t)} and
{B(t)} are semimartingales and the claim at time T , instead of having the
form h(S(T )), is a non-negative random variable X ∈ FT with EX < ∞,
where {Ft, 0 ≤ t ≤ T } is the filtration generated by {(S(t), B(t))} and
the P -null sets of F . This allows for path-dependent claim functions such
as maxt∈[0,T ] S(t). In this more general setting however the existence and
uniqueness of an equivalent martingale measure is not always guaranteed
and pricing on the basis of no arbitrage is not always possible. In the defini-
tion (1.5) of a self-financing strategy {(at, bt)} the processes {at} and {bt} are
required to be predictable processes such that the integrated form of (1.5) is
well-defined. The self-financing condition is then equivalent to the condition
that the discounted price process, {V (t)/B(t)}, has the representation,

V (t)
B(t)

= V (0) +
∫ t

0

audZ(u), (3.1)

where Z(t) is the discounted stock price S(t)/B(t).
For the remainder of this section we shall assume that there is (at least one)

EMM Q, i.e., a probability measure on F with the same null-sets as P under
which Z(t) is a martingale. Under this assumption the model presents no
arbitrage possibility. This result is often called the first fundamental theorem
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of asset pricing. With a weaker definition of arbitrage than the one we have
given, the converse also holds (see Delbaen and Schachermayer (1994)).

Let L(Z) be the class of predictable processes H such that the pro-

cess {
√

∫ t

0 H
2
ud[Z,Z](u)} is locally integrable under Q, where [Z,Z] is the

quadratic variation process of Z.
An admissible strategy is defined to be a predictable self-financing strategy

such that a ∈ L(Z) and {V (t)/B(t)} is a non-negative Q-martingale.
A claim X at time T is said to be attainable if there is an admissible strat-

egy {(at, bt)} such that V (T ) = X . This means that there is an admissible
strategy which replicates the value of the claim at time T and for which the
corresponding discounted price process V (t)/B(t) is a Q-martingale. Conse-
quently, in order to avoid arbitrage, the fair value of the option at time t < T
must then be

V (t) = B(t)EQ(X/B(T )|Ft). (3.2)

The following result enables us to identify the attainable claims. If X is an
integrable claim (i.e., if EQ(X/B(T )) < ∞), then X is attainable if and only
if the process M(t) := EQ(X/B(T )|Ft) has the representation,

M(t) = M(0) +
∫ t

0

H(u)dZ(u), for some H ∈ L(Z). (3.3)

The model is said to be complete if every integrable claim X is attainable.
But this is the same as saying that the discounted price process Z(t) has the
predictable representation property, i.e., that every martingale has a repre-
sentation (3.3) for some H ∈ L(Z). A necessary and sufficient condition for
this is that the equivalent martingale measure Q is unique. This is sometimes
called the second fundamental theorem of asset pricing.

4 Some Non-Gaussian Models for Asset Prices

The preceding section provides a very general framework for the arbitrage-free
pricing of a contingent claim X based on a single stock and a money-market
account when there exists a unique equivalent martingale measure Q. The
fair price at time zero, when the option is purchased, is, from (3.2),

V (0) = B(0)EQ(X/B(T )). (4.1)

The expectation in (4.1) cannot generally be calculated analytically, in spite
of the elegant solution for the BSM model, however it does permit the es-
timation of V (0) by Monte-Carlo simulation once the process {(S(t), B(t))}
has been specified. In this section we consider some of the models which have
been proposed for {S(t)}, in order to address the limitations of the BSM
model listed in Section 2.
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The first of these is the diffusion model obtained by replacing the constant
parameters μ, σ and r in (1.1) and (1.3) by functions μ(t, S(t)), σ(t, S(t))
and r(t, S(t)). In this case the first argument used in Section 1 leads to
the partial differential equation (1.8) and terminal condition (1.9) with μ,
σ and r replaced by the corresponding functions of t and x. The fair value
of the option is obtained as before from the solution v(t, x) of this partial
differential equation, and the weights at and bt of the self-financing portfolio
which replicates h(X(T )) can be expressed in terms of v and its derivatives.
This family of diffusion models for the stock price S allows for a much greater
variety of marginal distributions than the Gaussian marginals of the BSM
model, however the sample paths of S are still continuous.

In order to account for the occasional sharp changes observed in the
sample-paths of asset prices and at the same time to allow for observed log
returns which are not Gaussian, a natural step is to replace the exponent in
(1.2) by a Lévy process L, i.e., a process with homogeneous independent in-
crements, continuous in probability, with càdlàg sample-paths and L(0) = 0.
This leads to the so-called exponential Lévy model,

S(t) = S(0) exp(L(t)),

whose log returns over time intervals of length 1 have the distribution of L(1),
which can be any infinitely divisible distribution. The simplest examples of
Lévy processes are Brownian motion, which has continuous sample paths, and
the Poisson process, which increases only by jumps of size one. In general a
Lévy process can be expressed as the sum of a Brownian motion with drift and
an independent pure-jump process. Pure jump Lévy processes and exponen-
tial Lévy processes are discussed in detail in the article by Eberlein (2008)
in this volume, where examples of Lévy processes which have been found
especially useful in financial modelling are also given. For more extensive
treatments of Lévy processes, see the books of Applebaum (2004), Bertoin
(1996), Protter (2004) and Sato (1999). Except in the Brownian motion and
Poisson process cases, the exponential Lévy model is incomplete. There are
many equivalent martingale measures and there is no unique arbitrage-based
(or risk-neutral) price for an option. The problem of choosing an EMM in
this situation, computing the corresponding price of a European option and
matching it to prices quoted in the market is discussed in Schoutens (2003).
A general account of option pricing, covering the general situation in which
there is no unique EMM is contained in the article by Kallsen (2008) in this
volume.

Lévy processes also play a key role in the stochastic volatility model
of Barndorff-Nielsen and Shephard (2001a, 2001b) (henceforth called BNS
model) in which the volatility σ2 is a stationary Ornstein–Uhlenbeck (O-U)
process driven by a non-decreasing Lévy process L, i.e.,

σ2(t) =
∫ t

−∞
e−λ(t−y)dL(λy), (4.2)
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where λ > 0. The log asset price G(t) = lnP (t) satisfies an equation of the
form

dGt = (μ− 1
2
σ2(t))dt + σ(t) dW (t) + ρdL(λt), (4.3)

where W is a Brownian motion independent of the Lévy process and ρ is a
non-positive real parameter which accounts for the so-called leverage effect.
The autocorrelation function of the process σ2 is ρ(h) = exp(−λ|h|), h ∈ IR,
with λ > 0, but this class of functions can be extended by specifying the
volatility to be a superposition of O-U processes as in Barndorff–Nielsen
(2001), or a Lévy-driven CARMA (continuous-time ARMA) process as in
Brockwell (2004). The BNS model defined by (4.2) and (4.3) is incomplete.
There is a family of equivalent martingale measures, the structure of which
was studied by Nicolato and Venardos (2003) who argue that it is sufficient
to consider the subset of EMM’s under which the log returns continue to be
described by a BNS model. For such an EMM Q they show how to compute
EQ(e−r(T−t)h(X(T ))|Ft) for a European contract with claim h(X(T )). Using
gamma and inverse gamma Ornstein-Uhlenbeck processes and estimating pa-
rameters by minimizing the mean-squared error between model and market
option prices they find that both models perform well when applied to Eu-
ropean call options on the S&P500 index, giving good matches between the
observed and fitted volatility smiles. The book of Schoutens (2003) discusses
option pricing also for a class of stochastic volatility models in which the
stock price is the exponential of a stochastically time-changed Lévy process.
Simulation methods and the pricing of exotic options are also discussed.

In view of the wide use of discrete-time ARCH and GARCH models for
asset prices, a great deal of research has been devoted to the development
of analogous continuous-time models. An early attempt to bridge the gap
between discrete-time GARCH models and continuous-time models resulted
in the GARCH(1,1) diffusion approximation of Nelson (1990). An outline of
the argument used by Nelson is given by Lindner (2008) in this volume. See
also Drost and Werker (1996) and Duan (1997). As in the continuous-time
stochastic volatility models we model the logarithm of the asset price itself,
i.e. G(t) = logS(t), rather than its increments as in discrete time. Nelson’s
diffusion limit for the log asset price and squared volatility is the unique
solution {(G(t), σ2(t)), t ≥ 0} of the equations,

dG(t) = σ(t) dW (1)(t), dσ2(t) = θ(γ − σ2(t)) + ρσ2(t) dW (2)(t), (4.4)

with initial value (G(0), σ2(0)), where W (1) and W (2) are independent stan-
dard Brownian motions and ω, λ and θ are parameters (see Lindner (2008)
for details). This model for G differs fundamentally from the GARCH(1,1)
model in that it is driven by two independent processes instead of one and
the squared volatility evolves independently of W (1). The behaviour of this
diffusion limit is therefore rather different from that of a GARCH process
(see Lindner (2008)).
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A different approach to constructing a continuous-time analogue of the
GARCH(1,1), the COGARCH(1,1) process, was taken by Klüppelberg et al.
(2004). The starting point was the explicit expression for the volatility of the
discrete-time GARCH(1,1) process which can be computed recursively from
the difference equations,

σ2
n = α0 + β1σ

2
n−1 + α1e

2
n−1σ

2
n−1, (4.5)

where α0 > 0, α1, β1 ≥ 0, α1+β1 ≤ 1 and {et, t = 1, 2, . . .} is an iid sequence
with mean 0 and variance 1. This expression is written as an integral and
the noise sequence replaced by the jumps of a Lévy process. Details of the
construction are contained in Lindner (2008). For GARCH(p, q) processes
of higher order, there is no analogue of the explicit expression for σ2

n, how-
ever the process {σ2

n} can be regarded as a “self-exciting” ARMA(q − 1, p)
process driven by the sequence {e2n−1σ

2
n−1}. This can be clearly seen in equa-

tion (4.5) where p = q = 1. The COGARCH(p, q) process (with p ≤ q)
is obtained by replacing the self-exciting ARMA(q, p − 1) equation for σ2

n

by a corresponding self-exciting continuous-time ARMA(q, p − 1) equation
driven by a continuous time analogue of the sequence {e2n−1σ

2
n−1}. Details

can be found in Brockwell et al. (2006) and Brockwell (2008). COGARCH
processes with a stationary volatility process have properties that are closely
analogous to those of discrete-time GARCH processes. In particular if G(r)

t

denotes the increment G(t + r) − G(t) then, under conditions ensuring the
finiteness of E[G(r)

t ]4, G(r)
t has zero mean, {G(1)

t+h), h = 0, 1, 2, . . .} is an un-
correlated sequence and the corresponding sequence of squared increments
has the autocovariance function of an ARMA process, while the process {σ2

t }
has the autocovariance function of a continuous-time ARMA process.

The COGARCH(1,1) process with stationary volatility has been shown
to have many of the features of the discrete time GARCH(1,1) process. As
shown in Klüppelberg et al. (2004, 2006), the COGARCH(1,1) process has
uncorrelated increments, while the autocorrelation functions of the volatility
σ2 and of the squared increments of G decay exponentially. Further, the
COGARCH(1,1) process has heavy tails and volatility clusters at high levels,
see Klüppelberg et al. (2006) and Fasen et al. (2005). Cluster behaviour
can also be achieved in the stochastic volatility model of Barndorff-Nielsen
and Shephard if the driving Lévy process has regularly varying tails. For an
overview of extremes of stochastic volatility models, see Fasen et al. (2005).
The discrete-time EGARCH model of Nelson (1990) was introduced in order
to account for the observation that negative shocks have a greater effect on
volatility than positive ones. A continuous-time analogue of the EGARCH
model is the ECOGARCH model of Haug and Czado (2007).

A unifying and large family of processes which includes several of those
introduced in this section is the family of generalized Ornstein-Uhlenbeck
(GOU) processes (Lindner and Maller (2005), Maller, Müller and Szimayer
(2008)). A GOU process X is defined, in terms of a bivariate Lévy process
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(ξ, η) by

Xt = m(1 − e−ξt) + e−ξt

∫ t

0

eξs−dηs +X0e
−ξs , t ≥ 0, (4.6)

where X0 is independent of {(ξt, ηt), t ≥ 0}. Among the processes in this fam-
ily are the stochastic volatility model of Barndorff-Nielsen and Shephard, the
COGARCH(1,1) process and the GARCH(1,1) limiting diffusion of Nelson.
For some of the applications of this family in option pricing, insurance and
risk theory see Maller et al. (2008). The extremal behaviour of stationary
GOU processes is treated in this volume by Fasen (2008).

5 Further Models

The asset-price models considered in the preceding sections constitute a small
but important part of the multitude of continuous-time stochastic models
currently of importance in mathematical finance. In this final section we
highlight a few of the important classes of models and problems, the details
of which cannot be included in this brief overview.

In order to account for dependence between the price processes of different
assets, multiple-asset models are required. Shreve (2004) considers option
pricing based on the model,

dSi(t) = αi(t)Si(t)dt+ Si(t)
d

∑

j=1

σij(t)dWj(t), i = 1, . . . ,m,

where the vector [αi]i=1,...,m and the volatility matrix [σij ]i=1,...,m;j=1,...,d

are adapted processes and Wj , j = 1, . . . d, are independent standard Brow-
nian motions. Multivariate generalizations of the BNS model and of the
COGARCH(p, q) model have also been developed by Stelzer (2007) and Pig-
orsch and Stelzer (2007) respectively.

Another large class of models for which there is an extensive literature are
those for bonds and interest rates. For an extensive treatment of these see
the book of Björk (2004) and the article by Björk (2008) in this volume. For
a Lévy based approach see also Eberlein and Raible (1999).

The estimation of volatility itself from high frequency data presents many
challenging problems. In equation (2.1) we introduced the notion of realized
volatility and, in the context of the BSM model, this converges as N → ∞
to the parameter σ2 (per day). However in practice, factors such as within-
day variation, discreteness of the price structure and the presence of jumps,
complicate the choice of N and the interpretation of the realized volatility as
defined by (2.1). An extensive discussion of realized volatility is contained in
the article of Andersen and Benzoni (2008) in this volume. Realized volatil-
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ity series are generally found to exhibit very slowly decaying autocorrela-
tion functions, suggesting the use of long-memory models or continuous-time
ARMA models with an autoregressive root close to zero in order to represent
them (see, e.g. Todorov (2007)).

The general problem of parameter estimation for continuous-time mod-
els is complicated by the fact that observations are always made at discrete
times. When the continuous-time process is Markovian and the transition
probabilities can be computed it is possible to write down the likelihood of
the observations and hence to carry out estimation by maximum likelihood.
Except in very special cases however the transition probabilities have no sim-
ple explicit form and approximation of the likelihood or alternative methods
must be used. The papers of Aït-Sahalia and Mykland (2008) and Phillips
and Yu (2008) in this volume address these problems. See also the paper of
Kelly et al.(2004).

Estimation for the BNS stochastic volatility model has been carried out by
Roberts et al. (2004) and Gander and Stephens (2007) using Markov chain
Monte-Carlo methods and estimation for COGARCH(1,1) models by Haug
and Czado (2007) using method of moments estimation.

There still remain many intriguing and challenging problems for the mod-
elling of asset prices. The models described in this overview have provided a
great deal of insight into the dynamics of price movements and the critical
role of market volatility. They have also been of practical value in the pricing
of options. Much remains to be discovered however, particularly with regard
to the intra-day price movements and the factors affecting them. For the
analysis of tick by tick (or ultra-high-frequency) data it is necessary to take
into account both the discrete times at which transactions occur and the
price changes at each transaction. The autoregressive conditional duration
(ACD) model of Engle and Russell (1998) was constructed for this purpose.
The analysis of high frequency data casts light on the trading mechanism
and the detailed operation (or microstructure) of the market and remains a
particularly active area of research. The book of Tsay (2005) contains a clear
account, with applications, of such models.
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Ornstein–Uhlenbeck Processes and
Extensions

Ross A. Maller, Gernot Müller and Alex Szimayer

Abstract This paper surveys a class of Generalised Ornstein-Uhlenbeck
(GOU) processes associated with Lévy processes, which has been recently
much analysed in view of its applications in the financial modelling area,
among others. We motivate the Lévy GOU by reviewing the framework al-
ready well understood for the “ordinary" (Gaussian) Ornstein-Uhlenbeck pro-
cess, driven by Brownian motion; thus, defining it in terms of a stochastic
differential equation (SDE), as the solution of this SDE, or as a time changed
Brownian motion. Each of these approaches has an analogue for the GOU.
Only the second approach, where the process is defined in terms of a stochas-
tic integral, has been at all closely studied, and we take this as our definition
of the GOU (see Eq. (12) below).
The stationarity of the GOU, thus defined, is related to the convergence of a
class of “Lévy integrals", which we also briefly review. The statistical prop-
erties of processes related to or derived from the GOU are also currently of
great interest, and we mention some of the research in this area. In practise,
we can only observe a discrete sample over a finite time interval, and we
devote some attention to the associated issues, touching briefly on such top-
ics as an autoregressive representation connected with a discretely sampled
GOU, discrete-time perpetuities, self-decomposability, self-similarity, and the
Lamperti transform.
Some new statistical methodology, derived from a discrete approximation
procedure, is applied to a set of financial data, to illustrate the possibilities.
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1 Introduction

The Ornstein-Uhlenbeck (throughout: OU) process was proposed by Uhlen-
beck and Ornstein (1930) in a physical modelling context, as an alternative
to Brownian Motion, where some kind of mean reverting tendency is called
for in order to adequately describe the situation being modelled. Since the
original paper appeared, the model has been used in a wide variety of ap-
plications areas. In Finance, it is best known in connection with the Vasicek
(1977) interest rate model. References to this (huge) literature are readily
available via library and web searches, and we will not attempt to review it
all here. However, to set the scene we will briefly discuss the standard (Gaus-
sian) OU process, driven by Brownian Motion, and concentrate thereafter
on some extensions that have recently attracted attention, especially in the
financial modelling literature.

2 OU Process Driven by Brownian Motion

The (one-dimensional) Gaussian OU process X = (Xt)t≥0 can be defined as
the solution to the stochastic differential equation (SDE)

dXt = γ(m−Xt)dt+ σdBt, t > 0, (1)

where γ, m, and σ ≥ 0 are real constants, and Bt is a standard Brownian
Motion (SBM) on R. X0, the initial value of X , is a given random variable
(possibly, a constant), taken to be independent of B = (Bt)t≥0. The param-
eter m can be formally eliminated from (1) by considering X(m)

t := Xt −m
rather than X , but we will keep it explicit in view of some later applications.

Alternatively, we could define X in terms of a stochastic integral:

Xt = m
(

1 − e−γt
)

+ σe−γt

∫ t

0

eγsdBs +X0e
−γt, t ≥ 0. (2)

It is easily verified that X as defined by (2) satisfies (1) for any γ, m, σ,
and choice of X0; it is the unique, strong Markov solution to (1), cf. Protter
(2005, p. 297). The stochastic integral in (2) is well defined and satisfies
the properties outlined in Protter (2005), for example. In particular, M· :=
∫ ·
0
eγsdBs is a zero-mean martingale with respect to the natural filtration of

B, whose quadratic variation is [M,M ]· =
∫ ·
0 e

2γsds. SoMt = W[M,M ]t , t ≥ 0,
whereW is an SBM (Protter 2005, p. 88). This leads to a third representation
for X as a time changed Brownian motion:

Xt = m
(

1 − e−γt
)

+ σe−γtW(e2γt−1)/2γ +X0e
−γt, t ≥ 0. (3)
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Basic properties of X are easily derived from (1)–(3). In particular, con-
ditional on X0, and assuming X0 has finite variance, Xt is Gaussian with
expectation and covariance functions given by

EXt = m
(

1 − e−γt
)

+ e−γtEX0, t ≥ 0, (4)

and

Cov(Xu, Xt) =
σ2

2γ
e−γu

(

eγt − e−γt
)

+ e−γ(u+t)VarX0, u ≥ t ≥ 0. (5)

When, and only when, γ > 0, the limit limt→∞
∫ t

0
e−γsdBs exists almost

surely (a.s.) as a finite random variable, which we can denote as
∫ ∞
0 e−γsdBs.

Using time reversal (for a fixed t > 0, (Bs)0≤s≤t has the same distribution as
(Bt−s)0≤s≤t) we see from (2) that, for each t ≥ 0,Xt has the same distribution
as

˜Xt := m
(

1 − e−γt
)

+ σ

∫ t

0

e−γsdBs +X0e
−γt, (6)

so limt→∞ ˜Xt exists a.s., is finite, and equals ˜X∞ := m + σ
∫ ∞
0 e−γsdBs,

when γ > 0. If Xt is “started with" initial value X0, having the distribution
of ˜X∞, and independent of (Xt)t>0, then it is strictly stationary in the sense
that the random vectors (Xt1 , Xt2 , . . . , Xtk) and (Xt1+h, Xt2+h, . . . , Xtk+h)
have the same distribution, for any k = 1, 2, . . ., h > 0, and 0 < t1 < t2 <

. . . < tk < ∞. In this case we can extend Bt to (−∞, 0), note that ˜X∞ :D=
m+σ

∫ 0

−∞ eγsdBs, independent of (Xt)t≥0, and takeX0 := m+σ
∫ 0

−∞ eγsdBs.
From (2), then, we can write

Xt = m+ σe−γt

∫ t

−∞
eγsdBs, t ≥ 0. (7)

Since Bt has stationary independent increments, from (7) we see that X is
a stationary, Markovian, Gaussian process, which is continuous in probabil-
ity. Conversely, any such process is a (stationary) version of a Gaussian OU
process.

The “mean reversion" of X to the constant level m when γ > 0 can be
inferred from (1); if X has diffused above m at some time, then the coeffi-
cient of the “dt" drift term is negative, so X will tend to move downwards
immediately after, with the reverse holding if X is below m at some time.

Definitions (1) and (2) still make sense when γ ≤ 0. When γ = 0, X
reduces to a zero mean Brownian motion (note that the parameter m is
unidentified when γ = 0) and when γ ≤ 0 of course X is not stationary,
in fact |

∫ t

0
e−γsdBs| tends to infinity in probability as t → ∞, so this is an

“explosive" case.
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3 Generalised OU Processes

There are many ways of generalising the Gaussian OU process, but we will
concentrate here on a class of generalisations which has particular application
in financial modelling, and has been recently studied intensely from this point
of view. There are certainly applications of this class in other areas too.

The idea is to replace the dt and dBt differentials in (1) with the dif-
ferentials of other semimartingales, or, alternatively, replace the exponential
function and Brownian motion in (2) or (3) with other processes. These are
quite sweeping generalisations, and to keep the analysis manageable we re-
strict ourselves to a Lévy generalisation. This is already a profound one, and,
apart from greatly increasing applicability, introduces many interesting and
important analytical considerations, not least to do with the intricacies of
the stochastic calculus. We passed over this aspect in Section 2 because the
integrals involve only the continuous semimartingale Bt, and are relatively
easy to handle. A general Lévy process has a jump component which re-
quires special attention in the analysis. But the jumps introduce a modelling
feature we wish to incorporate since they prove useful in some financial mod-
elling situations, see, e.g., Geman, Madan and Yor (2000). Another aspect
that becomes more interesting (and more difficult!) for jump processes is the
statistical analysis; we discuss this below.

Before proceeding, we need to recall some properties of Lévy processes.

3.1 Background on bivariate Lévy processes

We refer to Bertoin (1996) and Sato (1999) for basic results and represen-
tations concerning Lévy processes (see also Protter 2005, Ch. I, Sect. 4).
Univariate Lévy processes are also considered in Brockwell (2008). For the
Generalised OU Process (GOU) we need some specialised material on bivari-
ate Lévy processes, which we briefly review now.

The setup is as follows. Defined on (Ω,F , P ), a complete probability space,
a bivariate Lévy process (ξt, ηt)t≥0 is a stochastic process in R

2, with càdlàg
paths and stationary independent increments, which is continuous in prob-
ability. We take (ξ0, η0) = (0, 0) and associate with (ξ, η) its natural filtra-
tion (Ft)t≥0, the smallest right-continuous filtration for which (ξt, ηt)t≥0 is
adapted, completed to contain all P -null sets.

Especially important is the Lévy exponent, ψ(θ), which is defined in terms
of the characteristic function of (ξt, ηt) via

Eei〈(ξt,ηt),θ〉 =: etψ(θ),

where 〈·, ·〉 denotes inner product in R
2. For a bivariate Lévy process the

exponent is given by the Lévy-Khintchine representation:
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ψ(θ) = i〈A, θ〉− 1
2 〈θ,Σθ〉+

∫∫

|(x,y)|≤1

(

ei〈(x,y),θ〉−1−i〈(x, y), θ〉
)

Πξ,η(dx, dy)

+
∫∫

|(x,y)|>1

(

ei〈(x,y),θ〉 − 1
)

Πξ,η(dx, dy), for θ ∈ R
2. (8)

Here | · | is Euclidian distance in R
2, A = (A1, A2) is a nonstochastic 2–

vector, Σ = (σrs) is a nonstochastic 2 × 2 non-negative definite matrix, and
the Lévy measure, Πξ,η, is a measure on the Borel subsets of R

2 \ {0}, with
∫

(|(x, y)|2∧1)Πξ,η(dx, dy) < ∞. Though its value at (0, 0) is not relevant, for
definiteness, we can take Πξ,η{(0, 0)} = 0. In the literature, Lévy processes
such that the Lévy measure of any neighbourhood in R

2 \ {0} whose closure
contains 0 is infinite, are often described as having “infinite activity". Such
processes have infinitely many jumps in every nonempty time interval, a.s.
The remaining Lévy processes, that is, Lévy processes with “finite activity",
are compound Poisson processes (possibly with a drift).

The component processes ξt and ηt are Lévy processes in their own right,
having canonical triplets (Aξ, σ11, Πξ) and (Aη, σ22, Πη), say, where the Lévy
measures are given by

Πξ{Λ} :=
∫

R

Πξ,η{Λ, dy} and Πη{Λ} :=
∫

R

Πξ,η{dx, Λ}, (9)

for Λ a Borel subset of R \ {0}, and the centering constants are given by

Aξ := A1 +
∫

|x|≤1

x

∫

|y|≥
√

1−x2
Πξ,η{dx, dy},

and similarly for Aη.
A (càdlàg) Lévy process has countably many jumps at most, a.s. We set

(ξs−, ηs−) := limu↑s(ξu, ηu) for s > 0, and denote the jump process by

Δ(ξ, η)t := (Δξt, Δηt) = (ξt − ξt−, ηt − ηt−), t ≥ 0

(with (ξ0−, η0−) = 0). If Λ is a Borel subset of R
2 \ {0}, then the expected

number of jumps of (ξ, η) of (vector) magnitude in Λ occuring during any
unit time interval equals Π{Λ}, i.e., for any t > 0,

Π{Λ} = E
∑

t<s≤t+1

1{(Δξs,Δηs)∈Λ}. (10)

Corresponding exactly to the decomposition in (8) is the Lévy-Itô represen-
tation of the process as a shift vector plus Brownian plus “small jump" plus
“large jump" components:

(ξt, ηt) = (A1, A2)t+ (Bξ,t, Bη,t) + (ξ(1)t , η
(1)
t ) + (ξ(2)t , η

(2)
t ). (11)
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Here (Bξ,t, Bη,t)t≥0 is a Brownian motion on R
2 with mean (0, 0) and covari-

ance matrix tΣ, (ξ(1)t , η
(1)
t )t≥0 is a discontinuous (pure jump) process with

jumps of magnitude not exceeding 1, which may be of bounded variation on
compact time intervals (that is,

∑

0<s≤t |Δ(ξ, η)s| < ∞ a.s. for all t > 0), or

of unbounded variation, and (ξ(2)t , η
(2)
t )t≥0 is a pure jump process with jumps

of magnitude always exceeding 1; thus it is a compound Poisson process. The
truncation point “1" is arbitrary and can be replaced by any other positive
number at the expense only of redefining the shift vector (A1, A2). The rep-
resentation (11) is a great aid to intuition as well as being indispensible in
many analyses.

The couple (ξ(1)t , η
(1)
t ) (also a bivariate Lévy process, as is (ξ(2)t , η

(2)
t ))

have finite moments of all orders, and by adjusting the centering vector A
if necessary we can take Eξ(1)1 = Eη

(1)
1 = 0. Moments of ξ(2)t and η

(2)
t are

not necessarily finite; conditions for this to be so, in terms of the canonical
measures, are in Sato (1999, p.159, and p.163, ff.). In general, one or more
of the components on the righthand side of (11) may not be present, i.e.,
degenerates to 0. The bivariate Lévy then correspondingly degenerates to a
simpler form.

3.2 Lévy OU processes

As a starting point for the generalisation we could use (1), (2), or (3). In our
general setting these three definitions do not produce the same process. Each
is interesting in its own right, but what is presently known in the literature
as the Generalised OU process proceeds from (2), and we will adhere to this
usage. Thus, we take a bivariate Lévy process (ξ, η) and write

Xt = m
(

1 − e−ξt
)

+ e−ξt

∫ t

0

eξs−dηs +X0e
−ξt , t ≥ 0, (12)

where X0 is independent of (ξt, ηt)t≥0, and assumed F0-measurable. Consid-
erations of the stochastic calculus require us to be precise in specifying the
filtration with respect to which the integral in (12) is defined, and we take
it to be the natural filtration (Ft)t≥0. The Lévy processes ξ and η are semi-
martingales, so the stochastic integral in (12) is well defined without further
conditions; in particular, no moment conditions on ξ or η are needed.

One motivation for studying (12) is that special cases of it occupy cen-
tral positions in certain models of financial time series; the Lévy driven OU
processes of Barndorff-Nielsen and Shephard (2001a, 2001b, 2003) and the
COGARCH process of Klüppelberg, Lindner and Maller (2004) are recent
examples.

The GOU as defined in (12) seems to have been first considered by Car-
mona, Petit and Yor (1997); it is also implicit in the paper of de Haan and
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Karandikar (1989), where it occurs as a natural continuous time generali-
sation of a random recurrence equation. It has been studied in some detail
by Lindner and Maller (2005), with emphasis on carrying over some of the
properties enjoyed by the Gaussian OU. Other applications are in option pric-
ing (Yor (1992, 2001)), insurance and perpetuities (Harrison (1977), Dufresne
(1990), Paulsen and Hove (1999)), and risk theory (Klüppelberg and Kostadi-
nova (2006)). Many of these place further restrictions on ξ and η; for example,
ξ may be independent of η, or one or another or both of ξ or η may be a
Brownian motion or compound Poisson process, etc. To begin with, we make
no assumptions on ξ or η (not even independence), and investigate some
general properties of Xt.

Thus, it is the case that Xt is a time homogeneous Markov process (Car-
mona et al. 1997, Lemma 5.1), and it is elementary that (Xt)t≥0 is strictly
stationary if and only if Xt converges in distribution to X0, as t → ∞. To
study when this occurs, stationarity is related to the convergence of a certain
stochastic integral in Lindner and Maller (2005). But which integral? Let us
note that in general there is no counterpart of the equality (in distribution)
of (2) and (6). That is, in general, e−ξt

∫ t

0
eξs−dηs does not have the same dis-

tribution (even for a fixed t > 0) as
∫ t

0
e−ξs−dηs, as might at first be thought

via a time-reversal argument. The correct relationship is given in Proposition
2.3 of Lindner and Maller (2005):

e−ξt

∫ t

0

eξs−dηs
D=

∫ t

0

e−ξs−dLs, for each t > 0, (13)

where Lt is a Lévy process constructed from ξ and η as follows:

Lt := ηt +
∑

0<s≤t

(e−Δξs − 1)Δηs − tCov(Bξ,1, Bη,1), t ≥ 0. (14)

Here “Cov" denotes the covariance of the Brownian components of ξ and η.
In general Lt �= ηt, but when ξ and η are independent, for example, they have
no jumps in common, a.s., and the covariance term is 0, so (14) gives Lt ≡ ηt,
and the integral on the righthand side of (13) then equals

∫ t

0
e−ξs−dηs.

But even in the general case, (13) can be used to investigate the large time
behaviour of Xt, because necessary and sufficient conditions for the conver-
gence (a.s., or, in distribution) of Lévy integrals of the form

∫∞
0 e−ξt−dLt have

been worked out by Erickson and Maller (2004), phrased in terms of quite
simple functionals of the canonical triplet of (L, η), which is easily obtained
from the canonical triplet of (ξ, η) via (14). Except for a degenerate case,
necessary and sufficient is that limt→∞ ξt = ∞ a.s., together with a kind of
log-moment condition involving only the marginal measures of ξ and η. The
divergence criterion limt→∞ ξt = ∞ a.s. is also easily expressed in terms of
the canonical measure of ξt. The stationarity criterion, given in Theorem 2.1
of Lindner and Maller (2005), is that (Xt)t≥0 is strictly stationary, for an
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appropriate choice of X0, if and only if the integral
∫∞
0
e−ξt−dLt converges

(a.s., or, equivalently, in distribution), or else Xt is indistinguishable from a
constant process.

From these results we see that a study of the GOU process can be reduced
in part to a study of the exponential Lévy integral

∫∞
0 e−ξt−dLt, and this

program is continued in Erickson and Maller (2007) (conditions for conver-
gence of stochastic integrals), Bertoin, Lindner and Maller (2008) and Kondo,
Maejima and Sato (2006) (continuity properties of the integral), and Maller,
Müller and Szimayer (2008) (discrete approximation and statistical proper-
ties).

We took as starting point in this section a generalisation of (2), via (12).
(12) has direct relevance to stochastic volatility and other models in finance,
among other possible applications. On the other hand, modelling by SDEs
such as (1) (the Langevin equation) can arise directly from a physical sit-
uation; e.g., the interpretation of (1) as describing the motion of a particle
under a restraining force proportional to its velocity. The counterpart of (1)
for the GOU is the SDE

dXt = (Xt− −m)dUt + dLt, t ≥ 0, (15)

where (U,L) is a bivariate Lévy process. Suppose this holds for a U whose
Lévy measure attributes no mass to (−∞,−1], and define a Lévy process
ξ by ξt = − log E(U)t, where E(U) denotes the stochastic exponential of U ,
namely, the solution to the SDE dE(U)t = E(U)t−dUt with E(U)0 = 1; see
Protter (2005, p. 85). Then define a Lévy process ηt by

ηt := Lt −
∑

0<s≤t

(1 − e−Δξs)ΔLs + tCov(Bξ,1, BL,1), t ≥ 0. (16)

With these definitions, (12) is the unique (up to indistinguishability) solution
to (15). To verify this, use integration by parts in (12) together with Eq. (2.10)
of Lindner and Maller (2005). The fact that the Lévy measure of U attributes
no mass to (−∞,−1] ensures that E(U) is positive. Conversely, if, for a given
bivariate Lévy process (ξ, η), L satisfies (14), and U satisfies ξt = − log E(U)t,
then Xt as defined in (12) satisfies (15), and, further, the Lévy measure of
U attributes no mass to (−∞,−1]. See Protter (2005, p. 329) and Yoeurp
(1979) for further discussion.

A third approach to generalising an OU is to consider more general time
changes. Monroe (1978), generalising Lévy’s result for continuous local mar-
tingales, showed that any semimartingale can be obtained as a time changed
Brownian motion. Thus we can write

∫ t

0
eξs−dηs = WTt , for an SBM W and

an increasing semimartingale (Tt)t≥0, leading to another kind of generalisa-
tion of (3). The properties of such a class are also unexplored, so far as we
know. Other versions of time changed Brownian motions have been used in
many situations; see, e.g., Anh, Heyde and Leonenko (2002), for a financial
application.
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3.3 Self-decomposability, self-similarity, class L,
Lamperti transform

Consider the case when m = 0 and ξt = γt, γ > 0, is a pure drift in (12):

Xt = e−γt

∫ t

0

eγsdηs +X0e
−γt, t ≥ 0. (17)

Say that (the distribution of) a random variable X is semi-self-decomposable
if X has the same distribution as aX + Y (a), for a constant 0 < a < 1, for
some random variable Y (a), independent of X , possibly depending on a. If
an equality in distribution X D= aX + Y (a) can be achieved for all a ∈ (0, 1),
X is said to be self-decomposable. See Sato (1999, Section 15). This property
can also be described as saying that the distribution of X is of Class L; this
is a subclass of the infinitely divisible distributions which can be obtained as
the limit laws of normed, centered, sums of independent (but not necessarily
identically distributed) random variables. See Feller (1971, p. 588). Class L
contains but is not confined to the stable laws, which are the limit laws of
normed, centered, sums of i.i.d. random variables.

A potential limiting value of Xt in (17) as t → ∞ is the random variable
X∞ :=

∫ ∞
0
e−γtdηt, if finite, and then Xt is stationary if X0

D= X∞. Wolfe
(1982) showed that a random variable X is self-decomposable if and only if
it has the representation

X
D=

∫ ∞

0

e−γtdηt,

for some Lévy process η with E log+ |η| < ∞ (and then X is a.s. finite),
and, further, that the canonical triplets of Xt (the Lévy process with the
distribution of X when t = 1) and ηt are then connected in a simple way. He
made crucial use of the formula

Eeiθ
∫ b

a
f(s)dηs = Ee

∫ b
a
Ψη(−θf(s))ds, 0 ≤ a < b < ∞, θ ∈ R, (18)

where f is a bounded continuous function in R and Ψη(θ) := − log
(

Eeiθη1
)

(e.g., Bichteler (2002, Lemma 4.6.4, p. 256)).
An H–self-similar process (Xt)t≥0 is such that (Xat)t≥0 has the same

distribution as (aHXt)t≥0, for some constant H > 0, and each a > 0. Sato
(1991) showed that a random variable X1 is self-decomposable if and only
if for each H > 0 its distribution is the distribution at time 1 of an H–self-
similar process. An H–self-similar Lévy process must have H ≥ 1/2; and then
Xt is an α–stable process with index α = 1/H ∈ (0, 2].

The Lamperti Transform of an H–self-similar process (Xt)t≥0 is the (sta-
tionary) process Yt := e−tHXet , t ≥ 0. Lamperti (1962, 1972) showed, con-
versely, that any stationary process Y can be represented in this form. Thus,
in summary, we have a correspondence between a stationary process Yt, an
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H–self-similar process Xt, a self-decomposable random variable X1, the class
L, and the integral

∫∞
0 e−γtdηt. Jeanblanc, Pitman and Yor (2002) give an

elegant linking approach to these.
The integral

∫∞
0
e−ξtdt (assumed convergent) is self-decomposable when

ξ is spectrally negative, but not in general; (in fact, it is not even infinitely
divisible in general). These results are due to Samorodnitsky (reported in
Klüppelberg et al. (2004)). Thus, a fortiori, the integral

∫∞
0
e−ξtdηt is not in

general self-decomposable. See also Kondo et al. (2006) for further results.

4 Discretisations

4.1 Autoregressive representation, and perpetuities

Given a Lévy process Lt with E log+ |L1| < ∞ and constants h > 0 and
γ > 0, let (Qn)n=1,2,... be i.i.d. with the distribution of e−γh

∫ h

0
eγsdLs. Then

(Wolfe (1982)) the discrete time process (time series) defined recursively by

Zn = e−γhZn−1 +Qn, n = 1, 2, . . . , with Z0 = 0, (19)

converges in distribution as n → ∞ to a random variable with the distribution
of the (a.s. finite) integral

∫∞
0 e−γtdLt. Thus the stationary distribution of

an OU process driven by Lévy motion can be obtained from the behaviour at
large times of an autoregressive time series. Conversely, Wolfe (1982) showed
that if (Qn)n=1,2,... are given i.i.d. random variables with E log+ |Qn| < ∞,
and Zn are defined by the recursion in (19) with γ > 0 and h = 1, then there
is a Lévy process Lt with E log+ |L1| < ∞ such that the processXt as defined
in (17) satisfies Xn = Zn, n = 1, 2, . . ., if and only if Q1

D= e−γ
∫ 1

0
eγsdLs. He

further gave necessary and sufficient conditions for the latter property to hold;
namely, a random variable Q has the same distribution as e−γ

∫ 1

0 e
γsdLs,

for a given γ > 0 and Lévy process Lt with E log+ |L1| < ∞, if and only
if

∏∞
j=0 E(eiρ

jθQ) is the characteristic function of a distribution in class L,
where ρ = e−γ . See also Sato (1999, Section 17).

(19) is a special case of a discrete time “perpetuity". More generally, we
may replace the coefficient e−γh in (19) by a random sequence, Mn, say,
such that (Qn,Mn)n=1,2,... is an i.i.d. sequence of 2-vectors. Then Zn is a
kind of analogue of the Lévy integral

∫ t

0
e−ξs−dηs; see, e.g., Lindner and

Maller (2005) for a discussion. Random sequences related to perpetuities
have received much attention in the literature as models for a great variety
of phenomena, including but not restricted to the actuarial area. We refer to
Vervaat (1979), Goldie and Maller (2000), Nyrhinen (1999, 2001).
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4.2 Statistical issues: Estimation and hypothesis testing

There are methods of estimation of parameters in continuous time models
based on hypothetical continuous time observation of a process over a finite
interval, and the testing of hypotheses about them, for example, in a like-
lihood framework (Liptser and Shiryaev (1978), Basawa and Prakasa Rao
(1980), Heyde (1997), Kutoyants (2004)), which provide much insight. But
in practise we can only observe in discrete time, and have to think how to ap-
proximate the parameters in the original continuous time model from a finite
(discrete) sample. Furthermore, observation in practise can only be carried
out over a finite time interval, whereas frequently in statistics we may wish
to employ a large sample theory, or, in the case of a time series, let the ob-
servation time grow large, to derive benchmark distributions for parameter
estimates and test statistics which are free from finite sample effects.

Consequently, in approximating a continuous by a discrete time process,
we can proceed in one or both of two ways. One is to form a series of approx-
imations on a finite time interval [0, T ], which is subdivided into finer and
finer grids, so that in the limit the discrete approximations converge, hope-
fully, to the original continuous, time process (in some mode); alternatively,
we can sample at discrete points in a finite time interval [0, T ] and let T → ∞
to get asymptotic distributions; or, thirdly, we can attempt to combine both
methods in some way.

4.3 Discretely sampled process

Discrete sampling of an OU process on an equispaced grid over a finite time
horizon T > 0 produces an autoregressive (AR) time series, as follows. Sup-
pose Xt satisfies (1), and fix a compact interval [0, T ], T > 0. Then

Xi,n = XiT/n, i = 0, 1, . . . , n, for n = 1, 2, . . . , (20)

is the discretely sampled process. From (1) we can write

Xi,n = (1 − αn)m+ αnXi−1,n + σnεi,n, i = 1, 2, . . . , n, (21)

where
αn = e−γT/n, σ2

n = σ2(1 − e−2γT/n)/(2γ), (22)

and

εi,n :=
σ

σn

∫ T/n

0

eγ(s−T/n)dBs+(i−1)T/n. (23)

(21) is a system of autoregressions, where the (εi,n)i=1,2,...,n are i.i.d. standard
normal random variables for each n = 1, 2, . . ..
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Next, embed each Xi,n into a continuous time process Xn(t) by setting

Xn(t) = Xi−1,n, for (i− 1)T/n ≤ t < iT/n, i = 1, 2, . . . , n. (24)

Then Xn(t) → Xt, uniformly on [0, T ], in probability, as n → ∞.
Szimayer and Maller (2004) carry out the above procedure, but with a Lévy

process Lt, satisfying EL1 = 0 and EL2
1 = 1, replacing Bt in (1) and conse-

quently in (23). The εi,n in (23) remain i.i.d. (0, 1) random variables, though
in general of course they are no longer normally distributed. Szimayer and
Maller (2004) used a Quasi-Maximum Likelihood (QML) approach, whereby
a likelihood for the observations is written down as if the εi,n were normally
distributed, and estimates and test statistics calculated from it, but then the
normality assumption is discarded for the rest of the analysis. They test the
hypothesis H0 : γ = 0, of no mean reversion in the model (so Xt reduces to
Lt, a pure Lévy process). This hypothesis test has the nonstandard feature
that the long term equilibrium parameter m “disappears under the null"; it
cannot be identified from (1) when γ = 0. Methods of Davies (1977, 1987) are
available for handling this. Szimayer and Maller (2004) work out the asymp-
totic distribution (as the mesh size tends to 0, over the compact interval
[0, T ]) of the QML statistic for testing H0, as a function of the underlying
Lévy process Lt. That asymptotic distribution of course depends on T , and
as T → ∞, Szimayer and Maller (2004) show further that it tends to the
distribution of a random variable related to the Dickey-Fuller unit root test
in econometrics. This procedure is an example of estimating on a finite grid
whose mesh size shrinks to 0, after which the observation window expands
to infinity.

4.4 Approximating the COGARCH

The COGARCH is a continuous-time dynamic model suggested by Klüppel-
berg, Lindner and Maller (2004) to generalise the popular GARCH (Gener-
alised Autoregressive Conditional Heteroscedasticity) model now commonly
used in (discrete) time series analysis. The COGARCH is defined by

Gt =
∫ t

0

σs−dLs, t ≥ 0, (25)

where Lt is a “background driving Lévy process", and σt, the volatility pro-
cess, satisfies

σ2
t = βe−Xt

∫ t

0

eXs ds+ σ2
0e

−Xt , t ≥ 0, (26)

for constants β > 0 and σ2
0 > 0. (26) is a version of the GOU (12), with ηt

replaced by a pure drift, and ξt replaced by Xt. The latter is just a notational
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change; the Xt in (26) is also a Lévy process, defined in terms of the original
Lt by

Xt = ηt−
∑

0<s≤t

log(1 + ϕ(ΔLs)2), t ≥ 0, (27)

for parameters η > 0 and ϕ > 0. Note that only one source of randomness, Lt,
underlies both the process itself and the volatility process; this is an important
feature of the discrete time GARCH models, preserved in the COGARCH.

Further analysis of the COGARCH is in Klüppelberg et al. (2004, 2006),
where stationarity properties are related to the convergence of a Lévy integral.
See also Lindner (2008). Statistical issues, especially, fitting the COGARCH
to data, are in Haug et al. (2007), Müller (2007), and Maller, Müller and
Szimayer (2008). The latter paper proposes a discretisation of the COGARCH
in the same spirit as we discussed above for the Lévy driven OU model. Using
a first-jump approximation of a Lévy process originally developed in Szimayer
and Maller (2007) for an option pricing application, Maller et al. (2008) show
that the COGARCH can be obtained as a limit of discrete time GARCH
processes defined on the same probability space. This allows advantage to be
taken of currently existing methods in time-series modeling and econometrics
for this well-established process class.

The procedure is as follows. Take a sequence of integers (Nn)n≥1 with
limn→∞Nn = ∞, and a finite interval [0, T ], T > 0, with a deterministic
partitioning 0 = t0(n) < t1(n) < . . . < tNn(n) = T . Let Δti(n) := ti(n) −
ti−1(n) for i = 1, 2, . . . , Nn, and assume Δtn := maxi=1,...,Nn Δti(n) → 0 as
n → ∞. Given the COGARCH parameters (β, η, ϕ), define the process

Gi,n = Gi−1,n + σi−1,n

√

Δti(n)εi,n, for i = 1, 2, . . . , Nn, with G0,n = 0,
(28)

with an accompanying variance process:

σ2
i,n = βΔti(n) +

(

1 + ϕΔti(n)ε2i,n
)

e−ηΔti(n)σ2
i−1,n, i = 1, 2, . . . , Nn. (29)

Here, for each n ≥ 1, (εi,n)i=1,...,Nn is a sequence of independent random
variables with Eε1,n = 0 and Eε21,n = 1 constructed pathwise from the driving
Lévy process Lt in (25) and its characteristics; and σ2

0,n is a given random
variable, independent of the εi,n. (28) and (29) define a kind of discrete time
GARCH-type recursion with scaling by the time increments Δti(n).

The discrete time processes are then embedded into continuous time by

Gn(t) := Gi,n and σ2
n(t) := σ2

i,n when t ∈ (ti−1(n), ti(n)], 0 ≤ t ≤ T,
(30)

with Gn(0) = 0 and σ2
n(0) = σ2

0,n. A key result of Maller et al. (2008) is that,
as n → ∞ (so Δt(n) → 0), the Skorokhod distance between (Gn(·), σn(·))
and (G(·), σ(·)), over [0, T ], converges in probability to 0; thus, in particular,
(Gn(·), σn(·)) converges in distribution to (G(·), σ(·)) in D[0, T ] × D[0, T ],
where D[0, T ] is the space of càdlàg stochastic process on [0, T ].
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Maller et al. (2008) use this result to motivate an estimation procedure for
the COGARCH parameters in terms of estimates of the parameters of the
discrete GARCH approximating process. Via some simulations, this is shown
to work somewhat better, in some selected situations, than the Haug et al.
(2007) method, at least as judged by the mean square error of the estimates.

As an example application, we fitted the COGARCH model to a series of
33,480 log-prices of the Intel stock traded on the NYSE between February 1
and June 6, 2002, observed every minute from 09:36am to 04:00pm. The data
is from the TAQ data base provided by the NYSE. We removed the overnight
jumps and a linear trend from the data, then fitted a GARCH model by
the QML method as described above, thus obtaining estimates (̂β, ϕ̂, η̂) of
(β, ϕ, η). Then with Gt as the log stock price at time t, an estimate of the
volatility process (σ2

t )t≥0 can be calculated recursively from

σ̂2
n = ̂β + (1 − η̂)σ̂2

n−1 + ϕ̂(Gn −Gn−1)2, n = 1, 2, . . .

(Haug et al. 2007). Figure 1 shows that the resulting volatility sequence (for
the first 1,000 observations) compares reasonably well with the absolute log
returns. Further discussion is in Maller et al. (2008).
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Fig. 1 Top: 1,000 minute-by-minute absolute log returns on Intel stock. Bottom: Corre-
sponding estimated annualized volatilities for Intel data.
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5 Conclusion

This survey cannot do justice in the space available to the many theoretical
and practical studies, past and ongoing, related to the OU and GOU pro-
cesses. We note in particular Brockwell, Erdenebaatar and Lindner (2006) (a
COGARCH(p, q)); Masuda (2004) (a multidimensional OU process); Aalen
and Gjessing (2004) (an interesting connection between the finance and sur-
vival analysis applications); Novikov (2004) (passage time problems); Kondo
et al. (2006) (multidimensional exponential Lévy integrals); and the list goes
on. Despite all this activity, much remains to be done, as we have suggested
throughout the discussion, to add to our understanding of the stochastic
processes themselves, and their statistical properties.
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Jump–Type Lévy Processes

Ernst Eberlein

Abstract Lévy processes are developed in the more general framework of
semimartingale theory with a focus on purely discontinuous processes. The
fundamental exponential Lévy model is given, which allows us to describe
stock prices or indices in a more realistic way than classical diffusion models.
A number of standard examples including generalized hyperbolic and CGMY
Lévy processes are considered in detail.

1 Probabilistic Structure of Lévy Processes

The assumption that observations are normally distributed is predominant in
many areas of statistics. So is the situation with time series of financial data,
where from the very beginning of continuous-time modeling, Brownian mo-
tion itself or geometric Brownian motion became the favorite. This is largely
due to the fact that the normal distribution as well as the continuous-time
process it generates have nice analytic properties. The standard techniques
to handle these objects are known to a large community, which at the same
time is less familiar with more sophisticated distributions and processes. On
the other hand, a thorough look at data from various areas of finance, such as
equity, fixed income, foreign exchange or credit, clearly reveals that assuming
normality, one gets a model which is only a poor approximation of reality. If
(St)t≥0 denotes a price process in continuous or discrete time, the quantity
to be considered is the log returns :

logSt+δ − logSt = log(St+δ/St). (1)
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Usually log returns are preferred to relative price changes (St+δ − St)/St
because by adding up log returns over n periods, one gets the log return for
the period nδ. This is not the case for relative price changes. Numerically, the
difference between log returns and relative price changes is negligible because
x− 1 is well approximated by log x at x = 1.

Whereas log returns taken from monthly stock prices (St) are reasonably
represented by a normal distribution, the deviation becomes significant if one
considers prices on a daily or even an intraday time grid (Eberlein and Keller
(1995), Eberlein and Özkan (2003b)). As a consequence of the high volumes
traded nowadays on electronic platforms, daily price changes of several per-
cent are rather frequent also for big companies, i.e., companies with a high
market capitalization. A model based on the Gaussian distribution however
would allow this order of price change only as a very rare event. Let us un-
derline that the deviation of probabilities is not restricted to tails only, but
can be observed on a lower scale for small price movements as well. Empirical
return distributions have substantially more mass around the origin than the
normal distribution. In order to improve the statistical accuracy of the models
and thus to improve derivative pricing, risk management and portfolio opti-
mization to name just some key areas of application, many extensions of the
basic models have been introduced. Let us refer to adding stochastic volatil-
ity, stochastic interest rates, correlation terms and so on. Without any doubt
these extensions typically reduce the deviation between model and reality.
On the other hand, in most cases the simple analytic properties are sacrificed
and in particular the distributions which the extended models produce are
no longer known explicitly.

A more fundamental change in the modeling approach is to consider from
the very beginning more realistic distributions and to keep the analytic form
of the model itself simple. This leads naturally to a broader class of driving
processes, namely, Lévy processes. A Lévy process X = (Xt)t≥0 is a process
with stationary and independent increments. Underlying it is a filtered prob-
ability space (Ω,F , (Ft)t≥0, P ) to which the process (Xt)t≥0 is adapted. It
is well known (Theorem 30 in Protter (2004)) that a Lévy process has a ver-
sion with càdlàg paths , i.e., paths which are right-continuous and have limits
from the left. In the following we shall always consider processes with càdlàg
paths. A (one-dimensional) Lévy process can be represented in the following
way, where we assume X0 = 0 for convenience:

Xt = bt+
√
cWt + Zt +

∑

s≤t

ΔXs1l{|ΔXs|>1}. (2)

Here b and c ≥ 0 are real numbers, (Wt)t≥0 is a standard Brownian motion
and (Zt)t≥0 is a purely discontinuous martingale which is independent of
(Wt)t≥0. ΔXs := Xs −Xs− denotes the jump at time s if there is any and
thus the last sum represents the jumps of the process with absolute jump size
bigger than 1.
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In the case where c = 0, i.e., if the continuous Gaussian part disappears,
the process is a purely discontinuous Lévy process. As we will see later, many
examples which are important for modeling in finance are of this type. Let
us also mention that in the general case where both martingales, (Wt) and
(Zt), are present, because of their independence they are orthogonal in a
Hilbert-space sense. This fact simplifies the analysis considerably because
the two components of the process do not interact. As a consequence the
classical formulae known for diffusion processes—for example, Itô’s formula—
are complemented by a term or terms which come from the jump part of X ,
but no mixed terms have to be considered.

The decomposition of a Lévy process as given in (2) is known as the Lévy–
Itô decomposition. At the same time every Lévy process is a semimartingale
and (2) is the so-called canonical representation for semimartingales. For a
semimartingale Y = (Yt)t≥0, the latter is obtained by the following procedure.
One first subtracts from Y the sum of the big jumps, e.g., the jumps with
absolute jump size bigger than 1. The remaining process

Yt −
∑

s≤t

ΔYs1l{|ΔYs|>1} (3)

has bounded jumps and therefore is a special semimartingale (see I.4.21 and
I.4.24 in Jacod and Shiryaev (1987)). Any special semimartingale admits a
unique decomposition into a local martingale M = (Mt)t≥0 and a predictable
process with finite variation V = (Vt)t≥0, i.e., the paths of V have finite
variation over each finite interval [0, t]. For Lévy processes the finite variation
component turns out to be the (deterministic) linear function bt. Any local
martingale M (with M0 = 0) admits a unique decomposition (see I.4.18 in
Jacod and Shiryaev (1987)) M = M c +Md, where M c is a local martingale
with continuous paths and Md is a purely discontinuous local martingale
which we denoted Z in (2). For Lévy processes the continuous component
M c is a standard Brownian motion W = (Wt)t≥0 scaled with a constant
factor

√
c.

What we have seen so far is that a Lévy process has two simple com-
ponents: a linear function and a Brownian motion. Now let us look more
carefully at the jump part . Because we assumed càdlàg paths, over finite in-
tervals [0, t] any path has only a finite number of jumps with absolute jump
size larger than ε for any ε > 0. As a consequence the sum of jumps along
[0, t] with absolute jump size bigger than 1 is a finite sum for each path.

Of course instead of the threshold 1, one could use any number ε > 0 here.
In contrast to the sum of the big jumps, the sum of the small jumps

∑

s≤t

ΔXs1l{|ΔXs|≤1} (4)

does not converge in general. There are too many small jumps to get con-
vergence. One can force this sum to converge by compensating it, i.e., by
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subtracting the corresponding average increase of the process along [0, t].
The average can be expressed by the intensity F (dx) with which the jumps
arrive. More precisely, the following limit exists in the sense of convergence
in probability:

lim
ε→0

(
∑

s≤t

ΔXs1l{ε≤|ΔXs|≤1} − t

∫

x1l{ε≤|x|≤1}F (dx)
)

. (5)

Note that the first sum represents the (finitely many) jumps of absolute jump
size between ε and 1. The integral is the average increase of the process in a
unit interval when jumps with absolute size smaller than ε or larger than 1 are
eliminated. One cannot separate this difference, because in general neither of
the expressions has a finite limit as ε → 0.

There is a more elegant way to express (5). For this one introduces the
random measure of jumps of the process X denoted by μX :

μX(ω; dt, dx) =
∑

s>0

1l{ΔXs �=0}ε(s,ΔXs(ω)(dt, dx). (6)

If a path of the process given by ω has a jump of size ΔXs(ω) = x at time
point s, then the random measure μX(ω; ·, ·) places a unit mass ε(s,x) at the
point (s, x) in R+×R. Consequently for a time interval [0, t] and a set A ⊂ R,
μX(ω; [0, t]×A) counts how many jumps of jump size within A occur for this
particular path ω from time 0 to t:

μX(ω; [0, t] ×A) = |{(s, x) ∈ [0, t] ×A | ΔXs(ω) = x}|. (7)

This number is compared with the average number of jumps with size within
A. The latter can be expressed by an intensity measure F (A):

E
[

μX( · ; [0, t] ×A)
]

= tF (A). (8)

With this notation one can write the sum of the big jumps at the end of (2)
in the form

∫ t

0

∫

R

x1l{|x|>1}μ
X(ds, dx) (9)

and one can express (Zt), the martingale of compensated jumps of absolute
size less than 1, in the form

∫ t

0

∫

R

x1l{|x|≤1}(μX(ds, dx) − dsF (dx)). (10)

Note that μX(ω, ds, dx) is a random measure, i.e., it depends on ω, whereas
dsF (dx) is a product measure on R+ ×R not depending on ω. Again μX and
dsF (dx) cannot be separated in general.
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2 Distributional Description of Lévy Processes

The distribution of a Lévy process X = (Xt)t>0 is completely determined by
any of its marginal distributions L(Xt). Let us consider L(X1) and write for
any natural number n

X1 = X1/n + (X2/n −X1/n) + (X3/n −X2/n) + · · · +Xn/n +Xn−1/n. (11)

By stationarity and independence of the increments we see that L(X1) is the
n-fold convolution of the laws L(X1/n):

L(X1) = L(X1/n) ∗ · · · ∗ L(X1/n). (12)

Consequently L(X1) and analogously any L(Xt) are infinitely divisible dis-
tributions. Conversely any infinitely divisible distribution ν generates in a
natural way a Lévy process X = (Xt)t≥0 which is uniquely determined by
setting L(X1) = ν. If for n > 0, νn is the probability measure such that
ν = νn ∗ · · · ∗ νn, then one gets immediately for rational time points t = k/n
L(Xt) as the k-fold convolution of νn. For irrational time points t, L(Xt) is
determined by a continuity argument (see Chapter 14 in Breiman (1968)).
Because the process to be constructed has independent increments, it is suf-
ficient to know the one-dimensional distributions.

As we have seen, the class of infinitely divisible distributions and the class
of Lévy processes are in a one-to-one relationship; therefore, if a specific in-
finitely divisible distribution is characterized by a few parameters the same
holds for the corresponding Lévy process. This fact is crucial for the estima-
tion of parameters in financial models which are driven by Lévy processes.
The classical example is Brownian motion which is characterized by the pa-
rameters μ and σ2 of the normal distribution N(μ, σ2). A number of examples
which allow more realistic modeling in finance will be considered in the last
section.

For an infinitely divisible distribution ν which we can write as ν = L(X1)
for a Lévy processX = (Xt)t≥0, the Fourier transform in its Lévy–Khintchine
form is given by

E[exp(iuX1)] = exp
[

iub− 1
2
u2c+

∫

R

(

eiux − 1 − iux1l{|x|≤1}
)

F (dx)
]

. (13)

The three quantities b, c and F are those which appeared in (2), (8) and (10).
They determine the law ofX1, L(X1), and thus the processX = (Xt)t≥0 itself
completely. (b, c, F ) is called the Lévy–Khintchine triplet or in semimartin-
gale terminology the triplet of local characteristics . The truncation function
h(x) = x1l{|x|≤1} used in (13) could be replaced by other versions of trun-
cation functions, e.g., smooth functions which are identical to the identity
in a neighborhood of the origin and go to zero outside this neighborhood.
Changing h results in a different drift parameter b, whereas the diffusion co-
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efficient c ≥ 0 and the Lévy measure F remain unaffected. We note that F
does not have mass on 0, F ({0}) = 0, and satisfies the following integrability
condition:

∫

R

min(1, x2)F (dx) < ∞. (14)

Conversely any measure on the real line with these two properties together
with parameters b ∈ R and c ≥ 0 defines via (13) an infinitely divisible
distribution and thus a Lévy process. Let us write (13) in the short form

E[exp(iuX1)] = exp(ψ(u)). (15)

ψ is called the characteristic exponent . Again by independence and station-
arity of the increments of the process (see (11), (12)), one derives that the
characteristic function of L(Xt) is the tth power of the characteristic function
of L(Xt):

E[exp(iuXt)] = exp(tψ(u)). (16)

This property is useful when one has to compute numerically values of deriva-
tives which are represented as expectations of the form E[f(XT )], where XT

is the value of a Lévy process at maturity T , and the parameters of the Lévy
process were estimated as the parameters of L(X1).

A lot of information on the process can be derived from integrability prop-
erties of the Lévy measure F . The following proposition shows that finiteness
of moments of the process depends only on the frequency of large jumps since
it is related to integration by F over {|x| > 1}.

Proposition 1 Let X = (Xt)t≥0 be a Lévy process with Lévy measure F .

1. Xt has finite pth moment for p ∈ R+, i.e., E[|Xt|p] < ∞, if and only if
∫

{|x|>1} |x|pF (dx) < ∞.
2. Xt has finite pth exponential moment for p ∈ R, i.e., E[exp(pXt)] < ∞,

if and only if
∫

{|x|>1} exp(px)F (dx) < ∞.

For the proof see Theorem 25.3 in Sato (1999). From part 1 we see that if
the generating distribution L(X1) has finite expectation then

∫

{|x|>1} xF (dx)
< ∞. This means that we can add −

∫

iux1l{|x|>1}F (dx) to the integral in
(13) and get the simpler representation for the Fourier transform:

E[exp(iuX1)] = exp
[

iub− 1
2
u2c+

∫

R

(

eiux − 1 − iux
)

F (dx)
]

. (17)

In the same way, in this case where the expectation of L(X1) is finite and
thus

∫ t

0

∫

R
x1l{|x|>1}dsF (dx) exists, we can add

∫ t

0

∫

R

x1l{|x|>1}
(

μX(ds, dx) − dsF (dx)
)

(18)
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to (10). Note that the sum of the big jumps, which is
∫ t

0

∫

R
x1l{|x|>1}μ

X(ds, dx),
always exists for every path. As a result of this we get (2) in the simpler rep-
resentation

Xt = bt+
√
cWt +

∫ t

0

∫

R

x
(

μX(ds, dx) − dsF (dx)
)

. (19)

Of course the drift coefficient b in (19) is different from the drift coefficient b
in the general representation (2). Actually b in (19) is nothing but the expec-
tation E[X1] because the Brownian motion (Wt)t≥0 and the pure jump inte-
gral process are both martingales with expectation zero and E[Xt] = tE[X1].
From representation (19) it is immediately clear that (Xt) is a martingale
if b = E[X1] = 0, it is a submartingale if b > 0 and is a supermartingale if
b < 0.

The case of finite expectation E[X1] under which we get (19) is of par-
ticular interest because all Lévy processes which we use in finance have finite
first moments.

Whereas the frequency of the big jumps determines the existence of mo-
ments of the process, the fine structure of the paths of the process can be
read off the frequency of the small jumps. We say the process has finite ac-
tivity if almost all paths have only a finite number of jumps along any time
interval of finite length. If almost all paths have infinitely many jumps along
any time interval of finite length, we say the process has infinite activity.

Proposition 2 Let X = (Xt)t≥0 be a Lévy process with Lévy measure F .

1. X has finite activity if F (R) < ∞.
2. X has infinite activity if F (R) = ∞.

Note that by definition a Lévy measure satisfies
∫

R
1l{|x|>1}F (dx) < ∞;

therefore, the assumption F (R) < ∞ or F (R) = ∞ is equivalent to assum-
ing finiteness or infiniteness of

∫

R
1l{|x|≤1}F (dx) < ∞. It is well known that

the paths of Brownian motion have infinite variation. Consequently it follows
from representation (2) or (19) that Lévy processes a priori have infinite vari-
ation paths as soon as c > 0. Whether the purely discontinuous component
(Zt) in (2) or the purely discontinuous integral process in (19) produces paths
with finite or infinite variation again depends on the frequency of the small
jumps.

Proposition 3 Let X = (Xt)t≥0 be a Lévy process with triplet (b, c, F ).

1. Almost all paths of X have finite variation if c = 0 and
∫

{|x|≤1} |x|F (dx) <
∞.

2. Almost all paths of X have infinite variation if c �= 0 or
∫

{|x|≤1} |x|F (dx) =
∞.

For the proof see Theorem 21.9 in Sato (1999). The integrability of F in
the sense that

∫

{|x|≤1} |x|F (dx) < ∞ guarantees also that the sum of the



446 E. Eberlein

small jumps as given in (4) converges for (almost) every path. Therefore, in
this case one can separate the integral in (10) or (19) and write, e.g., in (19)
∫ t

0

∫

R

x
(

μX(ds, dx) − dsF (dx)
)

=
∫ t

0

∫

R

xμX(ds, dx) − t

∫

R

xF (dx). (20)

3 Financial Modeling

The classical model in finance for stock prices or indices which goes back to
Samuelson (1965) and which became the basis for the Black–Scholes option
pricing theory is the geometric Brownian motion given by the stochastic
differential equation

dSt = μStdt+ σStdWt. (21)

This equation is solved by

St = S0 exp
(

σWt + (μ− σ2/2)t
)

. (22)

The exponent of this price process is a Lévy process as given in (2) with
b = μ − σ2/2,

√
c = σ, Zt ≡ 0 and no big jumps either. Log returns

logSt+1 − logSt produced by this process along a time grid with span 1 are
normally distributed variables N(μ−σ2/2, σ2) which are far from being real-
istic for most time series of financial data. Once one has identified a more re-
alistic parametric distribution ν by fitting an empirical return distribution—
several classes of candidate distributions will be presented in Section 4—the
right starting point for a statistically more accurate model for prices is (22).
Considering the Lévy process X = (Xt)t≥0 such that L(X1) = ν, the model

St = S0 exp(Xt), (23)

which we call exponential Lévy model, produces along a time grid with span
1 log returns which are exactly equal to ν. This way one can implement an
empirically derived (infinitely divisible) distribution into a model with exact
returns. If one were to start instead with a stochastic differential equation,
i.e., with the equivalent of (21), which is the equation

dSt = St−dXt, (24)

one would get as the solution the stochastic exponential

St = S0 exp(Xt − ct/2)
∏

s≤t

(1 +ΔXs) exp(−ΔXs). (25)
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The distribution of the log returns of this process is not known in general. As
one can see directly from the term (1+ΔXs) in (25), another drawback of this
model is that it can produce negative stock prices as soon as the driving Lévy
processX has negative jumps with absolute jump size larger than 1. The Lévy
measures of all interesting classes of distributions which we shall consider
in the next section have strictly positive densities on the whole negative
half line and therefore the Lévy processes generated by these distributions
have negative jumps of arbitrary size. For completeness we mention that the
stochastic differential equation which describes the process (23) is

dSt = St−
(

dXt + (c/2)dt+ eΔXt − 1 −ΔXt

)

. (26)

For the pricing of derivatives it is interesting to characterize when the price
process given by (23) is a martingale because pricing is done by taking ex-
pectations under a risk neutral or martingale measure. For (St)t≥0 to be a
martingale, first of all the expectation E[St] has to be finite; therefore, can-
didates for the role of the driving process are Lévy processes X which have
a finite first exponential moment

E[exp(Xt)] < ∞. (27)

Proposition 1 characterizes these processes in terms of their Lévy measure.
At this point one should mention that the necessary assumption (27) a priori
excludes stable processes as suitable driving processes for models in finance.
Second, let X be given in the representation (19) (still assuming (27)) then
St = S0 exp(Xt) is a martingale if

b = − c

2
−

∫

R

(

ex − 1 − x
)

F (dx). (28)

This can be seen by applying Itô’s formula to St = S0 exp(Xt), where (28)
guarantees that the drift component is 0. An alternative way to derive (28)
is to verify that the process (Mt)t≥0 given by

Mt =
exp(Xt)

E[exp(Xt)]
(29)

is a martingale. Stationarity and independence of increments have to be used
here. Equation (28) follows once one has verified (see (15)–(17)) that

E[exp(Xt)] = exp
[

t

(

b+
c

2
+

∫

R

(ex − 1 − x)F (dx)
)]

. (30)

The simplest models for fixed-income markets take the short rate rt as the ba-
sic quantity and derive all other rates from rt. More sophisticated approaches
model simultaneously the whole term structure of rates for a continuum of
maturities [0, T ∗] or as in the case of the LIBOR model the rates correspond-
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ing to the maturities of a tenor structure T0 < T1 < · · · < TN = T ∗. As a
consequence these models are mathematically more demanding. A survey of
interest rate modeling in the classic setting of diffusions is given by Björk
(2008) in this volume. The interest rate theory for models driven by Lévy
processes was developed in a series of papers by the author with various coau-
thors (Eberlein and Kluge (2006, 2007); Eberlein and Özkan (2003a, 2005);
Eberlein and Raible (1999); Eberlein et al. (2005)).

Two basic approaches are the forward rate approach and the LIBOR ap-
proach. In the first case one assumes the dynamics of the instantaneous for-
ward rate with maturity T , contracted at time t, f(t, T ) in the form

f(t, T ) = f(0, T ) +
∫ t

0

α(s, T )ds−
∫ t

0

σ(s, T )dXs (31)

for any T ∈ [0, T ∗]. The coefficients α(s, T ) and σ(s, T ) can be deterministic
or random. Starting with (31), one gets zero-coupon bond prices B(t, T ) in
a form comparable to the stock price model (23), namely,

B(t, T ) = B(0, T ) exp
(∫ t

0

(r(s) −A(s, T ))ds+
∫ t

0

Σ(s, T )dXs

)

. (32)

Here rs = r(s) = f(s, s) is the short rate and A(s, T ) and Σ(s, T ) are derived
from α(s, T ) and σ(s, T ) by integration.

In the Lévy LIBOR market model (Eberlein and Özkan (2005)) the forward
LIBOR rates L(t, Tj) for the time points Tj(0 ≤ j ≤ N) of a tenor structure
are chosen as the basic rates. As a result of a backward induction one gets
for each j the rate in the following uniform form:

L(t, Tj) = L(0, Tj) exp
(∫ t

0

λ(s, Tj)dXTj+1
s

)

, (33)

where λ(s, Tj) is a volatility structure, XTj+1 = (XTj+1
t )t≥0 is a process de-

rived from an initial (time-homogeneous or time-inhomogeneous) Lévy pro-
cess XTN = (XTN

t )t≥0 and (33) is considered under P
Tj+1 , the forward mar-

tingale measure which is derived during the backward induction. Closely
related to the LIBOR model is the forward process model , where forward
processes F (t, Tj , Tj+1) = B(t, Tj)/B(t, Tj+1) are chosen as the basic quan-
tities and modeled in a form analogous to (33). An extension of the Lévy
LIBOR approach to a multicurrency setting taking exchange rates into ac-
count was developed in Eberlein and Koval (2006). In all implementations of
these models pure jump processes have been chosen as driving processes.
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4 Examples of Lévy Processes with Jumps

4.1 Poisson and compound Poisson processes

The simplest Lévy measure one can consider is ε1, a point mass in 1. Adding
an intensity parameter λ > 0, one gets F = λε1. Assuming c = 0, this Lévy
measure generates a process X = (Xt)t≥0 with jumps of size 1 which occur
with an average rate of λ in a unit time interval. Otherwise the paths are
constant. X is called a Poisson process with intensity λ. The drift parameter
b in (17) is E[X1], which is λ. Therefore, the Fourier transform takes the form

E[exp(iuXt)] = exp
[

λt(eiu − 1)
]

. (34)

Any variable Xt of the process has a Poisson distribution with parameter λt,
i.e.,

P [Xt = k] = exp(−λt) (λt)k

k!
.

One can show that the successive waiting times from one jump to the next
are independent exponentially distributed random variables with parameter
λ. Conversely, starting with a sequence (τi)i≥1 of independent exponentially
distributed random variables with parameter λ and setting Tn =

∑n
i=1 τi,

the associated counting process

Nt =
∑

n≥1

1l{Tn≤t} (35)

is a Poisson process with intensity λ.
A natural extension of the Poisson process with jump height 1 is a process

where the jump size is random. Let (Yi)i≤1 be a sequence of independent,
identically distributed random variables with L(Y1) = ν.

Xt =
Nt
∑

i=1

Yi, (36)

where (Nt)t≥0 is a Poisson process with intensity λ > 0 which is independent
of (Yi)i≥1, defines a compound Poisson process X = (Xt)t≥0 with intensity
λ and jump size distribution ν. Its Fourier transform is given by

E[exp(iuXt)] = exp
[

λt

∫

R

(

eiux − 1
)

ν(dx)
]

. (37)

Consequently the Lévy measure is given by F (A) = λν(A) for measurable
sets A in R.
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4.2 Lévy jump diffusion

A Lévy jump diffusion is a Lévy process where the jump component is given
by a compound Poisson process. It can be represented in the form

Xt = bt+
√
cWt +

Nt
∑

i=1

Yi, (38)

where b ∈ R, c > 0, (Wt)t≥0 is a standard Brownian motion, (Nt)t≥0 is
a Poisson process with intensity λ > 0 and (Yi)i≥1) is a sequence of inde-
pendent, identically distributed random variables which are independent of
(Nt)t≥0. For normally distributed random variables Yi, Merton (1976) intro-
duced the process (38) as a model for asset returns. Kou (2002) used double-
exponentially distributed jump size variables Yi. In principle any other dis-
tribution could be considered as well, but of course the question is if one can
control explicitly the quantities one is interested in, for example, L(Xt).

4.3 Hyperbolic Lévy processes

Hyperbolic distributions which generate hyperbolic Lévy processes X = (Xt :
t ≥ 0) – also called hyperbolic Lévy motions – constitute a four-parameter
class of distributions. Their Lebesgue density is given by

dH(x) =

√

α2 − β2

2αδK1(δ
√

α2 − β2)
exp

(

− α
√

δ2 + (x− μ)2 + β(x− μ)
)

. (39)

Here Kν denotes the modified Bessel function of the third kind with index ν.
The four parameters of this distribution have the following meaning: α > 0
determines the shape, β with 0 ≤ |β| < α the skewness, μ ∈ R the location
and δ > 0 is a scaling parameter comparable to σ in the normal distribution.
Taking the logarithm of dH , one gets a hyperbola. This explains the name
hyperbolic distribution. On the basis of an extensive empirical study of stock
prices, hyperbolic Lévy processes were first used in finance in Eberlein and
Keller (1995).

The Fourier transform φH of a hyperbolic distribution can be easily derived
because of the exponential form of dH in (39):

φH(u) = exp(iuμ)
(

α2 − β2

α2 − (β + iu)2

)1/2
K1(δ

√

α2 − (β + iu)2)

K1(δ
√

α2 − β2)
. (40)

Moments of all orders exist. In particular the expectation is given by
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E[X1] = μ+
βδ

√

α2 − β2

K2(δ
√

α2 − β2)
K1(δ

√

α2 − β2)
. (41)

Analyzing φH in the form (17), one sees that c = 0. This means that hyper-
bolic Lévy motions are purely discontinuous processes. The Lévy measure F
has an explicit Lebesgue density (see (46)).

4.4 Generalized hyperbolic Lévy processes

Hyperbolic distributions are a subclass of a more powerful five-parameter
class, the generalized hyperbolic distributions (Barndorff-Nielsen (1978)). The
additional class parameter λ ∈ R has the value 1 for hyperbolic distributions.
The Lebesgue density for these distributions with parameters λ, α, β, δ, μ is

dGH(x) = a(λ, α, β, δ)
(

δ2 + (x − μ)2
)(λ− 1

2 )/2 (42)

+Kλ− 1
2

(

α
√

δ2 + (x − μ)2
)

exp(β(x− μ)),

where the normalizing constant is given by

a(λ, α, β, δ) =
(α2 − β2)λ/2√

2παλ−
1
2 δλKλ(δ

√

α2 − β2)
.

Other parameterizations are in use as well. Generalized hyperbolic distribu-
tions can be represented as normal mean-variance mixtures

dGH(x;λ, α, β, δ, μ) =
∫ ∞

0

dN(μ+βy,y)(x)dGIG(y;λ, δ,
√

α2 − β2)dy, (43)

where the mixing distribution is generalized inverse Gaussian with density

dGIG(x;λ, δ, γ) =
(γ

δ

)λ 1
2Kλ(δγ)

xλ−1 exp
(

− 1
2

(δ2

x
+γ2x

))

(x > 0). (44)

The exponential Lévy model with generalized hyperbolic Lévy motions as
driving processes was introduced in Eberlein (2001) and Eberlein and Prause
(2002).

The moment generating function MGH(u) exists for u with |β + u| < α
and is given by

MGH(u) = exp(μu)
(

α2 − β2

α2 − (β + u)2

)λ/2
Kλ(δ

√

α2 − (β + u)2)

Kλ(δ
√

α2 − β2)
. (45)
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As a consequence, exponential moments (27) are finite. This fact is crucial
for pricing of derivatives under martingale measures. The Fourier transform
φGH is obtained from the relation φGH(u) = MGH(iu). Analyzing φGH in its
form (17), we see again that c = 0, i.e., generalized hyperbolic Lévy motions
are purely discontinuous processes. The Lévy measure F has a density given
by

gGH(x) (46)

=
eβx

|x|

(∫ ∞

0

exp
(

−
√

2y + α2|x|
)

π2y
(

J2
|λ|(δ

√
2y) + Y 2

|λ|(δ
√

2y)
)dy + 1l{λ≥0}λe−α|x|

)

.

Setting λ = − 1
2 in (42) we get another interesting subclass, the normal

inverse Gaussian (NIG) distributions, which were first used in finance in
Barndorff-Nielsen (1998). Their Fourier transform is particularly simple since
the Bessel function satisfies K−1/2(z) = K1/2(z) =

√

π/(2z)e−z. Therefore,

φNIG(u) = exp(iuμ) exp
(

δ
√

α2 − β2
)

exp
(

− δ
√

α2 − (β + iu)2
)

. (47)

From the form (47) one sees immediately that NIG distributions are closed
under convolution in the two parameters δ and μ, because taking a power t
in (47), one gets the same form with parameters tδ and tμ.

4.5 CGMY and variance gamma Lévy processes

Carr et al. (2002) introduced a class of infinitely divisible distributions—
called CGMY—which extends the variance gamma model due to Madan and
Seneta (1990) and Madan and Milne (1991). CGMY Lévy processes have
purely discontinuous paths and the Lévy density is given by

gCGMY (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C
exp(−G|x|)

|x|1+Y
x < 0,

C
exp(−Mx)
x1+Y

x > 0.
(48)

The parameter space is C, G, M > 0 and Y ∈ (−∞, 2). The process has
infinite activity if and only if Y ∈ [0, 2) and the paths have infinite variation
if and only if Y ∈ [1, 2). For Y = 0 one gets the three-parameter variance
gamma distributions. The latter are also a subclass of the generalized hyper-
bolic distributions (Eberlein and von Hammerstein (2004), Raible (2000)).
For Y < 0 the Fourier transform of CGMY is given by

φCGMY (u) = exp
(

CΓ (−Y )
[

(M − iu)Y −MY + (G+ iu)Y −GY
]

)

. (49)
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4.6 α-Stable Lévy processes

Stable distributions are a classical subject in probability. They constitute a
four-parameter class of distributions with Fourier transform given by

φstab(x) = exp
[

σα(−|θ|α) + iθω(θ, α, β)) + iμθ
]

,

where

ω(θ, α, β) =

{

β|θ|α−1 tan πα
2 if α �= 1,

−β 2
π ln |θ| if α = 1.

(50)

The parameter space is 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and μ ∈ R. For α = 2
one gets the Gaussian distribution with mean μ and variance 2σ2. For α < 2
there is no Gaussian part, which means the paths of an α-stable Lévy motion
are purely discontinuous in this case.

Explicit densities are known in three cases only: the Gaussian distribu-
tion (α = 2, β = 0), the Cauchy distribution (α = 1, β = 0) and the Lévy
distribution (α = 1/2, β = 1). Stable distributions have been used in risk
management (Rachev and Mittnik (2000)), where the heavy tails are ex-
ploited. As pointed out earlier, their usefulness for modern financial theory
in particular as a pricing model is limited for α �= 2 by the fact that the basic
requirement (27) is not satisfied.

4.7 Meixner Lévy processes

The Fourier transform of Meixner distributions is given by

φMeix(u) =
(

cos(β/2)
cosh((αu − iβ)/2)

)2δ

for parameters α > 0, |β| < π, δ > 0. The corresponding Lévy processes are
purely discontinuous with Lévy density

gMeix(x) = δ
exp(βx/α)
x sinh(πx/α)

.

The process has paths of infinite variation. This process was introduced by
Schoutens (2003) in the context of financial time series.
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Lévy–Driven Continuous–Time ARMA
Processes

Peter J. Brockwell

Abstract Gaussian ARMA processes with continuous time parameter, oth-
erwise known as stationary continuous-time Gaussian processes with rational
spectral density, have been of interest for many years. (See for example the
papers of Doob (1944), Bartlett (1946), Phillips (1959), Durbin (1961), Dzha-
pararidze (1970,1971), Pham-Din-Tuan (1977) and the monograph of Arató
(1982).) In the last twenty years there has been a resurgence of interest in
continuous-time processes, partly as a result of the very successful application
of stochastic differential equation models to problems in finance, exemplified
by the derivation of the Black-Scholes option-pricing formula and its gener-
alizations (Hull and White (1987)). Numerous examples of econometric ap-
plications of continuous-time models are contained in the book of Bergstrom
(1990). Continuous-time models have also been utilized very successfully for
the modelling of irregularly-spaced data (Jones (1981, 1985), Jones and Ack-
erson (1990)). Like their discrete-time counterparts, continuous-time ARMA
processes constitute a very convenient parametric family of stationary pro-
cesses exhibiting a wide range of autocorrelation functions which can be used
to model the empirical autocorrelations observed in financial time series anal-
ysis. In financial applications it has been observed that jumps play an impor-
tant role in the realistic modelling of asset prices and derived series such as
volatility. This has led to an upsurge of interest in Lévy processes and their
applications to financial modelling. In this article we discuss second-order
Lévy-driven continuous-time ARMA models, their properties and some of
their financial applications. Examples are the modelling of stochastic volatil-
ity in the class of models introduced by Barndorff-Nielsen and Shephard
(2001) and the construction of a class of continuous-time GARCH models
which generalize the COGARCH(1,1) process of Klüppelberg, Lindner and
Maller (2004) and which exhibit properties analogous to those of the discrete-
time GARCH(p, q) process.
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1 Introduction

In financial econometrics, many discrete-time models (stochastic volatility,
ARCH, GARCH and generalizations of these) are used to model the returns
at regular intervals on stocks, currency investments and other assets. For
example a GARCH process (ξn)n∈IN is frequently used to represent the in-
crements, lnPn − lnPn−1, of the logarithms of the asset price Pn at times
1, 2, 3, . . .. These models capture many of the so-called stylized features of
such data, e.g. tail heaviness, volatility clustering and dependence without
correlation.

Various attempts have been made to capture the stylized features of finan-
cial time series using continuous-time models. The interest in continuous-time
models stems from their use in modelling irregularly spaced data, their use
in financial applications such as option-pricing and the current wide-spread
availability of high-frequency data. In continuous-time it is natural to model
the logarithm of the asset price itself, i.e. G(t) = lnP (t), rather than its
increments as in discrete time.

One approach is via the stochastic volatility model of Barndorff-Nielsen
and Shephard (2001) (see also Barndorff-Nielsen et al. (2002)), in which the
volatility process V and the log asset price G satisfy the equations (apart
from a deterministic rescaling of time),

(1.1) dV (t) = −λV (t)dt+ dL(t),

(1.2) dG(t) = (γ + βV (t))dt+
√

V (t)dW (t) + ρdL(t),

where λ > 0, L = (L(t))t∈IR+
is a non-decreasing Lévy process and

W = (W (t))t∈IR+
is standard Brownian motion independent of L. The

volatility process V is taken to be a stationary solution of (1.1), in other words
a stationary Lévy-driven Ornstein-Uhlenbeck process or a continuous-time au-
toregression of order 1. The background driving Lévy process L introduces
the possibility of jumps in both the volatility and the log asset processes,
a feature which is in accordance with empirical observations. It also allows
for a rich class of marginal distributions, with possibly heavy tails. The au-
tocorrelation function of the process V is ρ(h) = exp(−λ|h|). For modelling
purposes this is quite restrictive, although the class of possible autocorrela-
tions can be extended to a larger class of monotone functions if V is replaced
by a superposition of such processes as in Barndorff-Nielsen (2001). However,
as we shall see, a much wider class of not necessarily monotone autocorrela-
tion functions for the volatility can be obtained by replacing the process V
in (1.1) and (1.2) by a Lévy-driven continuous-time autoregressive moving
average (CARMA) process as defined in Section 2. This class of processes
constitutes a very flexible parametric family of stationary processes with a
vast array of possible marginal distributions and autocorrelation functions.
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Their role in continuous-time modelling is analogous to that of autoregressive
moving average processes in discrete time. They belong to the more general
class of Lévy-driven moving average processes considered by Fasen (2004).

A continuous-time analogue of the GARCH(1,1) process, denoted COG-
ARCH(1,1), has recently been constructed and studied by Klüppelberg et
al. (2004). Their construction is based on an explicit representation of the
discrete-time GARCH(1,1) volatility process which they use in order to obtain
a continuous-time analogue. Since no such representation exists for higher-
order discrete-time GARCH processes, a different approach is needed to con-
struct higher-order models in continuous time. The Lévy-driven CARMA
process plays a key role in this construction.

The present paper deals with second-order Lévy-driven continuous-time
ARMA (denoted CARMA) processes, since for most financial applications
processes with finite second moments are generally considered adequate.
(Analogous processes without the second-order assumption are considered
in Brockwell (2001).) In Section 2 we review the definition and properties,
deriving the kernel and autocovariance functions, specifying the joint charac-
teristic functions and discussing the issue of causality. Under the assumption
of distinct autoregressive roots, some particularly tractable representations of
the kernel, the autocovariance function and the process itself are derived. The
question of recovering the driving process from a realization of the process
on a (continuous) interval [0, T ] is also considered.

Section 3 considers connections between continuous-time and discrete-time
ARMA processes.

In Section 4 we indicate the applications of CARMA processes to the mod-
elling of stochastic volatility in the Barndorff-Nielsen-Shephard stochastic
volatility model and in Section 5 their role in the construction of COGARCH
models of order higher than (1,1).

Section 6 deals briefly with the well-established methods of inference for
Gaussian CARMA processes and the far less developed question of inference
for more general Lévy-driven processes.

Before proceeding further we need a few essential facts regarding Lévy pro-
cesses. (For a detailed account of the pertinent properties of Lévy processes
see Protter (2004) and for further properties see the books of Applebaum
(2004), Bertoin (1996) and Sato (1999).) Suppose we are given a filtered
probability space (Ω,F , (Ft)0≤t≤∞, P ), where F0 contains all the P -null sets
of F and (Ft) is right-continuous.

Definition 1 (Lévy Process)
An adapted process {L(t), t ≥ 0} is said to be a Lévy process if

(i) L(0) = 0 a.s.,
(ii) L(t) − L(s) is independent of Fs, 0 ≤ s < t < ∞,
(iii) L(t) − L(s) has the same distribution as L(t− s) and
(iv) L(t) is continuous in probability.
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Every Lévy process has a unique modification which is càdlàg (right con-
tinuous with left limits) and which is also a Lévy process. We shall therefore
assume that our Lévy process has these properties. The characteristic func-
tion of L(t), φt(θ) := E(exp(iθL(t))), has the Lévy-Khinchin representation,

(1.3) φt(θ) = exp(tξ(θ)), θ ∈ IR,

where

(1.4) ξ(θ) = iθm− 1
2
θ2s2 +

∫

IR0

(eiθx − 1 − ixθI{|x|<1})ν(dx),

for some m ∈ IR, s ≥ 0, and measure ν on the Borel subsets of IR0 =
IR\{0}. ν is known as the Lévy measure of the process L and satisfies the
condition

∫

IR0
min(1, |u|2)ν(du) < ∞. If ν is the zero measure then {L(t)}

is Brownian motion with E(L(t)) = mt and Var(L(t)) = s2t. If s2 = 0,
ν(IR0) < ∞ and a =

∫

IR0
uI{|u|<1}(u)ν(du), then {L(t)} is a compound

Poisson process with jump-rate ν(IR0) and jump-size distribution ν/ν(IR0). A
wealth of distributions for L(t) is attainable by suitable choice of the measure
ν. See for example Barndorff-Nielsen and Shephard (2001). For the second-
order Lévy processes (with which we are concerned in this paper), E(L(1))2 <
∞. To avoid problems of parameter identifiability we shall assume throughout
that L is scaled so that Var(L(1)) = 1. Then Var(L(t)) = t for all t ≥ 0 and
there exists a real constant μ such that EL(t) = μt for all t ≥ 0. We shall then
refer to the process L as a standardized second-order Lévy process, written
henceforth as SSLP.

2 Second–Order Lévy–Driven CARMA Processes

A second-order Lévy-driven continuous-time ARMA(p, q) process, where p
and q are non-negative integers such that q < p, is defined (see Brockwell
(2001)) via the state-space representation of the formal equation,

(2.1) a(D)Y (t) = σb(D)DL(t), t ≥ 0,

where σ is a strictly positive scale parameter, D denotes differentiation with
respect to t, {L(t)} is an SSLP,

a(z) := zp + a1z
p−1 + · · · + ap,

b(z) := b0 + b1z + · · · + bp−1z
p−1,

and the coefficients bj satisfy bq = 1 and bj = 0 for q < j < p. The behaviour
of the process is determined by the process L and the coefficients {aj, 1 ≤ j ≤
p; bj , 0 ≤ j < q; σ}. In view of the scale parameter, σ, on the right-hand side
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of (2.1), there is clearly no loss of generality in assuming that Var(L(1)) = 1,
i.e. that L is an SSLP as defined at the end of Section 1. To avoid trivial and
easily eliminated complications we shall assume that a(z) and b(z) have no
common factors. The state-space representation consists of the observation
and state equations,

(2.2) Y (t) = σb′X(t),

and

(2.3) dX(t) −AX(t)dt = e dL(t),

where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, e =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
...
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b0
b1
...

bp−2

bp−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(If p = 1, A is defined to be −a1.) In the special case when {L(t)} is stan-
dard Brownian motion, (2.3) is an Ito equation with solution {X(t), t ≥ 0}
satisfying

(2.4) X(t) = eAtX(0) +
∫ t

0

eA(t−u)e dL(u),

where the integral is defined as the L2 limit of approximating Riemann-
Stieltjes sums Sn corresponding to the partition of the interval [0, t] by the
points {k/2n, k ∈ Z, 0 ≤ k < 2nt} and {t}. If L is any second-order Lévy pro-
cess the integral is defined in the same way. The continuous differentiability of
the integrand in (2.4) implies that the sequence {Sn} converges geometrically
rapidly in L2 and hence almost surely to the same limit. In fact the integral
in (2.4) is a special case (with deterministic and continuously differentiable
integrand) of integration with respect to a semimartingale as discussed in the
book of Protter (2004). From (2.4) we can also write

(2.5) X(t) = eA(t−s)X(s) +
∫ t

s

eA(t−u)e dL(u), for all t > s ≥ 0,

which clearly shows (by the independence of increments of {L(t)}) that
{X(t)} is Markov. The following propositions give necessary and sufficient
conditions for stationarity of {X(t)}.

Proposition 1 If X(0) is independent of {L(t), t ≥ 0} and E(L(1)2) < ∞,
then {X(t)} is weakly stationary if and only if the eigenvalues of the matrix
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A all have strictly negative real parts and X(0) has the mean and covariance
matrix of

∫∞
0 eAue dL(u), i.e. −A−1eμ and

∫∞
0 eAye e′eA

′ydy respectively.

Proof The eigenvalues of A must have negative real parts for the sum of
the covariance matrices of the terms on the right of (2.4) to be bounded
in t. If this condition is satisfied then {X(t)} converges in distribution as
t → ∞ to a random variable with the distribution of

∫∞
0 eAue dL(u). Hence,

for weak stationarity, X(0) must have the mean and covariance matrix of
∫∞
0 eAue dL(u). Conversely if the eigenvalues of A all have negative real

parts and if X(0) has the mean and covariance matrix of
∫ ∞
0
eAue dL(u),

then a simple calculation using (2.4) shows that {X(t)} is weakly stationary.

Proposition 2 If X(0) is independent of {L(t), t ≥ 0} and E(L(1)2) <
∞, then {X(t)} is strictly stationary if and only if the eigenvalues of the
matrix A all have strictly negative real parts and X(0) has the distribution of
∫∞
0
eAue dL(u).

Proof Necessity follows from Proposition 1. If the conditions are satisfied
then strict stationarity follows from the fact that {X(t)} is a Markov process
whose initial distribution is the same as its limit distribution.

Remark 1 It is convenient to extend the state process {X(t), t ≥ 0} to
a process with index set (−∞,∞). To this end we introduce a second Lévy
process {M(t), 0 ≤ t < ∞}, independent of L and with the same distribution,
and then define the following extension of L:

L∗(t) = L(t)I[0,∞)(t) −M(−t−)I(−∞,0](t), −∞ < t < ∞.

Then, provided the eigenvalues of A all have negative real parts, the process
{X(t)} defined by

(2.6) X(t) =
∫ t

−∞
eA(t−u)e dL∗(u),

is a strictly stationary process satisfying (2.5) (with L replaced by L∗) for all
t > s and s ∈ (−∞,∞). Henceforth we shall refer to L∗ as the background
SSLP and denote it for simplicity by L rather than L∗.

Remark 2 It is easy to check that the eigenvalues of the matrix A, which
we shall denote by λ1, . . . , λp, are the same as the zeroes of the autoregressive
polynomial a(z). The corresponding right eigenvectors are

[1 λj λ2
j . . . λp−1

j ]′, j = 1, . . . , p,

We are now in a position to define the CARMA process {Y (t),−∞ < t < ∞}
under the condition that

(2.7) Re(λj) < 0, j = 1, . . . , p.
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Definition 2 (Causal CARMA Process)
If the zeroes λ1, . . . , λp of the autoregressive polynomial a(z) satisfy (2.7),
then the CARMA(p, q) process driven by the SSLP {L(t),−∞ < t < ∞}
with coefficients {aj , 1 ≤ j ≤ p; bj, 0 ≤ j < q; σ} is the strictly stationary
process,

Y (t) = σb′X(t),

where

X(t) =
∫ t

−∞
eA(t−u)e dL(u),

i.e.

(2.8) Y (t) = σ

∫ t

−∞
b′eA(t−u)e dL(u).

Remark 3 (Causality and Non-causality)
Under Condition (2.7) we see from (2.8) that {Y (t)} is a causal function of
{L(t)}, since it has the form

(2.9) Y (t) =
∫ ∞

−∞
g(t− u) dL(u),

where

(2.10) g(t) =
{

σb′eAte, if t>0,
0, otherwise.

The function g is referred to as the kernel of the CARMA process {Y (t)}.
Under the condition (2.7), the function g defined by (2.10) can be written as

(2.11) g(t) =
σ

2π

∫ ∞

−∞
eitλ

b(iλ)
a(iλ)

dλ.

(To establish (2.11) when the eigenvalues λ1, . . . , λp are distinct, we use the
explicit expressions for the eigenvectors of A to replace eAt in (2.10) by its
spectral representation. The same expression is obtained when the right side
of (2.11) is evaluated by contour integration. When there are multiple eigen-
values, the result is obtained by separating the eigenvalues slightly and taking
the limit as the repeated eigenvalues converge to their common value.) It is of
interest to observe that the representation (2.9) and (2.11) of {Y (t)} defines
a strictly stationary process even under conditions less restrictive than (2.7),
namely

Re(λj) �= 0, j = 1, . . . , p.

Thus (2.9) and (2.11) provide a more general definition of CARMA process
than Definition 2 above. However if any of the zeroes of a(z) has real part
greater than 0, the representation (2.9) of {Y (t)} in terms of {L(t)} will no
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longer be causal as is the case when (2.7) is satisfied. This distinction between
causal and non-causal CARMA processes is analogous to the classification of
discrete-time ARMA processes as causal or otherwise, depending on whether
or not the zeroes of the autoregressive polynomial lie outside the unit cir-
cle (see e.g. Brockwell and Davis (1991)). From now on we shall restrict
attention to causal CARMA processes, i.e. we shall assume that (2.7)
holds, so that the general expression (2.11) for the kernel g can also be writ-
ten in the form (2.10). However both forms of the kernel will prove to be
useful.

Remark 4 (Second-order Properties)
From the representation (2.8) of a causal CARMA process driven by the
SSLP L with EL(1) = μ, we immediately find that

EY (t) = −σb′A−1eμ = σμb0/ap

and

(2.12) γ(h) := cov(Y (t+ h), Y (t)) = σ2b′ eA|h|Σ b,

where
Σ =

∫ ∞

0

eAye e′eA
′ydy.

From the representation (2.9) of Y (t) we see that γ can also be expressed as

γ(h) = cov(Y (t+ h), Y (t)) =
∫ ∞

−∞
g̃(h− u)g(u)du,

where g̃(x) = g(−x) and g is defined in (2.11). Using the convolution theorem
for Fourier transforms, we find that

∫ ∞

−∞
e−iωhγ(h)dh = σ2

∣

∣

∣

∣

b(iω)
a(iω)

∣

∣

∣

∣

2

,

showing that the spectral density of the process Y is

(2.13) f(ω) =
σ2

2π

∣

∣

∣

∣

b(iω)
a(iω)

∣

∣

∣

∣

2

and the autocovariance function is

(2.14) γ(h) =
σ2

2π

∫ ∞

−∞
eiωh

∣

∣

∣

∣

b(iω)
a(iω)

∣

∣

∣

∣

2

dω.

The spectral density (2.13) is clearly a rational function of the frequency ω.
The family of Gaussian CARMA processes is in fact identical to the class of
stationary Gaussian processes with rational spectral density.
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Remark 5 (Distinct Autoregressive Zeroes, the Canonical State
Representation and Simulation of Y )
When the zeroes λ1, . . . , λp of a(z) are distinct and satisfy the causality con-
dition (2.7), the expression for the kernel g takes an especially simple form.
Expanding the integrand in (2.11) in partial fractions and integrating each
term gives the simple expression,

(2.15) g(h) = σ

p
∑

r=1

b(λr)
a′(λr)

eλrhI[0,∞)(h).

Applying the same argument to (2.14) gives a corresponding expression for
the autocovariance function, i.e.

(2.16) γ(h) = cov(Yt+h, Yt) = σ2

p
∑

j=1

b(λj)b(−λj)
a′(λj)a(−λj)

eλj |h|.

When the autoregressive roots are distinct we obtain a very useful represen-
tation of the CARMA(p, q) process Y from (2.15). Defining

(2.17) αr = σ
b(λr)
a′(λr)

, r = 1, . . . , p,

we can write

(2.18) Y (t) =
p

∑

r=1

Yr(t),

where

(2.19) Yr(t) =
∫ t

−∞
αre

λr(t−u)dL(u).

This expression shows that the component processes Yr satisfy the simple
equations,

(2.20) Yr(t) = Yr(s)eλr(t−s) +
∫ t

s

αre
λr(t−u)dL(u), t ≥ s, r = 1, . . . , p.

Taking s = 0 and using Lemma 2.1 of Eberlein and Raible (1999), we find
that

(2.21) Yr(t) = Yr(0)eλrt + αrL(t) +
∫ t

0

αrλre
λr(t−u)L(u)du, t ≥ 0,

where the last integral is a Riemann integral and the equality holds for all
finite t ≥ 0 with probability 1. Defining
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(2.22) Y(t) := [Y1(t), . . . , Yp(t)]′,

we obtain from (2.6), (2.15) and (2.19),

(2.23) Y(t) = σBR−1X(t),

where B = diag[b(λi)]
p
i=1 and R = [λi−1

j ]pi,j=1. The initial values Yr(0) in
(2.21) can therefore be obtained from those of the components of the state
vector X(0). The process Y provides us with an alternative canonical state
representation of Y (t), t ≥ 0, namely

(2.24) Y (t) = [1, . . . , 1]Y(t)

where Y is the solution of

(2.25) dY(t) = diag[λi]pi=1Ydt+ σBR−1e dL.

with Y(0) = σBR−1X(0).
Notice that the canonical representation of the process Y reduces the prob-

lem of simulating CARMA(p, q) processes with distinct autoregressive roots
to the much simpler problem of simulating the (possibly complex-valued)
component CAR(1) processes (2.19) and adding them together.

Example 1 (The CAR(1) Process)
The CAR(1) (or stationary Ornstein-Uhlenbeck) process satisfies (2.1) with
b(z) = 1 and a(z) = z−λ where λ < 0. From (2.15) and (2.16) we immediately
find that g(h) = eλhI[0,∞)(h) and γ(h) = σ2eλ|h|/(2|λ|). In this case the 1×1
matrices B and R are both equal to 1 so the (1-dimensional) state vectors
X and Y are identical and the state-space representation given by (2.2) and
(2.3) is already in canonical form. Equations (2.18) and (2.19) reduce to

Y (t) = Y1(t)

and

Y1(t) = σ

∫ t

−∞
eλ(t−u)dL(u)

respectively (since λ1 = λ and α1 = σ).

Example 2 (The CARMA(2,1) Process)
In this case b(z) = b0 + z, a(z) = (z − λ1)(z − λ2) and the real parts of λ1

and λ2 are both negative. Assuming that λ1 �= λ2, we find from (2.15) that

g(h) = (α1e
λ1h + α2e

λ2h)I[0,∞)(h)

where αr = σ(b0 + λr)/(λr − λ3−r), r = 1, 2. An analogous expression for
γ(h) can be found from (2.16). From (2.23) the canonical state vector is
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Y(t) =
[

Y1(t)
Y2(t)

]

=
σ

λ1 − λ2

[

λ2(b0 + λ1) −(b0 + λ1)
−λ1(b0 + λ2) b0 + λ2

]

X(t)

and the canonical representation of Y is, from (2.18) and (2.19),

Y (t) = Y1(t) + Y2(t)

where

Yr(t) =
∫ t

−∞
αre

λr(t−u)dL(u), r = 1, 2,

and αr = σ(b0 + λr)/(λr − λ3−r), r = 1, 2.

Remark 6 (The Joint Distributions)
Since the study of Lévy-driven CARMA processes is largely motivated by the
need to model processes with non-Gaussian joint distributions, it is impor-
tant to go beyond a second-order characterization of these processes. From
Proposition 2 we already know that the marginal distribution of Y (t) is that
of

∫∞
0
g(u)dL(u), where g is given by (2.11) or, if the autoregressive roots

are distinct and the causality conditions (2.7) are satisfied, by (2.15). Using
the expression (1.3) for the characteristic function of L(t), we find that the
cumulant generating function of Y (t) is

(2.26) logE(exp(iθY (t))) =
∫ ∞

0

ξ(θg(u))du,

showing that the distribution of Y (t), like that of L(t), is infinitely divisible.
In the special case of the CAR(1) process the distribution of Y (t) is also
self-decomposable (see Barndorff-Nielsen and Shephard (2001), Theorem 2.1,
and the accompanying references). More generally it can be shown (see Brock-
well (2001)) that the cumulant generating function of Y (t1), Y (t2), . . . , Y (tn),
(t1 < t2 < · · · < tn) is

logE[exp(iθ1Y (t1) + · · · + iθnY (tn))] =

(2.27)
∫ ∞

0

ξ

(

n
∑

i=1

θig(ti + u)

)

du+
∫ t1

0

ξ

(

n
∑

i=1

θig(ti − u)

)

du +

∫ t2

t1

ξ

(

n
∑

i=2

θig(ti − u)

)

du+ · · · +
∫ tn

tn−1

ξ (θng(tn − u)) du.

If {L(t)} is a compound Poisson process with finite jump-rate λ and bilateral
exponential jump-size distribution with probability density f(x) = 1

2βe
−β|x|,

then the corresponding CAR(1) process (see Example 1) has marginal cumu-
lant generating function,
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κ(θ) =
∫ ∞

0

ξ(θe−cu)du,

where ξ(θ) = λθ2/(β2 + θ2). Straightforward evaluation of the integral gives

κ(θ) = − λ

2c
ln

(

1 +
θ2

β2

)

,

showing that Y (t) has a symmetrized gamma distribution, or more specif-
ically that Y (t) is distributed as the difference between two independent
gamma distributed random variables with exponent λ/(2c) and scale pa-
rameter β. In particular, if λ = 2c, the marginal distribution is bilateral
exponential. For more examples see Barndorff-Nielsen and Shephard (2001).

Remark 7 (Recovering the driving noise process)
For statistical modelling, one needs to know or to postulate an appropriate
family of models for the driving Lévy process L. It would be useful there-
fore to recover the realized driving process, for given or estimated values of
{aj, 1 ≤ j ≤ p; bj, 0 ≤ j < q;σ}, from a realization of Y on some finite
interval [0, T ]. This requires knowledge of the initial state vector X(0) in
general, but if this is available (as for example when a CARMA(p, 0) process
is observed continuously on [0, T ]), or if we are willing to assume a plau-
sible value for X(0), then an argument due to Pham-Din-Tuan (1977) can
be used to recover {L(t), 0 ≤ t ≤ T }. We shall assume in this Remark that
the polynomial b (as well as the polynomial a) has all its zeroes in the left
half-plane. This assumption is analogous to that of invertibility in discrete
time. Since the covariance structure of our Lévy-driven process is exactly
the same (except for slight notational changes) as that of Pham-Din-Tuan’s
Gaussian CARMA process and since his result holds for Gaussian CARMA
processes with arbitrary mean (obtained by adding a constant to the zero-
mean process) his L2-based spectral argument can be applied directly to the
Lévy-driven CARMA process to give, for t ≥ 0,

(2.28) L(t) = σ−1
[

Y (p−q−1)(t) − Y (p−q−1)(0)
]

−
∫ t

0

⎡

⎣

q
∑

j=1

bq−jX
(p−j)(s) −

p
∑

j=1

ajX
(p−j)(s)

⎤

⎦ ds,

where Y (p−q−1) denotes the derivative of order p− q− 1 of the CARMA pro-
cess Y and X(0), . . . , X(p−1) are the components of the state process X (the
component X(j) being the jth derivative of X(0)). X(t) can be expressed in
terms of Y and X(0) by noting that (2.2) characterizesX(0)as a CARMA(q, 0)
process driven by the process {σ−1

∫ t

0
Y (s)ds}. Making use of this observa-

tion, introducing the q× 1 state vector Xq(t) := [X(0)(t), . . . , X(q−1)(t)]′ and
proceeding exactly as we did in solving the CARMA equations in Section 2,
we find that, for q ≥ 1,
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(2.29) Xq(t) = Xq(0)eBt + σ−1

∫ t

0

eB(t−u)eqY (u)du,

where

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−b0 −b1 −b2 · · · −bq−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and eq =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
...
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

with B := −b0 if q = 1, while for q = 0,

(2.30) X(0)(t) = σ−1Y (t).

The remaining derivatives of X(0) up to order p− 1 can be determined from
(2.29) or (2.30), completing the determination of the state vector X(t). Hav-
ing recovered X(t), the SSLP is found from (2.28).

To illustrate the use of (2.28) and (2.29) or (2.30), we consider the CAR(1)
process of Example 1. In this case a(z) = z − λ, b(z) = 1 and the (one-
dimensional) state vector is, from (2.30), X(t) = σ−1Y (t). Substituting into
(2.28) gives

(2.31) L(t) = σ−1

[

Y (t) − Y (0) − λ

∫ t

0

Y (s)ds
]

.

It is easy to check directly that if Y is a Lévy-driven CARMA(1,0) process
with parameters a1(= −λ) and σ and if L is the Lévy process defined by
(2.31), then

(2.32) Y (t) = Y (0)eλt + σ

∫ t

0

eλ(t−u)dL(u),

since the last integral can be rewritten, by Lemma 2.1 of Eberlein and Raible
(1999), as σL(t) + σ

∫ t

0
λeλ(t−u)L(u)du. Making this replacement and substi-

tuting from (2.31) for L, we see that the right-hand side of (2.32) reduces to
Y (t).

In the case when the autoregressive roots are distinct, we can use the
transformation (2.23) to recover the canonical state process Y defined by
(2.19) and (2.22) from X. Then applying the argument of Pham-Din-Tuan to
the component processes Yr we obtain p (equivalent) representations of L(t),
namely

(2.33) L(t) = α−1
r

[

Yr(t) − Yr(0) − λr

∫ t

0

Yr(s)ds
]

, r = 1, . . . , p.

Although Pham-Din-Tuan’s result was derived with real-valued processes in
mind, it is easy to check directly, as in the CARMA(1,0) case, that if Y is a
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Lévy-driven CARMA(p, q) process with parameters {aj, 1 ≤ j ≤ p; bj, 0 ≤
j < q; σ} and L is the Lévy process satisfying the equations (2.33) with
possibly complex-valued Yr and λr, then

Yr(t) = Yr(0)eλrt +
∫ t

0

αre
λr(t−u)dL(u), t ≥ 0, r = 1, . . . , p,

and these equations imply, with (2.23), that the state process X satisfies

X(t) = eAtX(0) +
∫ t

0

eA(t−u)edL(u), t ≥ 0,

showing that Y = σb′X is indeed the CARMA(p, q) process with parameters
{aj, 1 ≤ j ≤ p; bj , 0 ≤ j < q; σ} driven by L. Thus we have arrived at p very
simple (equivalent) representations of the driving SSLP, any of which can be
computed from the realization of Y , the value of X(0) and the parameters
of the CARMA process. Of course for calculations it is simplest to choose a
value of r in (2.34) for which λr is real (if such an r exists).

3 Connections with Discrete–Time ARMA Processes

The discrete-time ARMA(p, q) process {Yn} with autoregressive coefficients
φ1, . . . , φp, moving average coefficients θ1, . . . , θq, and white noise variance
σ2
d, is defined to be a (weakly) stationary solution of the pth order linear

difference equations,

(3.1) φ(B)Yn = θ(B)Zn, n = 0,±1,±2, . . . ,

where B is the backward shift operator (BYn = Yn−1 and BZn = Zn−1 for
all n), {Zn} is a sequence of uncorrelated random variables with mean zero
and variance σ2

d (abbreviated to {Zn} ∼ WN(0, σ2
d)) and

φ(z) := 1 − φ1z − · · · − φpz
p,

θ(z) := 1 + θ1z + · · · + θqz
q,

with θq �= 0 and φp �= 0. We define φ(z) := 1 if p = 0 and θ(z) := 1 if
q = 0. We shall assume that the polynomials φ(z) and θ(z) have no common
zeroes and that φ(z) = 1 − φ1z − · · · − φpz

p is non-zero for all complex z
such that |z| ≤ 1. This last condition guarantees the existence of a unique
stationary solution of (3.1) which is also causal, i.e. is expressible in the
form Yn =

∑∞
j=0 ψjZn−j for some absolutely summable sequence {ψj}. It is

evident from this representation that the mean of the ARMA process defined
by (3.1) is zero. The process {Yn} is said to be an ARMA(p, q) process with
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mean μ if {Yn−μ} is an ARMA(p, q) process. A more restrictive definition of
ARMA process imposes the further requirement that the random variables
Zn be independent and identically distributed, in which case we write {Zn} ∼
IID(0, σ2

d). The process {Yn} is then strictly (as well as weakly) stationary
and we shall refer to {Yn} as a strict ARMA process. If we impose the further
constraint that each Zn is Gaussian, then we write {Zn} ∼ IIDN(0, σ2

d) and
refer to {Yn} as a Gaussian ARMA process.

As one might expect, there are many structural similarities between
ARMA and CARMA processes. In the case when the reciprocals ξ1, . . . , ξp of
the zeroes of the polynomial φ(z) are distinct and q < p, there is an analogue
of (2.16) for the autocovariance function of the ARMA process, namely

(3.2) γd(h) = −σ2
d

p
∑

j=1

ξ
|h|+1
j θ(ξj)θ(ξ−1

j )

φ(ξj)φ′(ξ−1
j )

, h = 0,±1,±2, . . . .

There is also a corresponding canonical representation analogous to that in
Remark 5 of Section 2. It takes the form (cf. (2.18) and (2.19)),

(3.3) Yn =
p

∑

r=1

Yr,n,

and

(3.4) Yr,n =
n

∑

k=−∞
βrξ

n−k
r Zk, r = 1, . . . , p

where ξr, r = 1, . . . , p, are the reciprocals of the(distinct) zeroes of φ(z), and

(3.5) βr = −ξr
θ(ξ−1

r )
φ′(ξ−1

r )
, r = 1, . . . , p.

From (3.4) we also obtain the relations (cf. (2.20)),

(3.6) Yr,n = ξrYr,n−1 + βrZn, n = 0,±1, . . . ; r = 1, . . . , p.

Remark 8 When q < p and the autoregressive roots are distinct, the equa-
tions (2.19) and (3.6) show that both the CARMA and ARMA processes can
be represented as a sum of autoregressive processes of order 1. Note however
that in both cases the component processes are not independent and are in
general complex valued.

Example 3 (The AR(1) Process)
The defining equation (3.1) with φ(z) = 1−ξz and θ(z) = 1 is clearly already
in canonical form and, since β1 = 1, equations (3.3) and (3.4) take the form

Yn = Y1,n
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where

(3.7) Y1,n =
n

∑

k=−∞
ξn−kZk.

Example 4 (The ARMA(2,1) Process)
In this case φ(z) = (1−ξ1z)(1−ξ2z), where we assume that |ξ1| < 1, |ξ2| < 1
and ξ1 �= ξ2. The moving average polynomial is θ(z) = 1 + θ1z and the white
noise variance is σ2

d. From (3.5) we find that

(3.8) βr =
ξr + θ1
ξr − ξ3−r

, r = 1, 2.

The canonical representation of the ARMA(2,1) process is thus

Yn = Y1,n + Y2,n,

where

(3.9) Yr,n = βr

n
∑

k=−∞
ξn−k
r Zk, r = 1, 2,

with βr, r = 1, 2, as defined in (3.7).

If Y is a Gaussian CARMA process defined as in Section 2 with stan-
dard Brownian motion as the driving process, then it is well-known (see e.g.
Doob (1944), Phillips (1959), Brockwell (1995)) that the sampled process
(Y (nδ))n∈ZZ with fixed δ > 0 is a (strict) Gaussian ARMA(r, s) process with
0 ≤ s < r ≤ p and spectral density

(3.10 fδ(ω) =
∞
∑

k=−∞
δ−1fY (δ−1(ω + 2kπ)), −π ≤ ω ≤ π,

where fY (ω), −∞ < ω < ∞, is the spectral density of the original CARMA
process.

If L is non-Gaussian, the sampled process will have the same spectral
density and autocovariance function as the process obtained by sampling a
Gaussian CARMA process with the same parameters, driven by Brownian
motion with the same mean and variance as L. Consequently from a second-
order point of view the two sampled processes will be the same. However,
except in the case of the CAR(1) process, the sampled process will not gen-
erally be a strict ARMA process.

If Y is the CAR(1) process in Example 1, the sampled process is the strict
AR(1) process satisfying

(3.11) Y (nδ) = eλδY ((n− 1)δ) + Zn, n = 0,±1, . . . ,
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where

(3.12) Zn = σ

∫ nδ

(n−1)δ

eλ(nδ−u)dL(u).

The noise sequence {Z(n)} is i.i.d. and Z(n) has the infinitely divisible distri-
bution with log characteristic function

∫ δ

0 ξ(σθe
λu)du, where ξ(θ) is the log

characteristic function of L(1) as in (1.3). For the CARMA(p, q) process with
p > 1 the situation is more complicated. If the autoregressive roots λ1, . . . , λp,
are all distinct, then from (2.18) and (2.19) the sampled process {Y (nδ)} is
the sum of the strict AR(1) component processes {Yr(nδ)}, r = 1, . . . , p,
satisfying

Yr(nδ) = eλrδYr((n− 1)δ) + Zr(n), n = 0,±1, . . . ,

where

Zr(n) = αr

∫ nδ

(n−1)δ

eλr(nδ−u)dL(u),

and αr is given by (2.17).
The following question is important if we estimate parameters of a CARMA

process by fitting a discrete-time ARMA(p, q) process with q < p to regularly
spaced data and then attempt to find the parameters of a CARMA process
whose values at the observation times have the same distribution as the val-
ues of the fitted ARMA process at those times. The critical question here is
whether or not such a CARMA process exists.

If a given Gaussian ARMA(p, q) process with q < p is distributed as the
observations at integer times of some Gaussian CARMA process it is said
to be embeddable. Embeddability depends on the polynomials φ(z) and θ(z).
Many, but not all, Gaussian ARMA processes are embeddable. For example
the ARMA(1,0) process (3.1) with φ(z) = 1−φ1z and white-noise variance σ2

d

can be embedded, if 0 < φ < 1, in the Gaussian CAR(1) process defined by
(2.1) with a(z) = z − log(φ1), b(z) = 1 and σ2 = −2 log(φ1)σ2

d/(1 − φ2
1) and,

if −1 < φ1 < 0, it can be embedded in a CARMA(2,1) process (see Chan and
Tong (1987)). However Gaussian ARMA processes for which θ(z) = 0 has a
root on the unit circle are not embeddable in any CARMA process (see Brock-
well and Brockwell (1999)). The class of non-embeddable Gaussian ARMA
processes also includes ARMA(2,1) processes with autocovariance functions
of the form γ(h) = C1ξ

|h|
1 +C2ξ

|h|
2 , where ξ1 and ξ2 are distinct values in (0, 1)

and C1 log(ξ1) + C2 log(ξ2) > 0. Such ARMA processes exist since there are
infinitely many values of C1 and C2 satisfying the latter condition for which
γ is a non-negative-definite function on the integers.

The problem of finding a CARMA process whose autocovariance func-
tion at integer lags matches that of a given non-Gaussian ARMA process is
clearly equivalent to the problem of embedding a Gaussian ARMA process
as described above.
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However the determination of a Lévy-driven CARMA process (if there is
one) whose sampled process has the same joint distributions as a given non-
Gaussian ARMA process is more difficult. For example, from (3.11) and (3.12)
we see that in order to embed a discrete-time AR(1) in a CAR(1) process,
the driving noise sequence {Zn} of the AR(1) process must be i.i.d. with
an infinitely divisible distribution, and the coefficient φ in the autoregressive
polynomial (1 − φz) must be positive. Given such a process, with coefficient
φ ∈ (0, 1) and white-noise characteristic function exp(ψ(θ)), it is embeddable
in a CAR(1) process (which must have autoregressive polynomial a(z) = z−λ,
where λ = log(φ)) if and only if there exists a characteristic function exp(ρ(θ))
such that

(3.13)
∫ 1

0

ρ(θeλu)du = ψ(θ), for all θ ∈ IR,

and then exp(ρ(θ)t) is the characteristic function of σL(t) for the CAR(1)
process in which the AR(1) process can be embedded. It is easy to check
that if ψ(θ) = −σ2

dθ
2/2, i.e. if Zn is normally distributed with mean zero

and variance σ2
d, then (3.13) is satisfied if ρ(θ) = −λσ2

dθ
2/(1 − e2λ), i.e. if

σL(1) is normally distributed with mean zero and variance 2λσ2
d/(1 − e2λ).

(More generally if Zn is symmetric α-stable with ψ(θ) = −c|θ|α, c > 0,
α ∈ (0, 2], (3.13) is satisfied if ρ(θ) = −αcλ|θ|α/(1 − e2λ), i.e. if σL(1) also
has a symmetric α-stable distribution. If α ∈ (0, 2) the processes do not have
finite variance but the embedding is still valid.)

4 An Application to Stochastic Volatility Modelling

In the stochastic volatility model (1.1) and (1.2) of Barndorff-Nielsen and
Shephard, the volatility process V is a CAR(1) (or stationary Ornstein-
Uhlenbeck) process driven by a non-decreasing Lévy process L. With this
model the authors were able to derive explicit expressions for quantities of
fundamental interest, such as the integrated volatility. Since the process V
can be written,

V (t) =
∫ t

−∞
e−λ(t−u)dL(u),

and since both the kernel, g(u) = e−λuI(0,∞)(u), and the increments of the
driving Lévy process are non-negative, the volatility is non-negative as re-
quired. A limitation of the use of the Ornstein-Uhlenbeck process however
(and of linear combinations with non-negative coefficients of independent
Ornstein-Uhlenbeck processes) is the constraint that the autocorrelations
ρ(h), h ≥ 0, are necessarily non-increasing in h.

Much of the analysis of Barndorff-Nielsen and Shephard can however be
carried out after replacing the Ornstein-Uhlenbeck process by a CARMA pro-
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cess with non-negative kernel driven by a non-decreasing Lévy process. This
has the advantage of allowing the representation of volatility processes with
a larger range of autocorrelation functions than is possible in the Ornstein-
Uhlenbeck framework. For example, the CARMA(3,2) process with

a(z) = (z + 0.1)(z + 0.5 − iπ/2)(z + 0.5 − iπ/2) and b(z) = 2.792 + 5z + z2

has non-negative kernel and autocovariance functions,

g(t) = 0.8762e−0.1t +
(

0.1238 cos
πt

2
+ 2.5780 sin

πt

2

)

e−0.5t, t ≥ 0,

and

γ(h) = 5.1161e−0.1h +
(

4.3860 cos
πh

2
+ 1.4066 sin

πh

2

)

e−0.5h, h ≥ 0,

respectively, both of which exhibit damped oscillatory behaviour.
There is of course a constraint imposed upon the allowable CARMA pro-

cesses for stochastic volatility modelling by the requirement that the ker-
nel g be non-negative. Conditions on the coefficients which guarantee non-
negativity of the kernel have been considered by Brockwell and Davis (2001)
and Todorov and Tauchen (2004) for the CARMA(2,1) process with real au-
toregressive roots and, more generally by Tsai and Chan (2004). In his anal-
ysis of the German Mark/US Dollar exchange rate series from 1986 through
1999, Todorov (2005) finds that a good fit to the autocorrelation function
of the realized volatility is provided by a CARMA(2,1) model with two real
autoregessive roots.

A class of long-memory Lévy-driven CARMA processes was introduced
by Brockwell (2004) and Brockwell and Marquardt (2005) by replacing the
kernel g in (2.9) by the kernel,

gd(t) =
∫ ∞

−∞
eitλ(iλ)−d b(iλ)

a(iλ)
dλ,

with 0 < d < 0.5. The resulting processes, which exhibit hyperbolic rather
than geometric decay in their autocorrelation functions, must however be
driven by Lévy processes with zero mean, and such Lévy processes cannot be
non-decreasing. Long-memory Lévy-driven CARMA processes cannot there-
fore be used directly for the modelling of stochastic volatility. They can how-
ever be used for the modelling of mean-corrected log volatility in order to
account for the frequently observed long memory in such series.
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5 Continuous–Time GARCH Processes

A continuous-time analog of the GARCH(1,1) process, denoted COGA-
RCH(1,1), has recently been constructed and studied by Klüppelberg et al.
(2004). Their construction uses an explicit representation of the discrete-time
GARCH(1,1) process to obtain a continuous-time analog. Since no such repre-
sentation exists for higher-order discrete-time GARCH processes, a different
approach is needed to construct higher-order continuous-time analogs. For a
detailed discussion of continuous-time GARCH processes see the article of
Lindner (2008) in the present volume.

Let (εn)n∈N0 be an iid sequence of random variables. For any non-negative
integers p and q, the discrete-time GARCH(p,q) process (ξn)n∈IN0

is defined
by the equations,

(5.1)
ξn = σnεn,
σ2
n = α0 + α1ξ

2
n−1 + . . .+ αpξ

2
n−p + β1σ

2
n−1 + . . .+ βqσ

2
n−q,

where s := max(p, q), the initial values σ2
0 , . . . , σ

2
s−1 are assumed to be iid and

independent of the iid sequence (εn)n≥s, and ξn = Gn+1 −Gn represents the
increment at time n of the log asset price process (Gn)n∈IN0

. In continuous-
time it is more convenient to define the GARCH process as a model for
(Gt)t≥0 rather than for its increments as in discrete-time.

Equation (5.1) shows that the volatility process (Vn := σ2
n)n∈IN0

can be
viewed as a “self-exciting” ARMA(q, p − 1) process driven by the noise se-
quence (Vn−1ε

2
n−1)n∈IN. This observation suggests defining a continuous time

GARCH model of order (p, q) for the log asset price process (Gt)t≥0 by

dGt =
√

Vt dLt, t > 0, G0 = 0,

where (Vt)t≥0 is a left-continuous non-negative CARMA(q, p − 1) process
driven by a suitable replacement for the discrete time driving noise sequence
(Vn−1ε

2
n−1)n∈IN. By choosing the driving process to be

Rt =
∫ t

0

Vsd[L,L](d)s , i.e. dRt = Vt d[L,L](d)t .

where [L,L](d) is the discrete part of the quadratic covariation of the Lévy
process L, we obtain the COGARCH(p, q) process, which has properties anal-
ogous to those of the discrete-time GARCH process and which includes the
COGARCH(1,1) process of Klüppelberg et al.(2004) as a special case. The
precise definition is as follows.

Definition 3 (COGARCH(p, q) process)
If p and q are integers such that q ≥ p ≥ 1, α0 > 0, α1, . . . , αp ∈ IR,
β1, . . . , βq ∈ IR, αp �= 0, βq �= 0, and αp+1 = . . . = αq = 0, we define the
(q × q)–matrix B and the vectors a and e by



Lévy–Driven Continuous–Time ARMA Processes 477

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−βq −βq−1 −βq−2 . . . −β1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, a =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

α1

α2

...
αq−1

αq

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, e =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
...
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

with B := −β1 if q = 1. Then if L = (Lt)t≥0 is a Lévy process with non-trivial
Lévy measure, we define the (left-continuous) volatility process V = (Vt)t≥0

with parameters B, a, α0 and driving Lévy process L by

Vt = α0 + a′Yt−, t > 0, V0 = α0 + a′Y0,

where the state process Y = (Yt)t≥0 is the unique càdlàg solution of the
stochastic differential equation

dYt = BYt− dt+ e(α0 + a′Yt−) d[L,L](d)t , t > 0,

with initial value Y0, independent of the driving Lévy process (Lt)t≥0. If the
process (Vt)t≥0 is strictly stationary and non-negative almost surely, we say
that G = (Gt)t≥0, given by

dGt =
√

Vt dLt, t > 0, G0 = 0,

is a COGARCH(p, q) process with parameters B, a, α0 and driving Lévy
process L .

Conditions for the existence of a non-negative stationary solution of the equa-
tions for V and the properties of the resulting volatility and COGARCH(p, q)
processes, including conditions for the existence of moments of order k, are
studied in the paper of Brockwell et al. (2006). In particular it is shown under
mild conditions that the process of increments

G
(r)
t := Gt+r −Gt,

for any fixed r > 0, has the characteristic GARCH properties,

EG
(r)
t = 0, cov(G(r)

t+h, G
(r)
t ) = 0 h ≥ r,

while the squared increment process G(r)2 has a non-zero autocovariance
function, expressible in terms of the defining parameters of the process. The
autocovariance function of the stationary volatility process, if it exists, is that
of a CARMA process, just as the discrete-time GARCH volatility process has
the autocovariance function of an ARMA process.
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6 Inference for CARMA Processes

Given observations of a CARMA(p, q) process at times 0 ≤ t1 < t2 < . . . <
tN , there is an extensive literature on maximum Gaussian likelihood estima-
tion of the parameters. This literature however does not address the question
of identifying and estimating parameters for the driving process when it is
not Gaussian. In the general case we can write, from (2.2) and (2.5),

(6.1) Y (ti) = σb′X(ti), i = 1, . . . , N,

where

(6.2) X(ti) = eA(ti−ti−1)X(ti−1) +
∫ ti

ti−1

eA(ti−u)e dL(u), i = 2, . . . , N,

and X(t1) has the distribution of
∫ ∞
0 eAuedL(u). The observation equations

(6.1) and state equations (6.2) are in precisely the form required for appli-
cation of the discrete-time Kalman recursions (see e.g. Brockwell and Davis
(1991)) in order to compute numerically the best one-step linear predictors
of Y2, . . . , YN , and hence the Gaussian likelihood of the observations in terms
of the coefficients {aj, 1 ≤ j ≤ p; bj, 0 ≤ j < q; σ}. Jones (1981) used this
representation, together with numerical maximization of the calculated Gaus-
sian likelihood, to compute maximum Gaussian likelihood estimates of the
parameters for time series with irregularly spaced data. A similar approach
was used in a more general setting by Bergstrom (1985). If the observations
are uniformly spaced an alternative approach due to Phillips (1959) is to fit
a discrete-time ARMA model to the observations and then to determine a
Gaussian CARMA process in which the discrete-time process can be embed-
ded. (Recalling the results of Section 3 however, it may be the case that there
is no CARMA process in which the fitted ARMA process can be embedded.)

For a CAR(p) process observed continuously on the time interval [0, T ],
Hyndman (1993) derived continuous-time analogues of the discrete-time Yule-
Walker equations for estimating the coefficients. For a Gaussian CARMA
process observed continuously on [0, T ], the exact likelihood function was de-
termined by Pham-Din-Tuan (1977) who also gave a computational algorithm
for computing approximate maximum likelihood estimators of the parame-
ters which are asymptotically normal and efficient. The determination of the
exact likelihood, conditional on the initial state vector X(0), can also be car-
ried out for non-linear Gaussian CAR(p) processes and maximum conditional
likelihood estimators expressed in terms of stochastic integrals (see Brockwell
et al. (2006), where this method of estimation is applied to threshold CAR
processes observed at closely spaced times, using sums to approximate the
stochastic integrals involved.)

For Lévy-driven CARMA processes, estimation procedures which take into
account the generally non-Gaussian nature of L are less well-developed. One
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approach is to estimate the parameters {aj , 1 ≤ j ≤ p; bj , 0 ≤ j < q; σ}
by maximizing the Gaussian likelihood of the observations using (6.1) and
(6.2). If the process is observed continuously on [0, T ], these estimates and
the results of Remark 2.8 can be used to recover, for any observed or as-
sumed X(0), a realization of L on [0, T ]. The increments of this realization
can then be examined and a driving Lévy process chosen whose increments
are compatible with the increments of the recovered realization of L. If the
CARMA process is observed at closely-spaced discrete time points then a
discretized version of this procedure can be used. Inference for stationary
Ornstein-Uhlenbeck processes with non-decreasing driving Lévy process has
been investigated by Jongbloed et al. (2006) and Brockwell et al. (2007).
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Continuous Time Approximations to
GARCH and Stochastic Volatility
Models

Alexander M. Lindner

Abstract We collect some continuous time GARCH models and report on
how they approximate discrete time GARCH processes. Similarly, certain
continuous time volatility models are viewed as approximations to discrete
time volatility models.

1 Stochastic Volatility Models and Discrete GARCH

Both stochastic volatility models and GARCH processes are popular mod-
els for the description of financial time series. Recall that a discrete time
stochastic volatility model (SV-model) is a process (Xn)n∈N0 together with a
non-negative volatility process (σn)n∈N0 , such that

Xn = σnεn, n ∈ N0, (1)

where the noise sequence (εn)n∈N0 is a sequence of independent and identi-
cally distributed (i.i.d.) random variables, which is assumed to be independent
of (σn)n∈N0 . Further information about these processes can be found e.g. in
Shephard and Andersen (2008) and Davis and Mikosch (2008). In contrast
to stochastic volatility models, GARCH processes have the property that
the volatility process is specified as a function of the past observations. The
classical ARCH(1) process by Engle (1982) and the GARCH(1,1) process by
Bollerslev (1986), for example, are processes (Xn)n∈N0 with a non-negative
volatility process (σn)n∈N0 , such that
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Xn = σnεn, n ∈ N0, (2)
σ2
n = ω + λX2

n−1 + δσ2
n−1, n ∈ N. (3)

Here, (εn)n∈N0 is again an i.i.d. noise sequence, and the parameters ω, λ, δ
satisfy ω > 0, λ > 0 and δ > 0 (GARCH(1,1)) or δ = 0 (ARCH(1)), respec-
tively. See e.g. Teräsvirta (2008) and Lindner (2008) for further information
regarding GARCH processes and their probabilistic properties.

While financial data are usually observed only at discrete times, financial
mathematicians often tend to work in continuous time, which appears to be
more convenient for option pricing. However, continuous time models may
also offer a good approximation to discrete observations. Typical examples
are high-frequency data or irregularly observed data. While in discrete time,
(Xn)n∈N0 models the increments of the log price, in continuous time one
rather models the log price (Gt)t≥0 itself. Typically, one has an unobserved
volatility process (σt)t≥0 modelled as a semimartingale, and the log price is
described by

Gt =
∫ t

0

(μ+ bσ2
s ) ds+

∫ t

0

σs−dMs, (4)

where (Mt)t≥0 is a Lévy process and μ, b are real constants. For continuous
time stochastic volatility models, the process (Mt)t≥0 is usually independent
of (σt)t≥0, and more specifically, taken to be a standard Brownian motion. In
the latter case, the quadratic variation of G until time t is

∫ t

0 σ
2
s ds, justifying

the name volatility for σt.
The aim of this paper is to present some continuous time GARCH and SV

models and to discuss in which sense they can be seen as approximations to
corresponding discrete time models.

2 Continuous Time GARCH Approximations

If a continuous time model serves as an approximation to a GARCH process,
one may ask in which sense the process when sampled at discrete times is
close to a GARCH process. An optimal situation would be that the process
itself is a GARCH process, whenever sampled at equidistant times (hn)n∈N0 ,
for each h > 0. This however cannot be achieved: Drost and Nijman (1993),
Example 3, have shown that GARCH processes are not closed under tempo-
ral aggregation, i.e., if (Xt)t∈N0 is a GARCH process driven by some noise
(εt)t∈N0 with volatility process (σt)t∈N0 , then – apart from some situations
when the noise is degenerate – there does not exist an i.i.d. noise sequence
(ε̃2t)t∈N0 and a volatility process (σ̃2t)t∈N0 such that (X2t)t∈N0 is a GARCH
process driven by (ε̃2t)t∈N0 with volatility process (σ̃2t)t∈N0 . In particular, a
continuous time process (Yt)t≥0 which happens to be a GARCH(1,1) process
when sampled at {0, h, 2h, . . .} for some frequency h will not be GARCH when
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sampled at {0, 2h, 4h, . . .}. Similarly, if for some log price process (Gt)t≥0, the
increments (Gnh − G(n−1)h)n∈N of length h constitute a GARCH(1,1) pro-
cess with non-degenerate noise, then the increments (Gn2h − G(n−1)2h)n∈N

of length 2h will usually not be GARCH. Hence one has to work with other
concepts of GARCH approximations.

2.1 Preserving the random recurrence equation property

One approach to construct continuous time GARCH approximations is to
require that certain properties of discrete time GARCH continue to hold. For
example, a GARCH(1,1) process has the elegant property that its squared
volatility satisfies the random recurrence equation σ2

n = ω+(δ+λε2n−1)σ
2
n−1,

where σn−1 is independent of εn−1. Denoting An−1
n = δ+λε2n−1 and Cn−1

n =
ω, this can be written as

σ2
n = An−1

n σ2
n−1 + Cn−1

n ,

where σ2
n−1 is independent of (An−1

n , Cn−1
n ) and (An−1

n , Cn−1
n )n∈N is i.i.d. Re-

quiring at least this random recurrence equation property to hold for candi-
dates of squared volatility processes, it is natural to look at processes (Yt)t≥0

which satisfy
Yt = As

tYs + Cs
t , 0 ≤ s ≤ t, (5)

for appropriate sequences (As
t , C

s
t )0≤s≤t of bivariate random vectors. In order

to ensure the i.i.d. property of (A(n−1)h
nh , C

(n−1)h
nh )n∈N for every h > 0, one

rather assumes that for every 0 ≤ a ≤ b ≤ c ≤ d, the families of random
variables (As

t , C
s
t )a≤s≤t≤b and (As

t , C
s
t )c≤s≤t≤d are independent, and that

the distribution of (As+h
t+h , C

s+h
t+h )0≤s≤t does not depend on h ≥ 0. Finally, a

natural continuity condition seems to be desirable, namely that

A0
t > 0 a.s. ∀ t ≥ 0, and (At, Ct) := (A0

t , C
0
t ) P→ (1, 0) as t ↓ 0,

where “ P→” denotes convergence in probability. De Haan and Karandikar
(1989) showed that if (As

t , C
s
t )0≤s≤t are such that they satisfy the proper-

ties described above, then (At, Ct)t≥0 admit càdlàg versions, and with these
versions chosen, (Yt)t≥0 satisfies (5) if and only if there is a bivariate Lévy
process (ξt, ηt)t≥0 such that

Yt = e−ξt

(

Y0 +
∫ t

0

eξs− dηs

)

, t ≥ 0. (6)

This is a generalised Ornstein-Uhlenbeck process, which is discussed in detail
in Maller et al. (2008b). From the point of view described above, gener-
alised Ornstein-Uhlenbeck processes are natural continuous time analogues
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of random recurrence equations, and hence a desirable property of a contin-
uous time GARCH(1,1) approximation is that its squared volatility process
is a generalised Ornstein-Uhlenbeck process. As we shall see later, both the
diffusion limit of Nelson (1990) as well as the COGARCH(1,1) process of
Klüppelberg et al. (2004) satisfy this requirement. Also, the volatility model
of Barndorff-Nielsen and Shephard (2001a) and (2001b) falls into this class,
even if not constructed as a GARCH(1,1) approximation.

2.2 The diffusion limit of Nelson

A common method to construct continuous time processes from discrete ones
is to use a diffusion approximation. Here, one takes a series of discrete time
series defined on a grid (such as hN0) with mesh h ↓ 0, extends the processes
between grid points in a suitable way (such as interpolation, or piecewise con-
stancy), and hopes that this sequence of processes defined on [0,∞) converges
weakly to some limit process. Since the processes encountered will typically
have sample paths in the Skorokhod space D([0,∞),Rd) of R

d-valued càdlàg
functions defined on [0,∞), by weak convergence we mean weak convergence
in D([0,∞),Rd), when endowed with the (J1-)Skorokhod topology, cf. Ja-
cod and Shiryaev (2003), Sections VI.1 and VI.3. If the limit process has no
fixed points of discontinuity (which will be the case in all cases encountered),
then weak convergence in D([0,∞),Rd) implies weak convergence of the fi-
nite dimensional distributions, and the converse is true under an additional
tightness condition, cf. Jacod and Shiryaev (2003), Proposition VI.3.14 and
VI.3.20.

Nelson (1990) derived a diffusion limit for GARCH(1,1) processes. In the
same paper, he also considered the diffusion limit of EGARCH processes.
An extension to diffusion limits of a more general class of GARCH processes
(called augmented GARCH) was obtained by Duan (1997). Here, we shall
concentrate on Nelson’s diffusion limit of GARCH(1,1): for each h > 0, let
(εkh,h)k∈N0 be an i.i.d. sequence of standard normal random variables, let
ωh, λh > 0 and δh ≥ 0, and let (G0,h, σ

2
0,h) be starting random variables,

independent of (εkh,h)k∈N0 . Then (Gkh,h − G(k−1)h,h, σkh,h)k∈N, defined re-
cursively by

Gkh,h = G(k−1)h,h + h1/2σkh,hεkh,h, k ∈ N,

σ2
kh,h = ωh + (λhε2(k−1)h,h + δh)σ2

(k−1)h,h, k ∈ N,

is a GARCH(1,1) process for every h > 0. Then (Gkh,h, σ
2
kh,h)k∈N0 is embed-

ded into a continuous time process (Gt,h, σ
2
t,h)t≥0 by defining

Gt,h := Gkh,h, σ2
t,h := σ2

kh,h, kh ≤ t < (k + 1)h.
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The latter process has sample paths in D([0,∞),R2), and Nelson (1990) gives
conditions for (Gt,h, σ

2
t,h)t≥0 to converge weakly to some process (Gt, σ

2
t )t≥0

as h ↓ 0. Namely, suppose that there are constants ω ≥ 0, θ ∈ R and λ > 0
as well as starting random variables (G0, σ

2
0) such that (G0,h, σ

2
0,h) converges

weakly to (G0, σ
2
0) as h ↓ 0, such that P (σ2

0 > 0) = 1 and

lim
h↓0

h−1ωh = ω, lim
h↓0

h−1(1 − δh − λh) = θ, lim
h↓0

2h−1λ2
h = λ2. (7)

Then (Gt,h, σ
2
t,h)t≥0 converges weakly as h ↓ 0 to the unique solution

(Gt, σ
2
t )t≥0 of the diffusion equation

dGt = σt dBt, t ≥ 0, (8)
dσ2

t = (ω − θσ2
t ) dt+ λσ2

t dWt, t ≥ 0, (9)

with starting value (G0, σ
2
0), where (Bt)t≥0 and (Wt)t≥0 are independent

Brownian motions, independent of (G0, σ
2
0). Nelson also showed that (9) has

a strictly stationary solution (σ2
t )t≥0 if 2θ/λ2 > −1 and ω > 0, in which case

the marginal stationary distribution of σ2
0 is inverse Gamma distributed with

parameters 1 + 2θ/λ2 and 2ω/λ2. An example for possible parameter choices
to satisfy (7) is given by ωh = ωh, δh = 1 − λ

√

h/2 − θh, and λh = λ
√

h/2.
Observe that the limit volatility process (σ2

t )t≥0 in (9) is a generalised
Ornstein-Uhlenbeck process as defined in (6), with (ξt, ηt) = (−λWt + (θ +
λ2/2)t, ωt), see e.g. Fasen (2008) or Maller et al. (2008b).

A striking difference between discrete time GARCH processes and their
diffusion limit is that the squared volatility process (σ2

t )t≥0 in (9) is indepen-
dent of the Brownian motion (Bt)t≥0, driving the log price process. So the
volatility model (8), (9) has two independent sources of randomness, namely
(Bt)t≥0 and (Wt)t≥0. On the other hand, discrete time GARCH processes are
defined only in terms of a single noise sequence (εn)n∈N0 , rather than two.
While it was believed for a long time that Nelson’s limit result justified the
estimation of stochastic volatility models by GARCH-estimation procedures,
Wang (2002) showed that statistical inference for GARCH modelling and sta-
tistical inference for the diffusion limit (8), (9) are not asymptotically equiva-
lent, where asymptotic equivalence is defined in terms of Le Cam’s deficiency
distance (see Le Cam (1986)). As a heuristic explanation, Wang (2002) men-
tions the different kinds of noise propagations in the GARCH model with one
source of randomness and the volatility model with two sources of random-
ness. It is possible to modify Nelson’s approximation to obtain a limit process
which is driven by a single Brownian motion only (see Corradi (2000)), but
in that case the limiting volatility process is deterministic, an undesirable
property of price processes. Observe however that for the latter case, the
statistical estimation procedures are equivalent, cf. Wang (2002).
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2.3 The COGARCH model

Apart from the fact that Nelson’s diffusion limit is driven by two independent
sources of randomness, it also has a continuous volatility process. Nowadays,
jumps in the volatility of continuous time processes are often considered as
a stylised fact, which hence is not met by model (8), (9). This led Klüppel-
berg et al. (2004) to the introduction of a new continuous time GARCH(1,1)
process, called COGARCH(1,1), where “CO” stands for continuous time. Its
construction starts from the observation that the recursions (2), (3) can be
solved recursively, and σ2

n and Xn can be expressed by

σ2
n = ω

n−1
∑

i=0

n−1
∏

j=i+1

(δ + λε2j) + σ2
0

n−1
∏

j=0

(δ + λε2j ) (10)

=

⎛

⎝ω

∫ n

0

exp

⎧

⎨

⎩

−
�s�
∑

j=0

log(δ + λε2j )

⎫

⎬

⎭

ds+ σ2
0

⎞

⎠ exp

⎧

⎨

⎩

n−1
∑

j=0

log(δ + λε2j)

⎫

⎬

⎭

,

Xn = σnεn = σn

⎛

⎝

n
∑

j=0

εj −
n−1
∑

j=0

εj

⎞

⎠ . (11)

Here, "z# denotes the largest integer not exceeding z, and both
∑n−1

j=0 log(δ+
λε2j) = n log δ +

∑n−1
j=0 log(1 + λε2j/δ) and

∑n
j=0 εj are random walks, which

are linked in such a way that the first can be reconstructed from the second.
The idea of Klüppelberg et al. (2004) was then to replace the appearing
random walks by Lévy processes, which are a continuous time analogue of
random walks, and to replace the εj by the jumps of a Lévy process L. More
precisely, they start with positive constants ω, δ, λ > 0 and a Lévy process
L = (Lt)t≥0 which has non-zero Lévy measure νL, and define an auxiliary
Lévy process ξt by

ξt = −t log δ −
∑

0<s≤t

log
(

1 +
λ

δ
(ΔLs)2

)

, t ≥ 0,

corresponding to the random walk −(n log δ+
∑n−1

j=0 log(1+λε2j/δ)) in discrete
time. Given a starting random variable σ2

0 , independent of (Lt)t≥0, a (right-
continuous) volatility process (σt)t≥0 and the COGARCH(1,1) process are
then defined by

σ2
t =

(

ω

∫ t

0

eξs− ds+ σ2
0

)

e−ξt , t ≥ 0, (12)

Gt =
∫ t

0

σs− dLs, t ≥ 0, (13)
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in complete analogy to (10) and (11). (Originally, Klüppelberg et al. (2004)
defined a left-continuous version of the volatility by considering σ2

t− rather
than σ2

t .) The process (ξt)t≥0 is indeed a Lévy process, which is the negative
of a subordinator together with drift − log δ. Hence the squared volatility
process is again a generalised Ornstein-Uhlenbeck process as in (6) driven by
(ξt, ωt). An application of Itô’s formula to (12) shows that (σ2

t )t≥0 satisfies
the stochastic differential equation

dσ2
t = (ω + log δ σ2

t−) dt+
λ

δ
σ2
t− d[L,L]dt ,

where [L,L]dt =
∑

0<s≤t(ΔLs)2 denotes the discrete part of the quadratic
variation of L. Note that G has only one source of randomness, namely
L, which drives both σ2

t and G. In particular, if L jumps then so does G,
with jump size ΔGt = σt−ΔLt. Stationarity and moment conditions for
(σ2

t )t≥0 are given in Klüppelberg et al. (2004), and it follows that (σ2
t )t≥0

admits a stationary version if and only if
∫

R
log(1 + λx2/δ) νL(dx) < − log δ,

which in particular forces δ < 1. As for discrete time GARCH processes, the
stationary COGARCH volatility has Pareto tails under weak assumptions,
cf. Klüppelberg et al. (2006). Under appropriate conditions, the increments
of G are uncorrelated, while the squares of the increments are correlated.
More precisely, the covariance structure of ((Gnh −G(n−1)h)2)n∈N is that of
an ARMA(1,1) process. Extensions of the COGARCH(1,1) process include
the COGARCH(p, q) model by Brockwell et al. (2006), an asymmetric CO-
GARCH(1,1) model by Haug et al. (2007) to include the leverage effect, and
a multivariate COGARCH(1,1) model by Stelzer (2008).

The COGARCH(1,1) model was motivated by replacing the innovations
in GARCH processes by the jumps of Lévy processes. The question in which
sense a COGARCH process is close to a discrete time GARCH process
was recently considered independently by Kallsen and Vesenmayer (2008)
as well as Maller et al. (2008a). In both papers it is shown that the CO-
GARCH(1,1) model is a continuous time limit of certain GARCH(1,1) pro-
cesses: more precisely, given a COGARCH process (Gt)t≥0 with volatility pro-
cess (σt)t≥0, Kallsen and Vesenmayer (2008) construct a sequence of discrete
time GARCH processes (Yk,n)k∈N with volatility (σk,n)k∈N, such that the pro-
cesses (

∑�nt�
k=1 Yk,n, σ�nt�+1,n)t≥0 converge weakly to (Gt, σt)t≥0 as n → ∞.

Here, weak convergence in the Skorokhod space D([0,∞),R2) is obtained
by computing the semimartingale characteristics of (Gt, σt)t≥0 and showing
that they are the limit of those of (

∑�nt�
k=1 Yk,n, σ�nt�+1,n)t≥0 as n → ∞. The

infinitesimal generator of the strong Markov process (Gt, σt)t≥0 was also ob-
tained. They also showed how a given GARCH(1,1) process can be scaled
to converge to a COGARCH(1,1) process. Using completely different meth-
ods, given a COGARCH(1,1) process driven by a Lévy process with mean
zero and finite variance, Maller et al. (2008a) also obtain a sequence of dis-
crete time GARCH processes (Yk,n)k∈N with volatility processes (σk,n)k∈N
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such that (
∑�nt�

k=1 Yk,n, σ�nt�+1,n)t≥0 converges in probability to (Gt, σt)t≥0

as n → ∞. Observe that convergence in probability is stronger than weak
convergence. The discrete time GARCH processes are constructed using a
“first-jump" approximation for Lévy processes as developed by Szimayer and
Maller (2007), which divides a compact interval into an increasing number
of subintervals and for each subinterval takes the first jump exceeding a cer-
tain threshold. Summing up, we have seen that the COGARCH(1,1) model
is a limit of GARCH(1,1) processes, although originally motivated by mim-
icking features of discrete GARCH(1,1) processes without referring to limit
procedures.

2.4 Weak GARCH processes

Another approach to obtain continuous time GARCH processes is to weaken
the definition of a GARCH process. Observe that if (Xn)n∈N0 is a GARCH(1,1)
process with finite fourth moment and volatility process (σn)n∈N0 , driven by
i.i.d. noise (εn)n∈N0 such that Eε0 = 0 and Eε20 = 1, then

PLn(Xn) = 0 and PLn(X2
n) = σ2

n,

where PLn(Z) denotes the best linear predictor of a square integrable random
variable Z with respect to 1, σ2

0 , X0, . . ., Xn−1, X2
0 , . . ., X2

n−1. Drost and
Nijman (1993) use this property to define weak GARCH processes: they call
a univariate process (Xn)n∈N0 a weak GARCH(1,1) process with parameter
(ω, λ, δ), if Xn has finite fourth moment and there exists a volatility process
(σn)n∈N0 such that (σ2

n)n∈N0 is weakly stationary and satisfies (3) for n ∈ N,
and it holds PLn(Xn) = 0 and PLn(X2

n) = σ2
n. Here, ω > 0, λ ≥ 0, δ ≥ 0,

and either λ = δ = 0 or 0 < λ+ δ < 1. Unlike GARCH processes, the class of
weak GARCH processes is closed under temporal aggregation, i.e. if (Xn)n∈N0

is a symmetric weak GARCH(1,1) process, then so is (Xmn)n∈N0 for every
m ∈ N, see Drost and Nijman (1993), Example 1. Based on this property,
Drost and Werker (1996) define a continuous time weak GARCH(1,1) process
to be a univariate process (Gt)t≥0 such that (Gt0+nh − Gt0+(n−1)h)n∈N is a
weak GARCH(1,1) process for every h > 0 and t0 ≥ 0. They also show
that the parameters of the discretised weak GARCH process correspond to
certain parameters in the continuous time weak GARCH process, so that
estimation methods for discrete time weak GARCH processes carry over to
certain parameters of continuous time weak GARCH processes. Examples of
continuous time weak GARCH processes include the diffusion limit of Nelson,
provided it has finite fourth moment, or more generally processes (Gt)t≥0 with
finite fourth moments of the form dGt = σt−dLt, where (σ2

t )t≥0 is supposed
to be a stationary solution of the stochastic differential equation
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dσ2
t = (ω − θσ2

t−) dt+ λσ2
t− dηt.

Here, (Lt)t≥0 and (ηt)t≥0 are two independent Lévy processes with finite
fourth moment, expectation 0 and variance 1, (Lt)t≥0 is symmetric and the
parameters ω > 0, θ > 0 and λ < 1 are chosen such that Eσ4

0 < ∞, see Drost
and Werker (1996), Example 4.1.

2.5 Stochastic delay equations

A somewhat different approach to obtain continuous time GARCH processes
is taken by Lorenz (2006). He considered a weak limit of scaled GARCH(pn+
1, 1) processes when the order pn+1 goes to ∞, and in the limit he obtained
the solution to a stochastic delay differential equation. More precisely, let
(εk)k∈N0 be a sequence of i.i.d. random variables with finite (4 + α)-moment
for some α > 0 such that E(ε1) = E(ε31) = 0 and E(ε21) = 1. Let p ∈ N and
(σt)t∈[−p,0] be some given strictly positive continuous function on [−p, 0],
and define Gt = 0 for t ∈ [−p, 0]. Let ωn > 0, δj,n ≥ 0 (j = 0, . . . , pn) and
λn ≥ 0, and consider the discrete time GARCH(pn+ 1, 1) process (Yk,n)k∈N

with volatility (σk,n)k∈N given by

Yk,n = n−1/2 σk,nεk, k ∈ N,

σ2
k,n = ωn +

np
∑

j=0

δj,nσ
2
k−1−j,n + λnσ

2
k−1,nε

2
k−1, k ∈ N,

where σj,n := σ−j/n for j ∈ {−pn, . . . , 0}. Define further (Gt,n, σt,n)t≥−p :=
(
∑�nt�

k=1 Yk,n, σ�nt�+1,n)t≥−p. Assuming that

lim
n→∞

nωn = ω > 0, lim
n→∞

n(1 − δ0,n − λn) = θ ∈ R, lim
n→∞

(Eε41 − 1)nλ2
n = λ2

(14)
and that the sequence (γn)n∈N of discrete measures γn on [−p, 0] defined by
γn({−j/n}) = nδj,n for 1 ≤ j ≤ pn and γn({0}) = 0 converges vaguely
to some finite measure γ on [−p, 0] such that γ({0}) = 0, Lorenz (2006),
Theorem 2.5.10, showed that (Gt,n, σt,n)t≥0 converges weakly as n → ∞
to the unique weak solution (Gt, σt)t≥0 of the stochastic delay differential
equation

dGt = σt dBt, t ≥ 0, (15)

dσ2
t = (ω − θσ2

t ) dt+

(

∫

[−p,0]

σ2
t+u dγ(u)

)

dt+ λσ2
t dWt, (16)

with starting values as given, and where (Bt)t≥0 and (Wt)t≥0 are two inde-
pendent Brownian motions. A sufficient condition for a stationary solution
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of the stochastic delay equation (16) to exist is also given in Lorenz (2006).
Observe that if δj,n = 0 for j = 1, . . . , pn, the discrete GARCH(pn + 1, 1)
processes are actually GARCH(1,1) processes, the limit measure γ is zero,
and (14), (15), (16) reduce to the corresponding equations (7), (8), (9) for
Nelson’s diffusion limit.

A related paper regarding limits of HARCH processes which give rise to
stochastic delay equations is Zheng (2005).

2.6 A continuous time GARCH model designed for
option pricing

The previous continuous time GARCH models have been mainly designed as
limits of discrete time GARCH processes or as processes with properties simi-
lar to GARCH. Option pricing for such models may be demanding, since they
often give rise to incomplete markets. Inspired by this, Kallsen and Taqqu
(1998) developed a continuous time process which is a GARCH process when
sampled at integer times. Their process is also driven by a single Brownian
motion only. More specifically, let ω, λ > 0, δ ≥ 0 and (Bt)t≥0 be a standard
Brownian motion. For some starting random variable σ2

0 , define the volatility
process (σt)t≥0 by σ2

t = σ2
0 for t ∈ [0, 1) and

σ2
t = ω + λ

(

∫ �t�

�t�−1

σs−dBs

)2

+ δσ2
�t�−1, t ≥ 1. (17)

The continuous time GARCH process (Gt)t≥0 then models the log-price pro-
cess, and is given by

Gt = G0 +
∫ t

0

(μ(σs−) − σ2
s−/2) ds+

∫ t

0

σs dBs.

Here, the drift function μ is assumed to have continuous derivatives. Observe
that the volatility process (σt)t≥0 given by (17) is constant on intervals [n, n+
1) for n ∈ N0. Also observe that the process (Gt − Gt−1, σt−1)t≥1, when
sampled at integer times, gives rise to a discrete time GARCH(1,1)-M process

Gn −Gn−1 = μ(σn−1) − σ2
n−1/2 + σn−1(Bn −Bn−1), n ∈ N,

σ2
n = ω + λσ2

n−1(Bn −Bn−1)2 + δσ2
n−1, n ∈ N.

This differs from a usual GARCH(1,1) process only by the term μ(σn−1) −
σ2
n−1/2, which vanishes if the function μ is chosen as μ(x) = x2/2. If we are

not in the classical GARCH situation but rather have lim supx→∞ μ(x)/x <
∞, then Kallsen and Taqqu (1998) show that the continuous time model is
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arbitrage free and complete. This is then used to derive pricing formulas for
contingent claims such as European options.

3 Continuous Time Stochastic Volatility
Approximations

Recall from Section 1 that by a discrete time stochastic volatility model we
mean a process (Xn)n∈N0 satisfying (1), where (εn)n∈N0 is i.i.d. and (σn)n∈N0

is a stochastic volatility process, independent of (εn)n∈N0 . Here, we shall usu-
ally restrict ourselves to the case when (εn)n∈N0 is i.i.d. normally distributed
with expectation zero. Also recall that we defined continuous time stochastic
volatility models by (4). Now, we shall further restrict ourselves to the case
where μ = b = 0 and M in (4) is Brownian motion, i.e. we consider models
of the form

Gt =
∫ t

0

σs− dBs, t ≥ 0, (18)

where B = (Bt)t≥0 is a standard Brownian motion, independent of the
volatility process σ = (σt)t≥0. The latter is assumed to be a strictly posi-
tive semimartingale, in particular it has càdlàg paths.

3.1 Sampling a continuous time SV model at equidistant
times

In the setting as given above, it is easy to see that discrete time SV models
are closed under temporal aggregation, however, with a possibly unfamiliar
volatility process after aggregation. Similarly, the continuous time SV model
(18) gives rise to a discrete time SV model, when sampled at equidistant time
points. To see the latter, let G be given by (18), h > 0, and define

εk :=
Gkh −G(k−1)h

(
∫ kh

(k−1)h σ
2
s ds)1/2

, k ∈ N.

Since conditionally on (σt)t≥0, Gkh − G(k−1)h is normally distributed with
expectation zero and variance

∫ kh

(k−1)h
σ2
s ds, it follows that conditionally on

(σt)t≥0, εk is standard normally distributed, and since this distribution does
not depend on (σt)t≥0, εk itself is N(0, 1) distributed. With similar argu-
ments one sees that εk is independent of σ and that (εk)k∈N is i.i.d. Then
(Gkh−G(k−1)h = σ̃kεk)k∈N is a discrete time stochastic volatility model, with
discrete time volatility process
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σ̃k :=

(

∫ kh

(k−1)h

σ2
s ds

)1/2

, k ∈ N. (19)

Hence we see that unlike GARCH processes, continuous time SV models
yield discrete time SV models when sampled, i.e. they stay in their own
class. Unfortunately, the volatility process (σ̃k)k∈N obtained by this method
is not always in a very tractable form, and often it might be desirable to
retain a particular structure on the volatility process. As an illustration of
a process, where most but not all of the structure is preserved, consider the
stochastic volatility model of Barndorff-Nielsen and Shephard (2001a) and
(2001b). Here, the volatility process (σt)t≥0 is modeled via dσ2

t = −λσ2
t dt+

dLλt, where λ > 0 and L is a subordinator, i.e. a Lévy process with increasing
sample paths. The solution to this Lévy driven Ornstein-Uhlenbeck process
is given by

σ2
t = (σ2

0 +
∫ t

0

eλs dLλs)e−λt, t ≥ 0. (20)

Taking λ = 1 and h = 1 for simplicity, it follows that σ2
t satisfies

σ2
t = e−1σ2

t−1 +
∫ t

t−1

eu−t dLu, t ≥ 1, (21)

so that

σ̃2
k =

∫ k

k−1

σ2
s ds = e−1σ̃2

k−1 +
∫ k

k−1

∫ s

s−1

eu−s dLu ds, k ∈ N \ {1}. (22)

Like the Ornstein-Uhlenbeck process, which is a continuous time AR(1)
process, (22) yields a discrete time AR(1) process for (σ̃2

k)k∈N. However,
(20) is driven by a Lévy process which can be interpreted as a continu-
ous time analogue to i.i.d. noise, while (22) has 1-dependent noise given by
(
∫ k

k−1

∫ s

s−1
eu−s dLu ds)k∈N\{1}.

We have seen that sampled continuous time SV models give rise to discrete
time SV models, however the discrete time volatility may lose certain struc-
tural features. Allowing more general definitions of discrete and continuous
time stochastic volatility models, in a spirit similar to the weak GARCH pro-
cesses by Drost and Nijman (1993) and Drost and Werker (1996), Meddahi
and Renault (2004) consider many continuous time SV models which keep
the same structure when sampled at equidistant time points. We do not go
into further detail, but refer to Meddahi and Renault (2004) and the overview
article by Ghysels et al. (1996).
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3.2 Approximating a continuous time SV model

Rather than working with the unfamiliar discrete time volatility (σ̃k)k∈N as
given in (19), one might try to use an Euler type approximation for the
process G, and sample the (unobserved) volatility process (σ2

t )t≥0 directly
at equidistant times. More precisely, consider Gt as defined in (18), where
(σt)t≥0 is a strictly positive semimartingale, independent of (Bt)t≥0. For h >
0, define

Yk,h := σ(k−1)h(Bkh −B(k−1)h), k ∈ N, (23)

where σ(k−1)h is the continuous time volatility process (σt)t≥0 taken at
times (k − 1)h. Then (Yk,h)k∈N defines a discrete time SV model, which
approximates (Gkh −G(k−1)h)k∈N. Indeed, since (σt(ω))t≥0 is a càdlàg func-
tion for almost every ω in the underlying probability space, one can easily
show that the sequence of processes σ(n) =

∑∞
k=1 σk/n1[(k−1)/n,k/n) con-

verges almost surely on every compact interval [0, T ] with T ∈ N in the
Skorokhod topology of D([0, T ],R) to (σt)0≤t≤T , as n → ∞. On the other
hand, the process (

∑�nt�+1
k=1 Yk,1/n)0≤t≤T converges uniformly in probability

to (
∫ t

0 σs− dBs)0≤t≤T as n → ∞, see Protter (2004), Theorem II.21. Using
the continuity of (Gt)t≥0, it is then easy to deduce that the bivariate pro-
cess (σ(n)(t),

∑�nt�+1
k=1 Yk,1/n)0≤t≤T converges in probability to (σt, Gt)0≤t≤T

in the Skorokhod space D([0, T ],R2), from which convergence in probability
on the whole space D([0,∞),R2) can be deduced. Hence the continuous time
SV model is a limit of the discrete time SV models (23), as h = 1/n → 0.
The structure of (σt)t≥0 is usually much more compatible with the struc-
ture of (σkh)k∈N than with the structure of (σ̃k)k∈N of (19), and often the
discretisation (23) leads to popular discrete time SV models. We give some
examples.

Example 1 In the volatility model of Hull and White (1987) the contin-
uous time volatility process (σt)t≥0 follows a geometric Brownian motion,
i.e. dσ2

t = σ2
t (b dt + δ dWt), where (Wt)t≥0 is a Brownian motion. Then

σ2
t = exp{(b− δ2/2)t+ δWt}, so that for each h > 0, log σ2

kh − log σ2
(k−1)h =

(b−δ2/2)h+δ(Wkh−W(k−1)h), meaning that (log σ2
kh)k∈N0 is a random walk

with i.i.d. N((b − δ2/2)h, δ2) innovations.

Example 2 In the volatility model of Wiggins (1987), see also Scott (1987),
the log-volatility is modelled as a Gaussian Ornstein-Uhlenbeck process, i.e.
σ2
t satisfies the stochastic differential equation d log σ2

t = (b1 − b2 log σ2
t ) dt+

δ dWt with a Brownian motion (Wt)t≥0. The solution to this equation is

log σ2
t = e−b2t

(

log σ2
0 +

∫ t

0

eb2s(b1 ds+ δ dWs)
)

, t ≥ 0,

so that for each h > 0 we obtain
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log σ2
kh = e−b2h log σ2

(k−1)h +
∫ kh

(k−1)h

eb2(s−kh)(b1 ds+ δ dWs), k ∈ N,

which is an AR(1) process with i.i.d. normal noise. So in this case we recog-
nize model (23) as the volatility model of Taylor (1982). Unlike for Nelson’s
GARCH(1,1) diffusion limit, the continuous time SV model of Wiggins and
its diffusion approximation (23) are statistically equivalent, as investigated
by Brown et al. (2003).

Example 3 In the volatility model of Barndorff-Nielsen and Shephard
(2001a) and (2001b), where the squared volatility is modelled as a subor-
dinator driven Ornstein-Uhlenbeck process, one obtains similarly to (21),

σ2
kh = e−λhσ2

(k−1)h +
∫ kh

(k−1)h

eλ(u−kh) dLλu, k ∈ N,

so that the discretised squared volatility satisfies an AR(1) process with non-
Gaussian but positive i.i.d. noise.

Example 4 If one models the squared volatility (σ2
t )t≥0 by a subordinator

driven continuous time ARMA process (CARMA) as suggested by Brockwell
(2004), then the discretised squared volatility follows a discrete time ARMA
process, but not necessarily with i.i.d. noise, see Brockwell (2008). If one mod-
els instead the log-volatility (log σ2

t )t≥0 by a Lévy driven CARMA process,
similarly to the method of Haug and Czado (2007) who specify the volatility
of an exponential continuous time GARCH process in this way, then the dis-
cretised log-volatility (log σ2

kh)k∈N follows a discrete time ARMA process. If
the driving Lévy process is a Brownian motion, then the discrete time ARMA
process also has i.i.d. Gaussian noise.

Example 5 If one approximates the GARCH diffusion limit (8), (9) via
(23), the resulting discretised squared volatility process (σ2

kh)k∈N0 satisfies
a random recurrence equation σ2

kh = A
(k−1)h
kh σ2

(k−1)h + C
(k−1)h
kh with i.i.d.

(A(k−1)h
kh , C

(k−1)h
kh )k∈N, where

A
(k−1)h
kh = eλ(Wkh−W(k−1)h)−(θ+λ2/2)h,

C
(k−1)h
kh = ω

∫ kh

(k−1)h

eλ(Wkh−Ws)−(θ+λ2/2)(kh−s) ds.

This follows from the fact that the squared volatility process satisfies a gen-
eralised Ornstein-Uhlenbeck process as pointed out in Section 2. Also observe
that a random recurrence equation may be viewed as kind of an AR(1) pro-
cess with random coefficients.

Summing up, we have seen that many of the popular continuous time
stochastic volatility models can be approximated by corresponding discrete
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time stochastic volatility models. Similarly, one can understand a continuous
time SV model as an approximation to corresponding discrete time SV mod-
els. One could further consider diffusion limits of specific given discrete time
SV models after proper scaling, but we will not report on such results for
stochastic volatility models, since the discrete time SV models obtained from
continuous time SV models via (23) already cover a wide range of popular
volatility models.
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1 Introduction

Continuous time models have provided a convenient mathematical framework
for the development of financial economic theory (e.g., Merton (1990), asset
pricing, and the modern field of mathematical finance that relies heavily on
stochastic processes (Karatzas and Shreve (1991)). These models now domi-
nate the option pricing literature, which has mushroomed over the last three
decades from a single paper (Black and Scholes (1973)) to a vast subdiscipline
with strong practical applications in the finance industry. Correspondingly,
the econometric analysis of continuous time models has received a great deal
attention in financial econometrics, providing a basis from which these mod-
els may be brought to data and used in practical applications. Much of the
focus is on the econometric estimation of continuous time diffusion equations.
Estimation not only provides parameter estimates which may be used directly
in the pricing of financial assets and derivatives but also serves as a stage in
the empirical analysis of specification and comparative diagnostics.

Many models that are used to describe financial time series are written
in terms of a continuous time diffusion X (t) that satisfies the stochastic
differential equation

dX(t) = μ(X(t); θ)dt+ σ(X(t); θ)dB(t), (1)

where B(t) is a standard Brownian motion, σ(X(t); θ) is some specified diffu-
sion function, μ(X(t); θ) is a given drift function, and θ is a vector of unknown
parameters. This class of parametric model has been widely used to charac-
terize the temporal dynamics of financial variables, including stock prices,
interest rates, and exchange rates.

It has been argued that when the model is correctly specified, the preferred
choice of estimator and preferred basis for inference should be maximum like-
lihood (ML) – see, for example, Aït-Sahalia (2002) and Durham and Gallant
(2002). Undoubtedly, the main justification for the use of the ML method
lies in its desirable asymptotic properties, particularly its consistency and
asymptotic efficiency under conditions of correct specification. In pursuit of
this goal, various ML and Gaussian (that is, ML under Gaussian assump-
tions) methods have been proposed. Some of these methods involve discrete
approximations, others are exact (or exact under certain limiting conditions
on the approximation). Some are computationally inexpensive while others
are computationally intensive. Some are limited to particular formulations,
others have much wide applicability.

The purpose of the present chapter is to review this literature and overview
the many different approaches to estimating continuous time models of the
form given by (1) using ML and Gaussian methods. In the course of this
overview, we shall discuss the existing methods of estimation and their mer-
its and drawbacks. A simple Monte Carlo experiment is designed to reveal
the finite sample performance of some of the most commonly used estima-
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tion methods. The model chosen for the experiment is a simple example of
(1) that involves a square root diffusion function. This model is popular in
applied work for modeling short term interest rates and is known in the term
structure literature as the Cox-Ingersoll-Ross or CIR model (see (9) below).
One of the principal findings from this simulation experiment is that all ML
methods, including “exact” methods, have serious finite sample estimation
bias in the mean reversion parameter. This bias is significant even when the
number of observations is as large as 500 or 1000. It is therefore important in
ML/Gaussian estimation to take such bias effects into account. We therefore
consider two estimation bias reduction techniques – the jackknife method and
the indirect inference estimation – which may be used in conjunction with
ML, Gaussian or various approximate ML methods. The indirect inference
estimator demonstrates markedly superior results in terms of bias reduction
and overall mean squared error in comparison with all other methods.

The chapter is organized as follows. Section 2 outlines the exact ML
method, Section 3 and Section 4 review the literature on implementing
ML/Gaussian methods in continuous time financial models and the prac-
ticalities of implementation. Section 5 reports a Monte Carlo study designed
to investigate and compare the performance of some ML/Gaussian estimation
methods for the CIR model. Section 6 reviews two bias reduction methods
and examines their performance in the CIR model example. Section 7 briefly
outlines some issues associated with extensions of ML/Gaussian procedures
for multivariate models, and Section 8 concludes.

2 Exact ML Methods

2.1 ML based on the transition density

Assume the data X(t) is recorded discretely at points (h, 2h, · · · , Nh(≡ T ))
in the time interval [0, T ], where h is the discrete interval of observation of
X(t) and T is the time span of the data. The full sequence of N observations
is {Xh, X2h, · · · , XNh}. If X(t) is conceptualized for modeling purposes as
annualized data which is observed discretely at monthly (weekly or daily)
intervals, then h = 1/12 (1/52 or 1/252). It is, of course, most convenient
to assume that equi-spaced sampling observations are available and this as-
sumption is most common in the literature, although it can be and sometimes
is relaxed.

Many estimation methods are based on the construction of a likelihood
function derived from the transition probability density of the discretely sam-
pled data. This approach is explained as follows. Suppose p(Xih|X(i−1)h, θ) is
the transition probability density. The Markov property of model (1) implies
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the following log-likelihood function for the discrete sample2

�TD(θ) = ln(p(Xih|X(i−1)h, θ)). (2)

The resulting estimator will be consistent, asymptotically normally dis-
tributed and asymptotically efficient under the usual regularity conditions
for maximum likelihood estimation in (stationary) dynamic models (Hall and
Heyde (1980); Billingsley (1961). In nonstationary, nonergodic cases, the limit
theory is no longer asymptotically normal and there are several possibilities,
including various unit root, local to unity, mildly explosive and explosive limit
distributions (Phillips (1987), Chan and Wei (1988); Phillips (1991); Phillips
and Magdalinos (2007).

To perform exact ML estimation, one needs a closed form expression for
�TD(θ) and hence ln(p(Xih|X(i−1)h, θ)). Unfortunately, only in rare cases,
do the transition density and log likelihood component ln(p(Xih|X(i−1)h, θ))
have closed form analytical expressions. All other cases require numerical
techniques or analytic or simulation-based approximants.

The following list reviews the continuous time models used in finance that
have closed-form expressions for the transition density.

1. Geometric Brownian Motion:

dX(t) = μX(t) dt+ σX(t) dB(t). (3)

Black and Scholes (1973) used this process to describe the movement of
stock prices in their development of the stock option price formula. Since

d lnX(t) =
1

X (t)
dX (t) − (dX (t))2

2X (t)2
= μdt+ σdB(t) − 1

2
σ2dt, (4)

the transformed process lnX(t) follows the linear diffusion

d lnX(t) =
(

μ− σ2

2

)

dt+ σ dB(t). (5)

As a result, Xih|X(i−1)h ∼ LN((μ − σ2

2 )h + ln(X(i−1)h), σ2h), where LN
denotes the log-normal distribution.

2. Ornstein-Uhlenbeck (OU) process (or Vasicek model) :

dX(t) = κ(μ−X(t))dt+ σ dB(t). (6)

Vasicek (1977) used this process to describe the movement of short term
interest rates. Phillips (1972) showed that the exact discrete model cor-

2 Our focus in the present discussion is on the usefulness of the transition density for
estimation purposes. But we note that the transition density is needed and used for many
other applications, such as for pricing derivatives and for obtaining interval and density
forecasts.
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responding to (6) is given by

Xih = e−κhX(i−1)h + μ
(

1 − e−κh
)

+ σ
√

(1 − e−2κh)/(2κ)εi, (7)

where εi ∼ i.i.d. N(0, 1). Phillips (1972) also developed an asymptotic
theory for nonlinear least squares/ML estimates of the parameters in a
multivariate version of (6) using the exact discrete time model (7), show-
ing consistency, asymptotic normality and efficiency under stationarity
assumptions (κ > 0 in the univariate case here). The transition density
for the Vasicek model follows directly from (7) and is

Xih|X(i−1)h ∼ N
(

μ(1 − e−κh) + e−κhX(i−1)h, σ
2(1 − e−2κh)/(2κ)

)

.
(8)

3. Square-root (or Cox-Ingersoll-Ross) model :

dX(t) = κ(μ−X(t))dt+ σ
√

X(t) dB(t). (9)

Cox, Ingersoll and Ross (1985), CIR hereafter, also used this process to
describe movements in short term interest rates. The exact discrete model
corresponding to (9) is given by

Xih = e−κhX(i−1)h + μ
(

1 − e−κh
)

+ σ

∫ ih

(i−1)h

e−κ(ih−s)
√

X(s)dB (s) .

(10)
When 2κμ/σ2 ≥ 1, X is distributed over the positive half line. Feller
(1952) showed that the transition density of the square root model is
given by

Xih|X(i−1)h = ce−u−v(v/u)q/2Iq(2(uv)1/2) (11)

where c = 2κ/(σ2(1−e−κh)), u = cX(i−1)he
−κh, v = cXih, q = 2κμ/σ2−

1, and Iq(·) is the modified Bessel function of the first kind of order q.
4. Inverse square-root model :

dX(t) = κ(μ−X(t))X(t)dt+ σX1.5(t) dB(t). (12)

Ahn and Gao (1999) again used this process to model short term interest
rates. When κ, μ > 0, X is distributed over the positive half line. Ahn
and Gao (1999) derived the transition density of the inverse square root
model as

Xih|X(i−1)h = c−1e−u−v(v)q/2+2u−q/2Iq(2(uv)1/2) (13)

where c = 2κμ/(σ2(1 − e−κμh)), u = ce−κμh/X(i−1)h, v = c/Xih, q =
2(κ+ σ2)/σ2 − 1.
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2.2 ML based on the continuous record likelihood

If a continuous sample path of the processX(t) was recorded over the interval
[0, T ], direct ML estimation would be possible based on the continuous path
likelihood. This likelihood is very useful in providing a basis for the so-called
continuous record or infill likelihood function and infill asymptotics in which
a discrete record becomes continuous by a process of infilling as the sampling
interval h → 0. Some of these infill techniques based on the continuous record
likelihood are discussed later in Section 4. Since financial data are now being
collected on a second by second and tick by tick basis, this construction is
becoming much more important.

When X(t) is observed continuously, a log-likelihood function for the con-
tinuous record {X (t)}Tt=0 may be obtained directly from the Radon Nikodym
(RN) derivative of the relevant probability measures. The RN derivative pro-
duces the relevant probability density and can be regarded as a change of
measure among the absolutely continuous probability measures, the calcu-
lation being facilitated by the Girsanov theorem (e.g., Karatzas and Shreve
(1991)). The approach is convenient and applies quite generally to continuous
time models with flexible drift and diffusion functions.

In the stochastic process literature the quadratic variation or square
bracket process is well known to play an important role in the study of
stochastic differential equations. In the case of equation (1), the square
bracket process of X (t) has the explicit form

[X ]T =
∫ T

0

(dX(t))2 =
∫ T

0

σ2(X(t); θ)dt, (14)

which is a continuously differentiable increasing function. In fact, we have
d[X ]t = σ(X(t); θ)2dt. In consequence, when a continuous sample path of
the process X(t) is available, the quadratic variation of X provides a per-
fect estimate of the diffusion function and hence the parameters on which it
depends, provided these are identifiable in σ2(X(t); θ). Thus, with the avail-
ability of a continuous record, we can effectively assume the diffusion term
(i.e., σ(X(t); θ) = σ(X(t)) is known and so this component does not involve
any unknown parameters. It follows that the exact continuous record or infill
log-likelihood can be constructed via the Girsanov theorem (e.g., Liptser and
Shiryaev (2000)) as

�IF (θ) =
∫ T

0

μ(X(t); θ)
σ2(X(t))

dX(t) − 1
2

∫ T

0

μ2(X(t); θ)
σ2(X(t))

dt. (15)

In this likelihood, the parameter θ enters via the drift function μ(X(t); θ).
Lánska (1979) established the consistency and asymptotic normality of the
continuous record ML estimator of θ when T → ∞ under certain regularity
conditions.
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To illustrate the approach, consider the following OU process,

dX(t) = κX(t)dt+ σ0dB(t), (16)

where σ0 is known and κ is the only unknown parameter. The exact log-
likelihood in this case is given by

�IF (κ) =
∫ T

0

κX(t)
σ2

0

dX(t) − 1
2

∫ T

0

κ2X2(t)
σ2

0

dt, (17)

and maximizing the log-likelihood function immediately gives rise to the fol-
lowing ML estimator of κ:

κ̂ =

(

∫ T

0

X2(t)dt

)−1
∫ T

0

X(t)dX(t) (18)

This estimator is analogous in form to the ML/OLS estimator of the autore-
gressive coefficient in the discrete time Gaussian autoregression

Xt = φXt−1 + εt, εt ∼ i.i.d. N(0, 1) (19)

viz., ̂φ =
(∑n

t=1X
2
t−1

)−1 ∑n
t=1XtXt−1. It is also interesting to observe that

when κ = 0 (18) has the same form as the limit distribution of the (dis-
crete time) autoregressive coefficient estimator when φ = 1 in (19). These
connections with unit root limit theory are explored in Phillips (1987).

In practice, of course, a continuous record of {X (t)}Tt=0 is not available
and estimators such as (18) are infeasible. On the other hand, as the sampling
interval h shrinks, discrete data may be used to produce increasingly good
approximations to the quadratic variation (14), the continuous record likeli-
hood (15) and estimators such as (18). These procedures may be interpreted
as infill likelihood methods in that they replicate continuous record methods
by infilling the sample record as h → 0.

3 Approximate ML Methods Based on Transition
Densities

Except for a few special cases such as those discussed earlier, the transition
density does not have a closed-form analytic expression. As a result, the exact
ML method discussed in Section 2.1 is not generally applicable. To address
this complication, many alternative approaches have been developed. The
methods involve approximating the transition densities, the model itself or
the likelihood function. This section reviews these methods.
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3.1 The Euler approximation and refinements

The Euler scheme approximates a general diffusion process such as equation
(1) by the following discrete time model

Xih = X(i−1)h + μ(X(i−1)h, θ)h+ σ(X(i−1)h, θ)
√
hεi, (20)

where εi ∼ i.i.d. N(0, 1). The transition density for the Euler discrete time
model has the following closed form expression:

Xih|X(i−1)h ∼ N
(

X(i−1)h + μ(X(i−1)h, θ)h, σ2(X(i−1)h, θ)h
)

. (21)

For the Vasicek model, the Euler discrete approximation is of the form

Xih = κμh+ (1 − κh)X(i−1)h + σN(0, h). (22)

Comparing the approximation (22) with the exact discrete time model
(7), we see that κμh, 1 − κh and σ2h replace μ(1 − e−κh), e−κh, and
σ2(1 − e−2κh)/(2κ), respectively. These replacements may be motivated by
considering the first order term in the following Taylor expansions:

μ(1 − e−κh) = κμh+O(h2), (23)

e−κh = 1 − κh+O(h2), (24)

σ2(1 − e−2κh)/(2κ) = σ2h+O(h2). (25)

Obviously, when h is small, the Euler scheme should provide a good approxi-
mation to the exact discrete time model. However, when h is large, the Euler
approximation can be poor. To illustrate magnitude of the approximation
error, first consider the case where κ = 1 and h = 1/12, in which case e−κh

is 0.92 whereas 1 − κh is 0.9167 and the approximation is good. But if κ = 1
and h = 1, then e−κh is 0.3679 whereas 1 − κh is 0. These comparisons sug-
gest that the Euler discretization offers a good approximation to the exact
discrete time model for daily or higher frequencies but not for annual or lower
frequencies. The bias introduced by this discrete time approximation is called
the discretization bias.

The advantages of the Euler method include the ease with which the like-
lihood function is obtained, the low computational cost, and the wide range
of its applicability. The biggest problem with the procedure is that when h
is fixed the estimator is inconsistent (Merton (1980); Lo (1988)). The mag-
nitude of the inconsistency can be analyzed, using the methods of Sargan
(1974), in terms of the observation interval h. Lo (1988) illustrated the size
of inconsistency in the context of model (3).
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A closely related discretization method, suggested by Bergstrom (1966)
and Houthakker and Taylor (1966), is based on integrating the stochastic
differential equation and using the following trapezoidal rule approximation

∫ ih

(i−1)h

μ(X(t); θ)dt =
h

2
{

μ(Xih; θ) + μ(X(i−1)h; θ)
}

. (26)

For the OU process the corresponding discrete approximate model is given
by

Xih −X(i−1)h = κμ− κh

2
(

Xih +X(i−1)h

)

+ σN(0, h), (27)

which involves the current period observation Xih on both sides of the equa-
tion. Solving (27) we obtain

Xih =
κμh

(

1 + κh
2

) +
1 − κh

2

1 + κh
2

X(i−1)h +
σ

(

1 + κh
2

)N(0, h)

= κμh+ (1 − κh)X(i−1)h + σN(0, h) +O
(

h3/2
)

,

so that the Bergstrom approximation is equivalent to the Euler approxima-
tion to O (h) . In the multivariate case, the Bergstrom approximation leads
to a non-recursive simultaneous equations model approximation to a sys-
tem of recursive stochastic differential equations. The resulting system may
be estimated by a variety of simultaneous equations estimators, such as in-
strumental variables, for example by using lagged X values as instruments.
Again, the magnitude of the inconsistency may be analyzed in terms of the
observation interval h, as in Sargan (1974) who showed the asymptotic bias
in the estimates to be typically of O

(

h2
)

.
There are a number of ways to reduce the discretization bias induced by

the Euler approximation. Before we review these refinements, it is important
to emphasize that the aim of these refinements is simply bias reduction.

Elerian (1998) suggests using the scheme proposed by Milstein (1978). The
idea is to take a second order term in a stochastic Taylor series expansion to
refine the Euler approximation (20). We proceed as follows. Integrating (1)
we have

∫ ih

(i−1)h

dX(t) =
∫ ih

(i−1)h

μ(X(t); θ)dt+
∫ ih

(i−1)h

σ(X(t); θ)dB(t), (28)

and by stochastic differentiation we have

dμ(X(t); θ) = μ′(X(t); θ)dX (t) +
1
2
μ′′(X(t); θ) (dX (t))2

= μ′(X(t); θ)dX (t) +
1
2
μ′′(X(t); θ)σ2(X(t); θ)dt,
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and

dσ(X(t); θ) = σ′(X(t); θ)dX (t) +
1
2
σ′′(X(t); θ)σ2(X(t); θ)dt, (29)

so that

μ(X (t) ; θ) = μ(X(i−1)h; θ) +
∫ t

(i−1)h

μ′(X(s); θ)dX (s)

+
1
2

∫ t

(i−1)h

μ′′(X(s); θ)σ2(X(s); θ)ds

= μ(X(i−1)h; θ) +
∫ t

(i−1)h

μ′(X(s); θ)μ(X(s); θ)ds +

1
2

∫ t

(i−1)h

μ′′(X(s); θ)σ2(X(s); θ)ds+

∫ t

(i−1)h

μ′(X(s); θ)σ(X(s); θ)dB(s),

and

σ(X (t) ; θ) = σ(X(i−1)h; θ) +
∫ t

(i−1)h

σ′(X(s); θ)μ(X(s); θ)ds +

1
2

∫ t

(i−1)h

σ′′(X(s); θ)σ2(X(s); θ)ds+

∫ t

(i−1)h

σ′(X(s); θ)σ(X(s); θ)dB(s),

with σ′(X(i−1)h; θ) = [∂σ(X ; θ)/∂X ]X=X(i−1)h
. Substituting these expres-

sions into (28) we obtain

Xih −X(i−1)h = μ(X(i−1)h; θ)h+ σ(X(i−1)h; θ)
∫ ih

(i−1)h

dB (t) (30)

+
∫ ih

(i−1)h

∫ t

(i−1)h

σ′(X(s); θ)σ(X(s); θ)dB(s)dB (t) +R,

where R is a remainder of smaller order. Upon further use of the Itô formula
on the penultimate term of (31), we obtain the following refinement of the
Euler approximation
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Xih −X(i−1)h � μ(X(i−1)h; θ)h+ σ(X(i−1)h; θ)
∫ ih

(i−1)h

dB (t) +

σ′(X(i−1)h; θ)σ(X(i−1)h; θ)
∫ ih

(i−1)h

∫ t

(i−1)h

dB(s)dB (t) ,

The multiple stochastic integral has the following reduction
∫ ih

(i−1)h

∫ t

(i−1)h

dB(s)dB (t)

=
∫ ih

(i−1)h

(

B(t) −B(i−1)h

)

dB (t)

=
∫ ih

(i−1)h

B(t)dB (t) −B(i−1)h

(

Bih −B(i−1)h

)

=
1
2

{(

B2
ih −B2

(i−1)h

)

− h
}

−B(i−1)h

(

Bih −B(i−1)h

)

=
1
2

{

(

Bih −B(i−1)h

)2 − h
}

,

Then the refined Euler approximation can be written as

Xih −X(i−1)h � μ(X(i−1)h; θ)h+ σ(X(i−1)h; θ)
(

Bih −B(i−1)h

)

+σ′(X(i−1)h; θ)σ(X(i−1)h; θ)
1
2

{

(

Bih −B(i−1)h

)2 − h
}

=
{

μ(X(i−1)h; θ) − 1
2
σ′(X(i−1)h; θ)σ(X(i−1)h; θ)

}

h

+σ(X(i−1)h; θ)
(

Bih −B(i−1)h

)

+
1
2
σ′(X(i−1)h; θ)σ(X(i−1)h; θ)

(

Bih −B(i−1)h

)2

The approach to such refinements is now very well developed in the numerical
analysis literature and higher order developments are possible - see Kloeden
and Platen (1999) for an extensive review.

It is convenient to write Bih −B(i−1)h =
√
hεi where εi is standard Gaus-

sian. Then, the Milstein approximation to model (1) produces the following
discrete time model:

Xih = X(i−1)h + μ(X(i−1)h, θ)h− g(X(i−1)h, θ)h (31)

+σ(X(i−1)h, θ)
√
hεi + g(X(i−1)h, θ)hε2i ,

where
g(X(i−1)h, θ) =

1
2
σ′(X(i−1)h; θ)σ(X(i−1)h; θ). (32)
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While Elerian (1998) used the Milstein scheme in connection with a simu-
lation based approach, Tse, Zhang and Yu (2004) used the Milstein scheme
in a Bayesian context. Both papers document some improvement from the
Milstein scheme over the Euler scheme.

Kessler (1997) advocated approximating the transition density using a
Gaussian density whose conditional mean and variance are obtained using
higher order Taylor expansions. For example, the second-order approximation
leads to the following discrete time model:

Xih = μ̂(X(i−1)h; θ) + σ̂(X(i−1)h; θ)εi, (33)

where

μ̂(X(i−1)h; θ) = X(i−1)h + μ(X(i−1)h; θ)h+
(

μ(X(i−1)h; θ)μ′(X(i−1)h; θ) +
σ2(X(i−1)h; θ)μ′′(X(i−1)h; θ)

2

)

h

2

and

σ̂2(X(i−1)h; θ) = X2
(i−1)h +

(

2μ(X(i−1)h; θ)X(i−1)h + σ2(X(i−1)h; θ)
)

h

= {2μ(X(i−1)h; θ)(2μ′(X(i−1)h; θ)X(i−1)h + μ(X(i−1)h; θ)

+σ(X(i−1)h; θ)σ′(X(i−1)h; θ)) + σ2(X(i−1)h; θ) ×
[μ′′(X(i−1)h; θ)X(i−1)h + 2μ(X(i−1)h; θ) + (σ′(X(i−1)h; θ))2

+σ(X(i−1)h; θ)σ′(X(i−1)h; θ)]}h
2

2
− μ̂2(X(i−1)h; θ).

Nowman (1997) suggested an approach which assumes that the condi-
tional volatility remains unchanged over the unit intervals, [(i − 1)h, ih),
i = 1, 2..., N. In particular, he approximates the model:

dX(t) = κ(μ−X(t))dt+ σ(X(t), θ)dB(t) (34)

by

dX(t) = κ(μ−X(t))dt+ σ(X(i−1)h; θ)dB(t), (i− 1)h ≤ t < ih. (35)

It is known from Phillips (1972) and Bergstrom (1984) that the exact discrete
model of (35) has the form

Xih = e−κhX(i−1)h + μ
(

1 − e−κh
)

+ σ(X(i−1)h; θ)

√

1 − e−2κh

2κ
εi, (36)

where εi ∼ i.i.d. N(0, 1). With this approximation, the Gaussian ML method
can be used to estimate equation (36) directly. This method also extends in
a straightforward way to multivariate systems. The Nowman procedure can
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be understood as applying the Euler scheme to the diffusion term over the
unit interval. Compared with the Euler scheme where the approximation is
introduced to both the drift function and the diffusion function, the Nowman
method can be expected to reduce some of the discretization bias, as the
treatment of the drift term does not involve an approximation at least in
systems with linear drift.

Nowman’s method is related to the local linearization method proposed
by Shoji and Ozaki (1997, 1998) for estimating diffusion processes with a
constant diffusion function and a possible nonlinear drift function, that is

dX(t) = μ(X(t); θ)dt+ σdB(t). (37)

While Nowman approximates the nonlinear diffusion term by a locally lin-
ear function, Shoji and Ozaki (1998) approximate the drift term by a locally
linear function. The local linearization method can be used to estimate a
diffusion process with a nonlinear diffusion function, provided that the pro-
cess can be first transformed to make the diffusion function constant. This
is achieved by the so-called Lamperti transform which will be explained in
detailed below.

While all these refinements offer some improvements over the Euler
method, with a fixed h, all the estimators remain inconsistent. As indicated,
the magnitude of the inconsistency or bias may analyzed in terms of its or-
der of magnitude as h → 0. This appears only to have been done by Sargan
(1974), Phillips (1974) and Lo (1988) for linear systems and some special
cases.

3.2 Closed–form approximations

The approaches reviewed above seek to approximate continuous time mod-
els by discrete time models, the accuracy of the approximations depending
on the sampling interval h. Alternatively, one can use closed-form sequences
to approximate the transition density itself, thereby developing an approxi-
mation to the likelihood function. Two different approximation mechanisms
have been proposed in the literature. One is based on Hermite polynomial
expansions whereas the other is based on the saddlepoint approximation.

3.2.1 Hermite expansions

This approach was developed in Aït-Sahalia (2002) and illustrated in Aït-
Sahalia (1999). Before obtaining the closed-form expansions, a Lamperti
transform (mentioned earlier) is performed on the continuous time model so
that the diffusion function becomes a constant. The transformation has the
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form Y (t) = G(X(t)), where G′(x) = 1/σ(x; ·). The transformation is vari-
ance stabilizing and leads to another diffusion Y (t) , which by Itô’s lemma
can be shown to satisfy the stochastic differential equation

dY (t) = μY (Y (t); θ)dt + dB(t), (38)

where

μY (Y (t); θ) =
μ(G−1(Y ); θ)
σ(G−1(Y ); θ)

− 1
2
σ′(G−1(Y ); θ). (39)

A Hermite polynomial expansion of the transition density p(Yih|Y(i−1)h, θ)
around the normal distribution leads to

p(Yih|Y(i−1)h, θ) ≈ h−1/2φ

(

Yih − Y(i−1)h

h1/2

)

exp

(

∫ Yih

Y(i−1)h

μY (ω; θ)dω

)

×

K
∑

k=0

ck(Yih|Y(i−1)h; θ)
hk

k!
, (40)

where φ(·) is the standard normal density function, c0(Yih|Y(i−1)h) = 1,

cj(Yih|Y(i−1)h) = j(Yih − Y(i−1)h)−j

∫ Yih

Y(i−1)h

(ω − Y(i−1)h)j−1 ×

{λYih
(ω; θ)cj−1(ω|Y(i−1)h; θ)

+
1
2
∂2cj−1(ω|Y(i−1)h; θ)/∂ω2}dω,

∀j ≥ 1 and

λY (y; θ) = −1
2
(

μ2
Y (y; θ) + ∂μY (y; θ)/∂y

)

. (41)

Under some regular conditions, Aït-Sahalia (2002) showed that when K →
∞, the Hermite expansions (i.e., the right hand right in Equation (40)) ap-
proaches the true transition density. When applied to various interest rate
models, Aït-Sahalia (1999) has found negligible approximation errors even
for small values of K. Another advantage of this approach is that it is in
closed-form and hence numerically tractable.

The approach described above requires the Lamperti transform be feasible.
Aït-Sahalia (2007) and Bakshi and Ju (2005) proposed some techniques which
avoid the Lamperti transform. Furthermore, Aït-Sahalia and Kimmel (2005,
2007) discussed how to use the method to estimate some latent variable
models.
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3.2.2 Saddlepoint approximations

The leading term in the Hermite expansions is normal whose tails may be
too thin and the shape too symmetric relative to the true transition density.
When this is the case, a moderately large value of K may be needed to ensure
a good approximation of the Hermite expansion. An alternative approach is
to choose a better approximating distribution as the leading term. One way
to achieve this is to use a saddlepoint approximation.

The idea of the saddlepoint approximations is to approximate the con-
ditional cumulant generating function of the transition density by means of
a suitable expansion, followed by a careful choice of integration path in the
integral that defines the transition density so that most of the contribution to
the integral comes from integrating in the immediate neighborhood of a sad-
dlepoint. The method was originally explored in statistics by Daniels (1953).
Phillips (1978) developed a saddlepoint approximation to the distribution of
ML estimator of the coefficient in discrete time first order autoregression,
while Holly and Phillips (1979) proposed saddlepoint approximations for the
distributions of k-class estimators of structural coefficients in simultaneous
equation systems. There has since been a great deal of interest in the method
in statistics - see Reid (1988), Field and Ronchetti (1990) and Butler (2007)
for partial overviews of the field. Aït-Sahalia and Yu (2006) proposed the use
of saddlepoint approximations to the transition density of continuous time
models, which we now consider.

Let ϕX(i−1)h (u; θ) be the conditional characteristic function corresponding
to the transition density, viz.,

ϕX(i−1)h (u; θ) = E[exp(uXih|X(i−1)h)]. (42)

The conditional cumulant generating function is

KX(i−1)h(u; θ) = ln(ϕX(i−1)h (u; θ)). (43)

The transition density has the following integral representation by Fourier
inversion:

p(Xih|X(i−1)h, θ) =
1
2π

∫ +∞

−∞
exp(−iXihu)ϕX(i−1)h (iu; θ)du

=
1
2π

∫ û+i∞

û−i∞
exp(−uXih)ϕX(i−1)h (u; θ)du

=
1
2π

∫ û+i∞

û−i∞
exp(KX(i−1)h (u; θ) − uXih)du (44)

Applying a Taylor expansion to KX(i−1)h(u; θ)−uXih around the saddlepoint
û, one gets
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KX(i−1)h(u; θ) − uXih = KX(i−1)h(û; θ) − ûXih − 1
2
∂2KX(i−1)h(û; θ)

∂u2
ν

−1
6
∂3KX(i−1)h(û; θ)

∂u3
iν3 +O(ν4).

Substituting this expansion to (43), one obtains a saddlepoint approximation
to the integral, which involves the single leading term of the form

exp(KX(i−1)h (û; θ) − uXih)

√
2π

(

∂2KX(i−1)h
(û;θ)

∂u2

)1/2
, (45)

and higher order terms of small order. As shown in Daniels (1954), the method
has the advantage of producing a smaller relative error than Edgeworth and
Hermite expansions.

When applying this method to transition densities for some continuous
time models that are widely used in finance, Aït-Sahalia and Yu (2006) have
found very small approximation errors. The method requires the saddlepoint
to be analytically available or at least numerically calculable, an approach
considered in Phillips (1984) that widens the arena of potential application.
The saddlepoint method also requires the moment generating function of the
transition density to exist, so that all moments of the distribution must be
finite and heavy tailed transition distributions are therefore excluded. Mul-
tivariate extensions are possible using extensions of the saddlepoint method
to this case - see Phillips (1980,1984), Tierney and Kadane (1986) and Mc-
Cullagh (1987).

3.3 Simulated infill ML methods

As explained above, the Euler scheme introduces discretization bias. The
magnitude of the bias is determined by h. When the sampling interval is ar-
bitrarily small, the bias becomes negligible. One way of making the sampling
interval arbitrarily small is to partition the original interval, say [(i−1)h, ih],
so that the new subintervals are sufficiently fine for the discretization bias to
be negligible. By making the subintervals smaller, one inevitably introduces
latent (that is, unobserved) variables between X(i−1)h and Xih. To obtain the
required transition density p(Xih|X(i−1)h, θ), these latent observations must
be integrated out. When the partition becomes finer, the discretization bias
is closer to 0 but the required integration becomes high dimensional. We call
this approach to bias reduction the simulated infill ML method.

To fix ideas, supposeM−1 auxiliary points are introduced between (i−1)h
and ih, i.e.,

((i− 1)h ≡)τ0, τ1, · · · , τM−1, τM (≡ ih). (46)
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The Markov property implies that

p(Xih|X(i−1)h; θ) =
∫

· · ·
∫

p(XτM , XτM−1 , · · · , Xτ1 |Xτ0 ; θ)dXτ1 · · ·dXτM−1

=
∫

· · ·
∫ M

∏

m=1

p(Xτm |Xτm−1 ; θ)dXτ1 · · · dXτM−1 . (47)

The idea behind the simulated infill ML method is to approximate the densi-
ties p(Xτm |Xτm−1 ; θ) (step 1) and then evaluate the multidimensional integral
using importance sampling techniques (step 2). Among the class of simulated
infill ML methods that have been suggested, Pedersen (1995) is one of the
earliest contributions.

Pedersen suggested approximating the latent transition densities p(Xτm |
Xτm−1 ; θ) based on the Euler scheme and approximating the integral by draw-
ing samples of (XτM−1 , · · · , Xτ1) via simulations from the Euler scheme. That
is, the importance sampling function is the mapping from (ε1, ε2, · · · , εM−1) �→
(Xτ1 , Xτ2 , · · · , XτM−1) given by the Euler scheme:

Xτm+1 = Xτm + μ(Xτm ; θ)h/M + σ(Xτm , θ)
√

h/Mεm+1, m = 0, · · · ,M − 2,
(48)

where (ε1, ε2, · · · , εM−1) is a multivariate standard normal.
As noted in Durham and Gallant (2002), there are two sources of approxi-

mation error in Pedersen’s method. One is the (albeit reduced) discretization
bias in the Euler scheme. The second is due to the Monte Carlo integration.
These two errors can be further reduced by increasing the number of latent
infill points and the number of simulated paths, respectively. However, the
corresponding computational cost will inevitably be higher.

In order to reduce the discretization bias in step 1, Elerian (1998) sug-
gested replacing the Euler scheme with the Milstein scheme while Durham
and Gallant advocated using a variance stablization transformation, i.e., ap-
plying the Lamperti transform to the continuous time model. Certainly, any
method that reduces the discretization bias can be used. Regarding step 2,
Elerian et al (2001) argued that the importance sampling function of Peder-
sen ignores the end-point information, XτM , and Durham and Gallant (2002)
showed that Pedersen’s importance function draws most samples from re-
gions where the integrand has little mass. Consequently, Pedersen’s method
is simulation-inefficient.

To improve the efficiency of the importance sampler, Durham and Gallant
(2002) considered the following importance sampling function

Xτm+1 = Xτm +
Xih −Xτm

ih− τm
h/M+σ(Xτm , θ)

√

h/Mεm+1, m = 0, · · · ,M−2,

(49)
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where (ε1, ε2, · · · , εM−1) is a multivariate standard normal. Loosing speaking,
this is a Brownian bridge because it starts from X(i−1)h at (i − 1)h and is
conditioned to terminate with Xih at ih.

Another importance sampling function proposed by Durham and Gallant
(2002) is to draw Xτm+1 from the density N(Xτm + μ̃mh/M, σ̃2

mh/M) where
μ̃m = (XτM −Xτm)/(ih− τm), σ̃2

m = σ2(Xτm)(M −m− 1)/(M −m).
Elerian et al. (2001) proposed a more efficient importance function which

is based on the following tied-down process:

p(Xτ1 , · · · , XτM−1 |Xτ0 , XτM ). (50)

In particular, they proposed using the Laplace approximation (c.f., Phillips
(1984); Tierney and Kadane (1986)) to the tied-down process. That is, they
used the distributional approximation (Xτ1 , · · · , XτM−1) ∼ N(x∗, Σ∗) where

x∗ = arg max
x

ln p(Xτ1 , · · · , XτM−1|Xτ0 , XτM ) (51)

Σ2 = −
[

∂2 ln p(X∗
τ1 , · · · , X∗

τM−1
|Xτ0 , XτM )

∂x′∂x

]−1

, (52)

where x = (Xτ1 , · · · , XτM−1)′.
Durham and Gallant (2002) compared the performance of these three im-

portance functions relative to Pedersen (1995) and found that all these meth-
ods deliver substantial improvements.

3.4 Other approaches

3.4.1 Numerical ML

While the transition density may not have a closed-form expression for a
continuous time model, it must satisfy the Fokker-Planck-Komogorov (also
known as “forward”) equation. That is,

∂p

∂t
=

1
2
∂2p

∂y2
. (53)

where p(y, t|x, s) is the transition density. Solving the partial differential equa-
tion numerically at y = Xih, x = X(i−1)h yields the transition density. This
is approach proposed by Lo (1988). Similarly, one can numerically solve the
“backward” equation

∂p

∂s
= −1

2
∂2p

∂x2
. (54)



ML Estimation of Continuous Time Models 515

Obviously, solving these two partial differential equations numerically can be
computationally demanding. Consequently, this approach has been little used
in practical work.

3.4.2 An exact Gaussian method based on time changes

Yu and Phillips (2001) developed an exact Gaussian method to estimate
continuous time models with a linear drift function of the following form:

dX(t) = κ(μ−X(t))dt+ σ(X(t); θ)dB(t), (55)

The approach is based on the idea that any continuous time martingale can
be written as a Brownian motion after a suitable time change. That is, when
we adjust from chronological time in a local martingale Mt to time based
on the evolution of the quadratic variation process [M ]t of M, we have the
time change given by Tt = inf{s|[M ]s > t} and the process transforms to a
Brownian motion (called DDS Brownian motion) so that Mt = W[M ]t

, where
W is standard Brownian motion.

To see how this approach can be used to estimate equation (55), first write
(55) as

X(t+ δ) = e−κhX(t) + μ
(

1 − e−κh
)

+
∫ δ

0

σe−κ(δ−τ)σ(t+ τ)dB(τ), ∀δ > 0.

(56)
Define M(δ) = σ

∫ δ

0
e−κ(δ−τ)σ(t+ τ)dB(τ), which is a continuous martingale

with quadratic variation process

[M ]δ = σ2

∫ δ

0

e−2κ(δ−τ)σ2(t+ τ)dτ. (57)

To construct a DDS Brownian motion to represent M(δ), one can construct
a sequence of positive numbers {δj} which deliver the required time changes.
For any fixed constant a > 0, let

δj+1 = inf{s|[Mj]s ≥ a} = inf{s|σ2

∫ s

0

e−2κ(s−τ)σ2(tj + τ)dτ ≥ a}. (58)

Next, construct a sequence of time points {tj} using the iterations tj+1 =
tj + δj+1 with t1 assumed to be 0. Evaluating equation (56) at {tj}, we have

Xtj+1 = μ
(

1 − e−κδj+1
)

+ e−κδj+1Xtj +M(δj+1). (59)

where M(δj+1) = W[M ]δj+1
= Wa ≡ N(0, a) is the DDS Brownian motion.

Hence, equation (59) is an exact discrete model with Gaussian disturbances
and can be estimated directly by ML conditional on the sequence of time
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changes. Of course, since the new sequence of time points {tj} is path de-
pendent, this approach does not deliver the true likelihood. Also, since a
continuous record of observations is not available, the time points {tj} must
be approximated.

4 Approximate ML Methods Based on the Continuous
Record Likelihood and Realized Volatility

While (1) is formulated in continuous time, the sample data are always col-
lected at discrete points in time or over discrete intervals in the case of flow
data. One may argue that for highly liquid financial assets, the sampled data
are so frequently observed as to be nearly continuously available. This is
especially true for some tick-by-tick data. Unfortunately, at the highest fre-
quencies, continuous time models such as that given by (1) are often bad
descriptions of reality. One reason for the discrepancy is the presence of mar-
ket microstructure noise, due to trading frictions, bid-ask bounces, recording
errors and other anomalies. As a result of these noise effects, the exact ML
method based on the continuous record likelihood that was reviewed in Sec-
tion 2.2 is not applicable.

An alternative approach that is available in such situations was developed
in Phillips and Yu (2007) and involves a two-step procedure to estimate the
underlying continuous time model that makes use of the empirical quadratic
variation process. To explain the method, suppose the model has the form

dX(t) = μ(X(t); θ1)dt+ σ(X(t); θ2)dB(t), (60)

Note that in this specification the vector of parameters θ2 in the diffusion
function is separated from the parameter vector, θ1, that appears in the drift
function. The reason for this distinction will become clear below.

In the first step, Phillips and Yu (2007) propose to estimate parameters
in the diffusion function from the empirical quadratic variation process or
so-called realized volatility. The approach is justified by the fact that real-
ized volatility is a natural consistent estimate of quadratic variation and,
with certain modifications, can be made consistent even in the presence of
microstructure noise effects. Also, realized volatility has convenient distri-
butional characteristics that are determined asymptotically by (functional)
central limit theory, as derived by Jacod (1994) and Barndorff-Nielsen and
Shephard (2002).

To proceed, assume that Xt is observed at the following times

t = h, 2h, · · · ,Mhh(=
T

K
)

︸ ︷︷ ︸

, (Mh + 1)h, · · · , 2Mhh(=
2T
K

)
︸ ︷︷ ︸

, · · · , nhh(= T ),

(61)
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where nh = KMh with K a fixed and positive integer, T is the time span
of the data, h is the sampling frequency, and Mh = O(nh). Phillips and Yu
constructed the non-overlapping K subsamples

((k − 1)Mh + 1)h, · · · , kMhh, where k = 1, · · · ,K, (62)

so that each sub-sample has Mh observations over the interval ((k−1) TK , k
T
K ].

For example, if ten years of weekly observed data are available and we split
the data into ten blocks, then T = 10, h = 1/52, Mh = 52, K = 10. The total
number of observations is 520 and the number of observations contained in
each block is 52.

As h → 0, n = T
h → ∞ and Mh → ∞,

Mh
∑

i=2

(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2
p→ [X ]k T

K
− [X ](k−1) T

K
, (63)

and

ln(
∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2 − ln([X ]k T
K

− [X ](k−1) T
K

) + 1
2s

2
k

sk
d→ N(0, 1), (64)

where

sk = min

{√

r2k

(
∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2)2
,

√

2
Mh

}

,

rk =

√

√

√

√

2
3

Mh
∑

i=2

(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)4,

for k = 1, · · · ,K, and [X ]T is the quadratic variation of X which can be
consistently estimated by the empirical counterpart [Xh]T defined as

[Xh]T =
nh
∑

i=2

(Xih −X(i−1)h)2. (65)

The limit (63) follows by virtue of the definition of quadratic variation.
The central limit theorem (CLT) (64) is based on the asymptotic theory of
Barndorff-Nielsen and Shephard (2005), which involves a finite sample cor-
rection (65) on some important earlier limit theory contributions made by
Jacod (1994) and Barndorff-Nielsen and Shephard (2002).

Based on the CLT (64), θ2 can be estimated in the first stage by running
a (nonlinear) least squares regression of the standardized realized volatility
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ln
(

∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2
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on the standardized diffusion function
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for k = 1, · · · ,K. This produces a consistent estimate ̂θ2 of θ2. In the sec-
ond stage, the approximate continuous record or infill log-likelihood function
(AIF) is maximized with respect to θ1

�AIF (θ1) =
n

∑

i=2

μ(X(i−1)h; θ1)

σ2(X(i−1)h; ̂θ2)
(Xih−X(i−1)h)− h

2

n
∑

i=2

μ2(X(i−1)h; θ1)

σ2(X(i−1)h; ̂θ2)
. (68)

The procedure is discussed more fully in Phillips and Yu (2007).
To illustrate the two-stage method, we consider the following specific mod-

els.

1. Vasicek model (6): Since there is only one parameter in the diffusion
function, one could choose Mh = 1. As a result, the first stage estimation
gives the following estimator for σ,

σ̂ =

√

[Xh]T
T

, (69)

and the approximate infill log-likelihood function is given by

�AIF (κ, μ) =
n

∑

i=2

κ(μ−X(i−1)h)(Xih−X(i−1)h)−
h

2

n
∑

i=2

κ2(μ−X(i−1)h)2.

(70)
2. Square root model (9): With Mh = 1, the first stage estimation gives

the following estimator for σ.

σ̂ =

√

[Xh]T
h
∑nh

i=1X(i−1)h

. (71)

The approximate infill log-likelihood function is given by

�AIF (κ, μ) =
n

∑

i=2

κ(μ−X(i−1)h)
σ̂2X(i−1)h

(Xih−X(i−1)h)−h
2

n
∑

i=2

κ2(μ−X(i−1)h)2

σ̂2X(i−1)h
.

(72)
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5 Monte Carlo Simulations

This section reports the results of a Monte Carlo experiment designed to
compare the performance of the various ML estimation methods reviewed
in the previous sections. In the experiment, the true generating process is
assumed to be the CIR model of short term interest rates of the form

dX(t) = κ(μ−X(t))dt+ σ
√

X(t) dB(t), (73)

where κ = 0.1, μ = 0.1, σ = 0.1. Replications involving 1000 samples, each
with 120 monthly observations (ie h = 1/12), are simulated from the true
model. The parameter settings are realistic to those in many financial appli-
cations and the sample period covers 10 years.

It is well-known that κ is difficult to estimate with accuracy whereas the
other two parameters, especially σ, are much easier to estimate (Phillips and
Yu (2005a, b)) and extensive results are already in the literature. Conse-
quently, we only report estimates of κ in the present Monte Carlo study.
In total, we employ six estimation methods, namely, exact ML, the Euler
scheme, the Milstein scheme, the Nowman method, the infill method, and
the Hermite expansion (with K = 1).

Table 1 reports the means, standard errors, and root mean square errors
(RMSEs) for all these cases. The exact ML estimator is calculated for com-
parison purposes. Since the other estimators are designed to approach to the
exact ML estimator, we also report the means and the standard errors of the
differences between the exact ML estimator and the alternative estimators.

Table 1
Exact and Approximate ML Estimation

and Bias Reduced Estimation of κ
True Value κ = 0.1

Method Exact Euler Milstein Nowman In-fill Hermite Jackk Jackk Ind
(m=2) (m=3) Inf

Mean .2403 .2419 .2444 .2386 .2419 .2400 .1465 .1845 .1026
Std err .2777 .2867 .2867 .2771 .2867 .2762 .3718 .3023 .2593
RMSE .3112 .3199 .3210 .3098 .3199 .3096 .3747 .3139 .2594
Mean of NA .0016 .0041 -.0017 .0016 -.0003 NA NA NA

diff
Std err NA .0500 .0453 .0162 .0500 .0043 NA NA NA
of diff

Note: A square-root model with κ = 0.1, μ = 0.1, σ = 0.1 is used to
simulate 120 monthly observations for each of the 1,000 replications. Various
methods are used to estimate κ.

Several conclusions can be drawn from the table (Note the true value of
κ = 0.1). First, the ML estimator of κ is upward biased by more than 140%,
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consistent with earlier results reported in Phillips and Yu (2005a, b). This re-
sult is also consistent with what is known about dynamic bias in local-to-unity
discrete time autoregressive models. Second, all the approximation-based ML
methods perform very similarly to the exact ML method, and hence, all in-
herit substantial estimation bias from the exact ML method that these meth-
ods seek to imitate. Indeed, compared to the estimation bias in exact ML,
the bias that is induced purely by the approximations is almost negligible.
Third, relative to the Euler scheme, the Milstein scheme fails to offer any
improvements in terms of both mean and variation while Nowman’s method
offers slight improvements in terms of variation and root mean squared error
(RMSE). In terms of the quality of approximating the exact ML, the method
based on the Hermite expansions is a clear winner when K is as small as 1.
Further improvements can be achieved by increasing the value of K, although
such improvements do not help to remove the finite sample bias of the ML
procedure.

6 Estimation Bias Reduction Techniques

It has frequently been argued in the continuous time finance literature that
ML should be the preferred choice of estimation method. The statistical jus-
tification for this choice is the generality of the ML approach and its good
asymptotic properties of consistency and efficiency. Moreover, since sample
sizes in financial data applications are typically large3, it is often expected
that these good asymptotic properties will be realized in finite samples. How-
ever, for many financial time series, the asymptotic distribution of the ML
estimator often turns out to be a poor approximation to the finite sample
distribution, which may be badly biased even when the sample size is large.
This is especially the case in the commonly occurring situation of drift pa-
rameter estimation in models where the process is nearly a martingale. From
the practical viewpoint, this is an important shortcoming of the ML method.
The problem of estimation bias turns out to be of even greater importance in
the practical use of econometric estimates in asset and option pricing, where
there is nonlinear dependence of the pricing functional on the parameter es-
timates, as shown in Phillips and Yu (2005a). This nonlinearity seems to
exacerbate bias and makes good bias correction more subtle.

In the following sections we describe two different approaches to bias cor-
rection. The first of these is a simple procedure based on Quenouille’s (1956)
jackknife. To improve the finite sample properties of the ML estimator in
continuous time estimation and in option pricing applications, Phillips and
Yu (2005a) proposed a general and computationally inexpensive method of
bias reduction based on this approach. The second approach is simulation-

3 Time series samples of weekly data often exceed 500 and sample sizes are very much
larger for daily and intradaily data.
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based and involves the indirect inference estimation idea of Gourieroux et al
(1993). Monfort (1996) proposed this method of bias corrected estimation in
the context of nonlinear diffusion estimation.

In the context of OU process with a known long-run mean, Yu (2007)
derived analytical expressions to approximate the bias of ML estimator of
the mean reversion parameter and argued that a nonlinear term in the bias
formula is particularly important when the mean reversion parameter is close
to zero.

6.1 Jackknife estimation

Quenouille (1956) proposed the jackknife as a solution to finite sample bias
problems in parametric estimation contexts such as discrete time autoregres-
sions. The method involves the systematic use of subsample estimates. To
fix ideas, let N be the number of observations in the whole sample and de-
compose the sample into m consecutive subsamples each with � observations,
so that N = m× �. The jackknife estimator of a certain parameter, θ, then
utilizes the subsample estimates of θ to assist in the bias reduction process
giving the jackknife estimator

̂θjack =
m

m− 1
̂θN −

∑m
i=1

̂θli
m2 −m

, (74)

where ̂θN and ̂θli are the estimates of θ obtained by application of a given
method like the exact ML or approximate ML to the whole sample and the
i’th sub-sample, respectively. Under quite general conditions which ensure
that the bias of the estimates (̂θN , ̂θli) can be expanded asymptotically in
a series of increasing powers of N−1, it can be shown that the bias in the
jackknife estimate ̂θjack is of order O(N−2) rather than O(N−1).

The jackknife has several appealing properties. The first advantage is its
generality. Unlike other bias reduction methods, such as those based on cor-
rections obtained by estimating higher order terms in an asymptotic expan-
sion of the bias, the jackknife technique does not rely (at least explicitly) on
the explicit form of an asymptotic expansion. This means that it is appli-
cable in a broad range of model specifications and that it is unnecessary to
develop explicit higher order representations of the bias. A second advantage
of the jackknife is that this approach to bias reduction can be used with many
different estimation methods, including general methods like the exact ML
method whenever it is feasible or approximate ML methods when the exact
ML is not feasible. Finally, unlike many other bias correction methods, the
jackknife is computationally much cheaper to implement. In fact, the method
is not much more time consuming than the initial estimation itself. A draw-
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back with jackknife is that it cannot completely remove the bias as it is only
designed to decrease the order of magnitude of the bias.

Table 1 reports the results of the jackknife method applied with m = 2, 3
based on the same experimental design above. It is clear that the jackknife
makes substantial reductions in the bias but this bias reduction comes with
an increase in variance. However, a carefully designed jackknife method can
reduce the RMSE.

6.2 Indirect inference estimation

The indirect inference (II) procedure, first introduced by Smith (1993), and
extended by Gouriéroux, Monfort, and Renault (1993) and Gallant and
Tauchen (1996), can be understood as a generalization of the simulated
method of moments approach of Duffie and Singleton (1993). It has been
found to be a highly useful procedure when the moments and the likelihood
function of the true model are difficult to deal with, but the true model is
amenable to data simulation. Since many continuous time models are easy to
simulate but present difficulties in the analytic derivation of moment func-
tions and likelihood, the indirect inference procedure has some convenient
advantages in working with continuous time models in finance. A carefully
designed indirect inference estimator can also have good small sample proper-
ties, as shown by MacKinnon and Smith (1998) and Gouriéroux, et al. (2000)
in the time series context and by Gouriéroux, Phillips and Yu (2007) in the
panel context. The method therefore offers some interesting opportunities for
bias correction and the improvement of finite sample properties in continuous
time estimation.

Without loss of generality, we focus on the OU process. Suppose we need
to estimate the parameter κ in the model

dX(t) = κ(μ−X(t))dt+ σ dB(t). (75)

from observations x = {Xh, · · · , XNh}. An initial estimator of κ can be
obtained, for example, by applying the Euler scheme to {Xh, · · · , XNh} (call
it κ̂N). Such an estimator is inconsistent (due to the discretization error) and
may be seriously biased (due to the poor finite sample property of ML in the
low κ or near-unit-root case).

The indirect inference method makes use of simulations to remove the
discretization bias. It also makes use of simulations to calibrate the bias
function and hence requires neither the explicit form of the bias, nor the
bias expansion. This advantage seems important when the computation of
the bias expression is analytically involved, and it becomes vital when the
bias and the first term of the bias asymptotic expansions are too difficult to
compute explicitly.
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The idea of indirect inference here is as follows. Given a parameter choice
κ, we apply the Euler scheme with a much smaller step size than h (say
δ = h/10), which leads to

˜Xk
t+δ = κ(μ− ˜Xk

t )h+ ˜Xk
t + σ

√
δεt+δ, (76)

where

t = 0, δ, · · · , h(= 10δ)
︸ ︷︷ ︸

, h+ δ, · · · , 2h(= 20δ)
︸ ︷︷ ︸

, 2h+ δ, · · · , Nh. (77)

This sequence may be regarded as a nearly exact simulation from the contin-
uous time OU model for small δ. We then choose every (h/δ)th observation
to form the sequence of { ˜Xk

ih}Ni=1, which can be regarded as data simulated
directly from the OU model with the (observationally relevant) step size h.

Let x̃k(κ) = { ˜Xk
h , · · · , ˜Xk

Nh} be data simulated from the true model, where
k = 1, · · · ,K with K being the number of simulated paths. It should be
emphasized that it is important to choose the number of observations in
x̃k(κ) to be the same as the number of observations in the observed sequence
x for the purpose of the bias calibration. Another estimator of κ can be
obtained by applying the Euler scheme to {Xk

h , · · · , Xk
Nh} (call it κ̃kN ). Such

an estimator and hence the expected value of them across simulated paths is
naturally dependent on the given parameter choice κ.

The central idea in II estimation is to match the parameter obtained from
the actual data with that obtained from the simulated data. In particular,
the II estimator of κ is defined as

κ̂IIN,K = argminκ ‖ κ̂N − 1
K

K
∑

h=1

κ̃kN (κ) ‖, (78)

where ‖ · ‖ is some finite dimensional distance metric. In the case where K
tends to infinity, the II estimator is the solution of the limiting extremum
problem

κ̂IIN = argminκ ‖ κ̂N − E(κ̃kN (κ)) ‖ . (79)

This limiting extremum problem involves the so-called binding function

bN(κ) = E(κ̃kN (κ)), (80)

which is a finite sample functional relating the bias to κ. In the case where
bN is invertible, the indirect inference estimator is given by

κ̂IIN = b−1
N (κ̂N ). (81)

The II estimation procedure essentially builds in a small-sample bias correc-
tion to parameter estimation, with the bias (in the base estimate, like ML)
being computed directly by simulation.
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Indirect inference has several advantages for estimating continuous time
models. First, it overcomes the inconsistency problem that is common in
many approximate ML methods. Second, the indirect inference technique
calibrates the bias function via simulation and hence does not require, just
like the jackknife method, an explicit form for the bias function or its ex-
pansion. Consequently, the method is applicable in a broad range of model
specifications. Thirdly, indirect inference can be used with many different
estimation methods, including the exact ML method or approximate ML
methods, and in doing so will inherit the good asymptotic properties of these
base estimators. For instance, it is well known that the Euler scheme offers an
estimator which has very small dispersion relative to many consistent estima-
tors and indirect inference applied to it should preserve its good dispersion
characteristic while at the same time achieving substantial bias reductions.
Accordingly, we expect indirect inference to perform very well in practice
and in simulations on the basis of criteria such as RMSE, which take into
account central tendency and variation. A drawback with indirect inference is
that it is a simulation-based method and can be computationally expensive.
However, with the continuing explosive growth in computing power, such a
drawback is obviously of less concern

Indirect inference is closely related to median unbiased estimation (MUE)
originally proposed by Andrews (1993) in the context of AR models and
subsequently applied by Phillips and Yu (2005a) to reduce bias in the mean
reversion estimation in the CIR model. While indirect inference uses expecta-
tion as the binding function, MUE uses the median as the binding function.
Both methods are simulation-based.

Table 1 reports the results of the indirect inference method with K = 1000
based on the same experiment discussed earlier. Clearly, indirect inference is
very successful in removing bias and the bias reduction is achieved without
increasing the variance. As a result, the RMSE is greatly reduced.

7 Multivariate Continuous Time Models

Multivariate systems of stochastic differential equations may be treated in
essentially the same manner as univariate models such as (1) and meth-
ods such as Euler-approximation-based ML methods and transition density-
approximation-based ML methods continue to be applicable. The literature
on such extensions is smaller, however, and there are more and more financial
data applications of multivariate systems at present; see, for example, Ghy-
sels et al (1996) and Shephard (2005) for reviews of the stochastic volatility
literature and Dai and Singleton (2002) for a review of the term structure
literature.

One field where the literature on multivariate continuous time economet-
rics is well developed is macroeconomic modeling of aggregative behavior.
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These models have been found to provide a convenient mechanism for em-
bodying economic ideas of cyclical growth, market disequilibrium and dy-
namic adjustment mechanisms. The models are often constructed so that
they are stochastic analogues (in terms of systems of stochastic differential
equations) of the differential equations that are used to develop the models
in economic theory. The Bergstrom (1966) approximation, discussed in Sec-
tion 3.1 above, was developed specifically to deal with such multiple equation
systems of stochastic equations. Also, the exact discrete time model corre-
sponding to a system of linear diffusions, extending the Vasicek model in
Section 2.1, was developed in Phillips (1972, 1974) as the basis for consistent
and efficient estimation of structural systems of linear diffusion equations
using nonlinear systems estimation and Gaussian ML estimation.

One notable characteristic of such continuous time systems of equations is
that there are many across-equation parameter restrictions. These restrictions
are typically induced by the manner in which the underlying economic theory
(for example, the theory of production involving a parametric production
function) affects the formulation of other equations in the model, so that
the parameters of one relation (the production relation) become manifest
elsewhere in the model (such as wage and price determination, because of the
effect of labor productivity on wages). The presence of these across-equation
restrictions indicates that there are great advantages to the use of systems
procedures, including ML estimation, in the statistical treatment of systems
of stochastic differential equations.

While many of the statistical issues already addressed in the treatment of
univariate diffusions apply in systems of equations, some new issues do arise.
A primary complication is that of aliasing, which in systems of equations
leads to an identification problem when a continuous system in estimated by
a sequence of discrete observations at sampling interval h. The manifestation
of this problem is evident in a system of linear diffusions for an n− vector
process X (t) of the form

dX (t) = A (θ2)X (t) dt+Σ (θ2) dW (t) , (82)

where A = A (θ) is an n×n coefficient matrix whose elements are dependent
on the parameter vector θ1, Σ = Σ (θ2) is a matrix of diffusion coefficients
dependent on the parameter vector θ2, and W (t) is n− vector standard
Brownian motion. The exact discrete model corresponding to this system
has the form

Xih = ehA(θ2)Xih +N

(

0,
∫ h

0

esA(θ2)Σ (θ2) esA(θ2)
′
ds

)

, (83)

and the coefficient matrix in this discrete time model involves the matrix
exponential function ehA(θ2).However, there are in general, an infinite number
of solutions (A) to the matrix exponential equation
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ehA = B0 (84)

where B0 = ehA
0

= ehA(θ0
2) and θ02 is the true value of θ2. In fact, the

solutions of the matrix equation (84) all have the form

A = A0 + TQT−1, (85)

where T is a matrix that diagonalizes A0 (so that T−1AT = diag(λ1, ..., λn),
assuming that A0 has distinct characteristics roots {λi : i = 1, ..., n}), Q is a
matrix of the form

Q =
2πi
h

⎡

⎣

0 0 0
0 P 0
0 0 −P

⎤

⎦ , (86)

and P is a diagonal matrix with integers on the diagonal. The multiple solu-
tions of (84) effectively correspond to aliases of A0.

Fortunately, in this simple system the aliasing problem is not consequential
because there are enough restrictions on the form of the system to ensure
identifiability. The problem was originally considered in Phillips (1973). In
particular, the coefficient matrix A = A (θ) is real and is further restricted
by its dependence on the parameter vector θ. Also, the covariance matrix
of the error process

∫ h

0 e
sA(θ2)Σ (θ2) esA(θ2)

′
ds in the discrete system is real

and necessarily positive semi-definite. These restrictions suffice to ensure the
identifiability of A0 in (84), removing the aliasing problem. Discussion and
resolution of these issues is given in Phillips (1973) and Hansen and Sargent
(1984). Of course, further restrictions may be needed to ensure that θ1 and
θ2 are identified in A

(

θ01
)

and Σ
(

θ02
)

.
A second complication that arises in the statistical treatment of systems

of stochastic differential equations is that higher order systems involve exact
discrete systems of the vector autoregressive and moving average type, which
have more complicated likelihood functions. A third complication is that the
discrete data often involves both stock and flow variables, so that some vari-
ables are instantaneously observed (like interest rates) while other variables
(like consumption expenditure) are observed as flows (or integrals) over the
sampling interval. Derivation of the exact discrete model and the likelihood
function in such cases presents further difficulties - see Phillips (1978) and
Bergstrom (1984) - and involves complicated submatrix formulations of ma-
trix exponential series. Most of these computational difficulties have now
been resolved and Gaussian ML methods have been regularly used in applied
research with these continuous time macroeconometric systems. Bergstrom
(1996) provides a survey of the subject area and much of the empirical work.
A more recent discussion is contained in Bergstrom and Nowman (2006).
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8 Conclusions

Research on ML estimation of continuous time systems has been ongoing
in the econometric and statistical literatures for more than three decades.
But the subject has received its greatest attention in the last decade, as re-
searchers in empirical finance have sought to use these models in practical
applications of importance in the financial industry. Among the more sig-
nificant of these applications have been the analysis of the term structure
of interest rates and the pricing of options and other financial derivatives
which depend on parameters that occur in the dynamic equations of motion
of variables that are most relevant for financial asset prices, such as interest
rates. The equations of motion of such variables are typically formulated in
terms of stochastic differential equations and so the econometric estimation
of such equations has become of critical importance in these applications.
We can expect the need for these methods and for improvements in the sta-
tistical machinery that is available to practitioners to grow further as the
financial industry continues to expand and data sets become richer. The field
is therefore of growing importance for both theorists and practitioners.
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Parametric Inference for Discretely
Sampled Stochastic Differential
Equations

Michael Sørensen∗

Abstract A review is given of parametric estimation methods for discretely
sampled multivariate diffusion processes. The main focus is on estimating
functions and asymptotic results. Maximum likelihood estimation is briefly
considered, but the emphasis is on computationally less demanding martin-
gale estimating functions. Particular attention is given to explicit estimating
functions. Results on both fixed frequency and high frequency asymptotics
are given. When choosing among the many estimators available, guidance is
provided by simple criteria for high frequency efficiency and rate optimality
that are presented in the framework of approximate martingale estimating
functions.

1 Introduction

In this chapter we consider parametric inference based on observations
X0, XΔ, . . . , XnΔ from a d-dimensional diffusion process given by

dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt, (1)

where σ is a d× d-matrix and W a d-dimensional standard Wiener process.
The drift b and the diffusion matrix σ depend on a parameter θ which varies in
a subset Θ of IRp. The main focus is on estimating functions and asymptotic
results.

Michael Sørensen
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5,
DK-2100 Copenhagen Ø, Denmark, e-mail: michael@math.ku.dk

∗ The research was supported by the Danish Center for Accounting and Finance funded by
the Danish Social Science Research Council and by the Center for Research in Econometric
Analysis of Time Series funded by the Danish National Research Foundation.

 

T.G. Anderson et al., Handbook of Financial Time Series, 531
DOI: 10.1007/978-3-540-71297-8_23, © Springer-Verlag Berlin Heidelberg  2009 



532 M. Sørensen

The true (data-generating) model is supposed to be the stochastic differ-
ential equation (1) with the parameter value θ0, and the coefficients b and
σ are assumed to be sufficiently smooth functions of the state to ensure the
existence of a unique weak solution for all θ in Θ. The state space of X is
denoted by D. When d = 1, the state space is an interval (�, r), where � could
possibly be −∞, and r might be ∞. We suppose that the transition distribu-
tion has a density y �→ p(Δ,x, y; θ) with respect to the Lebesgue measure on
D, and that p(Δ,x, y; θ) > 0 for all y ∈ D. The transition density is the con-
ditional density of Xt+Δ given that Xt = x. Since the data are equidistant,
we will often suppress the argument Δ in the transition density and write
p(x, y; θ).

It is assumed that the diffusion is ergodic, and that its invariant probability
measure has density function μθ for all θ ∈ Θ. The initial value of the diffusion
is assumed to be either known, X0 = x0, or X0 ∼ μθ. In the latter case the
diffusion is stationary.

2 Asymptotics: Fixed Frequency

We consider the asymptotic properties of an estimator ̂θn obtained by solving
the estimating equation

Gn(̂θn) = 0, (2)

where Gn is an estimating function of the form

Gn(θ) =
n

∑

i=1

g(Δ,XΔi, XΔ(i−1); θ) (3)

for some suitable function g(Δ, y, x; θ) with values in IRp. All estimators dis-
cussed below can be represented in this way. An estimator, ̂θn, which solves
(2) with probability approaching one as n → ∞, is called a Gn–estimator. A
priori there is no guarantee that a unique solution to (2) exists. In this sec-
tion, we consider the standard asymptotic scenario, where the time between
observations Δ is fixed and the number of observations goes to infinity. In
most cases we suppress Δ in the notation and write for example g(y, x; θ).

We have assumed that the diffusion is ergodic and denote the density func-
tion of the invariant probability measure by μθ. Let Qθ denote the probability
measure on D2 with density function μθ(x)p(Δ,x, y; θ). This is the density
function of two consecutive observations (XΔ(i−1), XΔi) when the diffusion
is stationary, i.e. when X0 ∼ μθ. We impose the following condition on the
function g

Qθ(gj(θ)2) =
∫

D2
gj(y, x; θ)2μθ(x)p(x, y; θ)dydx < ∞, j = 1, . . . , p, (4)
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for all θ ∈ Θ, where gj denotes the jth coordinate of g. The quantityQθ(gj(θ))
is defined similarly. Under the assumption of ergodicity and (4), it follows that

1
n

n
∑

i=1

g(XΔi, XΔ(i−1); θ)
Pθ−→ Qθ(g(θ))2. (5)

When the diffusion, X , is one-dimensional, the following simple conditions
ensure ergodicity, and an explicit expression exists for the density of the
invariant probability measure. The scale measure of X has Lebesgue density

s(x; θ) = exp
(

−2
∫ x

x#

b(y; θ)
σ2(y; θ)

dy

)

, x ∈ (�, r), (6)

where x# ∈ (�, r) is arbitrary.

Condition 1 The following holds for all θ ∈ Θ:

∫ r

x#
s(x; θ)dx =

∫ x#

�

s(x; θ)dx = ∞

and
∫ r

�

[s(x; θ)σ2(x; θ)]−1dx = A(θ) < ∞.

Under Condition 1 the process X is ergodic with an invariant probability
measure with Lebesgue density

μθ(x) = [A(θ)s(x; θ)σ2(x; θ)]−1, x ∈ (�, r). (7)

For details see e.g. Skorokhod (1989).
For the following asymptotic results to hold, we also need to assume that

under Pθ the estimating function (3) satisfies a central limit theorem

1√
n

n
∑

i=1

g(XΔi, XΔ(i−1); θ)
D−→ N(0, V (θ)) (8)

for some p × p-matrix V (θ). For (8) to hold, it is obviously necessary that
Qθ(g(θ)) = 0.

Theorem 1 Assume that θ0 ∈ intΘ and that a neighbourhood N of θ0 in Θ
exists, such that:
(1) The function g(θ) : (x, y) �→ g(x, y; θ) is integrable with respect to the
probability measure Qθ0 for all θ ∈ N , and

Qθ0(g(θ0)) = 0. (9)

2 Qθ(g(θ)) denotes the vector (Qθ(gj(θ)))j=1,...,p.
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(2) The function θ �→ g(x, y; θ) is continuously differentiable on N for all
(x, y) ∈ D2.
(3) The functions3 (x, y) �→ ∂θjgi(x, y; θ), i, j = 1, . . . , p, are dominated
for all θ ∈ N by a function which is integrable with respect to Qθ0.
(4) The p× p matrix4

W = Qθ0 (∂θT g(θ0)) (10)

is invertible.
Then a consistent Gn–estimator ̂θn exists, and

√
n(̂θn − θ0)

D−→ Np

(

0,W−1VWT−1
)

(11)

under Pθ0 , where V = V (θ0). If, moreover, the function g(x, y; θ) is locally
dominated integrable5 with respect to Qθ0 and

Qθ0(g(θ)) �= 0 for all θ �= θ0,

then the estimator ̂θn is unique on any bounded subset of Θ containing θ0
with probability approaching one as n → ∞.

A proof of this theorem can be found in Jacod and Sørensen (2008). Related
asymptotic results formulated in the language of the generalized method of
moments were given by Hansen (1982).

If an estimating function does not satisfy (9), the obtained estimator is
not consistent, but will converge to the solution θ̄ to the equation

Qθ0(g(θ̄)) = 0. (12)

If the estimating function Gn(θ) is a martingale under Pθ, the asymptotic
normality in (8) follows without further conditions from the central limit
theorem for martingales, see Hall and Heyde (1980). This result goes back to
Billingsley (1961). In the martingale case the matrix V (θ) is given by

V (θ) = Qθ0

(

g(θ)g(θ)T
)

, (13)

and the asymptotic covariance matrix of the estimator ̂θn can be consistently
estimated by means of the matricesWn and Vn given in the following theorem;
see Jacod and Sørensen (2008).

3 ∂θj
gi denotes the partial derivative ∂gi

∂θj
.

4 In this chapter T denotes transposition, vectors are column vectors, and Qθ0 (∂θT g(θ0))
denotes the matrix {Qθ0 (∂θj

gi(θ0))}, where i is the row number and j the column number.
5 A function g : D2 ×Θ �→ IR is called locally dominated integrable with respect to Qθ0 if
for each θ′ ∈ Θ there exists a neighbourhood Uθ′ of θ′ and a non-negative Qθ0 -integrable
function hθ′ : D2 �→ IR such that | g(x, y; θ) | ≤ hθ′(x, y) for all (x, y, θ) ∈ D2 × Uθ′ .
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Theorem 2 Under the conditions (2) – (4) of Theorem 1,

Wn =
1
n

n
∑

i=1

∂θg(X(i−1)Δ, XiΔ; ̂θn)
Pθ0−→ W, (14)

and the probability that Wn is invertible approaches one as n → ∞. If, more-
over, the functions (x, y) �→ gi(x, y; θ), i = 1, . . . , p, are dominated for all
θ ∈ N by a function which is square integrable with respect to Qθ0 , then in
the martingale case

Vn =
1
n

n
∑

i=1

g(X(i−1)Δ, XiΔ; ̂θn)g(X(i−1)Δ, XiΔ; ̂θn)T
Pθ0−→ V. (15)

When the estimating function Gn(θ) is not a martingale under Pθ, further
conditions on the diffusion process must be imposed to ensure the asymptotic
normality in (8). If the diffusion is stationary and geometrically α-mixing6,
(8) holds with

V (θ) = Qθ0

(

g(θ)g(θ)T
)

+
∞
∑

k=1

[

Eθ0

(

g(XΔ, X0)g(X(k+1)Δ, XkΔ)T
)

(16)

+ Eθ0

(

g(X(k+1)Δ, XkΔ)g(XΔ, X0)T
)]

,

provided that V (θ) is strictly positive definite, and that Qθ(gi(θ)2+ε) < ∞
for some ε > 0, see e.g. Doukhan (1994). Genon-Catalot et al. (2000) gave
the following simple sufficient condition for a one-dimensional diffusion to be
geometrically α-mixing.

Condition 2
(i) The function b is continuously differentiable with respect to x and σ
is twice continuously differentiable with respect to x, σ(x; θ) > 0 for all
x ∈ (�, r), and there exists a constant Kθ > 0 such that |b(x; θ)| ≤ Kθ(1+ |x|)
and σ2(x; θ) ≤ Kθ(1 + x2) for all x ∈ (�, r).

(ii) σ(x; θ)μθ(x) → 0 as x ↓ � and x ↑ r.

(iii) 1/γ(x; θ) has a finite limit as x ↓ � and x ↑ r, where γ(x; θ) =
∂xσ(x; θ) − 2b(x; θ)/σ(x; θ).

Other conditions for geometric α-mixing were given by Veretennikov
(1987), Hansen and Scheinkman (1995), and Kusuoka and Yoshida (2000).

6 α-mixing with mixing coefficients that tend to zero geometrically fast.
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3 Likelihood Inference

The diffusion process X is a Markov process, so the likelihood function based
on the observations Xt0 , Xt1 , · · · , Xtn (t0 = 0), conditional on X0, is

Ln(θ) =
n
∏

i=1

p(ti − ti−1, Xti−1 , Xti ; θ), (17)

where y �→ p(s, x, y; θ) is the transition density. Under weak regularity con-
ditions the maximum likelihood estimator is efficient, i.e. it has the small-
est asymptotic variance among all estimators. The transition density is only
rarely explicitly known, but several numerical approaches make likelihood
inference feasible for diffusion models. Pedersen (1995) proposed a method
for obtaining an approximation to the likelihood function by rather ex-
tensive simulation. Pedersen’s method was very considerably improved by
Durham and Gallant (2002), whose method is computationally much more
efficient. Poulsen (1999) obtained an approximation to the transition density
by numerically solving a partial differential equation, whereas Aït-Sahalia
(2002, 2003) proposed to approximate the transition density by means of ex-
pansions. A Gaussian approximation to the likelihood function obtained by
local linearization of (1) was proposed by Ozaki (1985), while Forman and
Sørensen (2008) proposed to use an approximation in terms of eigenfunctions
of the generator of the diffusion. Bayesian estimators with the same asymp-
totic properties as the maximum likelihood estimator can be obtained by
Markov chain Monte Carlo methods, see Elerian et al. (2001), Eraker (2001),
and Roberts and Stramer (2001). Finally, exact and computationally efficient
likelihood-based estimation methods were presented by Beskos et al. (2006).
These various approaches to maximum likelihood estimation will not be con-
sidered further in this chapter. Some of them are treated in Phillips and Yu
(2008). Asymptotic results for the maximum likelihood estimator were es-
tablished by Dacunha-Castelle and Florens-Zmirou (1986), while asymptotic
results when the observations are made at random time points were obtained
by Aït-Sahalia and Mykland (2003).

The vector of partial derivatives of the log-likelihood function with respect
to the coordinates of θ,

Un(θ) = ∂θ logLn(θ) =
n

∑

i=1

∂θ log p(Δi, Xti−1 , Xti ; θ), (18)

where Δi = ti − ti−1, is called the score function (or score vector). The max-
imum likelihood estimator usually solves the estimating equation Un(θ) = 0.
The score function is a martingale under Pθ, which is easily seen provided
that the following interchange of differentiation and integration is allowed:
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Eθ

(

∂θ log p(Δi, Xti−1 , Xti ; θ)
∣

∣Xt1 , . . . , Xti−1

)

=
∫

D

∂θp(Δi, Xti−1 , y; θ)
p(Δi, Xti−1 , y; θ)

p(Δi, Xti−1 , y, θ)dy

= ∂θ

∫

D

p(Δi, Xti−1 , y; θ)dy = 0.

A simple approximation to the likelihood function is obtained by approxi-
mating the transition density by a Gaussian density with the correct first
and second conditional moments. For a one-dimensional diffusion we get

p(Δ,x, y; θ) ≈ q(Δ,x, y; θ) =
1

√

2πφ(Δ,x; θ)
exp

[

(y − F (Δ,x; θ))2

2φ(Δ,x; θ)

]

where
F (Δ,x; θ) = Eθ(XΔ|X0 = x) =

∫ r

�

yp(Δ,x, y; θ)dy. (19)

and

φ(Δ,x; θ) = Varθ(XΔ|X0 = x) =
∫ r

�

[y − F (Δ,x; θ)]2p(Δ,x, y; θ)dy. (20)

In this way we obtain the quasi-likelihood

Ln(θ) ≈ QLn(θ) =
n
∏

i=1

q(Δi, Xti−1 , Xti ; θ),

and by differentiation with respect to the parameter vector, we obtain the
quasi-score function

∂θ logQLn(θ) =
n

∑

i=1

{

∂θF (Δi, Xti−1 ; θ)
φ(Δi, Xti−1 ; θ)

[Xti − F (Δi, Xti−1 ; θ)] (21)

+
∂θφ(Δi, Xti−1 ; θ)
2φ(Δi, Xti−1 ; θ)2

[

(Xti − F (Δi, Xti−1 ; θ))
2 − φ(Δi, Xti−1 ; θ)

]

}

,

which is clearly a martingale under Pθ. It is a particular case of the quadratic
martingale estimating functions considered by Bibby and Sørensen (1995)
and Bibby and Sørensen (1996). Maximum quasi-likelihood estimation was
considered by Bollerslev and Wooldridge (1992).
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4 Martingale Estimating Functions

In this section we present a rather general way of obtaining approximations
to the score function by means of martingales of a similar form. Suppose we
have a collection of real valued functions hj(x, y, ; θ), j = 1, . . . , N satisfying

∫

D

hj(x, y; θ)p(x, y; θ)dy = 0 (22)

for all x ∈ D and θ ∈ Θ. Each of the functions hj could be used separately to
define an estimating function of the form (3), but a better approximation to
the score function, and hence a more efficient estimator, is obtained by com-
bining them in an optimal way. Therefore we consider estimating functions
of the form

Gn (θ) =
n

∑

i=1

a(X(i−1)Δ, θ)h(X(i−1)Δ, XiΔ; θ), (23)

where h = (h1, . . . , hN )T , and the p×N weight matrix a(x, θ) is a function
of x such that (23) is Pθ-integrable. It follows from (22) that Gn (θ) is a
martingale under Pθ for all θ ∈ Θ. An estimating function with this property
is called a martingale estimating function.

The matrix a determines how much weight is given to each of the hjs
in the estimation procedure. This weight matrix can be chosen in an op-
timal way rather straightforwardly using the theory of optimal estimat-
ing functions, see Godambe (1960), Durbin (1960), Godambe and Heyde
(1987) and Heyde (1997). The optimal weight matrix a∗ gives the estimat-
ing function of the form (23) that provides the best possible approximation
to the score function (18) in a mean square sense. Moreover, the optimal
g∗(x, y; θ) = a∗(x; θ)h(x, y; θ) is obtained from ∂θ log p(x, y; θ) by projec-
tion in a certain space of square integrable functions, see Kessler (1996) and
Sørensen (1997).

The choice of the functions hj, on the other hand, is an art rather than a
science. The ability to tailor these functions to a given model or to particular
parameters of interest is a considerable strength of the estimating functions
methodology. It is, however, also a source of weakness, since it is not always
clear how best to choose the hjs. In this and the next section, we shall present
ways of choosing these functions that usually work well in practice.

Example 1 The martingale estimating function (21) is of the type (23) with
N = 2 and

h1(x, y; θ) = y − F (Δ,x; θ),
h2(x, y; θ) = (y − F (Δ,x; θ))2 − φ(Δ,x, θ),

where F and φ are given by (19) and (20). The weight matrix is
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(

∂θF (Δ,x; θ)
φ(Δ,x; θ)

,
∂θφ(Δ,x; θ)

2φ2(Δ,x; θ)Δ

)

, (24)

which we shall see is approximately optimal. ��
In the econometrics literature, a popular way of using functions like

hj(x, y, ; θ), j = 1, . . . , N , to estimate the parameter θ is the generalized
method of moments (GMM) of Hansen (1982). The method is usually imple-
mented as follows, see e.g. Campbell et al. (1997). Consider

Fn(θ) =
1
n

n
∑

i=1

h(X(i−1)Δ, XiΔ; θ).

Under weak conditions, cf. Theorem 2, a consistent estimator of the asymp-
totic covariance matrix M of

√
nFn(θ) is

Mn =
1
n

n
∑

i=1

h(X(i−1)Δ, XiΔ; ˜θn)h(X(i−1)Δ, XiΔ; ˜θn)T ,

where ˜θn is a consistent estimator of θ (for instance obtained by minimizing
Fn(θ)TFn(θ)). The GMM-estimator is obtained by minimizing the function

Hn(θ) = Fn(θ)TM−1
n Fn(θ).

The corresponding estimating function is obtained by differentiation with
respect to θ

∂θHn(θ) = Dn(θ)M−1
n Fn(θ),

where by (5)

Dn(θ) =
1
n

n
∑

i=1

∂θh(X(i−1)Δ, XiΔ; θ)T
Pθ0−→ Qθ0

(

∂θh(θ)T
)

.

Hence the estimating function ∂θHn(θ) is asymptotically equivalent to an
estimating function of the form (23) with a constant weight matrix

a(x, θ) = Qθ0

(

∂θh(θ)T
)

M−1,

and we see that GMM-estimators are covered by the theory for martingale
estimating functions presented in this chapter.

We now return to the problem of finding the optimal estimating function
G∗
n(θ) , i.e. of the form (23) with the optimal weight matrix. To do so we

assume that the functions hj satisfy the following condition.
convergence

(1) The functions hj , j = 1, . . .N , are linearly independent.
(2) The functions y �→ hj(x, y; θ), j = 1, . . .N , are square integrable with
respect to p(x, y; θ) for all x ∈ D and θ ∈ Θ.
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(3) hj(x, y; θ), j = 1, . . .N , are differentiable with respect to θ.
(4) The functions y �→ ∂θhj(x, y; θ) are integrable with respect to p(x, y; θ)
for all x ∈ D and θ ∈ Θ.

According to the theory of optimal estimating functions, the optimal choice
of the weight matrix a is given by

a∗(x; θ) = Bh(x; θ)Vh(x; θ)−1, (25)

where
Bh(x; θ) =

∫

D

∂θh(x, y; θ)T p(x, y; θ)dy (26)

and
Vh(x; θ) =

∫

D

h(x, y; θ)h(x, y; θ)T p(x, y; θ)dy. (27)

The asymptotic variance of an optimal estimator, i.e. a G∗
n–estimator, is

simpler than the general expression in (11) because in this case the matrices
W and V given by (10) and (13) are equal and given by (29), as can easily
be verified. Thus we have the following corollary to Theorem 1:

Corollary 1 Assume that g∗(x, y, θ) = a∗(x; θ)h(x, y; θ) satisfies the condi-
tions of Theorem 1. Then a sequence ̂θn of G∗

n–estimators has the asymptotic
distribution √

n(̂θn − θ0)
D−→ Np

(

0, V −1
)

, (28)

where
V = μθ0

(

Bh(θ0)Vh(θ0)−1Bh(θ0)T
)

(29)

with Bh and Vh given by (26) and (27).

Example 2 Consider the martingale estimating function of form (23) with
N = 2 and with h1 and h2 as in Example 1, where the diffusion is one-
dimensional. The optimal weight matrix has columns given by

a∗1(x; θ) =
∂θφ(x; θ)η(x; θ) − ∂θF (x; θ)ψ(x; θ)

φ(x; θ)ψ(x; θ) − η(x; θ)2

a∗2(x; θ) =
∂θF (x; θ)η(x; θ) − ∂θφ(x; θ)φ(x; θ)

φ(x; θ)ψ(x; θ) − η(x; θ)2
,

where
η(x; θ) = Eθ([XΔ − F (x; θ)]3|X0 = x)

and
ψ(x; θ) = Eθ([XΔ − F (x; θ)]4|X0 = x) − φ(x; θ)2.

We can simplify these expressions by making the Gaussian approximations

η(t, x; θ) ≈ 0 and ψ(t, x; θ) ≈ 2φ(t, x; θ)2. (30)
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If we insert these approximations into the expressions for a∗1 and a∗2, we obtain
the weight functions in (21). WhenΔ is not large this can be justified, because
the transition distribution is not far from Gaussian. ��

In the next subsection we shall present a class of martingale estimating
functions for which the matrices Bh(x; θ) and Vh(x; θ) can be found explicitly,
but for most models these matrices must be found by simulation. If a∗ is
determined by a relatively time consuming numerical method, it might be
preferable to use the estimating function

G•
n(θ) =

n
∑

i=1

a∗(X(i−1)Δ; ˜θn)h(X(i−1)Δ, XiΔ; θ), (31)

where ˜θn is a weakly
√
n-consistent estimator of θ, for instance obtained

by some simple choice of the weight matrix a. In this way a∗ needs to be
calculated only once per observation point. Under weak regularity conditions,
the estimator obtained from G•

n(θ) has the same efficiency as the optimal
estimator; see e.g. Jacod and Sørensen (2008).

Most martingale estimating functions proposed in the literature are of the
form

Gn (θ) =
n

∑

i=1

a(X(i−1)Δ, θ)
[

f(XiΔ; θ) − πθΔ(f(θ))(X(i−1)Δ)
]

, (32)

where f = (f1, . . . , fN )T , and πθΔ denotes the transition operator

πθs (f)(x) =
∫

D

f(y)p(s, x, y; θ)dy = Eθ(f(Xs) |X0 = x). (33)

The polynomial estimating functions given by fj(y) = yj , j = 1, . . . , N , are
an example. For martingale estimating functions of the special form (32), the
expression for the optimal weight matrix simplifies to some extent to

Bh(x; θ)ij = πθΔ(∂θifj(θ))(x) − ∂θiπ
θ
Δ(fj(θ))(x), (34)

i = 1, . . . p, j = 1, . . . , N , and

Vh(x; θ)ij = πθΔ(fi(θ)fj(θ))(x) − πθΔ(fi(θ))(x)πθΔ(fj(θ))(x), (35)

i, j = 1, . . . , N . Often the functions fj can be chosen such that they do not
depend on θ, in which case

Bh(x; θ)ij = −∂θiπ
θ
Δ(fj)(x). (36)

A useful approximations to the optimal weight matrix can be obtained by
applying the formula
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πθs (f)(x) =
k

∑

i=0

si

i!
Ai
θf(x) +O(sk+1), (37)

where Aθ denotes the generator of the diffusion

Aθf(x) =
d

∑

k=1

bk(x; θ)∂xk
f(x) +

1
2

d
∑

k,�=1

Ck�(x; θ)∂2
xkx�

f(x), (38)

where C = σσT . The formula (37) holds for 2(k + 1) times continuously dif-
ferentiable functions under weak conditions which ensure that the remainder
term has the correct order, see Kessler (1997). It is often enough to use the
approximation πθΔ(fj)(x) ≈ fj(x) +ΔAθfj(x). When f does not depend on
θ this implies that

Bh(x; θ) ≈ Δ
[

∂θb(x; θ)f ′(x) + 1
2
∂θσ

2(x; θ)f ′′(x)
]

(39)

and (for N = 1)

Vh(x; θ) ≈ Δ
[

Aθ(f2)(x) − 2f(x)Aθf(x)
]

= Δσ2(x; θ)f ′(x)2. (40)

Example 3 If we simplify the optimal weight matrix found in Example 2
by (37) and the Gaussian approximation (30), we obtain the approximately
optimal quadratic martingale estimating function

G◦
n(θ) =

n
∑

i=1

{

∂θb(X(i−1)Δ; θ)
σ2(X(i−1)Δ; θ)

[XiΔ − F (X(i−1)Δ; θ)] (41)

+
∂θσ

2(X(i−1)Δ; θ)
2σ4(X(i−1)Δ; θ)Δ

[

(XiΔ − F (X(i−1)Δ; θ))2 − φ(X(i−1)Δ; θ)
]

}

.

For the CIR-model

dXt = −β(Xt − α)dt + τ
√

XtdWt, (42)

where β, τ > 0, the approximately optimal quadratic martingale estimating
function is
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n
∑

i=1

1
X(i−1)Δ

[

XiΔ −X(i−1)Δe
−βΔ − α(1 − e−βΔ)

]

n
∑

i=1

[

XiΔ −X(i−1)Δe
−βΔ − α(1 − e−βΔ)

]

n
∑

i=1

1
X(i−1)Δ

[

(

XiΔ −X(i−1)Δe
−βΔ − α(1 − e−βΔ)

)2

−τ
2

β

{(

α/2 −X(i−1)Δ

)

e−2βΔ − (α−X(i−1)Δ)e−βΔ + α/2
}

]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(43)
This is obtained from (41) after multiplication by an invertible non-random
matrix to obtain a simpler expression. This does not change the estimator.
From this estimating function explicit estimators can easily be obtained. A
simulation study and an investigation of the asymptotic variance of the es-
timators for α and β in Bibby and Sørensen (1995) show that they are not
much less efficient than the estimators from the optimal estimating function;
see also the simulation study in Overbeck and Rydén (1997). ��

When the optimal weight matrix is approximated by means of (37), there
is a certain loss of efficiency, which as in the previous example is often quite
small; see Bibby and Sørensen (1995) and the section on high frequency
asymptotics below. Therefore the relatively simple estimating function (41)
is often a good choice in practice.

It is tempting to go on to approximate πθΔ(fj(θ))(x) in (32) by (37) in or-
der to obtain an explicit estimating function, but as we shall see in the next
section this is often a dangerous procedure. In general the conditional expec-
tation in πθΔ should therefore be approximated by simulations. Fortunately,
Kessler and Paredes (2002) have established that, provided the simulation
is done with sufficient accuracy, this does not cause any bias, only a minor
loss of efficiency that can be made arbitrarily small. Moreover, as we shall
also see in the next section, πθΔ(fj(θ))(x) can be found explicitly for a quite
flexible class of diffusions.

5 Explicit Inference

In this section we consider one-dimensional diffusion models for which esti-
mation is particularly easy because an explicit martingale estimating function
exists.

Kessler and Sørensen (1999) proposed estimating functions of the form
(32) where the functions fj , i = 1, . . . , N are eigenfunctions for the generator
(38), i.e.

Aθfj(x; θ) = −λj(θ)fj(x; θ),
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where the real number λj(θ) ≥ 0 is called the eigenvalue corresponding to
fj(x; θ). Under weak regularity conditions, fj is also an eigenfunction for the
transition operator πθt , i.e.

πθt (fj(θ))(x) = e−λj(θ)tfj(x; θ). (44)

for all t > 0. Thus explicit martingales are obtained. Each of the following
three conditions imply (44):

(i)σ(x; θ) and ∂xfj(x; θ) are bounded functions of x ∈ (�, r).

(ii)
∫ r

� [∂xfj(x; θ)σ(x; θ)]2μθ(dx) < ∞.

(iii)b and σ are of linear growth, and ∂xfj is of polynomial growth in x ∈ (�, r).

Example 4 The model

dXt = − β[Xt − (m+ γz)]dt+ σ
√

z2 − (Xt −m)2dWt (45)

where β > 0 and γ ∈ (−1, 1) has been proposed as a model for the random
variation of the logarithm of an exchange rate in a target zone between re-
alignments by De Jong et al. (2001) (γ = 0) and Larsen and Sørensen (2007).
This is a diffusion on the interval (m− z,m+ z) with mean reversion around
m + γz. The parameter γ quantifies the asymmetry of the model. When
β(1−γ) ≥ σ2 and β(1+γ) ≥ σ2, X is an ergodic diffusion, for which the sta-
tionary distribution is a beta-distribution on (m− z,m+ z) with parameters
κ1 = β(1 − γ)σ−2 and κ2 = β(1 + γ)σ−2.

The eigenfunctions for the generator of the diffusion (45) are

fi(x;β, γ, σ,m, z) = P
(κ1−1, κ2−1)
i ((x −m)/z), i = 1, 2, . . .

where P (a,b)
i (x) denotes the Jacobi polynomial of order i given by

P
(a,b)
i (x) =

i
∑

j=0

2−j

(

n+ a

n− j

)(

a+ b+ n+ j

j

)

(x− 1)j , −1 < x < 1,

as can easily be seem by direct calculation. For this reason, the process (45)
is called a Jacobi-diffusion. The eigenvalue of fi is i

(

β + 1
2
σ2(i− 1)

)

. Since
condition (i) above is obviously satisfied because the state space is bounded,
(44) holds. ��

When the eigenfunctions are of the form

fi(y; θ) =
i

∑

j=0

ai,j(θ)κ(y)j (46)
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where κ is a real function defined on the state space and is independent of
θ, the optimal weight matrix (25) can be found explicitly too, provided that
2N eigenfunctions are available. Specifically,

Bh(x, θ)ij =
j

∑

k=0

(

∂θiaj,k(θ)νk(x; θ) − ∂θi [e
−λj(θ)Δφj(x; θ)]

)

and

Vh(x, θ)i,j =
i

∑

r=0

j
∑

s=0

(

ai,r(θ)aj,s(θ)νr+s(x; θ) − e−[λi(θ)+λj(θ)]Δ φi(x; θ)φj(x; θ)
)

,

where νi(x; θ) = πθΔ(κi)(x), i = 1, . . . , 2N , solve the following triangular
system of linear equations

e−λi(θ)Δfi(x; θ) =
i

∑

j=0

ai,j(θ)νj(x; θ) i = 1, . . . , 2N, (47)

with ν0(x; θ) = 1. The expressions for Bh and Vh follow from (34) and (35),
while (47) follows by applying πθΔ to both sides of (46).

Example 5 A widely applicable class of diffusion models for which explicit
polynomial eigenfunctions are available is the class of Pearson diffusions,
see Wong (1964) and Forman and Sørensen (2008). A Pearson diffusion is a
stationary solution to a stochastic differential equation of the form

dXt = −β(Xt − μ)dt+
√

(aX2
t + bXt + c)dWt, (48)

where β > 0, and a, b and c are such that the square root is well defined
when Xt is in the state space. The class of stationary distributions equals
the full Pearson system of distributions, so a very wide spectrum of marginal
distributions is available ranging from distributions with compact support
to very heavy-tailed distributions. For instance Pearson’s type IV distribu-
tions, a skew t-type distribution, which seems very useful in finance, see e.g.
Nagahara (1996), is the stationary distribution of the diffusion

dZt = −βZtdt+
√

2β(ν − 1)−1{Z2
t + 2ρν

1
2Zt + (1 + ρ2)ν}dWt,

with ν > 1. The parameter ρ is a skewness parameter. For ρ = 0 a t-
distribution with ν degrees of freedom is obtained. Well-known instances
of (48) are the Ornstein-Uhlenbeck process, the square root (CIR) process,
and the Jacobi diffusions.
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For a diffusion T (X) obtained from a solution X to (48) by a twice differ-
entiable and invertible transformation T , the eigenfunctions of the generator
are pn{T−1(x)}, where pn is an eigenfunction of the generator of X . The
eigenvalues are the same as for the original eigenfunctions. Since the original
eigenfunctions are polynomials, the eigenfunctions of T (X) are of the form
(46) with κ = T−1. Hence explicit optimal martingale estimating functions
are available for transformed Pearson diffusions too.

As an example let X be the Jacobi-diffusion (45) with m = 0 and z = 1,
and consider Yt = sin−1(Xt). Then

dYt = −ρ sin(Yt) − ϕ

cos(Yt)
dt+ σdWt,

where ρ = β − 1
2σ

2 and ϕ = βγ/ρ. The state space is (−π/2, π/2). Note
that Y has dynamics that are very different from those of (45): the drift
is non-linear and the diffusion coefficient is constant. The process Y was
proposed and studied in Kessler and Sørensen (1999) for ϕ = 0, where the
drift is −ρ tan(x). The general asymmetric version was proposed in Larsen
and Sørensen (2007) as a model for exchange rates in a target zone. ��

Explicit martingale estimating functions are only available for the rela-
tively small, but versatile, class of diffusions for which explicit eigenfunctions
for the generator are available. Explicit non-martingale estimating functions
can be found for all diffusions, but cannot be expected to approximate the
score functions as well as martingale estimating functions, and will therefore
usually give less efficient estimators.

Hansen and Scheinkman (1995) proposed non-martingale estimating func-
tions given by

gj(Δ,x, y; θ) = hj(y)Aθfj(x) − fj(x) ̂Aθhj(y), (49)

where Aθ is the generator (38), and the functions fj and hj satisfy weak
regularity conditions ensuring that (9) holds. The differential operator

̂Aθf(x) =
d

∑

k=1

̂bk(x; θ)∂xk
f(x) +

1
2

d
∑

k,�=1

Ck�(x; θ)∂2
xkx�

f(x),

where C = σσT and

̂bk(x; θ) = −bk(x; θ) +
1

μθ(x)

d
∑

�=1

∂x�
(μθCkl) (x; θ),

is the generator of the time reversal of the observed diffusion X . A sim-
pler type of explicit non-martingale estimating functions is of the form
g(Δ,x, y; θ) = h(x; θ). Hansen and Scheinkman (1995) and Kessler (2000)
studied hj(x; θ) = Aθfj(x), which is a particular case of (49). Kessler
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(2000) also proposed h(x; θ) = ∂θ logμθ(x), which corresponds to consid-
ering the observations as an i.i.d. sample from the stationary distribution.
Finally, Sørensen (2001) derived the estimating function with h(x; θ) =
Aθ∂θ logμθ(Xti) as an approximation to the continuous-time score function.
In all cases weak regularity conditions are needed to ensure that (9) holds,
i.e. that

∫

h(x; θ0)μθ0(x)dx = 0.
Quite generally, an explicit approximate martingale estimating function

can be obtained from a martingale estimating function of the form (32) by
approximating πθΔ(fj(θ))(x) and the weight matrix by (37). The simplest
version of this approach gives the same estimator as the Gaussian quasi-
likelihood based on the Euler-approximation to (1). Estimators of this type
have been considered by Dorogovcev (1976), Prakasa Rao (1988), Florens-
Zmirou (1989), Yoshida (1992), Chan et al. (1992), Kessler (1997), and Kelly
et al. (2004). It is, however, important to note that there is a dangerous pitfall
when using these simple approximate martingale estimating functions. They
do not satisfy (9), and hence the estimators are inconsistent and converge to
the solution to (12). The problem is illustrated by the following example.

Example 6 Consider again the CIR-model (42). If we insert the approxi-
mation F (x;α, β) = −β(x−α)Δ into (43) we obtain the following estimator
for β

̂βn =
1
n (XΔn −X0)

∑n
i=1X

−1
Δ(i−1) −

∑n
i=1X

−1
Δ(i−1)(XΔi −XΔ(i−1))

Δ[n− (
∑n

i=1XΔ(i−1))(
∑n

i=1X
−1
Δ(i−1))/n]

.

It follows from (5) that

̂βn
Pθ−→ (1 − e−β0Δ)/Δ ≤ Δ−1.

Thus the estimator of the reversion parameter β is reasonable only when
β0Δ is considerably smaller than one. Note that the estimator will always
converge to a limit smaller than the sampling frequency. When β0Δ is large,
the behaviour of the estimator is bizarre, see Bibby and Sørensen (1995).
Without prior knowledge of the value of β0 it is thus a dangerous estimator.
��

The asymptotic bias given by (12) is small whenΔ is sufficiently small, and
the results in the following section on high frequency asymptotics show that
in this case the approximate martingale estimating functions work well. How-
ever, how small Δ has to be depends on the parameter values, and without
prior knowledge about the parameters, it is safer to use an exact martin-
gale estimating function, which gives consistent estimators at all sampling
frequencies.
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6 High Frequency Asymptotics and Efficient Estimation

A large number of estimating functions have been proposed for diffusion mod-
els, and a large number of simulation studies have been performed to compare
their relative merits, but the general picture has been rather confusing. By
considering the high frequency scenario,

n → ∞, Δn → 0, nΔn → ∞, (50)

Sørensen (2007) obtained simple conditions for rate optimality and efficiency
for ergodic diffusions, which allow identification of estimators that work well
when the time between observations, Δn, is not too large. For financial data
the speed of reversion is usually slow enough that this type of asymptotics
works for daily, sometimes even weekly observations. A main result of this
theory is that under weak conditions optimal martingale estimating functions
give rate optimal and efficient estimators.

To simplify the exposition, we restrict attention to a one-dimensional dif-
fusion given by

dXt = b(Xt;α)dt+ σ(Xt;β)dWt, (51)

where θ = (α, β) ∈ Θ ⊆ IR2. The results below can be generalized to multi-
variate diffusions and parameters of higher dimension. We consider estimat-
ing functions of the general form (3), where the two-dimensional function
g = (g1, g2) for some κ ≥ 2 and for all θ ∈ Θ satisfies

Eθ(g(Δn, XΔni, XΔn(i−1); θ) |XΔn(i−1)) = Δκ
nR(Δn, XΔn(i−1); θ). (52)

Here and later R(Δ, y, x; θ) denotes a function such that |R(Δ, y, x; θ)| ≤
F (y, x; θ), where F is of polynomial growth in y and x uniformly for θ in
a compact set7. We assume that the diffusion and the estimating functions
satisfy the technical regularity Condition 6 given below.

Martingale estimating functions obviously satisfy (52) with R = 0, but for
instance the approximate martingale estimating functions discussed at the
end of the previous section satisfy (52) too.

Theorem 3 Suppose that

∂yg2(0, x, x; θ) = 0, (53)
∂yg1(0, x, x; θ) = ∂αb(x;α)/σ2(x;β), (54)
∂2
yg2(0, x, x; θ) = ∂βσ

2(x;β)/σ2(x;β)2, (55)

for all x ∈ (�, r) and θ ∈ Θ. Assume, moreover, that the following identifia-
bility condition is satisfied

7 For any compact subset K ⊆ Θ, there exist constants C1, C2, C3 > 0 such that
supθ∈K |F (y, x; θ)| ≤ C1(1 + |x|C2 + |y|C3 ) for all x and y in the state space of the dif-
fusion.
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∫ r

�

[b(x, α0) − b(x, α)]∂yg1(0, x, x; θ)μθ0(x)dx �= 0 when α �= α0,

∫ r

�

[σ2(x, β0) − σ2(x, β)]∂2
yg2(0, x, x; θ)μθ0(x)dx �= 0 when β �= β0,

and that

W1 =
∫ r

�

(∂αb(x;α0))2

σ2(x;β0)
μθ0(x)dx �= 0,

W2 =
∫ r

�

[

∂βσ
2(x;β0)

σ2(x;β0)

]2

μθ0(x)dx �= 0.

Then a consistent Gn–estimator ̂θn = (α̂n, ̂βn) exists and is unique in any
compact subset of Θ containing θ0 with probability approaching one as n →
∞. For a martingale estimating function, or more generally if nΔ2(κ−1) → 0,

(√
nΔn(α̂n − α0)
√
n(̂βn − β0)

)

D−→ N2

(

(

0
0

)

,

(

W−1
1 0
0 W−1

2

))

. (56)

An estimator satisfying (56) is rate optimal and efficient, cf. Gobet (2002),
who showed that the model considered here is locally asymptotically normal.
Note that the estimator of the diffusion coefficient parameter, β, converges
faster than the estimator of the drift parameter, α. Condition (53) implies
rate optimality. If this condition is not satisfied, the estimator of the diffusion
coefficient parameter converges at the slower rate

√
nΔn. This condition is

called the Jacobsen condition, because it appears in the theory of small Δ-
optimal estimation developed in Jacobsen (2001) and Jacobsen (2002). In
this theory the asymptotic covariance matrix in (11) is expanded in powers
of Δ, the time between observations. The leading term is minimal when (54)
and (55) are satisfied. The same expansion of (11) was used by Aït-Sahalia
and Mykland (2004).

The assumption nΔn → ∞ in (50) is needed to ensure that the drift
parameter, α, can be consistently estimated. If the drift is known and only the
diffusion coefficient parameter, β, needs to be estimated, this condition can
be omitted, see Genon-Catalot and Jacod (1993). Another situation where
the infinite observation horizon, nΔn → ∞, is not needed for consistent
estimation of α is when the high frequency asymptotic scenario is combined
with the small diffusion scenario, where σ(x;β) = εnζ(x;β) and εn → 0, see
Genon-Catalot (1990), Sørensen and Uchida (2003) and Gloter and Sørensen
(2008).

The reader is reminded of the trivial fact that for any non-singular 2 × 2
matrix, Mn, the estimating functions MnGn(θ) and Gn(θ) give exactly the
same estimator. We call them versions of the same estimating function. The
matrix Mn may depend on Δn. Therefore a given version of an estimating
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function needs not satisfy (53) – (55). The point is that a version must exist
which satisfies these conditions.

Example 7 Consider a quadratic martingale estimating function of the
form

g(Δ, y, x; θ) =

(

a1(x,Δ; θ)[y − F (Δ,x; θ)]

a2(x,Δ; θ)
[

(y − F (Δ,x; θ))2 − φ(Δ,x; θ)
]

)

, (57)

where F and φ are given by (19) and (20). By (37), F (Δ,x; θ) = x + O(Δ)
and φ(Δ,x; θ) = O(Δ), so

g(0, y, x; θ) =

(

a1(x, 0; θ)(y − x)

a2(x, 0; θ)(y − x)2

)

. (58)

Since ∂yg2(0, y, x; θ) = 2a2(x,Δ; θ)(y−x), the Jacobsen condition (53) is sat-
isfied, so estimators obtained from (57) are rate optimal. Using again (37),
it is not difficult to see that efficient estimators are obtained in three par-
ticular cases: the optimal estimating function given in Example 2 and the
approximations (21) and (41). ��

It follows from results in Jacobsen (2002) that to obtain a rate optimal
and efficient estimator from an estimating function of the form (32), we need
that N ≥ 2 and that the matrix

D(x) =

(

∂xf1(x; θ) ∂2
xf1(x; θ)

∂xf2(x; θ) ∂2
xf2(x; θ)

)

is invertible for μθ-almost all x. Under these conditions, Sørensen (2007)
showed that Godambe-Heyde optimal martingale estimating functions give
rate optimal and efficient estimators. For a d-dimensional diffusion, Jacobsen
(2002) gave the conditions N ≥ d(d+3)/2, and that the N × (d+ d2)-matrix
D(x) =

(

∂xf(x; θ) ∂2
xf(x; θ)

)

has full rank d(d + 3)/2.
We conclude this section by stating technical conditions under which the

results in this section hold. The assumptions about polynomial growth are
far too strong, but simplify the proofs. These conditions can most likely be
weakened very considerably in a way similar to the proofs in Gloter and
Sørensen (2008).

convergence The diffusion is ergodic and the following conditions hold for
all θ ∈ Θ:

(1)
∫ r

� x
kμθ(x)dx < ∞ for all k ∈ IN.

(2)suptEθ(|Xt|k) < ∞ for all k ∈ IN.
(3)b, σ ∈ Cp,4,1((�, r) ×Θ).
(4)g(Δ, y, x; θ) ∈ Cp,2,6,2(IR+ × (�, r)2 × Θ) and has an expansion in powers

of Δ:
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g(Δ, y, x; θ) =
g(0, y, x; θ) +Δg(1)(y, x; θ) + 1

2
Δ2g(2)(y, x; θ) +Δ3R(Δ, y, x; θ),

where

g(0, y, x; θ) ∈ Cp,6,2((�, r)2 ×Θ),

g(1)(y, x; θ) ∈ Cp,4,2((�, r)2 ×Θ),

g(2)(y, x; θ) ∈ Cp,2,2((�, r)2 ×Θ).

We define Cp,k1,k2,k3(IR+ × (�, r)2 × Θ) as the class of real functions
f(t, y, x; θ) satisfying that

(i) f(t, y, x; θ) is k1 times continuously differentiable with respect t, k2 times
continuously differentiable with respect y, and k3 times continuously dif-
ferentiable with respect α and with respect to β

(ii)f and all partial derivatives ∂i1t ∂i2y ∂i3α ∂i4β f , ij = 1, . . . kj , j = 1, 2, i3+i4 ≤
k3, are of polynomial growth in x and y uniformly for θ in a compact set
(for fixed t).

The classes Cp,k1,k2((�, r) ×Θ) and Cp,k1,k2((�, r)2 ×Θ) are defined similarly
for functions f(y; θ) and f(y, x; θ), respectively.
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Realized Volatility

Torben G. Andersen and Luca Benzoni ∗

Abstract Realized volatility is a nonparametric ex-post estimate of the
return variation. The most obvious realized volatility measure is the sum
of finely-sampled squared return realizations over a fixed time interval. In
a frictionless market the estimate achieves consistency for the underlying
quadratic return variation when returns are sampled at increasingly higher
frequency. We begin with an account of how and why the procedure works
in a simplified setting and then extend the discussion to a more general
framework. Along the way we clarify how the realized volatility and quadratic
return variation relate to the more commonly applied concept of conditional
return variance. We then review a set of related and useful notions of return
variation along with practical measurement issues (e.g., discretization error
and microstructure noise) before briefly touching on the existing empirical
applications.
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1 Introduction

Given the importance of return volatility on a number of practical finan-
cial management decisions, there have been extensive efforts to provide good
real-time estimates and forecasts of current and future volatility. One compli-
cating feature is that, contrary to the raw return, actual realizations of return
volatility are not directly observable. A common approach to deal with the
fundamental latency of return volatility is to conduct inference regarding
volatility through strong parametric assumptions, invoking, e.g., an ARCH
or a stochastic volatility (SV) model estimated with data at daily or lower fre-
quency. An alternative approach is to invoke option pricing models to invert
observed derivatives prices into market-based forecasts of “implied volatility”
over a fixed future horizon. Such procedures remain model-dependent and
further incorporate a potentially time-varying volatility risk premium in the
measure so they generally do not provide unbiased forecasts of the volatility
of the underlying asset. Finally, some studies rely on “historical” volatility
measures that employ a backward looking rolling sample return standard de-
viation, typically computed using one to six months of daily returns, as a
proxy for the current and future volatility level. Since volatility is persistent
such measures do provide information but volatility is also clearly mean re-
verting, implying that such unit root type forecasts of future volatility are
far from optimal and, in fact, conditionally biased given the history of the
past returns. In sum, while actual returns may be measured with minimal
(measurement) error and may be analyzed directly via standard time series
methods, volatility modeling has traditionally relied on more complex econo-
metric procedures in order to accommodate the inherent latent character of
volatility.

The notion of realized volatility effectively reverses the above characteri-
zation. Given continuously observed price or quote data, and absent transac-
tion costs, the realized return variation may be measured without error along
with the (realized) return. In addition, the realized variation is conceptually
related to the cumulative expected variability of the returns over the given
horizon for a wide range of underlying arbitrage-free diffusive data generating
processes. In contrast, it is impossible to relate the actual (realized) return
to the expected return over shorter sample periods in any formal manner ab-
sent very strong auxiliary assumptions. In other words, we learn much about
the expected return volatility and almost nothing about the expected mean
return from finely-sampled asset prices. This insight has fueled a dramatic in-
crease in research into the measurement and application of realized volatility
measures obtained from high frequency, yet noisy, observations on returns.
For liquid financial markets with high trade and quote frequency and low
transaction costs, it is now prevailing practice to rely on intra-day return
data to construct ex-post volatility measures. Given the rapidly increasing
availability of high-quality transaction data across many financial assets, it
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is inevitable that this approach will continue to be developed and applied
within ever broader contexts in the future.

This chapter provides a short and largely intuitive overview of the realized
volatility concept and the associated applications. We begin with an account
of how and why the procedure works in a simplified setting and then discuss
more formally how the results apply in general settings. Next, we detail more
formally how the realized volatility and quadratic return variation relate to
the more common conditional return variance concept. We then review a set
of related and useful notions of return variation along with practical measure-
ment issues before briefly touching on the existing empirical applications.

2 Measuring Mean Return versus Return Volatility

The theory of realized volatility is tied closely to the availability of asset price
observations at arbitrarily high frequencies. Hence, it is natural to consider
the volatility measurement problem in a continuous-time framework, even if
we ultimately only allow sampling at discrete intervals. We concentrate on
a single risky asset whose price may be observed at equally-spaced discrete
points in time over a given interval, [0, T ], namely t = 0, 1/n, 2/n, . . . , T −
(1/n), T,where n and T are positive integers and the unit interval corresponds
to the primary time period over which we desire to measure return volatility,
e.g., one trading day. We denote the logarithmic asset price at time t by
s(t) and the continuously compounded returns over [t − k, t] is then given
by r(t, k) = s(t) − s(t − k) where 0 ≤ t − k < t ≤ T and k = j/n for some
positive integer j. When k = 1 it is convenient to use the shorthand notation
r(t) = r(t, 1), where t is an integer 1 ≤ t ≤ T , for the unit period, or “daily,”
return.

To convey the basic rationale behind the realized volatility approach, we
initially consider a simplified setting with the continuously compounded re-
turns driven by a simple time-invariant Brownian motion, so that

ds(t) = αdt+ σdW (t), 0 ≤ t ≤ T , (1)

where α and σ (σ > 0) denote the constant drift and diffusion coefficients,
respectively, scaled to correspond to the unit time interval.

For a given measurement period, say [0,K], where K is a positive integer,
we have n ·K intraday return observations r(t, 1/n) = s(t) − s(t − 1/n) for
t = 1/n, . . . , (n− 1) ·K/n,K, that are i.i.d. normally distributed with mean
α/n and variance σ2/n. It follows that the maximum likelihood estimator for
the drift coefficient is given by

α̂n =
1
K

n·K
∑

j=1

r(j/n, 1/n) =
r(K,K)
K

=
s(K) − s(0)

K
. (2)
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Hence, for a fixed interval the in-fill asymptotics, obtained by continually
increasing the number of intraday observations, are irrelevant for estimating
the expected return. The estimator of the drift is independent of the sampling
frequency, given by n, and depends only on the span of the data, K. For
example, one may readily deduce that

Var(α̂n) =
σ2

K
. (3)

In other words, although the estimator is unbiased, the mean drift cannot be
estimated consistently over any fixed interval. Even for the simplest case of
a constant mean, long samples (large K) are necessary for precise inference.
Thus, in a setting where the expected returns are stipulated to vary condition-
ally on features of the underlying economic environment, auxiliary identifying
assumptions are required for sensible inference about α. This is the reason
why critical empirical questions such as the size of the equity premium and
the pattern of the expected returns in the cross-section of individual stocks
remain contentious and unsettled issues within financial economics.

The situation is radically different for estimation of return volatility. Even
if the expected return cannot be inferred with precision, nonparametric mea-
surement of volatility may be based on un-adjusted or un-centered squared
returns. This is feasible as the second return moment dominates the first mo-
ment in terms of influencing the high-frequency squared returns. Specifically,
we have,

E
[

r(j/n, 1/n)2
]

=
α2

n2
+
σ2

n
, (4)

and

E
[

r(j/n, 1/n)4
]

=
α4

n4
+ 6

α2σ2

n3
+ 3

σ4

n2
. (5)

It is evident that the terms involving the drift coefficient are an order of
magnitude smaller, for n large, than those that pertain only to the diffusion
coefficient. This feature allows us to estimate the return variation with a high
degree of precision even without specifying the underlying mean drift, e.g.,1

σ̂2
n =

1
K

n·K
∑

j=1

r2(j/n, 1/n) . (6)

It is straightforward to establish that

E
[

σ̂2
n

]

=
α2

n
+ σ2 , (7)

while some additional calculations yield

1 The quantity (K · σ̂2
n) is a “realized volatility" estimator of the return variation over

[0,K] and it moves to the forefront of our discussion in the following section.
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Var
[

σ̂2
n

]

= 4
α2σ2

n2K
+ 2

σ4

nK
. (8)

It follows by a standard L2 argument that, in probability, σ̂2
n → σ2 for n →

∞. Hence, the realized variation measure is a biased but consistent estimator
of the underlying (squared) volatility coefficient. Moreover, it is evident that,
for n large, the bias is close to negligible. In fact, as n → ∞ we have the
distributional convergence,

√
n ·K (σ̂2

n − σ2) → N(0, 2σ4) . (9)

These insights are not new. For example, within a similar context, they were
stressed by Merton (1980). However, the lack of quality intraday price data
and the highly restrictive setting have long led scholars to view them as bereft
of practical import. This situation has changed fundamentally over the last
decade, as it has been shown that the basic results apply very generally, high-
frequency data have become commonplace, and the measurement procedures,
through suitable strategies, can be adapted to deal with intraday observations
for which the relative impact of microstructure noise may be substantial.

3 Quadratic Return Variation and Realized Volatility

This section outlines the main steps in generalizing the above findings to an
empirically relevant setting with stochastic volatility. We still operate within
the continuous-time diffusive setting, for simplicity ruling out price jumps,
and assume a frictionless market. In this setting the asset’s logarithmic price
process s must be a semimartingale to rule out arbitrage opportunities (e.g.,
Back (1991)). We then have,

ds(t) = μ(t)dt + σ(t) dW (t) , 0 ≤ t ≤ T , (10)

where W is a standard Brownian motion process, μ(t) and σ(t) are pre-
dictable processes, μ(t) is of finite variation, while σ(t) is strictly positive
and square integrable, i.e., E

(

∫ t

0
σ2
sds

)

< ∞. Hence, the processes μ(t) and
σ(t) signify the instantaneous conditional mean and volatility of the return.
The continuously compounded return over the time interval from t− k to t,
0 < k ≤ t, is therefore

r(t, k) = s(t) − s(t− k) =
∫ t

t−k

μ(τ)dτ +
∫ t

t−k

σ(τ)dW (τ) , (11)

and its quadratic variation QV (t, k) is
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QV (t, k) =
∫ t

t−k

σ2(τ)dτ . (12)

Equation (12) shows that innovations to the mean component μ(t) do not
affect the sample path variation of the return. Intuitively, this is because
the mean term, μ(t)dt, is of lower order in terms of second order proper-
ties than the diffusive innovations, σ(t)dW (t). Thus, when cumulated across
many high-frequency returns over a short time interval of length k they can
effectively be neglected. The diffusive sample path variation over [t− k, t] is
also known as the integrated variance IV (t, k),

IV (t, k) =
∫ t

t−k

σ2(τ)dτ . (13)

Equations (12) and (13) show that, in this setting, the quadratic and inte-
grated variation coincide. This is however no longer true for more general
return process like, e.g., the stochastic volatility jump-diffusion model dis-
cussed in Section 5 below.

Absent microstructure noise and measurement error, the return quadratic
variation can be approximated arbitrarily well by the corresponding cumula-
tive squared return process. Consider a partition {t− k + j

n , j = 1, . . . n · k}
of the [ t− k, t ] interval. Then the realized volatility (RV) of the logarithmic
price process is

RV (t, k;n) =
n·k
∑

j=1

r

(

t− k +
j

n
,
1
n

)2

. (14)

Semimartingale theory ensures that the realized volatility measure converges
in probability to the return quadratic variation QV, previously defined in
equation (12), when the sampling frequency n increases:

RV (t, k;n) −→ QV (t, k) as n → ∞ . (15)

This finding extends the consistency result for the (constant) volatility co-
efficient discussed below equation (8) to a full-fledged stochastic volatility
setting. This formal link between realized volatility measures based on high-
frequency returns and the quadratic variation of the underlying (no arbi-
trage) price process follows immediately from the theory of semimartingales
(e.g., Protter (1990)) and was first applied in the context of empirical return
volatility measurement by Andersen and Bollerslev (1998a). The distribu-
tional result in equation (9) also generalizes directly, as we have, for n → ∞,

√
n · k

(

RV (t, k;n) −QV (t, k)
√

2 IQ(t, k)

)

→ N(0, 1) , (16)
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where IQ(t, k) ≡
∫ t

t−k
σ4(τ)dτ is the integrated quarticity, with IQ(t, k) in-

dependent from the limiting Gaussian distribution on the right hand side.
This result was developed and brought into the realized volatility literature
by Barndorff-Nielsen and Shephard (2002).2

Equation (16) sets the stage for formal ex-post inference regarding the
actual realized return variation over a given period. However, the result is
not directly applicable as the so-called integrated quarticity, IQ(t, k), is
unobserved and is likely to display large period-to-period variation. Hence,
a consistent estimator for the integrated quarticity must be used in lieu of
the true realization to enable feasible inference. Such estimators, applicable
for any integrated power of the diffusive coefficient, have been proposed by
Barndorff-Nielsen and Shephard (2002). The realized power variation of order
p, V (p; t, k;n) is the (scaled) cumulative sum of the absolute p-th power of
the high-frequency returns and it converges, as n → ∞, to the corresponding
power variation of order p, V (p; t, k). That is, defining the p-th realized power
variation as,

V (p; t, k;n) ≡ np/2−1 μ−1
p

n·k
∑

j=1

∣

∣

∣r

(

t− k +
j

n
,
1
n

)

∣

∣

∣

p

, (17)

where μp denotes the p-th absolute moment of a standard normal variable,
we have, in probability,

V (p; t, k;n) →
∫ t

t−k

σp(τ)dτ ≡ V (p; t, k) . (18)

In other words, V (4; t, k;n) is a natural choice as a consistent estimator for
the integrated quarticity IQ(t, k). It should be noted that this conclusion
is heavily dependent on the absence of jumps in the price process which is
an issue we address in more detail later. Moreover, the notion of realized
power variation is a direct extension of realized volatility as RV (t, k;n) =
V (2; t, k;n) so equation (18) reduces to equation (15) for p = 2.

More details regarding the asymptotic results and multivariate generaliza-
tions of realized volatility may be found in, e.g., Andersen et al. (2001, 2003),
Barndorff-Nielsen and Shephard (2001, 2002, 2004a), Meddahi (2002a), and
Mykland (2006).

4 Conditional Return Variance and Realized Volatility

This section discusses the relationship between quadratic variation or inte-
grated variance along with its associated empirical measure, realized volatil-

2 The unpublished note by Jacod (1992) implies the identical result but this note was not
known to the literature at the time.
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ity, and the conditional return variance. In the case of constant drift and
volatility coefficients, the conditional (and unconditional) return variance
equals the quadratic variation of the log price process. In contrast, when
volatility is stochastic we must distinguish clearly between the conditional
variance, representing the (ex-ante) expected size of future squared return
innovations over a certain period, and the quadratic variation, reflecting the
actual (ex-post) realization of return variation, over the corresponding hori-
zon. Hence, the distinction is one of a priori expectations versus subsequent
actual realizations of return volatility. Under ideal conditions, the realized
volatility captures the latter, but not the former. Nonetheless, realized volatil-
ity measures are useful in gauging the conditional return variance as one may
construct well calibrated forecasts (conditional expectations) of return volatil-
ity from a time series of past realized volatilities. In fact, within a slightly
simplified setting, we can formally strengthen these statements. If the instan-
taneous return is the continuous-time process (10) and the return, mean, and
volatility processes are uncorrelated (i.e., dW (t) and innovations to μ(t) and
σ(t) are mutually independent), then r(t, k) is normally distributed condi-
tional on the cumulative drift μ(t, k) ≡

∫ t

t−k
μ(τ)dτ and the quadratic vari-

ation QV (t, k) (which in this setting equals the integrated variance IV (t, k)
as noted in equations (12) and (13)):

(

r(t, k) |μ(t, k), IV (t, k)
)

∼ N
(

μ(t, k), IV (t, k)
)

. (19)

Consequently, the return distribution is mixed Gaussian with the mixture
governed by the realizations of the integrated variance (and integrated mean)
process. Extreme realizations (draws) from the integrated variance process
render return outliers likely while persistence in the integrated variance pro-
cess induces volatility clustering. Moreover, for short horizons, where the
conditional mean is negligible relative to the cumulative absolute return in-
novations, the integrated variance may be directly related to the conditional
variance as,

Var[ r(t, k) | Ft−k ] ≈ E[RV (t, k;n) | Ft−k ] ≈ E[QV (t, k) | Ft−k ] . (20)

A volatility forecast is an estimate of the conditional return variance on
the far left-hand side of equation (20), which in turn approximates the ex-
pected quadratic variation. Since RV is approximately unbiased for the cor-
responding unobserved quadratic variation, the realized volatility measure is
the natural benchmark against which to gauge the performance of volatility
forecasts. Goodness-of-fit tests may be conducted on the residuals given by
the difference between the ex-post realized volatility measure and the ex-ante
forecast. We review some of the evidence obtained via applications inspired
by these relations in Section 7. In summary, the quadratic variation is directly
related to the actual return variance as demonstrated by equation (19) and
to the expected return variance, as follows from equation (20).
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Finally, note that the realized volatility concept is associated with the re-
turn variation measured over a discrete time interval rather than with the
so-called spot or instantaneous volatility. This distinction separates the real-
ized volatility approach from a voluminous literature in statistics seeking to
estimate spot volatility from discrete observations, predominantly in a setting
with a constant diffusion coefficient. It also renders it distinct from the early
contributions in financial econometrics allowing explicitly for time-varying
volatilities, e.g., Foster and Nelson (1996). In principle, the realized volatility
measurement can be adapted to spot volatility estimation: as k goes to zero,
QV (t, k) converges to the instantaneous volatility σ2(t), i.e., in principle RV
converges to instantaneous volatility when both k and k/n shrink. For this to
happen, however, k/nmust converge at a rate higher than k, so as the interval
shrinks we must sample returns at an ever increasing frequency. In practice,
this is infeasible, because intensive sampling over tiny intervals magnifies the
effects of microstructure noise. We return to this point in Section 6 where we
discuss the bias in RV measures when returns are sampled with error.

5 Jumps and Bipower Variation

The return process in equation (10) is continuous under the stated regularity
conditions, even if σ may display jumps. This is quite restrictive as asset
prices often appear to exhibit sudden discrete movements when unexpected
news hits the market. A broad class of SV models that allow for the presence
of jumps in returns is defined by

ds(t) = μ(t)dt + σ(t)dW (t) + ξ(t) dqt , (21)

where q is a Poisson process uncorrelated with W and governed by the jump
intensity λt, i.e., Prob(dqt = 1) = λt dt, with λt positive and finite. This as-
sumption implies that there can only be a finite number of jumps in the price
path per time period. This is a common restriction in the finance literature,
though it rules out infinite activity Lévy processes. The scaling factor ξ(t)
denotes the magnitude of the jump in the return process if a jump occurs at
time t. While explicit distributional assumptions often are invoked for para-
metric estimation, such restrictions are not required as the realized volatility
approach is fully nonparametric in this dimension as well.

In this case, the quadratic return variation process over the interval from
t− k to t, 0 ≤ k ≤ t ≤ T , is the sum of the diffusive integrated variance and
the cumulative squared jumps:

QV (t, k) =
∫ t

t−k

σ2(s)ds+
∑

t−k≤s≤t

J2(s) ≡ IV (t, k) +
∑

t−k≤s≤t

J2(s) , (22)
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where J(t) ≡ ξ(t)dq(t) is non-zero only if there is a jump at time t.
The RV estimator (14) remains a consistent measure of the total QV in

the presence of jumps, i.e., result (15) still holds; see, e.g., Protter (1990)
and the discussion in Andersen et al. (2004). However, since the diffusive and
jump volatility components appear to have distinctly different persistence
properties it is useful both for analytic and predictive purposes to obtain
separate estimates of these two factors in the decomposition of the quadratic
variation implied by equation (22).

To this end, the h-skip bipower variation, BV, introduced by Barndorff-
Nielsen and Shephard (2004b) provides a consistent estimate of the IV com-
ponent,

BV (t, k;h, n) =
π

2

n·k
∑

i=h+1

∣

∣

∣ r

(

t− k +
ik

n
,
1
n

)

∣

∣

∣

∣

∣

∣ r

(

t− k +
(i− h)k

n
,
1
n

)

∣

∣

∣ .

(23)
Setting h = 1 in definition (23) yields the ‘realized bipower variation’
BV (t, k;n) ≡ BV (t, k; 1, n). The bipower variation is robust to the pres-
ence of jumps and therefore, in combination with RV, it yields a consistent
estimate of the cumulative squared jump component:

RV (t, k;n) −BV (t, k;n) −→
n→∞

QV (t, k) − IV (t, k) =
∑

t−k≤s≤t

J2(s) . (24)

The results in equations (22)-(24) along with the associated asymptotic dis-
tributions have been exploited to improve the accuracy of volatility forecasts
and to design tests for the presence of jumps in volatility. We discuss these
applications in Section 7 below.

6 Efficient Sampling versus Microstructure Noise

The convergence relation in equation (15) states that RV approximates QV
arbitrarily well as the sampling frequency n increases. Two issues, however,
complicate the application of this result. First, even for the most liquid as-
sets a continuous price record is unavailable. This limitation introduces an
inevitable discretization error in the RV measures which forces us to recog-
nize the presence of a measurement error. Although we may gauge the mag-
nitude of such errors via the continuous record asymptotic theory outlined
in equations (16)-(18), such inference is always subject to some finite sample
distortions and it is only strictly valid in the absence of price jumps. Sec-
ond, a wide array of microstructure effects induces spurious autocorrelations
in the ultra-high frequency return series. The list includes price discreteness
and rounding, bid-ask bounces, trades taking places on different markets and
networks, gradual response of prices to a block trade, difference in information
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contained in order of different size, strategic order flows, spread positioning
due to dealer inventory control, and, finally, data recording mistakes. Such
“spurious” autocorrelations can inflate the RV measures and thus generate
a traditional type of bias-variance trade off. The highest possible sampling
frequency should be used for efficiency. However, sampling at ultra-high fre-
quency tends to bias the RV estimate.

A useful tool to assess this trade-off is the volatility signature plot, which
depicts the sample average of the RV estimator over a long time span as a
function of the sampling frequency. The long time span mitigates the impact
of sampling variability so, absent microstructure noise, the plot should be
close to a horizontal line. In practice, however, for transaction data obtained
from liquid stocks the plot spikes at high sampling frequencies and decays
rather smoothly to stabilize at frequencies in the 5- to 40-minute range. In
contrast, the opposite often occurs for returns constructed from bid-ask quote
midpoints as asymmetric adjustment of the spread induces positive serial cor-
relation and biases the signature plot downward at the very highest sampling
frequencies. Likewise, for illiquid stocks the inactive trading induces positive
return serial autocorrelation which renders the signature plot increasing at
lower sampling frequencies, see, e.g., Andersen et al. (2000a). Aït-Sahalia et
al. (2005) and Bandi and Russell (2007) extend this approach by explicitly
trading off efficient sampling versus bias-inducing noise to derive optimal
sampling schemes.

Other researchers have suggested dealing with the problem by using al-
ternative QV estimators that are less sensitive to microstructure noise. For
instance, Huang and Tauchen (2005) and Andersen et al. (2007) note that
using staggered returns and BV helps reduce the effect of noise, while An-
dersen et al. (2006a) extend volatility signature plots to include power and
h-skip bipower variation. Other studies have instead relied on the high-low
price range estimator (e.g., Alizadeh et al. (2002), Brandt and Diebold (2006),
Brandt and Jones (2006), Gallant et al. (1999), Garman and Klass (1980),
Parkinson (1980), Schwert (1990), and Yang and Zhang (2000)) to deal with
situations in which the noise to signal ratio is high. Christensen and Podolskij
(2006) and Dobrev (2007) generalize the range estimator to high-frequency
data in distinct ways and discuss the link to RV.

A different solution to the problem is considered in the original contri-
bution of Zhou (1996) who seeks to correct the bias of RV style estimators
by explicitly accounting for the covariance in lagged squared return obser-
vations. Hansen and Lunde (2006) extend Zhou’s approach to the case of
non-i.i.d. noise. In contrast, Aït-Sahalia et al. (2005) explicitly determine the
requisite bias correction when the noise term is i.i.d. normally distributed,
while Zhang et al. (2005) propose a consistent volatility estimator that uses
the entire price record by averaging RVs computed from different sparse sub-
samples and correcting for the remaining bias. Aït-Sahalia et al. (2006) extend
the sub-sampling approach to account for certain types of serially correlated
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errors. Another prominent and general approach is the recently proposed
kernel-based technique of Barndorff-Nielsen et al. (2006a, 2006b).

7 Empirical Applications

Since the early 1990s transaction data have become increasingly available to
academic research. This development has opened the way for a wide array
of empirical applications exploiting the realized return variation approach.
Below we briefly review the progress in different areas of research.

7.1 Early work

Hsieh (1991) provides one of the first estimates of the daily return varia-
tion constructed from intra-daily S&P500 returns sampled at the 15-minute
frequency. The investigation is informal in the sense that there is no direct
association with the concept of quadratic variation. More in-depth applica-
tions were pursued in publications by the Olsen & Associates group and later
surveyed in Dacorogna et al. (2001) as they explore both intraday periodic-
ity and longer run persistence issues for volatility related measures. Another
significant early contribution is a largely unnoticed working paper by Dybvig
(1991) who explores interest rate volatility through the cumulative sum of
squared daily yield changes for the three-month Treasury bill and explicitly
refers to it as an empirical version of the quadratic variation process used in
analysis of semimartingales. More recently, Zhou (1996) provides an initial
study of RV style estimators. He notes that the linkage between sampling
frequency and autocorrelation in the high-frequency data series may be in-
duced by sampling noise and he proposes a method to correct for this bias.
Andersen and Bollerslev (1997, 1998b) document the simultaneous impact
of intraday volatility patterns, the volatility shocks due to macroeconomic
news announcements, and the long-run dependence in realized volatility se-
ries through an analysis of the cumulative absolute and squared five-minute
returns for the Deutsche Mark-Dollar exchange rate. The pronounced intra-
day features motivate the focus on (multiples of) one trading as the basic
aggregation unit for realized volatility measures since this approach largely
annihilates repetitive high frequency fluctuations and brings the systematic
medium and low frequency volatility variation into focus. Comte and Renault
(1998) point to the potential association between RV measures and instan-
taneous volatility. Finally, early empirical analyses of daily realized volatility
measures are provided in, e.g., Andersen et al. (2000b) and Barndorff-Nielsen
and Shephard (2001).
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7.2 Volatility forecasting

As noted in Section 3, RV is the natural benchmark against which to gauge
volatility forecasts. Andersen and Bollerslev (1998a) stress this point which
is further developed by Andersen et al. (1999, 2003, 2004) and Patton (2007)
through different analytic means.

Several studies pursue alternative approaches in order to improve pre-
dictive performance. Ghysels et al. (2006) consider Mixed Data Sampling
(MIDAS) regressions that use a combination of volatility measures estimated
at different frequencies and horizons. Related, Engle and Gallo (2006) exploit
the information in different volatility measures, modelled with a multivariate
extension of the multiplicative error model suggested by Engle (2002), to pre-
dict multi-step volatility. A rapidly growing literature studies jump detection
(e.g., Aït-Sahalia and Jacod (2006), Andersen et al. (2006b, 2007), Fleming
et al. (2006), Huang and Tauchen (2005), Jiang and Oomen (2005), Lee and
Mykland (2007), Tauchen and Zhou (2006), and Zhang (2007)). Andersen et
al. (2007) show that separating the jump and diffusive components in QV es-
timates enhances the model forecasting performance. Related, Liu and Maheu
(2005) and Forsberg and Ghysels (2007) show that realized power variation,
which is more robust to the presence of jumps than RV, can improve volatility
forecasts.

Other researchers have been investigating the role of microstructure noise
on forecasting performance (e.g., Aït-Sahalia and Mancini (2006), Andersen
et al. (2005, 2006), and Ghysels and Sinko (2006)) and the issue of how to
use noisy overnight return information to enhance volatility forecasts (e.g.,
Hansen and Lunde (2005) and Fleming et al. (2003)).

A critical feature of volatility is the degree of its temporal dependence.
Correlogram plots for the (logarithmic) RV series show a distinct hyper-
bolic decay that is described well by a fractionally-integrated process. An-
dersen and Bollerslev (1997) document this feature using the RV series for the
Deutsche Mark-Dollar exchange rate. Subsequent studies have documented
similar properties across financial markets for the RV on equities (e.g., An-
dersen et al. (2001), Areal and Taylor (2002), Deo et al. (2006), Martens
(2002)), currencies (e.g., Andersen and Bollerslev (1998b), Andersen et al.
(2001, 2003), and Zumbach (2004)), and bond yields (e.g., Andersen and Ben-
zoni (2006)). This literature concurs on the value of the fractional integration
coefficient, which is estimated in the 0.30–0.48 range, i.e., the stationarity con-
dition is satisfied. Accounting for long memory in volatility can prove useful
in forecasting applications (e.g., Deo et al. (2006)). A particularly convenient
approach to accommodate the persistent behavior of the RV series is to use a
component-based regression to forecast the k-step-ahead quadratic variation
(e.g., Andersen et al. (2007), Barndorff-Nielsen and Shephard (2001), and
Corsi (2003)):

RV (t+k, k) = β0+βDRV (t, 1)+βWRV (t, 5)+βMRV (t, 21)+ε(t+k) . (25)
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Simple OLS estimation yields consistent estimates for the coefficients in the
regression (25), which can be used to forecast volatility out of sample.

7.3 The distributional implications of the no-arbitrage
condition

Equation (19) implies that, approximately, the daily return r(t) follows
a Gaussian mixture directed by the IV process. This is reminiscent of
the mixture-of-distributions hypothesis analyzed by, e.g., Clark (1973) and
Tauchen and Pitts (1983). However, in the case of equation (19) the mixing
variable is directly measurable by the RV estimator which facilitates testing
the distributional restrictions implied by the no-arbitrage condition embed-
ded in the return dynamics (10). Andersen et al. (2000b) and Thomakos and
Wang (2003) find that returns standardized by RV are closer to normal than
the standardized residuals from parametric SV models estimated at the daily
frequency. Any remaining deviation from normality may be due to a bias in
RV stemming from microstructure noise or model misspecification. In par-
ticular, when returns jump as in equation (21), or if volatility and return
innovations correlate, condition (19) no longer holds. Peters and de Vilder
(2006) deal with the volatility-return dependence by sampling returns in ‘fi-
nancial time,’ i.e., they identify calendar periods that correspond to equal
increments to IV, while Andersen et al. (2007) extend their approach for the
presence of jumps. Andersen et al. (2006b) apply these insights, in combi-
nation with alternative jump-identification techniques, to different data sets
and find evidence consistent with the mixing condition. Along the way they
document the importance of jumps and the asymmetric return-volatility re-
lation. Similar issues are also studied in Fleming et al. (2006) and Maheu and
McCurdy (2002).

7.4 Multivariate quadratic variation measures

A growing number of studies uses multivariate versions of realized volatility
estimators, i.e., realized covariance matrix measures, in portfolio choice (e.g.,
Bandi et al. (2007) and Fleming et al. (2003)) and risk measurement problems
(e.g., Andersen et al. (2001, 2005) and Bollerslev and Zhang (2003)). Multi-
variate applications, however, are complicated by delays in the security price
reactions to price changes in related assets as well as by non-synchronous
trading effects. Sheppard (2006) discusses this problem but how to best deal
with it remains largely an open issue. Similar to Scholes and Williams (1977),
some researchers include temporal cross-correlation terms estimated with
lead and lag return data in covariance measures (e.g., Hayashi and Yoshida
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(2005, 2006) and Griffin and Oomen (2006)). Other studies explicitly trade off
efficiency and noise-induced bias in realized covariance estimates (e.g., Bandi
and Russell (2005) and Zhang (2006)), while Bauer and Vorkink (2006) pro-
pose a latent-factor model of the realized covariance matrix.

7.5 Realized volatility, model specification and
estimation

RV gives empirical content to the latent variance variable and is therefore use-
ful for specification testing of the restrictions imposed on volatility by para-
metric models previously estimated with low-frequency data. For instance,
Andersen and Benzoni (2006) examine the linkage between the quadratic vari-
ation and level of bond yields embedded in some affine term structure models
and reject the condition that volatility is spanned by bond yields in the U.S.
Treasury market. Christoffersen et al. (2006) reject the Heston (1993) model
implication that the standard deviation dynamics are conditionally Gaussian
by examining the distribution of the changes in the square-root RV measure
for S&P 500 returns.

Further, RV measures facilitate direct estimation of parametric models.
Barndorff-Nielsen and Shephard (2002) decompose RV into actual volatility
and realized volatility error. They consider a state-space representation for
this decomposition and apply the Kalman filter to estimate different flavors
of the SV model. Bollerslev and Zhou (2002) and Garcia et al. (2001) build on
the results of Meddahi (2002b) to obtain efficient moment conditions which
they use in the estimation of continuous-time stochastic volatility processes.
Todorov (2006b) extends the analysis for the presence of jumps.

8 Possible Directions for Future Research

In recent years the market for derivative securities offering a pure play on
volatility has grown rapidly in size and complexity. Well-known examples
are the over-the-counter markets for variance swaps, which at maturity pay
the difference between realized variance and a fixed strike price, and volatil-
ity swaps with payoffs linked to the square root of realized variance. These
financial innovations have opened the way for new research on the pricing
and hedging of these contracts. For instance, while variance swaps admit a
simple replication strategy through static positions in call and put options
combined with dynamic trading in the underlying asset (e.g., Britten-Jones
and Neuberger (2000) and Carr and Madan (1998)), it is still an open issue to
determine the appropriate replication strategy for volatility swaps and other
derivatives that are non-linear functions of realized variance (e.g., call and
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put options). Carr and Lee (2007) make an interesting contribution in this
direction.

Realized volatility is also a useful source of information to learn more
about the volatility risk premium. Recent contributions have explored the
issue by combining RV measures with model-free option-implied volatility
gauges like the VIX (e.g., Bollerslev et al. (2004), Carr and Wu (2007), and
Todorov (2006b)). Other studies are examining the linkage between volatility
risk and equity premia (Bollerslev and Zhou (2007)), bond premia (Wright
and Zhou (2007)), credit spreads (Tauchen and Zhou (2007) and Zhang et al.
(2005)), and hedge-fund performance (Bondarenko (2004)). In addition, new
research is studying the pricing of volatility risk in individual stock options
(e.g., Bakshi and Kapadia (2003), Carr and Wu (2007), Driessen et al. (2006),
and Duarte and Jones (2007)) and in the cross section of stock returns (e.g.,
Ang et al. (2006, 2008), Bandi et al. (2008), and Guo et al. (2007)).

Finally, more work is needed to better understand the linkage between
asset return volatility and fluctuations in underlying fundamentals. Sev-
eral studies have proposed general equilibrium models that generate low-
frequency conditional heteroskedasticity (e.g., Bansal and Yaron (2004),
Campbell and Cochrane (1999), McQueen and Vorkink (2004), and Tauchen
(2005)). Related, Engle and Rangel (2006) and Engle et al. (2006) link
macroeconomic variables and long-run volatility movements. An attempt to
link medium and higher frequency realized volatility fluctuations in the bond
market to both business cycle variation and macroeconomic news releases is
initiated in Andersen and Benzoni (2007), but clearly much more work on
this front is warranted.
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Abstract This chapter reviews our recent work on disentangling high fre-
quency volatility estimators from market microstructure noise, based on
maximum-likelihood in the parametric case and two (or more) scales realized
volatility (TSRV) in the nonparametric case. We discuss the basic theory, its
extensions and the practical implementation of the estimators.

1 Introduction

In this chapter, we review our recent work on disentangling volatility esti-
mators from the market microstructure noise that permeates them at high
frequency; the other chapters describe alternative approaches.

We will describe the two complementary estimation strategies that we
have developed to decompose asset returns’ total variance into one due to the
fundamental price and one due to market microstructure noise. The starting
point of this analysis is a representation of the observed transaction log price,
Y, as the sum of an unobservable efficient price, X, and some noise component
due to the imperfections of the trading process, ε :
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Yt = Xt + εt. (1)

In financial econometrics, one is often interested in estimating the volatility
of the efficient log-price process

dXt = μtdt+ σtdWt (2)

using discretely sampled data on the transaction price process at times 0,
Δ,..., nΔ = T . In this discussion, we shall assume that there are no jumps.2

We will use below two classes of consistent estimators designed for the two
situations, one where σt ≡ σ is constant, a fixed parameter to be estimated,
and one where σt is nonparametric (i.e., an unrestricted stochastic process),
in which case we seek to estimate the quadratic variation of the process
X,

∫ T

0
σ2
t dt, over a fixed interval of time T, say one day. Interestingly, the

estimator we propose in the parametric case provides a consistent estimator
of the quadratic variation of X when the volatility is stochastic.

In both cases, we are also interested in estimating consistently a2 = E[ε2].
In some circumstances, the standard deviation of the noise term can be taken
as a measure of the liquidity of the market, or the quality of the trade exe-
cution in a given exchange or market structure.

For the parametric case, we will focus on the maximum-likelihood esti-
mator developed in Aït-Sahalia et al. (2005a). For the nonparametric case,
we will discuss the estimators called Two Scales Realized Volatility (TSRV),
which is the first estimator shown to be consistent for 〈X,X〉T (see Zhang
et al. (2005b)), and its extension to Multiple Scales Realized Volatility
(MSRV) in Zhang (2006).

While we focus on these estimators, others are available. In the constant
σ case, French and Roll (1986) proposed to adjust variance estimates to
control for the autocorrelation induced by the noise and Harris (1990) studied
the resulting estimators. Zhou (1996) proposed a bias correcting approach
based on the first order autocovariances, which is unbiased but inconsistent.
The behavior of this estimator has been studied by Zumbach et al. (2002).
Hansen and Lunde (2006) proposed extensions of the Zhou estimator. A
further generalization is provided by Barndorff-Nielsen et al. (2006).

We start in Section 2 with a brief review of the basic theory. Then in
Section 3 we discuss many possible refinements to basic theory, including
items such as serial correlation in the noise, possible correlation with the
underlying price process, etc. In Section 4, we discuss the practical aspects
related to the implementation of the methods to actual financial data. Section
5 concludes.

2 For discussions of jumps in this context, see, for example, Mancini (2001), Aït-Sahalia
(2002), Aït-Sahalia (2004), Aït-Sahalia and Jacod (2004), Aït-Sahalia and Jacod (2007),
Barndorff-Nielsen and Shephard (2004), Lee and Mykland (2006).
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2 Estimators

The basic principle that underlies our analysis is that all the data, despite
the fact that it is noisy, should be used when estimating the volatility of the
process. This is in direct contrast with the practice in the empirical litera-
ture up to now, whereby an arbitrary time interval (say, every few minutes)
is selected that is substantially longer than that of the original observations
(every few seconds). In order to avoid the high frequency, presumably nois-
ier, observations, this practice entails discarding a substantial portion of the
sample.

Our interest in this area started from the realization that one should be
able to do better by exploiting the full sample. The estimators we discuss
below make full use of the data.

2.1 The parametric volatility case

Consider first the case where σ2 is constant. The estimation problem is then a
case of parametric inference. We here discuss inference when the time horizon
T → ∞. The fixed T case is discussed at the end of this section, and in Section
2.2. There is, of course, a large literature on inference for other parametric
models as T → ∞, but a review of this is beyond the scope of this article.

If no market microstructure noise were present, i.e., ε ≡ 0, the log-returns
Ri = Yτi − Yτi−1 would be iid N(0, σ2Δ). The MLE for σ2 then coincides
with the realized volatility of the process,

σ̂2 =
1
T

∑n

i=1
R2
i . (3)

Furthermore, T 1/2
(

σ̂2 − σ2
)

−→
n−→∞

N(0, 2σ4Δ) and thus selecting Δ as small

as possible is optimal for the purpose of estimating σ2.
When the observations are noisy, with the ε′s being iid noise with mean

0 and variance a2, the true structure of the observed log-returns Ri is given
by an MA(1) process since

Ri = σ
(

Wτi −Wτi−1

)

+ ετi − ετi−1 ≡ ui + ηui−1 (4)

where the u′s are mean zero and variance γ2 with

γ2(1 + η2) = Var[Ri] = σ2Δ+ 2a2 (5)

γ2η = Cov(Ri, Ri−1) = −a2. (6)

If we assume for a moment that ε ∼ N(0, a2) (an assumption we will relax
below), then the u′s are iid Gaussian and the likelihood function for the vector
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R of observed log-returns, as a function of the transformed parameters (γ2, η),
is given by

l(η, γ2) = − ln det(V )/2 − n ln(2πγ2)/2 − (2γ2)−1R′Ω−1R (7)

where

Ω = [ωij ] =

⎛

⎜

⎜

⎜

⎜

⎝

1 + η2 η · · · 0

η 1 + η2 . . .
...

...
. . . . . . η

0 · · · η 1 + η2

⎞

⎟

⎟

⎟

⎟

⎠

.

From the perspective of practical implementation, this estimator is nothing
else than the MLE estimator of an MA(1) process with Gaussian errors:
any existing computer routines for the MA(1) situation can therefore be
applied (see e.g., Section 5.4 in Hamilton (1995)). In particular, the log-
likelihood function can be expressed in a computationally efficient form by
triangularizing the matrix Ω, avoiding the brute-force computation of Ω−1

and yielding the equivalent expression:

l(η, γ2) = −1
2

N
∑

i=1

ln (2πdi) − 1
2

N
∑

i=1

˜Y 2
i

di
, (8)

where

di = γ2 1 + η2 + ...+ η2i

1 + η2 + ...+ η2(i−1)

and the ˜Y ′
i s are obtained recursively as ˜Y1 = Y1 and for i = 2, ..., N :

˜Yi = Yi −
η
(

1 + η2 + ...+ η2(i−2)
)

1 + η2 + ...+ η2(i−1)
˜Yi−1.

The MLE (σ̂2, â2) is consistent and its asymptotic variance is given by

AVARnormal(σ̂2, â2) =

(

4
(

σ6Δ
(

4a2 + σ2Δ
))1/2 + 2σ4Δ −σ2Δh

• Δ
2

(

2a2 + σ2Δ
)

h

)

with
h ≡ 2a2 +

(

σ2Δ
(

4a2 + σ2Δ
))1/2

+ σ2Δ.

Since AVARnormal(σ̂2) is increasing in Δ, we are back to the situation where
it is optimal to sample as often as possible. Interestingly, the AVAR structure
of the estimator remains largely intact if we misspecify the distribution of the
microstructure noise. Our likelihood function then becomes a quasi-likelihood
in the sense of Wedderburn (1974), see also McCullagh and Nelder (1989).

Specifically, suppose that the ε′s have mean 0 and variance a2 but are not
normally distributed. If the econometrician (mistakenly) assumes that the ε′s
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are normal, inference is still done with the Gaussian log-likelihood l(σ2, a2),
using the scores l̇σ2 and l̇a2 as moment functions. Since the expected values
of l̇σ2 and l̇a2 only depend on the second order moment structure of the
log-returns R, which is unchanged by the absence of normality, the moment
functions are unbiased:

Etrue[l̇σ2 ] = Etrue[l̇a2 ] = 0

where “true” denotes the true distribution of the Y ′s. Hence the estimator
(σ̂2, â2) based on these moment functions remains consistent and the effect of
misspecification lies in the AVAR. By using the cumulants of the distribution
of ε, we express the AVAR in terms of deviations from normality. We obtain
that the estimator (σ̂2, â2) is consistent and its asymptotic variance is given
by

AVARtrue(σ̂2, â2) = AVARnormal(σ̂2, â2) + Cum4 [ε]
(

0 0
0 Δ

)

where AVARnormal(σ̂2, â2) is the asymptotic variance in the case where the
distribution of U is Normal. ε has mean zero, so in terms of its moments

Cum4 [ε] = E
[

ε4
]

− 3
(

E
[

ε2
])2

. (9)

In the special case where ε is normally distributed, Cum4 [ε] = 0.
The i.i.d. assumption for noise may not be realistic. We discuss serially

correlated noise below. For a study of that happens if the noise can depend
on the latent process, we refer to Li and Mykland (2007).

The presence of a drift does not alter these earlier conclusions, not just
because it would be economically irrelevant at the observation frequencies we
consider, but also because of the following. Suppose that Xt = μt+σWt then
the block of the AVAR matrix corresponding to (σ̂2, â2) is the same as if μ
were known, in other words, as if μ = 0, which is the case we focused on.

In the T fixed case, inference for fixed σ has been considered by Gloter
(2000) and Gloter and Jacod (2000). The estimator converges at the rate
of n1/4, where n is the number of observations. An important issue is what
happens to this MLE estimator if the volatility is in fact not constant, but is
stochastic as in the model which we will now turn to. In that case, the like-
lihood function becomes misspecified. Recent results in Xiu (2008), however,
suggest that the MLE estimator, suitably rescaled, is a consistent estimator
of the integrated volatility of the process (see Xiu (2008)). This analysis may
explain why the MLE seems to perform so well in simulations done under a
variety of non-constant volatility models (see Gatheral and Oomen (2007)).
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2.2 The nonparametric stochastic volatility case

An alternative model is one where volatility is stochastic, and we now discuss
how to separate the fundamental and noise volatilities in this case. When

dXt = σtdWt, (10)

the object of interest is now the quadratic variation

〈X,X〉T =
∫ T

0

σ2
t dt (11)

over a fixed time period [0, T ]. The usual estimator of 〈X,X〉T is the realized
volatility (RV)

[Y, Y ]T =
n

∑

i=1

(Yti+1 − Yti)
2. (12)

In the absence of noise, [Y, Y ]T consistently estimates 〈X,X〉T . The sum
converges to the integral, with a known distribution, dating back to Jacod
(1994) and Jacod and Protter (1998). As in the constant σ case, selecting
Δ as small as possible (= n as large as possible) is optimal.

But ignoring market microstructure noise leads to an even more dangerous
situation than when σ is constant and T → ∞. In the high frequency limit,
market microstructure noise totally swamps the variance of the price signal
at the level of the realized volatility, as was noted by Zhou (1996). More
precisely, after suitable scaling, RV based on the observed log-returns is a
consistent and asymptotically normal estimator – but of the quantity 2nE[ε2].
This quantity has nothing to do with the object of interest, 〈X,X〉T .

This is of course already visible in the special case of constant volatility we
just studied. Since the expressions above are exact small-sample ones, they
can in particular be specialized to analyze the situation where one samples
at increasingly higher frequency (Δ → 0, say sampled every minute) over a
fixed time period (T fixed, say a day). If we continue to assume iid noise,
with n = T/Δ, we have

E
[

σ̂2
]

=
2na2

T
+ o(n) =

2nE
[

ε2
]

T
+ o(n) (13)

Var
[

σ̂2
]

=
2n

(

6a4 + 2 Cum4 [ε]
)

T 2
+ o(n) =

4nE
[

ε4
]

T 2
+ o(n) (14)

so (T/2n)σ̂2 becomes an estimator of E
[

ε2
]

= a2 whose asymptotic variance
is E

[

ε4
]

. Note in particular that σ̂2 estimates the variance of the noise, which
is essentially unrelated to the object of interest σ2.

In fact, if one uses all the data (say sampled every second),
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[Y, Y ](all)T

L≈ 〈X,X〉T
︸ ︷︷ ︸

object of interest

+ 2nE[ε2]
︸ ︷︷ ︸

bias due to noise

+ [ 4nE[ε4]
︸ ︷︷ ︸

due to noise

+
2T
n

∫ T

0

σ4
t dt

︸ ︷︷ ︸

due to discretization
︸ ︷︷ ︸

]1/2

total variance

Ztotal.

conditionally on the X process, where Z denotes a standard normal variable.
So the bias term due to the noise, which is of order O(n), swamps the true
quadratic variation 〈X,X〉T , which is of order O(1).

While a formal analysis of this phenomenon originated in Zhang et al.
(2005b), it has long been known that sampling as prescribed by [Y, Y ](all)T is
not a good idea. The recommendation in the literature is to sample sparsely
at some lower frequency, by using a realized volatility estimator [Y, Y ](sparse)

T

constructed by summing squared log-returns at some lower frequency, usually
5, 10, 15, 30 minutes (see e.g., Andersen et al. (2001), Barndorff-Nielsen and
Shephard (2002) and Gençay et al. (2002).) Reducing the value of n, from
say 23, 400 (1 second sampling) to 78 (5 minute sampling over the same 6.5
hours), has the advantage of reducing the magnitude of the bias term 2nE[ε2].
Yet, one of the most basic lessons of statistics is that discarding data is, in
general, not advisable.

Zhang et al. (2005b) propose a solution to this problem which makes use of
the full data sample yet delivers consistent estimators of both 〈X,X〉T and a2.
The estimator, Two Scales Realized Volatility (TSRV), is based on subsam-
pling, averaging and bias-correction. By evaluating the quadratic variation
at two different frequencies, averaging the results over the entire sampling,
and taking a suitable linear combination of the result at the two frequencies,
one obtains a consistent and asymptotically unbiased estimator of 〈X,X〉T .

TSRV’s construction is quite simple: first, partition the original grid of
observation times, G = {t0, ..., tn} into subsamples, G(k), k = 1, ...,K where
n/K → ∞ as n → ∞. For example, for G(1) start at the first observation
and take an observation every 5 minutes; for G(2), start at the second ob-
servation and take an observation every 5 minutes, etc. Then we average the
estimators obtained on the subsamples. To the extent that there is a benefit
to subsampling, this benefit can now be retained, while the variation of the
estimator will be lessened by the averaging. This reduction in the estimator’s
variability will open the door to the possibility of doing bias correction.

Averaging over the subsamples gives rise to the estimator

[Y, Y ](avg)
T =

1
K

K
∑

k=1

[Y, Y ](k)T
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constructed by averaging the estimators [Y, Y ](k)T obtained on K grids of
average size n̄ = n/K. The properties of this estimator are given by

[Y, Y ](avg)
T

L≈ 〈X,X〉T
︸ ︷︷ ︸

object of interest

+ 2n̄E[ε2]
︸ ︷︷ ︸

bias due to noise

+ [4
n̄

K
E[ε4]

︸ ︷︷ ︸

due to noise

+
4T
3n̄

∫ T

0

σ4
t dt

︸ ︷︷ ︸

due to discretization
︸ ︷︷ ︸

]1/2

total variance

Ztotal.

While a better estimator than [Y, Y ](all)T , [Y, Y ](avg)
T remains biased. The bias

of [Y, Y ](avg)
T is 2n̄E[ε2]; of course, n̄ < n, so progress is being made. But one

can go one step further. Indeed, E[ε2] can be consistently approximated using
RV computed with all the observations:

Ê[ε2] =
1
2n

[Y, Y ](all)T (15)

Hence the bias of [Y, Y ](avg) can be consistently estimated by n̄[Y, Y ](all)T /n.
TSRV is the bias-adjusted estimator for 〈X,X〉 constructed as

〈̂X,X〉
(tsrv)

T = [Y, Y ](avg)
T

︸ ︷︷ ︸

slow time scale

− n̄

n
[Y, Y ](all)T
︸ ︷︷ ︸

fast time scale

. (16)

If the number of subsamples is optimally selected as

K∗ = cn2/3, (17)

then TSRV has the following distribution:

〈̂X,X〉
(tsrv)

T

L≈ 〈X,X〉T
︸ ︷︷ ︸

object of interest

+
1

n1/6
[

8
c2
E[ε2]2

︸ ︷︷ ︸

due to noise

+ c
4T
3

∫ T

0

σ4
t dt

︸ ︷︷ ︸

due to discretization
︸ ︷︷ ︸

]1/2

total variance

Ztotal.

(18)
Unlike all the previously considered ones, this estimator is now correctly
centered. The optimal choice of the constant c is given by

c∗ =

(

T

12(Eε2)2

∫ T

0

σ4
t dt

)−1/3

. (19)

Consistent estimators for that quantity are given in Section 6 of Zhang et al.
(2005b).
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A small sample refinement to 〈̂X,X〉T can be constructed as follows

〈̂X,X〉
(tsrv,adj)

T =
(

1 − n

n

)−1

〈̂X,X〉
(tsrv)

T . (20)

The difference with the estimator (16) is of order Op(K−1), and thus the two
estimators have the same asymptotic behaviors to the order that we consider.
However, the estimator (20) is unbiased to higher order.

It should be emphasized that the development above works equally well
for non-equidistant observations. One can therefore move to sampling in tick
time. The only modification is that the integral

∫ T

0 σ4
t dt gets replaced by

∫ T

0 σ4
TdH(t), where H(t) is a measure if the quadratic variation of sampling

times. For details, we refer to Zhang et al. (2005b).
TSRV provides the first consistent and asymptotic (mixed) normal esti-

mator of the quadratic variation 〈X,X〉T ; as can be seen from (18), it has
the rate of convergence n−1/6. Finally, we emphasize that the parametric and
nonparametric cases above are different not only in the degree of parametric
specification, but also in the form of asymptotics. In the former case, T → ∞,
while in the latter, T is fixed at, say, one day. The case of parametric inference
for fixed T and high frequency data has been discussed by Gloter (2000) and
Gloter and Jacod (2000).

3 Refinements

3.1 Multi-scale realized volatility

If one can benefit from combining two scales, how about combining several?
Essentially, using two scales assures consistency and (asymptotic) unbiased-
ness; adding more scales improves efficiency. Zhang (2006) shows that it is
possible to generalize TSRV, by averaging not just on two but on multiple
time scales. For suitably selected weights, the resulting estimator, MSRV
converges to 〈X,X〉T at the somewhat faster rate n−1/4. An related general-
ization of TSRV is also provided by Barndorff-Nielsen et al. (2006).

TSRV corresponds to the special case where one uses a single slow time
scale in conjunction with the fast time scale to bias-correct it. As has been
shown in Gloter (2000) and Gloter and Jacod (2000), this is the same rate
as for parametric inference, and so the rate is the best attainable also in the
nonparametric situation.

We refer to Zhang (2006) for the general description of the Multiple Scales
Realized Volatility (MSRV), but note in particular the following: (1) The
MSRV estimator is n−1/4-consistent even with the usual edge (beginning
and end of day) effects. This is not typically the case for estimators based on
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autocovariances. (2) The MSRV does depend on a weighting function, which
can be chosen to optimize efficiency.

We note that for purposes of efficiency, the constant volatility case is useful
as a benchmark even if such constancy does not actually apply. Compared to
the TSRV, the MSRV is somewhat harder to implement, and the efficiency
gain for typical sample sizes is moderate. On the other hand, the MSRV has
the advantage of only involving subsampling over points that are O(n1/2)
observations apart (while for the TSRV, they can be O(n2/3) observations
apart). We believe that one can use either estimator with a good conscience.

3.2 Non-equally spaced observations

A substantial fraction of the literature is developed for equidistant observa-
tions. This may make sense when one takes subsamples every five or fifteen
minutes, but is unrealistic in ultra high frequency data. While irregular spac-
ing does not alter the estimators of volatility (such as TSRV or MSRV), it
does alter the standard errors of estimators. In the more realistic case, such
standard errors have to involve some notion of the quadratic variation of
time, as first documented in Zhang (2001) and Mykland and Zhang (2006).
When combining several scales, expressions become more difficult, but are
still estimable, see, in particular, the developments in Zhang et al. (2005b).

It is a commonly believed misconception that non-equally spaced data can
be analyzed by assuming that the i’th sampling time (in a sample of size n)
is given by tn,i = f(i/n), where f is an increasing (possibly random) function
which does not depend on n. However, this is just a rescaling of time by the
function f , and it does not alter the asymptotic variance of any estimator
of daily volatility. This mode of analysis, therefore, only captures very mild
forms of irregular spacing. For example, in the case of sampling at Poisson
times, the sampling points are uniformly distributed, and the function f ,
had it existed, would have to be linear. However, the asymptotic quadratic
variation of time (AQVT, see Zhang (2001), Zhang et al. (2005b), Mykland
and Zhang (2006) and Zhang (2006)) for Poisson sampling is double that of
sampling at regularly spaced times.

A somewhat mitigating factor in this picture is that estimates of asymp-
totic variance in some cases automatically take account of the irregularly
of sampling, see, for example, Remark 2 (p. 1944) of Mykland and Zhang
(2006). The more general case, as for example in Zhang et al. (2005b), is
more complicated, and investigations are continuing. Natural questions are
whether trading intensity variation will be associated with time variation in
the noise distribution at very high frequency, and sampling in tick time could
potentially render the noise distribution more homogenous.
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The problem, however, is further mitigated by subsampling. It would seem
that for many data generating mechanisms for the sampling times, the aver-
aging of spacings implied by subsampling makes the subsampled times less
irregular. For example, if one subsamples every K’th observation time when
spacings are from a Poisson process, the AQVT of the subsampled times will
decrease to that of regular sampling as K gets larger. This is an additional
benefit of subsampling.

3.3 Serially-correlated noise

3.3.1 The parametric case

The likelihood function can be modified in the case of serially correlated
noise. The form of the variance matrix of the observed log-returns must be
altered, replacing γ2vij with

Cov(Ri, Rj)

= Cov(σ
(

Wτi −Wτi−1

)

+ ετi − ετi−1 , σ
(

Wτj −Wτj−1

)

+ ετj − ετj−1)

= σ2Δδij + Cov(ετi − ετi−1 , ετj − ετj−1)

where δij = 1 if i = j and 0 otherwise. A model for the time series dependence
of the ε and its potential correlation to the price process would then specify
the remaining terms.

3.3.2 The nonparametric case

When the microstructure noise ε is iid, log-returns

Ri = Yτi − Yτi−1 =
∫ τi

τi−1

σtdWt + ετi − ετi−1 (21)

follow an MA(1) process since the increments
∫ τi

τi−1
σtdWt are uncorrelated,

ε ⊥ W and therefore, in the simple case where σt is nonrandom (but possibly
time varying),

E [RiRj ] =

⎧

⎨

⎩

∫ τi

τi−1
σ2
t dt+ 2E

[

ε2
]

if j = i

−E
[

ε2
]

if j = i+ 1
0 if j > i+ 1

(22)

Under the simple i.i.d. noise assumption, log-returns are therefore (nega-
tively) autocorrelated at the first order.
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An example of a simple model to capture higher order serial dependence
in ε is

εti = Uti + Vti (23)

where U is iid, V is AR(1) with first order coefficient ρ, |ρ| < 1, and U ⊥ V.
Under this model, we have

E [RiRj ] =

⎧

⎪

⎨

⎪

⎩

∫ τi

τi−1
σ2
t dt+ 2E

[

U2
]

+ 2 (1 − ρ)E
[

V 2
]

if j = i

−E
[

U2
]

− (1 − ρ)2E
[

V 2
]

if j = i+ 1
−ρj−i−1 (1 − ρ)2E

[

V 2
]

if j > i+ 1
(24)

More generally, assume that the noise process εti is independent of the Xt

process, and that it is (when viewed as a process in index i) stationary and
strong mixing with the mixing coefficients decaying exponentially. We also
suppose that for some κ > 0, Eε4+κ < ∞.

Definitions of mixing concepts can be found e.g., in Hall and Heyde (1980),
p. 132. Note that by Theorem A.6 (p. 278) of Hall and Heyde (1980), there
is a constant ρ < 1 so that, for all i,

∣

∣Cov(εti , εti+l
)
∣

∣ ≤ ρl Var(ε) (25)

Note that we are modeling the noise process dependence in tick time.
For the moment, we focus on determining the integrated volatility of X

for one time period [0, T ]. This is also known as the continuous quadratic
variation 〈X,X〉 of X . In other words,

〈X,X〉T =
∫ T

0

σ2
t dt. (26)

Our volatility estimators can be described by considering subsamples of the
total set of observations. A realized volatility based on every j’th observation,
and starting with observation number r, is given as

[Y, Y ](j,r)T =
∑

0≤j(i−1)≤n−r−j

(Ytji+r − Ytj(i−1)+r
)2.

Under most assumptions, this estimator violates the sufficiency principle,
whence we define the average lag j realized volatility as

[Y, Y ](J)
T =

1
J

J−1
∑

r=0

[Y, Y ](J,r)T

=
1
J

n−J
∑

i=0

(Yti+J − Yti)
2
. (27)

A generalization of TSRV can be defined for 1 ≤ J < K ≤ n as
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〈̂X,X〉
(tsrv)

T = [Y, Y ](K)
T

︸ ︷︷ ︸

slow time scale

− n̄K
n̄J

[Y, Y ](J)
T

︸ ︷︷ ︸

fast time scale

, (28)

thereby combining the two time scales J and K. Here n̄K = (n−K + 1)/K
and similarly for n̄J .

We will continue to call this estimator the TSRV estimator, noting that the
estimator we proposed in Zhang et al. (2005b) is the special case where J = 1
and K → ∞ as n → ∞. This more general estimator remains consistent and
asymptotically mixed normal under assumption (25), as discussed in Aït-
Sahalia et al. (2005b).

Both (16) and (28) are estimators of the same quantity, the quadratic vari-
ation, derived under different assumptions on the correlation structure of the
noise (iid vs. fairly time series dependence.) One possibility is to approach the
question with an eye towards robsutness considerations: in the Hausman test
spirit, if the two estimators are close, then it is likely that the iid assumption
for the noise is not a bad one in this particular instance.

3.4 Noise correlated with the price signal

3.4.1 The parametric case

The likelihood function can be modified in the case of noise that is both
serially correlated, as discussed above, but also correlated with the price
process. In those cases, the form of the variance matrix of the observed log-
returns must be altered, replacing γ2vij with

Cov(Ri, Rj)

= Cov(σ
(

Wτi −Wτi−1

)

+ ετi − ετi−1 , σ
(

Wτj −Wτj−1

)

+ ετj − ετj−1)

= σ2Δδij + Cov(σ
(

Wτi −Wτi−1

)

, ετj − ετj−1) (29)

+ Cov(σ
(

Wτj −Wτj−1

)

, ετi − ετi−1) + Cov(ετi − ετi−1 , ετj − ετj−1)

where δij = 1 if i = j and 0 otherwise.

3.4.2 The nonparametric case

In principle, one could build a complex model to relate microstructure noise
to the efficient price . In practice, however, separating the signal from the
noise is not that simple, despite claims to the contrary in the literature (see
e.g., Hansen and Lunde (2006)). There are several difficult issues concerning
how to model the noise. First of all, the noise can only be distinguished
from the efficient price under fairly careful modelling. In most cases, the
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assumption that the noise is stationary, alone, is not enough to make the
noise identifiable. For example, one could write down an additive model for
the observed (log) price process {pt}:

pti,m = p∗ti,m + uti,m ,

and denote p∗t and ut are, respectively, signal and noise. This model, however,
does not guarantee that one can disentangle the signal or the volatility of the
signal. To see this, suppose that the efficient price can be written as

dp∗t = μtdt+ σtdWt,

where the drift coefficient μt and the diffusion coefficient σt can be random,
and Wt is a standard Brownian motion. If one assumed that ut is also an Itô
process, say,

dut = νtdt+ γtdBt,

then pt is also an Itô process of the form

dpt = (μt + νt)dt+ ωtdVt,

where ω2
t = σ2

t + γ2
t + 2σtγtd < W,B >t /dt (by the Kunita-Watanabe

inequality, see, for example, Protter (2004)).
Unless one imposes additional constraints, it is therefore not possible

to distinguish signal and noise in this model, and the integrated variance
(quadratic variation) of the process should be taken to be

∫ T

0
ω2
t dt. One

could, of course, require μt = 0, as is done in Aït-Sahalia et al. (2005a),
but consistent estimation is only possible as T → ∞, and given a paramet-
ric model or similar. Note that many papers make the assumption that the
drift in the efficient price is zero. This assumption is necessary for their unbi-
asedness considerations, but for the purposes of asymptotics in a fixed time
interval T such as a day, it does not matter. This is for the same reason that a
consistent separation of efficient price is not possible in a fixed time interval,
so long as the noise is also an Itô process.

The same statement, broadly interpreted (replace integrated volatility of
any process X with its quadratic variation), holds true for general semi-
martingales, see Theorem I.4.47 (p. 52) of Jacod and Shiryaev (2003).
One can in some cases extend the concept of quadratic variation to non-
semimartingales. As we shall see, even in this case the noise is not separable
from the signal except under additional assumptions.

What makes this problem particularly difficult is that a substantial frac-
tion of continuous processes of interest here are Itô processes. And many
Itô processes have stationary solutions. One can easily construct a stationary
diffusion process with given marginal distribution and exponential autocorre-
lation function. By superposition, and by taking limits, one can, for example,
construct a Gaussian Itô process with mean zero and with any autocovariance
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function on the form π(s) =
∫∞
0
e−usν(du), where ν is any finite measure on

[0,∞).
The only case where one can hope to distinguish between efficient price

and noise, is if the noise ut is not an Itô process. One way for this to occur is if
the ut are independent for different t, and hence the autocovariance function
satisfies π(s) = 0 for s �= 0. It should be emphasized that consistency is not
guaranteed even if the noise is not a semimartingale; this kind of model has
to be analyzed in each individual case.

3.5 Small sample edgeworth expansions

Our experience suggests that practitioners trading volatility derivatives such
as variance swaps very much care about the degree of uncertainty associ-
ated with volatility estimators. Their contracts are written with respect to
a specific volatility measure, RV in most cases. To the extent that better
estimators of IV are available, they suggest trading opportunities.

In some instances, the asymptotic normal approximation to the error of
the estimators described above can be improved on using Edgeworth ex-
pansions and Cornish-Fisher inversions. In the context of TSRV, this is ex-
plained in Zhang et al. (2005a), to which we refer. In the case where there is
no microstructure noise, expansions for feasible estimators are discussed by
Goncalves and Meddahi (2005). A good account of the general Edgeworth
theory can be found in Hall (1992).

3.6 Robustness to departures from the data generating
process assumptions

Actual volatility data can depart from the stylized assumptions we have made
above in a number of ways: they may exhibit long memory, jumps, etc. We
refer to Aït-Sahalia and Mancini (2006) and Gatheral and Oomen (2007) for
various simulations that document the robustness of MLE, TSRV and MSRV
in these settings.
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4 Computational and Practical Implementation
Considerations

4.1 Calendar, tick and transaction time sampling

One argument for tick time sampling is based on sampling more when the
market is active, as opposed to sampling, say, once every ten seconds. Grif-
fin and Oomen (2006) provide an interesting analysis of the impact of tick
vs. transaction sampling. Their results show that the nature of the sampling
mechanism can generate fairly distinct autocorrelogram patterns for the re-
sulting log-returns. Now, from a practical perspective, we can view the choice
of sampling scheme as one more source of noise, this one attributable to the
econometrician who is deciding between different ways to approach the same
original transactions or quotes data: should we sample in calendar time?
transaction time? tick time? something else altogether? Since the sampling
mechanism is not dictated by the data, this argues for working under robust
departures from the basic assumptions.

An additional issue is whether to model time dependence in the microstruc-
ture in calendar or tick time. As discussed in Section 3.4.2, modeling such
dependence in calendar time results in identifiability problems, which is why
we have focused on tick time. It remains an interesting question how to ef-
fectively do inference with such dependence in calendar time.

4.2 Transactions or quotes

Quotes do not represent an actual price at which a transaction took place. As
such they can be subject to caution in terms of interpretation as a price se-
ries. But they contain substantially more information regarding the strategic
behavior of market makers, for instance. Overall, the midpoint of the bid and
offer quotes data at each point in time, weighted by the quoted market depth
for each quote, tends to produce a series that is substantially less affected by
market microstructure noise than the transactions price and should probably
be used at least for comparison purposes whenever possible.

The model (23) for the microstructure noise describes well a situation
where the primary source of the noise beyond order one consists of further
bid-ask bounces. In such a situation, the fact that a transaction is on the bid
or ask side has little predictive power for the next transaction, or at least
not enough to predict that two successive transactions are on the same side
with very high probability (although Choi et al. (1988) have argued that
serial correlation in the transaction type can be a component of the bid-ask
spread, and extended the model of Roll (1984) to allow for it).
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In trying to assess the source of the higher order dependence in the log-
returns, a natural hypothesis is that this is due to the trade reversals: in
transactions data and an orderly liquid market, one might expect that in
most cases successive transactions of the same sign (buy or sell orders) will
not move the price. The next recorded price move is then, more likely than
not, going to be caused by a transaction that occurs on the other side of the
bid-ask spread, and so we observed these reversals when the data consist of
the transactions that lead to a price change. In other words, when looking
at second-to-second price moves, volatility will often be too low to change
prices by a full tick. Hence, observed price moves will often be dominated by
rounding. This point is in fact what motivates the Roll (1984) estimator of
the bid-ask spread.

We looked at quotes data, also from the TAQ database. Indeed, an impor-
tant source for the AR(1) pattern found in transactions returns with negative
autocorrelation (the term V in (23)) will be trade reversals. The remaining
autocorrelation exhibited in the quotes data can also be captured by model
(23), but with a positive autocorrelation in the V term. This can capture
effects such as the gradual adjustment of prices in response to a shock such
as a large trade. So the pattens of autocorrelations, beyond the salient MA(1)
first order term are quite different between transactions and quotes series.

4.3 Selecting the number of subsamples in practice

The asymptotic theory summarized above provides specific rules for optimally
selecting the number of subsamples in TSRV, K, and consequently the aver-
age number of observations per subsample, n̄. These rules are asymptotic by
nature and provide some reasonable guidance in small samples. Implement-
ing them to the letter, however, does require the estimation of additional
quantities, such as

∫ T

0 σ4
t dt: see (17) and (19). This requires additional effort,

and is not trivial in the presence of noise, but furthermore it may not be that
useful in practice.

In practice, we have found that the best approach is usually to start with
reasonable values (say if n = 23, 400 observations or 1 per second, then start
at K = 300 or n̄ = 78 corresponding to subsampling every 5 minutes) and
work around those values (in the same example from a range of say 1 minute
to 10 minutes): those numbers can be adjusted accordingly based on the
original sample frequency including all the data.
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4.4 High versus low liquidity assets

Estimators such as TSRV are designed to work for highly liquid assets. In-
deed, the bias-correction relies on the idea that RV computed with all the
observations, [Y, Y ](all)T , consists primarily of noise: recall (15). This is of
course true asymptotically in n. But if the full data sample frequency is low
to begin with (for example, a stock sampled every minute instead of every
second), [Y, Y ](all)T will not be entirely noise and bias-correcting on the basis of
(15) may over-correct including in extreme cases possibly yielding a negative
estimator in (16). So care may be taken to apply the estimator to settings
which are appropriate: this is designed to work for very high frequency data,
meaning settings where the raw data are sampled every few seconds in the
case of typical financial data.

This number is of course to be assessed in relation to the magnitude of the
noise in the raw data: the smaller the noise to begin with, the more frequent
the observations. In particular, the estimator is not designed to be applied
to data that have been subjected to preliminary de-noising steps such as
MA(1) filters and the like. It is designed to work on the raw data, without
requiring any step other than the correction of obvious data errors, such as
prices entered as 0, etc. This is a strength of the approach in that it does
not necessitate that one takes a stand on when and how to "pre-clean" the
data and no other outside intervention (and the inevitable arbitrariness that
come with them.)

4.5 Robustness to data cleaning procedures

We discuss in Aït-Sahalia et al. (2005) the importance and, often, the lack
of robustness of results reported in the literature on specific data treatment
procedures. There, we reproduced the analysis of Hansen and Lunde (2006)
on a small subset of their data, for one stock (Alcoa, ticker symbol: AA) and
one month (January 2004). We found that over half of the original dataset
was discarded when creating a “clean” set of transactions. This set of manipu-
lations in fact result in significant differences for the estimation, that may not
be justified. For this particular stock and month, there were no transaction
prices reported at 0 and this particular sample appears to be free of major
data entry errors. Discarding all price moves of magnitude 0.5% or greater
that are immediately followed by another move of the same size but the op-
posite sign, eliminated fewer than 10 observations each day. So a minimal
amount of data cleaning would discard a very tiny percentage of the original
transactions, nowhere near half of the sample.

The “clean” data are smoothed to the point where the estimator analyzed
by Hansen and Lunde (2006) looks in fact very close to the basic uncorrected
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RV and appears to underestimate the quadratic variation by about 20%. Fi-
nally, the data cleaning may significantly change the autocorrelation structure
of returns. The “clean” dataset results in a first order autocorrelation (which
is indicative of the inherent i.i.d. component of the noise of the data) that is
about a quarter of the value obtained from the raw data. Therefore the main
manifestation of the noise, namely the first order autocorrelation coefficient,
has been substantially altered. At the same time, those cleaning procedures
seem to introduce spuriously higher positive autocorrelation at orders 3 and
above. So, at least for the data we analyzed, heavy-handed pre-processing of
the data is far from being inconsequential.

4.6 Smoothing by averaging

Another issue is that the empirical analysis often conducted in the litera-
ture involves estimators computed on a daily basis, and then averaged over
a longer time period, such as a year. While this time series averaging has the
advantage of delivering plots that visually appear to be very smooth, it is not
clear to us that this is how such estimators would be used in applications such
as volatility hedging or option pricing. The whole point of using nonparamet-
ric measurements of stochastic volatility, estimated on a day-by-day basis, is
that one believes that the quantity of interest can change meaningfully every
day, at least for the purposes for which it is to be used (such as adjusting
a position hedge). While some averaging is perhaps necessary, computing an
average of the day-by-day numbers over an entire year seems to be at odds
with the premise of the exercise.

One consequence of the large pre-processing of the data discussed above
is that it reduces the sample size available for inference, which inevitably
increases the variability of the estimators, i.e., decreases the precision with
which we can estimate the quadratic variation. Examples of what happens
when various estimators are implemented on a single day’s data are reported
in Aït-Sahalia et al. (2005b). We find that many estimators tend to be very
sensitive to the frequency of estimation, such as RV implemented at, say, 4mn
vs. 5mn vs. 6mn where the estimates turn out to be surprisingly different from
those apparently small changes in what is essentially an arbitrary sampling
frequency. Autocovariance-based estimators can also be quite sensitive to the
number of lags included.

By contrast, the averaging over sampling frequencies that takes place in
TSRV within a given trading day provides the necessary smoothing. This
seems to us to be substantially better than having to average over different
days, with all the implicit stationarity assumptions made in the process and
the disconnect with the practical applications.
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5 Conclusions

High frequency financial data have many unpleasant features from the per-
spective of econometric analysis. Any estimator that is robust to microstruc-
ture noise should attempt to address them, with minimal prior intervention
by the researcher: once should not have to discard arbitrarily a large portion
of the sample. Beyond eliminating the obvious data errors, such as prices or
volumes entered as zeroes, one should not have to make up algorithms on the
fly to determine which transactions are “better” than others, which quotes are
valid or not, whether transactions time-stamped at the same second are truly
contemporaneous or not, which market is more or less efficient at providing
price discovery, etc. In the end, this is what market microstructure noise is
all about!

Avoiding arbitrariness in implementation is an important consideration
but at the same time, the choice between various sampling mechanisms may
be dictated by the data at hand, by the importance placed on the rounding
mechanism, or on the likelihood that the resulting price series looks like
a martingale, on what we are going to do with that volatility estimate and
what it is supposed to represent, etc. Ultimately, we are hoping for estimators
that are robust to these considerations. We do not think we are quite there
yet, but in a sense the fact that the results may differ when implemented on
quotes vs. transactions, or on tick vs. calendar time sampling, are all different
manifestations of the presence of the noise.

The estimators we have reviewed in this chapter provide the first step to-
wards constructing volatility estimators that have good properties, including
the basic requirement of consistency, in the presence of some form of mar-
ket microstructure noise, and share additional robustness properties against
deviations from the basic theoretical framework.
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Option Pricing

Jan Kallsen

Abstract This chapter reviews basic concepts of derivative pricing in finan-
cial mathematics. We distinguish market prices and individual values of a po-
tential seller. We focus mainly on arbitrage theory. In addition, two hedging-
based valuation approaches are discussed. The first relies on quadratic hedg-
ing whereas the second involves a first-order approximation to utility indif-
ference prices.

1 Introduction

The valuation of derivative securities constitutes one of the main topics in
modern mathematical finance. More generally, economic theory has consid-
ered the genesis of asset prices — whether they are derivatives or not — for
a long time. We focus here on relative pricing, i.e. the valuation of options in
relation to some underlying whose price is assumed to be given exogenously.
In many cases it is obvious whether to consider an asset as underlying or
derivative security. In others as e.g. in interest rate theory, there may exist
more than one reasonable choice. But what do we mean by option pricing?
We distinguish two possible interpretations. Depending on the application
one may prefer one or the other.

In the following two sections we concentrate on market prices for options.
They result from or are subject to supply and demand. General equilibrium
theory has produced a large number of qualitative and quantitative results
on market prices, based on assumptions concerning reasonable behaviour of

and Schied (2004)). However, their application in order to derive real prices
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constitutes a daunting task. Even if the underlying economic assumptions
hold, one typically lacks the information on investors’ preferences etc. that
are necessary to come up with concrete numbers.

Nevertheless, some useful statements on asset prices relative to each other
can be made without too much prior knowledge. Harrison and Kreps (1979)
shows that if a securities market is viable in the sense of general equilibrium
theory, then discounted asset prices are martingales relative to some equiv-
alent probability measure (called equivalent martingale measure or EMM).
Subsequently, viability has been replaced by the simpler concept of absence
of arbitrage, which does not involve detailed assumptions on investors’ be-
haviour, cf. Harrison and Pliska (1981). If markets do not allow for riskless
gains in a sense to be made precise, then there exists some EMM and vice
versa. This so-called fundamental theorem of asset pricing has been studied
intensively and in depth. For a thorough account of the theory cf. Delbaen
and Schachermayer (2006). We discuss the use and limits of the arbitrage
concept in Sections 2 and 3.

Instead of considering market prices one may also adapt the individual
investor’s point of view. Suppose you are in the position of a bank that is
approached by some customer who wants to buy a certain contingent claim.
At this point you must decide at which minimum price you are willing to
make the deal. Moreover, you may wonder how to invest the premium you
receive in exchange for the option. From a general economic theory point
of view this individual price is easier to determine than the above market
values. You need not know the preferences etc. of all market participants. It
is enough to have an idea of your own endowment, preferences and beliefs.
But do you? Even if you do not, arbitrage theory provides at least partial
answers. In some lucky cases as e.g. in the Black-Scholes model the theory
even tells you exactly what to do; in other situations it does not help much.
Somewhat subjectively, we discuss two alternative approaches in the latter
cases, namely quadratic hedging based valuation in Section 5 and utility
indifference pricing in Section 6.

Many other suggestions have been made how to come up with option prices
in so-called incomplete markets where arbitrage arguments fail to single out
unique values. We do not attempt here to do justice to these very diverse
approaches, which are based e.g. on economical, statistical, or mathematical
assumptions and which are formulated in very different setups (cf. e.g. Kallsen
(2002), Karatzas and Shreve (1998)).

2 Arbitrage Theory from a Market Perspective

Arbitrage theory relies on the key assumption that market prices do not
allow for perfectly riskless profits. This in turn can be deduced from gen-
eral economic principles. But it is often motivated by appealing to common
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sense: should slight arbitrage opportunities occur, someone will exploit them
immediately and make them disappear.

Let S = (S0, . . . , Sd) signify the vector-valued price process of d+1 traded
securities in the market and fix a time horizon T > 0. The underlying filtered
probability space is denoted as (Ω,F , (Ft)t∈[0,T ], P ). Trading strategies are
predictable or in some sense admissible processes φ = (φ0, . . . , φd) represent-
ing the number of shares of the individual assets in the portfolio. The value
of the portfolio at time t is

Vt(φ) := φ�t St :=
d

∑

i=0

φitS
i
t .

A trading strategy φ is called self-financing if

V (φ) = V0(φ) + φ • S,

which means that no funds are added or withdrawn after inception of the
portfolio. Here,

φ • St =
∫ t

0

φsdSs =
d

∑

i=0

∫ t

0

φisdS
i
s

denotes the stochastic integral of φ with respect to S, which stands for the
gains from trade between 0 and t. For discrete-time processes, it reduces to
a sum

φ • St =
t

∑

s=1

d
∑

i=0

φis(S
i
s − Sis−1).

By ̂S := S/S0 we denote discounted securities prices, i.e. all prices are ex-
pressed as multiples of the numeraire security S0. Accordingly, ̂V (φ) :=
V (φ)/S0 is the discounted value of a portfolio φ. The numeraire is often cho-
sen particularly simple, e.g. as deterministic money-market account. Roughly
speaking, an arbitrage opportunity signifies some self-financing strategy φ
with initial value V0(φ) = 0 and such that the terminal wealth VT (φ) is
non-negative and positive with positive probability.

Ignoring nasty technical details, a key statement can be phrased as follows:

Theorem 1 (Fundamental theorem of asset pricing, FTAP) There
are no arbitrage opportunities if and only if there exists some probability
measure Q ∼ P such that the discounted asset price process ̂S = S/S0 is a
Q-martingale.

Q is called equivalent martingale measure (EMM) and it may or may not be
unique. Theorem 1 holds literally in discrete time (cf. Dalang et al. (1990),
Harrison and Pliska (1981)). In continuous time the situation is less obvious.
In order for some FTAP to hold one must modify the notions of arbitrage
and EMM carefully. A key issue concerns the choice of admissible integrands
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in the definition of self-financing trading strategies. If one allows for arbi-
trary S-integrable processes φ, then arbitrage opportunities exist in many
reasonable models including the Black-Scholes setup. If one restricts the set
of admissible strategies too much — e.g. to piecewise constant ones which are
the only strategies that are practically feasible — then many interesting re-
sults from mathematical finance including the FTAP cease to hold. Delbaen
and Schachermayer (1994, 1998) introduce the notion of no free lunch with
vanishing risk (NFLVR) as a moderate extension of no arbitrage (NA). Their
notion of admissibility requires the discounted wealth ̂V (φ) to be bounded
from below. In this case the FTAP holds with equivalent σ-martingale mea-
sures, i.e. ̂S is a σ-martingale (a slight generalization of martingale or local
martingale) relative to some probability measure Q ∼ P .

This version of the FTAP may be the most prominent and satisfactory one
but it is by no means the only one. If the notion of admissibility or arbitrage is
relaxed, the dual set of probability measures in the FTAP narrows. One may
e.g. consider riskless gains in the sense that some positive random variable can
be approximated in L2 by the payoff of piecewise constant strategies. From
Théorème 2 in Stricker (1990) it follows that the absence of such L2-free
lunches is equivalent to the existence of some true EMM Q with square-
integrable density dQ/dP .

In the following we do not make such fine distinctions. By FTAP we loosely
refer to some statement as in Theorem 1 without worrying about precise
definitions. In particular we carelessly disregard the difference between mar-
tingales and σ-martingales which often leads to conceptual and technical
problems.

What are the implications of the FTAP for option prices? Suppose that
S2 denotes the price process of a European-style contingent claim on S1,
more specifically with terminal value S2

T = f(S1
T ) with some function f as

e.g. f(x) = (x − K)+. If the market is arbitrage-free, then ̂S1, ̂S2 are Q-
martingales relative to some Q ∼ P , which implies

S2
t = S0

tEQ(f(S1
T )/S0

T |Ft) (1)

for the option price process and in particular

S2
0 = S0

0EQ(f(S1
T )/S0

T ) (2)

for the initial value. Recall that the law of the underlying processes (here:
S0, S1) relative to P is assumed to be given exogenously, e.g. based on sta-
tistical inference. The problem is that we do not know the market’s EMM or
pricing measure Q needed to compute option prices S2

t via (1). But if there
exists only one probability measure Q ∼ P such that ̂S1 is a Q-martingale,
then it must be the one we need. In this case (1) resp. (2) leads to a unique
price. The prime example is of course the Black-Scholes model, where S0 is
a deterministic bank account and S1 follows geometric Brownian motion.
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If there exist more than one Q such that ̂S1 is a Q-martingale, (2) yields
only an interval of possible initial values. Consider e.g. a discrete version of the
Black-Scholes model, namely a discrete-time process S1

t , t = 0, 1, . . . , T such
that the log-returns log(S1

t /S
1
t−1) are i.i.d. Gaussian random variables. For

simplicity we assume a constant numeraire S0
t = 1, t = 0, 1, . . . , T . It turns

out that the interval of possible initial prices for a European call with strikeK
is given by ((S1

0 −K)+, S1
0). This means that for an out-of-the-money option

(i.e.K < S1
0) any positive option price below the stock price is consistent with

the absence of arbitrage. In other words, arbitrage theory hardly provides any
useful information on option prices in this case. The same holds for many
continuous-time stock price models of the form S1

t = S1
0 exp(Lt) with some

jump-type Lévy process L rather than Brownian motion.
Sometimes it helps to consider a few derivatives as additional underlyings.

Suppose that we model not only the stock but also a number of call options
S2, . . . , Sk on the stock exogenously by statistical methods. This reduces the
set of possible pricing measures Q in the FTAP because now ̂Si, i = 1, . . . , k
must be Q-martingales rather than only ̂S1. This modelling must be done
very carefully in order to warrant absence of arbitrage, i.e. to have at least
one EMM Q for S1, . . . , Sk (cf. e.g. Jacod and Protter (2006)). An alternative
approach is discussed in the following section.

Let us note in passing that different forms of the FTAP must be applied
for futures contracts, securities paying dividends, American options, etc. (cf.
e.g. Björk (2004), Kallsen and Kühn (2005)).

3 Martingale Modelling

As noted above, arbitrage theory yields only limited information in many, in
particular discrete-time models. We discuss here a way out that enjoys much
popularity in practice and is based on methods from statistics. The idea is as
follows: if the theory does not tell us the true pricing measure Q, we ask the
market, i.e. we make inference on Q by observing option prices in the real
world.

More specifically, we proceed as follows. Suppose that S1 is a stock and
S2, . . . , Sd are derivatives on the stock. The FTAP tells us that there exists
some probability measure Q such that all discounted assets (the underlying
S1 as well as the derivatives S2, . . . , Sd) are Q-martingales. Unfortunately,
we cannot make inference on Q by statistical methods because prices move
according to the objective probability measure P .

But as in statistics we can start by postulating a particular parametric
(or non-parametric) class of models. More precisely, we assume an explicit
parametric expression for the dynamics of S1 under Q. Note that the pa-
rameter vector θQ must be chosen such that ̂S1 is a Q-martingale. On the
other hand, the dynamics of the options S2, . . . , Sd need not be specified ex-
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plicitly. Since we want Q to be an EMM for S1, S2, . . . , Sd, the evolution of
S2, . . . , Sd and in particular the initial prices S2

0 , . . . , S
d
0 follow as in (1) and

(2). If S2, . . . , Sd are traded on the market, then the parameter vector θQ
should be chosen such that the theoretical prices computed as in (2) match
the observed market prices. This corresponds to a moment estimator for θQ.
The “estimation” of θQ by equating theoretical and observed option prices
is commonly called calibration. If the dimension of θQ is small compared to
the number of observed prices, some approximation as e.g. a least-squares fit
will be necessary. In the non-parametric case, on the other hand, one may
wish to rely on methods from non-parametric statistics in order to avoid very
non-smooth or irregular solutions (cf. Belomestny and Reiß (2006 ), Cont and
Tankov (2004)).

For calibration purposes one needs to compute option prices quickly. For
standard options with European-style payoff f(S1

T ) efficient algorithms can
be based on fast Fourier transform (FFT) techniques if the characteristic
function of logS1

T under Q is known in closed form (cf. Carr and Madan
(1999), Raible (2000)). Therefore models with explicit characteristic function
come in handy for modelling financial data using option prices.

Strictly speaking, we should distinguish two situations. If one only wants
to obtain information on the functional dependence of option prices on the
underlying, it is enough to consider the martingale measure Q. There is ba-
sically no need to model the objective measure P as well. If, on the other
hand, one wants to make statements also on “real” probabilities, quantiles,
expectations, etc., one must model the underlying under both P and Q. Typ-
ically, one chooses the same parametric class for the dynamics of S1 under
both measures. The parameter set θP is obtained by statistical inference from
past data whereas the corresponding parameters θQ are determined from op-
tion prices as explained above. Note that some parameters must coincide
under P and Q in order to warrant the equivalence Q ∼ P stated in the
FTAP. Consequently, statistical inference does in fact yield at least partial
information on Q-parameters.

How do we know whether our postulated class of models for Q is appro-
priate? At first sight there seems to be no answer because statistical methods
yield information on P but not on the theoretical creation Q. However, some
evidence may be obtained again from option prices. If no choice of the pa-
rameter vector θQ yields theoretical option prices that are reasonably close
to observed market prices, then the given class is obviously inappropriate.

How can the model be applied to options that are not yet traded? This is
obvious from a mathematical point of view: if we assume Q to be the pricing
measure of the FTAP for the whole market (including the new claim that is
yet to be priced), we can determine its initial value as Q-expectation of the
discounted payoff as in (2).

However, in practice we should be aware of two problems. Application of
the calibrated model to new payoffs means extrapolation and is consequently
to be taken with care. Cont (2006 ), Schoutens et al. (2005) compare models
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that produce vastly different prices for exotic options even though they are
calibrated successfully to the same large set of plain vanilla options in the
first place.

Secondly, it is not clear what these extrapolated prices mean to the single
investor. The fact that they are consistent with absence of arbitrage does not
imply that the new options can be hedged well or involve only small risk. A
more individual view on option pricing is discussed in the following sections.

4 Arbitrage Theory from an Individual Perspective

In the remaining three sections we take the investor’s point of view. For
ease of notation we assume a constant numeraire S0 = 1 or, equivalently, we
refer to discounted prices. Moreover, we denote the underlying stock simply
by S rather than S1 above. It is the only liquidly traded asset except the
numeraire. Recall that we suppose the law of S to be known. The individual
investor’s problem can be phrased as follows: if a customer approaches you
in order to buy a contingent claim with payoff H = f(ST ) at time T , what
option price shall you charge at time 0? And how do you invest this premium
reasonably?

The answer to these questions depends generally on your preferences etc.,
in particular on your attitude towards risk. A minimum price cannot be
determined unless you make up your mind in this respect. In some cases,
however, arbitrage theory allows one to proceed without such information.
No matter what your precise preferences are, you are probably willing to
accept riskless gains. This has implications on the set of reasonable prices as
the following result shows. It is stated more precisely and proved in El Karoui
and Quenez (1995), Kramkov (1996).

Theorem 2 (Superreplication) Let H = f(ST ) denote the payoff of some
contingent claim. Then

πhigh := min
{

π ∈ R : There exists some self-financing strategy φ

with initial value V0(φ) = π and terminal value VT (φ) ≥ H
}

= sup
{

EQ(H) : Q EMM for S
}

and accordingly

πlow := max
{

π ∈ R : There exists some self-financing strategy φ

with initial value V0(φ) = π and terminal value VT (φ) ≤ H
}

= inf
{

EQ(H) : Q EMM for S
}

.
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Why does this result have implications on the minimum option price you
require from the investor? If you receive any amount π ≥ πhigh, then you can
buy a self-financing strategy with terminal value VT (φ) ≥ H , i.e. it meets
all your obligations at time T . You do not face the risk of losing any money.
Consequently, there is no reason for you not to accept at least πhigh as option
premium, maybe plus some fee for administrative purposes.

On the other hand, there is no reason to be satisfied with less than πlow.
Rather than selling the option at a premium π < πlow, you should rather
go short in a trading strategy with initial price πlow and terminal payoff
VT (φ) ≤ H (i.e. you must pay at most H at time T ). This deal on the stock
market yields a higher profit than the suggested option trade with premium
π < πlow, which means that you should not accept the latter. Consequently,
reasonable premiums belong to the interval

[

inf{EQ(H) : Q EMM for S}, sup{EQ(H) : Q EMM for S}
]

, (3)

which coincides essentially with the set of possible initial market prices based
on the FTAP in Section 2.

If this interval reduces to a singleton, the option can be replicated perfectly,
i.e. there is some self-financing φ satisfying VT (φ) = H . As a result you
know exactly what to do in such Black-Scholes like cases. You charge the
initial costs V0(φ) (plus administration fee) as option premium, and you trade
according to the hedge φ. This procedure removes your risk of losing money
entirely, at least in theory.

On the other hand, arbitrage theory hardly helps in the other extreme
cases discussed in Section 2, e.g. if the price interval for a European call
equals [0, S0]. No customer will accept to pay something close to the stock
price S0 = πhigh as premium for a call that is far out of the money. Therefore
it seems misleading to call the difference πhigh − πlow bid-ask spread as is
sometimes done in textbooks. It rather corresponds to an extreme upper
bound for the real spread.

5 Quadratic Hedging

What can you do if the interval (3) is large and does not provide real guid-
ance what premium to charge? A way out is to try and hedge the option as
efficiently as possible and to require some compensation for the remaining
unhedgable risk. For reasons of mathematical tractability we measure risk in
terms of mean squared error. In order to hedge the option, you choose the
self-financing strategy φ∗ minimizing the risk

ε2(φ) := E((VT (φ) −H)2). (4)
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In so-called complete models the minimal risk is 0 because the option can
be replicated by some φ∗. This in turn holds if and only if the interval (3)
reduces to a singleton, namely V0(φ∗). In general, however, the mean squared
hedging error ε2(φ∗) does not vanish. A reasonable suggestion may be to
charge π := V0(φ∗) + λε2(φ∗) (or π := V0(φ∗) + λε(φ∗)) as option premium,
where λε2(φ∗) (resp. λε(φ∗)) compensates for the unhedgable risk and λ
denotes a parameter chosen according to your personal risk aversion.

How can one determine φ∗, V0(φ∗), ε2(φ∗)? If S happens to be a martingale
under the objective measure P , the solution can be expressed in terms of
the Galtchouk-Kunita-Watanabe (GKW) decomposition of H relative to S
(cf. Föllmer and Schied (1986)). To this end, let Vt := E(H |Ft) denote the
martingale generated by the option payoff H . It can be decomposed as

Vt = V0 + φ • St + Lt,

where L denotes some martingale that is orthogonal to S in the sense that
LS is a martingale. This GKW decomposition yields the objects of interest,
namely φ∗ = φ, V0(φ∗) = V0, ε2(φ∗) = E(L2

T ). More explicitly, we have

V0 = E(H),

φt =
d〈V, S〉t
d〈S, S〉t

(in the sense that 〈V, S〉 = φ • 〈S, S〉, where 〈·, ·〉 denotes the predictable
covariation process from stochastic calculus), and

E(L2
T ) = E(〈V, V − φ∗ • S〉T ).

If S fails to be a martingale, the derivation of φ∗, V0(φ∗), ε2(φ∗) gets more
involved but the GKW decomposition still plays a key role. We refer to
Schweizer (2001) for an overview on the subject and to Černý and Kallsen
(2007), Gourieroux et al. (1998), Rheinländer and Schweizer (1997), Schwei-
zer (1994) for concrete formulas in various degrees of generality.

6 Utility Indifference Pricing

Valuation based on quadratic hedging is easy to understand and mathemati-
cally well tractable compared to other approaches. Its economic justification
is less obvious. The minimization criterion (4) penalizes gains and losses alike.
This is unreasonable from an economic point of view and occasionally leads to
counterintuitive results. We want to discuss an economically better founded
alternative.
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Suppose that you are an investor with initial endowment v0. Your prefer-
ences are modelled in terms of some increasing, strictly concave utility func-
tion u : R → R∪{−∞} quantifying the degree of happiness you derive from a
certain amount of money. Your goal is to maximize the expected utility from
terminal wealth E(u(VT (φ))) over all self-financing strategies φ with initial
value V0(φ) = v0. Recall that the law of the underlying S is assumed to be
known. If the customer offers you a premium π in exchange for the contingent
claim H , you have two choices: either to accept the offer or to reject it. If
you reject, your expected utility of terminal wealth will be

U0 := sup
φ
E(u(VT (φ))) (5)

maximizing over all self-financing φ with initial value V0(φ) = v0. If you
accept the deal, it equals instead

UH(π) := sup
φ
E(u(VT (φ) + π −H)) (6)

maximizing over the same set of strategies φ. Of course you will only accept
the deal if it raises your utility, i.e. if UH(π) ≥ U0. The lowest price π with
this property is called utility indifference price, and it represents the minimum
premium we are looking for (cf. Becherer (2003), M. Frittelli (2000), Mania
and Schweizer (2005) for references). The utility indifference approach also
tells you how to invest your money. You trade according to the optimal
strategy φ in (6). Unfortunately, the utility indifference price is very hard
to determine even for standard utility functions and in simple models with
i.i.d. log-returns.

A reasonable way out for practical purposes is to consider a first-order
approximation. This has been worked out recently in Mania and Schweizer
(2005) for exponential utility and in Kramkov and Sîrbu (2006), Kramkov
and Sîrbu (2006) for utility functions on R+, partly motivated by Hender-
son (2002), Kallsen (2002). Below we give a heuristic account of the results
without worrying about mathematical assumptions and arguments needed to
make the statements precise. For the latter we refer to Kramkov and Sîrbu
(2006, 2006), Mania and Schweizer (2005).

In the following we focus on one of the following standard utility functions:
u(x) = log(x), u(x) = x1−p/(1−p) for p ∈ (0,∞)\{1}, or u(x) = 1−exp(−px)
for p > 0. One should note that utility indifference prices are typically non-
linear in the claim: if you sell two rather than one share of an option you
require more than twice the premium because of your non-linear attitude
towards risk.

We denote by π(n) the utility indifference price per unit if the customer
wants to buy n options. The optimal strategy φ in (6) corresponding to n
options sold at π(n) (i.e. for UnH(nπ(n)) is denoted by φ(n). We want to
determine π(n) and φ(n) approximately for small n. To this end, we assume
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a smooth dependence

π(n) = π(0) + nδ + o(n)

with constants π(0), δ. The limiting price π(0) for very small numbers of
options is studied in Davis (1997), Karatzas and Kou (1996). The quantity δ
is some kind of derivative of the option price relative to the number n that
is to be sold. Similarly, we expand

φ(n) = φ∗ + nη + o(n),

where φ∗ denotes the optimal strategy in the pure investment problem (5)
and η represents a hedging strategy per unit of H . The goal now is to derive
formulas for π(0), δ and η. It turns out that they can be expressed in terms
of the GKW decomposition of the claim after some suitable measure and
numeraire changes.

We start by considering the pure investment problem (5). For φ∗ to be the
optimizer, we need

E
(

u(v0 + (φ∗ + ψ) • ST )
)

≤ E
(

u(v0 + φ∗ • ST )
)

= E
(

u(VT (φ∗))
)

for any competing strategy φ∗ + ψ. A first-order Taylor expansion for small
ψ yields

E
(

u(v0 + (φ∗ + ψ) • ST )
)

≈ E
(

u(VT (φ∗))
)

+ E
(

u′(VT (φ∗))(ψ • ST )
)

. (7)

This is dominated by E(u(VT (φ∗))) if and only if the last term in (7) is
nonnegative for any ψ. Define a probability measureQ0 in terms of its density

dQ0

dP
:=

u′(VT (φ∗))
c1

, (8)

where c1 := E(u′(VT (φ∗))) denotes the normalizing constant. The optimality
condition can be rewritten as EQ0(ψ • ST ) ≤ 0 for all ψ, which holds if and
only if S is a Q0-martingale.

Hence we have shown that an arbitrary candidate strategy φ∗ maximizes
(5) if and only if Q0 defined as in (8) is an EMM for S. This criterion allows
to determine φ∗ explicitly in a number of concrete models (cf. e.g. Goll and
Kallsen (2003, 2000)). Moreover, it can be shown that Q0 minimizes some dis-
tance relative to P among all EMM’s Q, namely the reverse relative entropy
E(log(dP/dQ)) for u(x) = log(x), the L1−1/p-distance E((dQ/dP )1−1/p)
for u(x) = x1−p/(1 − p) and the relative entropy EQ(log(dQ/dP )) for
u(x) = 1 − exp(−px) (cf. Bellini and Frittelli (2002), Kallsen (2002)).

Now we turn to the optimization problem including n options which are
sold for π(n) each. More specifically, we seek to maximize
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g(η) := E
(

u(VT (φ(n)) + nπ(n) − nH)
)

= E
(

u(VT (φ∗) + n(π(0) + nδ + (η + o(1)) • ST −H) + o(n2))
)

= E
(

u(VT (φ∗))
)

+ nE
(

u′(VT (φ∗))(π(0) + nδ + (η + o(1)) • ST −H
))

+
n2

2
E
(

u′′(VT (φ∗))(π(0) + η • ST −H)2
)

+ o(n2)

Let us consider utility functions of logarithmic and power type first, in which
case we have u′′(x) = −pu′(x)/x (with p = 1 in the case of logarithmic
utility). Consequently,

g(η) = c0 + nc1EQ0

(

π(0) + nδ + (η + o(1)) • ST −H
)

− n2c1
p

2
EQ0

(

VT (φ∗)
v2
0

(π(0) + η • ST −H

v−1
0 VT (φ∗)

)2
)

+ o(n2)

with c0 := E(u(VT (φ∗))). Since Q0 is an EMM, we have

EQ0((η + o(1)) • ST ) = 0.

Now define Qφ∗ ∼ Q0 via

dQφ∗

dQ0
:=

VT (φ∗)
v0

,

where the normalizing constant EQ0(VT (φ∗)) = v0 coincides with the ini-
tial endowment. Since Q0 is an EMM, we have that Qφ∗ is an EMM rel-
ative to the numeraire V (φ∗) or equivalently V (φ∗)/v0. In other words,
˜S := Sv0/V (φ∗) is a Qφ∗ -martingale. Define discounted values relative to
this numeraire V (φ∗)/v0 by π̃(0) := π(0)v0/V (φ∗) and ˜H := Hv0/VT (φ∗).
We prefer the numeraire V (φ∗)/v0 to V (φ∗) because it does not depend on
v0 for power and logarithmic utility. Since η is considered to be self-financing,
we have

π(0) + η • ST −H

v−1
0 VT (φ∗)

= π̃(0) + η • ˜ST − ˜H

(cf. Goll and Kallsen (2000), Prop. 2.1). This yields

g(η) = c0 + nc1
(

π(0) − EQ0(H)
)

+ n2c1

(

δ − p

2v0
ε2(η)

)

+ o(n2)

with
ε2(η) := EQφ∗

(

(π̃(0) + η • ˜ST − ˜H)2
)

.

This is to be maximized as a function of η. By disregarding the o(n2)-term, we
find that η is the integrand in the GKW decomposition of the Qφ∗ -martingale
˜Vt := EQφ∗ ( ˜H |Ft) relative to ˜S, i.e.
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ηt =
d〈˜V , ˜S〉Qφ∗

t

d〈˜S, ˜S〉Qφ∗
t

.

What about π(0) and δ? The indifference criterion is E(u(VT (φ∗))) = g(η),
i.e.

c0 = c0 + nc1
(

π(0) − EQ0(H)
)

+ n2c1

(

δ − p

2v0
ε2(η)

)

+ o(n2).

This implies
π(0) = EQ0(H),

which is equivalent to π̃(0) = EQφ∗ ( ˜H). Moreover,

δ =
p

2v0
ε2(η) =

p

2v0
EQφ∗

(

〈˜V , ˜V − η • ˜S〉Qφ∗
T

)

,

where ε2(η) can be interpreted as minimal expected squared hedging error if
˜H is hedged with ˜S relative to Qφ∗ (cf. Section 5).

In the case of exponential utility u(x) = 1 − exp(−px) we have u′′(x) =
−pu′(x). Up to a missing numeraire change, this leads to the same results
as above. Instead of the GKW decomposition of ˜V relative to ˜S under Qφ∗

we must consider the GKW decomposition of Vt = EQ0(H |Ft) relative to S
under the EMM Q0. Similarly as before we have

π(0) = EQ0(H),

ηt =
d〈V, S〉Q0

t

d〈S, S〉Q0
t

,

δ =
p

2
ε2(η),

where
ε2(η) = EQ0

(

〈V, V − η • S〉Q0
T

)

now corresponds to the minimal expected squared hedging error if H is
hedged with S relative to Q0.
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An Overview of Interest Rate Theory

Tomas Björk

Abstract In this paper we give a short overview of some basic topics in
interest rate theory, from the point of view of arbitrage free pricing. We
cover short rate models, affine term structure models, inversion of the yield
curve, the Musiela parameterization, and the potential approach to positive
interest rates. The text is essentially self contained.

1 General Background

We consider a financial market model on a finite time interval [0, ̂T ] living
on a filtered probability space (Ω,F ,F, P ) where F = {Ft}t≥0 and P is
interpreted as the “objective” or “physical” probability measure. The basis is
assumed to carry a standard m-dimensional Wiener process W , and we also
assume that the filtration F is the internal one generated by W . The choice
of a Wiener filtration is made for convenience, and the theory below can be
extended to a general semimartingale framework.

We assume that there exist N + 1 non-dividend-paying assets on the mar-
ket, and the prices at time t of these assets are denoted by S0(t), S1(t), · · · ,
SN (t). We assume that the price processes are Itô processes and that S0(t) >
0 with probability one. We view the price vector process S = (S0, S1, · · ·SN )∗

as a column vector process, where ∗ denotes transpose.
A portfolio is any adapted (row vector) process h = (h0, h1, · · · , hN),

where we interpret hit as the number of units that we hold of asset i in the
portfolio at time t. The corresponding market value process V h is defined
by V h(t) = h(t)S(t) =

∑N
i=0 h

i(t)Si(t), and the portfolio is said to be self
financing if the condition dV (t) = h(t)dS(t) is satisfied.
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Department of Finance, Stockholm School of Economics, P.O. Box 6501, S-113 83 Stock-
holm, SWEDEN, e-mail: tomas.bjork@hhs.se

 

T.G. Anderson et al., Handbook of Financial Time Series, 615
DOI: 10.1007/978-3-540-71297-8_27, © Springer-Verlag Berlin Heidelberg  2009 



616 T. Björk

An arbitrage possibility is a self financing portfolio h with the properties
that V h(0) = 0, P (V h(T ) ≥ 0) = 1 and P (V h(T ) > 0) > 0. An arbitrage
would constitute a “money-making machine” and a minimal requirement of
market efficiency is that the market is free of arbitrage possibilities. The main
result in this direction is, subject to some technical conditions, as follows.

Theorem 1 The market is free of arbitrage if and only if there exists a
probability measure Q with the properties that

1. Q ∼ P
2. All normalized asset processes

S0(t)
S0(t)

,
S1(t)
S0(t)

, . . . ,
SN(t)
S0(t)

are Q-martingales.

Such a measure Q (which is typically not unique, see below) is called a
martingale measure. The numeraire asset S0 could in principle be any
asset with positive prices, but very often it is chosen as the money account
B defined by dB(t) = r(t)B(t)dt where r is the short interest rate, i.e.,

B(t) = e
∫ t
0 r(s)ds.

A contingent T -claim is any random variable X ∈ FT , where the interpre-
tation is that the holder of the claim will receive the stochastic amount X (in
a given currency) at time T . Given a T -claim X , a self financing portfolio h
is said to replicate (or “hedge against”) X if V h(T ) = X , P -a.s. The market
model is complete if every claim can be replicated. The main result for
completeness in an arbitrage free market is the following.

Theorem 2 The market is complete if and only if the martingale measure
is unique.

We now turn to the pricing problem for contingent claims. In order to
do this, we consider the “primary” market S0, S1, . . . , SN as given a priori,
and we fix a T -claim X . Our task is that of determining a “reasonable” price
process Π (t;X) for X , and we assume that the primary market is arbitrage
free. There are two main approaches:

• The derivative should be priced in a way that is consistent with the
prices of the underlying assets. More precisely we should demand that
the extended market Π (t;X) , S0(t), S1(t), . . . , SN (t) is free of arbitrage
possibilities.

• If the claim is attainable, with hedging portfolio h, then the only reason-
able price is given by Π (t;X) = V (t;h).

In the first approach above, we thus demand that there should exist a mar-
tingale measure Q for the extended market Π (t;X) , S0(t), S1(t), . . . , SN (t).
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Letting Q denote such a measure, assuming enough integrability, and apply-
ing the definition of a martingale measure we obtain

Π (t;X)
S0(t)

= EQ

[

Π (T ;X)
S0(T )

∣

∣

∣

∣

Ft

]

= EQ

[

X

S0(T )

∣

∣

∣

∣

Ft

]

.

We thus have the following result.

Theorem 3 (General Pricing Formula) The arbitrage free price process
for the T -claim X is given by

Π (t;X) = S0(t)EQ

[

X

S0(T )

∣

∣

∣

∣

Ft

]

, (1)

where Q is the (not necessarily unique) martingale measure for the a priori
given market S0, S1, · · · , SN , with S0 as the numeraire .

Note that different choices of Q will generically give rise to different price
processes.

In particular we note that if we assume that if S0 is the money account

S0(t) = S0(0) · e
∫

t
0 r(s)ds,

where r is the short rate, then (1) reduces to the familiar “risk neutral valu-
ation formula”.

Theorem 4 (Risk Neutral Valuation Formula)
Assuming the existence of a short rate, the pricing formula takes the form

Π (t;X) = EQ
[

e−
∫

T
t

r(s)dsX
∣

∣

∣Ft

]

.

where Q is a (not necessarily unique) martingale measure with the money
account as the numeraire.

For the second approach to pricing let us assume that X can be replicated
by h. Since the holding of the derivative contract and the holding of the
replicating portfolio are equivalent from a financial point of view, we see that
the price of the derivative must be given by the formula

Π (t;X) = V h(t). (2)

One problem here is what will happen in a case when X can be replicated
by two different portfolios, and one would also like to know how this formula
is connected to (1).

Defining Π (t;X) by (2) we note that the process Π (t;X) /S0(t) is a nor-
malized asset price and thus a Q-martingale. Consequently we again obtain
the formula (1) and for an attainable claim we have in particular the formula
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V h(t) = S0(t)EQ

[

X

S0(T )

∣

∣

∣

∣

Ft

]

,

which will hold for any replicating portfolio and for any martingale measure
Q. Thus we see that the two pricing approaches above do in fact coincide on
the set of attainable claims.

We finish with a remark on the characterization of a risk neutral martingale
measure.

Lemma 1 A risk neutral martingale measure, i.e., an EMM with the bank
account as numeraire, is characterized by the properties that Q ∼ P , and that
every asset price process has the short rate as its local rate of return under Q.
More precisely, under Q the dynamics of any asset price process π (derivative
or underlying) must be of the form

dπt = πtrtdt+ πtσ
π
t dW

Q
t , (3)

where r is the short rate and WQ is Q-Wiener.

2 Interest Rates and the Bond Market

Our main object of study is the zero coupon bond market, and we need some
formal definitions.

Definition 1 A zero coupon bond with maturity date T , also called a
T -bond, is a contract which guarantees the holder $1 to be paid on the date
T . The price at time t of a bond with maturity date T is denoted by p(t, T ).

Given the bond market above, one can define a (surprisingly large) number of
riskless interest rates. The term LIBOR below, is an acronym for “London
Interbank Offer Rate”.

Definition 2 1. The simple forward rate for [S,T] contracted at t,
often referred to as the LIBOR forward rate, is defined as

L(t;S, T ) = −p(t, T ) − p(t, S)
(T − S)p(t, T )

.

2. The simple spot rate for [S,T], henceforth referred to as the LIBOR
spot rate, is defined as

L(S, T ) = − p(S, T ) − 1
(T − S)p(S, T )

.
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3. The continuously compounded forward rate for [S,T] contracted
at t is defined as

R(t;S, T ) = − log p(t, T ) − log p(t, S)
T − S

.

4. The continuously compounded spot rate, for [S,T] is defined as

R(S, T ) = − log p(S, T )
T − S

.

5. The instantaneous forward rate with maturity T, contracted at
t, is defined by

f(t, T ) = −∂ log p(t, T )
∂T

.

6. The instantaneous short rate at time t is defined by

r(t) = f(t, t).

We now go on to define the money account process B.

Definition 3 The money account process is defined by

B(t) = e
∫

t
0 r(s)ds,

i.e.,
dB(t) = r(t)B(t)dt, B(0) = 1.

The interpretation of the money account is that you may think of it as
describing a bank with the stochastic short rate r.

As an immediate consequence of the definitions we have the following
useful formulas.

Lemma 2 For t ≤ s ≤ T we have

p(t, T ) = p(t, s) · e−
∫

T
s

f(t,u)du,

and in particular
p(t, T ) = e−

∫ T
t

f(t,u)du.

We finish this section by presenting the relations that hold between the
dynamics of forward rates and those of the corresponding bond prices. These
relations will be used repeatedly below. We will consider dynamics of the
following form.

Bond price dynamics

dp(t, T ) = p(t, T )m(t, T )dt+ p(t, T )v(t, T )dW (t). (4)
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Forward rate dynamics

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t). (5)

The Wiener process W is allowed to be vector valued, in which case the
volatilities v(t, T ) and σ(t, T ) are row vectors. The processes m(t, T ), v(t, T ),
α(t, T ) and σ(t, T ) are allowed to be arbitrary adapted processes parameter-
ized by time of maturity T .

Our main technical tool is as follows. The proof is omitted.

Proposition 1 If f(t, T ) satisfies (5) then p(t, T ) satisfies

dp(t, T ) = p(t, T )
{

r(t) +A(t, T ) +
1
2
‖S(t, T )‖2

}

dt+ p(t, T )S(t, T )dW (t),

where ‖ · ‖ denotes the Euclidean norm, and
⎧

⎨

⎩

A(t, T ) = −
∫ T

t
α(t, s)ds,

S(t, T ) = −
∫ T

t
σ(t, s)ds.

3 Factor Models

Since the price of a contingent claim Z is given by the general formula

Π (t;Z) = EQ
[

e−
∫

T
t

rsdsZ
∣

∣

∣Ft

]

,

it is natural to study Markovian factor models of the form

dXt = μ(t,Xt)dt+ σ(t,Xt)dWt,

rt = h(t,Xt),

where μ , σ, and h are given deterministic functions and W is Wiener. In
this framework we typically restrict ourselves to contingent T -claims Z of the
form Z = Φ(XT ), where Φ denotes the contract function, i.e., Φ specifies
the amount of money to be paid to the holder of the contract at time T .
This modeling can be done either under the objective measure P , or under
a martingale measure Q.

We recall that the defining properties of a risk neutral martingale measure
Q are that Q ∼ P and that Πt/Bt should be a Q-martingale for every asset
price process Π . Since, in the present setup, the only asset price specified a
priori is the bank accountBt, and since Bt/Bt = 1 is trivially a Q-martingale,
we see that in this case every measure Q ∼ P is a martingale measure, and
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that a particular choice of Q will generate arbitrage free asset prices by the
prescription

Π (t;Z) = EQ
[

e−
∫ T

t
h(s,Xs)dsΦ(XT )

∣

∣

∣Ft

]

, (6)

for any claim Z of the form Z = Φ(XT ).

4 Modeling under the Objective Measure P

As above we consider a factor model of the form

dXt = μp(t,Xt)dt+ σ(t,Xt)dW
p
t ,

rt = h(t,Xt),

where W p is P -Wiener. The price of claim Z of the form Z = Φ(XT ) is again
given by the formula (6) above. In the present setting, with the filtration
generated by W p, it follows that the likelihood process L, defined by

Lt =
dQ

dP
, on Ft

is obtained by a Girsanov transformation of the form

dLt = Ltϕ
 
t dW

p
t , L0 = 1,

where  denotes transpose. To keep the Markovian structure we now assume
that the Girsanov kernel process ϕ is of the form ϕ(t,Xt) and from the
Girsanov Theorem we can write dW p

t = ϕtdt + dWt where W is Q-Wiener.
We thus have the Q-dynamics of X as

dXt = {μp(t,Xt) + σ(t,Xt)ϕ(t,Xt)} dt+ σ(t,Xt)dWt.

For notational simplicity we denote the Q-drift of X by μ, i.e.,

μ(t, x) = μp(t, x) + σ(t, x)ϕ(t, x).

Since the price process Π (t;Z) for a claim of the form Z = Φ(XT ) is given
by (6) we now have the following result, which follows directly from the
Kolmogorov backward equation.
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Theorem 5

• For a claim of the form Z = Φ(XT ), the price process Π (t;Z) is in fact
of the form Π (t;Z) = F (t,Xt) where F satisfies the term structure
equation

∂F

∂t
(t, x) + AF (t, x) − h(t, x)F (t, x) = 0, (7)

F (T, x) = Φ(x), (8)

where the operator A is given by

AF (t, x) =
n

∑

i=1

μi(t, x)
∂F

∂xi
(t, x) +

1
2

n
∑

i,j=1

Cij(t, x)
∂2F

∂xi∂xj
(t, x),

and where C(t, x) = σ(t, x)σ (t, x).
• In particular, bond prices are given by p(t, T ) = F T (t,Xt) (the index T is

viewed as a parameter), where the pricing function FT satisfies

∂FT

∂t
(t, x) + AFT (t, x) − h(t, x)FT (t, x) = 0, (9)

FT (T, x) = 1. (10)

4.1 The market price of risk

There is an immediate economic interpretation of the Girsanov kernel ϕ
above. To see this let πt be the price process of any asset (derivative or
underlying) in the model. We write the P -dynamics of π as

dπt = πtαtdt+ πtδtdW
P
t ,

where α is the local mean rate of return of π (under P ) and δ is the (vector)
volatility process. From the Girsanov Theorem we obtain, as above,

dπt = π(t) {αt + δtϕt} dt+ πtδtdWt,

where W is Q-Wiener. From Lemma 3 we have , on the other hand,

dπt = πtrtdt+ πtδtdWt,

so we obtain the relation
αt + δtϕt = rt,

or, equivalently,
αt − rt = δtϕt = −

∑

i

δitϕit.
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In other words, the risk premium for π, given by αt − rt, i.e., the excess
rate of return above the risk free rate r, is given (apart from a minus sign) as
the sum of the volatility terms δi multiplied by the “factor loadings” δi. This
has motivated economists to refer to the process λt = −ϕt as the “market
price of risk” process, where λi is the market price of risk for Wiener factor
number i. In particular we see that if W (and thus δ) is scalar then λ in fact
equals the Sharpe ratio, i.e.,

λt =
αt − rt
δt

.

The economic interpretation is that λ is a measure of the aggregate risk
aversion in the market, in the sense that if λ is positive then the market
is risk averse, if λ is negative then the market is risk loving and if λ = 0
is positive then the market is risk neutral. We summarize the moral in the
following slogan.

Result 1 The martingale measure is chosen by the market.

5 Martingale Modeling

In order to construct a factor model of the type above, and to be able to
compute derivative prices, it seems that we have to model the following ob-
jects.

• The P -drift μp.
• The volatility σ (which is the same under P and under Q.
• The market price of risk λ = −ϕ, which connects Q to P by a Girsanov

transformation.

However, from the pricing formula (6) we have the following simple observa-
tion.

Proposition 2 The term structure of bond prices, as well as the prices of all
other derivatives, are completely determined by specifying the dynamics
of X under the martingale measure Q.

This observation has led to the following standard modeling procedure:
instead of specifying μp, σ and λ under the objective probability measure
P we will henceforth specify the dynamics of the factor process X directly
under the martingale measure Q. This procedure is known as martingale
modeling, and the typical assumption will thus be that X under Q has
dynamics given by

dXt = μ(t,Xt)dt+ σ(t,Xt)dWt, (11)
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where W is Q-Wiener.The short rate is as before defined by

rt = h(t,Xt). (12)

The pricing formulas from Theorem 5 still hold.

5.1 Affine term structures

In order to compute prices of derivatives, we have to be able so solve the
term structure equation (7)-(8). It turns out that the only cases when the
term structure equation can be solved analytically is more or less when we
have an affine term structure.

Definition 4 The factor model (11) -(12) above is said to possess an affine
term structure (AFT for short) if bond prices are of the form

p(t, T ) = eA(t,T )−B(t,T )Xt , (13)

where A (scalar) and B (row vector) are deterministic functions of t and T .

The importance of the AFT models stem from the fact that these are
roughly speaking the only models for which we can obtain analytical formulas
for bond prices and bond option prices. The question now arises as to when
we have an AFT, and the basic result is as follows.

Theorem 6 Sufficient conditions for the existence of an affine term struc-
ture are the following.

1. The drift (under Q) is an affine function of the factors, i.e., μ is of the
form

μ(t, x) = α(t) +Δ(t)x,

where the n×1 column vector α and the n×n matrix Δ are deterministic
functions of time.

2. The “square of the diffusion” is an affine function of the factors, i.e., σσ 
is of the form

σ(t, x)σ (t, x) = C(t) +
n

∑

i=1

Di(t)xi,

where C and Di are deterministic n× n matrix functions of t.
3. The short rate is an affine function of the factors, i.e.,

h(t, x) = c(t) + d(t)x,

where the scalar c and the 1× n row vector d are deterministic functions
of t.
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Furthermore, under the conditions above the functions A and B in (13)
are determined by the following system of ODEs, where the subscript t
denotes partial derivative w.r.t. t, and where D denotes the block matrix
D = [D1, . . . , Dn].

Bt(t, T ) = −B(t, T )Δ(t) +
1
2
B(t, T )D(t)B (t, T ) − d(t), (14)

B(T, T ) = 0. (15)

At(t, T ) = B(t, T )α(t, T ) − 1
2
B(t, T )C(t)B (t, T ) + c(t), (16)

A(T, T ) = 0. (17)

Proof. The proof is surprisingly simple. Given the Ansatz (13), and the
sufficient conditions above, compute the partial derivatives and plug them
into the term structure equation. The PDE will then be separable in x and
the ODEs are obtained by identifying coefficients.

We note that, for every fixed T , (14)-(17) is a coupled system of ODEs
in the t-variable. We also see that (14) is a Riccatti equation for B, whereas
(16)-(17) can be integrated directly, once B is computed.

5.2 Short rate models

The simplest type of a factor model is the one where the factor process X is
scalar and coincides with the short rate, i.e., Xt = rt and h(x) = x. Such a
model will then have the form

drt = μ(t, rt)dt+ σ(t, rt)dWt,

where W is Q-Wiener. As we saw in the previous section, the term struc-
ture (i.e., the family of bond price processes) will, together with all other
derivatives, be completely determined by the term structure equation

∂F

∂t
(t, r) + μ(t, r)

∂F

∂r
(t, r) +

1
2
σ2(t, r)

∂2F

∂r2
(t, r) − rF (t, r) = 0, (18)

F (T, r) = Φ(r). (19)

In the literature there are a large number of proposals on how to specify
the Q-dynamics for r. We present a (far from complete) list of the most
popular models. If a parameter is time dependent this is written out explicitly.
Otherwise all parameters are constant and positive.
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1. Vasiček
drt = (b− art) dt+ σdWt,

2. Cox–Ingersoll–Ross (CIR)

drt = a (b− rt) dt+ σ
√
rtdWt,

3. Dothan
drt = artdt+ σrtdWt,

4. Black–Derman–Toy (BDT)

drt = Θ(t)rtdt+ σ(t)rtdWt,

5. Ho–Lee
drt = Θ(t)dt + σdWt,

6. Hull–White (extended Vasiček)

drt = {Θ(t) − a(t)rt} dt+ σ(t)dWt,

7. Hull-White (extended CIR)

drt = {Θ(t) − a(t)r} dt+ σ(t)
√
rtdWt.

We now briefly comment on the models listed above.

5.2.1 Computational tractability

Looking at the list we see that all of them, apart from the Dothan and the
BDT model possess affine term structures, the implication being that Dothan
and the BDT model are computationally intractable.

Apart from the purely formal AFT results, there are also good probabilistic
reasons why some of the models in our list are easier to handle than others. We
see that the models of Vasiček, Ho–Lee and Hull–White (extended Vasiček)
all describe the short rate using a linear SDE. Such SDEs are easy to solve
and the corresponding r-processes can be shown to be normally distributed.
Since bond prices are given by expressions like

p(0, T ) = E
[

e−
∫ T
0 r(s)ds

]

,

and the normal property of r is inherited by the integral
∫ T

0
r(s)ds we see

that the computation of bond prices for a model with a normally distributed
short rate boils down to the easy problem of computing the expected value
of a log-normal stochastic variable.
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In contrast with the linear models above, let us consider the Dothan model.
For the Dothan model the short rate will be log-normally distributed, which
means that in order to compute bond prices we are faced with determining
the distribution of an integral

∫ T

0
r(s)ds of log-normal stochastic variables.

This is analytically intractable.

5.2.2 Positive short rates

From a computational point of view there is thus a lot to be said in favor of
a linear SDE describing the short rate. The price we have to pay for these
models is again the Gaussian property. Since the short rate will be normally
distributed this means that for every t there is a positive probability that
r(t) is negative, and this is unreasonable from an economic point of view. For
the Dothan model on the other hand, the short rate is log-normal and thus
positive with probability 1. It is also possible to show that the CIR model
will produce a strictly positive short rate process.

5.2.3 Mean reversion

We also note that all the models above, except Dothan, BDT, and Ho-Lee
exhibit the phenomenon of mean reversion, i.e., the short rate has a ten-
dency to revert to a (possibly time dependent) mean value. For example, in
the Vasiček model, the drift is negative when r > b/a and the drift is positive
when r < b/a, so the short rate will revert to the long term mean b/a. Mean
revertion is a typical requirement of a short rate model (as opposed to stock
price models). The reason for this is basically political/institutional: if the
short rate becomes very high one expects that the government and/or the
central bank will intervene to lower it.

5.3 Inverting the yield curve

We now turn to the problem of parameter estimation in the martingale models
above, and a natural procedure would perhaps be to use standard statistical
estimation procedures based on time series data of the underlying factor
process. This procedure, however, is unfortunately completely nonsensical
and the reason is as follows.

Let us for simplicity assume we have a short rate model. Now, we have
chosen to model the r-process by giving the Q-dynamics, which means that
all parameters are defined under the martingale measure Q. When we make
observations in the real world we are however not observing r under the
martingale measure Q, but under the objective measure P . This means that
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if we apply standard statistical procedures to our observed data we will not
get our Q-parameters. What we get instead is pure nonsense.

To see how we can save the situation, we begin by recalling from Result
1 that the martingale measure is chosen by the market. Thus, in
order to obtain information about the Q-drift parameters we have to collect
price information from the market, and the typical approach is that of
inverting the yield curve which works as follows.

• Choose a particular short rate model involving one or several parameters.
(The arguments below will in fact apply to any factor model, but for
simplicity we confine ourselves to short rate models). Let us denote the
entire parameter vector by α. Thus we write the r-dynamics (under Q) as

drt = μ(t, rt;α)dt+ σ(t, rt;α)dWt. (20)

• Solve the term structure equation (18)-(19) to obtain the theoretical term
structure as

p(t, T ;α) = FT (t, r;α).

• Collect price data (at t = 0) from the bond market for all maturities.
Denote this empirical term structure by {p (0, T ); T ≥ 0}.

• Now choose the parameter vector α in such a way that the theoretical
curve {p(0, T ;α); T ≥ 0} fits the empirical curve {p (0, T ); T ≥ 0} as well
as possible (according to some objective function). This gives us our esti-
mated parameter vector α .

• We have now determined our martingale measure Q, and we can go on to
compute prices of interest rate derivatives.

The procedure above is known as “inverting the yield curve”, “backing out
parameters from market data”, or “calibrating the model to market data”.
It is a very general procedure, and corresponds exactly to the method of
computing “implied volatilities” from option prices in a stock price model.

We end this section by noting that if we want a complete fit between
the theoretical and the observed bond prices this calibration procedure is
formally that of solving the system of equations

p(0, T ;α) = p (0, T ) for all T > 0. (21)

We observe that this is an infinite dimensional system of equations (one
equation for each T ) with α as the unknown, so if we work with a model
containing a finite parameter vector α (like the Vasiček model) there is no
hope of obtaining a perfect fit.

This is the reason why in the Hull-White model we introduce the infinite
dimensional parameter vector Θ and it can in fact be shown that there exists
a unique solution to (21) for the Ho-Lee model as well as for Hull-White
extended Vasiček and CIR models. As an example, for the Ho-Lee model Θ
is given by
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Θ(t) = f T (0, t) + σ2t,

where the lower index denotes partial derivative w.r.t maturity.
It should, however, be noted that the introduction of an infinite parameter,

in order to fit the entire initial term structure, has its dangers in terms of over-
parameterization, leading to numerical instability of the parameter estimates.

6 Forward Rate Models

Up to this point we have studied interest models generated by a finite number
of underlying factors. The method proposed by Heath–Jarrow–Morton (HJM)
is at the far end of this spectrum—they choose the entire forward rate curve
as their (infinite dimensional) state variable.

6.1 The HJM drift condition

We now turn to the specification of the Heath–Jarrow–Morton framework.
This can be done under P or Q, but here we confine ourselves to Q modeling.

Assumption 1 We assume that, for every fixed T > 0, the forward rate
f(·, T ) has a stochastic differential which, under a given martingale measure
Q, is given by

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t), (22)
f(0, T ) = f (0, T ), (23)

where W is a (d-dimensional) Q-Wiener process whereas α(·, T ) and σ(·, T )
are adapted processes.

Note that conceptually equation (22) is a scalar stochastic differential in
the t-variable for each fixed choice of T . The index T thus only serves as a
“mark” or “parameter” in order to indicate which maturity we are looking at.
Also note that we use the observed forward rated curve {f (0, T ); T ≥ 0}
as the initial condition. This will automatically give us a perfect fit between
observed and theoretical bond prices at t = 0, thus relieving us of the task
of inverting the yield curve.

Remark 1 It is important to observe that the HJM approach to interest
rates does not a propose of a specific model, like, for example, the Vasiček
model. It is instead a framework to be used for analyzing interest rate
models. We do not have a specific model until we have specified the drift
and volatility structure in (22). Every short rate model can be equivalently
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formulated in forward rate terms, and for every forward rate model, the
arbitrage free price of a contingent T -claim Z will still be given by the pricing
formula

Π (0;Z) = EQ
[

e−
∫

T
0 r(s)ds · Z

]

,

where the short rate as usual is given by r(s) = f(s, s).

We noticed earlier that for a short rate model every Q ∼ P will serve as a
martingale measure. This is not the case for a forward rate model, the reason
being that we have the following two different formulas for bond prices

p(t, T ) = e−
∫

T
t

f(0,s)ds,

p(t, T ) = EQ
[

e−
∫ T
0 r(s)ds

∣

∣

∣Ft

]

,

where the short rate r and the forward rate f are connected by r(t) = f(t, t).
In order for these formulas to hold simultaneously, we have to impose some
sort of consistency relation between α and σ in the forward rate dynamics.
The result is the famous Heath–Jarrow–Morton drift condition.

Proposition 3 (HJM drift condition) Under the martingale measure
Q, the processes α and σ must satisfy the following relation, for every t and
every T ≥ t.

α(t, T ) = σ(t, T )
∫ T

t

σ(t, s) ds. (24)

Proof. From Proposition 1 we obtain the bond price dynamics as

dp(t, T ) = p(t, T )
{

r(t) +A(t, T ) +
1
2
||S(t, T )||2

}

dt+ p(t, T )S(t, T )dW (t).

We also know that, under a martingale measure, the local rate of return has
to equal the short rate r. Thus we obtain the identity

A(t, T ) +
1
2
||S(t, T )||2 = 0,

and differentiating this w.r.t. T gives us (24).

The moral of Proposition 3 is that when we specify the forward rate dy-
namics (under Q) we may freely specify the volatility structure. The drift
parameters are then uniquely determined.

To see at least how part of this machinery works we now study the simplest
example conceivable, which occurs when the process σ is a constant. With a
slight abuse of notation let us thus write σ(t, T ) ≡ σ, where σ > 0. Equation
(24) gives us the drift process as
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α(t, T ) = σ

∫ T

t

σds = σ2(T − t),

so, after integrating, equation (22) becomes

f(t, T ) = f (0, T ) +
∫ t

0

σ2(T − s)ds+
∫ t

0

σdW (s),

i.e.,

f(t, T ) = f (0, T ) + σ2t

(

T − t

2

)

+ σW (t).

In particular we see that r is given as

r(t) = f(t, t) = f (0, t) + σ2 t
2

2
+ σW (t),

so the short rate dynamics are

dr(t) =
{

fT (0, t) + σ2t
}

dt+ σdW (t),

which we recognize as the Ho–Lee model, fitted to the initial term structure.

6.2 The Musiela parameterization

In many practical applications it is more natural to use time to maturity,
rather than time of maturity, to parameterize bonds and forward rates. If we
denote running time by t, time of maturity by T , and time to maturity by x,
then we have x = T − t, and in terms of x the forward rates are defined as
follows.

Definition 5 For all x ≥ 0 the forward rates r(t, x) are defined by the
relation

r(t, x) = f(t, t+ x).

Suppose now that we have the standard HJM-type model for the forward
rates under a martingale measure Q

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t). (25)

The question is to find the Q-dynamics for r(t, x), and we have the following
result, known as the Musiela equation.

Proposition 4 (The Musiela equation) Assume that the forward rate
dynamics under Q are given by (25). Then



632 T. Björk

dr(t, x) =
{

∂

∂x
r(t, x) +D(t, x)

}

dt+ σ0(t, x)dW (t), (26)

where

σ0(t, x) = σ(t, t+ x),

D(t, x) = σ0(t, x)
∫ x

0

σ0(t, s)′ds.

Proof. Using a slight variation of the Itô formula we have

dr(t, x) = df(t, t+ x) +
∂f

∂T
(t, t+ x)dt,

where the differential in the term df(t, t+ x) only operates on the first t. We
thus obtain

dr(t, x) = α(t, t+ x)dt+ σ(t, t+ x)dW (t) +
∂

∂x
r(t, x)dt,

and, using the HJM drift condition, we obtain our result.

The point of the Musiela parameterization is that it highlights equation
(26) as an infinite dimensional SDE. It has become an indispensable tool of
modern interest rate theory.

7 Change of Numeraire

In this section we will give a very brief account of the change of numeraire
technique. We will then use the results in Section 8. All the results are stan-
dard.

7.1 Generalities

Consider a financial market (not necessarily a bond market) with the usual
locally risk free asset B, and a risk neutral martingale measure Q. We recall
from general theory that a measure is a martingale measure only relative to
some chosen numeraire asset, and we recall that the risk neutral martingale
measure, with the money account B as numeraire, has the property of mar-
tingalizing all processes of the form S(t)/B(t) where S is the arbitrage free
price process of any traded asset.
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Assumption 2 Assume that Q is a fixed risk neutral martingale measure,
and S0(t) is a strictly positive process with the property that the process
S0(t)/B(t) is a Q-martingale.

The economic interpretation of this assumption is of course that S0(t) is
the arbitrage free price process of a traded asset. We now search for a measure
Q0 with the property that, for every arbitrage free price process Π (t), the
process Π (t) /S0(t) is a Q0-martingale.

In order to get an idea of what Q0 must look like, let us consider a fixed
time T and a T -contract X . Assuming enough integrability we then know
that the arbitrage free price of X at time t = 0 is given by

Π (0;X) = EQ

[

X

B(T )

]

. (27)

Assume, on the other hand, that the measure Q0 actually exists, with a
Radon-Nikodym derivative process

L(t) =
dQ0

dQ
, on Ft.

Then we know that, because of the assumed Q0-martingale property of the
process Π (t;X) /S0(t), we have

Π (0;X)
S0(0)

= E0

[

Π (T ;X)
S0(T )

]

= E0

[

X

S0(T )

]

= EQ

[

L(T )
X

S0(T )

]

,

where E0 denotes expectation under Q0. Thus we have

Π (0;X) = EQ

[

L(T )
X · S0(0)
S0(T )

]

, (28)

and, comparing (27) with (28), we see that a natural candidate as likelihood
process for the intended change of measure is given by L(t) = S0(t)/S0(0) ·
B(t).

We now go on to the formal definitions and results.

Definition 6 Under Assumption 2 define, for any fixed t, the measure Q0

on Ft by
dQ0

dQ
= L(t),

where the likelihood process L is defined by

L(t) =
S0(t)

S0(0) · B(t)
. (29)
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We note at once that L is a positive Q-martingale with L(0) = 1, so the
measure Q0 is indeed a probability measure. We now want to prove that
Q0 martingalizes every process of the form Π (t) /S0(t), where Π (t) is any
arbitrage free price process. The formalization of this idea is the following
result.

Proposition 5 Define Q0 as above. Assume that Π (t) is a process such
that Π (t) /B(t) is a Q-martingale. Then the process Π (t) /S0(t) is a Q0-
martingale.

Proof. From Bayes’s formula we obtain

E0

[

Π (t)
S0(t)

∣

∣

∣

∣

Fs

]

=
EQ

[

L(t) Π(t)
S0(t)

∣

∣

∣Fs

]

L(s)
=
EQ

[

Π(t)
B(t)S0(0)

∣

∣

∣Fs

]

L(s)

=
Π (s)

B(s)S0(0)L(s)
=
Π (s)
S0(s)

.

As an immediate corollary we have the following.

Proposition 6 Define Q0 as above and consider a T -claim X such that
X/B(T ) ∈ L1(Q). Then the price process, Π (t;X) is given by

Π (t;X) = S0(t)E0

[

X

S0(T )

∣

∣

∣

∣

Ft

]

. (30)

Remark 2 Note that it is easy to find the Girsanov transformation which
carries Q into Q0. Since Q martingalizes the process S0(t)/B(t), the Q-
dynamics of S0 must be of the form

dS0(t) = r(t)S0(t)dt+ S0(t)v0(t)dW (t), (31)

where W is Q-Wiener, and v0 is the volatility for S0. From (31) and (29) it
now follows that the likelihood process L has the Q-dynamics

dL(t) = L(t)v0(t)dW (t), (32)

so the relevant Girsanov kernel v0 in (32) is in fact given by the volatility of
the S0-process.
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7.2 Forward measures

In this section we specialize the theory developed in the previous section to
the case when the new numeraire chosen is a bond maturing at time T . As
can be expected this choice of numeraire is particularly useful when dealing
with interest rate derivatives.

Suppose therefore that we are given a specified bond market model with
a fixed martingale measure Q. For a fixed time of maturity T we now choose
the process p(t, T ) as our new numeraire.

Definition 7 The T -forward measure QT is defined by

dQT = LT (t)dQ

on Ft for 0 ≤ t ≤ T where

LT (t) =
p(t, T )

B(t)p(0, T )
.

Observing that P (T, T ) = 1 we have the following useful pricing formula
as an immediate corollary of Proposition 6.

Proposition 7 Assume that the T -claim X has the property that X/B(T ) ∈
L1(Q). Then

Π (t;X) = p(t, T )ET [X | Ft] ,

where ET denotes integration w.r.t. QT .

7.3 Option pricing

We will now apply the theory developed above to give a fairly general formula
for the pricing of European call options. Assume therefore that we are given
a financial market with a (possibly stochastic) short rate of interest r, and a
strictly positive asset price process S(t). We also assume the existence of a
risk neutral martingale measure Q.

Consider now a fixed time T , and a European call on S with date of
maturity T and strike price K. We are thus considering the T -claim

X = max [S(T ) −K, 0] , (33)

and to simplify notation we restrict ourselves to computing the price Π (t;X)
at time t = 0. The main trick when dealing with options is to write X as

X = [S(T ) −K] · I {S(T ) ≥ K} .
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We obtain

Π (0;X) = EQ
[

B−1(T ) [S(T ) −K] I {S(T ) ≥ K}
]

= EQ
[

B−1(T )S(T ) · I {S(T ) ≥ K}
]

− KEQ
[

B−1(T ) · I {S(T ) ≥ K}
]

.

For the first term we change to the measure QS having S as numeraire, and
for the second term we use the T -forward measure. Using Propositions 6 and
7 we obtain the following basic option pricing formula, where we recognize
the structure of the standard Black-Scholes formula.

Proposition 8 Given the assumptions above, the option price is given by

Π (0;X) = S(0)QS (S(T ) ≥ K) −Kp(0, T )QT (S(T ) ≥ K) . (34)

In order to get more concrete results we make an additional assumption.

Assumption 3 Assume that

1. The filtration is generated by a d-dimensional Q-Wiener process W .
2. The process ZS,T defined by

ZS,T (t) =
S(t)
p(t, T )

,

has a stochastic differential of the form

dZS,T (t) = ZS,T (t)mS
T (t)dt+ ZS,T (t)σS,T (t)dW,

where the volatility process σS,T (t) is deterministic.

The crucial point here is of course the assumption that the d-dimensional
row vector process σS,T is deterministic. Also note that the volatility process
is unaffected by a continuous change of measure.

In order to analyze the option formula (34) we start with the second term
which we write as

QT (S(T ) ≥ K) = QT

(

S(T )
p(T, T )

≥ K

)

= QT (ZS,T (T ) ≥ K) .

By construction we know that ZS,T is a martingale under QT , so its QT -
dynamics are given by

dZS,T (t) = ZS,T (t)σS,T (t)dWT ,

with the solution

ZS,T (T ) =
S(0)
p(0, T )

exp

{

−1
2

∫ T

0

σ2
S,T (t)dt+

∫ T

0

σS,T (t)dWT

}

.
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The stochastic integral in the exponent is Gaussian with zero mean and
variance

Σ2
S,T (T ) =

∫ T

0

‖σS,T (t)‖2dt. (35)

We thus have, for the second term in (34),

QT (S(T ) ≥ K) = N [d2],

where N denotes the cumulative distribution function of a standard Gaussian
random variable, and

d2 =
ln

(

S(0)
Kp(0,T )

)

− 1
2Σ

2
S,T (T )

√

Σ2
S,T (T )

. (36)

For the first term in (34) we write

QS (S(T ) ≥ K) = QS

(

p(T, T )
S(T )

≤ 1
K

)

= QS

(

YS,T (T ) ≤ 1
K

)

,

where the process YS,T is defined by

YS,T (t) =
p(t, T )
S(t)

=
1

ZS,T (t)
.

Under the measure QS the process YS,T is a martingale, so its QS-dynamics
are of the form

dYS,T (t) = YS,T (t)δS,T (t)dWS .

Since YS,T = Z−1
S,T it is easily seen that in fact δS,T (t) = −σS,T (t). Thus we

have

YS,T (T ) =
p(0, T )
S(0)

exp

{

−1
2

∫ T

0

σ2
S,T (t)dt −

∫ T

0

σS,T (t)dWS

}

,

and with exactly the same reasoning as above we have, after some simplifi-
cations,

QS (S(T ) ≥ K) = N [d1],

where
d1 = d2 +

√

Σ2
S,T (T ). (37)

We have thus proved the following result.

Proposition 9 Under the conditions given in Assumption 3, the price of
the call option defined in (33) is given by the formula

Π (0;X) = S(0)N [d1] −K · p(0, T )N [d2], (38)
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where d2 and d1 are given in (36) and (37) respectively, whereas Σ2
S,T (T ) is

given by (35).

8 LIBOR Market Models

In the previous chapters we have concentrated on studying interest rate mod-
els based on infinitesimal interest rates like the instantaneous short rate and
the instantaneous forward rates. These models do however suffer from some
disadvantages. Firstly, the instantaneous short and forward rates can never
be observed in real life. Secondly, if you would like to calibrate your model
to cap or swaption data, then this is typically very complicated from a nu-
merical point of view if you use one of the “instantaneous” models. Another
disturbing fact is that, for a very long time, the market practice has been to
quote caps, floors, and swaptions by using a formal extension of the Black-76
formula (see below for details). Such an extension is typically obtained by an
approximation argument where the short rate at one point in the argument
is assumed to be deterministic, while later on in the argument the LIBOR
rate is assumed to be stochastic. This is of course logically inconsistent, but
despite this, the market happily continues to use Black-76 for the pricing of
caps, floors, and swaptions.

Thus there has appeared a natural demand for constructing logically con-
sistent (and arbitrage free!) models having the property that the theoretical
prices for caps, floors and swaptions produced by the model are of the Black-
76 form. This project has in fact been carried out very successfully, starting
with Brace et al. (1997), Jamshidian (1997), Miltersen et al. (1997). The basic
structure of the models is as follows.

Instead of modeling instantaneous interest rates, we model discrete mar-
ket rates like LIBOR rates. Under a suitable choice of numeraire(s), these
market rates can in fact be modeled log normally. The market models will
thus produce pricing formulas for caps and floors (the LIBOR models) which
are of the Black-76 type and thus conforming with market practice. By con-
struction the market models are thus very easy to calibrate to market data
for caps/floors and swaptions respectively. They are then used to price more
exotic products. For this later pricing part, however, we will typically have
to resort to some numerical method, like Monte Carlo.

8.1 Caps: definition and market practice

In this section we discuss LIBOR caps and the market practice for pricing and
quoting these instruments. To this end we consider a fixed set of increasing
maturities T0, T1, . . . , TN and we define αi, by
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αi = Ti − Ti−1, i = 1, . . . , N.

The number αi is known as the tenor, and in a typical application we could
for example have all αi equal to a quarter of a year.

Definition 8 We let pi(t) denote the zero coupon bond price p(t, Ti) and
let Li(t) denote the LIBOR forward rate, contracted at t, for the period
[Ti−1, Ti], i.e.,

Li(t) =
1
αi

· pi−1(t) − pi(t)
pi(t)

, i = 1, . . . , N.

We recall that a cap with cap rate R and resettlement dates T0, . . . , TN
is a contract which at time Ti gives the holder of the cap the amount

Xi = αi · max [Li(Ti−1) −R, 0] ,

for each i = 1, . . . , N . The cap is thus a portfolio of the individual caplets
X1, . . . , XN . We note that the forward rate Li(Ti−1) above is in fact the spot
rate at time Ti−1 for the period [Ti−1, Ti], and is determined already at time
Ti−1. The amount Xi is thus determined at Ti−1 but not payed out until at
time Ti. We also note that, formally speaking, the caplet Xi is a call option
on the underlying spot rate.

The market practice is to use the Black-76 formula for the pricing of
caplets.

Definition 9 (Black’s formula for caplets)
The Black-76 formula for the caplet

Xi = αi · max [L(Ti−1, Ti) −R, 0] ,

is given by the expression

CaplBi (t) = αi · pi(t) {Li(t)N [d1] −RN [d2]} , i = 1, . . . , N,

where

d1 =
1

σi
√
Ti − t

[

ln
(

Li(t)
R

)

+
1
2
σ2
i (T − t)

]

,

d2 = d1 − σi
√

Ti − t.

The constant σi is known as the Black volatility for caplet No. i. In order
to make the dependence on the Black volatility σi explicit we will sometimes
write the caplet price as CaplBi (t;σi).

In the market, cap prices are not quoted in monetary terms but instead
in terms of implied Black volatilities, and these volatilities can further-
more be quoted as flat volatilities or as spot volatilities. Here, we confine
ourselves to spot volatilities.
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Consider a fixed date t, a fixed set of dates T0, T1, . . . , TN where t ≤ T0,
and a fixed cap rate R. We assume that we can observe the market prices
Caplmi (t), i = 1, . . . , N for the corresponding caplets.

Definition 10 Given market price data as above, the implied Black volatil-
ities σ̄1, . . . , σ̄N are defined as the solutions of the equations

Caplmi (t) = CaplBi (t; σ̄i), i = 1, . . . , N.

A sequence of implied volatilities σ̄1, . . . , σ̄N is called a volatility term struc-
ture.

8.2 The LIBOR market model

We now turn from market practice to the construction of the so-called LI-
BOR market models. To motivate these models let us consider the theoretical
arbitrage free pricing of caps. Using the Ti forward measure QTi (for short
Qi), the price ci(t) of a caplet No. i is

Capli(t) = αipi(t)ETi [max [Li(Ti−1) −R, 0]| Ft] , i = 1, . . . , N. (39)

The focal point of the LIBOR models is the following simple result.
Lemma 3 For every i = 1, . . . , N , the LIBOR process Li is a martingale
under the corresponding forward measure QTi , on the interval [0, Ti−1].

Proof. We have
αi · Li(t) =

pi−1(t)
pi(t)

− 1.

The process 1 is obviously a martingale under any measure. The process
pi−1/pi is the price of the Ti−1 bond normalized by the numeraire pi. Since
pi is the numeraire for the martingale measure QTi , the process pi−1/pi is
thus trivially a martingale on the interval [0, Ti−1]. Thus αiLi is a martingale
and hence Li is also a martingale.

The basic idea is now to define the LIBOR rates such that, for each i,
Li(T ) will be lognormal under “its own” measure Qi, since then all caplet
prices in (39) will be given by a Black type formula. The formal definition is
as follows.

Definition 11 If the LIBOR forward rates have the dynamics

dLi(t) = Li(t)σi(t)dW i(t), i = 1, . . . , N, (40)

where W i is Qi-Wiener, and σi is deterministic, then we say that we have a
discrete tenor LIBOR market model.
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8.3 Pricing caps in the LIBOR model

Given a LIBOR market model, the pricing of a caplet, and hence also a cap,
is trivial. Since Li in (40) is just a geometrical Brownian motion (GBM) we
obtain

Li(T ) = Li(t) · e
∫ T

t
σi(s)dW

i(s)− 1
2

∫ T
t

‖σi(s)‖2ds.

Since σi is assumed to be deterministic this implies that, conditional on Ft,
Li(T ) is lognormal, and a simple calculation gives us the following pricing
formula for caps.

Proposition 10 In the LIBOR market model, the caplet prices are given by

Capli(t) = αi · pi(t) {Li(t)N [d1] −RN [d2]} , i = 1, . . . , N,

where

d1 =
1

Σi(t, Ti−1)

[

ln
(

Li(t)
R

)

+
1
2
Σ2
i (t, Ti−1)

]

,

d2 = d1 −Σi(t, Ti−1),

with Σi defined by

Σ2
i (t, T ) =

∫ T

t

‖σi(s)‖2ds.

We thus see that each caplet price is given by a Black type formula.

8.4 Terminal measure dynamics and existence

We now turn to the question whether there always exists a LIBOR market
model for any given specification of the deterministic volatilities σ1, . . . , σN .
In order to get started we first have to specify all LIBOR rates L1, . . . , LN

under one common measure, and the canonical choice is the terminal mea-
sure QN .

After long and tedious calculations, the following existence result can be
proved.

Proposition 11 Consider a given volatility structure σ1, σN , where each σi
is assumed to be bounded, a probability measure QN and a standard QN -
Wiener process WN . Define the processes L1, . . . , LN by

dLi(t) = −Li(t)

(

N
∑

k=i+1

αkLk(t)
1 + αkLk(t)

σk(t)σ i (t)

)

dt+ Li(t)σi(t)dWN (t),
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for i = 1, . . . , N where we use the convention
∑N

N (. . .) = 0. Then the Qi-
dynamics of Li are given by (40). Thus there exists a LIBOR model with the
given volatility structure.

9 Potentials and Positive Interest

The purpose of this section is to present two approaches to interest rate
theory based on so called “stochastic discount factors” (see below for details),
while also relating bond pricing to stochastic potential theory.

An appealing aspect of the approaches described below is that they both
generate positive term structures, i.e., a system of bond prices for which
all induced forward rates are positive.

9.1 Generalities

As a general setup we consider a standard filtered probability space (Ω,F ,F,
P ) where P is the objective measure. We now need an assumption about how
the market prices various assets.

Assumption 4 We assume that the market prices all assets, underlying and
derivative, using a fixed martingale measure Q (with the money account as
the numeraire).

We now recall that for a T -claim Y the arbitrage free price at t = 0 is
given by

Π (0;Y ) = EQ
[

e−
∫ T
0 rsds · Y

]

. (41)

We denote the likelihood process for the transition from the objective
measure P to the martingale measure Q by L, i.e.,

Lt =
dQt

dPt
,

where the index t denotes the restriction of P and Q to Ft. We may of course
also write the price in (41) as an expected value under P :

EP
[

e−
∫ T
0 rsds · LT · Y

]

.

This leads us to the following definition.
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Definition 12 The stochastic discount factor (SDF), or state price
density process Z is defined by

Z(t) = e−
∫

t
0 rsds · Lt.

We now have the following basic pricing result, which follows directly from
the Bayes formula.

Proposition 12 For any T -claim Y , the arbitrage free price process is given
by

Π (t;X) =
EP [ZTY | Ft]

Zt
.

In particular, bond prices are given by

Π (t;X) =
EP [ZT | Ft]

Zt
. (42)

We now have the following fact which we will use extensively.

Proposition 13 Assume that the short rate is strictly positive and that the
economically natural condition p(0, T ) → 0 as T → ∞ is satisfied. Then the
stochastic discount factor Z is a probabilistic potential, i.e.,

• Z is a supermartingale.
• E[Zt] → 0 as t → ∞.

Conversely one can show that any potential will serve as a stochastic dis-
count factor. Thus the moral is that modeling bond prices in a market with
positive interest rates is equivalent to modeling a potential, and in the next
sections we will describe two ways of doing this.

We end by noticing that we can easily recover the short rate from the
dynamics of Z.

Proposition 14 If the dynamics of Z are written as

dZt = −htdt+ dMt,

where h is nonnegative and M is a martingale, then the short rate is given
by

rt = Z−1
t ht.

Proof. Applying the Itô formula to the definition of Z we obtain

dZt = −rtZtdt+ e−
∫ t
0 rsdsdLt.
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9.2 The Flesaker–Hughston fractional model

Given a stochastic discount factor Z and a positive short rate we may, for
each fixed T , define the process {X(t, T ); 0 ≤ t ≤ T} by

X(t, T ) = EP [ZT | Ft] , (43)

and thus, according to (42) write bond prices as

p(t, T ) =
X(t, T )
X(t, t)

. (44)

We now have the following result.

Proposition 15 For each fixed t, the mapping T �−→ X(t, T ) is smooth,
and in fact

∂

∂T
X(t, T ) = −EP [rTZT | Ft] . (45)

Furthermore, for each fixed T , the process

XT (t, T ) =
∂

∂T
X(t, T )

is a negative P -martingale satisfying

XT (0, T ) = −pT (0, T ), for all T ≥ 0.

Proof. Using the definition of Z and the Itô formula, we obtain

dZs = −rsZsds+ ZsdLs,

so

ZT = Zt −
∫ T

t

rsZsds+
∫ T

t

ZsdLs.

Since L is a martingale, this gives us

EP [ZT | Ft] = −EP

[

∫ T

t

rsZsds

∣

∣

∣

∣

∣

Ft

]

,

and (45) follows immediately. The martingale property now follows directly
from (45).

We can now state the basic result from Flesaker–Hughston.

Theorem 7 Assume that the term structure is positive. Then there exists a
family of positive martingales M(t, T ) indexed by T and a positive determin-
istic function Φ such that



An Overview of Interest Rate Theory 645

p(t, T ) =

∫ ∞
T Φ(s)M(t, s)ds

∫ ∞
t Φ(s)M(t, s)ds

. (46)

The M family can, up to multiplicative scaling by the Φ process, be chosen as

M(t, T ) = −XT (t, T ) = EP [rTZT | Ft] .

In particular, Φ can be chosen as

Φ(s) = −pT (0, s), (47)

in which case the corresponding M is normalized to M(0, s) = 1 for all s ≥ 0.

Proof. A positive term structure implies that X(t, T ) → 0 as T → ∞, so we
have

X(t, T ) = −
∫ ∞

T

XT (t, s)ds,

and thus we obtain from (44)

p(t, T ) =

∫∞
T XT (t, s)ds

∫∞
t XT (t, s)ds

. (48)

If we now define M(t, T ) by

M(t, T ) = −XT (t, T ),

then (46) follows from (48) with Φ ≡ 1. The function Φ is only a scale factor
which can be chosen arbitrarily, and the choice in (47) is natural in order to
normalize the M family. Since XT is negative, M is positive and we are done.

There is also a converse of the result above.

Proposition 16 Consider a given family of positive martingales M(t, T )
indexed by T and a positive deterministic function Φ. Then the specification

p(t, T ) =

∫ ∞
T Φ(s)M(t, s)ds

∫ ∞
t Φ(s)M(t, s)ds

, (49)

defines an arbitrage free positive system of bond prices. Furthermore, the
stochastic discount factor Z generating the bond prices is given by

Zt =
∫ ∞

t

Φ(s)M(t, s)ds.

Proof. Using the martingale property of the M family, we obtain



646 T. Björk

EP [ZT | Ft] =
∫ ∞

T

EP [Φ(s)M(T, s)| Ft] ds =
∫ ∞

T

Φ(s)M(t, s)ds.

This implies, by the positivity of M and Φ, that Z is a potential and can
thus serve as a stochastic discount factor. The induced bond prices are thus
given by

p(t, T ) =
EP [ZT | Ft]

Zt
,

and the calculation above shows that the induced (arbitrage free) bond prices
are given by (49).

The most used instance of a Flesaker-Hughston model is the so called
rational model. In such a model we consider a given martingale K and two
deterministic positive functions α(t) and β(t). We then define the M family
by

M(t, T ) = α(T ) + β(T )K(t).

With this specification of M it is easily seen that bond prices will have the
form

p(t, T ) =
A(T ) +B(T )K(t)
A(t) +B(t)K(t)

,

where
A(t) =

∫ ∞

t

Φ(s)α(s)ds, B(t) =
∫ ∞

t

Φ(s)β(s)ds,

We can specialize this further by assuming K to be of the form

K(t) = e
∫

t
0 γ(s)dWs− 1

2

∫

t
0 γ2(s)ds,

where γ is deterministic. Then K will be a lognormal martingale, and the
entire term structure will be analytically very tractable.

9.3 Connections to the Riesz decomposition

In Section 9.1 we saw that any stochastic discount factor generating a nice
bond market is a potential, so from a modeling point of view it is natural to
ask how one can construct potentials from scratch.

The main tool used is the following standard result.

Proposition 17 (Riesz Decomposition) If Z is a potential, then it ad-
mits a representation as

Zt = −At +Mt, (50)

where A is an increasing process, and M is a martingale defined by

Mt = EP [A∞| Ft] .
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To construct a potential, let us assume that we define A as

At =
∫ t

0

asds (51)

for some integrable nonnegative process a. Then we easily obtain

Zt = EP

[∫ ∞

0

asds

∣

∣

∣

∣

Ft

]

−
∫ t

0

asds =
∫ ∞

t

EP [as| Ft] ds. (52)

We can now connect this to the Flesaker-Hughston framework. The family
of processes X(t, T ) defined in (43) will, in the present framework, have the
form

X(t, T ) = EP

[∫ ∞

T

EP [as| FT ] ds
∣

∣

∣

∣

Ft

]

=
∫ ∞

T

EP [as| Ft] ds,

so the basic family of Flesaker-Hughston martingales are given by

M(t, T ) = − ∂

∂T
X(t, T ) = EP [aT | Ft] .

9.4 Conditional variance potentials

An alternative way of representing potentials which has been studied in depth
by Hughston and co-authors is through conditional variances.

Consider a fixed random variable X∞ ∈ L2(P,F∞). We can then define a
martingale X by setting

Xt = EP [X∞| Ft] .

Now let us define the process Z by

Zt = EP
[

(X∞ −Xt)
2
∣

∣

∣Ft

]

.

An easy calculation shows that

Zt = EP
[

X2
∞
∣

∣Ft

]

−X2
t .

Since the first term is a martingale and the second is a submartingale, the
difference is a supermartingale, which by definition is positive and it is in fact
a potential.

The point of this is that the potential Z, and thus the complete interest
rate model generated by Z, is in fact fully specified by a specification of the
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single random variable X∞. A very interesting idea is now to expand X∞
into Wiener chaos. See the notes in Section 10 below.

9.5 The Rogers Markov potential approach

As we have seen above, in order to generate an arbitrage free bond market
model it is enough to construct a positive supermartingale which acts as
stochastic discount factor, and in the previous section we saw how to do this
using the Riesz decomposition. In this section we will present a systematic
way of constructing potentials along the lines above, in terms of Markov
processes and their resolvents. The ideas are due to Rogers, and we largely
follow his presentation.

We consider a time homogeneous Markov process X under the objective
measure P , with infinitesimal generator G.

For any positive real valued sufficiently integrable function g and any pos-
itive number α we can now define the process A in the Riesz decomposition
(50) as

At =
∫ t

0

e−αsg(Xs)ds,

where the exponential is introduced in order to allow for at least all bounded
functions g. In terms of the representation (51) we thus have

at = e−αtg(Xt),

and a potential Z is, according to (52), obtained by

Zt =
∫ ∞

t

e−αsEP [g(Xs)| Ft] ds.

Using the Markov assumption we thus have

Zt = EP

[∫ ∞

t

e−αsg(Xs)ds
∣

∣

∣

∣

Xt

]

, (53)

and this expression leads to a well known probabilistic object.

Definition 13 For any nonnegative α the resolvent Rα is an operator,
defined for any bounded measurable function g by the expression

Rαg(x) = EP
x

[∫ ∞

0

e−αsg(Xs)ds
]

,

where subscript x refers to the conditioning X0 = x.

We can now connect resolvents to potentials.
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Proposition 18 For any bounded nonnegative g, the process

Zt = e−αtRαg(Xt)
Rαg(X0)

(54)

is a potential with Z0 = 1.

Proof. The normalizing factor is trivial so we disregard it in the rest of the
proof. Using time invariance we have, from (53),

Zt = EP

[∫ ∞

0

e−α(t+s)g(Xt+s)ds
∣

∣

∣

∣

Xt

]

= e−αtRαg(Xt).

Given a SDF of the form above, we can of course compute bond prices,
and the short rate can easily be recovered.

Proposition 19 If the stochastic discount factor Z is defined by (54) then
bond prices are given by

p(t, T ) = e−α(T−t)E
P [Rαg(XT )| Ft]
Rαg(Xt)

, (55)

and the short rate is given by

rt =
g(Xt)

Rαg(Xt)
. (56)

Proof. The formula (55) follows directly from the general formula (42). From
the construction of the process a we have

dZt = −e−αtg(Xt)dt+ dMt,

and (56) now follows from Proposition 14.

One problem with this scheme is that, for a concrete case, it may be very
hard to compute the quotient in (56). To overcome this difficulty we recall
the following standard result.

Proposition 20 With notation as above we have essentially

Rα = (α− G)−1
. (57)

The phrase “essentially” indicates that the result is “morally” correct, but
that care has to be taken concerning the domain of the operators.

Using the identity Rα = (α− G)−1 we see that with f = Rαg we have
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g(Xt)
Rαg(Xt)

=
(α − G)f(Xt)

f(Xt)
,

where it usually is a trivial task to compute the last quotient.
This led Rogers to use the following scheme.

1. Fix a Markov process X , number α and a nonnegative function f .
2. Define g by

g = (α− G) f.

3. Choose α (and perhaps the parameters of f) such that g is nonnegative.
4. Now we have f = Rαg, and the short rate can be recaptured by

r(t) =
(α− G)f(Xt)

f(Xt)
.

In this way Rogers produces a surprising variety of concrete analytically
tractable nonnegative interest rate models and, exchange rate models can
also be treated within the same framework.

10 Notes

All basic material in this article can be found in most advanced textbooks,
like Björk (2004) and Duffie (2001). The martingale approach to arbitrage
pricing was developed in Harrison and Kreps (1979) and Harrison and Pliska
(1981). It was then extended in, among other papers, Delbaen and Schacher-
mayer (1994), Duffie and Huang (1986). An elementary textbook on bond
markets is Fabozzi (2004). For more advanced treatments see Björk (2004)
and Duffie (2001). The encyclopedic book Brigo and Mercurio (2001) con-
tains a wealth of theoretical, numerical and and practical information. Basic
papers on short rate models are Cox et al. (1985), Ho and Lee (1986), Hull
and White (1990), Vasiček (1977). For an example of a two-factor model see
Longstaff and Schwartz (1992). For extensions and notes on the affine term
structure theory, see Duffie and Kan (1996). Jump processes (and affine the-
ory) is treated in Björk (1997), Duffie et al. (2000). The HJM framework
first appeared in Heath et al. (1992) and the Musiela parameterization first
appeared in Brace and Musiela (1994). The change of numeraire was intro-
duced in Margrabe (1978), and developed more systematically in Geman et
al. (1995), Jamshidian (1989). The LIBOR market models were developed in
Brace et al. (1997), Miltersen et al. (1997). See also Jamshidian (1997) for
swap market models. The Flesaker-Hughston models appeared in Flesaker
and Hughston (1996) and analyzed further in Jin and Glasserman (2001).
For the Rogers potential approach, see Rogers (1994).
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Extremes of Continuous–Time Processes

Vicky Fasen ∗

Abstract In this paper we present a review on the extremal behavior of
stationary continuous-time processes with emphasis on generalized Ornstein-
Uhlenbeck processes. We restrict our attention to heavy-tailed models like
heavy-tailed Ornstein-Uhlenbeck processes or continuous-time GARCH pro-
cesses. The survey includes the tail behavior of the stationary distribution,
the tail behavior of the sample maximum and the asymptotic behavior of
sample maxima of our models.

1 Introduction

In this paper we study the extremal behavior of stationary continuous-time
processes. The class of stationary continuous-time processes is rich, and the
investigation of their extremal behavior is complex. The development of the
extremal behavior of Gaussian processes, which is the origin of continuous-
time extreme value theory starting with Rice (1939, 1944, 1945), Kac (1943),
Kac and Slepian (1959), Volkonskii and Rozanov (1959, 1961) and Slepian
(1961, 1962), alone, would fill a paper. See the monograph of Leadbetter et al.
(1983) or the Ph.D. thesis of Albin (1987) or the paper Albin (1990) for a
review of this topic. Since financial time series

• are often random with jumps,
• have heavy tails,
• exhibit clusters on high levels,
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we will concentrate mainly on stationary continuous-time processes having
these properties.

We will explain the basic ideas concerning extreme value theory for sta-
tionary continuous-time processes by generalized Ornstein-Uhlenbeck (GOU)
processes, which are applied as stochastic volatility models in finance and as
risk models in insurance. They are represented by

Xt = e−ξt

∫ t

0

eξs− dηs + e−ξtX0, t ≥ 0, (1)

where (ξt, ηt)t≥0 is a bivariate Lévy process independent of the starting ran-
dom variable X0 (cf. Lindner and Maller (2005) and for definitions, further
details and references see also Maller et al. (2008) in this volume). A bivariate
Lévy process is characterized by the Lévy-Khinchine representation

E(ei〈Θ,(ξt,ηt)〉) = exp(−tΨ(Θ)) for Θ ∈ R
2,

where

Ψ(Θ)=−i〈γ,Θ〉 +
1
2
〈Θ,Σ Θ〉+

∫

IR2

(

1 − ei〈Θ,(x,y)〉 + i〈(x, y), Θ〉
)

dΠξ,η(x, y)

with γ ∈ R
2, Σ a non-negative definite matrix in R

2×2, 〈·, ·〉 the in-
ner product and Πξ,η a measure on R

2, called Lévy measure, such that
∫

IR2 min{
√

x2 + y2, 1} dΠξ,η(x, y) < ∞ andΠξ,η((0, 0)) = 0 (cf. Sato (1999)).
The limit behavior of the sample maxima

M(T ) = sup
0≤t≤T

Xt (2)

as T → ∞ of the stationary GOU-process (Xt)t≥0 will be described either
when ξt = λt or when E(e−αξ1 ) = 1 for some α > 0.

In Section 2, a synopsis of extreme value theory is given. Precise definitions
of the GOU-models studied in this paper are presented in Section 3. We
start with the investigation of the tail behavior of the sample maximum in
Section 4. Section 5 on the asymptotic behavior of sample maxima M(T ) as
T → ∞ and the cluster behavior follows. Finally, Section 6 concludes with
remarks on extensions of the results to more general models.

2 Extreme Value Theory

One method of investigating extremes of stationary continuous-time processes
is to study the extremal behavior of the discrete-time skeleton
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Mk(h) = sup
(k−1)h≤s≤kh

Xs for k ∈ IN (3)

and some fixed h > 0, which is again a stationary sequence. The advantage of
such a skeleton is that known results for sequences can be applied, which are
well investigated; see De Haan and Ferreira (2006), Embrechts et al. (1997),
Leadbetter et al. (1983) and Resnick (1987). To my knowledge this idea
was first applied to Gaussian processes by Leadbetter and Rootzén (1982).
The monograph of Leadbetter et al. (1983) and the paper of Leadbetter and
Rootzén (1988) contain a detailed study of extremes of discrete-time and
continuous-time processes. A completely different approach to extreme value
theory for continuous-time processes as presented here is given in Berman
(1992). Both approaches were combined by Albin (1987, 1990).

2.1 Extremes of discrete–time processes

We start with an introduction into extremes of discrete-time processes.
Let (Yn)n∈IN be a stationary sequence with distribution function F and
Mn = max{Y1, . . . , Yn} for n ∈ IN. The simplest stationary sequence is an
iid (independently and identically distributed) sequence. In this case, we find
sequences of constants an > 0, bn ∈ IR, such that

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = G(x) for x ∈ supp(G), (4)

and some non-degenerate distribution function G whose support is denoted
by supp(G), if and only if

lim
n→∞

nF (anx+ bn) = − logG(x) for x ∈ supp(G) , (5)

where F = 1−F denotes the tail of F . Then we say that F is in the maximum
domain of attraction of G (F ∈ MDA(G)). The Extremal Types Theorem
(Leadbetter et al. (1983), Theorem 1.4.2) says that G is either a Fréchet (Φα,
α > 0), a Gumbel (Λ) or a Weibull (Ψα, α > 0) distribution.

For a stationary sequence (Yn)n∈IN there exists sufficient conditions such
that the extremal behavior of the stationary sequence coincides with the
extremal behavior of an iid sequence with the same stationary distribution;
i.e. (5) implies (4). The conditions which guarantee this conclusion are known
as D and D′ conditions (cf. Leadbetter et al. (1983), pp. 53). The condition
D is a mixing condition for the asymptotic independence of maxima, and the
condition D′ is an anti-clustering condition. That is, given an observation at
some time n is large, the probability that any of the neighboring observations
are also large is quite low.

Examples exist which do not satisfy the D′ condition and which have
extremal clusters on high level values. There, the extremal index is defined as
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a measure of the cluster size; i. e. if (5) holds and

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = Gθ(x) for x ∈ supp(G),

then θ is called the extremal index. The parameter θ takes only values in
[0, 1], where θ = 1 reflects no extremal clusters.

2.2 Extremes of continuous–time processes

After these basic ideas concerning extremes of stationary discrete-time pro-
cesses, we continue with extremes of stationary continuous-time processes.
The extremal behavior of a continuous-time process is influenced by the
dependence of the process not only in large, but also in small time in-
tervals. The dependence structure of the process in small time intervals is
negated by investigating the extremal behavior of (Mk(h))k∈IN as in (3),
where maxk=1,...,nMk(h) = M(nh). The conditions D and D′ on the se-
quence (Mk(h))k∈IN can be reformulated as conditions on the continuous-
time process (Xt)t≥0 known as C and C′ conditions. Again, condition C is a
condition on the asymptotic independence of maxima and C′ on the cluster
behavior of (Mk(h))k∈IN. Similar to discrete-time models, an Extremal Types
Theorem also holds (cf. Leadbetter et al. (1983), Theorem 13.1.5). For Gaus-
sian processes a simple condition only on the covariance function exists such
that C and C′ are satisfied (cf. Leadbetter et al. (1983), Theorem 12.3.4).

As in discrete time, there are also continuous-time examples which do not
satisfy the C′ condition and have extremal clusters on high levels. In this
case, the extremal index function θ : (0,∞) → [0, 1] is defined as a measure
for clusters, where θ(h) is the extremal index of the sequence (Mk(h))k∈IN

for every h > 0. The function θ(·) is increasing. In our context we say that
a continuous-time process has extremal clusters, if limh↓0 θ(h) < 1, and oth-
erwise it has no clusters, i. e. θ(h) = 1 for every h > 0, by the monotony of
θ. The interpretation of an extremal cluster in continuous-time is the same
as in discrete-time, i.e., a continuous-time process clusters if given a large
observation at some time t, there is a positive probability that any of the
neighboring observations is also large.

2.3 Extensions

At the end we also want to describe the way in which it is in mathematical
terms possible to investigate the locations and heights of local maxima. One
possibility is by marked point processes (cf. Daley and Vere-Jones (2003),
Kallenberg (1997) and Resnick (1987)). In our case, a marked point process
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counts the number of elements in the set

{k :a−1
n (Mk(h) − bn)∈B0, a

−1
n (Xk+t1 − bn)∈B1, . . . , a

−1
n (Xk+tl − bn)∈Bl}

(6)

for any Borel sets Bj in supp(G), j = 0, . . . , l, fixed l ∈ IN and k+ t1, . . . , k+
tl ≥ 0, n ∈ IN. But there are slightly different ways to define them; see also
Leadbetter et al. (1983) and Rootzén (1978). In this way, we find the locations
of high level exceedances if Mk(h) is large, and we describe the behavior of
the process if it is on a high level by taking the limit as n → ∞ in (6). More
on this idea of marked point processes for Gaussian processes can be found
under the name Slepian model going back to Lindgren in a series of papers
(cf. the survey Lindgren (1984)), where a−1

n (Mk(h) − bn) is replaced by an
upcrossing; i. e. an upcrossing of level u is a point t0 for which Xt < u when
t ∈ (t0−ε, t0) andXt ≥ u when t ∈ (t0, t0+ε) for some ε > 0. These ideas have
been extended to non-Gaussian models. We refer to the very readable review
paper of Leadbetter and Spaniolo (2004) on this topic and on the intensity of
upcrossings on high levels. However, upcrossings have the disadvantage that
there may be infinitely many in a finite time interval, so that the marked
point processes converge to a degenerate limit as n → ∞.

3 The Generalized Ornstein-Uhlenbeck (GOU)–Model

Generalized Ornstein-Uhlenbeck processes are applied in various areas as,
e. g., in financial and insurance mathematics or mathematical physics; we
refer to Carmona et al. (1997, 2001) and Donati-Martin et al. (2001) for
an overview of applications. In the financial context, generalized Ornstein-
Uhlenbeck processes are used as stochastic volatility models (cf. Barndorff-
Nielsen and Shephard (2001a, 2001b), Barndorff-Nielsen et al. (2002)) and
as insurance risk models (cf. Paulsen (1993), Klüppelberg and Kostadinova
(2008), Kostadinova (2007)).

We assume throughout that (Xt)t≥0 is a measurable, stationary càdlàg
(right-continuous with left limits) version of the GOU-process as in (1) and
that P(sup0≤t≤1 |Xt| < ∞) = 1. For two functions, f and g, we write f(x) ∼
g(x) as x → ∞, if limx→∞ f(x)/g(x) = 1. Two distribution functions, F and
H , are called tail-equivalent if both have support unbounded to the right and
there exists some c > 0 such that limx→∞ F (x)/H(x) = c.
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3.1 The Ornstein–Uhlenbeck process

Let (Xt)t≥0 be a stationary GOU-process as in (1) with ξt = λt for some
λ > 0; then the GOU-process reduces to a classical Ornstein-Uhlenbeck (OU)
process

Xt = e−λt

∫ t

0

eλs dηs + e−λtX0, t ≥ 0. (7)

A stationary version of (7) exists if and only if
∫

{|x|>1} log(1 + |x|)Πη(dx) <
∞, where Πη is the Lévy measure of (ηt)t≥0. This result goes back to Wolfe
(1982); see also the monograph of Sato (1999). The OU-process is a popular
volatility model as introduced by Barndorff-Nielsen and Shephard (2001b);
see also Shephard and Andersen (2008) in this volume.

In this paper, we study only distribution functions F of η1 belonging to
the class of convolution equivalent distributions denoted by S(γ) for some
γ ≥ 0, i. e., functions which satisfy

(i) F (x) < 1 for every x ∈ IR.
(ii) limx→∞ F (x+ y)/F (x) = exp(−γy) for all y ∈ R locally uniformly.
(iii) limx→∞ F ∗ F (x)/F (x) exists and is finite.

The class S(0) is called the class of subexponential distributions. For details
and further references see Embrechts et al. (1997) and Watanabe (2008). An
important family in S(γ) are distribution functions with tail

F (x) ∼ x−βe−γx−cxp

, x → ∞,

where γ, c ≥ 0, p < 1, and if c = 0, β > 1 (cf. Klüppelberg (1989), Theo-
rem 2.1, or Pakes (2004), Lemma 2.3). There are certain subclasses of gener-
alized inverse Gaussian distributions, normal inverse Gaussian distributions,
generalized hyperbolic distributions and CGMY distributions in S(γ), which
are used for modelling financial time series (cf. Schoutens (2003)).

We investigate two different kinds of OU-models.

(M1) OU-model with η1 ∈ S(γ) ∩ MDA(Λ). Let (Xt)t≥0 be a sta-
tionary OU-process as in (7). We assume that the distribution of η1 is in
S(γ) ∩ MDA(Λ) for some γ ≥ 0.

This assumption is sufficient for the existence of a stationary version of an
OU-process. The following Proposition (cf. Proposition 2 and Proposition 3 of
Fasen et al. (2006)) describes the tail behavior of Xt. The proof of this result
is based on the asymptotic equivalence of the tail of the distribution func-
tion and the tail of its Lévy measure for every infinitely divisible convolution
equivalent distribution in S(γ), and the representation of the Lévy measure
of Xt (cf. Wolfe (1982), Theorem 2 and the monograph of Sato (1999)) as
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νX(dx) =
ν(x,∞)

x
dx for x > 0.

Proposition 1 Let (Xt)t≥0 be as in (M1). Then

P(Xt > x) = o(P(η1 > x)) as x → ∞

and Xt ∈ S(γ) ∩ MDA(Λ).

This result shows that the driving Lévy process and the OU-process are in
the same maximum domain of attraction, but they are not tail-equivalent.
The precise relationship is given in Fasen et al. (2006). In the next model
this will be different.

(M2) OU-model with η1 ∈ R−α. Let (Xt)t≥0 be a stationary OU-
process as in (7). We assume that η1 has a regularly varying right tail distri-
bution function, written as η1 ∈ R−α, i. e.,

P(η1 > x) = l(x)x−α , x ≥ 0, (8)

where l(·) is a slowly varying function; for more details on regular variation
see Section 4 of Davis and Miksoch (2008) in this volume.

Under these assumptions there exists again a stationary version of the OU-
process. All distribution functions with regularly varying tails are in S(0) and
belong to MDA(Φα), α > 0. In particular this means that the distribution
of η1 is also in MDA(Φα). The same techniques to compute the tail behavior
of Xt as in (M1), where the tail of the Lévy measure and the probability
measure are compared, are also used to derive the tail behavior of Xt in (M2)
(cf. Fasen et al. (2006), Proposition 3.2).

Proposition 2 Let (Xt)t≥0 be as in (M2). Then

P(Xt > x) ∼ (αλ)−1
P(η1 > x) as x → ∞.

This result shows that the tail of Xt is again regularly varying of index −α,
and hence, also Xt is in MDA(Φα).

3.2 The non–Ornstein–Uhlenbeck process

The last model we investigate in this paper is again a GOU-model as in (1),
but it excludes the classical OU process as in (7).

(M3) Non-OU model. Let (Xt)t≥0 be a stationary GOU-model as in (1).
Let (ηt)t≥0 be a subordinator, i. e., a Lévy process with nondecreasing sample
paths, and if (ξt)t≥0 is of finite variation, then we assume additionally that
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either the drift of (ξt)t≥0 is non-zero, or that there is no r > 0 such that the
Lévy measure of (ξt)t≥0 is concentrated on rZZ. Furthermore, we suppose

E(e−αξ1) = 1 for some α > 0. (9)

We assume, finally, the moment conditions

E|η1|qmax{1,d} < ∞ and E(e−max{1,d}pξ1) < ∞ (10)

for some d > α and p, q > 0 with 1/p+ 1/q = 1.

In the classical OU-model condition (9) is not satisfied. As in many stud-
ies like the GARCH-model, Lindner and Maller (2005) apply the results of
Kesten (1973) and Goldie (1991) for stochastic recurrence equations to de-
duce the stationarity and the heavy-tailed behavior of model (M3). In this
context the stochastic recurrence equation has the form

Xt+1 = At+1Xt +Bt+1 , t ≥ 0,

where

At = e−(ξt−ξt−1) and Bt = e−ξt

∫ t

t−1

eξs− dηs , t ≥ 0.

The result for the tail behavior as presented in Lindner and Maller (2005),
Theorem 4.5, is the following.

Proposition 3 Let (Xt)t≥0 be as in (M3). Then for some C > 0,

P(Xt > x) ∼ Cx−α as x → ∞.

Typical examples which satisfy (M3) are the volatility process of a continuous-
time GARCH(1, 1) (COGARCH(1, 1)) model introduced by Klüppelberg
et al. (2004, 2006) and the volatility process of Nelson’s diffusion limit of
a GARCH(1, 1)-model Nelson (1990).

Example 1 (COGARCH(1, 1) process) The right-continuous version of
the volatility process of the COGARCH(1, 1) process is defined as GOU-
process as in (1), where

ξt = ct−
∑

0<s≤t

log(1 + βec(ΔLs)2) and ηt = λt for t ≥ 0,

λ, c > 0, β ≥ 0 are constants and (Lt)t≥0 is a Lévy process (cf. Lindner
(2008) of this volume). The assumptions in (M3) are satisfied if and only if

−αc+
∫

((1 + βecy2)α − 1)ΠL(dy) and E|L1|2
˜d < ∞ for some ˜d > α,
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where ΠL denotes the Lévy measure of L.

Example 2 (Nelson’s diffusion model) The Nelson’s diffusion model,
originally defined as solution of the stochastic differential equation

dXt = λ(a−Xt) dt+ σXt dBt,

where a, λ, σ > 0 and (Bt)t≥0 is a Brownian motion, is by Theorem 52 on
p. 328 in Protter (2004) a GOU-process with

ξt = −σBt +
(

1
2
σ2 + λ

)

t and ηt = λat for t ≥ 0.

Since
E(e−uξ1) = exp

(

1
2
σ2u2 −

(

1
2
σ2 + λ

)

u

)

we have E(e−αξ1) = 1 for α = 1 + 2λ/σ2.

For more details on these examples we refer to Lindner (2008) in this
volume.

3.3 Comparison of the models

At first glance, the results presented in Propositions 1-3 are surprising. We
start with a comparison of models (M1) and (M3) driven by the same Lévy
process (ηt)t≥0. In model (M1), the tail of η1 is heavier than the tail of Xt.
In contrast, in model (M3) the existence of the qα moment of η1 by (10)
results in the tail of η1 being at most −qα regularly varying and hence,
lighter tailed than Xt. Taking now, in models (M1) and (M3), the same Lévy
process (ηt)t≥0, it ensures that Xt has a different tail behavior in each model.
In (M1) it is lighter tailed and in (M3) it is heavier tailed than η1.

Next we compare the OU-models (M1) and (M2), which have the same
Lévy process (ξt)t≥0. In model (M1) we find that Xt is lighter tailed than η1;
in (M2) we find the tail-equivalence of the distribution function of Xt and
η1.

We conclude that both Lévy processes (ξt)t≥0 and (ηt)t≥0 are contributing
factors to the tail behavior of Xt.

4 Tail Behavior of the Sample Maximum

It is the tail of the distribution of the sample maximum M(h) as in (2) for
some h > 0, rather than Xt itself, that determines the limit distribution
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of the normalized process M(T ) as T → ∞. The tail behavior of M(h) is
affected differently in models (M1)–(M3).

For (M1) the derivation of the asymptotic behavior of the tail of M(h) is
much more involved than for (M2) and given in Fasen (2008b). For model
(M2) the following asymptotic behavior holds:

P(M(h) > x)

= P

(

sup
0≤t≤h

{

e−λt

∫ t

0

eλs dηs + e−λtX0

}

> x

)

∼ P

(

∫ h

0

sup
0≤t≤h

{

1[0,t) e−λ(t−s)
}

dηs > x

)

+ P

(

sup
0≤t≤h

{

e−λt
}

X0 > x

)

= P(ηh > x) + P(X0 > x) as x → ∞.

The mathematical proof (see Fasen (2005), Proposition 3.2) is based on re-
sults of Rosiński and Samorodnitsky (1993) investigating the tail behavior
of random variables in S(0), which are functionals acting on infinitely divis-
ible processes. In model (M3) only the last summand of representation (7)
influences the tail behavior, since

E

∣

∣

∣

∣

sup
0≤t≤h

e−ξt

∫ t

0

eξs− dηs

∣

∣

∣

∣

d

< ∞

(cf. Fasen (2008a), Remark 2.3 (iii)). Hence, Klüppelberg et al. (2006),
Lemma 2, and Breiman (1965), Proposition 3, give as x → ∞,

P(M(h) > x) = P

(

sup
0≤t≤h

{

e−ξt

∫ t

0

eξs− dηs + e−ξtX0

}

> x

)

∼ P

(

sup
0≤t≤h

{

e−ξt
}

X0 > x

)

∼ E

(

sup
0≤s≤h

e−αξs

)

P(X0 > x).

We summarize the tail behavior of M(h) for the different models.

Proposition 4

(a) OU-model with η1 ∈ S(γ) ∩ MDA(Λ) as in (M1):

P(M(h) > x) ∼ h
E(eγX0)
E(eγη1)

P(η1 > x) as x → ∞.

(b) OU-model with η1 ∈ R−α as in (M2):

P(M(h) > x) ∼
(

h+
1
αλ

)

P(η1 > x) as x → ∞.
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(c) Non-OU model as in (M3):

P(M(h) > x) ∼ E

(

sup
0≤s≤h

e−αξs

)

P(Xt > x) as x → ∞.

In all three models M(h) is in the same maximum domain of attraction as
Xt.

5 Running sample Maxima and Extremal Index
Function

The classic problem arising from studying the extremal behavior of stochastic
processes is the asymptotic behavior of the sample maxima M(T ) as T → ∞.
One of the first researchers turning from the extremal behavior of Gaussian
processes to stable processes was Rootzén (1978). His results already include
the asymptotic behavior of sample maxima of OU-processes driven by stable
Lévy motions and their marked point process behavior, where the definition of
the marked point process is slightly different to Section 2.3. Generalizations of
his results to regularly varying processes including model (M2) are presented
in Fasen (2005). Model (M1) was investigated in Fasen et al. (2006), but more
details can be found in Fasen (2008b). A proof of the asymptotic behavior
in model (M3) is given in Fasen (2008a). We denote by x+ = max{0, x} for
x ∈ IR.

Proposition 5

(a) OU-model with η1 ∈ S(γ) ∩ MDA(Λ) as in (M1):
Let aT > 0, bT ∈ IR be sequences of constants such that

lim
T→∞

TP(M(1) > aTx+ bT ) = exp(−x) for x ∈ IR.

Then

lim
T→∞

P(a−1
T (M(T ) − bT ) ≤ x) = exp(−e−x) for x ∈ IR,

and

θ(h) = 1 for h > 0.

(b) OU-model with η1 ∈ R−α as in (M2):
Let aT > 0 be a sequence of constants such that

lim
T→∞

TP(M(1) > aTx) = x−α for x > 0.

Then
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lim
T→∞

P(a−1
T M(T ) ≤ x) = exp

(

− αλ

αλ+ 1
x−α

)

for x > 0,

and

θ(h) =
hαλ

hαλ+ 1
for h > 0.

(c) Non-OU model as in (M3):
Let aT > 0 be a sequence of constants such that

lim
T→∞

TP(M(1) > aTx) = x−α for x > 0.

Then

lim
T→∞

P(a−1
T M(T ) ≤ x) = exp

(

−
E
(

sup0≤s≤1 e−αξs − sups≥1 e−αξs
)+

E
(

sup0≤s≤1 e−αξs
) x−α

)

for x > 0, and

θ(h) = h
E
(

sup0≤s≤1 e−αξs − sups≥1 e−αξs
)+

E
(

sup0≤s≤h e−αξs

) for h > 0.

These results reflect the fact that model (M1) has no clusters of extremes
on high levels, whereas both regularly varying models (M2) and (M3) have
them. In particular, models (M2) and (M3) do not satisfy the anti-cluster
condition C′.

For the behavior of the marked point processes of model (M1) and (M2)
we refer to Fasen et al. (2006) and of (M3) to Fasen (2008a).

6 Conclusion

All continuous-time models (Xt)t≥0 presented in Section 3 are heavy-tailed
models, which model stationary continuous-time processes with jumps. The
OU-model in (M1) has no clusters of extremes. This property has been con-
firmed so far in all investigated OU-models in MDA(Λ), including Gaussian
OU-processes (cf. Albin (2008)). However, the regularly varying models (M2)
and (M3) have extremal clusters on high levels.

One generalization of the OU-process is the supOU process introduced
by Barndorff-Nielsen (2001), where the driving Lévy process is replaced by
an infinitely divisible random measure. Modelling long range dependence, in
the sense that the autocovariance function decreases very slowly, is a special
feature of this class of processes. All models presented in this paper have
exponentially decreasing covariance functions and do not allow long range



Extremes of Continuous–Time Processes 665

dependence. SupOU processes have an extremal behavior similar to that of
OU-models, see Fasen and Klüppelberg (2007). This means that only regu-
larly varying supOU processes have extremal clusters.

Another extension of OU-processes are continuous-time ARMA (CARMA)
processes, as presented in Brockwell (2008) of this volume. In such models
the exponentially decreasing kernel function of an OU-process is replaced by
a more general kernel function. The results of Fasen (2008b, 2005) show that
a CARMA process and an OU-process, driven by the same Lévy process,
have similar extremal behavior. The regularly varying CARMA processes
show extremal clusters. In the case in which the driving Lévy process of the
CARMA process has marginals in S(γ) ∩ MDA(Λ), and the kernel functions
have only one maximum, there are again no extremal clusters. If they have
more than one maximum, then they may also model extremal clusters.
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Rosiński, J. and Samorodnitsky, G. (1993): Distributions of subadditive functionals of

sample paths of infinitely divisible processes. Ann. Probab. 21, 996–1014.
Sato, K. (1999): Lévy Processes and Infinitely Divisible Distributions. Cambridge Univer-

sity Press, Cambridge.
Schoutens, W. (2003): Lévy Processes in Finance. Wiley, Chichester.
Shephard, N. and Andersen, T.G. (2008): Stochastic volatility: origins and overview. In:

Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Fi-
nancial Time Series, 233–254. Springer, New York.

Slepian, D. (1961): First passage time for particular Gaussian processes. Ann. Math . Stat.
32, 610–612.

Slepian, D. (1962): The one-sided barrier problem for Gaussian noise. Bell System Techn.
J. 41, 463–501.

Volkonskii, V. A. and Rozanov, Y. A. (1959): Some limit theorems for random functions,
I. Theory Probab. Appl. 4, 178–197.

Volkonskii, V. A. and Rozanov, Y. A. (1961): Some limit theorems for random functions,
II. Theory Probab. Appl. 6, 186–198.

Watanabe, T. (2008): Convolution equivalence and distributions of random sums. Probab.
Theory Relat. Fields to appear.

Wolfe, S. J. (1982): On a continuous analogue of the stochastic difference equation xn =
ρxn−1 + bn. Stoch. Proc. Appl. 12, 301–312.



Cointegration: Overview and
Development

Søren Johansen

Abstract This article presents a survey of the analysis of cointegration using
the vector autoregressive model. After a few illustrative economic examples,
the three model based approaches to the analysis of cointegration are dis-
cussed. The vector autoregressive model is defined and the moving average
representation of the solution, the Granger representation, is given. Next the
interpretation of the model and its parameters and likelihood based infer-
ence follows using reduced rank regression. The asymptotic analysis includes
the distribution of the Gaussian maximum likelihood estimators, the rank
test, and test for hypotheses on the cointegrating vectors. Finally, some ap-
plications and extensions of the basic model are mentioned and the survey
concludes with some open problems.

1 Introduction

Granger (1983) coined the term cointegration as a formulation of the phe-
nomenon that nonstationary processes can have linear combinations that are
stationary. It was his investigations of the relation between cointegration and
error correction that brought modeling of vector autoregressions with unit
roots and cointegration to the center of attention in applied and theoretical
econometrics; see Engle and Granger (1987).

During the last 20 years, many have contributed to the development of
theory and applications of cointegration. The account given here focuses on
theory, more precisely on likelihood based theory for the vector autoregressive
model and its extensions; see Johansen (1996). By building a statistical model
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as a framework for inference, one has to make explicit assumptions about the
model used and hence has a possibility of checking the assumptions made.

1.1 Two examples of cointegration

As a first simple economic example of the main idea in cointegration, consider
the exchange rate series, et, between Australian and US dollars and four time
series paut , pust , i

au
t , iust : log consumer price and five year treasury bond rates

in Australia and US. If the quarterly series from 1972:1 to 1991:1 are plotted,
they clearly show nonstationary behavior, and we discuss in the following
a method of modeling such nonstationary time series. As a simple example
of an economic hypothesis consider Purchasing Power Parity (PPP), which
asserts that et = pust − paut . This identity is not found in the data, so a more
realistic formulation is that pppt = et−pust +paut is a stationary process, pos-
sibly with mean zero. Thus we formulate the economic relation, as expressed
by PPP, as a stationary relation among nonstationary processes. The pur-
pose of modeling could be to test the null hypothesis that pppt is stationary,
or in other words that (et, pust , p

au
t iaut , iust ) cointegrate with (1,−1, 1, 0, 0)′

as a cointegration vector. If that is not found, an outcome could be to sug-
gest other cointegration relations, which have a better chance of capturing
co-movements of the five processes in the information set. For a discussion
of the finding that real exchange rate, pppt, and the spread, iaut − iust , are
cointegrated I(1) processes so that a linear combination pppt − c (iaut − iust )
is stationary, see Juselius and MacDonald (2004).

Another example is one of the first applications of the idea of cointegration
in finance; see Campell and Shiller (1987). They considered a present value
model for the price of a stock Yt at the end of period t and the dividend
yt paid during period t. They assume that there is a vector autoregressive
model describing the data which contain Yt and yt and may contain values
of other financial assets. The expectations hypothesis is expressed as

Yt = θ(1 − δ)
∞
∑

i=0

δjEtyt+i + c,

where c and θ are positive constants and the discount factor δ is between 0
and 1. The notation Etyt+i means model based conditional expectations of
yt+i given information in the data at the end of period t. By subtracting θyt,
the model is written as

Yt − θyt = θ(1 − δ)
∞
∑

i=0

δjEt(yt+i − yt) + c.
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It is seen that when the processes yt and Yt are nonstationary and their dif-
ferences stationary, the present value model implies that the right hand side
and hence the left hand side are stationary. Thus there is cointegration be-
tween Yt and yt with a cointegration vector β′ = (1,−θ, 0, . . . , 0); see section
6.1 for a discussion of rational expectations and cointegration.

There are at present three different ways of modeling the cointegration
idea in a parametric statistical framework. To illustrate the ideas they are
formulated in the simplest possible case, leaving out deterministic terms.

1.2 Three ways of modeling cointegration

1.2.1 The regression formulation

The multivariate process xt = (x′1t, x′2t)′ of dimension p = p1 + p2 is given by
the regression equations

x1t = γ′x2t + u1t,

Δx2t = u2t,

where ut = (u′1t, u
′
2t)

′ is a linear invertible process defined by i.i.d. errors εt
with mean zero and finite variance. The assumptions behind this model imply
that x2t is nonstationary and not cointegrated, and hence the cointegration
rank, p1, is known so that models for different ranks are not nested. The
first estimation method used in this model is least squares regression, Engle
and Granger (1987), which is shown to give a superconsistent estimator by
Stock (1987). This estimation method gives rise to residual based tests for
cointegration. It was shown by Phillips and Hansen (1990) that a modification
of the regression estimator, involving a correction using the long-run variance
of the process ut, would give useful methods for inference for coefficients of
cointegration relations; see also Phillips (1991).

1.2.2 The autoregressive formulation

The autoregressive formulation is given by

Δxt = αβ′xt−1 + εt,

where εt are i.i.d. errors with mean zero and finite variance, and α and β
are p× r matrices of rank r. Under the condition that Δxt is stationary, the
solution is

xt = C

t
∑

i=1

εi +
∞
∑

i=0

Ciεt−i +A, (1)



674 S. Johansen

where C = β⊥(α′
⊥β⊥)−1α′

⊥ and β′A = 0. Here β⊥ is a full rank p × (p −
r) matrix so that β′β⊥ = 0. This formulation allows for modeling of both
the long-run relations, β′x, and the adjustment, or feedback α, towards the
attractor set {x : β′x = 0} defined by the long-run relations. Models for
different cointegration ranks are nested and the rank can be analyzed by
likelihood ratio tests. Thus the model allows for a more detailed description of
the data than the regression model. Methods usually applied for the analysis
are derived from the Gaussian likelihood function, which are discussed here;
see also Johansen (1988, 1996), and Ahn and Reinsel (1990).

1.2.3 The unobserved component formulation

Let xt be given by

xt = ξη′
t

∑

i=1

εi + vt,

where vt is a linear process, typically independent of the process εt, which is
i.i.d. with mean zero and finite variance.

In this formulation too, hypotheses of different ranks are nested. The pa-
rameters are linked to the autoregressive formulation by ξ = β⊥ and η = α⊥,
even though the linear process in (1) depends on the random walk part, so
the unobserved components model and the autoregressive model are not the
same. Thus both adjustment and cointegration can be discussed in this for-
mulation, and hypotheses on the rank can be tested. Rather than testing for
unit roots one tests for stationarity, which is sometimes a more natural formu-
lation. Estimation is usually performed by the Kalman filter, and asymptotic
theory of the rank tests has been worked out by Nyblom and Harvey (2000).

1.3 The model analyzed in this article

In this article cointegration is modelled by the vector autoregressive model
for the p−dimensional process xt

Δxt = α (β′xt−1 + ΥDt) +
k−1
∑

i=1

ΓiΔxt−i + Φdt + εt, (2)

where εt are i.i.d. with mean zero and variance Ω, and Dt and dt are deter-
ministic terms, like constant, trend, seasonal- or intervention dummies. The
matrices α and β are p × r where 0 ≤ r ≤ p. The parametrization of the
deterministic term αΥDt + Φdt, is discussed in section 2.2. Under suitable
conditions, see again section 2.2, the processes β′xt and Δxt are stationary
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around their means, and (2) can be formulated as

Δxt − E(Δxt) = α (β′xt−1 − E(β′xt−1)) +
k−1
∑

i=1

Γi (Δxt−i − E(Δxt−i)) + εt.

This shows how the change of the process reacts to feedback from disequi-
librium errors β′xt−1 − E(β′xt−1) and Δxt−i − E(Δxt−i), via the short-run
adjustment coefficients α and Γi. The equation β′xt − E(β′xt) = 0 defines
the long-run relations between the processes.

There are many surveys of the theory of cointegration; see for instance
Watson (1994) or Johansen (2006a). The topic has become part of most
textbooks in econometrics; see among others Banerjee et al. (1993), Hamilton
(1994), Hendry (1995) and Lütkepohl (2006). For a general account of the
methodology of the cointegrated vector autoregressive model, see Juselius
(2006).

2 Integration, Cointegration and Granger’s
Representation Theorem

The basic definitions of integration and cointegration are given together with
a moving average representation of the solution of the error correction model
(2). This solution reveals the stochastic properties of the solution. Finally the
interpretation of cointegration relations is discussed.

2.1 Definition of integration and cointegration

The vector autoregressive model for the p−dimensional process xt given by
(2) is a dynamic stochastic model for all components of xt. By recursive sub-
stitution, the equations define xt as function of initial values, x0, . . . , x−k+1,
errors ε1, . . . , εt, deterministic terms, and parameters. Properties of the so-
lution of these equations are studied through the characteristic polynomial

Ψ(z) = (1 − z)Ip −Πz − (1 − z)
k−1
∑

i=1

Γiz
i (3)

with determinant |Ψ(z)|. The function C(z) = Ψ(z)−1 has poles at the roots of
the polynomial |Ψ(z)| and the position of the poles determines the stochastic
properties of the solution of (2). First a well known result is mentioned; see
Anderson (1984).
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Theorem 1 If |Ψ(z)| = 0 implies that |z| > 1, then α and β have full rank p,
and the coefficients of Ψ−1(z) =

∑∞
i=0 Ciz

i are exponentially decreasing. Let
μt =

∑∞
i=0 Ci(αΥDt−i +Φdt−i). Then the distribution of the initial values of

xt can be chosen so that xt − μt is stationary. Moreover, xt has the moving
average representation

xt =
∞
∑

i=0

Ciεt−i + μt. (4)

Thus the exponentially decreasing coefficients are found by simply invert-
ing the characteristic polynomial if the roots are outside the unit disk. If
this condition fails, the equations generate nonstationary processes of var-
ious types, and the coefficients are not exponentially decreasing. Still, the
coefficients of C(z) determine the stochastic properties of the solution of (2),
as is discussed in section 2.2. A process of the form (4) is a linear process and
forms the basis for the definitions of integration and cointegration.

Definition 1 The process xt is integrated of order 1, I(1), if Δxt −E(Δxt)
is a linear process, with C(1) =

∑∞
i=0 Ci �= 0. If there is a vector β �= 0 so that

β′xt is stationary around its mean, then xt is cointegrated with cointegration
vector β. The number of linearly independent cointegration vectors is the
cointegration rank.

Example 1 A bivariate process is given for t = 1, . . . , T by the equations

Δx1t = α1(x1t−1 − x2t−1) + ε1t,

Δx2t = α2(x1t−1 − x2t−1) + ε2t.

Subtracting the equations, we find that the process yt = x1t − x2t is autore-
gressive and stationary if |1+α1−α2| < 1 and the initial value is given by its
invariant distribution. Similarly we find that St = α2x1t −α1x2t is a random
walk, so that

(

x1t

x2t

)

=
1

α2 − α1

(

1
1

)

St −
1

α2 − α1

(

α1

α2

)

yt.

This shows, that when |1 + α1 − α2| < 1, xt is I(1), x1t − x2t is stationary,
and α2x1t −α1x2t is a random walk, so that xt is a cointegrated I(1) process
with cointegration vector β′ = (1,−1). We call St a common stochastic trend
and α the adjustment coefficients.

Example 1 presents a special case of the Granger Representation Theorem,
which gives the moving average representation of the solution of the error
correction model.
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2.2 The Granger Representation Theorem

If the characteristic polynomial Ψ(z) defined in (3) has a unit root, then
Ψ(1) = −Π is singular, of rank r < p, and the process is not stationary. Next
the I(1) condition is formulated. It guarantees that the solution of (2) is a
cointegrated I(1) process. Let Γ = Ip −

∑k−1
i=1 Γi and denote for a p × m

matrix a by a⊥ a p× (p−m) matrix of rank p−m.

Condition 1 (The I(1) condition)
The I(1)condition is satisfied if |Ψ(z)| = 0 implies that |z| > 1 or z = 1 and
that

|α′
⊥Γβ⊥| �= 0. (5)

Condition (5) is needed to avoid solutions that are integrated of order 2
or higher; see section 6. For a process with one lag Γ = Ip and

β′xt = (Ir + β′α)β′xt−1 + β′εt.

In this case the I(1) condition is equivalent to the condition that the absolute
value of the eigenvalues of Ir + β′α are bounded by one, and in example 1
the condition is |1 + α1 − α2| < 1.

Theorem 2 (The Granger Representation Theorem)
Let Ψ(z) be defined by (3). If Ψ(z) has unit roots and the I(1) condition is
satisfied, then

(1 − z)Ψ(z)−1 = C(z) =
∞
∑

i=0

Ciz
i = C + (1 − z)C∗(z) (6)

converges for |z| ≤ 1 + δ for some δ > 0 and

C = β⊥(α′
⊥Γβ⊥)−1α′

⊥. (7)

The solution xt of equation (2) has the moving average representation

xt = C

t
∑

i=1

(εi + Φdi) +
∞
∑

i=0

C∗
i (εt−i + Φdt−i + αΥDt−i) +A, (8)

where A depends on initial values, so that β′A = 0.

This result implies that Δxt and β′xt are stationary, so that xt is a cointe-
grated I(1) process with r cointegration vectors β and p−r common stochas-
tic trends α′

⊥
∑t

i=1 εi. The interpretation of this is that among p nonstation-
ary processes the model (2) generates r stationary or stable relations and
p− r stochastic trends or driving trends, which create the nonstationarity.

The result (6) rests on the observation that the singularity of Ψ(z) for
z = 1 implies that Ψ(z)−1 has a pole at z = 1. Condition (5) is a condition
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for this pole to be of order one. This is not proved here, see Johansen (2006b),
but it is shown how this result can be applied to prove the representation
result (8), which shows how coefficients of the inverse polynomial determine
the properties of xt.

We multiply Ψ(L)xt = Φdt + αΥDt + εt by

(1 − L)Ψ(L)−1 = C(L) = C + (1 − L)C∗(L)

and find

Δxt = (1 − L)Ψ(L)−1Ψ(L)xt = (C +ΔC∗(L))(εt + αΥDt + Φdt).

Now define the stationary process zt = C∗(L)εt and the deterministic func-
tion μt = C∗(L)(αΥDt + Φdt), and note that CαΥ = 0, so that

Δxt = C(εt + Φdt) +Δ(zt + μt),

which cumulates to

xt = C
t

∑

i=1

(εi + Φdi) + zt + μt + A,

where A = x0 − z0 − μ0. The distribution of x0 is chosen so that β′x0 =
β′(z0 + μ0), and hence β′A = 0. Then xt is I(1) and β′xt = β′zt + β′μt is
stationary around its mean E(β′xt) = β′μt. Finally, Δxt is stationary around
its mean E(Δxt) = CΦdt +Δμt.

One of the useful applications of the representation (8) is to investigate
the role of the deterministic terms. Note that dt cumulates in the process
with a coefficient CΦ, but that Dt does not, because CαΥ = 0. A leading
special case is the model with Dt = t, and dt = 1, which ensures that any
linear combination of the components of xt is allowed to have a linear trend.
Note that if Dt = t is not allowed in the model, that is Υ = 0, then xt has a
trend given by CΦt, but the cointegration relation β′xt has no trend because
β′CΦ = 0.

2.3 Interpretation of cointegrating coefficients

Consider first a usual regression

x1t = γ2x2t + γ3x3t + εt, (9)

with i.i.d. errors εt which are independent of the processes x2t and x3t. The
coefficient γ2 is interpreted via a counterfactual experiment, that is, the co-
efficient γ2 is the effect on x1t of a change in x2t, keeping x3t constant.
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The cointegration relations are long-run relations. This means that they
have been there all the time, and they influence the movement of the process
xt via the adjustment coefficients α. The more the process β′xt deviates from
Eβ′xt, the more the adjustment coefficients pull the process back towards its
mean. Another interpretation is that they are relations that would hold in
the limit, provided all shocks in the model are set to zero after a time t.

It is therefore natural that interpretation of cointegration coefficients in-
volves the notion of a long-run value. From the Granger Representation The-
orem 8 applied to the model with no deterministic terms, it can be proved,
see Johansen (2005), that

x∞|t = lim
h→∞

E(xt+h|xt, . . . , xt−k+1) = C(xt −
k−1
∑

i=1

Γixt−i) = C
t

∑

i=1

εi + x∞|0.

This limiting conditional expectation is a long-run value of the process. Be-
cause β′x∞|t = 0, the point x∞|t is in the attractor set {x : β′x = 0} =
sp{β⊥}, see Figure 1. Thus if the current value, xt, is shifted to xt + h, then

�

�

x1t

x2t

�
�

�
�

�
�

�
�

�
�

�
�

�
�

sp(β⊥)�����
−αxt �

x∞|t
�

����� α

·························
β′xt

·············

�
�

���

�
�

��	
α′
⊥

∑t
i=1 εi

Fig. 1 In the model Δxt = αβ′xt−1 + εt, the point xt = (x1t, x2t) is moved towards the
long-run value x∞|t on the attractor set {x|β′x = 0} = sp(β⊥} by the forces −α or +α,

and pushed along the attractor set by the common trends α′
⊥

∑t
i=1 εi.

the long-run value is shifted from x∞|t to x∞|t + Ch, which is still a point
in the attractor set because β′x∞|t + β′Ch = 0. If a given long-run change
k = Cξ in x∞|t is needed, Γk is added to the current value xt. This gives the
long-run value

x∞|t + CΓk = x∞|t + CΓCξ = x∞|t + Cξ = x∞|t + k,
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where the identity CΓC = C is applied; see (7). This idea is now used to give
an interpretation of a cointegration coefficient in the simple case of r = 1,
p = 3, and where the relation is normalized on x1

x1 = γ2x2 + γ3x3, (10)

so that β′ = (1,−γ2,−γ3). In order to give the usual interpretation as a
regression coefficient (or elasticity if the measurements are in logs), a long-
run change with the properties that x2 changes by one, x1 changes by γ2,
and x3 is kept fixed, is needed. Thus the long-run change is k = (γ2, 1, 0),
which satisfies β′k = 0, so that k = Cξ for some ξ, and this can be achieved
by moving the current value from xt to xt +CΓk. In this sense, a coefficient
in an identified cointegration relation can be interpreted as the effect of a
long-run change to one variable on another, keeping all others fixed in the
long run. More details can be found in Johansen (2005) and Proietti (1997).

3 Interpretation of the I(1) Model for Cointegration

In this section model H(r) defined by (2) is discussed. The parameters in
H(r) are

(α, β, Γ1, . . . , Γk−1, Υ, Φ, Ω) .

All parameters vary freely and α and β are p×r matrices. The normalization
and identification of α and β are discussed, and some examples of hypotheses
on α and β, which are of economic interest are given.

3.1 The models H(r)

The models H(r) are nested

H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(p).

HereH(p) is the unrestricted vector autoregressive model, so that α and β are
unrestricted p × p matrices. The model H(0) corresponds to the restriction
α = β = 0, which is the vector autoregressive model for the process in
differences. Note that in order to have nested models, we allow in H(r) for
all processes with rank less than or equal to r.

The formulation allows us to derive likelihood ratio tests for the hypothesis
H(r) in the unrestricted model H(p). These tests can be applied to check if
one’s prior knowledge of the number of cointegration relations is consistent
with the data, or alternatively to construct an estimator of the cointegration
rank.
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Note that when the cointegration rank is r, the number of common trends
is p − r. Thus if one can interpret the presence of r cointegration relations
one should also interpret the presence of p− r independent stochastic trends
or p− r driving forces in the data.

3.2 Normalization of parameters of the I(1) model

The parameters α and β in (2) are not uniquely identified, because given any
choice of α and β and any nonsingular r × r matrix ξ, the choice αξ and
βξ′−1 gives the same matrix Π = αβ′ = αξ(βξ′−1)′.

If xt = (x′1t, x′2t)′ and β = (β′
1, β

′
2)′, with |β1| �= 0, we can solve the

cointegration relations as
x1t = γ′x2t + ut,

where ut is stationary and γ′ = −(β′
1)

−1β′
2. This represents cointegration as

a regression equation. A normalization of this type is sometimes convenient
for estimation and calculation of ‘standard errors’ of the estimate, see section
5.2, but many hypotheses are invariant with respect to a normalization of β,
and thus, in a discussion of a test of such a hypothesis, β does not require
normalization. As seen in subsection 3.3, many stable economic relations
are expressed in terms of identifying restrictions, for which the regression
formulation is not convenient.

From the Granger Representation Theorem we see that the p− r common
trends are the nonstationary random walks in C

∑t
i=1 εi, that is, can be

chosen as α′
⊥
∑t

i=1 εi. For any full rank (p−r)×(p−r) matrix η, ηα′
⊥
∑t

i=1 εi
could also be used as common trends because

C

t
∑

i=1

εi = β⊥(α′
⊥Γβ⊥)−1(α′

⊥

t
∑

i=1

εi) = β⊥(ηα′
⊥Γβ⊥)−1(ηα′

⊥

t
∑

i=1

εi).

Thus identifying restrictions on the coefficients in α⊥ are needed to find their
estimates and standard errors.

In the cointegration model there are therefore three different identification
problems: one for the cointegration relations, one for the common trends, and
finally one for the short run dynamics, if the model has simultaneous effects.

3.3 Hypotheses on long-run coefficients

The purpose of modeling economic data is to test hypotheses on the coeffi-
cients, thereby investigating whether the data supports an economic hypoth-
esis or rejects it. In the example with the series xt = (paut , pust , i

au
t , iust , et)′



682 S. Johansen

the hypothesis of PPP is formulated as the hypothesis that (1,−1, 1, 0, 0)
is a cointegration relation. Similarly, the hypothesis of price homogeneity is
formulated as

R′β = (1, 1, 0, 0, 0)β = 0,

or equivalently as β = R⊥ϕ = Hϕ, for some vector ϕ and H = R⊥. The hy-
pothesis that the interest rates are stationary is formulated as the hypothesis
that the two vectors (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) are cointegration vectors.
A general formulation of restrictions on each of r cointegration vectors, in-
cluding a normalization, is

β = (h1 +H1ϕ1, . . . , hr +Hrϕr) . (11)

Here hi is p× 1 and orthogonal to Hi which is p× (si − 1) of rank si − 1, so
that p− si restrictions are imposed on the vector βi. Let Ri = (hi, Hi)⊥ then
βi satisfies the restrictions R′

iβi = 0, and the normalization (h′ihi)
−1h′iβi = 1.

Wald’s identification criterion is that βi is identified if

R′
i(β1, . . . , βr) = r − 1.

3.4 Hypotheses on adjustment coefficients

The coefficients in αmeasure how the process adjusts to disequilibrium errors.
The hypothesis of weak exogeneity is the hypothesis that some rows of α are
zero; see Engle et al. (1983). The process xt is decomposed as xt = (x′1t, x

′
2t)

′

and the matrices are decomposed similarly so that the model equations with-
out deterministic terms become

Δx1t = α1β
′xt−1 +

∑k−1
i=1 Γ1iΔxt−i + ε1t,

Δx2t = α2β
′xt−1 +

∑k−1
i=1 Γ2iΔxt−i + ε2t.

If α2 = 0, there is no levels feedback from β′xt−1 to Δx2t, and if the errors
are Gaussian, x2t is weakly exogenous for α1, β. The conditional model for
Δx1t given Δx2t and the past is

Δx1t = ωΔx2t + α1β
′xt−1 +

k−1
∑

i=1

(Γ1i − ωΓ2i)Δxt−i + ε1t − ωε2t, (12)

where ω = Ω12Ω
−1
22 . Thus full maximum likelihood inference on α1 and β can

be conducted in the conditional model (12).
An interpretation of the hypothesis of weak exogeneity is the following:

if α2 = 0 then α⊥ contains the columns of (0, Ip−r)′, so that
∑t

i=1 ε2i are
common trends. Thus the errors in the equations for x2t cumulate in the
system and give rise to nonstationarity.
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4 Likelihood Analysis of the I(1) Model

This section contains first some comments on what aspects are important
for checking for model misspecification, and then describes the calculation of
reduced rank regression, introduced by Anderson (1951). Then reduced rank
regression and modifications thereof are applied to estimate the parameters
of the I(1) model (2) and various submodels.

4.1 Checking the specifications of the model

In order to apply Gaussian maximum likelihood methods, the assumptions
behind the model have to be checked carefully, so that one is convinced that
the statistical model contains the density that describes the data. If this is
not the case, the asymptotic results available from the Gaussian analysis need
not hold. Methods for checking vector autoregressive models include choice
of lag length, test for normality of residuals, tests for autocorrelation, and
test for heteroscedasticity in errors. Asymptotic results for estimators and
tests derived from the Gaussian likelihood turn out to be robust to some
types of deviations from the above assumptions. Thus the limit results hold
for i.i.d. errors with finite variance, and not just for Gaussian errors, but
autocorrelated errors violate the asymptotic results, so autocorrelation has
to be checked carefully.

Finally and perhaps most importantly, the assumption of constant pa-
rameters is crucial. In practice it is important to model outliers by suitable
dummies, but it is also important to model breaks in the dynamics, breaks in
the cointegration properties, breaks in the stationarity properties, etc. The
papers by Seo (1998) and Hansen and Johansen (1999) contain some results
on recursive tests in the cointegration model.

4.2 Reduced rank regression

Let ut, wt, and zt be three multivariate time series of dimensions pu, pw,
and pz respectively. The algorithm of reduced rank regression, see Anderson
(1951), can be described in the regression model

ut = αβ′wt + Γzt + εt, (13)

where εt are the errors with variance Ω. The product moments are

Suw = T−1
T
∑

t=1

utw
′
t,
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and the residuals, which we get by regressing ut on wt, are

(ut|wt) = ut − SuwS
−1
wwwt,

so that the conditional product moments are

Suw.z = Suw − SuzS
−1
zz Szw = T−1

T
∑

t=1

(ut|zt)(wt|zv)′,

Suu.w,z = T−1
T
∑

t=1

(ut|wt, zt)(ut|wt, zt)′ = Suu.w − Suz.wS
−1
zz.wSzu.w.

Let Π = αβ′. The unrestricted regression estimates are

̂Π = Suw.zS
−1
ww.z, ̂Γ = Suz.wS

−1
zz.w, and ̂Ω = Suu.w,z.

Reduced rank regression of ut on wt corrected for zt gives estimates of α, β
and Ω in (13). First the eigenvalue problem

|λSww.z − Swu.zS
−1
uu.zSuw.z| = 0 (14)

is solved. The eigenvalues are ordered ̂λ1 ≥ · · · ≥ ̂λpw , with corresponding
eigenvectors v̂1, . . . , v̂pw . The reduced rank estimates of β, α, Γ, and Ω are
given by

̂β = (v̂1, . . . , v̂r),
α̂ = Suw.z ̂β,
̂Γ = Suz.̂β′wS

−1

zz.̂β′w
,

̂Ω = Suu.z − Suw.z ̂β ̂β
′Swu.z,

| ̂Ω| = |Suu.z|
∏r

i=1(1 − ̂λi).

(15)

The eigenvectors are orthogonal because v̂′iSww.zv̂j = 0 for i �= j, and are
normalized by v̂′iSww.zv̂i = 1. The calculations described here are called a
reduced rank regression and are denoted by RRR(ut, wt|zt).

4.3 Maximum likelihood estimation in the I(1) model
and derivation of the rank test

Consider the I(1) model given by equation (2). Note that the multiplier αΥ
of Dt is restricted to be proportional to α so that, by the Granger Repre-
sentation Theorem, Dt does not cumulate in the process. It is assumed for
the derivations of maximum likelihood estimators and likelihood ratio tests
that εt is i.i.d. Np(0, Ω), but for asymptotic results the Gaussian assumption
is not needed. The Gaussian likelihood function shows that the maximum
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likelihood estimator can be found by the reduced rank regression

RRR(Δxt, (x′t−1, D
′
t)

′|Δxt−1, . . . , Δxt−k+1, dt).

It is convenient to introduce the notation for residuals

R0t = (Δxt|Δxt−1, . . . , Δxt−k+1, dt)
R1t = ((x′t−1, D

′
t)

′|Δxt−1, . . . , Δxt−k+1, dt)

and product moments

Sij = T−1
T
∑

t=1

RitR
′
jt.

The estimates are given by (15), and the maximized likelihood is, apart from
a constant, given by

L−2/T
max = | ̂Ω| = |S00|

r
∏

i=1

(1 − ̂λi). (16)

Note that all the models H(r), r = 0, . . . , p, have been solved by the same
eigenvalue calculation. The maximized likelihood is given for each r by (16)
and by dividing the maximized likelihood function for r with the correspond-
ing expression for r = p, the likelihood ratio test for cointegration rank is
obtained:

−2logLR(H(r)|H(p)) = −T
p

∑

i=r+1

log(1 − ̂λi). (17)

This statistic was considered by Bartlett (1948) for testing canonical corre-
lations. The asymptotic distribution of this test statistic and the estimators
are discussed in section 5.

The model obtained under the hypothesis β = Hϕ, is analyzed by

RRR(Δxt, (H ′x′t−1, D
′
t)

′|Δxt−1, . . . , Δxt−k+1, dt),

and a number of hypotheses of this type for β and α can be solved in the
same way, but the more general hypothesis

β = (h1 +H1ϕ1, . . . , hr + Hrϕr) ,

cannot be solved by reduced rank regression. With α = (α1, . . . , αr) and
Υ = (Υ ′

1, . . . , Υ
′
r)

′, equation (2) becomes

Δxt =
r

∑

j=1

αj((hj +Hjϕj)′xt−1 + ΥjDt) +
k−1
∑

i=1

ΓiΔxt−i + Φdt + εt.
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This is reduced rank regression, but there are r reduced rank matrices
αj(1, ϕ′

j , Υj) of rank one. The solution is not given by an eigenvalue problem,
but there is a simple modification of the reduced rank algorithm, which is
easy to implement and is quite often found to converge. The algorithm has
the property that the likelihood function is maximized in each step. The algo-
rithm switches between reduced rank regressions ofΔxt on (x′t−1(Hi, hi), D′

t)
′

corrected for

(((hj +Hjϕj)′xt−1 + ΥjDt)j �=i, Δxt−1, . . . , Δxt−k+1, dt).

This result can immediately be applied to calculate likelihood ratio tests for
many different restrictions on the coefficients of the cointegration relations.
Thus, in particular, this can give a test of over-identifying restrictions.

5 Asymptotic Analysis

A discussion of the most important aspects of the asymptotic analysis of
the cointegration model is given. This includes the result that the rank test
requires a family of Dickey-Fuller type distributions, depending on the speci-
fication of the deterministic terms of the model. The asymptotic distribution
of ̂β is mixed Gaussian and that of the remaining parameters is Gaussian, so
that tests for hypotheses on the parameters are asymptotically distributed
as χ2. All results are taken from Johansen (1996).

5.1 Asymptotic distribution of the rank test

The asymptotic distribution of the rank test is given in case the process has
a linear trend.

Theorem 3 Let εt be i.i.d. (0, Ω) and assume that Dt = t and dt = 1,
in model (2). Under the assumptions that the cointegration rank is r, the
asymptotic distribution of the likelihood ratio test statistic (17) is

−2logLR(H(r)|H(p)) d→ tr{
∫ 1

0

(dB)F ′(
∫ 1

0

FF ′du)−1

∫ 1

0

F (dB)′}, (18)

where F is defined by

F (u) =
(

B(u)
u

∣

∣

∣

∣

1
)

,

and B(u) is the p− r dimensional standard Brownian motion.
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The limit distribution is tabulated by simulating the distribution of the
test of no cointegration in the model for a p− r dimensional model with one
lag and the same deterministic terms. Note that the limit distribution does
not depend on the parameters (Γ1, . . . , Γk−1, Υ, Φ,Ω), but only on p − r,
the number of common trends, and the presence of the linear trend. For
finite samples, however, the dependence on the parameters can be quite pro-
nounced. A small sample correction for the test has been given in Johansen
(2002), and the bootstrap has been investigated by Swensen (2006).

In the model without deterministics the same result holds, but with F (u) =
B(u). A special case of this, for p = 1, is the Dickey-Fuller test and the
distributions (18) are called the Dickey–Fuller distributions with p−r degrees
of freedom; see Dickey and Fuller (1981).

The asymptotic distribution of the test statistic for rank depends on the
deterministic terms in the model. It follows from the Granger Representa-
tion Theorem that the deterministic term dt is cumulated to CΦ

∑t
i=1 di. In

deriving the asymptotics, xt is normalized by T−1/2. If
∑t

i=1 di is bounded,
this normalization implies that the limit distribution does not depend on
the precise form of

∑t
i=1 di. Thus, if dt is a centered seasonal dummy, or an

‘innovation dummy’ dt = 1{t=t0}, it does not change the asymptotic distri-
bution. If, on the other hand, a ‘step dummy’ dt = 1{t≥t0} is included, then
the cumulation of this is a broken linear trend, and that influences the limit
distribution and requires special tables; see Johansen et al. (2006d).

5.2 Asymptotic distribution of the estimators

The main result here is that the estimator of β, suitably normalized, converges
to a mixed Gaussian distribution, even when estimated under continuously
differentiable restrictions, see Johansen (1991). This result implies that like-
lihood ratio tests on β are asymptotically χ2 distributed. Furthermore the
estimators of the adjustment parameters α and the short-run parameters Γi
are asymptotically Gaussian and asymptotically independent of the estimator
for β.

In order to illustrate these results, the asymptotic distribution of ̂β for
r = 2 is given, when β is identified by

β = (h1 +H1ϕ1, h2 +H2ϕ2). (19)

Theorem 4 In model (2) without deterministic terms and εt i.i.d. (0, Ω),
the asymptotic distribution of Tvec(̂β − β) is given by

(

H1 0
0 H2

)(

ρ11H
′
1GH1 ρ12H

′
1GH2

ρ21H
′
2GH1 ρ22H

′
2GH2

)−1
(

H ′
1

∫ 1

0
G(dV1)

H ′
2

∫ 1

0 G(dV2)

)

, (20)
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where
T−1/2x[Tu]

d→ G = CW,

T−1S11
d→ G = C

∫ 1

0 WW ′duC′,

and
V = α′Ω−1W = (V1, V2)′,
ρij = α′

iΩ
−1αj .

The estimators of the remaining parameters are asymptotically Gaussian and
asymptotically independent of ̂β.

Note that G and V are independent Brownian motions so that the limit
distribution is mixed Gaussian and the asymptotic conditional distribution
given G is Gaussian with asymptotic conditional variance

(

H1 0
0 H2

)(

ρ11H
′
1GH1 ρ12H

′
1GH2

ρ21H
′
2GH1 ρ22H

′
2GH2

)−1 (
H ′

1 0
0 H ′

2

)

.

A consistent estimator for the asymptotic conditional variance is

T

(

H1 0
0 H2

)(

ρ̂11H
′
1S11H1 ρ̂12H

′
1S11H2

ρ̂21H
′
1S11H2 ρ̂22H

′
2S11H2

)−1 (
H ′

1 0
0 H ′

2

)

. (21)

In order to interpret these results, note that the observed information about
β in the data (keeping other parameters fixed) is given by

JT = T

(

ρ11H
′
1S11H1 ρ12H

′
1S11H2

ρ21H
′
2S11H1 ρ22H

′
2S11H2

)

,

which normalized by T 2 converges to the stochastic limit

J =
(

ρ11H
′
1GH1 ρ12H

′
1GH2

ρ21H
′
2GH1 ρ22H

′
2GH2

)

.

Thus the result (20) states that, given the asymptotic information or equiva-
lently the limit of the common trends, α′

⊥W , the limit distribution of T (̂β−β)
is Gaussian with a variance that is a function of the inverse limit information.
Hence the asymptotic distribution of

J 1/2
T

(

H̄ ′
1(̂β1 − β1)

H̄ ′
2(̂β2 − β2)

)

is a standard Gaussian distribution. Here H̄ ′
i = (H ′

iHi)−1H ′
i. This implies

that Wald and therefore likelihood ratio tests on β can be conducted using
the asymptotic χ2 distribution.

It is therefore possible to scale the deviations ̂β − β in order to obtain an
asymptotic Gaussian distribution. Note that the scaling matrix J 1/2

T is not an
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estimate of the asymptotic variance of ̂β, but an estimate of the asymptotic
conditional variance given the information in the data. It is therefore not the
asymptotic distribution of ̂β that is used for inference, but the conditional
distribution given the information; see Basawa and Scott (1983) or Johansen
(1995) for a discussion. Finally the result on the likelihood ratio test for the
restrictions given in (19) is formulated.

Theorem 5 Let εt be i.i.d. (0, Ω). The asymptotic distribution of the like-
lihood ratio test statistic for the restrictions (19) in model (2) with no deter-
ministic terms is χ2 with degrees of freedom given by

∑r
i=1(p− r − si + 1).

This result is taken from Johansen (1996), and a small sample correction
for some tests on β has been developed in Johansen (2000).

6 Further Topics in the Area of Cointegration

It is mentioned here how the I(1) model can be applied to test hypotheses
implied by rational expectations. The basic model for I(1) processes can be
extended to other models of nonstationarity. In particular models for seasonal
roots, explosive roots, I(2) processes, fractionally integrated processes and
nonlinear cointegration. We discuss here models for I(2) processes, and refer
to the paper by Lange and Rahbeck (2008) for some models of nonlinear
cointegration.

6.1 Rational expectations

Many economic models operate with the concept of rational or model based
expectations; see Hansen and Sargent (1991). An example of such a formu-
lation is uncovered interest parity,

Δeet+1 = i1t − i2t , (22)

which expresses a balance between interest rates in two countries and eco-
nomic expectations of exchange rate changes. If a vector autoregressive model

Δxt = αβ′xt−1 + Γ1Δxt−1 + εt, (23)

fits the data xt = (et, i1t , i
2
t )

′, the assumption of model based expectations,
Muth (1961), means that Δeet+1 can be replaced by the conditional expec-
tation EtΔet+1 based upon model (23). That is,

Δeet+1 = EtΔet+1 = α1β
′xt + Γ11Δxt.
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Assumption (22) implies the identity

i1t − i2t = α1β
′xt + Γ11Δxt.

Hence the cointegration relation is

β′xt = i1t − i2t ,

and the other parameters are restricted by α1 = 1, and Γ11 = 0. Thus,
the hypothesis (22) implies a number of testable restrictions on the vec-
tor autoregressive model. The implications of model based expectations for
the cointegrated vector autoregressive model is explored in Johansen and
Swensen (2004), where it is shown that, as in the example above, rational
expectation restrictions assume testable information on cointegration rela-
tions and short-run adjustments. It is demonstrated how estimation under
rational expectation restrictions can be performed by regression and reduced
rank regression in certain cases.

6.2 The I(2) model

It is sometimes found that inflation rates are best described by I(1) processes
and then log prices are I(2). In such a case α′

⊥Γβ⊥ has reduced rank; see
(5). Under this condition model (2) can be parametrized as

Δ2xt = α(β′xt−1 + ψ′Δxt−1) +Ωα⊥(α′
⊥Ωα⊥)−1κ′τ ′Δxt−1 + εt, (24)

where α and β are p× r and τ is p× (r + s), or equivalently as

Δ2xt = α

(

β
δ′

)′ (
xt−1

τ̄ ′⊥Δxt−1

)

+ ζτ ′Δxt−1 + εt, (25)

where
δ = ψ′τ⊥, ζ = αψ′τ̄ +Ωα⊥(α′

⊥Ωα⊥)−1κ′;

see Johansen (1997) and Paruolo and Rahbek (1999). Under suitable condi-
tions on the parameters, the solution of equations (24) or (25) has the form

xt = C2

t
∑

i=1

i
∑

j=1

εj + C1

t
∑

i=1

εi +A1 + tA2 + yt,

where yt is stationary and C1 and C2 are functions of the model parameters.
One can prove that the processes Δ2xt, β

′xt + ψ′Δxt, and τ ′Δxt are sta-
tionary. Thus τ ′xt are cointegration relations from I(2) to I(1). The model
also allows for multicointegration, that is, cointegration between levels and
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differences because β′xt + ψ′Δxt is stationary; see Engle and Yoo (1991).
Maximum likelihood estimation can be performed by a switching algorithm
using the two parametrizations given in (24) and (25). The same techniques
can be used for a number of hypotheses on the cointegration parameters β
and τ.

The asymptotic theory of likelihood ratio tests and maximum likelihood
estimators is developed by Johansen (1997, 2006c), Rahbek et al. (1999),
Paruolo (1996, 2000), Boswijk (2000) and Nielsen and Rahbek (2004). It is
shown that the likelihood ratio test for rank involves not only Brownian mo-
tion, but also integrated Brownian motion and hence some new Dickey-Fuller
type distributions that have to be simulated. The asymptotic distribution of
the maximum likelihood estimator is quite involved, as it is not mixed Gaus-
sian, but many hypotheses still allow asymptotic χ2 inference; see Johansen
(2006c).

7 Concluding Remarks

What has been developed for the cointegrated vector autoregressive model
is a set of useful tools for the analysis of macroeconomic and financial time
series. The theory is part of many textbooks, and software for the analysis
of data has been implemented in several packages, e.g. in CATS in RATS,
Givewin, Eviews, Microfit, Shazam, R, etc.

Many theoretical problems remain unsolved, however. We mention here
three important problems for future development.

1. The analysis of models for time series strongly relies on asymptotic
methods, and it is often a problem to obtain sufficiently long series in eco-
nomics which actually measure the same variables for the whole period.
Therefore periods which can be modelled by constant parameters are of-
ten rather short, and it is therefore extremely important to develop methods
for small sample correction of the asymptotic results. Such methods can be
analytic or simulation based. When these will become part of the software
packages, and are routinely applied, they will ensure more reliable inference.

2. A very interesting and promising development lies in the analysis of
cointegration in nonlinear time series, where the statistical theory is still in its
beginning. Many different types of nonlinearities are possible, and the theory
has to be developed in close contact with applications in order to ensure
that useful models and concepts are developed; see the overview Lange and
Rahbeck (2008).

3. Most importantly, however, is the development of an economic theory
which takes into account the findings of empirical analyses of nonstationary
economic data. For a long time, regression analysis and correlations have
been standard tools for quantitative analysis of relations between variables
in economics. Economic theory has incorporated these techniques in order to
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learn from data. In the same way economic theory should be developed to
incorporate nonstationarity of data and develop theories consistent with the
findings of empirical cointegration analyses.
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Time Series with Roots on or Near the
Unit Circle

Ngai Hang Chan∗

Abstract This paper reviews some of the developments of the unit root and
near unit root time series. It gives an overview of this important topic and
describes the impact of some of the recent progress on subsequent research.

1 Introduction

The field of unit root time series has received considerable attention in both
the statistics and the econometric literature during the last 30 years. Re-
search under the umbrellas of unit root, near unit root, nonstationary, nearly
nonstationary, integrated and near-integrated processes has been pursued ac-
tively. In essence, all these titles referred to time series with autoregressive
(AR) roots on or near the unit circle. Since the seminal paper of White (1958),
numerous attempts have been devoted to studying the asymptotic behavior
of the least-squares estimate (LSE) of the AR coefficient of a unit root AR
model. Since several review articles have been written on this subject by
econometricians, we do not attempt to offer a comprehensive review of this
topic. In this paper, we focus on some of the strategic developments in this
area related to statistics and offer some future directions. Succinct reviews on
early developments on this subject can be found in Fuller (1996) and Chan
(2002) and the references therein.

This paper is organized as follows. In Sections 2.1–2.3, we review the de-
velopments of the unit root problem according to estimation, inference and
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model selection for AR(1) and AR(p) models. Here, we also provide a road
map for certain portions of the extensive literature on these topics, and the
impact of some of the seminal work in related areas. Section 3 contains ideas
on new developments and some concluding remarks.

2 Unit Root Models

Developments of the unit root problem can be classified into three stages: es-
timation, inference and model selection. Throughout these stages, there are
some underlying common themes. The seminal paper of Lai et al. (1978) con-
sidered the strong consistency property of the least squares estimate (LSE)
of a multiple regression model. Specifically, consider the model

yi = βTxi + εi, i = 1, 2, . . . , (1)

where the εi are unobservable errors, β = (β1, . . . , βp)T are unknown param-
eters and yi is the observable response corresponding to the design vector
xi = (xi1, . . . , xip)T. Then

bn = (
n

∑

i=1

xix
T
i )−1

n
∑

i=1

xiyi (2)

is the LSE of the unknown parameter vector β based on the observations
x1, y1, . . . ,xn, yn. Herein, the unobservable sequence {εn} is assumed to be
a martingale difference sequence with respect to an increasing sequence of
sigma fields Fn satisfying a Lyapunov condition

sup
n
E(|εn|γ |Fn−1) < ∞ almost surely (a.s.) for some γ > 2. (3)

By assuming that the design vector at stage n is adaptable, i.e., xn is Fn−1

measurable, Lai and Wei (1982a) proved the following.

Theorem 1 bn → β a.s. if

λmin(n) → ∞ a.s. and logλmax(n) = o(λmin(n)) a.s., (4)

where λmin(n) and λmax(n) denote respectively the minimum and the maxi-
mum eigenvalues of the design matrix

∑n
i=1 xix

T
i at stage n.

This result extended the earlier work of Anderson and Taylor (1979) and
constituted the turning point of the study of strong consistency in the re-
gression literature. On the basis of this groundbreaking result, Lai and Wei
(1982b, 1985) established the strong consistency of the LSE for a general AR
model, irrespective of the location of its characteristic roots. This is one of the
most general results concerning the strong consistency of the LSE of a general
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nonstationary AR(p) model. Tiao and Tsay (1983) subsequently considered
the weak consistency property of the LSE for a nonstationary AR moving
average model. Recently, Nielsen (2005) extended Lai and Wei’s result to the
general vector AR (VAR) model with deterministic components.

2.1 First order

Back in 1958, White (1958), among others, first showed that the LSE of the
autoregressive coefficient of a nonstationary AR(1) model, i.e., when the au-
toregressive coefficient equals 1, converges in distribution to a functional of
a stochastic integral of a standard Brownian motion. It turns out that this
model has a strong bearing in the econometric literature in testing whether
or not a time series is a random walk, the so-called unit root testing problem.
After Dickey and Fuller (1979) established the form of this limiting distri-
bution as a ratio of sums of independent and identically distributed random
variables, the unit root testing problem became a topical issue in economet-
rics. Numerous articles were written on this topic and two elementary surveys
on the statistical and econometric literature were given in Dickey et al. (1986)
and Stock and Watson (1987), respectively.

With the strong consistency results, the next natural question is asymp-
totic inference. One is interested in the limiting distributions of the LSEs
of the parameters of a general nonstationary autoregressive model. Chan
and Wei (1987) considered the AR(1) model when the autoregressive coef-
ficient converges to 1 asymptotically. Instead of a Brownian motion, Chan
and Wei (1987) showed that the limiting distribution of the LSE of a nearly
nonstationary AR(1) model converges weakly to a functional of an Ornstein–
Uhlenbeck process. Specifically, consider a triangular array of first-order AR
processes

yt,n = βnyt−1,n + εt, t = 1, . . . , n, (5)

where βn = 1 − γ/n, γ is a real number, y0,n = 0 for all n and {εt} is
a martingale difference sequence satisfying (3). This is known as the nearly
nonstationary or near-integrated (Phillips (1987)) time series. Note that when
γ = 0, (5) reduces to the traditional unit root model.

Theorem 2 Let the time series {yt,n} follow (5) with the innovation se-
quence {εt} satisfying (3). Let the LSE of βn be bn = (

∑n
t=1 yt−1,nεt)/

(
∑n

t=1 y
2
t−1,n). Then as n → ∞,

n(bn − βn) →D L(γ) :=

∫ 1

0 X(t) dX(t)
∫ 1

0
X2(t) dt

,

where →D denotes convergence in distribution and X(t) is the Ornstein–
Uhlenbeck process satisfying the diffusion equation



698 N. H. Chan

dX(t) = −γX(t) dt+ dW (t),

where X(0) = 0 and W (t) is a standard Brownian motion.

This particular result encompasses the unit root case of White (1958)
when γ = 0. In this case, the autoregressive coefficient βn = 1 and L(0) =
∫ 1

0 W (t) dW (t)/
∫ 1

0 W 2(t) dt, which is the limiting distribution of the Dickey–
Fuller statistic . Using reproducing kernels, Chan (1988) further developed
this limiting form as sums of iid random variables. The near-integrated no-
tion was formulated with reference to the work of LeCam concerning limiting
experiments in terms of contiguous alternatives. This idea was later explored
by Jeganathan (1991, 1995), who generalized the near-integrated notion to
a general AR(p) case and introduced the idea of local asymptotic Brown-
ian functional in studying optimality issues. In a spectral setting, Dahlhaus
(1985) considered both tapered and nontapered Yule–Walker estimates for
near-integrated models. Since then, numerous extensions have been carried
out by econometricians and statisticians. For example, on the statistical front,
Cox and Llatas (1991) considered the M-estimation of a near nonstationary
process, Pham (1992) and Ing (2001) studied the bias and prediction mean
square error expansion of the LSE of a near unit root model, Basawa et
al. (1991) investigated the bootstrap estimate of a unit root model, Larsson
(1998) considered the Barlett correction property of the unit root test statis-
tics and Chan (1988) extended the notion of near unit root to a seasonal
model. On the econometric front, the issues of testing for the unit root hy-
pothesis for econometric series was considered in Phillips and Perron (1988)
and Perron (1989) among others. Many of these results were explored fur-
ther by various people under the topics of trend breaks and cointegration.
Interested readers can consult the review articles of Stock (1994) and Watson
(1994) on these topics. Finally, it should also be pointed out that while ex-
tensive studies were pursued by statisticians and econometricians alike, one
of the earlier developments in this problem was given in the monograph of
Arató (1982) and later in an unpublished thesis of Bobkoski (1983).

A problem closely related to the unit root AR(1) model is a unit root
MA(1) model given by

yt = εt − θεt−1, (6)

with {εt} satisfying (3). Aysmptotic properties of the maximum likelihood
estimate ̂θn of the MA coefficient when θ = 1 constitute an actively pursued
area. Cryer and Ledolter (1981) first examined the consistency property of ̂θn.
Davis and Dunsmuir (1996) derived the limiting distribution of the maximum
likelihood estimator of θ under the unit root θ = 1 and θ = 1 − c/n (for a
constant c > 0) setups. Interestingly, there is a significant pileup probability,
i.e., P (̂θn = 1) has a nonzero limit for all values of c > 0. The limiting pileup
probabilities can be quite large, especially for small values of c. Saikkonen
and Luukkonen (1993) examined the testing for a moving average unit root
issue. Using the idea of the so-called derived process, Chan and Tsay (1996)
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studied the limiting distribution of the maximum likelihood estimate for a
general unit root MA(q) model. A systematic account on the unit root moving
average model is given in Chapter 8 of Tanaka (1996).

2.2 AR(p) models

Chan and Wei (1988) considered the limiting distributions of the LSE of a
general nonstationary AR(p) model when the characteristic roots lie on or
outside the unit circle, each of which may have different multiplicities. This
was the first comprehensive treatment of the LSE for a general nonstationary
AR(p) model, and it was shown in Chan and Wei (1988) that the locations
of the roots of the time series played an important role in characterizing the
limiting distributions. Specifically, they considered a general nonstationary
AR(p) model

yt = β1yt−1 + · · · + βpyt−p + εt. (7)

In (7), the AR polynomial β(z) = 1 − β1z − · · · − βpz
p has roots lying on or

outside the unit circle. That is,

β(z) = (1 − z)a(1 + z)bΠ�
k=1(1 − 2 cos θkz + z2)dkψ(z), (8)

where a, b, � and dk are nonnegative integers, θk belongs to (0, π) and ψ(z)
is a polynomial of order r = p − (a+ b+ 2d1 + · · · + 2dk) that has all roots
outside the unit disk.

When the underlying model is stationary with all roots lying outside the
unit circle, classical central limit theorem type results can be obtained. But
when the roots are of unit modulus, it turns out that the asymptotic dis-
tributions are characterized in terms of the integrated integrals of Brownian
motions. The key idea in obtaining these results lies in analyzing the order of
magnitude of the observed Fisher’s information matrix. Note that the LSE
of β = (β1, . . . , βp)T can be expressed as

bn = (
n

∑

t=1

yt−1yt−1
T)−1

n
∑

t=1

yt−1yt, (9)

where yt = (yt, . . . , yt−p+1)T and y0 = (0, . . . , 0)T. Similar to the estima-
tion problem, different characteristic roots carry different information. By
transforming the original nonstationary AR model into components accord-
ing to their characteristic roots, Chan and Wei (1988) was able to derive the
precise form of the limiting distributions. During the course of this investi-
gation, they also obtained an important result about the weak convergence
of stochastic integrals (Theorem 2.4 in Chan and Wei (1988)) which is of
independent interest and has many applications in different areas (Kurtz and
Protter (1991)). In addition, Chan and Wei also showed that different com-
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ponents are asymptotically uncorrelated and, as a result, a joint limiting law
can be established. Specifically, using the notation of Chan and Wei (1988),
the following theorem was established.

Theorem 3 Assume that {yt} follows (7) with the characteristic polynomial
satisfying (8) and the innovation sequence {εt} satisfying (3). Then as n →
∞,

QTGT
n (bn − β) →D ((F−1ξ)T, ( ˜F−1η)T, (H−1

1 ζ1)
T, . . . , (H−1

� ζ�)
T, NT)T,

where (F, ξ), ( ˜F ,η), (H1, ζ1), . . . , (H�, ζ�), N , Gn and Q are independent
and defined in equations (3.2) and (3.3) and Theorem 2.2 of Chan and Wei
(1988).

This result of Chan and Wei paved the way to the analysis of nonstation-
ary processes and since then numerous extensions have been conducted. Je-
ganathan (1991) generalized this idea to the near-integrated situations where
the limiting distributions of the LSE are expressed in terms of iterated in-
tegrals of Ornstein–Uhlenbeck processes. For the case when the underlying
model has long memory, Chan and Terrin (1995) extended this result to func-
tionals of fractional Brownian motions, while Ling and Li (1998) considered
the case when the innovations are modeled by GARCH processes. Extensions
of this result to vector AR processes are given in Tsay and Tiao (1990) and
to processes with deterministic trends in Chan (1989). On the econometric
front, Theorem 2.4 in Chan and Wei (1988) provides a fundamental tool
in analyzing cointegrated systems. Comprehensive reviews on cointegrated
vector autoregressions are given in Johansen (2008).

Beyond limiting distributions, another interesting issue is residual analysis
for unit root series. Lee and Wei (1999) considered the stochastic regression
model (1):

ynt = βT
nxnt + rnt + εnt, 1 ≤ t ≤ n, (10)

where βn are unknown parameters, xnt are observable random vectors and
rnt are random variables which they called “model bias.” This model can be
considered an extension of (1) as it encompasses both stochastic regressions
and autoregressive time series. Let bn denote the LSE of βn by regressing y
on x ignoring r, and let the residual be defined as ε̃nt = ynt−bT

nxnt. Consider
the residual empirical process

̂Yn(u) =
1√
n

n
∑

t=1

[I(Hn(ε̃nt) ≤ u) − u], (11)

where Hn is the underlying distribution of {εnt}. Under certain regularity
conditions on Hn and the growth rates of the orders of the model, Lee and
Wei (1999) showed that for a Gaussian stationary AR(∞) model, under the
setting of a null hypothesis K0 : H(·) = Φ(·) and a contiguous sequence
of alternatives Kn : Hn(·) = (1 − γ/

√
n)Φ(·) + (γ/

√
n)H(·), where H is a
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distribution function with mean zero and variance 1, the following theorem
holds.

Theorem 4 Under Kn, the residual empirical process ̂Yn(u) defined in (11)
converges weakly to a Gaussian process Y with mean and covariance

EY (u) = −γ(u−H ◦ Φ−1(u)),
Cov(Y (u), Y (v)) = u ∧ v − uv − 0.5φ(Φ−1(u))Φ−1(u)φ(Φ−1(v))Φ−1(v),

where 0 ≤ u, v ≤ 1. Here Φ and φ denote the cumulative distribution function
and the density function of a standard normal random variable, respectively.

In particular, for nonstationary AR(p) models, following the notation used
in Lee and Wei (1999), let (W1,W2) be a mean zero two-dimensional Gaussian
process with covariance structure such that for all s, t ∈ [0, 1]

Cov(W1(s),W1(t)) = s ∧ t− st,

Cov(W2(s),W2(t)) = s ∧ t,

Cov(W1(s),W2(t)) = (t/σ)
∫ G−1(s)

−∞
xdG(x), (12)

where G is the distribution function of the innovation sequence {εt} in (7).
The following weak convergence result of the residual empirical processes was
established in Lee and Wei (1999) (see also Ling (1998)).

Theorem 5 Consider a nonstationary AR(p) model satisfying (7) with a
characteristic root of 1 with multiplicity a ≥ 1, and an iid innovation se-
quence {εt} with mean zero, variance 0 < σ2 < ∞ and continuous distribu-
tion function G. Then as n → ∞,

̂Yn(u) →D W1(u) + σ(F−1ξ)TηGT(G−1(u)),

where (W1,W2) is the two-dimensional Gaussian process defined in (12);
F0 = σW2, F1 =

∫ 1

0 F0(s) ds, Fj =
∫ 1

0 Fj−1(s) ds, j = 2, . . . , a;
ξ = (

∫ 1

0
Fa−1(s) dW2(s), . . . ,

∫ 1

0
F0(s) dW2(s))T; η = (Fa(1), . . . , F1(1))T;

and F is the matrix whose (j, l)th entry is σjl =
∫ 1

0 Fj−1(s)Fl−1(s) ds.

This theorem indicates that the residual empirical process for an unstable
AR(p) model with roots of 1 does not converge to a Brownian bridge as in the
stable case. As a result, Lee and Wei recommended under such a situation one
should conduct a unit root test before using conventional methods such as
the Kolmogorov–Smirnov test. Recently, Chan and Ling (2008) considered the
residual problem when the innovation sequence {εt} possesses a long-memory
structure. They showed that a result similar to Theorem 2 can be derived,
but the driving process becomes a fractional Brownian motion instead of a
standard Brownian motion; further details can be found in Chan and Ling
(2008).
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2.3 Model selection

Consider the stochastic regression model (1) again. A natural problem is
to study the performance of the LSEs in prediction and formulate the so-
called predictive principle for model selection. By analyzing the order of the
cumulative predictive errors

Cn =
n

∑

k=1

(βTxk − bT
k−1xk)2 =

n
∑

k=1

(ε̂k − εk)2,

where ε̂k = yk− ŷk = yk−bT
k−1xk is the one-step prediction error, Wei (1987)

observed that the term Cn plays a crucial role for order selection.

Theorem 6 Consider the regression model (1) with {εi} satisfying assump-
tion (3). Assume that

xT
n

(

n
∑

k=1

xkx
T
k

)−1

xn → v a.s. as n → ∞,

where v is a nonnegative random variable. Then

(1 − v)Cn +
n

∑

k=1

[(bn − β)Txk]2 ∼ nvσ2 a.s.

on the set {1 > v > 0, Cn → ∞} and

Cn +
n

∑

k=1

[(bn − β)Txk]2 ∼ σ2 log det

(

n
∑

k=1

xkx
T
k

)

a.s.

on the set {v = 0, Cn → ∞, λmin(n) → ∞}, where λmin(n) denotes the
minimum eigenvalue of the design matrix

∑n
k=1 xkx

T
k .

The proof of this result relies on the local martingale convergence theorem and
follows the argument of Lai and Wei (1982a). With this result, a new order
selection criterion was proposed in Wei (1987) for a nonstationary AR(p)
model.

Theorem 7 Assume that the autoregressive model (7) has roots equal to or
bigger than 1 in magnitude (i.e., b = d1 = · · · = d� = 0) and assume that
βp �= 0 for an unknown p, but r ≥ p is given. Let yn = (y1, . . . , yn−r+1)T.
Then

ân = [log det(
n

∑

k=p

yky
T
k )/ logn− r]1/2 → a in probability.

By means of the estimator ân, one can determine how many times to differ-
ence an integrated time series to achieve stationarity when the exact order p
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is unknown, but an upper bound r of the order is given. After differencing the
integrated series ân times, one can then apply the traditional Akaike infor-
mation criterion (AIC) or the Bayesian information criterion (BIC) for order
selection. In other words, this theorem can be used to construct a two-step
order selection procedure.

With this result, one can further pursue the notion of predictive least
squares (PLS) in model selection. Wei (1992) reconsidered (1) and examined
the conventional model selection criterion

log σ̂2
n + cn/n, (13)

where n is the sample size and σ̂2
n is the residual variance after fitting the

model based on x, and cn is a nonnegative random variable that measures
the complexity of the model chosen, which is proportional to the number
of parameters. Common criteria such as the Akaike’s Information Criterion
(AIC) or the Bayesian Information Criterion (BIC) fall within this setting.
Motivated by (13), the idea of the predictive least squares criterion (PLS)
criterion,

PLS(x) =
n

∑

i=m+1

(yi − bT
i−1xi)2, (14)

was introduced and the notion of the so-called Fisher’s information criterion
(FIC) was introduced in Wei (1992), who showed that the FIC is equivalent
to

FIC(M) = nσ̂2
n + σ̃2

n log det

(

n
∑

i=1

xix
T
i

)

, (15)

where M is the model with design vector xi, and σ̂2
n and σ̃2

n are variance es-
timators based on the model M and the full model, respectively. For a linear
regression model with Gaussian errors, the conditional Fisher’s information
matrix is simply σ−2

∑n
i=1 xix

T
i , which can be interpreted as the amount of

information about the underlying unknown parameter. The FIC expression
in (15) replaces the second quantity in the conventional criterion (13), which
is proportional to the topological dimension of the model selected as reflected
by cn, by the second quantity of (15), which is proportional to the logarithm
of the statistical information that is contained in M as reflected by the con-
ditional Fisher’s information matrix. This insight enables one to further link
up PLS with FIC via

PLS ∼ nσ̂2
n + σ2 log det

(

n
∑

i=1

xix
T
i

)

.

Replacing σ2 on the right-hand side by an estimator, PLS is simply FIC. In
summary, the following result was established in Wei (1992).
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Theorem 8 Assume either the stochastic regression model (1) holds with
certain regularity conditions being satisfied, or that the nonstationary time
series model (7) holds with a characteristic polynomial satisfying (8) together
with certain regularity conditions (see Theorem 5.1.1 of Wei (1992)) being
satisfied. Then the FIC is strongly consistent.

This theorem has many important consequences. It is related to the order
selection criterion studied in Pötscher (1989) and the predictive minimum
description length idea used in Rissanen (1986). A similar idea was proposed
by Phillips (1995) in a Bayesian setting, where it is known as the posterior
information criterion (PIC). A thorough discussion on this subject can be
found in the 1995 themed issue of volume 69 of the Journal of Economet-
rics entitled “Bayesian and Classical Econometric Modeling of Time Series.”
Further discussions about Bayesian unit root inference were given in Kadane
et al. (1996). Ing and Wei (2003, 2005) built on Wei’s idea to study the so-
called same realization prediction principle for order selection of AR time
series. They showed that the AIC is asymptotically efficient for same realiza-
tion prediction problems.

3 Miscellaneous Developments and Conclusion

Although the field of time series in general and the subject of unit root time
series in particular have been experiencing rigorous developments for the last
few decades, there are still many open and interesting areas to be explored.
In nonstationary time series, the recent popularity of long-memory models
remains an open field; see Chan and Terrin (1995) and Buchmann and Chan
(2007). Equally important is the area of empirical likelihood inference for
time series. In addition to the maximum likelihood estimate, nonparametric
procedures like empirical likelihood are gaining popularity and extension to
this area is likely to be important; for related literature see Chuang and Chan
(2002) and Chan and Ling (2006). Another area of importance is inference for
infinite variance models. Here, many of the LSE-type results are no longer
valid and an entirely new asymptotic theory needs to be established; see,
for example, Chan and Tran (1989), Knight (1989, 1991), Phillips (1990),
Daviset al. (1992) and Chan et al. (2006).

In summary, this review only offers a modest account of some of the devel-
opments of unit root time series. As witnessed by the aforementioned discus-
sions, the subject of unit root time series has been manifested into different
forms and found applications in areas such as engineering and econometrics.
Through asymptotic inference, the scope of unit root time series has been
greatly broadened and many profound challenges still remain to be resolved,
which in turn will push the subject into new frontiers.
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Fractional Cointegration

Willa W. Chen and Clifford M. Hurvich

Abstract We describe a variety of seimparametric models and estimators
for fractional cointegration. All of the estimators we consider are based on
the discrete Fourier transform of the data. This includes the ordinary least
squares estimator as a special case. We make a distinction between Type I and
Type II models, which differ from each other in terms of assumptions about
initialization, and which lead to different functional limit laws for the partial
sum processes. We compare the estimators in terms of rate of convergence.
We briefly discuss the problems of testing for cointegration and determining
the cointegrating rank. We also discuss relevant modeling issues, such as the
local parametrization of the phase function.

1 Introduction

A collection of two or more time series, observed at equally-spaced time
points, is fractionally cointegrated if there exists a non-null contemporane-
ous linear combination of the series, based on deterministic time-invariant
weights, such that the linear combination is less persistent than any of the
individual series, where persistence is measured in terms of the memory pa-
rameter, assumed here to be the same for all of the series. (In Section 3, we
survey various generalizations to the case of unequal memory parameters of
the observed series, which often arises in practice.) The most thoroughly-
studied case to date is standard cointegration, in which the memory param-
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eter is reduced from 1 to 0 by the linear combination. In general, there is
no integer constraint, and no assumption of pre-knowledge, on the memory
parameters of the original series or of the linear combination.

The seminal paper of Engle and Granger (1987) allowed for the fractional
case, though fractional and standard cointegration have largely been devel-
oped separately in the literature. In this chapter, we will present a selective
survey of the literature on representation, estimation and testing in frac-
tional cointegration. As this literature is growing rapidly, we do not attempt
to summarize it in its entirety, but rather we focus selectively on certain
themes.

We will start by describing two different definitions of the order of integra-
tion of a time series, called the Type I and Type II definitions, which lead to
different limit laws for partial sums. Both have been used in the fractional-
cointegration literature. Next, we describe a variety of semiparametric models
for fractional cointegration. Next, we consider estimation of the cointegrating
parameters i.e., the linear combinations that reduce the memory parameter.
The various estimators can be classified according to the type of cointegra-
tion model assumed, the use of tapering and differencing, assumptions on
the phase angle, the use of a fixed or increasing bandwidth, and the nature
of the estimator: either a direct estimator of the cointegrating parameters
alone, or a joint estimator of the cointegrating parameters together with the
memory and other parameters. Finally, we discuss estimation of the cointe-
grating rank, and describe some results on testing for cointegration, focusing
on residual-based tests and joint tests.

It should be emphasized that in this chapter, as in general, there is a
link between the strength of assumptions and the strength of the theoretical
results that can be established under these assumptions. Remembering this
fact helps to put the existing results into an appropriate context, and may
serve to prevent invidious comparisons in subsequent work.

2 Type I and Type II Definitions of I(d)

2.1 Univariate series

There are a variety of ways in which long memory can be defined. We start
by considering univariate series, and then move on to consider vector series.
Most definitions of long memory for a stationary series involve an asymp-
totic power law for some quantity, e.g., the spectral density near zero fre-
quency, the autocorrelation at large lags, the variance of partial sums with
increasing aggregation, the moving average coefficients in an MA(∞) repre-
sentation of the process. If the process {xt} is weakly stationary and invert-
ible with spectral density f , autocovariance sequence {cr}∞r=−∞, and moving
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average representation xt =
∑∞

k=0 akεt−k where {εt} are white noise, the
long-memory assumption may be written in terms of the memory parameter
d ∈ (−1/2, 1/2)− {0} in the following generally non-equivalent ways:

f(ω) ∼ K1ω
−2d as ω → 0+,

cr ∼ K2r
2d−1 as r → ∞,

var
n

∑

t=1

xt ∼ K3n
2d+1 as n → ∞,

ak ∼ K4k
d−1 as k → ∞,

where K1 > 0, K2, K3 > 0 and K4 are constants. Connections between these
properties are given in Robinson (1995b) and Taqqu (2003). All of these
properties hold for fractional ARIMA models (Adenstedt 1974, Granger and
Joyeux 1980, Hosking 1981), with d ∈ (−1/2, 1/2) − {0}, though semipara-
metric specifications of long memory typically assume one of these properties
at the potential expense of the others. We will say that a weakly-stationary
series has short memory if its spectral density satisfies the property given
above with d = 0, i.e., the spectral density tends to a positive constant as
the frequency tends to zero.

We will say that a process is integrated of order d, denoted by I(d), if it
has memory parameter d. Thus, for a stationary and invertible series, I(d)
can be defined by any of the asymptotic power-law relations given above.
Since in fractional cointegration the original series may be nonstationary, it
is essential to be able to define I(d) even for d > 1/2. It is also convenient to
be able to define I(d) in the non-invertible case, d ≤ −1/2.

Hurvich and Ray (1995) worked with the spectral definition of long mem-
ory as given above, which remains valid in the non-invertible case. For all
d < 1/2, they define a weakly stationary process to be I(d) if its spec-
tral density satisfies f(ω) ∼ K1ω

−2d as ω → 0+, where K1 > 0. In the
non-stationary case d > 1/2, they define a process to be I(d) if there ex-
ists a positive integer k such that the k’th ordinary difference of the series
is I(d − k), where d − k ∈ (−1/2, 1/2). For example, if {xt} is a random
walk, xt = xt−1 + εt where {εt} is white noise, the ordinary first difference
is xt − xt−1 = εt, which is I(0), so {xt} is I(1). In a semiparametric context,
the definition (henceforth referred to as the Type I definition) has been used
in papers on estimation of the memory parameter by Velasco (1999a, 1999b),
and Hurvich and Chen (2000) and in papers on fractional cointegration by
Chen and Hurvich (2003a, 2003b, 2006), and Velasco (2003).

Marinucci and Robinson (1999) present an alternative definition of I(d)
based on truncation, which we will call the Type II definition. Given the
choice of a time origin, t = 0 (which plays an important role here), for any
d > −1/2, the (Type II) I(d) series is represented for t ≥ 1 as
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xt =
t−1
∑

k=0

ψkηt−k, (1)

where {ηt} is a weakly stationary, zero-mean short-memory series, and for
d �= 0

ψk = Γ (k + d)/[Γ (k + 1)Γ (d)] ∼ Ckd−1 as k → ∞ (C > 0),

while for d = 0, we define ψ0 = 1, ψk = 0 (k �= 0). A more general formulation
for ψk, with the same limiting behavior as above, can also be considered,
subject to suitable regularity conditions. Even for nonzero d ∈ (−1/2, 1/2)
the series {xt} is not stationary, but it is asymptotically stationary in the
sense that there exists a function g such that for t > u, cov(xt, xu) ∼ g(t−u)
if u/(t− u) → 0.

A representation equivalent to (1) is

xt = (1 −B)−dη∗t (t ≥ 1), (2)

where B is the backshift operator, and η∗t = ηt for t ≥ 1, η∗t = 0 for t ≤ 0.
In (2), (1 −B)−d is defined for all d through the formal expansion (see, e.g.,
Brockwell and Davis 1991, p. 522),

(1 −B)−d =
∞
∑

k=0

ψkB
k.

It follows that for d > 1/2, the Type-II I(d) process, which is neither station-
ary nor asymptotically stationary in this case, can be written as the partial
sum

xt = u∗1 + u∗2 + · · · + u∗t t ≥ 1,

where

u∗t = (1 −B)1−dη∗t =
t−1
∑

k=0

akηt−k,

with ak = Γ (k+d−1)/[Γ (k+1)Γ (d−1)], so that {u∗t} is Type-II I(d−1). In
this case (d > 1/2), Marinucci and Robinson (2000), following earlier work
of Akonom and Gourieroux (1987) and Silveira (1991), derived the weak
limit of suitably normalized partial sums of {u∗t} assuming that {ηt} has a
linear representation with respect to an iid or absolutely regular sequence (see
Pham and Tran 1985). The limiting process, which Marinucci and Robinson
(2000) called Type II fractional Brownian motion, also known as Riemann-
Liouville fractional Brownian motion, WH(·) (with H = d+ 1/2), is defined
for any H > 0, whereas the so-called Type I fractional Brownian motion
BH(·) considered by Mandelbrot and Van Ness (1968) and others, is only
defined for 0 < H < 1, and even in this case the two processes are not
equivalent.
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Limit theory has also been developed for statistics based on I(d) processes
under the Type I definition. For example, Sowell (1990) obtained the limiting
distribution of the OLS estimator in a regression of xt on xt−1 for a process
{xt} such that (1 − B)dxt = εt, where εt is iid with zero mean, with d ∈
(0.5, 1.5). The limit distribution is a functional of Type-I fractional Brownian
motion. (See the remark on Sowell’s results in Marinucci and Robinson 1999).

Implications of the Type I and Type II definitions of I(d) on properties
of the discrete Fourier transform (DFT), semiparametric log-periodogram re-
gression estimates of the memory parameter, and other statistics of interest
were studied by Velasco (2007). There are noticeable differences in the prop-
erties of the DFTs even for d < 1/2, but these do not have any important
impact on the properties of the memory parameter estimates unless d ≥ 1/2.
It is notable in this regard that, for the region d ∈ [1/2, 3/4), assuming a
Gaussian process, the (suitably normalized) log-periodogram regression esti-
mate of d has been shown to be asymptotically normal in the Type-I case
(Velasco 1999a), but no such result has been established as of yet in the
Type-II case, owing perhaps to the much stronger asymptotic correlations of
the normalized DFTs under Type-II compared to Type I I(d) when d ≥ 1/2.

2.2 Multivariate series

Here, we present a Type I definition of I(d) for a q-dimensional vector process
{xt}. We focus on the stationary case, in which the memory parameters of
the entries of the vector are all less than 1/2. Extension to the nonstationary
case is then done similarly as for the univariate Type I I(d) case.

Recall that for any weakly stationary real-valued q-vector process {xt}
with spectral density f , we have f(−ω) = f(ω) for all ω ∈ [−π, π], and the
lag-h autocovariance matrix is

˜Γ (h) = E[xt+hx
′
t] =

∫ π

−π

f(ω)eihωdω ,

so that ˜Γ (h) ˜Γ ′(−h), where the superscript prime denotes transposition.
A weakly stationary q-vector process {xt} is (Type I) I (d1, . . . , dq) if its

spectral density matrix f satisfies

f (ω) ∼ ΛGΛ∗, ω → 0+, (3)

where G is a nonnegative definite real symmetric matrix with nonzero diag-
onal entries not depending on ω,

Λ = diag
(

eiφ1 |ω|−d1 , . . . , eiφq |ω|−dq

)
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with dk < 1/2, for k = 1, . . . , q, Λ∗ is the conjugate transpose of Λ, φ1 = 0,
and the phase angles φk (k = 2, . . . , q) are real. The standardization φ1 = 0
is made for the sake of identifiability, since f in (3) remains unchanged if Λ
is multiplied by a complex number with modulus 1. The series {xt} may or
may not be cointegrated, but if it is then G must be singular.

Several special cases of the model have been considered in the literature.
Case 1: The case where all the phase angles are zero (φ1 = φ2 = · · · =

φq = 0) was assumed by Christensen and Nielsen (2006). One way this could
happen would be if the spectral density f(ω) were real for all ω ∈ [−π, π]. In
this case, we would have ˜Γ (h) = ˜Γ (−h), so that the lag-h cross-covariance of
two entries of {xt} would be the same regardless of which entry leads. This
would clearly entail a loss of generality. In the case of an ARFIMA model,
one would obtain φ1 = φ2 = · · · = φq = 0 if and only if d1 = d2 = · · · = dq.

Case 2: The case φk = (π/2)dk was considered in Robinson and Yajima
(2002), Shimotsu (2006) and Lobato (1999) (though for convenience of esti-
mation, Lobato (1999) subsequently changed to the assumption that all phase
angles are zero). The assumption φk = (π/2)dk is satisfied by the fractional
ARIMA model. In view of the identifiability problem discussed above, the
assumption is equivalent to φk = (π/2)(dk − d1).

Case 3: A more general case is φk = (π/2− γk)(dk − d1) where γ2, . . . , γq
are real numbers satisfying the constraints that the resulting values of φk are
in (−π, π). Note that these constraints depend on the memory parameters.
This case was considered by Robinson (2006) in a bivariate setting.

Chen and Hurvich (2003a,b, 2006) assumed a model that is ultimately
equivalent to (3), but they made an additional assumption, which was not
needed for their theoretical results, that the phase functions in the trans-
fer function for the linear representation of the fractionally differenced series
are continuous (and therefore zero) at zero frequency. If this assumption is
removed, then the model becomes equivalent to (3). Such a model is more
general than those obtained in Cases 1, 2 and 3 above, since the φk may be free
of, or depend nonlinearly on (d1, . . . , dq). Chen and Hurvich (2003a,b, 2006)
obtained the limiting asymptotic normality of the discrete Fourier transform
of a multivariate Type I I(d1, . . . , dq) series for a fixed set of Fourier frequen-
cies, assuming that the series has a linear representation with respect to an
iid sequence.

A multivariate Type II definition for I (d1, . . . , dq) was given by Robinson
and Marinucci (2001, 2003), and Marinucci and Robinson (2000), also used by
Marmol and Velasco (2004) and Nielsen and Shimotsu (2007), as diag((1 −
B)d1 , . . . , (1 − B)dq)Xt = utI{t ≥ 1} for t = 1, 2, . . . where {Xt} is the
observed series, {ut} is a stationary short-memory series with zero mean,
and dk > −1/2, k = 1, . . . , q. Limit theory for partial sums of such processes
was developed by Marinucci and Robinson (2000).
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3 Models for Fractional Cointegration

As stated in the introduction, a (q×1) I(d0, . . . , d0) series {xt} is cointegrated
if there exists a vector α �= 0, such that ut = α′xt is I(du) where du < d0.
Any such vector α is called a cointegrating vector. There may be up to q−1
linearly independent cointegrating vectors, and the corresponding contem-
poraneous linear combinations may have different memory parameters. The
number of linearly independent cointegrating vectors, r, with 1 ≤ r < q,
is called the cointegrating rank. It is assumed in the above definitions, as
in the work of Engle and Granger (1987), and Chen and Hurvich (2003a,
2003b, 2006), among others, that all entries of the observed series have the
same memory parameter. For a general I(˜d1, · · · , ˜dq) series, the concept of
cointegration requires a more careful definition, and several different ones
have been provided, as described in Robinson and Yajima (2002). By any of
these definitions, a necessary condition for cointegration is that at least two
of ˜d1, . . . , ˜dq are equal. Robinson and Yajima (2002, Definition 2) start by
partitioning the entries of the observed series into blocks with equal mem-
ory parameters within each block, and unequal memory parameters across
blocks. (They also provide a data-driven procedure for constructing such a
partition, which is successful at this task with probability approaching 1).
The (q × 1) series is cointegrated if for some block the entries of that block
are cointegrated in the sense defined earlier. The cointegrating rank of the
entire (q×1) series is the sum of the cointegrating ranks of the blocks. Robin-
son and Marinucci (2003) use a different definition, under which the (q × 1)
series {xt} is cointegrated if there exists α �= 0 such that α′xt = ut is I(du)
with du < min(˜d1, . . . , ˜dq).

We will present some semiparametric Type I and Type II models for frac-
tional cointegration. We start with the Bivariate Type I model yt = βxt +ut,
where the observed series {xt} and {yt} are both I(d), the unobserved series
{ut} is I(du), and du < d, so that {(xt, yt)′} is fractionally cointegrated. We
do not require that {xt} and {ut} be mutually independent. The stationary,
positive-memory-parameter case d, du ∈ (0, 1/2) was considered by Robinson
(1994). Chen and Hurvich (2003a) assumed that the original series {Xt}, {Yt}
{Ut} are potentially nonstationary, but after p− 1 ordinary differences they
yield the stationary (but potentially noninvertible) series {xt}, {yt}, {ut}
satisfying yt = βxt + ut, with d, du ∈ (−p + 1/2, 1/2), p ≥ 1. For example,
if p = 1, the range would be (−1/2, 1/2), i.e., the stationary invertible case.
If p = 2, the range would be (−3/2, 1/2), which allows for noninvertibility
induced by (potentially unintentional) overdifferencing.

Chen and Hurvich (2006) proposed the Type I fractional common com-
ponents model for the (q × 1) observed series {yt} with cointegrating rank r
(1 ≤ r < q), and s cointegrating subspaces (1 ≤ s ≤ r), given by

yt = A0u
(0)
t + A1u

(1)
t + · · · + Asu

(s)
t , (4)
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where Ak (0 ≤ k ≤ s) are unknown q × ak full-rank matrices with a0 =
q − r and a1 + · · · + as = r such that all columns of A0, . . . ,As are linearly
independent, {u(k)

t } k = 0, . . . , s, are unobserved (ak × 1) processes with
memory parameters {dk}sk=0 with −p + 1/2 < ds < · · · < d0 < 1/2. Thus,
each entry of {yt} is I(d0), and the space R

q can be decomposed into a direct
sum of orthogonal cointegrating subspaces of dimension ak (k = 0, . . . , s)
such that any vector α in the k’th cointegrating subspace yields a linear
combination α′yt which is I(dk) with dk < d0 if k > 0. The series {yt}
is stationary, the result of p − 1’th differencing of an original, potentially
nonstationary series {Yt}, with p ≥ 1. The case of standard cointegration
could be obtained, for example, by taking p = 2, s = 1, d0 = 0, d1 = −1, and
1 ≤ r ≤ q − 1. Equation (4) can be written as

yt= Azt, (5)

where zt = vec
(

u
(0)
t , . . . , u

(s)
t

)

and A =
[

A0 · · · As

]

. Chen and Hurvich
(2006) make additional assumptions on the spectral density of {zt}. These
assumptions guarantee that {zt} is not cointegrated, and that the spectral
density of {yt} satisfies (3) with G singular, which is in turn a necessary
and sufficient condition for cointegration in a stationary process such that all
components have the same memory parameter. The methodology presented
in Chen and Hurvich (2006) does not require either r or s to be known.

Robinson and Marinucci (2003) considered a Type-II model with cointe-
grating rank 1 for a non-differenced q × 1 series {Zt} which is partitioned
as {Zt} = {(Yt, X ′

t)
′} with {Yt} 1 × 1 and {Xt} (q − 1) × 1 such that

Yt = β′Xt + Ut, where β is an unknown (q − 1) × 1 cointegration param-
eter, and {Ut} has a smaller memory parameter than the minimum memory
parameter of the entries of {Zt}. Thus, (1,−β′)′ is a cointegrating vector for
{Zt}. The need to specify one of the entries of {Zt} as the response variable
may cause difficulties when q ≥ 3 since there is no guarantee in general that
all entries of {Zt} appear in a cointegrating relationship with at least one of
the other entries. Thus if a randomly chosen component of {Zt} is labeled as
the response variable, there is no guarantee that the regression model above
will hold, and in any case regression-type estimators of the parameter will
not be invariant to this choice.

3.1 Parametric models

The models for cointegration considered above are all semiparametric, in that
the spectral density is only specified in a neighborhood of zero frequency.
Parametric models are also of interest, in which the time-series dynamics
of the series is fully determined by a finite set of fixed, unknown parame-
ters, although the distribution of the innovations may not be parametrically
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specified. For reasons of brevity, we will not present a detailed discussion
of parametric models for cointegration, or of the properties of estimators in
such models, but we provide some references here. Gaussian Maximum like-
lihood estimation of a cointegrated fractional ARIMA model was considered
by Dueker and Startz (1998). Maximum likelihood estimation of the coin-
tegrating parameter in a multivariate Type-I model with a known but not
necessarily Gaussian distribution was considered by Jeganathan (1999). Es-
timation of the cointegrating parameter in a bivariate nonstationary Type-
II model was considered using generalized least-squares by Robinson and
Hualde (2003). Here, the rate of convergence for the estimator of the cointe-
grating parameter is nδ, where the degree of cointegration (i.e. reduction in
the memory parameter) δ is assumed to be greater than 1/2. Properties of
ordinary least-squares estimators were considered for Type-I autoregressive
models with fractional errors by Chan and Terrin (1995). A parametric coin-
tegration model of Granger (1986) was followed up in a fractional context by
Breitung and Hassler (2002), and applied by Davidson (2002) and Dolado,
Gonzalo and Mayoral (2003).

4 Tapering

Tapering is the multiplication of an observed series by a sequence of constants
(the taper) prior to Fourier transformation, in order to reduce bias in the pe-
riodogram. A cosine bell taper was used in Hurvich and Ray (1995), and
was found to be especially helpful in both the noninvertible case (d < −1/2)
and the nonstationary case (d > 1/2). A class of tapers due to Zhurbenko
was used by Velasco (1999a, 1999b) for estimation of d in the nonstation-
ary case. Hurvich and Chen (2000) chose to difference the data p − 1 times
to remove deterministic polynomial trends and to render the series sta-
tionary, and then proposed applying the p’th order taper {hp−1

t }, where
ht = (1/2)[1 − exp{i2π(t− 1/2)/n}], to handle the potential noninvertibility
of the differenced series. They showed that this allows for Gaussian semipara-
metric estimation of d with a smaller variance inflation than incurred by the
methodology of Velasco (1999b). Variance inflation in estimation of d can be
removed entirely using the class of tapers of Chen (2006), and the resulting
estimator is therefore comparable to the non-tapered exact Local Whittle es-
timator of Shimotsu and Phillips (2005). In a cointegration context, tapering
was used by Chen and Hurvich (2003a, 2003b, 2006), who used differencing
together with the tapers of Hurvich and Chen (2000), and Velasco (2003).
Since the taper of Hurvich and Chen (2000) is complex-valued, care must be
taken in using fast Fourier transform software, since hp−1

t exp(−iλ) is not the
conjugate of hp−1

t exp(iλ).
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5 Semiparametric Estimation of the Cointegrating
Vectors

We first consider direct estimators of the cointegrating parameter, i.e., estima-
tors which can be constructed without estimating other nuisance parameters,
such as memory parameters and phase parameters. The limiting distributions
of these estimators have been shown to be non-Gaussian in most cases, which
is somewhat undesirable from the point of view of practical usefulness. We
focus here on rates of convergence. We start with the bivariate model

yt = βxt + ut,

in the Type-I stationary positive-memory case d, du ∈ (0, 1/2), du < d, as
considered by Robinson (1994). Suppose we have n observations on the re-
sponse and explanatory variables, {yt}nt=1, {xt}nt=1. Consider the ordinary
least squares (OLS) estimator ̂βOLS of β obtained from linear regression of
{yt} on {xt}. If it is known that {ut} has zero mean, the regression can be
performed without an intercept. Robinson (1994) pointed out that if ̂βOLS

converges in probability, the probability limit must be

β + cov(xt, ut)/var(xt).

Thus, as long as there is a nonzero contemporaneous correlation between xt
and ut, ̂βOLS will be an inconsistent estimator of β.

Robinson (1994) proposed a modification of ̂βOLS that remains consistent
even if cov(xt, ut) �= 0. To motivate the modification, it is helpful to consider
the source of the inconsistency of ̂βOLS from a frequency-domain perspective.
Note that

cov(xt, ut)/var(xt) =
∫ π

−π

fxu(ω)dω/
∫ π

−π

fx(ω)dω,

where fx is the spectral density of {xt} and fxu is the cross-spectral density
of {(xt, ut)′}. By the Cauchy-Schwartz inequality, fxu(ω) = O(ω−(d+du)) as
ω → 0+, so that fxu(ω)/fx(ω) → 0 as ω → 0+. Thus, if ω lies in a neighbor-
hood which shrinks to zero as the sample size n increases, the contribution
to cov(xt, ut) from frequency ω is negligible compared to the contribution
to var(xt) from frequency ω. This motivates the narrowband least-squares
estimator of β, given by Robinson (1994) as

̂βNBLS =
mn
∑

j=1

Re{Jx,jJ̄y,j}/
mn
∑

j=1

|Jx,j|2,

a frequency-domain regression of y on x, wheremn is a bandwidth parameter,
mn → ∞, mn/n → 0 as n → ∞,
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Jz,j =
1√
2πn

n
∑

t=1

zt exp(iωjt)

for any series {zt}, and ωj = 2πj/n. It then follows from Robinson (1994)
that ̂βNBLS p→ β as n → ∞, under an additional assumption on the errors
in the MA(∞) representation of {xt}, and assuming that d, du ∈ (0, 1/2).
If, in violation of the assumption mn/n → 0, we take mn = "n/2# (so that
̂βNBLS is no longer in fact narrowband), then ̂βNBLS = ̂βOLS , where ̂βOLS is
computed from a regression that includes an intercept. If for this same choice
of mn the lower index of the summations in ̂βNBLS were changed from 1
to 0, then we would again have ̂βNBLS = ̂βOLS , but in this case the OLS
regression would not contain an intercept.

Robinson and Marinucci (2001) derived asymptotic properties of ̂βNBLS

(with mn → ∞, mn/n → 0) and ̂βOLS for the bivariate model Yt = βXt+Ut,
assuming that the observed series {Xt} and {Yt} are nonstationary Type-II
I(dX) with dX ≥ 1/2, and the unobserved errors {Ut} are Type-II I(dU )
with dU < dX . They show that ̂βOLS and ̂βNBLS based on the observed non-
differenced data {Xt}nt=1, {Yt}nt=1 are consistent, with a rate of convergence
that depends on dX and dU , but not simply on dX − dU .

Chen and Hurvich (2003a) considered a Type-I bivariate model, and pro-
posed ̂βCH , a modified version of ̂βNBLS computed from tapered, differenced
data. The original series {Xt}, {Yt} and {Ut} are differenced p− 1 times, re-
sulting in stationary series {xt}, {yt} with memory parameter d, and {ut}
with memory parameter du, du < d, and d, du ∈ (−p+ 1/2, 1/2). The differ-
encing transforms the original model Yt = βXt + Ut into yt = βxt + ut. The
estimator is then given by

̂βCH =
m0
∑

j=1

Re{JTx,jJ̄Ty,j}/
m0
∑

j=1

|JTx,j |2,

where m0 ≥ 1 is a fixed bandwidth parameter,

JTz,j =
n

∑

t=1

hp−1
t zt exp(−iωjt),

and
ht = (1/2)[1 − exp{i2π(t− 1/2)/n}]. (6)

Chen and Hurvich (2003a) showed that subject to suitable regularity condi-
tions the rate of convergence of ̂βCH is always nd−du (the same as ndX−dU ),
in the sense that nd−du(̂βCH − β) converges in distribution. This uniformity
of the rate of convergence of ̂βCH (i.e. the dependence on d − du alone), as
contrasted with the nonuniformity of the rate of ̂βOLS or ̂βNBLS , is due to
the combination of tapering and the use of a fixed bandwidth m0 in ̂βCH .
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Though it may at first seem surprising that ̂βCH can be consistent for β
even though m0 is fixed (after all, the use of a fixed number of frequencies
in semiparametric estimation of the memory parameter would result in an
inconsistent estimator), the consistency of ̂βCH follows since it can be shown
that each term of

̂βCH − β =
m0
∑

j=1

Re{JTx,jJ̄Tu,j}/
m0
∑

j=1

|JTx,j |2

is Op(ndu−d), and since there are a fixed number of terms.
We present here some comparisons of the rate of convergence of ̂βCH with

those of ̂βOLS and ̂βNBLS , keeping in mind that the theory for the former
estimate is based on a Type-I model, while that for the latter estimates is
based on a Type-II model. Let dX and dU represent the memory parameters
of the nondifferenced observed and error series, {Xt} and {Ut}. All of our
comparisons below are based on the assumption dX ≥ 1/2 (the observed series
are nonstationary), as this is assumed in the results we will use from Robinson
and Marinucci (2001). The rates of convergence for ̂βOLS and ̂βNBLS remain
the same whether or not the zero frequency is excluded from the sums in
their definitions. Since dX ≥ 1/2, ̂βOLS is consistent. This follows from the
Cauchy-Schwartz inequality and the fact that in this case

n
∑

t=1

U2
t /

n
∑

t=1

X2
t

p→ 0.

For a given value of the difference of the memory parameters (i.e., the strength
of the cointegrating relationship), ̂βCH , which is based on the tapered differ-
ences of order p− 1 (and is invariant to additive polynomial trends of order
p − 1 in the levels) will be ndX−dU -consistent. The comparison is separated
into several cases, due to the non-uniform rates of convergence for ̂βOLS

and ̂βNBLS . All three estimators converge at the same rate when dU > 0,
dU + dX > 1, and also when dU = 0, dX = 1. The estimators ̂βCH and
̂βOLS converge at the same rate when dU = 0, dX > 1, though Robinson
and Marinucci (2001) do not present a rate of convergence for ̂βNBLS in this
case. In the remaining cases, ̂βCH has a faster rate of convergence than the
other two estimators. We present the comparisons in terms of the improve-
ment factor, given as the ratio of the rates of convergence. For example, if
another estimator is nγ-consistent with γ < dX − dU then the improvement
factor for ̂βCH relative to the other estimator is ndX−dU−γ . For the case
dU > 0, dU + dX = 1, the improvement factor for ̂βCH relative to ̂βOLS is
logn, and the improvement factor for ̂βCH relative to ̂βNBLS is logmn. For
the case dU ≥ 0, dU + dX < 1, the improvement factor for ̂βCH relative to
̂βOLS is n1−dU−dX , and the improvement factor for ̂βCH relative to ̂βNBLS

is m1−dU−dX
n . In the latter two cases, the slower the rate of increase of mn,
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the less inferior is the performance of ̂βNBLS compared to that of ̂βCH . This
helps to justify the use of a fixed bandwidth m0 in ̂βCH . It can be seen that
the spectral density and periodogram matrices at the very low frequencies
(e.g., ω1, . . . , ωm0 with m0 fixed) play a key role in fractional cointegration.

For a multivariate series, Robinson and Marinucci (2003) considered prop-
erties of NBLS and OLS estimators of the cointegrating parameter β in the
multiple regression model

Yt = β′Xt + Ut

described above. The estimators are

̂βNBLS = ̂FXX(1,mn)−1
̂FXY (1,mn)

and ̂βOLS given by a similar formula with (1,mn) replaced by (1, "n/2#) or
(0, "n/2#), where

̂Fab(�, k) =
k

∑

j=�

Re(Ja,jJ∗
b,j),

the superscript ∗ denotes conjugate transpose, and for any time series of
column vectors {ct}nt=1,

Jc,j =
1√
2πn

n
∑

t=1

ct exp(iωjt).

Again, the bandwidth mn satisfies mn → ∞, mn/n → 0. They first consid-
ered the Type-I stationary case, in which ̂βOLS is inconsistent, and showed
that

̂βNBLS
i − βi = Op((n/mn)dU−˜di)

for i = 1, . . . , q−1, where ̂βNBLS
i is the i’th entry of ̂βNBLS , ˜di is the memory

parameter of the i’th entry of {Xt}, and dU is the memory parameter of
{Ut}. They next considered a Type-II model in which the observable series
are nonstationary. Here, the convergence rates (also reported in Marinucci
and Robinson 2001) for ̂βNBLS

i − βi and ̂βNBLS
i − βi are analogous to those

obtained for bivariate series in Robinson and Marinucci (2001).
Chen and Hurvich (2006) considered estimation in the Type-I fractional

common components model (4), (5), based on the averaged periodogram
matrix,

Im0 =
m0
∑

j=1

Re{JTy,jJT∗
y,j},

where m0 is a fixed positive integer, JTy,j is the (q × 1) tapered DFT vector

JTy,j =
n

∑

t=1

hp−1
t yt exp(−iωjt),
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and the taper {ht} is given by (6). Note that Im0 , and statistics based on
it, are equivariant to permutation of the entries of {yt}. The eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λq of Im0 satisfy λj = Op(n2dk), for j ∈ Nk, where
N0 = {1, . . . , a0} and Nk = {(a0 + · · · + ak−1) + 1, . . . , (a0 + · · · + ak)}
for k = 1, . . . , s. The eigenvectors corresponding to the j’th largest eigenval-
ues for j ∈ Nk converge in distribution to (random) vectors lying in the k’th
cointegrating subspace, k = 0, . . . , s. Although these eigenvectors do not con-
sistently estimate fixed population vectors, the estimated space nevertheless
converges to the k’th cointegrating subspace in the sense that the norm of
the sine of the angle between the true and estimated cointegrating subspaces
is Op(n−αk) where αk is the shortest gap between the memory parameters
corresponding to the given and adjacent subspaces. Gaussian semiparametric
estimators constructed from the residuals, i.e., the contemporaneous linear
combination of yt with weights given by an eigenvector in the estimated
k’th cointegrating subspace, are asymptotically normal and consistent for dk,
where the bandwidth mn → ∞, with an upper bound that becomes more
restrictive when αmin = mink(αk) = min(d0 − d1, . . . , ds−1 − ds) decreases.
If the short-memory component of the spectral density of {zt} is sufficiently
smooth, then the upper bound is determined by (m2ξ+1

n /n2ξ) log2mn → 0,
where ξ = min(αmin, 2). If αmin > 1/2, then the estimator is m1/2

n -consistent.
If αmin ≤ 1/2 then the estimator is no longerm1/2

n -consistent. The restriction
on the rate of increase of mn arises because a linear combination of series with
slightly different memory parameters will typically have an irregular short-
memory component in its spectral density. Given an a priori lower bound
on αmin it is possible to use the estimates of the dk to consistently estimate
the dimensions a0, . . . , as of the cointegrating subspaces, as well as s itself
and the cointegrating rank r = a1 + · · · + as. This can be accomplished by
setting the group boundaries at the points where the sorted estimates of the
dk differ by a sufficient amount. While the need for a lower bound on αmin

is unfortunate since such a quantity would rarely be known in practice, we
note that such lower bounds (assuming s = 1) arise implicitly or explicitly
in other works on semiparametric fractional cointegration. See Robinson and
Yajima (2002), Assumption D, and Velasco (2003), Theorems 2 and 4, as well
as Nielsen and Shimotsu (2007).

The estimators for the cointegrating parameter considered above are all
direct in the sense that they do not require estimation of memory param-
eters or other nuisance parameters. An alternative promising approach was
proposed by Robinson (2006), in the context of a Type I stationary bivariate
system. Under this approach, a bivariate local Whittle estimator is used to
jointly estimate the memory parameters du1 < du2 < 1/2, the parameter
β (which is a cointegrating parameter if it is nonzero) and the phase pa-
rameter γ in the bivariate system (yt, xt)′ where yt = βxt + u1,t, xt = u2,t

and the spectral density of (u1,t, u2,t)′ satisfies (3) with phase parameters
φ1 = 0, φ2 = (π/2 − γ)(du2 − du1). If β �= 0, then both {xt} and {yt} have
memory parameter du2 but the linear combination yt − βxt has memory pa-
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rameter du1 < du2 . On the other hand, if β = 0 there is no cointegration
and the memory parameters of {xt} and {yt} are unequal. Assuming suffi-
cient smoothness on the spectral density of (u1,t, u2,t)′, the resulting local
Whittle estimator of β is asymptotically normal, and, to within logarithmic
terms, is n2/5+(du2−du1)/5-consistent, a faster rate than attained by any of the
semiparametric estimators considered above. Furthermore, as du2 − du1 ap-
proaches 1/2, the local Whittle estimator of β becomes nearly n1/2-consistent.
The vector of standardized parameter estimates is asymptotically 4-variate
normal (the feature of asymptotic normality is not typically shared by the
direct estimators of the cointegrating parameter), and the estimate for β
converges at a faster rate than the other components. The case β = 0 is
allowed, and tests can be constructed for this hypothesis, which implies no
cointegration, but still entails the assumption that du1 < du2 . Although it is
semiparametric, the estimator is nevertheless sensitive to misspecification of
the phase parameter. If φ2 is indeed of the form given above, but an incorrect
value for γ, say γ∗, is fixed in the local Whittle objective function, which is
then minimized with respect to the other parameters, then if γ∗ = 0 mod
(2π/(du2 − du1)) the estimated parameter vector is still asymptotically nor-
mal with the same standardization as above, though the limiting covariance
matrix becomes more complicated, while if γ∗ �= 0 mod (2π/(du2 − du1)) the
estimates of du1 and du2 are rendered inconsistent and the estimate of β is
still asymptotically normal, but with the inferior rate (n/mn)du2−du1 , where
mn → ∞ is the bandwidth used in the estimator. If the form of φ2 were
actually other than that assumed, for example φ2 = (π/2 − γ)(du2 − du1)2,
then all variants considered above of the local Whittle estimator may yield
inconsistent estimates of β.

6 Testing for Cointegration; Determination of
Cointegrating Rank

Although this chapter has focused mainly on models for fractional cointegra-
tion and estimation of the cointegrating parameter, there remains the more
basic question of testing for the existence of fractional cointegration. There
has been some progress in this direction, which we describe briefly here. A
method proposed by Robinson (2006) based on joint local Whittle estima-
tion of all parameters was described in Section 5, although the bivariate
model considered there rules out the possibility that the two series have the
same memory parameter if there is no cointegration. Marinucci and Robin-
son (2001) proposed a Hausman-type test in which the memory parameters of
the observed series are estimated by two different methods: (1) a multivariate
Gaussian semiparametric estimator, imposing the constraint that the mem-
ory parameters are the same, and (2) a univariate Gaussian semiparametric
estimator of a particular entry. The component of (1) for this entry would
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be consistent if and only if there is no cointegration, but the estimator (2)
would be consistent in either case. Comparing the standardized differences
between these two estimators leads to a test for the null hypothesis H0 of no
cointegration versus the alternative hypothesis of cointegration. Marmol and
Velasco (2004), who assumed a nonstationary Type-II model, use regression-
based estimators of the cointegrating/projection parameter, and exploit the
fact that under H0 the regressions will be spurious and therefore the true
projection parameter is not consistently estimated by OLS. This, together
with another estimator of the projection parameter that is consistent under
H0, leads to a Hausman-type test of H0, under the assumption that if there is
cointegration, the cointegrating error is also nonstationary. This assumption
would be difficult to maintain if the observed series were volatilities, which
are usually considered in the literature to be stationary. Chen and Hurvich
(2006) use a statistic based on the difference between the largest and smallest
residual-based Gaussian semiparametric estimator of the memory parameter
to construct a conservative test of H0.

If there is indeed cointegration, another question then arises: what is the
cointegrating rank? Unlike in the parametric classical cointegration case it is
not possible here to handle the problem by multivariate unit root testing as
in Johansen (1988, 1991). Robinson and Yajima (2002) proposed a model-
selection type method to consistently estimate the cointegrating rank, given
an a priori lower bound on the degree of memory parameter reduction. A
similar method was employed by Chen and Hurvich (2003b), who considered
just a single cointegrating subspace, requiring an upper bound on the mem-
ory parameter of the cointegrating error and a lower bound on the memory
parameter of the observed series. A related method for nonstationary sys-
tems based on the exact local Whittle estimator was considered by Nielsen
and Shimotsu (2007). A residual-based method for determining not only the
cointegrating rank but also the dimensions of the fractional cointegrating
subspaces was briefly mentioned in Section 5, and described in more detail
in Chen and Hurvich (2006), and in even more detail in a pre-publication
version of that paper.
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Different Kinds of Risk

Paul Embrechts, Hansjörg Furrer and Roger Kaufmann

Abstract Over the last twenty years, the financial industry has developed
numerous tools for the quantitative measurement of risk. The need for this
was mainly due to changing market conditions and regulatory guidelines. In
this article we review these processes and summarize the most important risk
categories considered.

1 Introduction

Tumbling equity markets, falling real interest rates, an unprecedented in-
crease in longevity, inappropriate reserving, and wrong management deci-
sions were among the driving forces that put the financial stability of so
many (insurance) companies at risk over the recent past. Senior management,
risk managers, actuaries, accounting conventions, regulatory authorities all
played their part. With the solvency of many companies put at stake, po-
litical intervention led to the revision of the existing regulatory frameworks.
For both the insurance and the banking industry, the aim is to create pru-
dential supervisory frameworks that focus on the true risks being taken by a
company.
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In the banking regime, these principles were set out by the Basel Com-
mittee on Banking Supervision (the “Committee”) and culminated in the so-
called Basel II Accord, see Basel Committee on Banking Supervision (2005).
Initially and under the original 1988 Basel I Accord, the focus has been on
techniques to manage and measure market and credit risk. Market risk is
the risk that the value of the investments will change due to moves in the
market risk factors. Typical market risk factors are stock prices or real estate
indices, interest rates, foreign exchange rates, commodity prices. Credit risk ,
in essence, is the risk of loss due to counter-party defaulting on a contract.
Typically, this applies to bonds where the bond holders are concerned that
the counter-party may default on the payments (coupon or principal). The
goal of the new Basel II Accord was to overturn the imbalances that prevailed
in the original 1988 accord. Concomitant with the arrival of Basel II and its
more risk sensitive capital requirements for market and credit risk, the Com-
mittee introduced a new risk category aiming at capturing risks “other than
market and credit risks”. The introduction of the operational risk category
was motivated, among other considerations, by events such as the Barings
Bank failure. The Basel Committee defines operational risk as the risk of loss
resulting from inadequate or failed internal processes, people and systems, or
from external events. The Basel II definition includes legal risk, but excludes
strategic risk, i.e. the risk of a loss arising from a poor strategic business
decision. Furthermore, this definition excludes reputational risk. Examples of
operational risk include, among others, technology failure, business premises
becoming unavailable, errors in data processing, fraud, etc. The capital re-
quirement of Basel II is that banks must hold capital of at least 8% of total
risk-weighted assets. This definition was retained from the original accord.

Insurance regulation too is rapidly moving towards risk-based foundations.
Based on the findings of the Müller Report Müller (1997), it was recognized
that a fundamental review of the assessment of the overall financial position
of an insurance company should be done, including for example the interac-
tions between assets and liabilities, accounting systems and the methods to
calculate the solvency margins. In 2001, the European Commission launched
the so-called Solvency II project. The key objective of Solvency II is to secure
the benefits of the policyholders thereby assessing the company’s overall risk
profile. A prudential supervisory scheme does not strive for a “zero-failure”
target; in a free market, failures will occur. Rather, prudential supervisory
frameworks should be designed in such a way that a smooth run-off of the
portfolios is ensured in case of financial distress. Phase 1 of the Solvency II
project began in 2001 with the constitution of the so-called London Working
Group chaired by Paul Sharma from the FSA (Financial Services Author-
ity). The resulting Sharma Report Sharma (2002) was published in 2002,
and contains a survey of actual failures and near misses from 1996 to 2001.
The second phase lasts from 2003 to 2007 and is designated to the develop-
ment of more detailed rules. Finally, the third phase should be terminated
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by 2010, and is devoted to the implementation of the new standards, also in
the national laws.

At the heart of both Basel II and Solvency II lies a three pillar struc-
ture. Pillar one defines the minimum financial requirements. The second pil-
lar earmarks the supervisory review process, whereas pillar three sets out
the disclosure requirements. The minimum financial requirements relate a
company’s available capital to its economic capital. Economic capital is the
amount of capital that is needed to support for retained risks in a loss situ-
ation. Associating available capital with economic capital is only meaningful
if consistency prevails between valuation and risk measurement. The arrival
of a robust marked-to-market culture in the 1990s helps to achieve greater
harmonization in this context.

The three-pillar structure of both risk based insurance and banking super-
visory frameworks indicates that the overall assessment of a financial institu-
tion’s financial stability goes beyond the determination of capital adequacy
ratios. Nevertheless, the focus in this note will be on the capital requirements,
that is on pillar one. More specifically, we address the issue of how to quantify
market, credit and insurance risk. We also touch upon the measurement of
operational risk. But rather than promoting seemingly sophisticated (actuar-
ial) measurement techniques for quantifying operational risk, we focus on the
very special nature of this risk category, implying that standard analytical
concepts prove insufficient and also yield counter-intuitive results in terms of
diversification.

In hindsight, the inexperienced reader could be tempted to believe that
only regulators demand for distinctive risk management cultures and cutting-
edge economic capital models. Alas, there are many more institutions that
keep a beady eye on the companies’ risk management departments: analysts,
investors, and rating agencies, to name a few, have a growing interest in what
is going on on the risk management side. Standard and Poor’s for instance,
a rating agency, recently added an “Enterprise Risk Management” (ERM)
criterion when rating insurance companies. The ERM rating is based on
five key metrics, among which are the risk and economic capital models of
insurance undertakings.

The remainder of this note is organized as follows. In Section 2 we provide
the basic prerequisites for quantitative risk management by introducing the
notion of risk measures and the concept of risk factor mapping. Special em-
phasis will be given to two widely used risk measures, namely Value at Risk
(VaR) and expected shortfall. Section 3 is devoted to the measurement of
credit risk, whereas Section 4 deals with market risk. The problem of how to
scale a short term VaR to a longer term VaR will be addressed in Section 4.3.
The particularities of operational risk loss data and their implications on the
economic capital modeling in connection with VaR will be discussed in Sec-
tion 5. Section 6 is devoted to the measurement of insurance risk. Both the
life and non-life measurement approach that will be presented originate from
the Swiss Solvency Test. In Section 7 we make some general comments on
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the aggregation of risks in the realm of economic capital modeling. Atten-
tion will be drawn to risks that exhibit special properties such as extreme
heavy-tailedness, extreme skewness, or a particular dependence structure.

2 Preliminaries

Risk models typically aim at quantifying likely losses of a portfolio over a
given time horizon that could incur for a variety of risks. Formal risk modeling
for instance is required under the new (risk-sensitive) supervisory frameworks
in the banking and insurance world (Basel II, Solvency II). In this section, we
provide the prerequisites for the modeling of risk by introducing risk measures
and the notion of risk factor mapping.

2.1 Risk measures

The central notion in actuarial and financial mathematics is the notion of un-
certainty or risk. In this article, uncertainty or risk will always be represented
by a random variable, say X or X(t), defined on a filtered probability space
(Ω,F , (Ft)t∈[0,T∗],P). The filtration (Ft)t is assumed to satisfy the “usual
conditions”, that is a) (Ft)t is right-continuous and b) F0 contains all null
sets, i.e. if B ⊂ A ∈ F0 with P[A] = 0, then B ∈ F0.

Since risks are modeled as (non-negative) random variables, measuring
risk is equivalent to establishing a relation & between the set of random
variables and R, the real numbers. Put another way, a risk measure is a
function mapping a risk X to a real number &(X). If for example X defines
the loss in a financial portfolio over some time horizon, then &(X) can be
interpreted as the additional amount of capital that should be set aside so
that the portfolio becomes acceptable for a regulator, say. The definition of
a risk measure is very general, and yet risk measures should fulfill certain
properties to make them “good” risk measures. For instance, it should always
hold that &(X) is bounded by the largest possible loss, as modeled by FX .
Within finance, Artzner et al. (1999) pioneered the systematic study of risk
measure properties, and defined the class of so-called “coherent risk measures”
to be the ones satisfying the following properties:

(a) Translation invariance: &(X+c) = c+&(X), for each risk X and constant
c > 0.

(b) Positive homogeneity: &(cX) = c&(X), for all risksX and constants c > 0.
(c) Monotonicity: if X ≤ Y a.s., then &(X) ≤ &(Y ).
(d) Subadditivity: &(X + Y ) ≤ &(X) + &(Y ).
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Subadditivity can be interpreted in the way that “a merger should not cre-
ate extra risk”; it reflects the idea that risk in general can be reduced via
diversification.

Note that there exist several variations of these axioms depending on
whether or not losses correspond to positive or negative values, or whether a
discount rate over the holding period is taken into account. In our case, we
consider losses as positive and neglect interest payments. The random vari-
ables X , Y correspond to values of risky positions at the end of the holding
period, hence the randomness.

2.1.1 Value at Risk

The most prominent risk measure undoubtedly is Value at Risk (VaR). It
refers to the question of how much a portfolio position can fall in value over
a certain time period with a given probability. The concept of Value at Risk
originates from J.P. Morgan’s RiskMetrics published in 1993. Today, VaR is
the key concept in the banking industry for determining market risk capital
charges. A textbook treatment of VaR and its properties is Jorion (2000).
Formally, VaR is defined as follows:

Definition 1 Given a risk X with cumulative distribution function FX and
a probability level α ∈ (0, 1), then

VaRα(X) = F−1
X (α) = inf{x ∈ R : FX(x) ≥ α}.

Typical values for α are 0.95, 0.99 or 0.999. The Basel II approach for a
market risk charge for example requires a holding period of ten days and a
confidence level of α = 0.99. At the trading floor level, individual trading
limits are typically set for one day, α = 0.95.

Even though VaR has become the benchmark risk measure in the financial
world, it has some deficiencies which we shall address here. First, note that
VaR only considers the result at the end of the holding period, hence it
neglects what happens with the portfolio value along the way. Moreover,
VaR assumes the current positions being fixed over the holding period. In
practice, however, positions are changed almost continuously. It is fair to say,
however, that these weaknesses are not peculiar to VaR; other one-period
risk measures have the same shortcomings. More serious though is the fact
that VaR does not measure the potential size of a loss given that the loss
exceeds VaR. It is mainly for this reason why VaR is not being used in the
Swiss Solvency Test for the determination of the so-called target capital.
There, the regulatory capital requirement asks for sufficient capital to be left
(on average) in a situation of financial distress in order to ensure a smooth
run-off of the portfolio.

The main criticism of VaR, however, is that in general it lacks the property
of subadditivity. Care has to be taken when risks are extremely skewed or
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heavy-tailed, or in case they encounter a special dependency structure. In
such circumstances, VaR may not be sub-additive, as the following example
with two very heavy-tailed risks shows. The implications for the modeling
of economic capital are severe as the concept of diversification breaks down.
We come back to this issue later in Sections 5 and 7 when we talk about
operational risk losses and their aggregation.

Example 1 Let X1 and X2 be two independent random variables with com-
mon distribution function FX(x) = 1−1/

√
x for x ≥ 1. Observe that the risks

X1, X2 have infinite mean, and thus are very heavy-tailed. Furthermore, one
easily shows that VaRα(X) = (1 − α)−2. Straightforward calculation then
yields

FX1+X2(x) = P[X1 +X2 ≤ x]

=
∫ x−1

1

FX(x− y) dFX(y)

= 1 − 2
√
x− 1/x

< 1 −
√

2/x
= F2X(x),

where F2X(u) = P[2X1 ≤ u] for u ≥ 2. From this, we then conclude that
VaRα(X1 +X2) > VaRα(2X1). Since VaRα(2X1) = VaRα(X1) + VaRα(X1),
it follows that

VaRα(X1 +X2) > VaRα(X1) + VaRα(X2),

hence demonstrating that VaR is not sub-additive in this case. Note that a
change in the risk measure from VaR to expected shortfall (see Definition 2
below), say, is no reasonable way out in this case. The problem being that
expected shortfall is infinite in an infinite mean model.

We conclude this section by showing that VaR is sub-additive for normally
distributed risks. In fact, one can show that VaR is sub-additive for the wider
class of linear combinations of the components of a multivariate elliptical
distribution, see for instance McNeil et al. (2005), Theorem 6.8.

Example 2 Let X1, X2 be jointly normally distributed with mean vector
μ = (μ1, μ2)′ and covariance matrix

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

,

where −1 ≤ ρ ≤ 1 and σi > 0, i = 1, 2. Let 0.5 ≤ α < 1, then

VaRα(X1 +X2) ≤ VaRα(X1) + VaRα(X2). (1)
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The main observation here is that, since (X1, X2) is bivariate normally dis-
tributed, X1, X2 and X1+X2 all have univariate normal distributions. Hence
it follows that

VaRα(Xi) = μi + σi qα(N), i = 1, 2,

VaRα(X1 +X2) = μ1 + μ2 +
√

σ2
1 + 2ρσ1σ2 + σ2

2 qα(N).

Here qα(N) denotes the α-quantile of a standard normally distributed random
variable. The assertion in (1) now follows because of qα(N) ≥ 0 (since 0.5 ≤
α < 1) and (σ2

1 + 2ρσ1σ2 + σ2
2)1/2 ≤ σ1 + σ2 (since ρ ≤ 1).

2.1.2 Expected shortfall

As mentioned earlier, for a given level α, VaRα does not give information
on the loss sizes beyond this quantile. To circumvent this problem, Artzner
et al. (1999) considered the notion of expected shortfall or conditional tail
expectation instead.

Definition 2 Let X be a risk and α ∈ (0, 1). The expected shortfall or
conditional tail expectation is defined as the conditional expected loss given
that the loss exceeds VaRα(X):

ESα(X) = E[X |X > VaRα(X)] .

Intuitively, ESα(X) represents the average loss in the worst 100(1−α)% cases.
This representation is made more precise by observing that for a continuous
random variable X one has

ESα(X) =
1

1 − α

∫ 1

α

VaRξ(X) dξ, 0 < α < 1.

For continuous risks X expected shortfall, as defined in Definition 2, is a
coherent risk measure, see Artzner et al. (1999). For risks which are not
continuous, a slight modification of Definition 2 leads to a coherent, i.e. sub-
additive risk measure; see McNeil et al. (2005), Section 2.2.4.

2.2 Risk factor mapping and loss portfolios

Denote the value of a portfolio at time t by V (t). The loss of the portfolio
over the period [t, t+ h] is given by

L[t,t+h] = −
(

V (t+ h) − V (t)
)

.
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Note our convention to quote losses as positive values. Following standard
risk management practice, the portfolio value is modeled as a function of a
d-dimensional random vector Z(t) = (Z1(t), Z2(t), . . . , Zd(t))′ of risk factors
Zi. Hence,

V (t) = V (t;Z(t)). (2)

The representation (2) is known as mapping of risks. Representing a financial
institution’s portfolio as a function of underlying market-risky instruments
constitutes a crucial step in any reasonable risk management system. Indeed,
any potential risk factor not included in this mapping will leave a blind spot
on the resulting risk map.

It is convenient to introduce the vector X[t,t+h] = Z(t + h) − Z(t) of
risk factor changes for the portfolio loss L[t,t+h]. It can be approximated by
LΔ

[t,t+h], where
LΔ

[t,t+h] = (∇V )′X[t,t+h] (3)

provided the function V : R
d → R is differentiable. Here, ∇f denotes the

vector of partial derivatives ∇f = (∂f/∂z1, . . . , ∂f/∂zd)′. Observe that in (3)
we suppressed the explicit time dependency of V . The approximation (3) is
convenient as it allows one to represent the portfolio loss as a linear function of
the risk factor changes, see also Section 4.1.1. The linearity assumption can be
viewed as a first-order approximation (Taylor series expansion of order one)
of the risk factor mapping. Obviously, the smaller the risk factor changes, the
better the quality of the approximation.

3 Credit Risk

Credit risk is the risk of default or change in the credit quality of issuers of
securities to whom a company has an exposure. More precisely, default risk is
the risk of loss due to a counter-party defaulting on a contract. Traditionally,
this applies to bonds where debt holders are concerned that the counter-
party might default. Rating migration risk is the risk resulting from changes
in future default probabilities. For the modeling of credit risk, the following
elements are therefore crucial:

- default probabilities: probability that the debtor will default on its obliga-
tions to repay its debt;

- recovery rate: proportion of the debt’s par value that the creditor would
receive on a defaulted credit, and

- transition probabilities : probability of moving from one credit quality to
another within a given time horizon.

In essence, there are two main approaches for the modeling of credit risk,
so-called structural models and reduced form or intensity based methods.
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3.1 Structural models

Merton (1974) proposed a simple capital structure of a firm where the dy-
namics of the assets are governed by a geometric Brownian motion:

dA(t) = A(t)(μdt + σ dW (t)), t ∈ [0, T ].

In its simplest form, an obligor’s default in a structural model is said to
occur if the obligor’s asset value A(T ) at time T is below a pre-specified
deterministic barrier x, say. The default probability can then be calculated
explicitly:

P[A(T ) ≤ x] = Φ

(

log(x/A(0)) − (μ− σ2/2)T
σ
√
T

)

.

Here Φ denotes the cumulative distribution function of a standard normal
random variable, i.e. Φ(x) = 1/

√
2π

∫ x

−∞ exp{−y2/2} dy. Various extensions
of Merton’s original firm value model exist. For instance, one can let the
barrier x be a (random) function of time.

3.2 Reduced form models

In a reduced form pricing framework, it is assumed that the default time τ is
governed by a risk neutral default intensity process λ = {λ(t) : t ≥ 0}. That
is, default is defined as the first arrival time (jump time) τ of a counting
process with intensity λ. It can be shown that the conditional probability at
time t, given all information at that time, of survival to a future time T , is
given by

p(t, T ) = EQ

[

e−
∫

T
t

λ(u) du|Ft

]

(4)

From (4) one immediately recognizes the analogy between an intensity pro-
cess λ and a short interest rate process r for the time-t price of a (default
free) zero-coupon bond maturing at time T . The latter is given by

P (t, T ) = EQ

[

B(t)/B(T )|Ft

]

= EQ

[

e−
∫ T

t
r(u) du|Ft

]

,

where B(t) = exp{
∫ t

0
r(s) ds} denotes the risk free bank account numéraire.

As shown by Lando (1998), the defaultable bond price at time t (assuming
zero recovery) is then given by

P̄ (t, T ) = EQ

[

e−
∫ T

t
(r(u)+λ(u)) du|Ft

]

,

provided default has not already occurred by time t.
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Reduced form models can be extended to allow for non-zero recovery.
Duffie and Singleton (1999) for instance introduce the concept of recovery
of market value (RMV), where recovery is expressed as a fraction of the
market value of the security just prior to default. Formally, it is assumed
that the claim pays (1 − L(t))V (t−), where V (t−) = lims↑t V (s) is the price
of the claim just before default, and L(t) is the random variable describing
the fractional loss of market value of the claim at default. Under technical
conditions, Duffie and Singleton (1999) show that

P̄ (t, T ) = EQ

[

e−
∫ T

t
(r(u)+λ(u)L(u)) du|Ft

]

.

Here, r(u) + λ(u)L(u) is the default-adjusted short rate.

3.3 Credit risk for regulatory reporting

Compared to the original 1988 Basel accord and its amendments, Basel II
better reflects the relative credit qualities of obligors based on their credit
ratings. Two approaches are being proposed under Basel II, namely

(A) Standardized approach
(B) Internal-ratings-based approach

The standardized approach better recognizes the benefits of credit risk mi-
gration and also allows for a wider range of acceptable collateral. Under the
internal-ratings-based approach, a bank can — subject to the bank’s regulator
approval — use its own internal credit ratings. The ratings must correspond
to the one-year default probabilities and have to be in place for a minimum
of three years.

The assessment of credit risk under the Solvency II regime essentially
follows the Basel II principles. Within the Swiss Solvency Test for instance,
the Basel II standardized approach is being advocated. Portfolio models are
acceptable too, provided they capture the credit migration risk. It is for this
reason why the CreditRisk+ model for instance would not be permissible
within the Swiss Solvency Test as this model only covers the default risk, but
not the credit migration risk.

4 Market Risk

Market risk is the risk that the value of an investment will decrease due to
moves in market risk factors. Standard market risk factors are interest rates,
stock indices, commodity prices, foreign exchange rats, real estate indices,
etc.
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4.1 Market risk models

4.1.1 Variance-covariance

The standard analytical approach to estimate VaR or expected shortfall
is known as variance-covariance method. This means that the risk factor
changes are assumed to be samples from a multivariate normal distribution,
and that the loss is represented as a linear function of the risk factor changes,
see Section 2.2 for more details. This approach offers an analytical solution,
and it is much faster to calculate the risk measures in a parametric regime
than performing a simulation. However, a parametric approach has signifi-
cant limitations. The assumption of normally distributed risk factor changes
may heavily underestimate the severeness of the loss distribution. Moreover,
linearization may be a poor approximation of the risk factor mapping.

4.1.2 Historical simulation

The second well-established approach for measuring market risk exposure is
the historical simulation method. Instead of estimating the loss distribution
under some explicit parametric model for the risk factor changes, one uses the
empirical distribution of the historical loss data. VaR and expected shortfall
can then either be estimated directly from the simulated data or by first
fitting a univariate distribution to the loss data. The main advantage of
this approach is its simplicity of implementation. No statistical estimation
of the distribution of the risk factor changes is required. In particular, no
assumption on the interdependence of the underlying risk factors is made.
On the downside, it may be difficult to collect enough historical data of good
quality. Also, the observation period is typically not long enough such that
samples of extreme changes in the portfolio value cannot be found. Therefore,
adding suitable stress scenarios is very important.

4.1.3 Monte Carlo simulation

The idea behind the Monte Carlo method is to estimate the loss distribu-
tion under some explicit parametric model for the risk factor changes. To
be more precise, one first fits a statistical model to the risk factor changes.
Typically, this model is inferred from the observed historical data. Monte
Carlo-simulated risk factor changes then allow one to make inferences about
the loss distribution and the associated risk measure. This approach is very
general, albeit it may require extensive simulation.
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4.2 Conditional versus unconditional modeling

In an unconditional approach, one neglects the evolution of risk factor changes
up to the present time. Consequently, tomorrow’s risk factor changes are
assumed to have the same distribution as yesterday’s, and thus the same
variance as experienced historically. Such a stationary model corresponds to
a long-term view and is often appropriate for insurance risk management
purposes. However, empirical analysis often reveals that the volatility σt of
market risk factor changes X(t), conditionally on their past, fluctuates over
time. Sometimes, the market is relatively calm, then a crisis happens, and
the volatility will suddenly increase. Time series models such as GARCH
type models allow the variance σ2

t+1 to vary through time. They are suited
for a short-term perspective. GARCH stands for generalized autoregressive
conditional heteroskedasticity, which in essence means that the conditional
variance on one day is a function of the conditional variances on the previous
days.

4.3 Scaling of market risks

A risk measure’s holding period should be related to the liquidity of the
assets. If a financial institution runs into difficulties, the holding period should
cover the time necessary to raise additional funds for corrective actions. The
Basel II VaR approach for market risk for instance requires a holding period
of ten days (and a confidence level α = 0.99). The time horizon thus often
spans several days, and sometimes even extends to a whole year. While the
measurement of short-term financial risks is well established and documented
in the financial literature, much less has been done in the realm of long-term
risk measurement. The main problem is that long-dated historical data in
general is not representative for today’s situation and therefore should not
be used to make forecasts about the future changes in market risk factors. So
the risk manager is typically left with little reliable data to make inference
of long term risk measures.

One possibility to close this gap is to scale a short-term risk estimate
to a longer one. The simplest way to do this is to use the square-root-of-
time scaling rule, where a k-day Value at Risk VaR(k) is scaled with

√
n in

order to get an estimate for the nk-day Value at Risk VaR(nk) ≈ √
nVaR(k).

This rule is motivated by the fact that one often considers the logarithm of
tradable securities, say S, as risk factors. The return over a 10-day period for
example is then expressible as R[0,10] := log(S(10))/S(0)) = X(1) +X(2) +
· · · +X(10), where X(k) = log(S(k)) − log(S(k − 1)) = log(S(k)/S(k − 1)),
k = 1, 2, . . . , 10. Observe that for independent random variables X(i) the
standard deviation of R[0,10] equals

√
10 times the standard deviation ofX(1).

In this section we analyze under which conditions such scaling is appropriate.
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We concentrate on unconditional risk estimates and on VaR as risk measure.
Recall our convention to quote losses as positive values. Thus the random
variable L(t) will subsequently denote the negative value of one-day log-
returns, i.e. L(t) = − log(S(t)/S(t− 1)) for some security S.

4.3.1 Scaling under normality

Under the assumption of independent and identically zero-mean normally
distributed losses L(t) ∼ N (0, σ2) it follows that the n-day losses are also nor-
mally distributed, that is

∑n
t=1 L(t) ∼ N (0, nσ2). Recall that for a N (0, σ̃2)-

distributed loss L, VaR is given by VaRα(L) = σ̃ qα(N), where qα(N) denotes
the α-quantile of a standard normally distributed variate. Hence the square-
root-of-time scaling rule

VaR(n) =
√
nVaR(1)

works perfectly in this case.
Now let a constant value μ be added to the one-day returns, i.e. μ is

subtracted from the one-day loss: L(t) ∼ N (−μ, σ2). Assuming independence
among the one-day losses, the n-day losses are again normally distributed
with mean value −nμ and variance nσ2, hence

∑n
t=1 L(t) ∼ N (−nμ, nσ2).

The VaR in this case will be increased by the trend of L. This follows from
VaR(n) + nμ =

√
n (VaR(1) + μ), or equivalently

VaR(n) =
√
nVaR(1) − (n−

√
n)μ.

Accounting for trends is important and therefore trends should never be
neglected in a financial model. Note that the effect increases linearly with
the length n of the time period.

To simplify matters, all the models presented below are restricted to the
zero-mean case. They can easily be generalized to non-zero mean models,
implying that the term (n−

√
n)μmust be taken into account when estimating

and scaling VaR.

4.3.2 Autoregressive models

Next, we consider a stationary autoregressive model of the form

L(t) = λL(t− 1) + εt,

where (εt)t∈N is a sequence of iid zero-mean normal random variables with
variance σ2 and λ ∈ (−1, 1). Not only are the one-day losses normally dis-
tributed, but also the n-day losses:
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L(t) ∼ N
(

0,
σ2

1 − λ2

)

,
n

∑

t=1

L(t) ∼ N
(

0,
σ2

(1 − λ)2
(n− 2λ

1 − λn

1 − λ2
)
)

.

Hence, making use of VaRα(L) = σ̃ qα(N), one obtains

VaR(n) =

√

1 + λ

1 − λ

(

n− 2λ
1 − λn

1 − λ2

)

VaR(1). (5)

Since the square-root expression in (5) tends to
√
n as λ → 0, one concludes

that the scaled one-day value
√
nVaR(1) is a good approximation of VaR(n)

for small values of λ.
For more general models, such as stochastic volatility models with jumps

or AR(1)-GARCH(1,1) models, the correct scaling from a short to a longer
time horizon depends on the confidence level α and cannot be calculated
analytically. In many practical applications, the confidence level varies from
0.95 to 0.99, say. Empirical studies show that for such values of α, scaling a
short-term VaR with the square-root-of-time yields a good approximation of
a longer-term VaR, see Kaufmann (2005). For smaller values of α, however,
the scaled risks tend to overestimate the true risks, whereas larger values of
α tend to underestimate the risks. In the limit α → 1, one should abstain
from scaling risks, see Brummelhuis and Guégan (2000, 2005).

Sometimes risk managers are also confronted with the problem of trans-
forming a 1-day VaR at the confidence level α = 0.95 to a 10-day VaR at
the 0.99 level. From a statistical viewpoint, such scaling should be avoided.
Our recommendation is to first try to arrive at an estimate of the 1-day VaR
at the 0.99 level and then to make inference of the 10-day VaR by means of
scaling.

In this section we analyzed the scaling properties in a VaR context. As a
matter of fact, these properties in general do not carry over when replacing
VaR through other risk measures such as expected shortfall. In an expected
shortfall regime coupled with heavy-tailed risks, scaling turns out to be del-
icate. For light-tailed risk though the square-root-of-time rule still provides
good results when expected shortfall is being used.

5 Operational Risk

According to the capital adequacy frameworks as set out by the Basel Com-
mittee, the general requirement for banks is to hold total capital equivalent
to at least 8% of their risk-weighted assets. This definition was retained of the
old capital adequacy framework (Basel I). In developing the revised frame-
work now known as Basel II the idea was to arrive at significantly more
risk-sensitive capital requirements. A key innovation in this regard was that
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operational risk –besides market and credit risk– must be included in the cal-
culation of the total minimum capital requirements. Following the Commit-
tee’s wording, we understand by operational risk “the risk of losses resulting
from inadequate or failed internal processes, people and systems, or external
events”.

The Basel II framework provides a range of options for the determination
of an operational risk capital charge. The proposed methods allow banks
and supervisors to select approaches that are most appropriate for a bank’s
operations. These methods are:

(1) basic indicator approach,
(2) standardized approach,
(3) advanced measurement approach.

Both the basic indicator approach as well as the standardized approach are
essentially volume-based measurement methods. The proxy in both cases is
the average gross income over the past three years. These measurement meth-
ods are primarily destined for small and medium-sized banks whose exposure
to operational risk losses is deemed to be moderate. Large internationally
active banks, on the other hand, are expected to implement over time a more
sophisticated measurement approach. Those banks must demonstrate that
their approach is able to capture “severe tail loss events”. More formally,
banks should set aside a capital charge COp for operational risk in line with
the 99.9% confidence level on a one-year holding period. Using VaR as risk
measure, this approach is known as loss distribution approach (LDA). It is
suggested to use

∑8
k=1 VaRα(Lk) for a capital charge and to allow for a

capital reduction through diversification under appropriate dependency as-
sumptions. Here, Lk denotes the one-year operational risk loss of business
line k. The choice of 8 business lines and their precise definition is to be
found in the Basel II Accord, banks are allowed to use fewer or more.

It is at this point where one has to sway a warning flag. A recent study
conducted by Moscadelli (2004) reveals that operational loss amounts are very
heavy-tailed. This stylized fact has been known before, albeit not in such an
unprecedented way. Moscadelli’s analysis suggests that the loss data from six
out of eight business lines come from an infinite mean model! An immediate
consequence is that standard correlation coefficients between two such one-
year losses do not exist. Nešlehová et al. (2006) in their essay carry on with
the study of Moscadelli’s data and show the serious implications extreme
heavy-tailedness can have on the economic capital modeling, in particular
when using VaR as a risk measure. Note that it is not the determination of a
VaR per se that causes problems in an infinite mean model. Rather, it is the
idea of capital reduction due to aggregation or pooling of risks that breaks
down in this case, see Example 1 on page 734. We will come back to this
issue later in Section 7.

Operational risk is also part of Solvency II and most of the insurance
industry’s national risk-based standard models. In the realm of the Swiss
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Solvency Test for instance it suffices to assess operational risk on a pure
qualitative basis. Other models, such as the German GDV model for instance,
require a capital charge for operational risk. This charge is mainly volume-
based, similar to the Basel II basic indicator or standardized approach.

6 Insurance Risk

6.1 Life insurance risk

Life insurance contracts are typically characterized by long-term financial
promises and guarantees towards the policyholders. The actuary’s main task
has therefore been to forecast the future liabilities, that is to set up sufficient
reserves in order that the company can meet its future obligations. Ideally,
the modern actuary should also be able to form an opinion on how many
assets will be required to meet the obligations and on how the asset alloca-
tion should look like from a so-called asset and liability management (ALM)
perspective. So life insurance companies are heavily exposed to reserve risk.
Under reserve risk, we understand the risk that the actual claims experi-
ence deviates from the booked reserves. Booked reserves are always based on
some accounting conventions and are determined in such a way that sufficient
provisions are held to cover the expected actuarial liabilities based on the tar-
iffs. Typically, these reserves are formula-based, that is, a specific calculation
applied individually to each contract in force, then summed up, yields the
reserves. Even though they include a margin for prudence, the reserves may
prove insufficient in the course of time because of e.g. demographic changes.

Reserve risk can further be decomposed into the following sub-categories:

(A) stochastic risk,
(B) parametric risk,
(C) model risk.

The stochastic risk is due to the variation and severity of the claims. In
principle, the stochastic risk can be diversified through a greater portfolio
and an appropriate reinsurance program. By ceding large individual risks
to a reinsurer via a surplus share for instance, the portfolio becomes aptly
homogeneous.

Parametric risk arises from the fact that tariffs can be subject to mate-
rial changes over time. For example, an unprecedented increase in longevity
implies that people will draw annuities over a longer period. It is the respon-
sibility of the (chief) actuary to continually assess and monitor the adequacy
of the reserves. Periodic updates of experience data give insight into the ad-
equacy of the reserves.

By model risk finally we understand the risk that a life insurance com-
pany has unsuitable reserve models in place. This can easily be the case
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when life insurance products encompass a variety of policyholder options
such as e.g. early surrender or annuity take-up options. Changing economic
variables and/or an increase in the longevity can result in significant future
liabilities, even when the options were far out of the money at policy incep-
tion. It was a combination of falling long-term interest rates and booming
stock markets coupled with an increase in longevity that put the solvency of
Equitable Life, a UK insurer, at stake and led to the closure of new business.
The reason for this was that so-called guaranteed annuity options dramat-
ically increased in value and subsequently constituted a significant liability
which was neither priced nor reserved for. Traditional actuarial pricing and
reserving methods based on the expectation pricing principle prove useless in
this context were it not for those policyholders who behave in a financially ir-
rational way. Indeed, empirical studies may reveal that there is no statistical
evidence supporting a link between the surrender behavior and the level of
market interest rates. Arbitrage pricing techniques are always based on the
assumption of financially rational policyholder behavior though. This means
that a person would surrender its endowment policy at the first instant when
the actual payoff exceeded the value of continuation.

The merits of arbitrage pricing techniques are that they provide insight
into the mechanism of embedded options, and consequently these findings
should be used when designing new products. This will leave an insurance
company immune against potential future changes in the policyholders’ be-
havior towards a more rational one from a mathematical economics point of
view.

6.2 Modeling parametric life insurance risk

In the following, we will present a model that allows for the quantification
of parametric life insurance risk. This model is being used within the Swiss
Solvency Test. In essence, it is a variance-covariance type model, that is

- risk factor changes have a multivariate normal distribution, and
- changes in the best estimate value of liabilities linearly depend on the risk

factor changes.

More formally, it is assumed that for risk factor changes X and weights b

ΔL = b′X

where L = L(Z(t)) denotes the best estimate value of liabilities at the valua-
tion date t, and Z(t) =

(

Z1(t), Z2(t), . . . , Zd(t)
)′ is the vector of (underwrit-

ing) risk factors. Best estimate values are unbiased (neither optimistic, nor
pessimistic, nor conservative) estimates which employ the most recent and
accurate actuarial and financial market information. Best estimate values are
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without any (safety) margins whatsoever. Typically, the value L is obtained
by means of projecting the future cash flows and subsequent discounting with
the current risk-free yield curve.

Again, we denote the risk factor changes by X(t) = Z(t)−Z(t−1). Within
the Swiss Solvency Test, the following set of risk factors is considered:

Table 1 Life insurance risk factors in the Swiss Solvency Test.

(R1) mortality (R4) recovery
(R2) longevity (R5) surrender/lapse
(R3) disability (R6) annuity take-up

The risk factor “mortality” for example refers to the best estimate one-year
mortality rates qx, qy respectively (second-order mortality rates). The risk
factor “longevity” refers to the improvement of mortality which is commonly
expressed in exponential form

q(x, t) = q(x, t0)e−λx(t−t0) , t ≥ t0,

where q(x, t0) stands for the best estimate mortality rate of an x year old
male at time t0.

Typically, no analytical solutions exist for the partial derivatives bk =
∂L/∂zk, and hence they have to be approximated numerically by means of
sensitivity calculations:

bk ≈ L(Z + εek) − L(Z)
ε

for ε small, e.g. ε = 0.1. Here, ek = (0, . . . , 0, 1, 0, . . . , 0)′ denotes the kth basis
vector in R

d. Combining everything, one concludes that the change ΔL has
a univariate normal distribution with variance b′Σb, i.e. ΔL ∼ N (0,b′Σb).
Here it is assumed that the dependence structure of the underwriting risk
factor changes are governed by the covariance matrix Σ. Note that Σ can be
decomposed into its correlation matrix R and a diagonal matrixΔ comprising
the risk factor changes’ standard deviations on the diagonal. Hence, Σ =
ΔRΔ. Both the correlation coefficients and the standard deviations are based
on expert opinion; no historical time series exists from which estimates could
be inferred. Knowing the distribution of ΔL, one can apply a risk measure
& to arrive at a capital charge for the parametric insurance risk. Within
the Swiss Solvency Test, one uses expected shortfall at the confidence level
α = 0.99.

Table 2 shows the correlation matrix R currently being used in the Swiss
Solvency Test, whereas Table 3 contains the standard deviations of the un-
derwriting risk factor changes.
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Table 2 Correlation matrix R of the life insurance risk factor changes.

Individual Group

R1 R2 R3 R4 R5 R6 R1 R2 R3 R4 R5 R6
R1 1 0 0 0 0 0 1 0 0 0 0 0
R2 0 1 0 0 0 0 0 1 0 0 0 0
R3 0 0 1 0 0 0 0 0 1 0 0 0
R4 0 0 0 1 0 0 0 0 0 1 0 0
R5 0 0 0 0 1 0.75 0 0 0 0 1 0.75

In
di

vi
du

al

R6 0 0 0 0 0.75 1 0 0 0 0 0.75 1
R1 1 0 0 0 0 0 1 0 0 0 0 0
R2 0 1 0 0 0 0 0 1 0 0 0 0
R3 0 0 1 0 0 0 0 0 1 0 0 0
R4 0 0 0 1 0 0 0 0 0 1 0 0
R5 0 0 0 0 1 0.75 0 0 0 0 1 0.75

G
ro

up

R6 0 0 0 0 0.75 1 0 0 0 0 0.75 1

Table 3 Standard deviations of the life insurance risk factor changes (in percentage).

Individual Group

R1 R2 R3 R4 R5 R6 R7 R1 R2 R3 R4 R5 R6 R7

σi 5 10 10 10 25 0 10 5 10 20 10 25 0 10

6.3 Non-life insurance risk

For the purpose of this article, the risk categories (in their general form) al-
ready discussed for life above, also apply. Clearly there are many distinctions
at the product level. For instance, in non-life we often have contracts over a
shorter time period, frequency risk may play a bigger role (think for instance
of hail storms) and especially in the realm of catastrophe risk, numerous
specific methods have been developed by non-life actuaries. Often techniques
borrowed from (non-life) risk theory are taken over by the banking world.
Examples are the modeling of loss distributions, the axiomatization of risk
measures, IBNR and related techniques, Panjer recursion, etc. McNeil et al.
(2005) yield an exhaustive overview on the latter techniques and refer to them
as Insurance Analytics. For a comprehensive summary of the modeling of loss
distributions, see for instance Klugman et al. (2004). An example stressing
the interplay between financial and insurance risk is Schmock (1999).

In the Swiss Solvency Test non-life model the aim is to determine the
change in risk bearing capital within one year due to the variability of the
technical result. The model is based on the accident year principle. That
is, claims are grouped according to the date of occurrence (and not accord-
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ing to the date or year when they are reported). Denoting by [T0, T1] with
T1 = T0 + 1 the one-year time interval under consideration, the technical
result within [T0, T1] is not only determined by the claims occurring in this
period, but also by the claims that have previously occurred and whose set-
tlement stretches across [T0, T1].
The current year claims are further grouped into high frequency-small sever-
ity claims (“small claims”) and low frequency-high severity claims (“large
claims”). It is stipulated that the total of small claims has a gamma distri-
bution, whereas in the large claims regime a compound Poisson distribution
with Pareto distributed claim sizes is used.

As for the claims that have occurred in the past and are not yet settled, the
focus is on the annual reserving result; it is defined as the difference between
the sum of the claim payments during [T0, T1] plus the remaining provisions
after T1 minus the provisions that were originally set up at time T0. Within
the Swiss Solvency Test, this one-year reserve risk is modeled by means of a
(shifted) log-normally distributed random variable.

To obtain the ultimate probability distribution of the non-life risk, one
first aggregates the small claims and the large claims risk, thereby assuming
independence between these two risk categories. A second convolution is then
required to combine the resulting current year risk with the reserve risk, again
assuming independence.

7 Aggregation of Risks

A key issue for the economic capital modeling is the aggregation of risks.
Economic capital models are too often based on the tacit assumption that
risk can be diversified via aggregation. For VaR in the context of very heavy-
tailed distributions, however, the idea of a capital relief due to pooling of risks
may shipwreck, see Example 1 on page 734 where it is shown that VaR is not
sub-additive for an infinite mean model. The (non-) existence of subadditivity
is closely related to Kolmogorov’s strong law of large numbers, see Nešlehová
et al. (2006).
In a formal way, diversification could be defined as follows:

Definition 3 Let X1, . . . , Xn be a sequence of risks and & a risk measure.
Diversification is then expressed as

D" :=
n

∑

k=1

&(Xk) − &
(

n
∑

k=1

Xk

)

.

Extreme heavy-tailedness is one reason why VaR fails to be sub-additive.
Another reason overthrowing the idea of diversification is extreme skewness
of risks as the following simple example demonstrates. Assume that a loss of
EUR 10 million or more is incurred with a probability of 3% and that the
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loss will be EUR 100’000 with a probability of 97%. In this case the VaR at
the 95% level is EUR 100’000, while aggregating two such independent losses
yields a VaR of more than EUR 10 million.

The modeling of dependence is a central element in quantitative risk man-
agement. In most cases, the assumption of independent (market-) risky in-
struments governing the portfolio value is too simplistic and unrealistic. Cor-
relation is by far the most used technique in modern finance and insurance
to describe dependence between risks. And yet correlation is only one par-
ticular measure of stochastic dependence among others. Whereas correlation
is perfectly suited for elliptically distributed risks, dangers lurk if correlation
is used in a non-elliptical world. Recall that independence of two random
variables always implies their uncorrelatedness. The converse, however, does
in general not hold.

We have shown in Example 2 on page 734 that VaR is sub-additive in
a normal risks regime. Indeed, this fact can be used to aggregate market
and insurance risk in a variance-covariance type model, see Sections 4.1.1
and 6.2. There, the required economic capital when combining market and
insurance risks will naturally be reduced compared to the stand-alone capital
requirements.

The above example with extremely skewed risks also shows that indepen-
dence can be worse than comonotonicity. Comonotonicity means that the
risks X1, . . . , Xd are expressible as increasing functions of a single random
variable, Z say. In the case of comonotonic risks VaR is additive, see for in-
stance McNeil et al. (2005), Proposition 6.15. For given marginal distribution
functions and unknown dependence structure, it is in fact possible to calcu-
late upper and lower bounds for VaR, see Embrechts et al. (2003). However,
these bounds often prove inappropriate in many practical risk management
applications. As a consequence, the dependence structure among the risks
needs to be modeled explicitly – if necessary by making the appropriate as-
sumptions.

8 Summary

In this paper, we have summarized some of the issues underlying the quan-
titative modeling of risks in insurance and finance. The taxonomy of risk
discussed is of course incomplete and very much driven by the current su-
pervisory process within the financial and insurance services industry. We
have hardly vouched upon the huge world of risk mitigation via financial
derivatives and alternative risk transfer, like for instance catastrophe bonds.
Nor did we discuss in any detail specific risk classes like liquidity risk and
model risk; for the latter, Gibson (2000) yields an introduction. Beyond the
discussion of quantitative risk measurement and management, there is also
an increasing awareness that qualitative aspects of risk need to be taken seri-
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ously. Especially through the recent discussions around operational risk, this
qualitative aspect of risk management became more important. Though mod-
ern financial and actuarial techniques have highly influenced the quantitative
modeling of risk, there is also a growing awareness that there is an end to the
line for this quantitative approach. Though measures like VaR and the whole
statistical technology behind it have no doubt had a considerable influence on
the handling of modern financial instruments, hardly anybody might believe
that a single number like VaR can really summarize the overall complexity
of risk in an adequate way. For operational risk, this issue is discussed in
Nešlehová et al. (2006); see also Klüppelberg and Rootzén (1999).

Modern risk management is being applied to areas of industry well beyond
the financial ones. Examples include the energy sector and the environment.
Geman (2005) gives an overview of some of the modeling and risk manage-
ment issues for these markets. A more futuristic view on the types of risk
modern society may want to manage is given in Shiller (2003).
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Value–at–Risk Models

Peter Christoffersen∗

Abstract In this chapter, we build first a univariate and then a multivari-
ate filtered historical simulation (FHS) model for financial risk management.
Both the univariate and multivariate methods simulate future returns from a
model using historical return innovations. While the former relies on portfolio
returns filtered by a dynamic variance model, the latter uses individual or
base asset return innovations from dynamic variance and correlation models.
The univariate model is suitable for passive risk management or risk mea-
surement whereas the multivariate model is useful for active risk management
such as optimal portfolio allocation. Both models are constructed in such a
way as to capture the stylized facts in daily asset returns and to be simple
to estimate. The FHS approach enables the risk manager to easily compute
Value-at-Risk and other risk measures including Expected Shortfall for var-
ious investment horizons that are conditional on current market conditions.
The chapter also lists various alternatives to the suggested FHS approach.

1 Introduction and Stylized Facts

In this chapter, we apply some of the tools from previous chapters to develop
a tractable dynamic model for computing the Value-at-Risk (VaR) and other
risk measures of a portfolio of traded assets.

The VaR is defined as a number such that there is a probability p of
exhibiting a worse return over the next K days, and where p and K must
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be predetermined by the risk manager. The VaR is thus simply a quantile of
the return distribution. Clearly, the quantile of a distribution does not tell
us everything about risk. Importantly, it does not tell us how large the likely
magnitude of losses is on those days when the return is worse than the VaR.
Expected Shortfall (ES), which is defined as the expected return conditional
on the return being worse than the VaR, has been suggested as an alternative
to VaR and will also be discussed in this chapter. But, VaR remains by far
the most common risk metric used in practice.

The so-called historical simulation (HistSim) method has emerged as the
industry standard for computing VaR. It computes VaR in two simple steps.
First, a series of hypothetical historical portfolio returns are constructed, us-
ing today’s portfolio weights and historical asset returns. Second, the quantile
of the hypothetical historical portfolio returns is computed. Advocates of the
HistSim approach highlight its “model-free” nature. However it is clearly not
“assumption-free”. HistSim essentially assumes that asset returns are i.i.d.
which is unfortunately not the case empirically.

The objective in this chapter is therefore to design a dynamic alternative
to the static HistSim approach. Specifically, we wish to build a risk model
with the following characteristics:

• The model is a fully specified data-generating process which can be esti-
mated on daily returns

• The model can be estimated and implemented for portfolios with a large
number of assets

• VaR can be easily computed for any prespecified level of confidence, p, and
for any horizon of interest, K

• VaR is conditional on the current market conditions
• Risk measures other than the VaR can be calculated easily

To deliver accurate risk predictions, the model should reflect the following
stylized facts of daily asset returns

• Daily returns have little or no exploitable conditional mean predictability
• The variance of daily returns greatly exceeds the mean
• The variance of daily returns is predictable
• Daily returns are not normally distributed
• Even after standardizing daily returns by a dynamic variance model, the

standardized daily returns are not normally distributed
• Positive and negative returns of the same magnitude may have different

impact on the variance
• Correlations between assets appear to be time-varying
• As the investment horizon increases, the return data distribution ap-

proaches the normal distribution

Again, the objective is to build a dynamic market risk management model
that captures these salient features of daily asset returns, that contains only
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few parameters to be estimated, and that is easily implemented on a large
set of assets.

In Section 2, we will consider a univariate approach and, in Section 3,
a multivariate approach to dynamic risk modeling. The univariate model
simulates historical portfolio return shocks from a dynamic variance model,
and the multivariate model simulates historical asset return shocks by means
of both dynamic variance and correlation models. The univariate model is
suitable for passive risk management or risk measurement, whereas the mul-
tivariate model is useful for active risk management such as optimal portfolio
allocation. The end of each section will discuss alternatives to the approach
taken here. Section 4 concludes.

2 A Univariate Portfolio Risk Model

In this section, we will consider a simple univariate approach to modeling
the dynamic risk of a portfolio. Just as in the HistSim approach mentioned
above, we consider a time series of T hypothetical historical portfolio returns
computed using today’s portfolio weights, and historical returns on n assets

{rt}Tt=1 ≡

⎧

⎨

⎩

n
∑

j=1

wT,jrt,j

⎫

⎬

⎭

T

t=1

,

where rt,j denotes the log return on asset j from the market close on day
t− 1 to market close on day t, that is, rt,j = ln (St,j/St−1,j), and where wT,j

denotes today’s weight of asset j in the portfolio.
The univariate risk model proceeds by simply modeling the properties of

the univariate portfolio return, rt. One great advantage of this approach is
that the correlations and other interdependencies between the n assets do
not need to be modeled. The downside however of the approach is that it
is conditional on the portfolio weights. When these weights change, then so
should the estimated risk model. This portfolio level approach is sometimes
referred to as a passive risk model as it does not directly allow for studying
the effects of actively managing the risk of the portfolio by changing the
portfolio weights.

We proceed by making some key assumptions on the daily portfolio return
process. We will assume that

rt = σtzt zt
i.i.d∼ G(0, 1), (1)

where the dynamic return volatility σt is known at the end of day t− 1, and
where the independent and identically distributed (i.i.d.) return shock, zt, is
from a potentially nonnormal distribution, G(0, 1), with zero mean and unit
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variance. Note that we set the return mean to zero, allowed for time-varying
volatility, and for conditional nonnormality. These assumptions are all in line
with the stylized facts outlined in Section 1. Note also, however, that we have
ruled out time-varying conditional skewness and kurtosis which is sometimes
found to be relevant in asset return modeling. See for example Hansen (1994)
and Harvey and Siddique (1999).

We proceed by first modeling and estimating σt, and then, subsequently,
moving on to the specification of G(0, 1).

2.1 The dynamic conditional variance model

In order to capture the time-varying volatility found in the daily returns, we
rely on the NGARCH(1,1) model. In this model, the variance for date t can
be computed based on the return and the variance for date t− 1 as follows:

σ2
t = ω + α (rt−1 − θσt−1)

2 + βσ2
t−1,

where a positive θ captures the fact that a negative return will increase vari-
ance by more than a positive return of the same magnitude. This asymmetry
effect is one of the stylized facts listed in Section 1.

The unconditional –or long-run– variance in this model can be derived as

σ2 = E
[

σ2
t

]

=
ω

1 − α (1 + θ2) − β
≡ ω

κ
,

where κ ≡ 1 − α
(

1 + θ2
)

− β is interpretable as the speed of mean reversion
in variance.

Setting ω = σ2κ and substituting it into the dynamic variance equation
yields

σ2
t = σ2κ+ α (rt−1 − θσt−1)

2 + βσ2
t−1 (2)

= σ2
t−1 + κ

(

σ2 − σ2
t−1

)

+ α
(

r2t−1 − σ2
t−1 − 2θrt−1σt−1

)

,

where, in the second line, we have simply expanded the square and applied
the definition of κ.

The advantage of writing the model in this form is two-fold. First, we can
easily impose the long-run variance, σ2, to be the sample variance, before
estimating the other parameters. This is referred to as variance targeting.
Second, we can easily impose variance stationarity on the model, by ensuring
that κ > 0 when estimating the remaining parameters. Finally, we guarantee
variance positivity by forcing α > 0 when estimating the parameters.

The parameters {κ, α, θ} that determine the volatility dynamics are easily
estimated by numerically optimizing the quasi maximum likelihood criterion
of the estimation sample
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QMLE (κ, α, θ) = −1
2

T
∑

t=1

(

ln
(

σ2
t

)

+ r2t /σ
2
t

)

. (3)

Typically, κ is found to be close to zero reflecting slow mean reversion and
thus high predictability in the daily variance. The autocorrelation function of
the absolute shock, |zt| = |rt/σt|, provides a useful diagnostic of the volatility
model.

2.2 Univariate filtered historical simulation

We now turn to the specification of the distribution G(0, 1) of the return
shock, zt. The easiest way to proceed would be to assume that the shocks
follow the standard normal distribution. As the standard normal distribution
has no parameters, the specification of the model would then be complete
and the model ready for risk forecasting. From the list of stylized facts in
Section 1, we know however that the assumption of a normal distribution is
not appropriate for most speculative assets at the daily frequency.

The question which alternative distribution to choose then arises? Rather
than forcing such a choice, we here rely on a simple resampling scheme, which,
in financial risk management, is sometimes referred to as filtered historical
simulation (FHS). The term “filtered” refers to the fact that we are not sim-
ulating from the set of raw returns, but from the set of shocks, zt, which are
returns filtered by the GARCH model.

It is simple to construct a one-day VaR from FHS. We calculate the per-
centile of the set of historical shocks, {zt}Tt=1, where zt = rt/σt, and multiply
that onto the one-day ahead volatility

V aRp
T,1 = σT+1Percentile

{

{zt}Tt=1 , 100p
}

. (4)

where the Percentile function returns a number, zp, such that 100p percent of
the numbers in the set {zt}Tt=1 are smaller than zp. Note that, by construction
of the GARCH model, the one-day-ahead volatility is known at the end of
the previous day, so that σT+1|T = σT+1 and we simply use the latter simpler
notation. The Expected Shortfall for the one-day horizon can be calculated
as

ESp
T,1 = σT+1

1
p ∗ T ∗

T
∑

t=1

zt ∗ 1
(

zt < V aRp
T,1/σT+1

)

,

where 1(∗) denotes the indicator function returning a 1 if the argument is
true, and zero otherwise.

When computing a multi-day ahead VaR, the GARCH variance process
must be simulated forward using random draws, zi,k, from the historical
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shocks, {zt}Tt=1. The random drawing can be operationalized by generating
a discrete uniform random variable which is distributed from 1 to T. Each
draw from the discrete distribution then tells us which shock to select. We
build up a distribution of hypothetical future returns as

z1,1 → r1,T+1 → σ2
1,T+2 · · ·

↗ · · · · · ·
σ2
T+1 −→ zi,1 → ri,T+1 → σ2

i,T+2 · · ·
↘ · · · · · ·

zM,1 → rM,T+1 → σ2
M,T+2 · · ·

z1,k → r1,T+k → σ2
1,T+k+1 · · · z1,K → r1,T+K

· · · · · · · · ·
zi,k → ri,T+k → σ2

i,T+k+1 · · · zi,K → ri,T+K

· · · · · · · · ·
zM,k → rM,T+k → σ2

M,T+k+1 · · · zM,K → rM,T+K

where ri,T+k is the return for day T+k on simulation path i,M is the number
of times we draw with replacement from the T standardized returns on each
future date, and K is the horizon of interest. At each time step, the GARCH
model in (2) is used to update the conditional variance and the return model
in (1) is used to construct returns from shocks.

We end up with M sequences of hypothetical daily returns for day T + 1
through day T +K. From these hypothetical daily returns, we calculate the
hypothetical K−day returns as

ri,T :K =
K
∑

k=1

ri,T+k, for i = 1, 2, ...,M.

If we collect the M hypothetical K-day returns in a set {ri,T :K}Mi=1 , then
we can calculate the K−day Value at Risk simply by calculating the 100p
percentile as in

V aRp
T,K = Percentile

{

{ri,T :K}Mi=1 , 100p
}

.

At this point it is natural to ask how many simulations, M , are needed?
Ideally, M should of course be as large as possible in order to approximate
closely the true but unknown distribution of returns and thus the VaR. On
modern computers, taking M = 100, 000 is usually not a problem and would
yield on average 1, 000 tail observations when computing a VaR for p = 0.01.
It is important to note that the smaller the p the larger an M is needed in
order to get a sufficient number of extreme tail observations.
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The ES measure can be calculated from the simulated returns by taking
the average of all the ri,T :K that fall below the V aRp

T,K number, that is

ESpT,K =
1

p ∗M ∗
M
∑

i=1

ri,T :K ∗ 1
(

ri,T :K < V aRp
T,K

)

.

The advantages of the FHS approach are threefold. First, it captures current
market conditions by means of the volatility dynamics. Second, no assump-
tions need to be made on the distribution of the return shocks. Third, the
method allows for the computation of any risk measure for any investment
horizon of interest.

2.3 Univariate extensions and alternatives

The GARCH model that we used in (2) is taken from Engle and Ng (1993).
Andersen, Bollerslev, Christoffersen and Diebold (2006a) survey the range
of viable volatility forecasting approaches. The filtered historical simulation
approach in (4) was suggested by Barone-Adesi, Bourgoin, and Giannopoulos
(1998), Diebold, Schuermann, and Stroughair (1998), and Hull and White
(1998).

The general univariate model in (1) and (2) contains a number of standard
risk models as special cases:

• The i.i.d. Normal model where G(0, 1) = N(0, 1) and κ = α = θ = 0
• The RiskMetrics model where G(0, 1) = N(0, 1) and κ = 0 and θ = 0
• The GARCH-Normal where G(0, 1) = N(0, 1)
• The GARCH-CF where G−1(0, 1) is approximated using the Cornish-

Fisher approach
• The GARCH-EVT model where the tail of G(0, 1) is specified using ex-

treme value theory
• The GARCH-t(d) where G(0, 1) is a standardized Student’s t distribution

As discussed in Christoffersen (2003), these models can be estimated rela-
tively easily using a variant of the likelihood function in (3) or by matching
moments of zt with model moments. However, they all contain certain draw-
backs that either violate one or more of the stylized facts listed in Section 1,
or that fail to meet one or more of the objectives listed in Section 1 as well:
The i.i.d. Normal model does not allow for variance dynamics. The RiskMet-
rics model (JP Morgan, 1996) does not aggregate over time to normality nor
does it capture the leverage effect. The GARCH-Normal does not allow for
conditional nonnormality, and the GARCH-CF and GARCH-EVT (McNeill
and Frey, 2000) models are not fully specified data-generating processes. The
GARCH-t(d) (Bollerslev, 1987) comes closest to meeting our objectives but
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needs to be modified to allow for conditional skewness. See, for example,
Hansen (1994).

Some quite different approaches to VaR estimation have been suggested.
The Weighted Historical Simulation approach in Bodoukh, Richardson and
Whitelaw (1998) puts higher probability on recent observations when com-
puting the HistSim VaR. However, see Pritsker (2001) for a critique. The
CaViaR approach in Engle and Manganelli (2004) and the dynamic quantile
approach in Gourieroux and Jasiak (2006) model the return quantile directly
rather than specifying a complete data generating process. Finally, note that
Manganelli (2004) suggests certain univariate models for approximate port-
folio allocation by variance sensitivity analysis.

3 Multivariate, Base–Asset Return Methods

The univariate methods discussed in Section 2 are useful if the main purpose
of the risk model is risk measurement. If instead the model is required for
active risk management including deciding on optimal portfolio allocations,
or VaR sensitivities to allocation changes, then a multivariate model may be
required. In this section, we build on the model in Section 2 to develop a fully
specified large-scale multivariate risk model.

We will assume that the risk manager knows his set of assets of interest.
This set can either contain all the assets in the portfolio or a smaller set
of so-called base assets which are believed to be the main drivers of risk in
the portfolio. Base asset choices are, of course, portfolio-specific, but typical
examples include equity indices, bond indices, and exchange rates as well as
more fundamental economic drivers such as oil prices and real estate prices.
Regression analysis can be used to assess the relationship between each indi-
vidual asset and the base assets.

Once the set of assets has been determined, the next step in the multivari-
ate model is to estimate a dynamic volatility model of the type in Section 1
for each of the n assets. When this is complete, we can write the n base asset
returns in vector form

Rt = DtZt,

where Dt is an n by n diagonal matrix containing the GARCH standard
deviations on the diagonal, and zeros on the off diagonal. The n by 1 vector
Zt contains the shocks from the GARCH models for each asset.

Now, define the conditional covariance matrix of the returns as

V art−1 (Rt) = Σt = DtΓtDt,

where Γt is an n by n matrix containing the base asset correlations on the off
diagonals and ones on the diagonal. The next step in the multivariate model
is to develop a tractable model for Γt.
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3.1 The dynamic conditional correlation model

We wish to capture time variation in the correlation matrix of base asset
returns without having to estimate many parameters. The correlation matrix
has n(n − 1)/2 unique elements but the dynamic conditional (DCC) model
offers a convenient framework for modeling these using only two parameters
that require numerical estimation methods.

The correlation dynamics are modeled through past cross products of the
shocks in Zt

Qt = Ω + α
(

Zt−1Z
′
t−1

)

+ βQt−1 (5)

= Q (1 − α− β) + α
(

Zt−1Z
′
t−1

)

+ βQt−1

= Qt−1 + κ (Q−Qt−1) + α
(

Zt−1Z
′
t−1 −Qt−1

)

,

where we have used

E [Qt] ≡ Q = Ω/ (1 − α− β) ≡ Ω/κ.

The unconditional sample covariance matrix of Zt provides an estimate of
Q, leaving only κ and α to be estimated by numerical optimization. Forcing
κ > 0 in estimation ensures correlation stationarity.

The conditional correlations in Γt are given by standardizing the relevant
elements of the Qt matrices. Let ρij,t be the correlation between asset i and
asset j on day t. Then we have

ρij,t =
qij,t√
qii,tqjj,t

, (6)

where qij,t, qii,t, and qjj,t are elements of Qt.
The dynamic correlation parameters κ and α can now be estimated by

maximizing the QMLE criterion on the multivariate sample

QMLE (κ, α) = −1
2

T
∑

t=1

(

log (‖Γt‖) + Z ′
tΓ

−1
t Zt

)

,

where ‖Γt‖ denotes the determinant of Γt.

3.2 Multivariate filtered historical simulation

Based on the stylized facts in Section 1, we do not want to assume that
the shocks to the assets are normally distributed. Nor do we wish to assume
that they stem from the same distribution. Instead, we will simulate from
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historical shocks asset by asset to compute forward-looking VaRs and other
risk measures.

We first create a database of historical dynamically uncorrelated shocks
from which we can resample. We create the dynamically uncorrelated histor-
ical shock as

ZD
t = Γ

−1/2
t Zt,

where, Γ−1/2
t is the inverse of the matrix square-root of the conditional corre-

lation matrix Γt. The matrix square root, Γ 1/2
t , can be computing using the

spectral decomposition of Γt. In their chapter in this Handbook, Patton and
Sheppard (2008) recommend the spectral decomposition over the standard
Cholesky decomposition because the latter is not invariant to the ordering of
the return variables in the vector Zt.

When calculating the multi-day conditional VaR and other risk measures
from the model, we need to simulate daily returns forward from today’s
(day T ′s) forecast of tomorrow’s matrix of volatilities, DT+1 and correla-
tions, ΓT+1. The returns are computed from the GARCH and DCC models
above.

From the data base of uncorrelated shocks
{

ZD
t

}T

t=1
, we can draw a ran-

dom vector of historical uncorrelated shocks, called ZD
i,T+1. It is important

to note that in order to preserve asset-specific characteristics and potential
extreme correlation in the shocks, we draw an entire vector representing the
same day for all the assets.

From this draw, we can compute a random return for day T + 1 as

Ri,T+1 = DT+1Γ
1/2
T+1Z

D
i,T+1

= DT+1Zi,T+1.

Using the simulated shock vector, Zi,T+1, we can now update the volatilities
and correlations using the GARCH model in (2) and the DCC model in
(5) and (6). We thus obtain Di,T+2 and Γi,T+2. Drawing a new vector of
uncorrelated shocks, ZD

i,T+2, enables us to simulate the return for the second
day as

Ri,T+2 = Di,T+2Γ
1/2
i,T+2Z

D
i,T+2

= Di,T+2Zi,T+2.

We continue this simulation for K days, and repeat it for i = 1, ...,M simu-
lated shocks.

The cumulative K-day log returns are calculated as

Ri,T :K =
K
∑

k=1

Ri,T+k.
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The portfolio Value-at-Risk (VaR) is calculated by computing the user-
specified percentile of the M simulated returns for each horizon as in

V aRp
T,K = Percentile

{

{W ′
TRi,T :K}Mi=1 , 100p

}

,

where WT is the vector of portfolio weights at the end of day T .
The Expected Shortfall (ES) is computed by taking the average of those

simulated returns which are worse than the VaR

ESpT,K =
1

p ∗M

M
∑

i=1

W ′
TRi,T :K ∗ 1

(

W ′
TRi,T :K < V aRp

T,K

)

.

The advantages of the multivariate FHS approach tally with those of the
univariate case: It captures current market conditions by means of dynamic
variance and correlation models. It makes no assumption on the conditional
multivariate shock distributions. And, it allows for the computation of any
risk measure for any investment horizon of interest.

3.3 Multivariate extensions and alternatives

The DCC model in (5) is due to Engle (2002). See also Tse and Tsui (2002).
Extensions to the basic model are developed in Capiello, Engle and Shep-
pard (2004). For alternative multivariate GARCH approaches, see the sur-
veys in Andersen, Bollerslev, Christoffersen and Diebold (2006a and b), and
Bauwens, Laurent, and Rombouts (2006). Jorion (2006) discusses the choice
of base assets.

Parametric alternatives to the filtered historical simulation approach in-
clude specifying a multivariate normal or Student’s t distribution for the
GARCH shocks. See, for example Pesaran and Zaffaroni (2004). The multi-
variate normal and Student’s t asset distributions offer the advantage that
they are closed under linear transformations so that the portfolio returns will
be normal and Student’s t, respectively, as well.

The risk manager can also specify parametric conditional distributions for
each asset and then link these marginal distributions together to form a mul-
tivariate distribution by using a copula function. See, for example, Demarta
and McNeil (2005), Patton (2004, 2006), and Jondeau and Rockinger (2005).
The results in Joe (1997) suggest that the DCC model itself can be viewed as
a copula approach. Multivariate versions of the extreme value approach have
also been developed. See, for example, Longin and Solnik (2001), and Poon,
Rockinger, and Tawn (2004).
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4 Summary and Further Issues

In this chapter, we have built first a univariate and then a multivariate fil-
tered historical simulation model for financial risk management. The models
are constructed to capture the stylized facts in daily asset returns, they are
simple to estimate, and they enable the risk manager to easily compute Value-
at-Risk and other risk measures including Expected Shortfall for various in-
vestment horizons conditional on current market conditions. The univariate
model is suitable for passive risk management or risk measurement whereas
the multivariate model is useful for active risk management such as optimal
portfolio allocation. We also discuss various alternatives to the suggested
approach.

Because our focus has been on the modeling of market risk, that is the
risk from fluctuations in observed market prices, other important types of
risk have been left unexplored.

We have focused on applications where a relatively long history of daily
closing prices is available for each asset or base asset. In practice, portfo-
lios often contain assets where daily historical market prices are not readily
observable. Examples include derivatives, bonds, loans, new IPOs, private
placements, hedge funds, and real estate investments. In these cases, asset
pricing models are needed to link the unobserved asset prices to prices of
other liquid assets. The use of pricing models to impute asset prices gives
rise to an additional source of risk, namely model risk. Hull and Suo (2002)
suggest a method to assess model risk.

In loan portfolios, nontraded credit risk is the main source of uncertainty.
Lando (2004) provides tools for credit risk modeling and credit derivative
valuation.

Illiquidity can itself be a source of risk. Historical closing prices may be
available for many assets but if little or no trade was actually conducted at
those prices then the historical information may not properly reflect risk.
In this case, liquidity risk should be accounted for. See Persaud (2003) for
various aspects of liquidity risk.

Even when computing the VaR and ES for readily observed assets, the use
of parametric models implies estimation risk which we have not accounted
for here. Christoffersen and Goncalves (2005) show that estimation risk can
be substantial, and suggest ways to measure it in dynamic models.
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Copula–Based Models for Financial
Time Series

Andrew J. Patton

Abstract This paper presents an overview of the literature on applications
of copulas in the modelling of financial time series. Copulas have been used
both in multivariate time series analysis, where they are used to characterize
the (conditional) cross-sectional dependence between individual time series,
and in univariate time series analysis, where they are used to characterize
the dependence between a sequence of observations of a scalar time series
process. The paper includes a broad, brief, review of the many applications
of copulas in finance and economics.

1 Introduction

The central importance of risk in financial decision-making directly implies
the importance of dependence in decisions involving more than one risky as-
set. For example, the variance of the return on a portfolio of risky assets
depends on the variances of the individual assets and also on the linear cor-
relation between the assets in the portfolio. More generally, the distribution
of the return on a portfolio will depend on the univariate distributions of the
individual assets in the portfolio and on the dependence between each of the
assets, which is captured by a function called a ‘copula’.

The number of papers on copula theory in finance and economics has grown
enormously in recent years. One of the most influential of the ‘early’ papers on
copulas in finance is that of Embrechts, McNeil and Straumann (2002), which
was circulated as a working paper in 1999. Since then, scores of papers have
been written, exploring the uses of copulas in finance, macroeconomics, and
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microeconomics, as well as developing the estimation and evaluation theory
required for these applications. Nelsen (2006) and Joe (1997) provide detailed
and readable introductions to copulas and their statistical and mathematical
foundations, while Cherubini, et al. (2004) focus primarily on applications
of copulas in mathematical finance and derivatives pricing. In this survey I
focus on financial time series applications of copulas.

A copula is a function that links together univariate distribution func-
tions to form a multivariate distribution function. If all of the variables are
continuously distributed,1 then their copula is simply a multivariate distri-
bution function with Uniform(0, 1) univariate marginal distributions. Con-
sider a vector random variable, X = [X1, X2, ..., Xn]′, with joint distribution
F and marginal distributions F1, F2, ..., Fn. Sklar’s (1959) theorem provides
the mapping from the individual distribution functions to the joint distribu-
tion function:

F (x) = C (F1 (x1) , F2 (x2) , ..., Fn (xn)) , ∀ x ∈ R
n. (1)

From any multivariate distribution, F, we can extract the marginal distribu-
tions, Fi, and the copula, C. And, more useful for time series modelling, given
any set of marginal distributions (F1, F2, ..., Fn) and any copula C, equation
(1) can be used to obtain a joint distribution with the given marginal distri-
butions. An important feature of this result is that the marginal distributions
do not need to be in any way similar to each other, nor is the choice of cop-
ula constrained by the choice of marginal distributions. This flexibility makes
copulas a potentially useful tool for building econometric models.

Since each marginal distribution, Fi, contains all of the univariate informa-
tion on the individual variable Xi, while the joint distribution F contains all
univariate and multivariate information, it is clear that the information con-
tained in the copula C must be all of the dependence information between the
Xi’s2. It is for this reason that copulas are sometimes known as ‘dependence
functions’, see Galambos (1978). Note that if we define Ui as the ‘probability
integral transform’ of Xi, i.e. Ui ≡ Fi (Xi) , then Ui ∼ Uniform (0, 1) , see
Fisher (1932), Casella and Berger (1990) and Diebold, et al. (1998). Further,
it can be shown that U = [U1, U2, ..., Un]′ ∼ C, the copula of X.

1 Almost all applications of copulas in finance and economics assume that that variables of
interest are continuously distributed. Notable exceptions to this include Heinen and Rengifo
(2003) and Grammig, et al. (2004). The main complication that arises when considering
marginal distributions that are not continuous is that the copula is then only uniquely
defined on the Cartesian product of supports of the marginal distributions. Obtaining a
copula that is defined on R

n requires an interpolation method. See Denuit and Lambert
(2005) for one such method.
2 It is worth noting that some dependence measures of interest in finance, and elsewhere,
depend on both the copula and the marginal distributions; standard linear correlation is
the leading example. Depending on one’s orientation, and the application at hand, this is
either a drawback of such dependence measures or a drawback of copula theory.
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If the joint distribution function is n-times differentiable, then taking the
nth cross-partial derivative of equation (1) we obtain:

f (x) ≡ ∂n

∂x1∂x2 · · · ∂xn
F (x)

=
n
∏

i=1

fi (xi) · ∂n

∂u1∂u2 · · ·∂un
C (F1 (x1) , F2 (x2) , ..., Fn (xn))

≡
n
∏

i=1

fi (xi) · c (F1 (x1) , F2 (x2) , ..., Fn (xn)) , (2)

and so the joint density is equal to the product of the marginal densities
and the ‘copula density’, denoted c. This of course also implies that the joint
log-likelihood is simply the sum of univariate log-likelihoods and the ‘copula
log-likelihood’, which is useful in the estimation of copula-based models:

log f (x) =
n

∑

i=1

log fi (xi) + log c (F1 (x1) , F2 (x2) , ..., Fn (xn)) . (3)

The decomposition of a joint distribution into its marginal distributions and
copula allows the researcher a great deal of flexibility in specifying a model
for the joint distribution. This is clearly an advantage when the shape and
goodness-of-fit of the model for the joint distribution is of primary interest.
In situations where the researcher has accumulated knowledge about the
distributions of the individual variables and wants to use that in constructing
a joint distribution, copulas also have a valuable role. In other situations, for
example when the researcher is primarily focussed on the conditional mean
and/or conditional variance of a vector of variables, copulas may not be
the ‘right tool for the job’, and more standard vector autoregressive models
and/or multivariate GARCH models, see Silvennoinen and Teräsvirta (2008),
may be more appropriate. For a lively discussion of the value of copulas in
statistical modelling of dependence, see Mikosch (2006) and the associated
discussion (in particular that of Embrechts, Joe, and Genest and Rémillard)
and rejoinder.

To illustrate the potential of copulas for modelling financial time series, I
show in Figure 1 some bivariate densities constructed using Sklar’s theorem.
All have F1 = F2 = N (0, 1), while I vary C across different parametric
copulas,3 constraining the linear correlation to be 0.5 in all cases. The upper
left plot shows the familiar elliptical contours of the bivariate Normal density

3 The Normal and Student’s t copulas are extracted from bivariate Normal and Student’s
t distributions. The Clayton and Gumbel copulas are discussed in Nelsen (2006), equations
4.2.1 and 4.2.4 respectively. The symmetrised Joe-Clayton (SJC) copula was introduced in
Patton (2006a) and is parameterised by the upper and lower tail dependence coeffficients,
τU and τL. The mixed Normal copula is an equally-weighted mixture of two Normal
copulas with parameters ρ1 and ρ2 respectively.
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(with Normal marginals and a Normal copula), while the other plots show
some of the flexibility that various copula models can provide. To quantify
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Fig. 1 Iso-probability contour plots for joint distributions with N (0, 1) marginal distri-
butions and linear correlation coefficients of 0.5.

the different dependence structures provided by each copula, we can compare
the dependence measures implied by each of these distributions, see Table 1.
‘Quantile dependence’ is related to a measure due to Coles, et al. (1999), and
measures the probability of two variables both lying above or below a given
quantile of their univariate distributions. It is defined as τ (q) = C (q, q) /q
for q ≤ 1/2 and τ (q) = {1 − 2q + C (q, q)} / (1 − q) for q > 1/2. Lower and
upper tail dependence can be defined as the limits of the quantile dependence
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measures: limq→0 τ (q) = τL and limq→1 τ (q) = τU , if the limits exist, which
they do for the six copulas presented here.

Figure 1 and Table 1 show the variety of joint densities that may be con-
structed using copulas, even when we impose that both margins are Normal
and that the correlation coefficient is 0.5. In many financial applications dif-
ferences in, for example, lower tail dependence will have important implica-
tions. For example, if two assets have the Student’s t copula rather than the
Normal copula, then the probability of both asset returns lying below their
lower 5% quantile (i.e., their 5% Value-at-Risk, see Embrechts, et al. 2008,
and Christoffersen, 2008) is 0.37 rather than 0.24, meaning that a portfolio
of these two assets will exhibit more extreme returns than identical assets
with a Normal copula.

Table 1: Measures of dependence
for joint distributions with various copulas

Tail 5% Quantile
Linear Dependence Dependence

Copula Parameter(s) Correlation Upper Lower Upper Lower
Normal(ρ) 0.5 – 0.50 0.00 0.00 0.24 0.24
Student’s t(ρ, ν) 0.5 3 0.50† 0.31 0.31 0.37† 0.37†

Clayton(κ) 1 – 0.50† 0.00 0.50 0.10 0.51
Gumbel(κ) 1.5 – 0.50† 0.41 0.00 0.44 0.17
SJC

(

τU , τL
)

0.45 0.20 0.50† 0.45 0.20 0.46 0.27
Mixed Normal(ρ1, ρ2) 0.95 0.05 0.50 0.00 0.00 0.40 0.40
Figures marked with ‘†’ are based on simulations or numerical quadrature.

2 Copula–Based Models for Time Series

The application of copulas to time series modelling currently has two dis-
tinct branches. The first is the application to multivariate time series, where
the focus is in modelling the joint distribution of some random vector,
Xt= [X1t, X2t, ..., Xnt]

′
, conditional on some information set Ft−1. (The in-

formation set is usually Ft−1 = σ (Xt−j ; j ≥ 1), though this need not nec-
essarily be the case.) This is an extension of some of the early applications
of copulas in statistical modelling where the random vector of interest could
be assumed to be independent and identically distributed (iid) , see Clayton
(1978) and Cook and Johnson (1981) for example. This application leads
directly to the consideration of time-varying copulas.
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The second application in time series is to consider the copula of a sequence
of observations of a univariate time series, for example, to consider the joint
distribution of [Xt, Xt+1, ..., Xt+n]′ . This application leads us to consider
Markov processes and general nonlinear time series models. We discuss each
of these branches of time series applications of copulas below.

2.1 Copula–based models for multivariate time series

In this sub-section we consider the extension required to consider the con-
ditional distribution of Xt given some information set Ft−1. Patton (2006a)
defined a “conditional copula” as a multivariate distribution of (possibly cor-
related) variables that are each distributed as Uniform(0, 1) conditional on
Ft−1. With this definition, it is then possible to consider an extension of
Sklar’s theorem to the time series case:

Ft(x|Ft−1) (4)
= Ct(F1,t(x1|Ft−1), F2,t (x2|Ft−1) , ..., Fn,t (xn|Ft−1) |Ft−1), ∀ x ∈ R

n ,

where Xi|Ft−1 ∼ Fi,t and Ct is the conditional copula of Xt given Ft−1.
The key complication introduced when applying Sklar’s theorem to condi-

tional distributions is that the conditioning set, Ft−1, must be the same for
all marginal distributions and the copula. Fermanian and Wegkamp (2004)
and Fermanian and Scaillet (2005) consider the implications of a failure to
use the same information set, and define a ‘conditional pseudo copula’ to
help study this case4. Failure to use the same information set for all com-
ponents on the right-hand side of equation (4) will generally imply that the
function on the left-hand side of equation (4) is not a valid conditional joint
distribution function. See Patton (2006a) for an example of this failure.

It is often the case in financial applications, however, that some of the in-
formation contained in Ft−1 is not relevant for all variables. For example, it
might be that each variable depends on its own first lag, but not on the lags
of any other variable. Define Fi,t−1 as the smallest subset of Ft−1 such that
Xit|Fi,t−1

D= Xit|Ft−1. With this it is possible to construct each marginal
distribution model using only Fi,t−1, which will likely differ across margins,
and then use Ft−1 for the copula, to obtain a valid conditional joint distribu-
tion. However, it must be stressed that in general the same information set
must be used across all marginal distribution models and the copula model,

4 The ‘pseudo-copula’ of Fermanian and Wegkamp (2004) is not to be confused with the
‘quasi-copula’ of Alsina, et al. (1993) and Genest, et al. (1999), which is used to characterize
operations on distribution functions that cannot correspond to an operation on random
variables.



Copula–Based Models for Financial Time Series 773

before possibly reducing each of these models by eliminating variables that
are not significant/important5.

The consideration of conditional copulas leads naturally to the question of
whether these exhibit significant changes through time. Conditional correla-
tions between financial asset returns are known to fluctuate through time, see
Andersen, et al. (2006) and Bauwens et al. (2006) for example, and so it is
important to also allow for time-varying conditional copulas. Patton (2002,
2006a) allows for time variation in the conditional copula by allowing the
parameter(s) of a given copula to vary through time in a manner analogous
to a GARCH model for conditional variance (Engle (1982) and Bollerslev
(1986)). Jondeau and Rockinger (2006) employ a similar strategy. Rodriguez
(2007), on the other hand, considers a regime switching model for condi-
tional copulas, in the spirit of Hamilton (1989). Chollete (2005), Garcia and
Tsafack (2007), and Okimoto (2006) employ a similar modelling approach,
with the latter author finding that the copula of equity returns during the low
mean-high variance state is significantly asymmetric (with non-zero lower tail
dependence) while the high mean-low volatility state has a more symmetric
copula. Panchenko (2005b) considers a semi-parametric copula-based model
of up to five assets, building on Chen and Fan (2006b), discussed below,
where the marginal distributions are estimated nonparametrically and the
conditional copula is specified to be Normal, with a correlation matrix that
evolves according to the DCC specification of Engle (2002). Lee and Long
(2005) combine copulas with multivariate GARCH models in an innovative
way: they use copulas to construct flexible distributions for the residuals from
a multivariate GARCH model, employing the GARCH model to capture the
time-varying correlation, and the copula to capture any dependence remain-
ing between the conditionally uncorrelated standardised residuals.

It is worth noting that, for some of the more complicated models above,
it can be difficult to establish sufficient conditions for stationarity, which is
generally required for standard estimation methods to apply, as discussed in
Section 2.3 below. Results for general classes of univariate nonlinear processes
are presented in Carrasco and Chen (2002) and Meitz and Saikkonen (2004),
however similar results for the multivariate case are not yet available.

2.2 Copula–based models for univariate time series

In addition to describing the cross-sectional dependence between two or more
time series, copulas can also be used to describe the dependence between
observations from a given univariate time series, for example, by captur-

5 For example, in Patton (2006a) I study the conditional joint distribution of the returns
on the Deutsche mark/U.S. dollar and Japanese Yen/U.S. dollar exchange rates. In that
application Granger-causality tests indicated that the marginal distributions depended
only on lags of the “own” variable; lags of other variables were not significant.
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ing the dependence between [Xt, Xt+1, ..., Xt+n]′ . If the copula is invariant
through time and satisfies a constraint on its multivariate marginals6, and
the marginal distributions are identical and also invariant through time, then
this describes a stationary Markov process. The main benefit of this approach
to univariate time series modelling is that the researcher is able to specify
the unconditional (marginal) distribution of Xt separately from the time se-
ries dependence of Xt. For example, the six joint distributions plotted in
Figure 1 could be used to generate a stationary first-order Markov process,
with the marginal distribution of Xt being N (0, 1) , and with various copulas
describing the dependence between Xt and Xt+1. In Figure 2 I plot the con-
ditional mean of Xt+1 given Xt = x, along with the conditional mean ±1.65
times the conditional standard deviation of Xt+1 given Xt = x, for each of
the six distributions from Figure 1. In the upper left panel is the familiar
case of joint normality: a linear conditional mean and constant conditional
variance. The other five panels generally display non-linear conditional mean
and variance functions. In Figure 3 I plot the density of Xt+1 conditional on
Xt = −2, 0, and 2. Now in the upper left panel we see the familiar figure of
Normal conditional densities, while in the other panels the conditional densi-
ties are non-Normal. Amongst other things, the figures for the Student’s t and
mixed Normal copulas emphasise that radial symmetry of the joint distribu-
tion (i.e., symmetry around both the main diagonal and the off-diagonal) is
not sufficient for symmetry of the conditional marginal densities.

Darsow, et al. (1992) study first-order Markov processes based on copulas.
They provide a condition equivalent to the Chapman-Kolmogorov equations
for a stochastic process that focusses solely on the copulas of the variables
in the process. Furthermore, the authors are able to provide a necessary and
sufficient condition for a stochastic process to be Markov by placing con-
ditions on the multivariate copulas of variables in the process (in contrast
with the Chapman-Kolmogorov equations which are necessary but not suffi-
cient conditions). Ibragimov (2005, 2006) extends the work of Darsow, et al.
(1992) to higher-order Markov chains and provides several useful results, and
a new class of copulas. Beare (2007) studies the weak dependence properties
of Markov chains through the properties of their copulas and, amongst other
things, shows that tail dependence in the copula may result in the Markov
chain not satisfying standard mixing conditions. Gagliardini and Gouriéroux
(2007b) propose and study copula-based time series models for durations,
generalising the autoregressive conditional duration model of Engle and Rus-
sell (1998).

6 For example, if n = 3, then it is required that the marginal joint distribution of the
first and second arguments is identical to that of the second and third arguments. Similar
conditions are required for n > 3.
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Fig. 2 Conditional mean ±1.64 times the conditional standard deviation, for joint dis-
tributions with N (0, 1) marginal distributions and linear correlation coefficients of 0.5.

2.3 Estimation and evaluation of copula–based models
for time series

The estimation of copula-based models for multivariate time series can be
done in a variety of ways. For fully parametric models (the conditional
marginal distributions and the conditional copula are all assumed known
up to a finite-dimensional parameter) maximum likelihood (ML) is the ob-



776 A.J. Patton

−2 0 2
0

0.2

0.4

0.6

0.8

Normal copula, ρ = 0.5

−2 0 2
0

0.2

0.4

0.6

0.8

Student’s t copula, ρ = 0.5, ν = 3

−2 0 2
0

0.2

0.4

0.6

0.8

Clayton copula, κ = 1

−2 0 2
0

0.2

0.4

0.6

0.8

Gumbel copula, κ = 1.5

−2 0 2
0

0.2

0.4

0.6

0.8

SJC copula, τU = 0.45, τL = 0.2

−2 0 2
0

0.2

0.4

0.6

0.8

Mixed normal copula, ρ
1

 = 0.95, ρ
2

 = 0.05

Fig. 3 Conditional densities of Y given X = −2 (thin line), X = 0 (thick line), X =
+2 (dashed line), for joint distributions with N (0, 1) marginal distributions and linear
correlation coefficients of 0.5.

vious approach. If the model is such that the parameters of the marginal
distributions can be separated from each other and from those of the cop-
ula, then multi-stage ML estimation is an option. This method, sometimes
known as the “inference functions for margins” (IFM) method, see Joe and Xu
(1996) and Joe (1997, Chapter 10), involves estimating the parameters of the
marginal distributions via univariate ML, and then estimating the parameter
of the copula conditional on the estimated parameters for the marginal dis-
tributions. This estimation method has the benefit of being computationally
tractable, at the cost of a loss of full efficiency. The theory for this estima-
tion method for iid data is presented in Shih and Louis (1995) and Joe and
Xu (1996). Patton (2006b) presents the theory for time series data, drawing
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on the work on Newey and McFadden (1994) and White (1994), and some
simulation results that motivate multi-stage estimation.

Fully nonparametric estimation methods for copula models in the iid
case were studied by Genest and Rivest (1993) and Capéraà, et al., (1997),
amongst others. Fully nonparametric estimation of copulas for time series
data was studied by Fermanian and Scaillet (2003) and Ibragimov (2005).

An important benefit of using copulas to construct multivariate models is
that the models used in the marginal distributions need not be of the same
type as the model used for the copula. One exciting possibility that this allows
is non- or semi-parametric estimation of the marginal distributions, combined
with parametric estimation of the copula. Such a model avoids the ‘curse of
dimensionality’ by only estimating the one-dimensional marginal distribu-
tions nonparametrically, and then estimating the (multi-dimensional) copula
parametrically. The theory for this estimator in the iid case is presented in
Genest, et al. (1995) and Shih and Louis (1995). Theory for the time series
case is presented in Chen and Fan (2006b) and Chen, et al. (2006). Chen and
Fan (2006b) also consider the important case that the copula model may be
mis-specified. Gagliardini and Gouriéroux (2007a) consider copula specifica-
tions that are semi-parametric, while Sancetta and Satchell (2004) consider
semi-nonparametric copula models.

The estimation of fully parametric copula-based univariate time series
models is discussed in Joe (1997, Chapter 8). Chen and Fan (2006a) con-
sider the estimation of semi-parametric copula-based univariate time series
models, where the unconditional distribution is estimated nonparametrically
and the copula is estimated parametrically. The work of Ibragimov (2006)
and Beare (2007) on conditions for some form of mixing to hold are also
relevant here.

The evaluation of a given model is important in any econometric applica-
tion, and copula-based modelling is of course no exception. The evaluation
of copula-based models takes two broad approaches. The first approach eval-
uates the copula-based multivariate density model in its entirety, and thus
requires methods for evaluating multivariate density models, see Diebold, et
al. (1999) and Corradi and Swanson (2005). In the second approach one seeks
to evaluate solely the copula model, treating the marginal distribution models
as nuisance parameters. Fermanian (2005) and Scaillet (2007) consider such
an approach for models based on iid data, while Malevergne and Sornette
(2003) and Panchenko (2005a) consider tests for time series models. Genest
et al. (2007) provide an extensive review of goodness-of-fit tests for copulas,
focussing on the iid case, and present the results of a simulation study of the
size and power of several tests.

Comparisons between a set of competing copula-based models can be done
either via economic criteria, such in some of the papers reviewed in the next
section, or statistical criteria. For the latter, likelihood ratio tests (either
nested or, more commonly, non-nested, see Vuong (1989) and Rivers and
Vuong (2002) for example) can often be used. Alternatively, information cri-
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teria, such as the Akaike or Schwarz’s Bayesian Information Criteria (AIC,
BIC) can be used to penalise models with more parameters.

3 Applications of Copulas in Finance and Economics

The primary motivation for the use of copulas in finance comes from the
growing body of empirical evidence that the dependence between many im-
portant asset returns is non-normal. One prominent example of non-normal
dependence is where two asset returns exhibit greater correlation during mar-
ket downturns than during market upturns. Evidence against the univariate
normality of asset returns has a long history, starting with Mills (1927), but
evidence against ‘copula normality’ has accumulated only more recently. Erb,
et al. (1994), Longin and Solnik (2001) and Ang and Chen (2002), Ang and
Bekaert (2002), Bae, et al. (2003) all document, without drawing on cop-
ula theory, evidence that asset returns exhibit non-normal dependence, that
is, dependence that is not consistent with a Normal copula. This evidence
has wide-ranging implications for financial decision-making, in risk manage-
ment, multivariate option pricing, portfolio decisions, credit risk, and studies
of ‘contagion’ between financial markets. In the remainder of this section I
discuss some of the research done in these areas.

The first area of application of copulas in finance was risk management.
Just as ‘fat tails’ or excess kurtosis in the distribution of a single random vari-
able increases the likelihood of extreme events, the presence of non-zero tail
dependence increases the likelihood of joint extreme events. As illustrated in
Table 1, even copulas that are constrained to generate the same degree of lin-
ear correlation can exhibit very different dependence in or near the tails. The
focus of risk managers on Value-at-Risk (VaR), and other measures designed
to estimate the probability of ‘large’ losses, makes the presence of non-normal
dependence of great potential concern. Cherubini and Luciano (2001), Em-
brechts, et al. (2003) and Embrechts and Höing (2006) study the VaR of
portfolios using copula methods. Hull and White (1998) is an early paper
on VaR for collections of non-normal variables. Rosenberg and Schuermann
(2006) use copulas to consider ‘integrated’ risk management problems, where
market, credit and operational risks must be considered jointly. McNeil, et al.
(2005) and Alexander (2008) provide clear and detailed textbook treatments
of copulas and risk management.

In derivatives markets non-normal dependence has key pricing, and there-
fore trading, implications. Any contract with two or more ‘underlying’ assets
will generally have a price that is affected by both the strength and the
shape of the dependence between the assets. A simple such contract is one
that pays £1 if all underlying assets have prices above a certain threshold
on the contract maturity date; another common contract is one that has a
pay-off based on the minimum (or the maximum) of the prices of the un-
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derlying assets on the contract maturity date. Even derivatives with just a
single underlying asset may require copula methods if the risk of default by
the counter-party to the contract is considered economically significant: these
are so-called “vulnerable options”. A recent book by Cherubini, et al. (2004)
considers derivative pricing using copulas in great detail, and they provide
an interesting introduction to copulas based on option pricing, as an alterna-
tive to the more standard statistical introductions in Joe (1997) and Nelsen
(2006) for example. Other papers that consider option pricing with copulas
include Rosenberg (2003), Bennett and Kennedy (2004), van den Goorbergh,
et al. (2005) and Salmon and Schleicher (2006). Other authors, see Taylor and
Wang (2004) and Hurd, et al. (2005), have instead used observed derivatives
prices to find the implied copula of the underlying assets.

The booming market in credit derivatives (credit default swaps and collat-
eralised debt obligations, for example) and the fact that these assets routinely
involve multiple underlying sources of risks has lead to great interest in cop-
ulas for credit risk applications. An early contribution is from Li (2000), who
was first to use copulas in a credit risk application, and was more generally
one of the first to apply copulas in finance. See also Frey and McNeil (2001),
Schönbucher and Schubert (2001) and Giesecke (2004) for applications to
default risk. Duffie (2004) argues that copulas are too restrictive for certain
credit risk applications.

One of the most obvious places where the dependence between risky assets
impacts on financial decisions, and indeed was the example used at the start
of this survey, is in portfolio decisions. Under quadratic utility and/or multi-
variate Normality (or more generally, multivariate ellipticality, see Chamber-
lain, 1983) the optimal portfolio weights depend only upon the first two mo-
ments of the assets under consideration, and so linear correlation adequately
summarises the necessary dependence information required for an optimal
portfolio decision. However when the joint distribution of asset returns is not
elliptical, as the empirical literature cited above suggests, and when utility is
not quadratic in wealth, the optimal portfolio weights will generally require
a specification of the entire conditional distribution of returns. Patton (2004)
considers a bivariate equity portfolio problem using copulas, and Garcia and
Tsafack (2007) consider portfolio decisions involving four assets: stocks and
bonds in two countries. The extension to consider portfolio decisions with
larger numbers of assets remains an open problem.

The final broad topic that has received attention from finance researchers
using copula methods is the study of financial ‘contagion’. Financial conta-
gion is a phenomenon whereby crises, somehow defined, that occur in one
market lead to problems in other markets beyond what would be expected
on the basis of fundamental linkages between the markets. The Asian crisis
of 1997 is one widely-cited example of possible contagion. The difficulty in
contagion research is that a baseline level of dependence between the markets
must be established before it can be asserted that the dependence increased
during a period of crisis. The heavy focus on levels and changes in depen-
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dence has lead several researchers to apply copula methods in their study
of contagion. Rodriguez (2007) was the first to apply copulas to contagion,
which he studies with a Markov switching copula model. See Chollete, et al.
(2005) and Arakelian and Dellaportas (2005) for alternative approaches.

Finally, there are a number of interesting papers using copulas in appli-
cations that do not fit into the broad categories discussed above. Bouyé and
Salmon (2002) use copulas for quantile regressions, Breymann, et al. (2003)
study the copulas of financial assets using intra-daily data, sampled at differ-
ent frequencies, Daul, et al. (2003) and Demarta and McNeil (2005) study the
Student’s t copula and some useful extensions, Heinen and Rengifo (2003) use
copulas to model multivariate time series of counts, Smith (2003) uses copulas
to model sample selection, related to earlier work touching on copulas for this
problem by Lee (1983), Bonhomme and Robin (2004) use copulas to model a
large panel of earnings data, Bartram, et al. (2006) use a time-varying condi-
tional copula model to study financial market integration between seventeen
European stock market indices, Granger, et al. (2006) use copulas to provide
a definition of a ‘common factor in distribution’, Hu (2006) uses mixtures of
copulas to separate the degree of dependence from the ‘shape’ of dependence,
and Brendstrup and Paarsch (2007) use copulas in a semiparametric study
of auctions.

4 Conclusions and Areas for Future Research

In this survey I have briefly discussed some of the extensions of standard
copula theory that are required for their application to time series modelling,
and reviewed the existing literature on copula-based models of financial time
series. This is a fast-growing field and the list of references will no doubt need
updating in the near future.

In reviewing the extant literature on copulas for finance a number of top-
ics stand out as possible avenues for future research. The most obvious, and
perhaps difficult, is the extension of copula-based multivariate time series
models to high dimensions. Existing models are not well-designed for higher-
dimension applications; what is needed is a flexible yet parsimonious way of
characterising high dimension copulas. A similar problem was faced in the
multivariate ARCH literature in the mid-1990s, see Bauwens, et al. (2006).
Two popular approaches to solve that problem are factor-based ARCH mod-
els and extensions, see Alexander and Chibumba (1998) and van der Weide
(2002) for example, and the DCC model of Engle (2002) and its extensions,
see Cappiello, et al. (2006) for example. Perhaps similar approaches will prove
fruitful in high-dimensional copula modelling.
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Credit Risk Modeling

David Lando

Abstract The chapter gives a broad outline of the central themes of credit
risk modeling starting with the modeling of default probabilities, ratings and
recovery. We present the two main frameworks for pricing credit risky instru-
ments and credit derivatives. The key credit derivative - the Credit Default
Swap - is introduced. The premium on this contract provides a meausure of
the credit spread of the reference issuer. We then provide some key empirical
works looking at credit spreads thorugh CDS contracts and bonds and finish
with a description of the role of correlation in credit risk modeling.

1 Introduction

Credit risk modeling is a rapidly growing area of financial economics and
financial engineering. Banks and other financial institutions are applying in-
creasingly sophisticated methods for assessing the risk of their loan portfo-
lios and their counterparty exposure on derivatives contracts. The market for
credit derivatives is growing at an extreme pace with the credit default swap
and the CDO markets as the primary sources of growth. These new mar-
kets and better data availability on the traditional corporate bond market
have provided new laboratories for financial economists to test asset pricing
theories, to look at capital structure decisions, and to understand financial
innovation.

Classical credit risk analysis is concerned with deciding whether a loan
should be granted and, after a loan has been granted, trying to assess the risk
of default. Modern credit risk analysis still addresses these issues but there
is more focus on pricing of loans and corporate bonds in secondary markets
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and on the pricing and hedging of derivative contracts whose pay-offs depend
on the performance of a single bond or loan or on a portfolio of bonds or
loans. This survey will focus on the modeling of corporate bond prices and
credit spreads and on some implications for modeling credit derivatives. These
are areas of credit risk modeling where rich data sets and well-developed
pricing models allow for extensive econometric analysis. There are interesting
econometric challenges in more traditional credit scoring but we only have
time to touch briefly upon this topic. Other topics will not be covered at all,
including the role of credit risk in the macro-economy (credit crunches, the
role of credit in the propagation of business cycles), implications for optimal
capital structure decisions of firms and capital adequacy requirements for
banks.

2 Modeling the Probability of Default and Recovery

The decision theoretic problem of whether to grant a loan or not has been
attacked for a long time using financial ratios but the systematic attempts
of looking at which predictors perform well was started in Altman (1968)
and Beaver (1966) who mainly rely on discriminant analysis, an attempt of
classifying firms into defaulting or non-defaulting groups based on company
characteristics. The outcome of the analysis is a discriminant function which
maps the relevant predictors into a single score and classifies the company
as a defaulter or a non-defaulter based on whether the score is above or
below a certain threshold. The derivation of the discriminant function and
the threshold can be based on a likelihood approach or on a decision theoretic
approach, in which a cost is assigned to misclassification. For the precise
arguments, see for example Anderson (1984). This method of analysis was
in part chosen for computational convenience and it is not easily adapted
to a dynamic framework with time-varying covariates. The method is also
not well-suited for handling the effects of covariates that are common to all
firms such as business cycle indicators. The use of computers have greatly
facilitated the use of logistic regression methods, see for example Shumway
(2001) and survival analytic methods based on hazard regressions, see for
example Duffie et al. (2004) which both deal easily with dynamic features of
the model, common covariates and which offer default probability predictions
useful for risk management.

As an alternative to developing full models for default probabilities of in-
dividual firms, investors in corporate bonds often use the ratings which are
assigned to bond issuers by the major rating agencies. The ratings are based
on analysis of the company’s key ratios and on meetings with the issuers. Rat-
ings play important roles in a regulatory context when assigning risk-weights
to assets, in defining loan covenants and investment guidelines and as a sig-
nalling device to less informed investors. Given these important roles, there
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is a substantial literature on the statistical behavior of ratings focusing on
various forms of non-Markov behavior, business cycle dependence, the ability
of ratings to forecast default and their information content measured through
price reactions in markets around rating changes. A number of references to
this literature can be found in Lando (2005)

The recovery rates on defaulted bonds play an important role in pricing
both bonds and derivatives but systematic research into what determines
recovery rates is still relatively new. For a comprehensive recent study, see
Acharya et al. (2007) which also contains a number of references.

3 Two Modeling Frameworks

Models for default probabilities and recovery are important inputs to pricing
models for loans, bonds and derivatives but we need more structure in the
models than what we get from a statistical model to actually perform the
pricing. A statistical model typically gives us estimates of default probabil-
ities as a function of certain explanatory variables, but the dynamics of the
explanatory variables are not modeled. A pricing model needs to include the
full dynamics of the explanatory variables.

There are broadly speaking two approaches to pricing corporate bonds
and these approaches are outlined in this section. One approach - sometimes
referred to as the structural approach - views equity and bonds (and other
claims to the firm’s assets) as derivative contracts on the market value of a
firm’s assets. It then uses option pricing theory to price these claims. This
approach is systematically carried out in Merton (1974) in a Black-Scholes
setting. To briefly summarize the approach, assume that the market value of
a firm’s assets follows a geometric Brownian motion

dVt = μVtdt+ σVtdWt

where W is a standard Browninan motion and that the firm has issued a
zero coupon bond promising to pay the principal D at the maturity date
T. Assume that the actual pay-off of the bond at maturity is min(VT , D).
This means that debt holders receive their payment in full if the firm has
sufficient assets to pay, but if assets are insufficient the bondholders take
over the remaining assets. In the setting of a Black-Scholes market with a
constant interest rate r the price of this bond is give at time zero as

B0 = D exp(−rT ) − PBS(V0, D, σ, r, T )

where PBS denotes the value of a European put option in the Black-Scholes
setting. We can translate this bond price into a (promised) yield
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y(T ) = − 1
T

log
B0

D

and by varying T in this expression we obtain what is known as the risk struc-
ture of interest rates. We obtain the credit spread by subtracting the riskless
rate r from the promised yield. The most important observation from this
relationship is that yield spreads increase when leverage, i.e. the ratio of D to
V, increases and when asset volatility increases. Note that credit spreads are
increasing in volatility and do not distinguish between whether the volatility
is systematic or non-systematic. The expected return of the bond is sensi-
tive to whether volatility risk is systematic or not. So one should carefully
distinguish between credit spreads and expected returns on corporate bonds.

There are many modifications and extensions of the fundamental setup
outlined above. Bonds may pay continuous or lumpy coupons, there may be
a lower boundary which when reached by the asset value of the firm causes the
firm to default. This lower boundary could represent bond safety covenants or
liquidity problems of the firm and it could represent future capital structure
decisions of the firm trying to maintain a stationary leverage ratio. Dynamics
of key inputs may be changed as well, allowing for example for stochastic
interest rates or jumps in firm asset value. For a survey, see Lando (2005). The
structural models differ in how literally the option approach is taken. Several
of the models impose default boundaries exogenously and obtain prices on
coupon bonds by summing the prices of zero-coupon bonds obtained from
the risk structure of interest rates - an approach which does not make sense
in the Merton model, see Lando (2005) for a simple explanation.

A special branch of the literature endogenizes the default boundary, see
Leland (1994) and Leland and Toft (1996), or takes into account the ability
of owners to act strategically by exploiting that the costs of bankruptcy are
borne by the debt holders, see for example Anderson and Sundaresan (1996).

Applying contingent claims analysis to corporate bonds differs from con-
tingent claims pricing in many important respects. Most notably, the market
value of the underlying assets is not observable. In applications the asset value
must therefore be estimated and for companies with liquid stocks trading a
popular approach has been to estimate the underlying asset value and the
drift and volatility of the asset value by looking at equity prices as transfor-
mations (by the Black-Scholes call option formula) of the asset value. It is
therefore possible using the transformation theorem from statistics to write
down the likelihood function for the observed equity prices and to estimate
the volatility and the drift along with the value of the underlying assets. For
more on this, see Duan (1994).

The option-based approach is essential for looking at relative prices of
different liabilities in a firm’s capital structure, for discussing optimal capital
structure in a dynamic setting and for defining market-based predictors of
default.

The second approach to spread modeling - sometimes referred to as the
reduced-form approach or the intensity-based approach - takes as given a
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stochastic intensity of default which plays the same role for default risk as
the short rate plays in government term structure modeling. The advantage of
this approach is precisely that it integrates the modeling of corporate bonds
with modeling of the default-free term structure of interest rates, and this
makes it particularly suitable for econometric specification of the evolution
of credit spreads and for pricing credit derivatives.

Early intensity models are in Jarrow and Turnbull (1995) and Madan and
Unal (1998) and the full integration of stochastic intensities in term structure
models is found in Lando (1994, 1998) and Duffie and Singleton (1999). The
integration using a Cox process setup proceeds as follows. A non-negative
stochastic process λ describes the instantaneous probability of default under
a risk-neutral measure Q, i.e.

Q(τ ∈ (t, t+Δt]|Ft) = 1{τ>t}λtΔt

where Ft contains information at time t including whether the default time
τ is smaller than t. Assume that the intensity process λ and a process for
the riskless short rate r are adapted to a filtration (Gt) where Gt ⊂ Ft, and
assume that the default time τ of a firm is modeled as

τ = inf
{

t :
∫ t

0

λ(s)ds ≥ E1

}

.

where E1 is an exponentially distributed random variable with mean 1 which
is independent of the filtration (Gt). In accordance with the formal defini-
tion of an intensity, it can be shown that 1{τ≤t} −

∫ t

0
λ(s)1{τ≥s}ds is an Ft-

martingale. The key link to term structure modeling can be seen most easily
from the price v(0, T ) of a zero coupon bond maturing at T with zero recov-
ery in default (in contrast with B0 defined earlier) and issued by a company
with default intensity λ under the risk-neutral measure Q :

v(0, T ) = EQ

[

exp

(

−
∫ T

0

rs ds

)

1{τ>T}

]

= EQ

[

exp

(

−
∫ T

0

(rs + λs)ds

)]

.

A key advantage of the intensity models is that the functional form for the
price of the defaultable bond is the same as that of a default-free zero-coupon
bond in term structure modeling, and therefore the machinery of affine pro-
cesses can be applied. This is true also when the formula is extended to allow
for recovery by bond holders in the event of default, see for example Lando
(2005).

In the reduced-form setting prices of coupon bonds are typically computed
by summing the prices of zero-coupon bonds - an approach which clearly
should be applied with caution. It is suitable for valuing credit default swaps
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(see below) in which the contract has no influence on the capital structure
of the firm or for assessing the default risk of small additional exposures of a
firm for example in the context of counterparty risk in derivatives contracts.
Pricing large new corporate bond issues will require an intensity which takes
into account the effects on leverage of the new issue.

The division between the two approaches should not be taken too literally.
A structural model with incomplete information under certain assumptions
can be recast as an intensity model as shown in Duffie and Lando (2001),
and nothing precludes an intensity model from letting the default intensity
depend on the asset value of the firm and other firm specific variables.

Estimation of intensity models is performed in Duffee (1999) and Driessen
(2005) using a Kalman filter approach. Duffie and Singleton (1997) focus
on swap rates in an intensity-based setting. The default intensity process is
treated as a latent process similar to the short-rate process in classical term
structure modeling. This means that estimation proceeds in close analogue
with estimation of term structure models for default-free bonds. There is
one important difference, however, in how risk premia are specified for de-
fault intensities and for the riskless rate. To understand the difference in a
single factor setting, think of a diffusion-driven short rate depending on a
single Brownian motion, as for example in the Cox-Ingersoll-Ross setting.
The change of measure between the physical measure and the risk-neutral
measure corresponds to a change of drift of the Brownian motion. A similar
change of measure can be made for the intensity controlling the default time
of a defaultable bond issuer. However, it is also possible to have an intensity
process which is changed by a strictly positive, multiplicative factor when
going from the physical to the risk-neutral measure. This gives rise to an
important distinction between compensation for variation in default risk and
compensation for jump-event risk. For more on this distinction, see Jarrow
et al. (2005) and for a paper estimating the two risk premia components
separately, see Driessen (2005).

4 Credit Default Swap Spreads

The first empirical work on estimating intensity models for credit spreads
employed corporate bond data, but this is rapidly changing with the explosive
growth of the credit default swap (CDS) market. The CDS contracts have
become the benchmark for measuring credit spreads, at least for the largest
corporate issuers. A CDS is a contract between two parties: one who buys and
one who sells protection against default of a particular bond issuer which we
call the reference issuer. The protection buyer pays a periodic premium, the
CDS premium, until whichever comes first, the default event of the reference
issuer or the maturity date of the contract. In the event of default of the
reference issuer before the maturity of the CDS contract, the protection seller
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compensates the protection buyer for the loss on a corporate bond issued
by the reference firm. The compensation is made either by paying a cash
amount equivalent to the difference between the face value and the post
default market value of the defaulted bond or by paying the face value while
taking physical delivery of the defaulted bond. In practice, there is a delivery
option allowing the protection buyer to deliver one of several defaulted bonds
with pre-specified characteristics in terms of seniority and maturity. The CDS
premium is set such that the initial value of the contract is zero.

Forming a portfolio of a credit risky bond and a CDS contract with the
same maturity protecting against default on that bond, one has a position
close to a riskless bond and this gives an intuitive argument for why the credit
default swap premium ought to be close to a par bond spread on a corporate
bond. For a more rigorous argument, see Duffie (1999).

It is illustrative to use the intensity setting to compute the fair premium
on a CDS, i.e. the premium which gives the contract value 0 at initiation. In
practice, this relationship is primarily used to infer the default intensity from
observed CDS prices and then price other derivatives from that intensity,
or to analyze risk premia of default by comparing market implied default
intensities with actual default intensities.

To clearly illustrate the principle, consider a stylized CDS with maturity T
years, where premium payments are made annually. As above, let the default
intensity of the reference issuer be denoted λ under a risk-neutral measure Q.
Then the present value of the CDS premium payments made by the protection
buyer before the issuer defaults (or maturity) is simply

π̃pb = c

T
∑

t=1

EQ exp(−
∫ t

0

rs ds)1{τ>t} = c

T
∑

t=1

v(0, t)

where v(0, t) is the value of a zero recovery bond issued by the reference firm
which we used as the basic example above. If we write the probability of
surviving past t under the risk neutral measure as

S(0, t) = EQ
[

exp(−
∫ t

0

λs ds)
]

and we assume (as is commonly done when pricing CDS contracts) that the
riskless rate and the default intensity are independent, then we can express
the value of the protection payment made before default occurs as

π̃pb = c

T
∑

t=1

p(0, t)S(0, t)

where p(0, t) is the value of a zero-coupon riskless bond maturing at date t.
This formula ignores the fact that if a default occurs between two payment
dates, the protection buyer pays a premium determined by the fraction of a
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period that elapsed from the last premium payment to the default time. If
we assume that default happens in the middle between two coupon dates,
then the value of this extra payment should be added to get the value of the
protection payment:

πpb = π̃pb +
c

2

T
∑

t=1

p(0, t− 1
2
)
(

S(0, t) − S(0, t− 1)
)

.

The value of the protection seller’s obligation is more complicated (but cer-
tainly manageable) if we insist on taking into account the exact timing of
default. To simplify, however, we again assume that if a default occurs be-
tween two default dates, it occurs in the middle, and the settlement payment
is made at that date. Furthermore, we assume a recovery per unit of principal
equal to δ, so that the protection seller has to pay 1 − δ to the protection
buyer per unit of notional. Still assuming independence of the riskless rate
and the default intensity, we obtain

πps = (1 − δ)
T
∑

t=1

p(0, t− 1
2
)
(

S(0, t) − S(0, t− 1)
)

.

The fair CDS premium c can now be found by equating πpb and πps. In
practice payments are often made quarterly in rates equal to one fourth of
the quoted annual CDS premium.

There are several advantages of using CDS contracts for default studies:
First of all, they trade in a variety of maturities thus automatically providing
a term structure for each underlying name. They are becoming very liquid
for large corporate bond issuers, their documentation is becoming standard-
ized and unlike corporate bonds they do not require a benchmark bond for
extracting credit spreads.

Currently, there is an explosion of papers using CDS data. One early con-
tribution is Blanco et al. (2005) who among other things study lead/lag
relationships between CDS premia and corporate bond spreads on a sample
of European investment grade names. They find evidence that CDS con-
tracts lead corporate bonds. Longstaff et al. (2005) study the size of the CDS
spread compared to corporate bond spreads measured with respect to differ-
ent benchmark riskless rates. Assuming that the CDS premium represents
pure credit risk they are then able to take out the credit risk component of
corporate bonds and ask to what extent liquidity-related measures influence
the residual spread on corporate bonds.
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5 Corporate Bond Spreads and Bond Returns

The current price of a corporate bond in the Merton model - even under risk
neutrality - is smaller than the price of a default-free bond. Therefore, the
yield spread is positive even when there is risk neutrality. This part of the
corporate bond spread is the expected loss component. Empirically, corporate
spreads are found to be larger than the expected loss component, and in fact
they are apparently so much larger that it is questioned whether reasonable
assumptions on risk premia for default can explain the remainder. This is
the essence of the credit risk puzzle. How can actual spreads be so much
larger than the expected loss component? Roughly, potential contributions
to the corporate spread can be divided into the expected loss component,
components due to priced market risk factors in corporate bonds and other
factors, such as taxes (in the US coupons on corporate bonds are taxed at the
state level whereas Treasury bond coupons are not), a liquidity premium on
corporate bonds, and the choice of riskless benchmark (is the Treasury rate
the appropriate benchmark to use?). Early papers pointing to the difficulty of
structural models in explaining spreads are Jones et al. (1984) and Sarig and
Warga (1989). Newer papers attempting to decompose spreads in structural
model settings along the dimensions mentioned above include Huang and
Huang (2003) and Eom et al. (2003). Many papers study spreads in time
series and/or regression frameworks where inspiration on relevant covariates
to include come from form structural models, including Elton et al. (2001)
and Collin-Dufresne et al. (2001). A consensus seems to be building that the
Treasury rate is not an appropriate benchmark in US markets for defining a
riskless rate and using a rate closer to the swap rate at least removes part of
the credit risk puzzle. Using the swap rate as riskless benchmark also brings
credit spreads measured from CDS contracts closer to spreads measured from
corporate bonds as shown in Longstaff et al. (2005). Still, there is no definitive
answer yet to what fraction of credit spreads are in fact explained by default-
related factors.

6 Credit Risk Correlation

Dependence of default events is a key concern of regulators who are looking
into issues of financial stability. Performing empirical studies on dependence
based solely on events, similar to the basic default studies, is difficult since
the number of defaults is fairly limited. Fortunately, a very large market of
Collateralized Debt Obligations has emerged and the pricing of securities
in this market is intimately linked to correlation. This therefore allows us
to analyze market implied correlation. A CDO is an example of an asset
backed security in which the collateral consists of loans or bonds, and where
securities issued against the collateral are prioritized claims to the cash flow of
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the collateral. The lowest priority claim, the so-called equity tranche, is most
sensitive to default in the underlying pool and the highest priority claim, the
senior tranche, is strongly protected against default. This closely resembles
how equity, junior debt and senior debt are prioritized claims to a firm’s
assets, but there are often 5-7 different ’layers’ in the CDO tranches.

There are roughly speaking three approaches to pricing CDOs.

1. In the copula based approach one takes as given the marginal default in-
tensities of the individual loans in the collateral pool and defines a joint
distribution of default by applying a copula function, i.e. a device for
collecting a family of marginal distributions into a joint distribution pre-
serving the marginal distributions. Often the loans are actually given the
same default intensity and the copula function is then chosen from a para-
metric class of copulas attempting to fit the model to observed tranche
prices. A first paper in this area is Li (2000) but see also Schönbucher
(2003).

2. A full modeling approach is taken in Duffie and Gârleanu (2001) where
the default intensities of individual issuers are given a factor structure,
such that the individual intensities are a sum of a common ’factor’ inten-
sity and idiosyncratic intensities. While one can facilitate computations
by working with affine intensity processes, the model still requires many
parameters as inputs, and this is one reason why it is not adapted as
quickly by market participants despite its more appealing structure. One
may also question the implicit assumption of conditional independence
whereby the only dependence that the defaults have is through their com-
mon dependence on the aggregate factor. Conditionally on this factor the
defaults are independent. This rules out direct contagion among names
in the portfolio.

3. In the third approach, the process of cumulative losses is modeled directly
without focus on the individual issues. One can impose simple jumps
to accommodate one default at a time or one can choose to work with
possibilities of multiple defaults.

As noted, the choice of modeling here is linked to the issue of the extent
to which defaults are correlated only through their common dependence on
the economic environment or whether there is true contagion. This contagion
could take several forms: The most direct is that defaults cause other defaults
but it might also just be the case that defaults cause an increasing likelihood
of default for other issuers. Das et al. (2004) test whether the correlation
found in US corporate defaults can be attributed to common variation on
the estimated intensity of default for all issuers. By transforming the time-
scale, they test the joint hypothesis that the intensities of default of individual
firms are estimated correctly and that the defaults are conditionally indepen-
dent given the realized intensities, and they reject the joint hypothesis. This
is an indication that contagion events could be at play but the reason for the
rejection could also lie in a mis-specification of the intensities, neglecting for
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example an unobserved common default risk factor, sometimes referred to as
a frailty factor in line with the survival analysis literature. An inaccurately
specified underlying intensity could also be the problem. A proper under-
standing and parsimonious modeling of dependence effects in CDO pricing
remains an important challenge.
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Evaluating Volatility and Correlation
Forecasts

Andrew J. Patton and Kevin Sheppard ∗

Abstract This chapter considers the problems of evaluation and comparison
of volatility forecasts, both univariate (variance) and multivariate (covariance
matrix and/or correlation). We pay explicit attention to the fact that the
object of interest in these applications is unobservable, even ex post, and so
the evaluation and comparison of volatility forecasts often rely on the use of
a "volatility proxy", i.e. an observable variable that is related to the latent
variable of interest. We focus on methods that are robust to the presence of
measurement error in the volatility proxy, and to the conditional distribution
of returns.

1 Introduction

This chapter considers the problems of evaluation and comparison of univari-
ate and multivariate volatility forecasts, with explicit attention paid to the
fact that in such applications the object of interest is unobservable, even ex
post. Thus the evaluation and comparison of volatility forecasts must rely on
direct or indirect methods of overcoming this difficulty. Direct methods use
a “volatility proxy”, i.e. some observable variable that is related to the latent
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variable of interest. We will assume the existence of an unbiased volatility
proxy, such as daily squared returns for the daily conditional variance of re-
turns. Indirect methods of overcoming the latent nature of the variable of
interest include comparing forecasts via mean-variance portfolio decisions or
comparisons based on portfolio “tracking error”.

A guiding theme of our analysis is the focus on tests that are “robust” in
two ways: Firstly, we want tests that are robust to the presence of noise in
the volatility proxy, if a proxy is used. The presence of noise in the proxy
may affect – indeed, is likely to affect – the power of the tests, but it should
not distort the asymptotic size of the test. Secondly, we desire tests that
are robust to the conditional distribution of returns. Some existing volatility
forecast evaluation and comparison techniques rely, in an important way, on
assumptions about the conditional distribution of returns beyond the con-
ditional second moment. While these techniques may have strong economic
motivations, and thus be of interest in their own right, we argue that they
are not pure tests of volatility forecasts and that they should not be used
without a convincing economic argument. Such arguments will generally be
specific to each application.

The main results and recommendations of this chapter, based on theoret-
ical considerations and on simulation studies, can be summarised as follows.
Firstly, we suggest a minor modification of the widely-used Mincer-Zarnowitz
regression for testing volatility forecast optimality which exploits the addi-
tional structure that holds under the null hypothesis. This “MZ-GLS” test
has good size and much better finite sample power than other MZ tests. Sec-
ondly, we find that the use of loss functions that are “non-robust”, in the
sense of Patton (2006), can yield perverse rankings of forecasts, even when
accurate volatility proxies are employed. This emphasises the need to pay
careful attention to the selection of the loss function in Diebold and Mariano
(1995) and West (1996) tests when evaluating volatility forecasts. Amongst
the class of robust loss functions for volatility forecast evaluation, and the
multivariate generalisation of these loss functions provided in this chapter,
our simulations suggest that the “QLIKE” loss function yields the greatest
power. Finally, consistent with the large and growing literature on realised
volatility, our simulations clearly demonstrate the value of higher-precision
volatility proxies, such as realised variance or daily high-low range, see An-
dersen et al. (2003) and Barndorff-Nielsen and Shephard (2004). Even simple
estimators based on 30-minute returns provide large gains in power and im-
provements in finite-sample size.

The problems which arise in evaluating a single volatility forecast, a set of
volatility forecasts, or a complete covariance matrix are so similar that divid-
ing the chapter into univariate and multivariate sections would be misleading.
This chapter avoids the false dichotomy between univariate and multivariate
volatility forecasting and evaluation as much as possible. As a results, this
chapter is primarily organised along the method of evaluation, not the dimen-
sion of the problem studied. Sections 2 and 3 of this chapter focus on direct
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methods for forecast evaluation and comparison using a volatility proxy, while
Sect. 4 discusses indirect, or economic, methods.

1.1 Notation

We will present the notation for the general multivariate case first and spe-
cialise the notation for the univariate case where needed. Let rt ≡ [r1t, r2t, . . .
, rKt]

′ be the K × 1 vector valued variable whose conditional covariance is
of interest. The information set used in defining the conditional variance is
denoted Ft−1, and is assumed to contain the history of past returns, but may
also include other variables and/or variables measured at a higher frequency
than rt, such as intra-daily returns. Denote V [rt|Ft−1] ≡ Vt−1 [rt] ≡ Σt, a
K ×K symmetric, positive definite matrix composed of elements σij,t where
σii,t ≡ σ2

i,t denotes the conditional variance of the ith return and σij,t denotes
the conditional covariance between the ith and jth series. We will assume
throughout that E [rt|Ft−1] ≡ Et−1 [rt] = 0, and thus Σt = Et−1 [rtr′t]. Let
εt ≡ Σ−1/2

t rt denote the “standardised vector of returns”, where Σ1/2
t is a

matrix that satisfies Σ1/2′
t Σ1/2

t = Σt.2 We assume that

rt|Ft−1 ∼ Ft (0, Σt) (1)

where Ft is some distribution with zero mean and finite covariance Σt. In
some applications we will use a stronger condition that rt|Ft−1 has a constant
conditional distribution and hence constants higher order moments, i.e.

rt|Ft−1 ∼ F (0, Σt) . (2)

Let a forecast of the conditional covariance of rt be denoted Ht, or HA
t , HB

t ,
HC

t , . . . if there multiple forecasts are under analysis. The loss function in
the multivariate case is L : M

K
+ × HK → R+, where the first argument of

L is Σt or some proxy for Σt, denoted ̂Σt, and the second is Ht. R+ and
R++ denote the non-negative and positive real line, HK is a compact subset
of M

K
++, and M

K
+ and M

K
++ denote the positive semi-definite and positive

definite subspaces of the set of all real symmetric K×K matrices. Note that
M

1
+ = R+ and M

1
++ = R++.

Commonly used univariate volatility proxies are the squared return, r2t , re-
alised volatility based onm intra-daily observations (“m-sample RV”),RV (m)

t ,
and the range, RGt, while commonly used covariance proxies are the outer

2 For example, the “square root” matrix, Σ
1/2
t , can be based on the Cholesky or the

spectral decomposition of Σt. The Cholesky square-root is not invariant to the order of
the variables in rt, and so any subsequent computations may change following a simple
re-ordering of these variables. For this reason we recommend the use of the square-root
based on the spectral decomposition.
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product of returns, rtr′t and realised covariance, RC(m)
t . In this chapter we

will treat the forecasts as “primitive”, and make no attempt to study them via
the models, if any, that are used to generate the forecasts. Specification, esti-
mation and selection of univariate and multivariate volatility models are con-
sidered in further chapters of this volume, cf. Chib (2008), Koopman (2008),
Silvennoinen and Teräsvirta (2008), Teräsvirta (2008) and Zivot (2008).

We define a conditionally unbiased volatility proxy, denoted σ̂2
t , and a

conditionally unbiased covariance proxy, denoted ̂Σt = [σ̂ij ]t as variables
that satisfy:

E
[

σ̂2
t |Ft−1

]

= σ2
t a.s., t = 1, 2, .. (3)

E
[

̂Σt|Ft−1

]

= Σt a.s., t = 1, 2, .. (4)

We will assume that at least one such proxy is available in all cases, though
we make no further assumptions about the accuracy or consistency of the
proxy.

2 Direct Evaluation of Volatility Forecasts

In this section we review tests for the evaluation of volatility forecasts using
a volatility proxy. Recalling that σ2

t ≡ V [rt|Ft−1] and drawing on Definition
5.2 White (1996), we define an optimal univariate volatility forecast as one
that satisfies the following null hypothesis:

H∗
0 : ht = σ2

t a.s., t = 1, 2, . . . (5)
vs. H∗

1 : ht �= σ2
t for some t

The corresponding null for multivariate volatility forecasts is:

H∗
0 : Ht = Σt a.s., t = 1, 2, . . . (6)

vs. H∗
1 : Ht �= Σt for some t

The above null hypotheses are the ones that would ideally be tested in forecast
evaluation tests. Instead, simple implications of these hypotheses are usually
tested; we review the most common tests below.
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2.1 Forecast optimality tests for univariate volatility
forecasts

One common method of evaluating forecasts is the Mincer-Zarnowitz, or MZ,
regression (cf. Mincer and Zarnowitz (1969)) , which involves regressing the
realisation of a variable on its forecast (see also Theil (1958)). However, un-
like standard forecast evaluation problems, the conditional variance is never
observed, and the usual MZ regression is infeasible for volatility forecast eval-
uation. Using a conditionally unbiased estimator of the conditional variance,
the feasible MZ regression:

σ̂2
t = α+ βht + et (7)

yields unbiased estimates of α and β. The usual MZ test can then be con-
ducted:

H0 : α = 0 ∩ β = 1 (8)
vs. H1 : α �= 0 ∪ β �= 1

The OLS parameter estimates will be less accurately estimated the larger
the variance of

(

σ2
t − σ̂2

t

)

, which suggests the use of high frequency data to
construct more accurate volatility proxies, cf. Andersen and Bollerslev (1998).
While using less accurate estimates of σ̂2

t affects the precision of α and β,
and thus the power of the test to detect deviations from forecast optimality,
it does not affect the validity of the test.3

The standard MZ regression can detect certain deviations from H∗
0 but is

not consistent against all possible deviations. While it is possible to construct
consistent MZ test (see Bierens (1990), de Jong (1996) Bierens and Ploberger
(1997)), so-called “augmented MZ regressions”, constructed using additional
Ft−1-measurable instruments to increase the power of the test in certain di-
rections, are more common. Standard instruments include the lagged volatil-
ity proxy, σ̂2

t−1, the lagged standardised volatility proxy, σ̂2
t−1/ht−1, sign

based indicators, I[rt−1<0], or combinations of these. These instruments are
motivated by a desire to detect neglected nonlinearities or persistence in the
volatility forecast. Grouping the set of Ft−1-measurable instruments into a
vector zt−1, the augmented MZ regression, null and alternative hypotheses
are

σ̂2
t = α+ βht + γ ′zt−1 + et (9)

H0 : α = 0 ∩ β = 1 ∩ γ = 0

vs. H1 : α �= 0 ∪ β �= 1 ∪ γ �= 0 .

3 Chernov (2007) provides a detailed analysis of the implications of measurement error in
the regressors, such as the zt−1 variables in (9).
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Note that the residual of the above regression will generally be heteroskedas-
tic, even under H∗

0 , and so robust standard errors White (1980) are required.
This prompted some authors to consider a different approach: testing for
serial correlation in the standardised volatility proxy:

σ̂2
t

ht
= δ + ϑ

σ̂2
t−1

ht−1
+ ut (10)

H0 : δ = 1 ∩ ϑ = 0
vs. H1 : δ �= 1 ∪ ϑ �= 0

This approach generates residuals that are homoskedastic under H∗
0 if the

noise in the proxy
(

ηt ≡ σ̂2
t /σ

2
t

)

has constant conditional variance4, and so if
this assumption holds then robust standard errors are not required.

2.2 MZ regressions on transformations of σ̂2
t

The use of squared returns in MZ regressions has caused some researchers
concern, as statistical inference relies on fourth powers of the returns, and
thus returns that are large in magnitude have a large impact on test results.
One frequently proposed alternative is to use transformations of the volatility
proxy and forecast to reduce the impact of large returns (see Jorion (1995),
Bollerslev and Wright (2001)). Two such examples are:

|rt| = α+ β
√

ht + et, and (11)
log

(

r2t
)

= α+ β log (ht) + et (12)

Using these regressions can result in size distortions, even asymptotically, due
to noise in the volatility proxy, σ̂2

t . Take the regression in (11) as an example:
under H∗

0 the population values of the OLS parameter estimates are easily
shown to be:

α = 0

β =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

E [|εt|] , if Et−1 [|εt|] is constant
√

ν−2
π Γ

(

ν−1
2

)

/Γ
(

ν
2

)

, if rt|Ft−1 ∼ Student’s t
(

0, σ2
t , ν

)

, ν > 2
√

2/π ≈ 0.80, if rt|Ft−1 ∼ N
(

0, σ2
t

)

where Student’s t
(

0, σ2
t , ν

)

is a Student’s t distribution with mean zero, vari-
ance σ2

t and ν degrees of freedom. When returns have the Student’s t distri-
bution, the population value for β decreases towards zero as ν ↓ 2, indicating
that excess kurtosis in returns increases the distortion in this parameter. In

4 This corresponds to conditional homokurticity, discussed below, of the returns if the
volatility proxy used is a squared return.
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the regression in (12) the population OLS parameters under H∗
0 are:

α =

⎧

⎪

⎨

⎪

⎩

E
[

log ε2t
]

,

log (ν − 2) + Ψ
(

1
2

)

− Ψ
(

ν
2

)

, if rt|Ft−1 ∼ Student’s t
(

0, σ2
t , ν

)

, ν > 2
− log (2) − γE ≈ −1.27, if rt|Ft−1 ∼ N

(

0, σ2
t

)

β = 1

where Ψ is the digamma function and γE = −Ψ (1) ≈ 0.58 is Euler’s con-
stant, cf. Harvey et al. (1994). Under the Student’s t distribution, the above
expression shows α → −∞ as ν ↓ 2. Thus while both of these alternative
MZ regressions may initially appear reasonable, without some modification
they lead to the undesirable outcome that the perfect volatility forecast,
ht = σ2

t a.s., will be rejected with probability approaching one as the sample
size increases. In both cases the perverse outcomes are the result of the im-
perfect nature of any volatility proxy; if volatility was observable, regressions
on the transformation would lead to the correct result.

A second alternative is to adjust the volatility proxy, either exactly or
approximately, so as to make it unbiased for the quantity of interest, σt or
log σt, and thus avoid any asymptotic size distortions, see Bollerslev and
Wright (2001), Christodoulakis and Satchell (2004), Andersen et al. (2005).
However, these adjustments require further assumptions about the distribu-
tion of the noise in the volatility proxy, and test statistics may be misleading
if the assumptions are violated.

2.3 Forecast optimality tests for multivariate volatility
forecasts

The results for testing optimality of conditional volatility can be directly
extended to conditional covariance forecasts. The simplest optimality test
examines the unique elements of the forecast covariance Ht separately using
feasible MZ regressions

σ̂ij,t = αij + βijhij,t + eij,t (13)

or augmented MZ regressions

σ̂ij,t = αij + βijhij,t + γ′
ijzij,t + eij,t . (14)

resulting in K(K + 1)/2 regressions and test statistics. This may be prob-
lematic, particularly when K is large as some rejections are expected even
if the conditional covariance is correct. Alternatively, a joint test, that all of
the coefficients are simultaneously zero can be tested the by forming a vector
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process using the half-vector operator5 (vech),

vech(̂Σt) = α + diag(β)Ht + εt (15)

where α and β are K(K + 1)/2 parameter vectors and diag is the diagonal
operator6. Explicit expressions for a heteroskedasticity consistent covariance
estimator can be found in many panel data texts (see, e.g. Arellano (2003)).
Despite availability of a joint test, the finite sample properties may be ad-
versely affected by the large dimension of the parameter covariance matrix.
A simple specification could be constructed using only a common parameter
across all pairs,

vech(̂Σt) = α+ βvech (Ht) + εt (16)

and testing whether α and β are 0 and 1, respectively7.

2.4 Improved MZ regressions using generalised least
squares

The residuals from the feasible MZ and augmented MZ regressions above will
generally be heteroskedastic, and the size and power properties of these tests
can be improved using generalised least squares. Consider a decomposition
of the volatility proxy into the true variance and a multiplicative error term:
σ̂2
t ≡ σ2

t ηt, where Et−1 [ηt] = 1, and the feasible univariate MZ regression
from above:

σ̂2
t = α+ βht + et

Under H∗
0 , residuals from this regression will be

et = σ̂2
t − ht = σ2

t (ηt − 1)
so Et−1 [et] = 0

but Vt−1 [et] = σ4
t Vt−1 [ηt] ≡ ς2t

If ς2t was known for all t, then GLS estimation of the feasible MZ regression
would simply be

5 This operator stacks the columns of the lower triangle of a square matrix (Magnus and
Neudecker (2002)).
6 The diagonal operator transforms a K × 1 vector into a K ×K matrix with the vector
along the diagonal. That is, diag(β) = (βι′) � IK , where ι is a K × 1 vector of ones,
IK is the K-dimensional identity matrix, and � represents the Hadamard product (for
element-by-element multiplication).
7 While the parameters of this regression can be estimated using OLS by stacking the
elements of vech(̂Σt), the errors will generally be cross-sectionally correlated and White
standard errors will not be consistent. Instead, a pooled-panel covariance estimator appro-
priate for cross-correlated heteroskedastic data should be used.
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σ̂2
t

ςt
= α

1
ςt

+ β
ht
ςt

+ ẽt . (17)

In the special case where the volatility proxy is a squared return, σ̂2
t =

r2t and where the standardised returns are conditionally homokurtic8, i.e.
Et−1

[

r4t
]

/σ4
t = κ ∀ t, the MZ-GLS takes a very simple form:

σ̂2
t

ht
= α

1
ht

+ β + ẽt . (18)

since Vt−1[σ̂2
t ] = σ4

t κ = h2
tκ ∝ h2

t under H∗
0 .

This simple standardisation is not guaranteed to produce efficient esti-
mates for arbitrary volatility proxies, for example realised variance or range.
However, it is generally the case that the volatility of the proxy is increasing
in the level of the proxy. Thus using the specification in (18) may result in
improved finite sample performance, even when not fully efficient. A formal
proof of this conjecture is left to future research9.

The application of MZ-GLS to covariance forecast evaluation is similar
although there are choices which may affect the finite sample properties of
the parameter estimators. The direct extension of the univariate framework
specifies the MZ-GLS as

σ̂ij,t
ςij,t

= αij
1
ςij,t

+ βij
hij,t
ςij,t

+ ẽij,t . (19)

where ςij,t ≡ Vt−1[σ̂ij,t], and again αij = 0∩βij = 1 under H∗
0 . If the volatility

proxies are squares or cross-products of conditionally homokurtic returns, the
MZ-GLS can again be specified using the forecasts as weights

σ̂ij,t
√

hii,thjj,t + h2
ij,t

= αij
1

√

hii,thjj,t + h2
ij,t

+ βij
hij,t

√

hii,thjj,t + h2
ij,t

+ ẽij,t

(20)
The denominator of the left-hand-side of the above equation can be written
as

√

hii,thjj,t
√

1 + &2
ij,t. It may be noted that the contribution to the het-

8 This holds, for example, if returns are conditionally Normally distributed, or conditionally
Student’s t distributed with constant degrees of freedom greater than 4.
9 In the presence of intra-daily heteroskedasticity, the variance of the proxy will not gener-
ally be proportional to the conditional variance and so a direct estimate will be required.
If the proxy is realised variance, such an estimator will require an estimate of the “in-
tegrated quarticity”, see Barndorff-Nielsen and Shephard (2004). For application of GLS,
the estimator needs to be consistent in T, thus requiring that m = O

(

T δ
)

for δ ≥ 1,
with the specific rate δ depending on assumptions about the underlying diffusion. In finite
samples, integrated quarticity is often estimated with substantial error, and so scaling by
a consistent estimator of the proxy variance, while accurate asymptotically, may perform
worse than simply scaling by the forecast.
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eroskedasticity of σ̂ij,t from the
√

1 + &2
ij,t term is generally small since this

is bounded between 1 and
√

2. A slightly simpler specification for evaluating
conditional covariance models that accounts for the largest contributors to
the heteroskedasticity of σ̂ij,t can be specified as

σ̂ij,t
√

hii,thjj,t
= αij

1
√

hii,thjj,t
+ βij&ij,t + ẽij,t . (21)

and can be interpreted as a regression of the correlation proxy on the forecast
correlation10, cf. Tse (2000). When i = j all of these specifications reduce to
the volatility MZ-GLS in (18).

2.5 Simulation study

To assess the size and power properties of the MZ and MZ-GLS tests, we
compare variations on two methods for evaluating the performance of volatil-
ity and covariance forecasts. The first method (MZ1) involves regressing a
volatility proxy (either squared daily returns, or a realised volatility proxy
constructed to resemble a realised variance based on 30-minute or 5-minute
returns) on a constant and the forecast:

σ̂2
t = α+ βht + et

and then testing

H0 : α = 0 ∩ β = 1
vs H1 : α �= 0 ∪ β �= 1

This regression will have heteroskedastic errors under H∗
0 and the covariance

of the OLS parameters must be estimated using a heteroskedasticity consis-
tent estimator, such as White’s robust covariance estimator, cf. White (1980).
Alternatively, as discussed above, the volatility forecasts themselves can be
used to obtain homoskedastic regression residuals via GLS. In this case we
use OLS to estimate

σ̂2
t

ht
= α

1
ht

+ β + ẽt

We denote these two approaches as MZ1 (White) and MZ1-GLS. The proxy
used, either daily returns squared or realised variance is denoted RV (m),
where m is the number of intra-daily returns used to construct the realised

10 Strictly speaking, σ̂ij,t
√

σ̂2
i,tσ̂2

j,t

would be the correlation proxy, however this proxy is not

generally unbiased since it is a non-linear function of unbiased estimators. The modification
in (21) is a compromise that makes use of the volatility forecasts, hii,t and hjj,t, which
are unbiased and error free under H∗

0 .
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variance. The second approach (MZ2) uses the standardised proxy in the
regression, and has residuals that are homoskedastic under H∗

0 , as long as
the noise in the proxy

(

ηt ≡ σ̂2
t /σ

2
t

)

has constant conditional variance:

σ̂2
t

ht
= δ + ϑ

σ̂2
t−1

ht−1
+ ut (22)

and then tests

H0 : δ = 1 ∩ ϑ = 0
vs H1 : δ �= 1 ∪ ϑ �= 0

While the MZ2 regression has an intuitive appeal, we are not aware of any
studies of its performance relative to the MZ1 regressions in a realistic sce-
nario.

The data generating process used in the simulation was specified as a
standard GARCH(1,1)

DGP : rt = σtεt, t = 1, 2, . . . , T (23)
where Et−1 [εt] = 0 and Et−1

[

ε2t
]

= 1

σ2
t = 0.05 + 0.85σ2

t−1 + 0.10r2t−1 (24)
T = {100, 250, 500, 1000}

We specify the distribution of the standardised innovations as:

εt =
78
∑

m=1

ξmt (25)

ξmt
IID
∼ N (0, 1/78)

The distribution of the standardised innovations is designed to allow for DGP-
consistent high-frequency estimators to be computed while preserving the
GARCH(1,1) specification for the variance. The volatility proxies are com-
puted from the ξmt as

RV
(m)
t = σ2

t

m
∑

i=1

⎛

⎝

λi
∑

j=λ(i−1)+1

ξit

⎞

⎠

2

(26)

where λ = 78/m. We considered three values for m, the number of intra-
daily returns. m = 1 corresponds to the use of daily squared returns as a
proxy; m = 13 corresponds to using half-hourly returns for a stock traded on
the NYSE; and m = 78 corresponds to using five-minute returns for a stock
traded on the NYSE.
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Size Comparison of MZ-type Tests for Volatility Forecasts

T = 100 T = 250
RV (1) RV (13) RV (78) RV (1) RV (13) RV (78)

MZ1 (White) 0.23 0.09 0.07 0.16 0.07 0.07
MZ1-GLS 0.11 0.07 0.06 0.08 0.06 0.05
MZ1-GLS (White) 0.15 0.07 0.06 0.10 0.06 0.06
MZ2 0.07 0.06 0.05 0.05 0.05 0.05
MZ2 (White) 0.15 0.07 0.07 0.10 0.06 0.06

T = 500 T = 1000
RV (1) RV (13) RV (78) RV (1) RV (13) RV (78)

MZ1 (White) 0.12 0.07 0.06 0.10 0.06 0.06
MZ1-GLS 0.06 0.05 0.05 0.06 0.05 0.05
MZ1-GLS (White) 0.07 0.05 0.05 0.06 0.05 0.05
MZ2 0.05 0.05 0.05 0.05 0.05 0.05
MZ2 (White) 0.08 0.05 0.06 0.07 0.05 0.05

Table 1 Rejection frequency of test statistics using a nominal size of 5% based on asymp-
totic critical values. All test statistics were computed using Wald tests using either White’s
heteroskedasticity-consistent covariance estimator or the standard OLS variance covariance
formula as indicated. Three proxies were used for the latent volatility: the daily squared
returns (RV (1)), a 13-sample realised variance estimator (RV (13)) and a 78-sample realised
variance (RV (78)).

The forecast model was designed to reflect the fact that most volatil-
ity forecasting models are able to closely match the unconditional variance.
Forecasts predominantly differ in their specification for the dynamics of con-
ditional variance. The model used is also a GARCH(1,1), with the correct
unconditional variance, but with differing persistence. The setup is such that
the ratio of the coefficient on r2t−1 to the coefficient on ht−1 is always equal
to 10/85. We take these parameters as fixed, and do not consider the fore-
caster’s problem of estimating the model parameters from the data. The null
corresponds to the case that k = 0.95.

Model : ht = (1 − k) +
0.85
0.95

k × ht−1 +
0.10
0.95

k × r2t−1 (27)

k = {0.80, 0.81, . . . , 0.99, 1}

We studied varying degrees of persistence (k) and 4 different sample sizes (T )
designed to reflect realistic evaluation samples, ranging from 100 to 1000, each
with 10,000 replications. The power curves are presented in Fig. 1, and the
finite-sample size properties are summarised in Table 1.

Three main conclusions can be drawn from our small Monte Carlo study:
Firstly, MZ1 tests are generally more powerful than the MZ2 tests, particu-
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Fig. 1 The four panels of this figure contain the size-adjusted power for MZ1 and MZ2 tests
applied to volatility forecasts. Two proxies were used for the latent volatility: daily squared
returns (RV (1), solid line) and a 13-sample realised variance estimator (RV (13), dotted
line). MZ1 tests regress the volatility proxy on the forecast using either OLS, indicated by
, or GLS, indicated by ◦, and MZ2 tests regress the standardised volatility proxy on a lag

of the standardised volatility proxy, indicated by ♦.

larly for larger sample sizes. Secondly, of the MZ1 tests, MZ1-GLS has better
power, often substantially, than the standard feasible MZ test. The difference
between MZ1 and MZ1-GLS was particularly striking when using the daily
squared return as a proxy. Furthermore, it has good size properties even in
small samples. That MZ1-GLS has better size properties than tests relying
on robust standard errors is not too surprising, given that robust standard
error estimators are known to often perform poorly in finite samples. Finally,
the use of high-frequency data provides substantial gains in power: using just
13 intra-daily observations (corresponding to 30-minute returns for a stock
traded on the NYSE) yields a marked improvement in power over a proxy
based on daily returns. Using only T = 100 observations based on realised
volatility with m = 13 produced similar power to using T = 1000 observa-
tions and squared daily returns (m = 1).

The size and power of the tests of covariance forecasts were examined in a
similar study. Using the natural analogue of the GARCH(1,1), the DGP was
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specified as a bivariate scalar diagonal vech,

DGP : rt = Σ1/2
t εt, t = 1, 2, . . . , T (28)

where Et−1 [εt] = 0 and Et−1 [εtε′
t] = Ik

Σt = 0.05Σ̄ + 0.85Σt−1 + 0.10rt−1r′t−1

T = {100, 250, 500, 1000}

where Σ̄ is a bivariate matrix with unit diagonals and off-diagonal values of
0.3 (see Bollerslev et al. (1988)). The standardised innovations were specified
to allow DGP-consistent realised covariances to be computed,

εt =
78
∑

m=1

ξmt (29)

ξmt
IID
∼ N (0, 1/78I2) .

The forecasting model was also a scalar diagonal vech parameterised in the
spirit of (23),

Ht = (1 − k) Σ̄ +
0.85
0.95

kHt−1 +
0.10
0.95

krt−1r′t−1

k = {0.80, 0.81, . . . , 0.99, 1} .

When k = 0.95 the model corresponds to the DGP. Daily cross-products
and 13- and 78-sample realised covariance, RC(13) and RC(78), respectively,
were used to proxy for the latent covariance and 10,000 replications were
conducted.

In addition to the MZ1, MZ1-GLS and MZ2 specification studied in the
volatility evaluation Monte Carlo, the approximate GLS specification in (21)
was included in the study and is indicated by MZ1-Approx. GLS. Table 2 con-
tains summary information about the size and Fig. 2 contains size-adjusted
power curves for the specifications examined. The results are in line with
those of the volatility tests: the tests have better size when GLS is used,
particularly when the use of robust standard errors can be avoided, and the
size is improved by using a more precise proxy. The power curves also show
that MZ2 is less powerful than MZ1.

Combining the results of these two simulations, two main conclusions
emerge. Firstly, the gains from using intra-daily data to construct a realised
volatility proxy are large, even when only using a few intra-daily samples.
Tests based solely on daily data are often oversized and have low power, even
for T = 1000. The fact that substantial gains from intra-daily data may be
obtained even when using just 30-minute returns is a positive result, given
that prices sampled at this frequency are generally believed to be free from
microstructure noise and non-synchronous trading problems; something that
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Size Comparison of MZ-type Tests for Covariance Forecasts

T = 100 T = 250
RV (1) RV (13) RV (78) RV (1) RV (13) RV (78)

MZ1 (White) 0.18 0.09 0.08 0.13 0.07 0.07
MZ1-GLS 0.10 0.06 0.06 0.07 0.05 0.05
MZ1-GLS (White) 0.12 0.07 0.07 0.08 0.06 0.06
MZ1-Approx GLS (White) 0.13 0.07 0.07 0.09 0.06 0.06
MZ2 0.05 0.05 0.05 0.05 0.05 0.05
MZ2 (White) 0.06 0.08 0.08 0.07 0.06 0.06

T = 500 T = 1000
RV (1) RV (13) RV (78) RV (1) RV (13) RV (78)

MZ1 (White) 0.11 0.06 0.06 0.09 0.06 0.06
MZ1-GLS 0.06 0.05 0.06 0.06 0.05 0.05
MZ1-GLS (White) 0.07 0.05 0.06 0.06 0.05 0.05
MZ1-Approx GLS (White) 0.07 0.05 0.06 0.06 0.05 0.05
MZ2 0.05 0.05 0.05 0.05 0.05 0.05
MZ2 (White) 0.05 0.05 0.05 0.05 0.05 0.05

Table 2 Rejection frequency of test statistics using a nominal size of 5% based on asymp-
totic critical values. All test statistics were computed using Wald tests using either White’s
heteroskedasticity-consistent covariance estimator or the standard OLS variance covari-
ance formula as indicated. Three proxies were used for the latent covariance matrix: daily
outer-products of returns (RV (1)), a 13-sample realised covariance estimator (RV (13)) and
a 78-sample realised covariance estimator (RV (78)).

is not true for prices sampled a 5-minute intervals (see, e.g. Hansen and Lunde
(2006b), Griffin and Oomen (2006), Sheppard (2006)).

The second main finding is that the use of a GLS estimator produces
substantial improvements in finite-sample size and distinct increases in power.
For example, when using daily squared returns as the volatility proxy, the
use of the a GLS regression is approximately as powerful as a standard MZ
regression with twice as many observations.

3 Direct Comparison of Volatility Forecasts

This section reviews methods for comparing two or more competing volatility
forecasts using a volatility proxy.

Direct comparisons of competing volatility forecasts can be done in a num-
ber of ways. One popular approach for univariate volatility forecasts is to com-
pare forecasts using the R2 from MZ regressions of a proxy on the forecast,
see Andersen and Bollerslev (1998), Andersen et al. (2005). If the forecasts
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Fig. 2 The four panels of this figure contain the size-adjusted power for MZ1 and MZ2 tests
applied to covariance forecasts. Two proxies were used for the latent covariance matrix:
daily outer-products of returns (RV (1), solid line) and a 13-sample realised covariance
estimator (RV (13), dotted line). MZ1 tests regress the volatility proxy on the forecast using
either OLS, indicated by , or GLS, indicated by ◦, and MZ2 tests regress the standardised
volatility proxy on a lag of the standardised volatility proxy, indicated by ♦.

are unbiased, this is equivalent to ranking the forecasts on the basis of their
mean square error (MSE). The significance of any difference in MSE, or R2,
can be tested via a Diebold-Mariano and West (henceforth DMW) test (see
Diebold and Mariano (1995) and West, (1996, 2006)).11

3.1 Pair–wise comparison of volatility forecasts

The DMW test can be used to compare two forecasts using general loss
functions, including those other than MSE. Consider the general case, with

11 West (1996) explicitly considers forecasts that are based on estimated parameters,
whereas the null of equal predictive accuracy is based on population parameters. Diebold
and Mariano (1995), on the other hand, take the forecasts as given and do not allow for
estimation error. In this chapter we also take the forecasts as given, and so these two
approaches coincide.
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the loss function defined over the true conditional covariance, Σt, or a proxy,
̂Σt, and the covariance forecast, Ht, L : M

K
+ ×HK → R+. The DMW tests the

null of equal predictive accuracy against composite alternatives that indicate
which forecast performs better:

H0 : E
[

L(Σt,HA
t )

]

= E
[

L(Σt,HB
t )

]

(30)

vs. H1 : E
[

L(Σt,HA
t )

]

> E
[

L(Σt,HB
t )

]

H2 : E
[

L(Σt,HA
t )

]

< E
[

L(Σt,HB
t )

]

Since Σt is unobservable, this test is implemented using a statistic computed
on the difference in the losses measured via a volatility proxy:

dt = L(̂Σt,HA
t ) − L(̂Σt,HB

t ) (31)

The test is computed using a standard t-test:

DMWT =
√
T d̄T

√

âvar
[√

T d̄T

]

(32)

where d̄T ≡ 1
T

T
∑

t=1

dt

and âvar
[√

T d̄T

]

is some consistent estimator of the asymptotic variance of

the re-scaled average,
√
T d̄T , such as the Newey-West estimator (Newey and

West (1987)). Under the null hypothesis the test statistic is asymptotically
Normally distributed.

Giacomini and White (2006) recently proposed comparing forecasts based
on their expected loss conditional on variables thought to be important for
relative forecast performance. The null hypothesis of interest in such a com-
parison replaces the unconditional expectation in (30) with a conditional
expectation. For example, in a volatility forecasting application, one could
test whether one volatility forecast out-performs another more in times of
high volatility than in times of low volatility, or during bull markets com-
pared to bear markets. However, we have not seen such an application in the
literature to date.

3.2 Comparison of many volatility forecasts

When interest lies in comparing many competing forecasts there are two main
approaches: the “Reality Check”, cf. White (2000), and a modified version
with better power properties, cf. Hansen (2005), or the “Model Confidence
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Set” (Hansen et al. (2005)). The Reality Check tests the null hypothesis that
no forecast outperforms, according to some loss function, a given benchmark
forecast. The null hypothesis in this test is

H0 : E
[

L(Σt,HA
t )

]

≤ min
i∈{B,C,...}

E
[

L(Σt,Hi
t)
]

vs. H1 : E
[

L(Σt,HA
t )

]

> min
i∈{B,C,...}

E
[

L(Σt,Hi
t)
]

Hansen and Lunde (2005) use this type of test to determine whether a
GARCH(1,1) model was out-performed by any of over three hundred compet-
ing volatility forecasts, for IBM equity return volatility and for the volatility
of the log-difference of the DM-USD exchange rate .

The Model Confidence Set (MCS) is useful when there is no benchmark
forecast. The outcome of this approach is a subset of forecasts that are not
distinguishable from the best forecast across the complete set of forecasts.
Defining the set of all competing forecasts as M = {A,B,C, . . .}, the MCS
tests the null that no forecast is distinguishable against an alternative that
at least one of the forecasts has a higher expected loss,

H0 : E
[

L(Σt,Hi
t)
]

= E
[

L(Σt,H
j
t )
]

for all i, j ∈ M

vs. H1 : E
[

L(Σi,Hi
t)
]

> E
[

L(Σt,H
j
t )
]

for some i ∈ M, for all j ∈ M \ i.

The MCS operates by iteratively deleting poorly performing forecasts to con-
struct a set, M∗, that contains the forecast producing the lowest expected
loss with probability weakly greater than the level of the test (e.g. 0.05), with
the property that the probability that this set contains a sub-optimal fore-
cast asymptotes to zero with the sample size. The MCS resembles in many
respects a confidence interval for a parameter.

3.3 ‘Robust’ loss functions for forecast comparison

Common to all approaches for comparing volatility forecasts is the focus on
expected loss using the true, latent, covariance. In practice, however, the
actual quantity computed is the difference in expected losses evaluated at
some volatility proxy. Patton (2006) defines a loss function as “robust” if it
yields the same ranking of competing forecasts using an unbiased volatility
proxy, Et−1[̂Σt] = Σt as would be obtained using the (unobservable) condi-
tional variance. Patton’s focus was on the evaluation of univariate volatility
forecasts, but the extension of his definition of loss function “robustness” is
clear:

Definition 1 A loss function, L, is “robust” if the ranking of any two (possi-
bly imperfect) volatility forecasts, HA

t and HB
t , by expected loss is the same
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whether the ranking is done using the true conditional variance, Σt, or some
conditionally unbiased volatility proxy, ̂Σt:

E
[

L
(

Σt,HA
t

)]

� E
[

L
(

Σt,HB
t

)]

(33)

⇔E
[

L
(

̂Σt,HA
t

)]

� E
[

L
(

̂Σt,HB
t

)]

For univariate volatility forecast comparison, Meddahi (2001) showed that the
ranking of forecasts on the basis of the R2 from a standard Mincer-Zarnowitz
regression is robust to noise in σ̂2

t . Hansen and Lunde (2006a) showed that
the R2 from a regression of log

(

σ̂2
t

)

on a constant and log (ht) is not robust
to noise. Moreover, they showed a sufficient condition for a loss function to
be robust is that ∂2L

(

σ̂2
t , ht

)

/∂
(

σ̂2
t

)2 does not depend on ht. Patton (2006)
generalised this result by providing necessary and sufficient conditions for a
univariate loss function to be robust.

3.4 Problems arising from ‘non–robust’ loss functions

In this section we investigate the problems caused by the use of non-robust
loss functions in univariate volatility forecast comparison, and the reduction
in the magnitude of these problems achieved through the use of higher fre-
quency data (such as realised volatility). Patton showed that if a loss function
is robust, then the optimal forecast under L, defined as

h∗t ≡ arg min
h∈H

Et−1

[

L
(

σ̂2
t , h

)]

must be the conditional variance (see Patton (2006)). One measure of the
degree of distortion caused by the use of a loss function in combination with
a noisy volatility proxy is the degree of bias in the optimal forecast under
that loss function. Patton (2006) analytically derived the bias caused by nine
widely-used loss functions, see equations (34) to (42) below, when combined
with the range or realised variance as the volatility proxy. Under a simple
zero-drift Brownian motion assumption for the return process he found that
the (multiplicative) bias ranged from 0.28 to 3 using daily squared returns as
the volatility proxy, but shrank to 0.98 to 1.03 if a realised variance estimator
based on 5-minute returns was available.

To investigate whether these dramatic reductions in bias when using
volatility proxies based on high frequency data hold under more realistic
assumptions on the data generating process (DGP), we conduct a small sim-
ulation study. We consider three data generating processes, using the same
models and parameter values as the simulation study of Gonçalves and Med-
dahi (2005). The first model is a GARCH diffusion, as in Andersen and
Bollerslev (1998):
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d logPt = 0.0314dt+ νt

(

−0.576dW1t +
√

1 − 0.5762dW2t

)

dν2
t = 0.035

(

0.636 − ν2
t

)

dt+ 0.144ν2
t dW1t

The second model is a log-normal diffusion, as in Andersen et al. (2002):

d logPt = 0.0314dt+ νt

(

−0.576dW1t +
√

1 − 0.5762dW2t

)

d log ν2
t = −0.0136

(

0.8382 + log ν2
t

)

dt+ 0.1148dW1t

The final model is the two-factor diffusion, see Chernov et al. (2003):

d logPt = 0.030dt+ νt (−0.30dW1t − 0.30dW2t

+
√

1 − 0.32 − 0.32dW3t

)

ν2
t = s-exp

{

−1.2 + 0.04ν2
1t + 1.5ν2

2t

}

dν2
1t = −0.00137ν2

1tdt+ dW1t

dν2
2t = −1.386ν2

2tdt+
(

1 + 0.25ν2
2t

)

dW2t

where s-exp {x} =

{

exp {x} , x ≤ x0

exp {x0}
√

1 − x0 + x2/x0, x > x0

In simulating from these processes we use a simple Euler discretization
scheme, with the step size calibrated to one second (i.e., with 23,400 steps
per simulated day). The loss functions we consider are:

MSE : L
(

σ̂2
t , ht

)

=
(

σ̂2
t − ht

)2 (34)

QLIKE : L
(

σ̂2
t , ht

)

= log ht +
σ̂2
t

ht
(35)

MSE-LOG : L
(

σ̂2
t , ht

)

=
(

log σ̂2
t − log ht

)2 (36)

MSE-SD : L
(

σ̂2
t , h

)

=
(

σ̂t −
√

ht

)2

(37)

MSE-prop : L
(

σ̂2
t , ht

)

=
(

σ̂2
t

ht
− 1

)2

(38)

MAE : L
(

σ̂2
t , ht

)

=
∣

∣σ̂2 − ht
∣

∣ (39)

MAE-LOG : L
(

σ̂2
t , ht

)

=
∣

∣log σ̂2
t − log ht

∣

∣ (40)

MAE-SD : L
(

σ̂2
t , ht

)

=
∣

∣

∣σ̂t −
√

ht

∣

∣

∣ (41)

MAE-prop : L
(

σ̂2
t , ht

)

=
∣

∣

∣

∣

σ̂2

ht
− 1

∣

∣

∣

∣

(42)

In the presence of stochastic volatility, as in the three DGPs above, the ap-
propriate volatility concept changes from the conditional variance of daily
returns to the expected integrated variance, see Andersen et al. (2006b):
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Et−1 [IVt] ≡ Et−1

⎡

⎣

t
∫

t−1

ν2
τdτ

⎤

⎦

We consider three realised volatility proxies, based onm = 1, 13 and 78 intra-
daily observations. We also consider the use of the adjusted squared range as
a volatility proxy, which is defined as

RG∗2
t =

1
4 log 2

RG2
t

where RGt ≡ max
τ

logPτ − min
τ

logPτ , t− 1 < τ ≤ t

The adjustment factor
(

1
4 log 2

)

is required so as to make the squared range
unbiased for the daily volatility for a Brownian motion with no drift, cf.
Parkinson (1980). Christensen and Podolskij (2006) show that this adjust-
ment factor leads to an asymptotically unbiased proxy for general Brownian
semi-martingales (as the number of intra-daily observations, m, goes to in-
finity).

We present the results of our simulation in Table 3, and for ease of com-
parison we also present the analytical results from Patton for the Brownian
motion case (Patton (2006)). This table contains the (multiplicative) biases
in the optimal forecasts under the loss functions listed above, for the vari-
ous DGPs. An unbiased forecast will have coefficient of one. The MSE and
QLIKE loss functions, as expected, did not generate bias for any volatility
proxy. These loss functions are easily shown to be “robust”, and so lead to
zero bias as long as the volatility proxy is unbiased.

The first three panels of Table 3 reveal that allowing for stochastic volatil-
ity through a GARCH diffusion or a log-Normal diffusion does not substan-
tially change the degree of bias in optimal forecasts under various loss func-
tion/volatility proxy combinations relative to the simple Brownian motion
case. In fact, almost all of the differences occur only in the second decimal
place. This suggests that the biases computed under the simplistic assumption
of constant intra-daily volatility are a good approximation to those obtained
under GARCH or log-Normal SV DGPs.

The situation is quite different when the two-factor SV model, see Cher-
nov et al. (2003) is considered. This model was developed to replicate the
jump-like features observed in some data without actually introducing a jump
component into the model and can generate extreme observations and excess
kurtosis. Patton found that excess kurtosis generally exacerbated any biases
that were present under normally distributed returns, and this is reinforced
by our simulation results: the two-factor diffusion generates biases ranging
from 0.35 to 6.70 even when using a realised volatility estimator based on
5-minute returns (Patton (2006)). That is, the biases from 5-minute realised
volatility under the two-factor diffusion are greater than the biases from using
daily squared returns when returns are conditionally normally distributed.
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Biases in optimal volatility forecasts

Range RV (1) RV (13) RV (78) Range RV (1) RV (13) RV (78)

Loss
function Brownian Motion GARCH-SV

MSE 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

QLIKE 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

MSE-LOG 0.85 0.28 0.91 0.98 0.83 0.28 0.92 0.98

MSE-SD 0.92 0.56 0.96 0.99 0.91 0.63 0.96 0.99

MSE-prop 1.41 3.00 1.15 1.03 1.40 3.02 1.16 1.03

MAE 0.83 0.45 0.95 0.99 0.82 0.46 0.94 0.99

MAE-log 0.83 0.45 0.95 0.99 0.82 0.46 0.94 0.99

MAE-SD 0.83 0.45 0.95 0.99 0.82 0.46 0.94 0.99

MAE-prop 0.99 2.36 1.10 1.02 1.18 2.37 1.10 1.01

Log-normal SV Two-factor SV

MSE 0.99 1.00 1.00 1.00 1.00 1.01 1.00 1.00

QLIKE 0.99 1.00 1.00 1.00 1.00 1.01 1.00 1.00

MSE-LOG 0.83 0.28 0.92 0.98 0.35 0.12 0.37 0.41

MSE-SD 0.91 0.63 0.96 0.99 0.57 0.40 0.58 0.62

MSE-prop 1.40 3.03 1.16 1.03 9.79 20.60 9.03 6.70

MAE 0.82 0.46 0.94 0.99 0.31 0.17 0.32 0.35

MAE-LOG 0.82 0.46 0.94 0.99 0.31 0.17 0.32 0.35

MAE-SD 0.82 0.46 0.94 0.99 0.31 0.17 0.32 0.35

MAE-prop 1.18 2.37 1.10 1.02 3.47 6.60 3.33 2.98

Table 3 Bias, as a percentage of the underlying integrated variance, when using robust
and non-robust loss functions. A coefficient of 1 indicates the loss function does not generate
a biased optimal forecast. The results in the Brownian motion case are analytical while
the results in the three other cases are the result of a simulation.

This simulation study shows that the use of volatility proxies with less
noise (such as those based on higher-frequency data) ameliorates but does
not eliminate the biases caused by the use of non-robust loss functions. The
remaining biases can still be large depending on the form of the data gen-
erating process. This suggests that using robust loss functions in forecast
comparison tests is important, even when higher quality volatility proxies
are available.
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3.5 Choosing a “robust” loss function

Patton (2006) derives a parametric class of univariate loss functions that
are both homogeneous and robust to the use of a noisy volatility proxy.
Homogeneity is a desirable property of a loss function that ensures the choice
of normalisation (for example using raw returns versus 100 times returns)
does not affect the optimal forecast beyond a known scale factor. The class
can be described as12

L(σ̂2
t , ht; b) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
(b+1)(b+2) (σ̂

2(b+2)
t − hb+2

t )

− 1
b+1h

b+1
t (σ̂2

t − ht) , b �= −1,−2

ht − σ̂2
t + σ̂2

t log σ̂2
t

ht
, b = −1

σ̂2
t

ht
− log σ̂2

t

ht
− 1 , b = −2

(43)

The ability of these loss functions to distinguish between competing volatility
forecasts in a DMW test may vary substantially with the choice of “shape”
parameter, b. To provide some insight into this problem, we conduct a small
simulation study of the size and power of a DMW test of the null that two
competing forecasts have equal predictive power. The models we consider are
based on those used in the Mincer-Zarnowitz Monte Carlo study in Section
2.5. The returns were generated according to (23). The first forecast, hAt , is
set equal to the conditional variance of the process multiplied by an iid error
term, zAt , distributed as a standardised χ2 random variable: νzAt

IID∼ χ2
ν . This

error term can be thought of as representing (in a simple and computationally
convenient way) estimation error or model mis-specification in the volatility
forecast, for example. The second volatility forecast, hBt , is generated by
(27), and is also multiplied by an iid error term, zBt , independent of the first,
distributed as a standardised χ2 random variable: νzBt

IID∼ χ2
ν . We set the

degree of freedom parameter, ν, to 500, which implies that the iid error terms
have unit mean and standard deviations of 0.06. Although neither of these
forecasts is perfect, hAt is weakly preferred to hBt . The point where hBt is
also “correctly specified” (k = 0.95) corresponds to the case when the two
forecasts are equally accurate.

Using the two forecasts, the loss was computed using the “robust” loss
function with shape parameter b ∈ {−5,−3,−2,−1, 0, 2}, and a DMW test

12 All loss functions have been normalised to 0 when ht = σ̂2
t . In applications where

Pr(σ̂2
t = 0) > 0 the normalised loss is not always well-defined. The normalisation terms

can be removed without affecting any results with respect to robustness. Homogeneity is
also preserved, effectively, as the removal of these normalising terms means that re-scaling
the data adds a constant to the loss, which does not affect the optimum and drops out in
forecast comparisons.
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statistic was computed using the difference in the losses

dt (b) = L(σ̂2
t , h

A
t ; b) − L(σ̂2

t , h
B
t ; b) (44)

DMWT (b) =

√
T d̄T (b)

√

âvar
[√
T d̄T (b)

]

(45)

The asymptotic variance of the average was computed using a Newey-West
variance estimator with the number of lags set to *T 1/3+.

Three proxies were used to compare the performance of the two forecasts:
the daily squared return, RV (1), a 30-minute realised variance RV (13), and
a 5-minute realised variance RV (78). The finite-sample size of the test is
reported in Table 4. Overall the size of the test is good, however for larger
values of b the test is undersized. This may be due to a lack of moments
in the dt series, which results in a non-standard distribution of the DMW
test statistic. This non-standard behaviour was foreshadowed in Patton, who
showed that 8 + δ moments of returns are needed for a DMW test using
squared returns as the volatility proxy, see Patton (2006). Larger values of
b require even more moments of returns. In many realistic cases, including
the model use in the simulation study, returns will not be sufficiently well
behaved for tests based loss functions b ≥ 0 to be reliable.

The power of the test was studied using a model with mis-specified dy-
namics where the alternative forecasts were generated from either over- or
under-persistent models. Figure 3 contains four views into the power of the
test using T = 100 and T = 250 using daily squared returns and 13-sample re-
alised volatility. Panels (c) and (d) confirm that improved proxies for volatility
have a distinct effect on the ability to discern superior forecast performance.

Three of the four panels show that the QLIKE loss function (b = −2) has
the highest power. Using either daily returns or 30-minute realised volatility,
power drops off markedly when using large b loss functions. Even when using
a precise proxy and a long sample there is a distinct decrease in power for
the loss functions with b furthest from -2.

Figure 4 contains the average size-adjusted power (averaging the power
curves in Fig. 3 across all k ∈ {0.80, 0.81, . . . , 1.00}) as a function of b us-
ing daily returns squared and 30-minute realised variance. Both power plots
exhibit peaks near -2 in all cases except the smallest sample size test statis-
tic computed from daily returns. These results all point to QLIKE as the
preferred choice amongst the loss functions that are both homogeneous and
robust to noise in the proxy13.

13 It is worth noting that the results presented for b = −2 are likely a close-to-ideal case.
Returns in practice are decidedly non-normal exhibiting fat-tails, skewness and/or jumps.
The increased propensity for actual asset returns to produce large observations should
produce even worse performance of loss functions with b ≥ 0.
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Finite-Sample Size of DMW Tests

T = 100 T = 250
RV (1) RV (13) RV (78) RV (1) RV (13) RV (78)

b=-5 0.05 0.06 0.05 0.05 0.05 0.05
b=-3 0.06 0.07 0.07 0.06 0.06 0.06
b=-2 (QLIKE) 0.06 0.07 0.07 0.06 0.06 0.06
b=-1 0.06 0.07 0.07 0.05 0.06 0.06
b=0 (MSE) 0.05 0.06 0.05 0.04 0.04 0.05
b=2 0.03 0.03 0.03 0.02 0.02 0.02

T = 500 T = 1000
RV (1) RV (13) RV (78) RV (1) RV (13) RV (78)

b=-5 0.05 0.05 0.05 0.05 0.05 0.05
b=-3 0.05 0.05 0.06 0.05 0.05 0.05
b=-2 (QLIKE) 0.05 0.05 0.06 0.05 0.05 0.05
b=-1 0.05 0.05 0.05 0.05 0.05 0.05
b=0 (MSE) 0.04 0.04 0.04 0.04 0.04 0.04
b=2 0.02 0.02 0.02 0.02 0.02 0.02

Table 4 Finite-sample size of the DMW tests using different volatility proxies and sample
sizes. Data was simulated according to a GARCH(1,1) and the series of forecasts, {ht},
was produced. The size was computed by comparing the performance of a DMW test
comparing the loss of hA

t = zA
t ht and hB

t = zB
t ht where zA

t and zB
t were independent

standardised χ2
ν random variables with ν = 500.

3.6 Robust loss functions for multivariate volatility
comparison

The homogeneous, robust loss functions of Patton (2006) all have a first-order
condition of the form:

∂L
(

σ̂2
t , ht; b

)

∂ht
= −hbt(σ̂2

t − ht) . (46)

From this first-order condition it is simple to see that when ht = σ2
t a.s. and

ht > 0, the expected score is zero and the second derivative is positive. As
a result, the true conditional variance is the solution to the expected loss
minimisation problem. Extending this analysis to the evaluation of covari-
ance forecasts is straightforward: The direct analogue of (46) for conditional
covariance forecasts is

∂L
(

̂Σt,Ht; b
)

∂Ht
= −Hb

t(̂Σt − Ht) . (47)
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Fig. 3 Plots of size-adjusted power for DMW tests using two different proxies for latent
volatility, daily returns squared (RV (1)) and 30-minute realised volatility (RV (13)). All
loss functions are members of the “robust” loss function family, equation (43). Note: The
scale of the y-axis changes in each panel.

While this is not the FOC of any standard expression, it does provide guid-
ance to one class of FOCs, namely

∂L
(

̂Σt,Ht; b
)

∂Ht
= −C1 (Ht) (̂Σt − Ht)C2 (Ht) . (48)

where C1 (Ht) and C2 (Ht) are positive definite matrix valued functions,
C :MK

++ → M
K
++ for i = 1, 2, that do not depend on ̂Σt. Using the “vec”

function to express this FOC as a column vector, it can be equivalently
written

∂L(̂Σt,Ht; b)
∂vec(Ht)

= −(C2 (Ht) ⊗ C1 (Ht))vec(̂Σt − Ht) . (49)
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Fig. 4 Average size-adjusted power curves for DMW tests as a function of b. DMW tests
were computed using daily squared returns (RV (1), top panel) or 13-sample realised volatil-
ity (RV (13), bottom panel) using the “robust” loss function family in equation (43). Note:
The scale of the y-axis changes in each panel.

It is simple to verify that this FOC will be zero as long as Et−1[̂Σt] = Σt =
Ht a.s. The second order derivative with respect to Ht is C2 (Ht)⊗C1 (Ht)
since ∂vecHt/∂Ht = IK2 and is positive semi-definite by construction. The
natural analogue to the class of robust, homogeneous loss functions intro-
duced in Patton (2006) is thus

L(̂Σt,Ht; b) =

{

2
(b+2) tr(Σ

(b+2)
t − Hb+2

t ) − tr(Hb+1(Σt − Ht)) b �= −1,−2

tr(H−1
t Σt) − log |H−1

t Σt| −K b = −2
(50)
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As in the univariate case, this class nests both the multivariate QLIKE and
multivariate MSE classes. To verify that this class satisfies the condition of
(47), consider the first-order conditions when b is an integer14

∂L(̂Σt,Ht; b)
∂Ht

=

{

−
∑b

j=0 HjΣtHb−j − Hb+1
t b ∈ Z+

−H−1
t ΣtH−1

t + H−1
t b = −2

(51)

and, transforming to column vectors,

∂L(̂Σt,Ht; b)
∂vec(Ht)

= −
{

−
∑b

j=0

(

Hb−j ⊗ Hj
)

vec(̂Σt − Ht) b ∈ Z+

−
(

H−1 ⊗ H−1
)

vec(̂Σt − Ht) b = −2
(52)

It should be noted that, unlike the univariate case, this class of loss functions
does not encompass all that are robust and homogeneous. The expanded
possibilities arise naturally because there are many functions C that can be
used to weight the forecast errors, vec(̂Σt − Ht).

3.7 Direct comparison via encompassing tests

Encompassing tests are an alternative to DMW tests for comparing the per-
formance of two or more forecasts. Rather than compare the loss of using one
forecast to the loss of using the other, encompassing tests examine whether
some function, generally affine, of the forecasts produces a smaller loss than
a single forecast. Restricting attention to only two forecasts, the null and
alternative tests are

HA
0 : E[L(σ̂2

t , h
A
t )] = E[L(σ̂2

t , f(hAt , h
B
t ; θ))] (53)

vs. HA
1 : E[L(σ̂2

t , h
A
t )] > E[L(σ̂2

t , f(hAt , h
B
t ; θ))] (54)

HB
0 : E[L(σ̂2

t , h
B
t )] = E[L(σ̂2

t , f(hAt , h
B
t ; θ))] (55)

vs. HB
1 : E[L(σ̂2

t , h
B
t )] > E[L(σ̂2

t , f(hAt , h
B
t ; θ))] (56)

where θ is a vector of unknown parameters. The “forecast combination func-
tion”, f(hAt , h

B
t ; θ) is typically specified as a linear combination of the fore-

casts, thus f(hAt , h
B
t ; θ) = β1h

A
t + β2h

B
t . When using the MSE loss function,

14 For clarity of exposition, we only show the FOC when b is an integer greater than 0. The
cases with non-integer b involve eigenvalue decompositions and are too lengthy to present
here, although the loss function analysis goes through unmodified for any b �= −1.
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the encompassing test reduces to a standard augmented MZ regressions (see
(9)) where the Ft measurable “instruments” are the competing forecasts,

σ̂2
t = β1h

A
t + β2h

B
t + ut (57)

and testing

HA
0 : β1 = 1 ∩ β2 = 0

HA
1 : β1 �= 1 ∪ β2 �= 0

To test whether forecast B encompasses forecast A we test:

HB
0 : β1 = 0 ∩ β2 = 1

HB
1 : β1 �= 0 ∪ β2 �= 1

Like the augmented MZ, the performance of this specification will gener-
ally be adversely affected by heteroskedastic errors. A GLS version can be
specified

σ̂2
t

˜ht
= β1

hAt
˜ht

+ β2
hBt
˜ht

+ ũt (58)

where ˜ht = hAt to test HA
0 , and ˜ht = hBt to test HB

0 . If there is no natural
null hypothesis, there are two alternative choices for the weights, ˜ht: The
first employs an average of hAt and hBt , either geometric ˜ht =

√

hAt h
B
t or

arithmetic ˜ht = 1
2h

A
t + 1

2h
B
t . The second uses a two-step feasible GLS (FGLS)

where (57) is initially estimated and then (58) is estimated using ˜ht = ̂β1h
A
t +

̂β2h
B
t , although care is needed to ensure the fitted volatilities are positive15.

An alternative specification for f(hAt , hBt ; θ), one that avoids any problems
of negative fit volatilities, uses a geometric-average inspired form:

f(hAt , h
B
t ; θ) = exp(β1 lnhAt + β2 lnhBt ) (59)

The null and alternative hypotheses are identical, although non-linear least
squares estimation is needed to implement this form of an encompassing test.

Extending encompassing tests to covariance forecasts is straightforward.
The only remaining choice is the combination function. The natural candidate
is a linear function:

f(HA
t ,H

B
t ; θ) = β1HA

t + β2HB
t . (60)

15 While it does not affect the asymptotic distribution, there may be finite sample gains to
using improved first-stage estimates from a standard GLS assuming pre-specified weights,
such as ˜ht = hA

t or ˜ht = hB
t .
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Using a linear combination function, encompassing can be tested using an
augmented MZ version of the pooled panel regression (see 16). An alternative
choice for the combination covariance would be to use a geometric average,

f(HA
t ,H

B
t ; θ) = expm

(

β1logmHA
t + β2logmHB

t

)

(61)

where “expm” and “logm” are matrix exponentiation and logarithm respec-
tively, see Magnus and Neudecker (2002). This alternative specification re-
moves any restrictions on the estimated parameters while ensuring that the
combination is strictly positive definite.

4 Indirect Evaluation of Volatility Forecasts

While statistical evaluation of forecasts is useful for ranking volatility fore-
casts, most forecasts are designed to aid in economic applications, see An-
dersen, Bollerslev, Christoffersen and Diebold (Andersen et al. (2006a)) for
a recent survey of volatility and correlation forecasting. Economic evaluation
of volatility forecasts is an important metric for assessing the performance of
models.

Volatility and covariance forecasts are fundamental inputs into many deci-
sions in financial economics: mean-variance portfolio optimisation, hedging,
risk measurement, option pricing and utility maximisation all rely on fore-
cast variances and covariance as inputs. While volatility forecasts have been
evaluated using all of these applications, mean-variance portfolio choice and
hedging are unique in that the correct conditional volatility or covariance,
Σt = Ht a.s., will lead to improved performance without strong auxiliary
assumptions. In general, economic evaluation of volatility and correlation
forecasts relies in an important way on other assumptions, such as the utility
function of the hypothetical investor (in portfolio choice or hedging appli-
cations), the density of the standardised returns (as in Value-at-Risk and
Expected Shortfall forecasting, density forecasting, portfolio choice applica-
tions with non-quadratic utility), or the derivative pricing model (in option,
and other derivative securities, pricing applications). Thus these approaches
are “non-robust”, in the sense described in the Introduction, however with
strong economic motivations they can yield valuable information on compet-
ing volatility and correlation forecasts.

Economic evaluation of covariance forecasts has traditionally focused on
the out-of-sample performance of portfolios formed using the forecast as an in-
put in a mean-variance framework. Noting the sensitivity of portfolio weights
to small changes in the conditional mean, many have questioned the wisdom
of conditional mean-variance optimisation. However, recent work by Engle
and Colacito (2006) (EC, henceforth) has clarified the role that the uncer-
tain mean plays in comparing the performance of two or more forecasts. The
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EC framework establishes that the correct covariance will produce a smaller
expected portfolio variance for any assumed non-zero vector of means. As
a result, evidence of superiority based on ex-post measurements of portfolio
variance can be attributed to the covariance forecast.

4.1 Portfolio optimisation

Portfolio optimisation is a natural application for covariance forecasts. To
avoid specifying or estimating asset mean returns, many authors have fo-
cussed on the problem of finding the global minimum variance portfolio
(GMVP). It is computed as the solution to

min
wt

w′
tΣtwt subject to w′

tι = 1

It is simple to show that if the portfolio weights, wt, are constructed from
the true covariance Ht = Σt a.s., then the variance of a portfolio computed
using the GMVP from any other forecast, w̃t, must be larger:

V [w̃′
tΣtw̃t] =(wt + ct)′Σt(wt+ct)

= (
ι′Σ−1

t

ι′Σ−1
t ι

+ c′t)Σt(
Σ−1

t ι

ι′Σ−1
t ι

+ ct)

=
ι′Σ−1

t

ι′Σ−1
t ι

Σt
Σ−1

t ι

ι′Σ−1
t ι

+
ι′Σ−1

t

ι′Σ−1
t ι

Σtct + c′tΣt
Σ−1

t ι

ι′Σ−1
t ι

+ c′tΣtct

=
1

ι′Σ−1
t ι

+ c′tΣtct >
1

ιΣ−1
t ι

since ι′ct = 0 follows from ι′wt = ι′w̃t = 1. Using this result, it is then
possible to compare two competing covariance forecasts by comparing the
volatility of the minimum variance portfolio constructed using each forecast.
Let w∗ (Ht) denote the solution to (62) for covariance matrix Ht, and define

dt ≡ w∗ (HB
t

)′
rtr′tw

∗ (HB
t

)

− w∗ (HA
t

)′
rtr′tw

∗ (HA
t

)

This then allows for a DMW forecast comparison test, as in (30): if the mean
of dt is significantly positive (negative) then forecast A (B) is the better
forecast. If more than one competing forecast is being considered, the “reality
check” or MCS can be used to test for superior performance (see Sect. 3.2).

The general mean-variance portfolio optimisation problem is

min
wt

w′
tΣtwt subject to w′

tμt = μ0
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where μt = Et−1[rt]. If returns are expressed in excess of the risk free rate,
optimal portfolio weights can be computed as

wt =
Σ−1

t μt

μtΣ−1
t μt

μ0

where the weight on the risk free asset is 1 − w′
tι.16 Recent work by Engle

and Colacito (2006) has shown that it is possible to rank covariance forecasts
using this more general mean-variance optimisation problem. These authors
show that if expected returns are constant, Et−1[rt] = μ ∀ t, then for any
assumed mean vector (μ) the true covariance will produce a portfolio with
a variance less than or equal to that of any forecast where Ht �= Σt. Engle
& Colacito suggest using only positive values for μ, and, rather than testing
using a single value, a quasi-Bayesian method can be used to integrate over
a range of plausible values for μ.

Forecast evaluation tests, as opposed to comparison tests, are more diffi-
cult in this application due to the presence of a non-negligible mean. Using
squared returns as a proxy for the unobservable conditional variance relies on
expected returns being zero, an implausible assumption for investors holding
risky assets. Engle and Colacito argue that if the measurement frequency is
high enough, then expected returns are of a smaller order of magnitude than
volatility, and so the mean can be ignored. In that case, the squared portfolio
return, w′

trtr
′
twt or, better yet, the realised volatility of the portfolio, may

be used as a volatility proxy and the estimated portfolio variance, w′
tHtwt,

can be evaluated using the univariate methods described in Sects. 2.1 and
2.4.

One important downside of minimum portfolio variance optimisation is
that the mapping from M

K
++ → R

K is many to one. There will generally be a
continuum of forecasts that will produce the set of weights corresponding to
the minimum variance portfolio. One direct method to address this deficiency
is to test at leastK(K+1)/2 portfolios using subsets of 2K possible collections
of assets.

4.2 Tracking error minimisation

Conditional covariance also plays a crucial role in estimating time-varying
weights for tracking portfolios. Suppose a portfolio of K − 1 stocks, with
returns denoted r̃t is to be used track the return of another asset, rt, by
minimising the mean squared tracking error:

16 If the returns are not computed as the difference between nominal returns and the risk-
free rate, mean-variance analysis can still be used although with more complication. For
details, see pp. 184–185 Campbell et al. (1997)
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min
w

E[(rt − w′r̃t)
2] (62)

It is well known that the optimal linear projection satisfies

w = E
[

r̃tr̃
′
t

]−1
E[r̃trt] (63)

which are just the usual regression coefficients, see Hayashi (2000). Suppose
the vector of returns is partitioned such that the first return, rt, is the asset
to be tracked so the covariance can be expressed

Σt =

[

σ2
1,t Σ′

12,t

Σ12,t Σ22,t

]

where Vt−1[rt] = σ2
1,t and Vt−1[r̃t] = Σ22,t The weights in the minimum

tracking error portfolio can be computed by

wt = Σ−1
22,tΣ12,t. (64)

Using the set of portfolio weights, the accuracy of the tracking portfolio
weights can be tested with a MZ-GLS regression and the relative performance
of two competing forecasts can be assessed using a Diebold-Mariano-West
test. However, unlike the previously described minimum variance portfolio
problems, it is not clear that utilising a forecast that satisfies H∗

0 will lead to
the smallest tracking error. However, the tracking error minimisation problem
can be recast into the Engle-Colacito framework if the expected returns on
all assets are assumed to be the same. In that case, the minimum variance
portfolio problem becomes

min
wt

w′
tΣtwt subject to w1 = 1

which can be re-written as the search for a global minimum variance portfolio
by substituting in the constraint and expressing the returns on all assets as
excesses above the return on the first asset.

4.3 Other methods of indirect evaluation

Volatility forecasts play a critical role in many other financial decisions, and
accordingly their performance in these decisions is of much interest. Unfor-
tunately, but perhaps not surprisingly, most financial decisions also depend
on inputs beyond a volatility forecast. Influential assumptions about these
other inputs will be required and these evaluations are “non-robust” using
the definitions of this chapter. Nevertheless, we review the most common
applications in this section.
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One key application of volatility forecasts is in derivatives pricing, given
the sensitivity of these securities to the volatility of the underlying asset
price. These applications are generally univariate in nature; derivatives with
multiple underlying assets (thus requiring a covariance forecast) are much less
studied in the literature (see Bates (2003), Garcia et al. (2008) for surveys).
In any applications to derivatives, the volatility forecast must be combined
with a pricing model – the most commonly-used such model is the Black-
Scholes model for European options. If the pricing model is mis-specified then
the ranking of two volatility forecasts by pricing errors will not necessarily
lead to the true conditional variance being ranked above imperfect forecasts.
However if the volatility forecast is to be used in a particular pricing model,
then the interest of the forecast user is not necessarily in finding the true
conditional variance, rather it is in finding the forecast that produces the
smallest pricing errors, and so this “distortion” is not a cause for concern.
The evaluation and comparison of volatility forecasts via derivative pricing
problems has been previously considered (see Noh et al. (1994), Gibson and
Boyer (1997), Christoffersen and Jacobs (2004b), Christoffersen and Jacobs
(2004a), Gonźalez-Rivera et al. (2004)).

Another important financial application involving volatility forecasts is
portfolio decisions. We reviewed two special cases in the previous section
where only the covariance was required for a portfolio decision. For most
utility functions and general returns distributions, other inputs are needed
to choose portfolio weights, and the specification of these inputs can affect
the ranking of volatility forecasts by the out-of-sample utility of portfolio
returns. Applications of volatility forecasts in portfolio decisions are have been
widely explored (see West et al. (1993), Fleming et al. (2003), Marquering
and Verbeek (2004), Gonźalez-Rivera et al. (2004), amongst others).

In the past decade or so, measures of risk beyond standard deviation have
gained increasing attention. Most prominent amongst these is Value-at-Risk
(VaR), which can be defined as the α-quantile of the conditional distribu-
tion of the return on a given asset or portfolio17. In most applications, α is
set to 0.05 or 0.01. See Christoffersen (2008) in this Handbook for more on
VaR. It is possible to produce conditional VaR forecasts by directly mod-
elling the conditional quantile of interest, see Engle and Manganelli (2004).
However, the majority of conditional VaR forecasts are produced by first spec-
ifying a model for the conditional variance, and then specifying a model for
the quantile of the standardised residual. This link between conditional VaR
forecasts and conditional variance forecasts has lead some authors to suggest
testing variance forecasts by testing the performance of VaR forecasts based
on the variance forecast(s), although mis-specification of the distribution for
the standardised residuals can lead to the rejection of a forecast satisfying
H∗

0 . VaR-based evaluation and comparison of volatility forecast has been ex-

17 Another prominent measure of risk is “expected shortfall”, which is defined as the condi-
tional mean of the return on an asset given that the return is less than the Value-at-Risk,
ie: ESt ≡ E [rt|Ft−1 ∩ rt ≤ V aRt] .
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amined in Lopez (2001), Gonźalez-Rivera et al. (2004), Ferreira and Lopez
(2005), Kuester et al. (2006), amongst others.

5 Conclusion

This chapter provided an overview of the methods available for evaluating
and comparing forecasts of the conditional variance of an asset return or the
conditional covariance of a set of asset returns. We paid particular attention
to the problems that arise due to the fact that volatility is unobservable. We
emphasised the importance of using tests (a) that are robust to the “noise”
in the volatility proxy, if a proxy used, and (b) that require only minimal as-
sumptions on the distribution of the returns. Many widely-employed volatility
forecast evaluation tests, such as those using VaR or option pricing, fail one
or both of these criteria.

In addition to presenting the theory for methods that satisfy these two cri-
teria, we also presented the results of some small Monte Carlo studies to pro-
vide guidance for empirical work. We suggested a modification of the widely-
used Mincer-Zarnowitz regression for testing volatility forecast optimality,
which exploits the additional structure that holds under the null hypothesis.
Our suggested “MZ-GLS” test has good size and much better power in fi-
nite samples than other MZ tests. Our simulations also clearly demonstrated
the value of higher-precision volatility proxies, such as realised variance (cf.
Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2004)). Even
simple estimators based on 30-minute returns provide large gains in power
and improvements in finite-sample size.

In Monte Carlo studies using realistic stochastic volatility processes, we
studied the choice of loss function in Diebold-Mariano-West (DMW) tests,
see Diebold and Mariano (1995) and West (1996). We showed that the use of
loss functions that are “non-robust”, in the sense of Patton (2006), can yield
perverse rankings of forecasts, even when very accurate volatility proxies are
employed. Amongst the class of robust and homogeneous loss functions in
Patton and the multivariate generalisation of these loss functions provided in
this chapter, our small simulations suggested that the “QLIKE” loss functions
yield the greatest power in DMW tests.
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Structural Breaks in Financial Time
Series

Elena Andreou and Eric Ghysels∗

Abstract This paper reviews the literature on structural breaks in financial
time series. The second section discusses the implications of structural breaks
in financial time series for statistical inference purposes. In the third section
we discuss change-point tests in financial time series, including historical and
sequential tests as well as single and multiple break tests. The fourth section
focuses on structural break tests of financial asset returns and volatility using
the parametric versus nonparametric classification as well as tests in the long
memory and the distribution of financial time series. In concluding we provide
some areas of future research in the subject.

1 Introduction

There are statistical inference as well as investment allocation implications
of ignoring structural changes in financial processes. On statistical inference
grounds, it is shown that ignoring structural breaks in financial time series can
yield spurious persistence in the conditional volatility. For instance, neglected
structural changes can yield Integrated GARCH or long memory effects in
financial time series (e.g., Diebold (1986), Lamoureux and Lastrapes (1990),
Mikosch and Stărică (2004), Hillebrand (2005)) and can have implications
about the existence of higher order unconditional moments such as the kur-
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tosis or the tail index in financial time series (e.g., Andreou and Ghysels
(2005), Mikosch and Stărică (2004)) as well as forecasting (e.g., Pesaran and
Timmerman (2004), Pesaran et al. (2006)).

From an economic perspective, there is empirical evidence showing that
there are structural breaks in financial markets which affect fundamen-
tal financial indicators. Examples of these indicators are financial returns
and volatility (e.g., Lamoureux and Lastrapes (1990), Andreou and Ghysels
(2006a), Horváth et al. (2006)), the shape of the option implied volatility smile
(Bates (2000)), asset allocation (e.g., Pettenuzzo and Timmerman (2005)),
the equity premium (Pastor and Stambaugh (2001), Chang-Jin et al. (2005)),
the tail of the distribution and risk management measures such as Value
at Risk (VaR) and Expected Shortfall (ES) (Andreou and Ghysels (2005))
as well as credit risk models and default measures (Andreou and Ghysels
(2007)). Finally, empirical evidence shows that various economic events can
lead to structural changes detected in a large number of financial series, such
as the financial liberalization of emerging markets and integration of world
equity markets (see, for instance, Garcia and Ghysels (1998), Bekaert, Harvey
and Lumsdaine (2002) inter alia), changes in exchange rate regimes such as
the collapse of exchange rate systems (e.g., the Exchange Rate Mechanism)
and the introduction of a single currency in Europe.

The topics addressed in this review are the following: Section 2 discusses
some statistical inference implications of ignoring change-points in financial
processes. Section 3 starts with a brief review of the properties of financial
time series, focusing on their temporal dependence and stationarity assump-
tions. The assumptions on strong mixing are satisfied by a large class of
financial series which are going to be the basis for discussing the asymptotic
properties of structural breaks tests. We then discuss change-point tests in
financial time series such as historical and sequential tests as well as single
and multiple break tests. The fourth section discusses structural change tests
in returns, volatility, long memory and distribution of financial time series.
The paper concludes with some areas of future research.

2 Consequences of Structural Breaks in Financial Time
Series

This section discusses some of the statistical inference implications of struc-
tural breaks on the persistence of financial time series, such as long range
dependence and integrated GARCH effects. Assume that financial returns,
rt, follow a discrete time GARCH(1,1) process, which captures many of the
stylized facts of financial time series and is used in many studies as the bench-
mark model, given by:

rt = σtut, σt = α0 + a1σt−1 + d1r
2
t−1, t = 1, 2, ..., ut ∼ i.i.d(0, 1). (1)
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Although (1) can be considered as a very simple mechanism that may not
capture all the stylized facts of financial returns, it nevertheless suffices for
discussing the implications of structural breaks in financial time series.

First, we focus on structural breaks in the unconditional variance of finan-
cial processes and explain how these can yield spurious long-memory effects
and an integrated GARCH (IGARCH), a1 + d1 = 1 in (1). In the general

context, a second order stationary sequence Yt is said to exhibit long memory
if the condition

∑

h |ρY (h)| = ∞ holds, where ρY (h) = corr(Y0, Yh), h ∈ Z,
denotes the ACF of the Yt sequence. Alternatively, the long range depen-
dence via the power law decay of the autocorrelation function is given by:
ρY (h) ∼ cρh

2d−1 for a constant cρ > 0, for large h and some d ∈ (0, 0.5).
Mikosch and Stărică (2004) show how statistical tools like the sample ACF
and periodogram of a process (1) can yield long-range effects when there are
unaccounted nonstationarities such as shifts in the mean or variance.

When there are multiple change-points, the sample Y1, ..., YT consists of
different subsamples from distinct stationary models. To be precise, let pj ,
j = 0, ..., r be positive numbers such that p1 + ...+ pr = 1 and p0 = 0. Define
qj = p0 + ...+ pj , j = 0, ..., r. The sample Y1, ..., YT is written as

Y
(1)
1 , ..., Y

(1)
[Tq1], ..., Y

(r)
[Tqr−1]+1, ..., Y

(r)
T (2)

where the r subsamples come from distinct stationary ergodic models with fi-
nite second moment. Given the nonstationary sample (2), the sample autoco-
variances of the sequence Yt are given by γ̃T,Y (h) = 1

T

∑T−h
t=1 (Yt−Y T )(Yt+h−

Y T ), h ∈ T . By the ergodic theorem, it follows for fixed h ≥ 0 as T → ∞
that

γ̃T,Y (h)

=
r

∑

j=1

pj
Tpj

[Tqj ]
∑

t=[Tqj−1 ]+1

Y
(j)
t Y

(j)
t+h −

⎛

⎝

r
∑

j=1

pj
Tpj

[Tqj ]
∑

t=[Tqj−1]+1

Y
(j)
t

⎞

⎠

2

+ o(1)

→
r

∑

j=1

pjE
(

Y
(j)
0 Y

(j)
h

)

−

⎛

⎝

r
∑

j=1

pjEY
(j)

⎞

⎠

2

=
r

∑

j=1

pjγY (j) (h) −
∑

1≤i<j≤r

pipj

(

EY (j) − EY (i)
)2

a.s. (3)

Let rt follow a GARCH type model such as that given in (1). If Yt = |rt| or
r2t in (3) the expectations of subsequences Y (j)

t differ, and since the sample
autocovariances γ̃Y (j)(h) within each stationary segment decay to zero expo-
nentially as h → ∞ (due to the short memory assumption), the sample ACF
γ̃T,Y (h) for sufficiently large h is close to a strictly positive constant given
by the last term in (3). The shape of a sample ACF (γ̃T,Y (h)) decays ex-
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ponentially for small lags and approaches a positive constant for larger lags.
Hence the samples of |r1|, ..., |rn| and r21, ..., r2n have sample ACFs that decay
quickly for the first lags and then they approach positive constants given by:

∑

1≤i<j≤r

pipj

(

E|r(j)| − E|r(i)|
)2

and
∑

1≤i<j≤r

pipj

(

E
(

r(j)
)2

− E
(

r(i)
)2

)2

, (4)

respectively, which would explain the long memory observed in financial re-
turns (Mikosch and Stărică (2004)). Moreover, the stronger the nonstation-
arity which implies a bigger difference in (3), the more pronounced the long-
memory effect in the ACF. Mikosch and Stărică (2004) also show that the
Whittle estimate of the ARMA representation of the GARCH model will be
close to unity when there are unaccounted change-points.

The spurious IGARCH effects due to unaccounted structural breaks or pa-
rameter regime switches in financial processes have been documented early
in the empirical literature (e.g., Diebold (1986), Lamoureux and Lastrapes
(1990)). More recently, Hillebrand (2005) and Mikosch and Stărică, (2004)
provide a theoretical explanation for this effect. In particular, Hillebrand
(2005) shows that unaccounted structural breaks in the unconditional vari-
ance yield a spurious IGARCH which is a consequence of the geometry of the
estimation problem. This result is independent of the estimation method and
the statistical properties of parameter changes and generalizes to higher order
GARCH models. Consider, for example, the single change-point in the con-
ditional variance parameters of a GARCH. In each of the two segments, the
realizations of the conditional volatility process are centered approximately
around the unconditional, stationary mean corresponding to the parameters
of that segment. If the GARCH model is estimated globally without account-
ing for segmentation, the resulting hyperplane (parameterized by α̂0, â1, ̂d1)
must go through both segment means of σt. As the mean of σt and the mean
of σt−1 is the same for sufficiently long segments, a line connecting two differ-
ent means in the (σt, σt−1)−subspace is close to the identity. Therefore, the
estimator of a1 will pick up the slope of the identity and be close to one. The
remaining autoregressive parameter d1 will be chosen residually such that
â1 + ̂d1 ≈ 1 causes the spurious IGARCH effect. The sum will always stay
slightly below one to keep the estimated volatility process from exploding.
This is proved in Hillebrand (2005).

The bias problem in the persistence of the volatility of financial time series
is more serious than in linear AR processes when breaks are ignored. This is
because the source of stochasticity in the GARCH equation originates from
r2t−1 alone, and there is no contemporaneous error that is orthogonal to the
regressors r2t−1 and σt−1. Hence, in GARCH models one does not find the
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interplay of the distance in the conditional local means which is given by
α0/(1 − a1 − d1), with the variance of the orthogonal error process as is the
case with the AR model. Consequently, GARCH models are more sensitive
to change-points than linear AR models.

The spurious IGARCH effects imply infinite unconditional variance. This
has financial theory implications given that many asset pricing models are
based on the mean-variance theorem. In addition, it also has statistical in-
ference implications such as, for instance, for forecasting since it implies that
shocks have a permanent effect on volatility such that current information
remains relevant when forecasting the conditional variance at all horizons. A
related strand of literature on forecasting and structural breaks that is rel-
evant for long horizon financial returns captured by linear models (with no
dynamic volatility effects) can be found, for instance, in Pesaran and Tim-
merman (2004). They show analytically that it is costly to ignore breaks when
forecasting the sign or direction of a time-series subject to a large break, and
a forecasting approach that conditions on the most recent break is likely to
perform better over unconditional approaches that use expanding or rolling
estimation windows. Further investigation of these results in the context of
the rolling volatility estimators when there is stochastic volatility as in Foster
and Nelson (1996) and when there are breaks is still unexplored. Last but not
least, structural breaks can yield misspecification in the asymmetry and the
tails of the conditional distribution of returns (Andreou and Ghysels (2005)).

3 Methods for Detecting Structural Breaks

In this section we review statistical methods for detecting change points in
financial processes. One classification of change-point tests refers to the dis-
tinction between a posteriori, retrospective or historical tests versus sequen-
tial, a priori or on-line tests. These two methods are classified according to
the sample acquisition approach. For the a posteriori change-point tests, the
process of data acquisition is completed at the moment when the homogeneity
hypothesis is checked while for sequential structural break tests, this hypoth-
esis is tested on-line with observations, i.e., simultaneously with the process of
data acquisition. Hence, the sequential approach is particularly useful when
a decision has to be made on–line, as new data become available. Although
sequential tests were originally introduced in order to construct more effi-
cient inspection procedures for industrial processes, they can also be useful
for financial processes and especially for financial decision making such as
risk management, asset allocation and portfolio selection.

In the first subsection, we discuss the general assumptions of financial
returns underlying the statistical procedures. The next subsection discusses
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historical and sequential methods for detecting breaks. We then turn to mul-
tiple change-point detection methods.

3.1 Assumptions

We denote a generic process by rt that represents the financial asset returns.
Under the null hypothesis of no structural change, we assume that rt (i) is a
weakly stationary process with uniformly bounded (2+δ)thmoments for some
0 < δ ≤ 2 and (ii) is a strong mixing process. Then, letting YT = r1 + ...+rT ,
the limit σ2

Y = limT→∞
1
T EY

2
T exists, and if σY > 0, then there exists a

Wiener process {W (t), 0 ≤ t < ∞} such that YT − σW (T ) = O(T 1/2−ε) a.s.
where ε = δ/600 (see for instance, Phillip and Stout (1975), Theorem 8.1, p.
96). This result is general enough to cover many applications.

Under the above mixing and stationarity conditions, the process rt satisfies
the strong invariance principle:

∑

1≤t≤T

(rt − E(rt)) − σYW (T ) = o(T γ), (5)

a.s. with some 0 < γ < 0.5 and W (.) a Wiener process. Consequently, under
the null of no structural change, Yt = |rt|υ, υ = 1, 2 satisfies the Functional
Central Limit Theorem (FCLT)

ZT := T−1/2
∑

1≤t≤T

(rt − E(rt)) → σYW (T ), (6)

for a large sample size, T.
The above conditions are satisfied by the continuous and discrete time

models for financial returns. For example, for the Heston model and other
stochastic volatility (SV) models Genon-Catalot et al. (2000), Proposition
3.2, p. 1067, show that the volatility model is β−mixing (which implies
α−mixing). The key insight of Genon-Catalot et al. (2000) is that continuous
time SV models can be treated as hidden Markov processes when observed
discretely which thereby inherit the ergodicity and mixing properties of the
hidden chain. Carrasco and Chen (2002) extend this result to generalized hid-
den Markov chains and show β−mixing for the SV-AR(1) model (Andersen
(1994)). Other SV specifications found in Chernov et al. (2003) also satisfy
the β−mixing condition. In addition, Carrasco and Chen (2002) and Davis
and Mikosch (1998) show that discrete time models for financial returns, such
as, for instance, the family of GARCH models also satisfy β−mixing.
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3.2 Historical and sequential partial–sums change–point
statistics

For conciseness and for comparison with sequential statistics, we focus on
a CUSUM test for breaks, which is one of the most popular change-point
tests. Although this test was originally developed for independent processes
for detecting a break in the mean (e.g., Page (1955)) or the variance (e.g.,
Inclan and Tiao (1994)) it has recently been extended to β-mixing processes
(e.g., Kokoszka and Leipus (2000)) for detecting change-points in an ARCH
type process.

Let the asset returns process, rt, be a β-mixing process with finite fourth
moment. A large class of ARCH and SV models are β-mixing that satisfy the
assumptions described in the previous section. Define the process of interest
Yt = |rt|δ for δ = 1, 2, which represents an observed measure of the variability
of returns. For δ = 2 the squared returns is the parent process parametrically
modeled in ARCH- or SV-type models. Alternatively, when δ = 1, absolute
returns, is considered as another measure of risk, in, say, the Power-ARCH
models. Given that the measurable functions of mixing processes are also
mixing and of the same size (see White (1984), Theorem 3.49) then Yt =
G(rt, . . . , rt−τ ), for finite τ, defined by Yt = |rt|δ for δ = 1, 2, is also β-mixing.
The tests discussed in this section will examine whether there is evidence of
structural breaks in the dynamics of stock returns volatility, which is one of
the moments of interest in financial processes. Note that these tests would
not necessarily require the specification of the functional form of volatility.
Andreou and Ghysels (2002) extend this analysis to sampling returns intra-
daily, denoted r(i),t for some intra-day frequency i = 1, . . . ,m, and form
data-driven estimates of daily volatility by taking sums of squared intra-day
returns. This is an example of Yt = G(r(1),t, . . . , r(m),t). The high frequency
process is β-mixing, and so is the daily sampled sum of intra-day squared
returns, or various other empirical measures of Quadratic Variation (QV ). For
example, Yt := (QV i)t are locally smoothed filters of the quadratic variation
using i days of high-frequency data. The case of QV 1 corresponds to the
filters studied by Andersen et al. (2001) and Barndorff-Nielsen and Shephard
(2001).

In order to test for breaks in an ARCH(∞), Kokoszka and Leipus (2000)
consider the following process:

UT (k) =
(

k(T − k)
T 2

)1/2
⎛

⎝

1
k

k
∑

j=1

Yj − 1
T − k

T
∑

j=k+1

Yj

⎞

⎠ , (7)

where 0 < k < T , Yt = r2t . The returns process {rt} follows an ARCH(∞)
process, rt = ut

√
σt, σt = a+

∑∞
j=1 bjr

2
t−j , a ≥ 0, bj ≥ 0, j = 1, 2, with finite

fourth moment and errors ut that can be non-Gaussian. An alternative way
of expressing (7) is:
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UT (k) =

⎛

⎝

1√
T

k
∑

j=1

Yj − k

T
√
T

T
∑

j=1

Yj

⎞

⎠ . (8)

The CUSUM type estimator ̂k of a change point k∗ is defined as:

̂k = min
{

k : |UT (k)| = max
1≤j≤T

|UT (j)|
}

. (9)

The estimate ̂k is the point at which there is maximal sample evidence for
a break in the squared returns process. In the presence of a single break,
it is proved that ̂k is a consistent estimator of the unknown change-point
k∗ with P{|k∗ − ̂k| > ε} ≤ C/(δε2

√
T ), where C is some positive constant, δ

depends on the ARCH parameters and |k∗ − ̂k| = Op(T−1). Using the FCLT
for β−mixing processes, it is possible to show that under the null hypothesis
of no break:

UT (k) →D[0,1] σB(k), (10)

where B(k) is a Brownian bridge and σ2 =
∑∞

j=−∞ Cov(Yj , Y0). Conse-
quently, using an estimator σ̂, one can establish that under the null:

sup{|UT (k)|}/σ̂ →D[0,1] sup{B(k) : kε[0, 1]}, (11)

which requires a Heteroskedasticity and Autocorrelation Consistent (HAC)
estimator applied to the Yj process.

We can relate the Kokoszka and Leipus (2000) statistic (7) to that of Inclan
and Tiao (IT) (1994). The IT CUSUM test statistic for detecting a break in
the variance of an independent process is:

IT =
√

T/2max
k

|Dk| , (12)

where

Dk =

⎡

⎣

⎛

⎝

k
∑

j=1

Yj/

T
∑

j=1

Yj

⎞

⎠ − k/T

⎤

⎦ .

This is related to (7) as follows:

UT (k) =
(

1
k(T − k)

)1/2
⎛

⎝

1
T

k
∑

j=1

Yj

⎞

⎠Dk. (13)

The above tests can also be used to assess change-points in a general location-
scale model given by

rt = μ(Zt) + σ(Zt)εt, (14)

where {(rt, Zt), t = 1, 2, ...} is a sequence of random variables, {εt} is a se-
quence of stationary errors with E(εt/Zt) = 0 and var(εt/Zt) = 1, and μ(Zt)
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and σ(Zt) are the conditional mean and skedastic functions, respectively.
ARCH-type models correspond to μ(Zt) = 0 and appropriate functional
forms for σ(Zt). Chen et al. (2005) establish the asymptotic properties of
estimators for structural breaks in volatility when the regression and skedas-
tic functions are unknown but estimated nonparametrically via local polyno-
mial (linear) smoothers by proposing new methods to select the bandwidths.
Their statistic is a CUSUM-type test given in (7) with the same Brownian
Bridge asymptotic distributions, but their monitoring process is now the non-
parametric residual, Yt = (rt − μ̂(Zt))/σ̂(Zt). Their change-point estimator
is consistent and also converges with a rate of O(T−1).

Other types of partial-sums tests can also be used to detect breaks in
GARCH models as well as the Lagrange Multiplier tests found in Chu (1995)
and in Lundbergh and Teräsvirta (1998).

We now turn to sequential change-point tests. Sequential test statistics
compare the process over a historical sample 1, ...,m (m < T ) with the process
over the monitoring sample m+1,m+2, .... The historical sample represents
where the process is in-control or noncontaminated by a break. Sequential
change-point tests for financial time series have some important advantages
since sampling does not involve any significant cost and has implications for
the power of the tests (Andreou and Ghysels (2006a)).

The following sequential partial-sums type test statistics, ST , are consid-
ered for monitoring the process Yt, which is a function of the financial returns
process. The Fluctuation (FL) detector is given by:

SFL
T = (T −m)σ̂0

−1(Y T−m − Y m), (15)

Y T−m =
1

T −m

T
∑

j=m+1

Yj ,

measures the updated mean estimate, Y T−m, from the historical mean esti-
mate, Y m and σ̂0 is the variance estimator from the historical sample. The
Partial Sums (PS) statistic:

SPS
T =

m+k
∑

i=m+1

(Yi − Y m), k ≥ 1 (16)

is similar to the Cumulative Sums (CUSUM) test of Brown et al. (1975) in
that it monitors the least squares residuals Yi−Y m. The Page (PG) CUSUM
statistic is:

SPG
T =

T
∑

i=1

Yi − min
1≤i<T

T
∑

i=1

Yi (17)

which can also be considered as a Partial Sums type test since for an inde-
pendent Yi, it is equivalent to

∑T
i=1 Yi −

∑T−r
i=1 Yi for any r, 1 ≤ r ≤ n (see

Page (1954)). The asymptotic distribution of the above sequential statistics
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can be derived using the framework of Kuan and Hornik (1995) and Leisch
et al. (2000). A detailed discussion of the asymptotic results of the above
sequential change-point statistics as well as the bounderies associated with
these statistics can be found in Andreou and Ghysels (2006b).

Other sequential change-point tests based on the quasi-likelihood function
of the volatility of financial time series models can be found in Berkes et al.
(2004).

3.3 Multiple breaks tests

This section discusses multiple change-point detection methods in financial
time series. The tests considered here assume unknown breaks in the variance
of a temporally dependent process. We divide the multiple breaks methods
into two categories: those based on the model selection approach and those
based on the binary, sequential segmentation of the sample.

The challenge in multiple change-point testing is to jointly estimate the
location of the breaks and the corresponding length of segments or regimes
between breaks, while also providing estimates of the model parameters
and possibly orders of the time series model in each segment. To formal-
ize the problem, consider the process {Yt} characterized by a parameter
θ ∈ Θ that remains constant between subsequent changes. Consider the
set of change-points τ = {τ1, τ2, ..., τK−1} where K defines an integer and
0 < τ1 < τ2 < · · · < τK−1 < T , where τ0 = 0 and τK = T . For any
1 ≤ k ≤ K use the contrast function U(Yτk−1+1, ..., Yτk

; θ) useful for the esti-
mation of the unknown true value of the parameter in the segment or regime
k. The minimum contrast estimate ̂θ(Yτk−1+1, ..., Yτk

), computed on segment
k of τ , is defined as a solution to the following minimization problem:

U(Yτk−1+1, ..., Yτk−1 ; ̂θ(Yτk−1+1, ..., Yτk−1)) ≤ U(Yτk−1+1, ..., Yτk−1 ; θ), ∀θ ∈ Θ.

For any 1 ≤ k ≤ K, let G be defined as:

G(Yτk−1+1, ..., Yτk
) = U(Yτk−1+1, ..., Yτk

; ̂θ(Yτk−1+1, ..., Yτk
)).

Then, define the contrast function J(τ,Y) as:

J(τ,Y) =
1
T

K
∑

k=1

G(Yτk−1+1, ..., Yτk
).

In the case of detecting changes in the variance of a sequence of random vari-
ables, the following contrast function, based on the Gaussian log-likelihood
function, can be used:
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J(τ,Y) =
1
T

K
∑

k=1

Tk log(σ̂2
k), (18)

where Tk = τk−τk−1 is the length of segment k, and σ̂2
k = 1

T

∑τk

i=τk−1
(Yi−Y )2,

is the empirical variance computed on that segment k and Y is the empirical
mean of Y1, ..., YK . When the true number K∗ of segments is known, the
sequence of change-points that minimizes this kind of contrast function has
the property that, under extremely general conditions, for any 1 ≤ k ≤ K∗−1,

P (|τ̂k − τ∗k | > δ) −→ 0, as δ −→ ∞, T −→ ∞, (19)

where τ̂k refers to the estimated and τ∗k to the true segments of the breaks.
This result holds for weakly and strongly dependent processes. When the
number of change-points is unknown, it is estimated by minimizing a penal-
ized version of the function J(τ,Y ). For any sequence of change-points τ, let
pen(τ) be a function of τ that increases with the number K(τ) of segments.
Then, let {τ̂} be the sequence of change-points that minimizes

U(τ) = J(τ,Y) + βpen(Y).

The penalty function is such as to avoid over- or under-segmentation. If β is a
function of T that goes to 0 at an appropriate rate as T → ∞, the estimated
number of segments K(τ̂k) converges in probability to K∗ and condition (19)
still holds.

The above estimation of multiple breaks and possibly the orders of the
time series model is via a model selection approach of non-nested models.
This method deals with the over-estimation of the number of breaks since it
attaches a penalty term associated with the number of segments. The best
combination of these values is then treated as an optimization of a desired
contrast function. The literature uses various selection criteria for the multi-
ple change-point problem. Early examples are Kitagawa and Akaike (1978)
and Yao (1988) that use the Akaike and Bayesian Information Criteria (AIC
and BIC), respectively, in the case of a change in the mean of an independent
process. Chen and Gupta (1997) also consider the BIC criterion for locating
the number of breaks in the variance of stock returns but still assume that the
process is independent. More recently, for weakly dependent processes, Liu,
Wu and Zidek (1997) modify the BIC by adding a larger penalty function and
Bai and Perron (1998) consider criteria based on squared residuals. Lavielle
and Moulines (2000) and Lavielle (1999) propose the penalized contrast func-
tion for selecting the sequence of change-points based on least squares (LS)
and the optimal choice of the penalty function. This method can also be
used for strongly dependent processes such as, for instance, financial time
series that exhibit long memory. Consequently, this method can be viewed as
detecting multiple breaks in a semiparametric model for financial time series.
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For financial time series processes that follow a stochastic volatility process
there are various additional challenging factors in multiple change-point de-
tection. First, the models are nonlinear in nature which adds another level of
difficulty on the optimization problem. Second, some volatility processes such
as the stochastic volatility (SV) model do not have a closed form expression
which makes estimation of multiple breaks for such models computation-
ally challenging. Third, financial time series may exhibit strong dependence.
Davis et al. (2005) present a method for detecting the optimal number and
location of multiple change-points in SV, GARCH and other nonlinear pro-
cesses based on the Minimum Description Length (MDL) criterion. Take, for
instance, the multiple breaks GARCH model given by:

r2tk = σ2
tku

2
t ,

σ2
tk = α0,k + ak,1σ

2
t−1,k + ...+ ak,qk

σ2
t−qk,k + dk,1r

2
t−1,k + ...+ dk,pk

r2t−pk,k,

τk−1 < t < τk (20)

where u2
t is NIID(0, 1) and σ2

tk is a well-defined second-order stationary
process. The unknown coefficients in this model include the parameter vector
of GARCH coefficients as well as the orders of the model given by θk =
(α0,k, αk,dk, pk, qk). Given that the MDL principle can be expressed in terms
of the log likelihood of the model, this method can also provide estimates of
the orders of the model and its parameters in each segment.

The LS distance model selection change-point method in (18) is easier
to implement (in terms of computational efficiency) and does not make any
parametric and distributional assumptions. However, it does not reveal what
is the actual change in the structure of the process, i.e., which parameters or
orders of the time series are changing (e.g., drift, persistence in volatility),
as opposed to the MDL method that applies to a parametric model but
can disclose such information. Given that financial returns are heavy tailed,
distances other than the LS may be of interest for the contrast function.

One of the challenges for these multiple change-point test methods is the
optimization of the contrast function or criterion for the optimal combina-
tion of the number of segments, the length of the segments and possibly
the parameters/orders of the time series model. Some of the optimization
algorithms are, for instance, the genetic algorithm (Davis et al. (2005)) and
Bellman and Roth (1969) and Guthery (1974) that uses least squares O(T 2)
operations.

A different approach to estimate the number and location of multiple
breaks is based on the method of binary, sequential sample segmentation.
Such methods were initially developed for the variance of an i.i.d. process
(e.g., in Inclan and Tiao (1994), for the CUSUM of squares test) and fur-
ther applied to the residuals of a GARCH model of emerging financial stock
market indices (Aggarwal et al. (1999)) or the quadratic variation of the
process (Andreou and Ghysels (2002)). This method addresses the issue of
multiple change-points detection using a sample segmentation procedure to
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sequentially or iteratively detect if a change-point is present in any subsam-
ple. This simple method can consistently estimate the number of breaks (e.g.,
Bai (1997), Inclan and Tiao (1994)). However, application especially for small
samples must be cautioned by the fact that it might overestimate the number
of breaks and their location may be wrong since the global change-point prob-
lem is translated into a sequence of local change-point detection problems.

4 Change–Point Tests in Returns and Volatility

In this section we discuss the applications of change-point tests for financial
returns and volatility.

4.1 Tests based on empirical volatility processes

We consider empirical processes that obey a Functional Central Limit The-
orem (FCLT) and we devote this subsection to the empirical processes and
the conditions that need to hold to satisfy the FCLT. We are interested in
strongly dependent time series, and in particular, stochastic volatility pro-
cesses.

Since our main focus of interest is financial market volatility processes, we
start from standard conditions in asset pricing theory. In particular, absence
of arbitrage conditions and some mild regularity conditions imply that the
log price of an asset must be a semi-martingale process (see e.g., Back (1991)
for further details). Applying standard martingale theory, asset returns can
then be uniquely decomposed into a predictable finite variation component,
an infinite local martingale component and a compensated jump martingale
component. This decomposition applies to both discrete and continuous time
settings and is based on the usual filtration of past returns.

We will study data-driven processes related to volatility denoted by Yt and
defined by:

YT (
sT

T
) =

1√
T σ̂T

[sT ]
∑

t=1

Yt, (21)

where T is the sample size, s belongs [0, 1] and σ̂T is the long-run variance
estimator. For the purpose of FCLT arguments we can write:

Yt = μ̂Y + υ̂t t = 1, . . . , T, T + 1, T + 2, . . . , (22)

with υ̂t = [Yt − μ̂Y ] and μ̂Y = 1/T
∑T

t=1 Yt →p μY as T → ∞. Suitable reg-
ularity conditions will ensure that for various choices of Yt, the partial sum
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process YT in (21) will obey a FCLT. Moreover, various choices of Yt imply
different sample average limits μY . It will be important to know the interpre-
tation of μY since the tests have local asymptotic power against alternatives
that are characterized by perturbations of μY .

Some of the empirical monitoring processes below relate more closely to
the ARCH class of models, while other processes are more directly linked to
SV-type models. We start with processes inspired by the ARCH literature.

4.1.1 The General ARCH class of models

A random sequence {Yt, t ∈ T} satisfies the ARCH(∞) type equations if
there exists a sequence of i.i.d. non-negative random variables {ξt, t ∈ T}
such that:

Yt = σ(Y0
t−1,b)ξt, t ≥ 1, (23)

σ(Y0
t−1,b) = b0 +

∞
∑

j=1

bjYt−j , (24)

where Y0
t−1 := (Yt−j , j ≥ 1), b0 ≥ 0, bj ≥ 0, j = 1, 2, ... The model (23)-

(24) specified in Robinson (1991) is general enough to include the following
ARCH-type models. Let Yt := |rt|δ, ξt := |εt|δ and σ(Y 0

t−1, bj) := σδt such
that:

|rt|δ = σδt |εt|δ, σδt = b0 +
∞
∑

j=1

bj|rt−j |δ,

where δ > 0 and εt are i.i.d. random variables with zero mean. In particular,
for δ = 1, we obtain Taylor’s (1986) power or absolute value ARCH model

|rt| = σt|εt|, σt = b0 +
∞
∑

j=1

bj |rt−j |, (25)

and for δ = 2, Engle’s (1982) squared returns ARCH representation

r2t = σ2
t ε

2
t , σ2

t = b0 +
∞
∑

j=1

bjr
2
t−j . (26)

Moreover, Bollerslev’s (1986) GARCH(p, q) model

r2t = σ2
t u

2
t , σ2

t = α0 +
p

∑

j=1

ajσ
2
t−j +

q
∑

j=1

djr
2
t−j , (27)
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can be rewritten in the form of the general specification in (23)-(24) if
σ(Y 0

t−1, bj) = σ2
t , ξt = ε2t , Yt = r2t and the coefficients b0 = α0(1 + α1 +

α2
1 + ...) = α0/(1 − α1), bj = aj−1

1 d1, j = 1, 2, ...
Before discussing the regularity conditions for the general model (23)-(24)

to ensure a FCLT applies to partial sums of daily squared and/or absolute
returns, it is first worth elaborating on the interpretation of μY and therefore
the power properties we expect. Equation (23) and the fact that ξt is i.i.d.
implies that for empirical monitoring processes such as Yt = r2t , then μY =
Eσ2

t × Eε2t , whereas μY = Eσt × E|εt| for empirical monitoring processes
Y = |rt|. Since by definition εt ∼ i.i.d.(0, 1), for both cases we have that
μY = E(σδt ) for δ = 1, 2. Therefore, selecting either daily squared returns or
absolute returns will result in tests that have power against various types of
alternatives: (1) alternatives that change the mean volatility Eσ2

t or Eσt and
(2) alternatives that change the distribution of innovations, through E|εt|.

4.1.2 Regularity conditions for FCLT

If the above class of ARCH(∞) processes in (23)-(24) satisfies the following
sufficient parameter and moment conditions:

E(ξ20) < ∞, E(ξ20)
∞
∑

j=1

bj < 1, (28)

then the following three properties hold for the stochastic process {Yt}:

• is strictly and weakly stationary
• exhibits short memory in the sense that the covariance function is abso-

lutely summable,
∑∞

t=−∞ cov(Yt, Y0) < ∞.
• satisfies the Functional Central Limit Theorem (FCLT).

Giraitis et al. (2000) prove that as T → ∞

ST (s) := T−1/2

[sT ]
∑

t=1

(Yt − E(Yt)) → σW (s), 0 ≤ s ≤ 1, (29)

where σ2 =
∑∞

t=−∞ cov(Yt, Y0) < ∞ and {W (τ), 0 ≤ τ ≤ 1} is a standard
Wiener process with zero mean and covariance E(W (t)W (s)) = min(t, s).
It is interesting to note that the FCLT holds without having to impose any
other memory restrictions on Yt such as mixing conditions. The reason being
that the condition in (28) implies not only (a) weak stationarity but also (b)
short memory. In fact, the latter represents the key to the FCLT. Moreover,
the autocorrelation function of Yt depends directly on the existence of E(ξ20)
(see for instance, He and Teräsvirta (1999)). In addition to the short memory
structure of Yt, Kokoszka and Leipus (2000) show that if the bj in (23) decay
exponentially then so does the covariance function. Similar results on the
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behavior of the autocorrelation function of a GARCH(p, q) can be found in He
and Teräsvirta (1999) and their results can be simplified to an ARCH model
to yield the same condition as (28). Finally, under the sufficient condition (28)
results (a) and (b) also imply (c). Note also that the FCLT holds without
the Gaussianity assumption.

The ARCH-type models (26) and (27) can be considered in the context of
the general specification (23)-(24) for which ξt = f(εt) for some non-negative
function f . Therefore, condition (28) can lead to corresponding conditions
for these ARCH models. For instance, for Engle’s ARCH(∞) model where
ξt = ε2t , condition (28) becomes E(ε40) < ∞ and E(ε40)

∑∞
j=1 bj < 1 and for

Taylor’s ARCH model where ξt = |εt| condition (28) becomes E(ε20) < ∞
and E(ε20)

∑∞
j=1 bj < 1. An alternative method for deriving the FCLT for a

GARCH(p, q) process based on near-epoch dependence is found in Davidson
(2002) who shows that a sufficient assumption is that εt is i.i.d. with finite
fourth moment. One could consider the fourth moment existence condition
imposed in the analysis to be restrictive.

The FCLT result for Yt in (23) and (24) or equivalently, Yt = |rt|δ, δ = 1, 2
in (26)-(27), provides the conditions for deriving the sequential CUSUM tests
for the observed returns process in dynamic scale models. In contrast to
linear dynamic regression models, the squared residuals of GARCH models
do not satisfy the FCLT. Horváth et al. (2001) show that the partial sum of
the ARCH(∞) squared residuals are asymptotically Gaussian, yet involve an
asymptotic covariance structure that is a function of the conditional variance
parameters and a function of the distribution of the innovations and moments
of the ARCH. Consequently, boundary crossing probabilities can be computed
for partial sums tests based on Yt as opposed to the ARCH-type squared
residuals.

4.2 Empirical processes and the SV class of models

In the previous subsection we dealt with daily returns. Here we consider
processes Yt based on intra-daily returns. Such processes are more closely
related to the class of continuous time SV models. We discuss again under
what regularity conditions partial sum processes appearing in (21) will obey
a FCLT. Moreover, we also discuss the interpretation of μY , and therefore
the power properties the resulting tests are likely to have.

4.2.1 The General SV class of models

The purpose of using high frequency financial time series is to estimate more
precisely and more directly volatility. There is now a substantial literature
on the use of high frequency financial data, see, e.g., Andersen et al. (2003)
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for a survey. In this section, we will examine two alternative processes for Yt
based on intra-daily returns, and to do so we start with the class of stochastic
volatility models that is commonly used in financial economics to describe the
behavior of asset returns. A typical continuous time SV model for log-prices
p(t) can be written as:

dp (t) = ν (t) dt+ σ (t) dW (t) + κ (t) dq (t) (30)

where dq (t) is a jump process with intensity λ (t) size κ (t) . The process,
ν (t) is a continuous locally bounded variation process, σ (t) is a strictly pos-
itive and càdlàg stochastic volatility process and W (t) is a Wiener process.
Typically, the object of interest is to predict the increment of the quadratic
variation over some horizon (typically daily), that is:

QVt,t+1 =
∫ t+1

t

σ2 (s) ds+
∑

{s∈[t,t+1]:dq(s)=1}
κ2 (s) . (31)

The first component in equation (31) is sometimes written as:

σ
[2]
t,t+1 =

∫ t+1

t

σ2 (s) ds. (32)

Other measures have been studied as well, and it will be of particular interest
to consider the alternative measure defined as:

σ
[1]
t,t+1 =

∫ t+1

t

σ (s) ds. (33)

The volatility measures appearing in equations (32) and (33) are not observ-
able but can be estimated from data.

To proceed with estimation, we define the intra-daily returns. Recall that
returns sampled at a daily frequency are denoted rt. For the purpose of esti-
mating volatility, we will also consider r(m),t−j/m, the jth discretely observed
time series of continuously compounded returns with m observations per day
(with the index t−j/m referring to intra-daily observations). Hence, the unit
interval for r(1),t is assumed to yield the daily return (with the subscript (1)
typically omitted so that rt will refer to daily returns). For example, when
dealing with typical stock market data, we will use m = 78, corresponding
to a five-minute sampling frequency. It is possible to consistently estimate
QVt,t+1 in (31) by summing squared intra-daily returns, yielding the realized
variance:

RVm
t,t+1 =

m
∑

j=1

(

r(m),t+j/m

)2
. (34)

When the sampling frequency increases, i.e. m → ∞, then the realized vari-
ance converges uniformly in probability to the increment of the quadratic
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variation, i.e.,
lim

m→∞
RV m

t,t+1 →p QVt,t+1. (35)

The second class of empirical processes related to volatility is known as Re-
alized Absolute Value, or Power Variation, and is defined as:

PV m
t,t+1 =

m
∑

j=1

∣

∣

(

r(m),t+j/m

)∣

∣ , (36)

where limM→∞ PV m
t,t+1 →p σ

[1]
t,t+1.

To complete the specification of the stochastic volatility process we need
to augment equation (30) with a specification of the volatility dynamics. We
start with a diffusion for σ(t). Following Barndorff-Nielsen and Shephard
(2001), we use a non-Gaussian Ornstein-Uhlenbeck (OU) process:

dσ(t) = −δσ(t)dt+ dz(δt), (37)

where z(t) is a Lévy process with non-negative increments.
From the above diffusion one can compute, under suitable regularity con-

ditions discussed later, population moments for stochastic processes Yt =
RV m

t,t+1, PV
m
t,t+1. Such calculations appear, for example, in Barndorff-Nielsen

and Shephard (2001) and Forsberg and Ghysels (2004). One can show that
for Yt = RV m

t,t+1 :

μY = Eσ
[2]
t,t+1 + E

∫ t+1

t

κ2 (t) dq (t) ,

whereas for Yt = PVm
t,t+1 :

μY = Eσ
[1]
t,t+1.

Therefore, we expect that tests based on Yt = RV m
t,t+1 will have power proper-

ties against alternatives characterized by changes in the volatility dynamics
and changes in the distribution of jumps. In contrast, with Yt = PV m

t,t+1,
we only expect to have power against alternatives driven by changes in the
volatility process. Changes in the tail behavior, i.e., in the jump distribu-
tion, will not affect test statistics based on Yt = PV m

t,t+1. This distinction is
important in practical applications (see also Woerner (2004), for further dis-
cussion). The impact of jumps and the choice of statistics and/or monitoring
processes is still an open question.

4.2.2 Regularity conditions for FCLT

The regularity conditions for the application of FCLT to the partial sum
process YT are in comparison to ARCH-type processes relatively straight-
forward when, for example, volatility follows a non-Gaussian OU process.
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In particular, we can look upon the processes PV m
t,t+1 and RV m

t,t+1 as lin-
ear processes contaminated by measurement noise. For ARCH-type models,
we dealt with strongly dependent processes, whereas here we consider pro-
cesses directly related to the latent volatility dynamics and such processes
are weakly dependent under the above assumptions. For example, De Jong
(1997) and De Jong and Davidson (2002), obtain functional limit results for
a broad class of serially dependent and heterogeneously distributed weakly
dependent processes. The defining feature of such processes is that their nor-
malized partial sums converge to processes having independent Gaussian in-
crements, specifically, Brownian Motion in the case where the variances are
uniformly bounded away from infinity and zero. Such results would apply to
non-Gaussian OU processes as discussed above. Obviously, other volatility
processes might require FCLT results of the type discussed in the previous
section.

Let us consider again equation (37). This process yields an autocorrelation
function acf(σ, s) ≡ corr(σ(t), σ(t+s)) equal to acf(σ, s) = exp(−δ|s|). Using
results from Barndorff-Nielsen and Shephard (2001), Mendoza (2004) obtains
the following autocorrelation function:

acf(σ[1]
t,t+1, s) =

(1 − e−δ)2e−δ(s−1)

2(e−δ − 1 + δ)
, (38)

whereas Konaris (2003) shows for the same process appearing in (37) that:

acf(σ(t)2, s) = (1 − γ)e−2δ|s| + γe−δ|s| (39)

acf(σ[2]
t,t+1, s) = (1 − γ)e−2δs

[

(1 − e−2δ)2

4δ2

]

+ γe−δs

[

(1 − e−δ)2

δ2

]

, (40)

where γ = 2cov(σ(t), σ(t)2)/var(σ2(t))m̃ and m̃ is the mean of σ(t). More-
over,

cov(σ(t), σ(t)2) = κσ3 + 2κσ2κ
σ
1 (41)

var(σ(t)2) = κσ4 + 4κσ3κ
σ
1 + 4κσ2 (κσ1 )2 − (κσ2 )2 (42)

with κσi being the ith order cumulant of the stationary process σ(t). One can
proceed by making a specific assumption about the marginal distribution of
σ(t).2 Under regularity conditions discussed in detail in Barndorff-Nielsen and
Shephard (2001) and Barndorff-Nielsen, Jacod and Shephard (2004), one ob-

2 For example, one can assume that the law of σ(t) is normal inverse Gaussian (henceforth
NIG). This means that equation (37) is an NIG−OU process. Assuming that the process
(37) is a NIG − OU puts restrictions on the so called background Lévy process z(t). In
particular, let the marginal be NIG(ᾱ, β̄, μ, δ) then the first four cumulants are (with ρ =
β/α):

κσ
1 = μ+ δρ√

(1−ρ2)
, κσ

2 = δ2

ᾱ(1−ρ2)3/2 ,

κσ
3 = 3δ3ρ

ᾱ2(1−ρ2)5/2 , κσ
4 = 3δ4(1+4ρ2)

ᾱ3(1−ρ2)7/2
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tains stationary and ergodic processes σ[i]
t,t+1, i = 1,2.3 To establish the same

properties for Yt = PV m
t,t+1, RV

m
t,t+1, we need to discuss the asymptotic distri-

bution of the measurement error, that is, the difference between population
processes σ[i]

t,t+1, i = 1,2 and sampled processes PV m
t,t+1 and RVm

t,t+1.
Barndorff-Nielsen and Shephard (2001) show that in the absence of jumps,

the error of realized variance is asymptotically (as m → ∞), RVt,t+1- σ
[2]
t,t+1/

√

2σ[4]
t,t+1/3 ∼ N (0, 1) , where σ[4]

t,t+1 =
∫ t+1

t σ(s)4ds is called the quarticity.4

The error of the realized absolute variance can also be derived accordingly
and yields PVt+1,t - σ[1]

t+1,t ∼ N (0, 0.36338RVt,t+1) . While the asymptotic
analysis for RV and PV were originally derived under different regularity
conditions, recent work by Barndorff-Nielsen, Jacod and Shephard (2004)
has provided a unified asymptotic treatment of both measures of volatility.

Given the above measurement process, it is clear that the sample process is
stationary and ergodic under similar regularity conditions as the population
processes and therefore the FCLT applies to both. The above results can also
be broadened. When instantaneous volatility depends linearly on up through
two autoregressive factors, Meddahi (2003) derives an ARMA representation
of RV m

t,t+1. The class of processes considered by Meddahi (2003) includes
affine diffusions, GARCH diffusions, CEV models, as well as the OU-type
processes appearing in equation (37). Consequently, with the high frequency
data-based monitoring processes, we remain in the context of the linear pro-
cesses considered by Kuan and Hornik (1995) and Leisch et al. (2000) since
we monitor directly RV m

t,t+1 as a weakly dependent ARMA process.

4.3 Tests based on parametric volatility models

This subsection discusses change-point tests which assume a specific pa-
rameterization of the financial returns and volatility process. For instance,
Kulperger and Yu (2005) derive the properties of structural break tests based
on the partial sums of residuals of GARCH models, whereas Berkes et al.
(2004) present a likelihood-ratio (LR) based test for evaluating the stability
of the GARCH parameters.

The properties of tests with unknown change-point based on the partial
sums processes of residuals from parametric GARCH models for financial pro-

Forsberg and Ghysels (2004) take a different approach, which consists of selecting rea-
sonable values for γ. Since the latter is equal to 2cov(σ(t), σ(t)2)/var(σ2(t))m̃ and
cov(σ(t), σ(t)2)/var(σ2(t) is the regression coefficient of a linear projection of σ(t) onto
σ(t)2 one can select reasonable values for γ as well as m̃ directly.
3 We refrain from explicitly listing the regularity conditions as they are fairly mild, see
also, Konaris (2003), Mendoza (2003), Forsberg and Ghysels (2004) and Woerner (2004).
4 This result can be generalized to cases with jumps, see Forsberg and Ghysels (2004) for
further discussion.
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cesses can be found in Kulperger and Yu (2005). Here we focus on the CUSUM
test for detecting changes in the mean and volatility of GARCH models. The
asymptotic results of high moment partial sum processes of GARCH resid-
uals in Kulperger and Yu (2005) can be extended to change-point tests in
higher-order moments of GARCH residuals, such as, for instance, moments
that relate to the asymmetry and tails of financial processes. This residual-
based CUSUM test involves the same conditions on a GARCH model as other
tests (e.g., Kokoszka and Leipus (2000), and Horváth et al. (2001)) which are
essentially fourth order stationarity and

√
n consistency of the volatility es-

timator. Note that no specific distributional assumptions are imposed other
than the GARCH errors being i.i.d.(0,1). However, under the assumption
of a symmetric distribution for the innovations, the asymptotic distribution
of the standardized kth−order moment of the residual centered partial sum
process of a GARCH given by

T (k)
n (s) =

[sT ]
∑

t=1

(ût − û)k, 0 ≤ s ≤ 1,

is a Brownian Bridge with no nuisance parameters. On the other hand, if
no symmetry assumption is imposed, then for k > 3 the asymptotic Gaus-
sian process depends on the moment of the innovation distribution and can-
not be identified with a specific classic process such as a Brownian Motion
or Brownian Bridge. Under the null hypothesis of no structural breaks, the
GARCH(p,q) model yields the error ut = rt/σt where σ2

t = α0 +
∑p

j=1 ajσ
2
t−j

+
∑q

j=1 djr
2
t−j . Under the alternative there may be a break in the conditional

mean or the conditional variance of the GARCH given by

rt = σtut + μ, σ2
t = α0 +

p
∑

j=1

ajσ
2
t−j +

q
∑

j=1

dj (rt−j − μ)2 , (43)

μ �= 0 t = [τT ] + 1, ..., T, and

rt = σtut, σ
2
t =

⎧

⎪

⎨

⎪

⎩

α0 +
∑p

j=1 ajσ
2
t−j +

∑q
j=1 djr

2
t−j if t = 0, ..., [τT ]

α′
0 +

∑p
j=1 a

′
jσ

2
t−j +

∑q
j=1 d

′
jr

2
t−j if t = [τT ] + 1, ..., T

(44)
respectively. The residual CUSUM test for detecting breaks in the conditional
mean is:

CUSUM (1) = max
1≤i≤n

∣

∣

∣

∑i
t=1(ût − iû)

∣

∣

∣

σ̂2
(n)

√
n

= max
1≤i≤n

1√
n

∣

∣

∣

∣

∣

i
∑

t=1

(ût − iû)

∣

∣

∣

∣

∣

(45)

→ sup |B0(τ)|
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since for a GARCH model, σ̂2
(n) is an estimator of the var(ut) = 1, by defini-

tion. Similarly, the squared residual CUSUM test for detecting breaks in the
conditional variance is:

CUSUM (2) = max
1≤i≤n

∣

∣

∣

∑i
t=1 û

2
t − i

∑n
t=1 û

2
t/n

∣

∣

∣

ν̂2
√
n

= max
1≤i≤n

∣

∣

∣

∣

∑i
t=1

(

ût − û
)2

− iσ̂2
(n)

∣

∣

∣

∣

ν̂2
√
n

→ sup |B0(τ)| , (46)

where ν̂2 = 1
n

∑i
t=1

(

(

ût − û
)2

− σ̂2
(n)

)2

is the estimator of ν2 = E(u2
0 −

E(u2
0))

2. Given the asymptotic properties of the residual partial sums pro-
cesses, it is possible to obtain the asymptotic distribution of other types of
test statistics similar to the Fluctuation test and the Page tests. Compared
to the CUSUM tests for detecting breaks in Yt = |rt| or r2t , discussed in the
previous sections, the residual-based CUSUM tests for detecting breaks in
the mean and variance of a GARCH model do not involve the estimation
of a long-run matrix using Heteroskadastic and Autocorrelation Consistent
(HAC) estimators. Moreover, the results in Kulperger and Yu (2005) show
that under certain cases these tests have better finite sample properties than
the returns based CUSUM tests, e.g., in Kokoszka and Leipus (2000). It is also
worth noting that the Chen et al. (2005) test discussed in section 3.2 is also
a CUSUM-based residual test which is, however, based on the nonparametric
estimation of more general specifications.

Given that financial processes exhibit heavy tails, Andreou and Werker
(2005) present the asymptotic distribution of a CUSUM test based on the
ranks of the residuals from a GARCH model for detecting change-points.
The statistic does not involve any nuisance parameters and also converges to
the same asymptotic distribution. Hence, it is not only robust to alternative
distributional assumptions but may exhibit better power in detecting breaks
in heavy-tailed financial processes. In addition, it does not involve the stan-
dardization by a long-run variance estimator (compared to the CUSUM tests
for the observed returns processes).

Unlike the above parametric method that relies on the residuals of the
GARCH model, the method proposed by Berkes et al. (2004) is based on
quasi-likelihood scores and can be used to evaluate which of the parameters
of a GARCH(p, q) has a change-point. In the general setup, the observed
financial process r1, ..., rn may follow a GARCH(p, q) model with d param-
eters. Denote by ω a generic element in the parameter space and by �i(ω)
the conditional quasi-likelihood of ri given by ri−1, ..., r1, so that the quasi-
likelihood function is Lm(ω) =

∑

1≤i≤m �i(ω). For time series models, �i(ω)
can not be computed exactly because of the dependence on the unobserved
d−dimensional row vector of partial derivatives with respect to the model
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parameters. Consider the matrix

̂Dn =
1
n

∑

1<i≤n

(

̂�′i(̂θn)
)T (

�i(̂θn)
)

,

where ̂θn is the quasi maximum likelihood parameter estimate. The d-
dimensional process Gm =

∑

1<i≤n(ê′i(̂θn)̂D−1/2
n can form the basis of test

statistics based on appropriate approximations for ̂�′i(̂θn). Berkes et al. (2004)
derive a sequential likelihood ratio test for monitoring the parameters of the
GARCH model which is more informative than any sequential CUSUM test
performed on the observed returns process or residual transformations.

4.4 Change–point tests in long memory

It is widely documented that various measures of stock return volatility (e.g.,
squared and absolute returns) exhibit properties similar to those of a long-
memory process (e.g., Ding et al. (1993), Granger and Ding (1995) and Lobato
and Savin (1998)). More recent evidence supports the view that stock market
volatility may be better characterized by a short-memory process affected by
occasional level shifts found, for instance, in Mikosch and Stărică (2004), Per-
ron and Qu (2004) and Granger and Stărică (2005). This pattern, found in
daily SP500 absolute returns, is very close to what is expected with a short-
memory process with level shifts. The interplay between structural breaks
and long memory demonstrates that by accounting for structural breaks, the
estimates of the long-memory parameters in stock return volatility within
regimes are reduced (e.g., Granger and Hyung (2004)). Moreover, superior
forecasts of exchange rate returns can be obtained in longer horizons by mod-
eling both long memory and structural breaks (Beltratti and Morana (2006)).
In addition, it has been documented that short-memory processes with level
shifts will exhibit properties that make standard tools conclude that long
memory is present (e.g., Diebold and Inoue (2001), Engle and Smith (1999),
Granger and Hyung (2004), Lobato and Savin (1998), Mikosch and Stărică
(2004)). Hence, it is empirically difficult to discriminate a long-memory pro-
cess from a weakly dependent process with some form of nonstationarity such
as regime switching or structural breaks in the mean or volatility. Further-
more, Giraitis et al. (2001) provide analytical results to the above debate
by showing that a structural change of a constant magnitude in linear and
ARCH models which does not decrease with the sample size, will be picked
up as long memory with probability approaching one as the sample size T,
tends to infinity.

A recent test proposed by Berkes et al. (2006) might shed more light in the
aforementioned empirical debate as a method to discriminate between a long-
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memory dependent process and a weakly dependent process with changes in
the mean or volatility of financial time series. In its simplest form, the test
assumes that under the null hypothesis the process is weakly dependent with
one unknown break in the mean and under the alternative it is a process with
long-memory. The test procedure is based on the following: The CUSUM
statistic is computed, as defined in previous sections, given by,

SCS
T = (T σ̂T

2)−1/2 max

∣

∣

∣

∣

∣

∣

∑

1≤t≤k

Yt −
k

T

∑

1≤t≤T

Yt

∣

∣

∣

∣

∣

∣

(47)

where σ̂T
2 is the long variance estimator of the sample mean of Yt. For

financial time series, Yt may again represent squared or absolute returns
given the empirical evidence of long memory. The value of the statistic at
max |SCS

n | is used to segment the sample at a point τ̂1 = max |SCS
n | whether

there is a structural break or not. Then the CUSUM statistic is computed
in the two segmented samples up to τ̂1 given by SCS

T,1 and from τ̂1 + 1 to
the end of the sample given SCS

T,2 . Under the null hypothesis, the resulting
asymptotics of the statistic obtained from (47) in each sub-sample is given
by

M1 = max
[

SCS
T,1 , S

CS
T,2

]

→ max
[

sup
0≤t≤1

|B(1)(t)|, sup
0≤t≤1

|B(2)(t)|
]

, (48)

see Kiefer (1959). Under the alternative, the test statistic diverges to infinity.
Note that this test is based on the almost sure asymptotics for the long-run
Bartlett variance estimator σ2

T .
This test can be easily extended to examine the null hypothesis of a weakly

dependent process with k multiple change-points versus the long-memory al-
ternative, using the sequential, binary, sample segmentation approach (dis-
cussed at the end of section 3.3). The asymptotic distribution of the test
statistic now generalizes to the k+ 1 analogue of (48) that involves CUSUM
statistics in k + 1 regimes and the null hypothesis is examined sequentially
at each sample segmentation stage.

Related tests for multiple structural changes in a long memory process
based on a least-squares model selection approach can be found in Lavielle
and Moulines (2000). For a test in the long memory parameter based on the
maximal difference across potential break dates of appropriately weighted
sums of autocovariances, see Beran and Terrin (1996).

Some popular tests such as Hurst’s rescaled range type statistic for long-
memory are also related to tests for structural breaks. The weakness of these
tests is that they can not discriminate between long-range dependence and
weak-dependence with structural change, compared to the aforementioned
Berkes et al. (2006) test. Giraitis et al. (2003) also propose the rescaled vari-
ance test V/S, based on the sample variance of the partial sum process:
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V/S(q) =
v̂ar(S1, ..., ST )

T σ̂2(q)
=

1
T 2σ̂2(q)

⎡

⎣

T
∑

k=1

S2
k − 1

T

(

T
∑

k=1

Sk

)2
⎤

⎦ (49)

where σ̂2(q) is the long run variance estimator. They find that it is more
sensitive to changes in the variance and would have higher power than the
rescaled range statistic against long memory in the squares.

In the above tests for long-memory in volatility models the bandwidth pa-
rameter q of the long-run variance estimator plays a special role. The question
on the optimal q is still open and the properties of the above tests for de-
tecting structural breaks in the long memory in view of the role of q need
further investigation. Related to this is the investigation of the properties of
the above tests with other long-run volatility estimators that deal with long
memory such as, for instance, those proposed in Robinson (2005) and Abadir
et al. (2006).

4.5 Change–point in the distribution

This section discusses tests for detecting changes in the distribution function
of financial returns. The stylized fact of non-Normality in the asset returns is
well documented in the empirical finance literature. More precisely, the prop-
erties of heavy tails, asymmetries and a large class of alternative distributions
have been fitted to asset returns with no empirical consensus regarding a
benchmark distribution.

Nonparametric change-point tests in the distribution of a strongly mix-
ing process are proposed, for instance, in Inoue (2001) and Lavielle (1999).
Such nonparametric tests are motivated by the robustness against misspecif-
cation as compared to analogous parametric and semiparametric tests, e.g.,
in Horváth et al. (2001), which nevertheless have more power under the as-
sumption of a well-specified model.

The tests proposed in Inoue (2001) are nonparametric in the sense that
they do not specify a distribution nor a specific parametric model for the
asset returns process and are based on the difference between empirical dis-
tribution functions (edf). These tests have at least two advantages compared
to nonparametric density estimators: The edf test convergence rate is always√
T , and it does not suffer from the dimensionality curse. In contrast, it is well

known that tests based on nonparametric density estimators suffer from the
curse of dimensionality and have a slower than

√
T convergence rate which

may not have power against
√
T local alternatives. Two additional features

of these edf based change-point tests which are useful for financial time se-
ries are their robustness to heavy tails and to nonlinear dependence as well
as their robustness to the inexistence of the unconditional fourth moment
(Inoue (2001)). This nonparametric edf based test allows dependence and
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consequently, its limiting null distribution depends on a nuisance parameter
which is derived using bootstrap methods. This test is based on the limit-
ing process of a simulated sequential empirical process. The simulated-based
test has power against local alternatives and is consistent against multiple
breaks. However, this nonparametric edf-based test largely depends on the
size of the block bootstrap, and the asymptotic behavior of the selected block
length under the alternative hypothesis is still unexplored.

A complementary test to detect structural changes in the distribution is
based on an edf process of the residuals of volatility models for financial
returns. Horváth, Kokoszka and Teyssière (2001) show that unlike the resid-
uals of ARMA processes (e.g., Bai (1994)), the residuals of the ARCH models
yield sequential empirical processes that do not behave like asymptotically
independent random variables. In particular, they show that the asymptotic
distribution involves, among others, a term depending on the unknown pa-
rameters of the model. For ARCH models the detection of changes in the
distribution function of unobserved innovations yields sequential edf tests
that lead to asymptotically distribution free statistics.

The above edf-based tests are based on the observed returns process or the
residuals of a model for returns. Although the residual-based edf test is rel-
atively easier to implement given its nuisance-parameter free limiting distri-
bution, it however depends on the crucial assumption of a correctly specified
ARCH-type model. These two edf tests will have different properties whether
or not the correct model specification is assumed. It is useful if the two tests
are viewed in a complementary approach. In view of the alternative distri-
bution families proposed for financial time series and the alternative model
specifications, if the correct parameterization is unknown then the nonpara-
metric edf based test can serve as a useful pretest of the null hypothesis
of distributional homogeneity. However, under the correct specification, the
parametric edf tests would have more power. Moreover, the parametric edf
tests or any of the other parametric change-point tests discussed here would
be more informative as to the source of the structural change.

Another fundamental difference between the above two tests is that the
residual-based edf test examines the homogeneity in the conditional distribu-
tion of returns whereas the returns-based edf test assesses the homogeneity
of the marginal distribution of returns. An alternative nonparametric test for
the stability of the marginal distribution of strongly dependent and strongly
mixing processes that also aims to detect unknown multiple breaks is based
on minimizing a penalized contrast function, proposed by Lavielle (1999). It
is assumed that the distribution of such processes depends on a parameter
θ that changes abruptly at some points. When the number of change-points
is known, their configuration is estimated by minimizing a contrast function.
It is shown, under mild assumptions, that, if the minimum contrast estimate
of θ, computed in any segment of the true configuration of change-points, is
consistent, then the change-points are consistently estimated. Moreover, the
estimated parameter vector of θn also converges to the true vector of param-
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eters θ∗. When the number of change-points is known, the convergence rate
of ‖τ̂n − τ‖ → Op(n−1) does not depend on the covariance structure of the
process, whereas the convergence of ̂θn depends on this covariance.

5 Conclusions

This review deals with a part of the literature on structural breaks tests for
financial time series. A review of the related literature on structural breaks
in measures of co-dependence of financial time series and in asset pricing
models is found in Andreou and Ghysels (2006a). In concluding, we point to
some important questions that still remain unaddressed and some interesting
issues that require further progress in this area.

Further research of tests for unknown change-points in systems of equa-
tions such as multivariate volatility models with ARCH or long memory
type effects is largely unexplored. This is especially true for endogenous
breaks tests in copulae models which form a parsimonious way of captur-
ing a multivariate process of financial returns, volatility and other forms of
non-linearities. There is some work on change-point tests in bivariate mod-
els of conditional volatility and co-dependence (e.g., Andreou and Ghysels
(2003)). Generalizing change-point tests in multivariate systems to multiple
breaks that can be detected in different equations and may affect a subset of
the variables is still a challenge. In addition, there is less research on struc-
tural break tests for continuous time stochastic volatility models when the
change-point is unknown.

Related to all structural change tests is the issue of robustness. Given
the evidence of non-linear, short and long memory, heavy-tailed, asymmetric
mechanism of financial asset returns, it is useful that the estimated change-
points in empirical studies are robust towards some of these attributes and
are not the artifact of misspecification. Some recent research supports the
view that financial stock returns exhibit weak dependence and structural
breaks as opposed to strong dependence. Recent work by Berkes et al. (2006)
sheds more light in the memory and structural breaks debate in the mean of
time series processes which would be interesting to extend to the volatility of
financial processes that exhibit second-order dependence and/or long mem-
ory. Further analysis as to the long memory versus short memory and breaks
dichotomy, especially in view of the plausible multiple change-points question
in long samples of financial returns and the long memory in volatility based
on high-frequency processes, requires further investigation.

Another direction towards this issue involves analytical asymptotic local
power results of change-point tests with varying sampling frequencies which,
for financial time series (unlike linear time series), must take into account
the different persistence and tail behavior, e.g., Andreou and Ghysels (2006).
Since the sampling frequency is often a choice variable for financial time series
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and since there is no measurement error or any high cost in sampling more
frequently, the sequential change-point tests for certain financial variables
have various advantages and can also matter for the power of the tests.

Finally, it may be worth thinking further the economic significance of struc-
tural breaks in the financial models and a mechanism other than an exogenous
determination of capturing reoccurring breaks. In most of the aforementioned
papers, structural breaks in financial processes are associated with external
events to the stochastic financial process. Recent research attempts to endo-
genize breaks by incorporating them in a Bayesian estimation and prediction
procedure that allows for such structural changes (e.g., Pesaran et al. (2006))
or allows time variation in the model parameters of volatility that is assumed
to be only locally homogeneous (e.g., Dalhaus and Rao (2006), Mercurio
and Spokoiny (2004)). The relationship and empirical performance of time
varying volatility models with multiple breaks ARCH models as well as the
former’s consequences for long memory and tail behavior are also interesting
areas of future research.
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An Introduction to Regime Switching
Time Series Models

Theis Lange and Anders Rahbek

Abstract A survey is given on regime switching in econometric time series
modelling. Numerous references to applied as well as methodological liter-
ature are presented. A distinction between observation switching (OS) and
Markov switching (MS) models is suggested, where in OS models, the switch-
ing probabilities depend on functions of lagged observations. In contrast, in
MS models the switching is a latent unobserved exogenous process. With an
emphasis on OS and MS ARCH and cointegrated models, stationarity and
ergodicity properties are discussed as well as likelihood-based estimation,
asymptotic theory and hypothesis testing.

1 Introduction

This survey considers regime switching time series models, which are mod-
els that allow parameters of the conditional mean and variance to vary ac-
cording to some finite-valued stochastic process with states or regimes st,
st ∈ S ={1, ..., r}. The regime changes reflect, or aim at capturing, changes in
the underlying financial and economic mechanism through the observed time
period. For instance, as was argued in Bec and Rahbek (2004) and the refer-
ences therein, term-structure and exchange rate data seem to exhibit epochs
of both non-stationary and also mean-adjusting behavior. Likewise, as put
forward e.g. in Lamoureux and Lastrapes (1990), Gray (1996), and recently
in Mikosch and Stărică (2004), observed high persistence in the conditional
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variance implied by single regime models for stock returns and interest rates,
might be spuriously caused by parameters varying through the sample, corre-
sponding to different, high and low say, volatility periods. Regime switching
models specifically allow for describing this kind of phenomenon.

Numerous regime switching models have been proposed. It is not possible
to treat all in detail. The aim of this survey is therefore to convey some of
the main ideas. The focus will be on econometric methodology for a few se-
lected models exhibiting regime changes in the conditional mean or variance
and their applications. Each regime switching model has its own characteris-
tics. Therefore, and to facilitate the presentation, we first propose a general
distinction between ‘Markov’ and ‘observation’ switching models. Building
upon this, in Section 2 we define switching autoregressive conditional het-
eroscedastic (ARCH), and cointegrated vector autoregressive (CVAR) mod-
els with switching long-run adjustments, and we present some of the dynamic
properties. The non-switching versions of these models are central workhorses
in time series analysis. Therefore the corresponding switching versions have
also received much current interest. Likelihood based estimation and asymp-
totic theory are commented on in Section 3, while Section 4 briefly addresses
hypothesis testing.

1.1 Markov and observation switching

In what follows, Xt is the observed process, returns or exchange rates say,
while the finite valued switching process st may be observed or unobserved,
depending on the model considered for the joint process Xt and st. In general,
a regime switching model is specified by (i) the evolution of Xt, Xt ∈ R

p,
given st and (Xn, sn)n<t, and (ii) the switching variable st given (Xn, sn)n<t.

A useful reference point for (i) are models, where the conditional distri-
bution of Xt given the regime st and (Xn, sn)n<t depends only on st and the
lagged vector Xt−1 =

(

X ′
t−1, ..., X

′
t−k

)′ for some k ≥ 1, that is

Xt = fθ (Xt−1, st, εt) for t = 1, 2, ..., T, (1)

where fθ (·) are functions indexed by a parameter θ ∈ Θ and the innovations
εt are i.i.d. with a known distribution.

To fix ideas we initially consider two key examples. We commence with
regime changing in a univariate (p = 1) autoregressive (AR) model of order
k = 1 given by

fθ (Xt−1, st, εt) = ρstXt−1 + σεt, (2)

where εt is an i.i.d. mean zero and unit variance, denoted i.i.d.(0,1), sequence,
and the parameters ρi, i ∈ S, and σ > 0 are scalars. Equation (2) implies
that Xt has autoregressive parameter ρi if st = i. By setting for example
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ρ1 = 1 and |ρi| < 1 for the remaining regimes, this allows in particular for
Xt to change between random walk and mean-reversion type behavior.

Second, the autoregressive conditional heteroscedastic (ARCH) model of
order one with regime changing is given by

fθ (Xt−1, st, εt) = h
1/2
t εt, ht = ωst + αstX

2
t−1, (3)

with scalar parameters αi ≥ 0 and ωi > 0. In this case Xt given st = i and
Xt−1 has conditional variance ωi + αiX

2
t−1, and therefore this model allows

for Xt to change between high and low volatility regimes as measured by the
values of the ARCH parameters.

Next we turn to (ii), the specification of the switching variable st. The
conditional distribution of st is characterized in terms of a parameter λ,
λ ∈ Λ, where in many of the models θ and λ vary in a product set implying
that estimation simplifies, see later. It is useful to distinguish between two
kinds of switching. One is the Markov switching (MS) type, as introduced in
Hamilton (1989, 1990), where st is an unobserved stationary ergodic Markov
chain on S with transition probabilities,

pij = P (st = j | st−1 = i) , i, j ∈ S. (4)

In this case, λ is chosen as the transition matrix (pij)i,j∈S
, where by definition

∑

j∈S
pij = 1 for each i ∈ S.

It will be assumed that εt in (1) and st are conditionally independent, that
is

P (st = j, εt ∈ A | st−1 = i, st−2, ..., s0, Xt−1, ...X1,X0)
= P (st = j | st−1 = i)P (εt ∈ A) (5)
= pijP (εt ∈ A)

for Borel sets A ⊆ R
p and j ∈ S. Thus in MS models, the switching variable st

is exogenous in the sense that there is no feedback from the observed process
(Xt) to the switching variable.

In line with the concept of observation driven time series introduced in
Cox (1981), the second class considered here will be referred to as observation
switching (OS) models. In contrast to MS models, the switching probabilities
in OS models are allowed to depend on lagged observed variables, while not
on the lagged switching variable. Thus in OS models the switching variable
st is endogenous in the sense that there is indeed feedback from the observed
process (Xt) to the switching variable. The joint dynamics of st and εt for
OS models are characterized by,

P (st = j, εt ∈ A | st−1, ..., s0, Xt−1, ...X1,X0) (6)
= P (st = j | Xt−1)P (εt ∈ A) ,
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for Borel sets A ⊆ R
p and j ∈ S. Here the distribution of st conditional on

Xt−1 is given by the probabilities,

qtj ≡ P (st = j | Xt−1) , (7)

for j ∈ S, with
∑

j∈S
qtj = 1 and qtj are parameterized in terms of the

parameter λ. An example of OS with r = 2 regimes (see also Wong and
Li (2001), Lanne and Saikkonen (2003), Bec et al. (2005), Bec and Rahbek
(2004)), is the one with a logistic specification where

log
(

qt1
1 − qt1

)

= γ1 + γ2‖Xt−1‖, (8)

with λ = (γ1, γ2) ∈ R
2 and qt2 = 1 − qt1. In this case, the probability that

st = 1 is increasing in the norm ‖Xt−1‖ provided γ2 > 0, and hence large
values of ‖Xt−1‖ imply a large probability for being in regime 1. Discontinuous
self-exciting threshold (TR) models of Tong (1990) are also included, where
λ = γ and,

qt1 = 1 − qt2 = 1 (‖Xt−1‖ ≥ γ) . (9)

Then for large ‖Xt−1‖, st = 1 with probability one. See also Balke and Fomby
(1997) for other versions of TR models.

An important difference between MS and OS is in terms of interpretation.
In OS models Xt feeds back into the regime. Thus, in contrast to MS models,
OS models may provide an interpretation of the switching mechanism in
terms of lagged observed variables. Which is deemed most adequate depends
on the economic theory or question underlying the econometric analysis of
the variables Xt.

Note that it has also been suggested to consider regime switching models,
where the transition probabilities may depend on both Xt−1 and st−1, but
these are not discussed here, see e.g. Diebold et al. (1994), Filardo and Gor-
don (1998), Filardo (1994). Note furthermore that OS models may be viewed
as generalized mixture models interpreting qtj as mixture probabilities de-
pending on lagged endogenous variables, see e.g. Wong and Li (2000), Bec
et al. (2005). Hence OS models relate also to classical pure mixture models
where qtj in (7) does not depend on Xt−1.

2 Switching ARCH and CVAR

In this section we first present the class of switching ARCH models, to-
gether with a brief discussion of switching GARCH models. Secondly, coin-
tegrated vector autoregressive (CVAR) models with switching adjustments
are considered. The focus is on formulation of the models, and of their sta-
bility properties in terms of geometric ergodicity, stationarity and existence
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of moments which have been addressed in the literature. Stability properties
provide insight both to the expected dynamic behavior of the processes, as
well as necessary background for the asymptotic likelihood based inference
addressed later.

2.1 Switching ARCH and GARCH

One of the classical conditional variance models in financial time series analy-
sis is the GARCH model, cf. Bollerslev (1986). Fitted GARCH models often
lead to the conclusion of high persistence GARCH, or integrated GARCH
(IGARCH), implying that the process is not covariance stationary and mul-
tiperiod forecasts of volatility will trend upwards. Also, by definition, the
GARCH model has symmetric responses to positive and negative shocks. To
address such issues, MS ARCH and GARCH type models have been sug-
gested, see e.g. Cai (1994), Dueker (1997), Gray (1996), Hamilton and Lin
(1996), Hamilton and Susmel (1994), Susmel (2000), Francq et al. (2001) and,
recently, Haas et al. (2004), Li and Lin (2004), Klaassen (2001). OS ARCH
models have been proposed inter alia in Fornari and Mele (1997), Glosten et
al. (1993), Li and Lam (1995), Zakoïan (1994), Lanne and Saikkonen (2003),
see also Franses and van Dijk (2000) for numerous references.

Note that for simplicity of presentation, the conditional mean part of the
observed Xt process is set to zero. As often seen in applications, switching
ARCH models are extended to include a constant or autoregressive condi-
tional mean μt, by replacing Xt by Xt − μt.

2.1.1 Models

Extending the ARCH of order one in (3), a general formulation of univariate
(p = 1) regime changing ARCH(k) models is given by,

Xt = fθ (Xt−1, st, εt) = h
1/2
t εt for t = 1, 2, ..., T, (10)

ht = ωst +
k

∑

i=1

αistX
2
t−i , (11)

where εt is i.i.d.(0,1) distributed according to some law, typically Gaussian
or t−distributed. The ARCH parameters are θ = (ω1, ..., ωk, α11, ..., αkr)′ ∈
Θ = {ωi > 0, αij ≥ 0, i = 1, ..., k, j = 1, ..., r}. The initial values
X0 = (X0, X−1, ..., X−k+1)

′ are assumed to be fixed in the statistical analysis
for OS ARCH models, and in addition s0 is fixed for MS ARCH models.
Alternatively, s0 can be treated as an additional parameter, or since st in MS
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models is assumed to be a stationary ergodic Markov chain, s0 can be given
the stationary initial distribution.

By definition, the switching mechanism in MS ARCH models is given by
the Markov transition probabilities pij in (4). TR ARCH models use qtj in
(7), often formulated in terms of the sign of lagged Xt. With r = 2 states
this can be exemplified by,

αist = 1(st = 1)αi1 + 1(st = 2)αi2, qt1 = 1(Xt−1 > 0) = 1 − qt2, (12)

see e.g. Glosten et al. (1993). Thus, negative and positive Xt−1, measuring
(shocks to) returns, have a different impact on the volatility. For a more
general formulation let the sets, or regions,Aj , j ∈ S, be a disjoint partition of
R
k (k matching the dimension of Xt−1) where the partition is parameterized

by λ. Then TR specifications as in Gourieroux and Monfort (1992), Cline
and Pu (2004) are captured by the general formulation,

qtj = 1(Xt−1 ∈ Aj) . (13)

For example, in (12), A1 = {X =(X1, ..., Xk) ∈ R
k | X1 > 0} = Ac

2, and
λ = 0 is known. Replacing the indicator function in (13) by logistic functions
or cumulative distribution functions leads to the generalized mixture ARCH
class of models Lanne and Saikkonen (2003), see also Alexander and Lazar
(2006), Wong and Li (2001), Hass et al. (2004) for mixture ARCH. A simple
example is given if one replaces qt1 in (12) by logistic functions as in (8).

Following Gray (1996), Dueker (1997), Klaassen (2001), the most straight-
forward way to generalize (10) to GARCH, is by defining,

ht = ωst +
k

∑

i=1

(αistX
2
t−i + βistht−i). (14)

However, as pointed out by the quoted authors this formulation leads to a
likelihood function with an exponentially (in T ) growing number of terms,
due to path dependence. To circumvent the problem of an intractable likeli-
hood function Haas et al. (2004) and Lanne and Saikkonen (2003) suggest a
specification of the form,

ht = hst,t, hst,t = ωst +
k

∑

i=1

(αistX
2
t−i + βisthst,t−i).

such that for each state j ∈ S, hj,t evolves as a GARCH process. This way
the likelihood function is indeed tractable. And conditioning on the initial
values (h1,0, ..., hr,0), or treating these as parameters to be estimated, this
formulation is captured by the formulation in (1).



An Introduction to Regime Switching Time Series Models 877

2.1.2 Properties of switching ARCH processes

For MS ARCH processes conditions for stationarity, existence of moments,
autocorrelation functions, and ergodicity have been studied in Francq et al.
(2001), Francq and Zakoïan (2005) under the assumption of independence
of st and the i.i.d.(0,1) εt sequences. For example in the GARCH(1,1) case
of (14) with r = 2 regimes, a sufficient condition for stationarity and finite
second order moments of Xt can be stated in terms of the spectral radius
ρ (·) , of a certain matrix:

ρ

(

p11 (α11 + β11) p21 (α11 + β11)
p12 (α12 + β12) p22 (α12 + β12)

)

< 1. (15)

This generalizes the well-known condition for classical GARCH, α11+β11 < 1,
and allows for one of the regimes to violate this condition, such that α12 +
β12 ≥ 1 say. Thus, switching between persistent IGARCH, even explosive, and
non-persistent volatility regimes is not excluded. The results for OS ARCH
type processes are very much dependent on the exact type of specification
of st. Note however that by definition of OS processes, and unlike MS, Xt =
(Xt, ..., Xt−k+1)

′ is a Markov chain. Moreover, the so-called drift criterion
(see e.g. Tjøstheim (1990)) can in general be used to establish conditions for
geometric ergodicity, and hence for stationarity as well as existence of finite
moments of Xt. This is used in e.g. Liu et al. (1997), Carrasco and Chen
(2002), Cline and Pu (2004) for OS (G)ARCH type processes. Specifically,
from Cline and Pu (2004), it follows that for the TR ARCH process in (12),
geometric ergodicity and second order moments are implied by,

1
2 (α2

11 + · · · + α2
k1 + α2

12 + · · · + α2
k2) < 1,

again allowing for switching between persistent and non-persistent volatility
regimes. Finally, similar conditions for second-order stationarity of pure mix-
ture (G)ARCH processes can be found in Haas et al. (2004), Wong and Li
(2001).

2.2 Switching CVAR

In the much applied cointegrated VAR (CVAR) models (see e.g. Johansen
(2008)) the p-dimensional series Xt adjusts linearly to disequilibria as mea-
sured by cointegrated relations. The cointegrated relations are stationary lin-
ear combinations of the non-stationary, or integrated, seriesXt. As mentioned
in the introduction, term-structure and exchange rate data exhibit epochs of
both seemingly non-stationary and mean-adjusting behavior, which in terms
of the CVAR models correspond to periods with, and periods without, ad-
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justments to disequilibria, which therefore cannot be modelled by classic
CVAR models. OS cointegrated models in which the adjustment coefficients
may switch depending on the cointegrating relations have been applied in
Aslanidis and Kouretas (2005), Balke and Fomby (1997), Baum and Kara-
sulu (1998), Bec and Rahbek (2004), Clements and Galvão (2004), Gouveia
and Rodrigues (2004), Hansen and Seo (2002), Lo and Zivot (2001), Martens
et al. (1998), Tsay (1998) among others, see Dufrenot and Mignon (2002) for
more references. Such models are often motivated by transaction costs, or
policy intervention arguments. MS CVAR models which extend the MS AR
models of Hamilton (1989), Hamilton (1994) are motivated by stochastically
changing economic regimes as in Akram and Nymoen (2006), Krolzig et al.
(2002), Chow (1998), see also Guidolin and Timmermann (2005) for an MS
VAR portfolio application.

2.2.1 Models

We consider now switching adjustments coefficients in the CVAR model with
one cointegrated relation. The model is given by,

ΔXt = αstβ
′Xt−1 +

k−1
∑

i=1

ΓiΔXt−i +Ω1/2εt, (16)

where the innovations εt are p-dimensional i.i.d. standard normals. In (16)
the increments ΔXt = Xt −Xt−1 adjust to the cointegrated relation β′Xt−1

through the p-dimensional adjustment coefficients αj , j ∈ S. The parame-
ters are β which is a p-dimensional vector and Γi and Ω which are (p × p)-
dimensional matrices with Ω positive definite.

Based on Balke and Fomby (1997) and the economic theory of Dumas
(1992), Bec and Rahbek (2004) analyzes term structure data using models
such as (16), with qtj in (7) a function of the magnitude of β′Xt−1, measuring
the spread between interest rates. In case of r = 2 regimes this is exemplified
by replacing Xt−1 by β′Xt−1 in the logistic and TR specifications in (8) and
(9). Hence adjustment through α1 is likely to take place if ||β′Xt−1|| is large.
The adjustments occurring through α2 reflect the role of transaction costs
and as a limiting case, α2 = 0, and no adjustment takes place if say, the
spread β′Xt−1 is negligible. In contrast to the latter model, Hansen and Seo
(2002) consider a two regime TR specification, and the qtj in (9) replaced by

qt1 = 1 (β′Xt−1 > γ) = 1 − qt2. (17)

Note that since β enters both (16) and the mentioned OS specifications, it is
in general only if β is considered known that the parameters θ and λ vary in
a product set.
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In Akram and Nymoen (2006), Giese (2006) MS CVAR as in (16) is con-
sidered, while in line with Hamilton (1989), Krolzig (1997), the MS model
applied in Krolzig et al. (2002) uses level switching rather than switching in
the adjustment coefficients.

2.2.2 Properties of switching CVAR processes

It is fundamental for the interpretation of equation (16) that β′Xt and ΔXt

are processes which are ‘stable’, while Xt is not. In the linear case of no
switching this distinction is clear-cut as Xt can be shown to be integrated of
order one, I(1), while β′Xt and ΔXt are I(0) processes which have station-
ary representations. In Bec and Rahbek (2004), Saikkonen (2005), Saikkonen
(2008) it is used that Xt is a Markov chain in OS cointegrated VAR mod-
els to explore geometric ergodicity, and the implied stationarity, as replacing
I(0). Specifically, with r = 2 regimes and with qt1 increasing to 1 as ||β′Xt||
increases, it is found that if the VAR coefficients of (16) satisfy the well-
known cointegration restrictions for regime one only, then β′Xt and ΔXt are
stationary. Moreover, they show that Xt appropriately normalized satisfies a
functional central limit theorem, and is in this sense non-stationary. What is
important here is that there are no restrictions on α2, such that indeed α2

may be zero and hence accommodating for transaction costs as desired. For
more general versions, including the TR case as in (17), Saikkonen (2008)
finds that the general concept of joint spectral radius involving coefficients
for all regimes is needed to state sufficient conditions for geometric ergodicity.

In MS CVAR models, Xt is not a Markov chain while (Xt, st) is. This
is used for studies of geometric ergodicity in general MS VAR models in
Lee (2005), Yao (2000) which may be used for the CVAR case, see also
Ulloa (2006). Results for stationarity, ergodicity and existence of moments
for MS (V)AR models can be found in Francq and Zakoïan (2001), Francq
and Roussignol (1998), Yang (2000), Yao (2001).

3 Likelihood–Based Estimation

Next consider likelihood-based estimation of the parameters in switching
models given by (1) and either (6) or (5), that is OS or MS specifications.
Denote by gθ(Xt|st = j,Xt−1) the conditional density of Xt given st = j and
Xt−1, indexed by the parameter vector θ.

Turn first to OS models, where qtj = P (st = j|Xt−1), j ∈ S, with qtj
parametrized by λ. Then, conditionally on X0, the likelihood function for the
OS models can be written as,
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L(X1, ..., XT ; θ, λ|X0) =
T
∏

t=1

⎧

⎨

⎩

r
∑

j=1

gθ(Xt|st = j,Xt−1) qtj

⎫

⎬

⎭

. (18)

In TR models, the regime process st is observable, the qtj are indicator func-
tions, and with θ and λ varying freely, maximization of the log-likelihood
function in (18) is typically solved by letting λ vary over a grid, and maxi-
mizing over θ for each value of λ. See Hansen (2000), Tong (1990) for autore-
gressions and Liu et al. (1997), Tsay (1998), where ARCH is included. See
also Hansen and Seo (2002) for the TR CVAR case, where λ and θ do not
vary freely.

For general OS models one may iteratively update the likelihood function
by the EM algorithm (see Ruud (1997) for an introduction) and thereby
obtain the estimators ̂θ and ̂λ. To maximize the log-likelihood function in
(18) introduce X = (X1, ..., XT ) and S = (s1, ..., sT ), and consider the full
log-likelihood function for all observations X and S, treating the latter as
observed, and with X0 fixed,

logL (X ,S|X0) =
T
∑

t=1

r
∑

j=1

{log gθ (Xt|st = j,Xt−1) + log qtj}1(st = j) .

Then, corresponding to the E-step of the algorithm,

E[logL (X ,S|X0) |X ] (19)

=
T
∑

t=1

r
∑

j=1

πjt log gθ (Xt|st = j,Xt−1) +
T
∑

t=1

r
∑

j=1

πjt log qtj ,

where πjt = E (1 (st = j) |X ) are the ‘smoothed probabilities’ given by,

πjt = P (st = j|X ) = P (st = j|Xt,Xt−1)

=
qtjgθ (Xt|Xt−1, st = j)

∑r
i=1 qtigθ (Xt|Xt−1, st = i)

.

The nth step of the iterative optimization is given by fixing πjt at (θ, λ) =
(̂θ(n−1), ̂λ(n−1)), and then, if θ and λ vary freely, maximizing each term in
(19) separately over θ and λ to obtain ̂θ(n) and ̂λ(n), respectively. See Bec
et al. (2005), Wong and Li (2000) and Wong and Li (2001) for application
of the EM algorithm to (generalized) mixture autoregressions and Bec and
Rahbek (2004) for CVAR.

For MS models it is straightforward to write down the likelihood func-
tion in terms of gθ (Xt|st = j,Xt−1) and the switching probabilities pij =
P (st = j|st−1 = i) similar to (18), see also Yang (2001). However, due to com-
putational length and complexity, predominantly iterative algorithms such as
the EM algorithm are used to optimize the likelihood function. Similar to the
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OS case, the full likelihood, fixing X0 and s0, is given by,

logL (X ,S|X0, s0)

=
T
∑

t=1

r
∑

i,j=1

{log gθ (Xt|st = j,Xt−1) + log pij}1 (st = j, st−1 = i) .

The expectation of the above given X is identical to (19), however with the
crucial difference that the smoothed probabilities are replaced by

πij,t = P (st = j, st−1 = i|X ) .

No simple closed form solution exist for πij,t. Instead these have to be com-
puted for example by the so-called forward and backward recursions, see
Hamilton (1990), Holst et al. (1994), and more generally McLachlan and
Peel (2000), for details. See also Hamilton (1989), Hamilton (1994), Hamil-
ton and Raj (2002), Kim (2004), Krolzig (1997) for further discussions on
optimization algorithms in MS models.

As to asymptotic theory for maximum likelihood estimators the literature
is not complete yet, but some results can be emphasized. For TR models,
in general the discontinuities implied by the threshold lead to non-standard
limiting distributions of ̂λ, see Chan (1993), Hansen (1997), Hansen (2000).
On the other hand, ̂θ is in general asymptotically Gaussian distributed, see
Liu et al. (1997), Tsay (1998) for TR autoregressive and ARCH models. See
also Gourieroux and Monfort (1992), Kristensen and Rahbek (2005) for re-
sults in some special cases of TR ARCH models. For OS CVAR models the
asymptotic distributions of the cointegration vector β and error-correction
parameters is given in Kristensen and Rahbek (2007), see also Bec and Rah-
bek (2004) for known β. Note that some recent results for smoothed non-
maximum likelihood estimation of β in a TR CVAR model can be found in
Seo (2006), see also Jong (2002).

For MS models Francq et al. (2001) show consistency of MS ARCH pa-
rameters, while Krishnamurthy and Rydén (1998) consider MS AR. Under
general regularity conditions, a complete asymptotic distribution theory for
MS models of the form in (1) has recently been given by Douc et al. (2004),
see also Fuh (2004).

4 Hypothesis Testing

Testing for the number r of regimes, or states, which st switches between
is of main concern in switching models. This includes in particular tests of
whether switching is suitable at all, that is r = 1. In terms of the emphasized
examples this would correspond to the classic ARCH and linear CVAR models
rather than their switching counterparts. In general, the hypothesis, H0, of
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interest is formulated as a parametric restriction on θ in (1), which implies
that λ (which parametrize the switching probabilities for st, cf. (4) and (7)
respectively for MS and OS) is unidentified.

As an example, consider the case of the AR(1) model in (2) for Xt,
with r = 2 regimes such that θ = (ρ1, ρ2, σ) . The hypothesis of a single
regime, or linearity, may then be represented as H0 : ρ1 = ρ2, under which
λ = (pij)i,j=1,2 ∈ Λ is unidentified in the case of MS, while λ = γ ∈ Λ is
unidentified in the case of TR specifications as in (9) or (17).

It should be emphasized that the lack of identification of λ under H0 does
not mean that the likelihood ratio test statistic (LR) for the hypothesis H0

cannot be computed. Specifically, the likelihood function can be maximized
as discussed in Section 3 under the alternative, while maximization under H0

is standard as in the above AR(1) case where estimation reduces to ordinary
regression. However, as discussed in inter alia Andrews (1993), Davies (1977),
Davies (1987), Hansen (1992), Hansen (1996), standard asymptotic theory
often does not apply to the LR when λ is unidentified under the null H0. In
fact, even in the simple classic case of Gaussian mixture models, where the
asymptotic distribution of the LR ‘has long been a mystery’ (p. 62 Liu and
Shao (2004)), the same authors find that the LR diverges to infinity at the
rate of log (logT ) , see also Corollary 1 in Andrews (1993).

Much interest has therefore been devoted to the widely applied so-called
‘sup’ class of tests which, under regularity conditions, indeed have limiting
distributions for which asymptotic p-values and critical values can be ob-
tained by simulations, see e.g. Hansen (1996) for a discussion of bootstrap
related techniques. In terms of the AR(1) example above, denote by LR(λ)
the likelihood ratio test for H0 for a fixed λ. Then the ‘sup’ version of the
LR is given by

sup
λ∈ ˜Λ

LR(λ),

where ˜Λ is a suitably chosen compact subset of Λ. The limiting distribution
of the supLR statistic is given in terms of Gaussian processes in Chan (1990),
Chan and Tong (1990) for the TR case, while for the MS case it is discussed
in Garcia (1998), see also Carrasco (2002) for a joint discussion. For practical
purposes, then as in Hansen (1996), ˜Λ is chosen for the TR case such that e.g.
5% of the observations of Xt lie in each regime, which in particular implies
that P (st = 1) = 1 − P (st = 2) is strictly bounded away from 0 and 1. For
the MS case ˜Λ is likewise chosen such that P (st = 1) = p21/ (1 − p11 + p21)
is strictly bounded away from 0 and 1, see Carrasco (2002), Garcia (1998).
Note that ‘sup’ versions of Lagrange multiplier (LM) and Wald type tests are
also widely applied, see Altissimo and Corradi (2002).

In the mentioned references an underlying assumption is that under H0

the analyzed process is stationary. For the non-stationary case, Hansen and
Seo (2002) studies the supLM test for the null of linear cointegration. These
results extend testing the null of a univariate integrated non-stationary pro-
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cess, see e.g. Bec et al. (2004), Caner and Hansen (2001), Enders and Granger
(1998).

For another strand of literature, largely based on information criteria,
addressing the selection of the number of regimes, see inter alia Francq et
al. (2001), Hass et al. (2004) for switching ARCH models, Psadarakis and
Spagnolo (2003), Wong and Li (2001) for MS and mixture AR models, re-
spectively, see also Gonzalo and Pitarakis (2002) for a different approach to
determination of regimes in TR VAR models.

5 Conclusion

From the presented results and references on regime switching models, one
may conclude that, while the models receive much interest in applications, a
sufficiently complete theory for these models is still missing. An issue which
has not been addressed in this survey is the use of the models for forecasting.
For an introduction, see inter alia Franses and van Dijk (2000) and the refer-
ences therein, and Amendola and Niglio (2004), Davidson (2004), Clements
and Krolzig (1998) for recent discussions of forecasting in TR and MS models.
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Model Selection

Hannes Leeb and Benedikt M. Pötscher

Abstract We provide an overview of the vast and rapidly growing area of
model selection in statistics and econometrics.

1 The Model Selection Problem

Model selection has become a ubiquitous statistical activity in the last few
decades, none the least owing to the computational ease with which many
statistical models can be fitted to data with the help of modern computing
equipment. In this article we provide an introduction to the statistical aspects
and implications of model selection and we review the relevant literature.

1.1 A general formulation

When modeling data Y , a researcher often has available a menu of competing
candidate models which could be used to describe the data. Let M denote
the collection of these candidate models. Each model M , i.e., each element
of M, can—from a mathematical point of view—be viewed as a collection of
probability distributions for Y implied by the model. That is, M is given by

M = {Pη : η ∈ H} ,
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where Pη denotes a probability distribution for Y and H represents the “pa-
rameter” space (which can be different across different models M). The pa-
rameter space H need not be finite-dimensional. Often, the “parameter” η
will be partitioned into (η1, η2), where η1 is a finite-dimensional parameter,
whereas η2 is infinite-dimensional. In the case where the parameterization is
identified, i.e., the map η → Pη is injective on H , we will often not distinguish
between M and H and will use them synonymously.

The model selection problem is now to select—on the basis of the data Y—
a model ̂M = ̂M(Y ) in M such that ̂M is a “good” model for the data Y . Of
course, the sense in which the selected model should be a “good” model needs
to be made precise and is a crucial point in the analysis. This is particularly
important if—as is usually the case—selecting the model ̂M is not the final
purpose of the analysis, but ̂M is used as a basis for the construction of
parameter estimators, predictors, or other inference procedures.

Typically, with each model M we will have associated an estimator η̂(M)
such as the maximum likelihood estimator or the least squares estimator,
etc. It is important to note that when model selection precedes parameter
estimation, the estimator finally reported is η̃ = η̂(̂M) (and not one of the
estimators η̂(M)). We call η̃ a post-model-selection estimator (PMSE). It is
instructive to note that η̃ can be written as

η̃ =
∑

M∈M
η̂(M)1(̂M = M),

which clearly shows the compound nature of the PMSE. Note that the above
sum is well defined even if the spaces H for different M bear no relationship
to each other.

We note that in the framework just described it may or may not be the
case that one of the candidate models M in M is a correct model (in the
sense that the actual distribution of the data coincides with a distribution
Pη in M). A few examples illustrating the above notation are in order.

Example 1 (selection of regressors)
Suppose Y is an n× 1 vector generated through

Y = Xθ + u, (1)

where X is an n×K matrix of nonstochastic regressors with full column-rank
and u is a disturbance term whose distribution F does not depend on θ and
varies in a set F of distributions (e.g., F could be the set of all N(0, σ2In)
distributions). Suppose the researcher suspects that some regressors (i.e.,
columns of X) are superfluous for explaining Y (in the sense that the true
values of the coefficients of these regressors are zero), but does not know which
of the regressors are superfluous. Then the appropriate candidate models are
all submodels of (1) given by zero restrictions on the parameter vector θ.
More formally, let r ∈ {0, 1}K, i.e., r is a K × 1 vector of zeros and ones.
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Then each r ∈ {0, 1}K defines a submodel

Mr =
{

(θ, F ) ∈ R
K × F : θi = 0 if ri = 0

}

,

the full model Mfull corresponding to r = (1, . . . , 1). The set of all candidate
models is given by

Mall =
{

Mr : r ∈ {0, 1}K
}

.

The set-up just described could be termed “all-subset selection.” If—on a
priori grounds—one wants to protect some of the variables, say, the first k
ones, from being eliminated by the model selection procedure, one would then
of course consider as candidate models only those in the set

Mprotected =
{

Mr : r ∈ {0, 1}K, ri = 1 for i = 1, . . . , k
}

.

Another case arises if there is an a priori given ordering of the regressors re-
flecting their perceived “importance” in explaining Y . For example, in polyno-
mial regression one would usually include a certain power of the explanatory
variable only if all lower-order terms are also included. If we assume, without
loss of generality, that the ordering of the columns of the matrix X reflects
the a priori given ordering, then this amounts to considering

Mnested = {M(p) : 0 ≤ p ≤ K}

as the set of candidate models, where

M(p) =
{

(θ, F ) ∈ R
K × F : θi = 0 for i > p

}

.

Note that in this case the models M(p) are nested in the sense that M(p) ⊆
M(p+ 1) holds. Yet another variant is the set of candidate models

Mnested,protected = {M(p) : k ≤ p ≤ K}

which obviously protects the first k variables in the context of nested model
selection. If M is now a submodel of (1), one would typically estimate the
parameters of model M by the (restricted) least squares estimator ̂θ(M)
associated with M . Given a model selection procedure ̂M selecting from a
set M of candidate models, the associated PMSE is then given by

˜θ =
∑

M∈M

̂θ(M)1(̂M = M). (2)

For an extension of this example to the case of infinitely many regressors see
Section 3.

Example 2 (linear restrictions)
Suppose the overall model is again given by model (1) but the submodels are
now defined by general linear restrictions of the form Rθ = r.



892 H. Leeb and B. M. Pötscher

Example 3 (time series models)
Suppose the data Y = (y1, . . . , yn)′ follow an autoregressive model

yt = θ1yt−1 + . . .+ θP yt−P + ut

for t ≥ 1 and initial values y0, . . . , y1−P . Typical assumptions on the er-
rors ut are that they are independent and identically distributed accord-
ing to a distribution with mean zero, or that the errors form a martin-
gale difference sequence, etc. Of interest here are those submodels where
θp+1 = θp+2 = . . . = θP = 0, in which case the model selection problem
is the problem of selecting the order of the autoregressive process. [Simi-
larly, the order selection problem for other classes of time series models such
as, e.g., autoregressive moving average models or generalized autoregressive
conditional heteroscedasticity (GARCH) models obviously also fits into the
framework outlined above.] In this example we have assumed that yt is gener-
ated by a finite-order autoregressive model. Often finite-order autoregressive
models are fitted to a time series, e.g., for the purpose of prediction, even if
the time series is not a finite-order autoregression. In this case the order of
the approximating autoregressive model has to be determined from the data,
leading again to a model selection problem that falls under the umbrella of
the general framework formulated above.

Example 4 (general parametric models)
Starting from an overall parametric model {Pη : η ∈ H}, submodels Mg are
defined by restrictions g(η) = 0, i.e., Mg = {Pη : η ∈ H, g(η) = 0}, for
g belonging to a given class G of restrictions. The set M is then given by
M = {Mg : g ∈ G}. Note that models corresponding to different restrictions
g will in general not be nested in each other, although they are nested in the
overall model.

1.2 Model selection procedures

1.2.1 Procedures based on tests

Consider for simplicity first the case of only two competing candidate models
Mi, i = 1, 2, where one is nested in the other, e.g., M1 ⊆ M2. Furthermore,
assume that at least the larger model M2 is correct, i.e., that the true prob-
ability distribution of Y belongs to M2. Then a decision between the models
M1 and M2 can be based on a test of the hypothesis H0 that the true proba-
bility distribution belongs to M1 versus the alternative H1 that it belongs to
M2\M1. More formally, let R be a rejection region of a test for the hypothesis
H0. Then the selected model ̂M is given by
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̂M =

{

M1 if Y /∈ R

M2 if Y ∈ R
.

For example, if M2 corresponds to the linear model (1) with independent
identically N(0, σ2) distributed errors and M1 is given by a linear restriction
Rθ = r, then the rejection region R could be chosen as the rejection region
of a classical F test of this linear restriction.

In the case of more than two candidate models which are nested, i.e.,
M1 ⊆ M2 ⊆ . . . ⊆ Ms holds, model selection can be based on a sequence of
tests. For example, one can start by testing Ms−1 against Ms. If this test re-
sults in rejection, one sets ̂M = Ms. Otherwise, a test of Ms−2 against Ms−1

is performed. If this second test results in rejection, one sets ̂M = Ms−1.
If this second test does not result in rejection, one proceeds with testing
Ms−3 against Ms−2 and so on, until a test results in rejection or one has
reached the smallest model M1. Such a procedure is often called a “general-
to-specific” procedure. Of course, one could also start from the smallest model
and conduct a “specific-to-general” testing procedure. If the set M of can-
didate models is not ordered by the inclusion relation (“nonnested case”),
testing procedures can still be used to select a model ̂M from M, although
then more thought has to be given to the order in which to conduct the tests
between competing models. The familiar stepwise regression procedures (see,
e.g., Chapter 6 in Draper and Smith (1981) or Hocking (1976)) are a case
in point. Model selection procedures based on hypothesis tests have been
considered, e.g., in Anderson (1962, 1963), McKay (1977), Pötscher (1983,
1985), Bauer et al. (1988), Hosoya (1984, 1986), and Vuong (1989); for a
more recent contribution see Bunea et al. (2006). Also the related literature
on pretest estimators as summarized in Bancroft and Han (1977), Judge and
Bock (1978), and Giles and Giles (1993) fits in here.

Returning to the case of two nested models M1 and M2, we note that the
model selection procedures sketched above are based on testing whether the
true distribution of Y belongs to model M1 or not. However, if the goal is
not so much selection of the “true” model but is selection of a model that
results in estimators with small mean squared error, it may be argued that
the appropriate hypothesis to test is not the hypothesis that the distribution
of Y belongs to M1, but rather is the hypothesis that the mean squared error
of the estimator based on M1 is smaller than the mean squared error of the
estimator based on M2. Note that this is not the same as the hypothesis that
the distribution of Y belongs to M1. This observation seems to have first been
made by Toro-Vizcarrondo and Wallace (1968); see also Wallace (1972). In
the context where M2 is a normal linear regression model and M1 is given by
a linear restriction Rθ = r, they showed that the mean squared error matrix
of the restricted least squares estimator is less than or equal to the mean
squared error matrix of the unrestricted least squares estimator whenever
σ−2θ′R′[R(X ′X)−1R′]−1Rθ ≤ 1 holds. Hence, they propose selecting model
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M1 whenever a test for the hypothesis σ−2θ′R′[R(X ′X)−1R′]−1Rθ ≤ 1 does
not result in rejection, and selecting M2 otherwise. It turns out that the
appropriate test statistic is again the F statistic, but with a critical value
that is chosen from a noncentral F distribution.

It is important to point out that the PMSE (aka “pretest” estimator) for
θ resulting from first selecting model ̂M by some of the testing procedures
described above and then estimating the parameters in model ̂M by least
squares is neither the restricted nor the unrestricted least squares estimator,
but a random convex combination of both; cf. (2). In particular, while it is
true that the mean squared error of the restricted least squares estimator
(corresponding to M1) is smaller than the mean squared error of the unre-
stricted least squares estimator (corresponding to M2) whenever model M1 is
true (and more generally, as long as σ−2θ′R′[R(X ′X)−1R′]−1Rθ ≤ 1 holds),
the PMSE need not (and will not) have a mean squared error equal to the
better of the mean squared errors of the restricted and unrestricted estima-
tors, but will be larger. Hence, if keeping the mean squared error of the PMSE
small is the ultimate goal, one should set the significance level for the test
underlying the model selection procedure such that the overshoot over the
better of the mean squared errors of the restricted and unrestricted estima-
tors does not exceed a prescribed “tolerance level.” This has been investigated
by Kennedy and Bancroft (1971), Sawa and Hiromatsu (1973), Brook (1976),
Toyoda and Wallace (1976), Droge (1993), and Droge and Georg (1995); see
also Section 10 in Amemiya (1980).

1.2.2 Procedures based on model selection criteria

If the ultimate goal of model selection is to find a model that gives rise
to parameter estimators or predictors with small mean squared error (or
some other risk measure) it seems to be natural to approach the model se-
lection problem in a way that is geared towards this aim. The approach of
Toro-Vizcarrondo and Wallace (1968) mentioned above combines the testing
approach with such a risk-oriented approach. Alternatively, one can try to
estimate the model associated with the smallest risk. [Whether or not the
ensuing PMSE then actually has small risk is another matter; see the discus-
sion further below.] To fix ideas consider the standard linear regression model
(1) with errors that have mean zero and variance-covariance matrix σ2In. For
any model M ∈ Mall let ̂θ(M) denote the (restricted) least squares estimator
computed under the zero-restrictions defining M . The mean squared error of
X̂θ(M) is then given by

MSEn,θ(M) = En,θ

∥

∥

∥X̂θ(M) −Xθ
∥

∥

∥

2

= En,θ ‖PMY −Xθ‖2

= σ2tr(PM ) + θ′X ′(I − PM )Xθ
= σ2kM + θ′X ′(I − PM )Xθ, (3)
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where ‖·‖ denotes the Euclidean norm, PM denotes projection on the column
space spanned by the regressors active in M , and kM denotes the number of
these regressors. Ideally, we would like to use that model M that minimizes
the risk (3), i.e., the model that has mean squared error equal to

min
M∈M

MSEn,θ(M), (4)

where M is the set of candidate models specified by the researcher. The
expression in (4) is sometimes called the “risk target” and it depends on the
unknown parameters θ and σ2 as well as on the set of candidate models M
(and on X). However, since (3) (and (4)) are unobservable, it is not feasible
to use the risk-minimizing model. An obvious idea is then to estimate (3) for
every M ∈ M and to find the model that minimizes this estimator of the
risk (sometimes called the “empirical risk”). An unbiased estimator for (3) is
easily found as follows. Let Mfull denote model (1), i.e., the model containing
all K regressors, and let ̂θ be shorthand for ̂θ(Mfull). Then

En,θ

(

̂θ′X ′(I − PM )X̂θ
)

= En,θ

(

Y ′PMfull
(I − PM )PMfull

Y
)

= En,θ

(

Y ′(PMfull
− PM )Y

)

= σ2(K − kM ) + θ′X ′(I − PM )Xθ.

Since σ2 can easily be estimated unbiasedly by σ̂2 = σ̂2(Mfull) = (n −
K)−1Y ′(I − PMfull

)Y , an unbiased estimator for MSEn,θ(M) is found to be

MCn(M) = ̂θ′X ′(I − PM )X̂θ + 2kM σ̂2 −Kσ̂2. (5)

Noting that X̂θ equals PMfull
Y , we can rewrite (5) as

MCn(M) = RSS(M) + 2kM σ̂2 − nσ̂2, (6)

where RSS(M) = Y ′(I − PM )Y . After division by σ̂2, this is known as Mal-
lows’s Cp, introduced in 1964; see Mallows (1965, 1973). The model selection
procedure based on Mallows’s Cp now returns that model ̂M which minimizes
(6) over the set M. It should be mentioned that Mallows did not advocate
the minimum Cp strategy just described, but voiced concern about this use
of Cp (Mallows (1965, 1973, 1995)).

It is important to note that the PMSE ˜θ for θ obtained via selection of the
model minimizing (6) is a compound procedure, and is not identical to any
of the least squares estimators ̂θ(M) obtained from the models M ∈ M; as
pointed out before in (2), it rather is a random convex combination of these
estimators. As a consequence, despite the construction of ̂M as a minimizer
of an empirical version of the risk of the least squares estimators associated
with the models M , it does not follow that the mean squared error of ˜θ
is equal to (or close to) the risk target (4). In fact, it can overshoot the
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risk target considerably. This comment applies mutatis mutandis also to the
model selection procedures discussed below and we shall return to this issue
also in Section 2.2.

A related criterion is the so-called final prediction error (FPE), which
has become well known through the work of Akaike (1969, 1970), set in the
context of selecting the order of autoregressive models. The same criterion was
actually introduced earlier by Davisson (1965) also in a time series context,
and was—according to Hocking (1976)—discussed by Mallows (1967) in a
regression context. In the present context of a linear regression model it
amounts to selecting the model M that minimizes

FPEn(M) = RSS(M)(n− kM )−1(1 + kM/n). (7)

The derivation of the FPE is somewhat similar in spirit to the derivation of
Mallows’s Cp: Suppose that now the mean squared error of prediction

MSEPn,θ(M) = En,θ

∥

∥

∥Y ∗ −X̂θ(M)
∥

∥

∥

2

= σ2(n+ kM ) + θ′X ′(I − PM )Xθ (8)

is the quantity of interest, where Y ∗ = Xθ + u∗, with u∗ having the same
distribution as u, but is independent of u. [Note that in the linear regres-
sion model considered here MSEn,θ(M) and MSEPn,θ(M) only differ by
the additive term σ2n; hence, this difference is immaterial and we have
switched to MSEPn,θ(M) only to be in line with the literature.] For mod-
els M that are correct, the second term in (8) vanishes and—transposing
Akaike’s (1970) argument in the autoregressive case to the case of linear
regression—it is proposed to estimate the unknown variance σ2 in the first
term by σ̂2(M) = (n − kM )−1RSS(M). Upon division by n, this gives (7).
Hence, nFPEn(M) is an unbiased estimator for (8) provided the model M is
correct. For incorrect models M this is not necessarily so, but it is suggested
in Akaike (1969, 1970) that then the misspecification bias will make σ̂2(M)
large, obviating the need to take care of the bias term θ′X ′(I − PM )Xθ.
While this is true for fixed θ and large n, ignoring the bias term seems to
be an unsatisfactory aspect of the derivation of the FPE. [Note also that if
one were to estimate σ2 by σ̂2 = σ̂2(Mfull) rather than σ̂2(M) in the above
derivation, one would end up with the absurd criterion σ̂2(1 + kM/n).]

Akaike’s (1973) model selection criterion AIC is derived by similar means
and—in contrast to Mallows’s Cp or the FPE, which are limited to linear
(auto)regressions—is applicable in general parametric models. The risk mea-
sure used here is not the mean squared error of prediction but the expected
Kullback–Leibler discrepancy between Pη̂(M) and the true distribution of Y ,
where η̂(M) denotes the maximum likelihood estimator based on model M .
Akaike (1973) proposed an estimator for the Kullback–Leibler discrepancy
that is approximately unbiased provided that the modelM is a correct model.
This estimator is given by (n/2)AICn(M), where
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AICn(M) = −2n−1 logLn,M (Y, η̂(M)) + 2#M/n , (9)

Ln,M denotes the likelihood function corresponding to model M , and #M
denotes the number of parameters in M . [The analysis in Akaike (1973) is
restricted to independent and identically distributed data, but can be ex-
tended to more general settings; see, e.g., Findley (1985) for a treatment
in the context of linear time series models, and Findley and Wei (2002) for
vector autoregressive models.] The minimum AIC procedure now consists of
selecting that model ̂M that minimizes AICn over the set M. For the linear
regression model (1) with errors u ∼ N(0, σ2In), σ2 unknown, the criterion
AICn reduces—up to an irrelevant additive constant—to

AICn(M) = log(RSS(M)/n) + 2kM/n. (10)

If the error variance σ2 is known, AICn(M) is—again up to an irrelevant
additive constant—equal to MCn(M) with σ̂2 replaced by σ2. For a very
readable account of the derivation of the criteria discussed so far see Amemiya
(1980).

A different approach to model selection, which is Bayesian in nature, was
taken by Schwarz (1978). Given priors on the parameters in each model M
and prior probabilities for each model (i.e., a prior on M), one can com-
pute the posterior probability for each model M given the data and one
would then choose the model with the highest posterior probability. Schwarz
(1978) showed that the leading terms in the posterior probabilities do not
depend on the specific prior employed: He showed that the negative of the
log posterior probabilities can—for large sample sizes—be approximated by
(n/2)BICn(M), where

BICn(M) = −2n−1 logLn,M (Y, η̂(M)) + #M(logn)/n. (11)

The minimum Bayesian information criterion (BIC) procedure then selects
the model ̂M that minimizes BICn(M) over M.

Variants of the procedures A variant of the FPE, studied in Bhansali
and Downham (1977), is FPEα which reduces to the FPE for α = 2; see
also Shibata (1984). Shibata (1986b) and Venter and Steele (1992) discussed
ways of choosing α such that the maximal (regret) risk of the ensuing PMSE
is controlled; cf. also Foster and George (1994). Variants of the AIC/BIC
obtained by replacing the log n term in (11) by some other function of sample
size have been studied, e.g., in Hannan and Quinn (1979), Pötscher (1989),
Rao and Wu (1989), and Shao (1997); cf. also Section 2.1. As noted, the AIC
is an asymptotically unbiased estimator of the Kullback–Leibler discrepancy
if the model M is correct. A finite-sample bias correction for correct models
M was provided by Sugiura (1978) and subsequently by Hurvich and Tsai
(1989) and leads to the corrected AIC (AICC), which in the Gaussian linear
regression context takes the form
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AICCn(M) = log(RSS(M)/n) + 2(kM + 1)/(n− kM − 2).

The derivation of the AIC or AICC from asymptotically unbiased estimators
for the Kullback–Leibler discrepancy is based on the assumption that the
models M are correct models. For bias corrections allowing for M to be in-
correct and for resulting model selection criteria, see Reschenhofer (1999) and
references therein. Takeuchi’s (1976) information criterion (TIC) should also
be mentioned here. It is an approximately unbiased estimator of Kullback–
Leibler discrepancy also for incorrect models. However, the TIC requires con-
sistent estimators for the expectations of the Hessian of the log-likelihood as
well as of the outer product of the score, where the expectation is taken un-
der the true distribution. A possibility to implement this is to use bootstrap
methods; see Shibata (1997). The derivations underlying the AIC or the TIC
assume that the models are estimated by maximum likelihood. Konishi and
Kitagawa (1996) introduced a model selection criterion GIC that allows for
estimation procedures other than maximum likelihood. See also the recent
book by Konishi and Kitagawa (2008). The derivation of the FPE in au-
toregressive models is based on the one-step-ahead prediction error. Model
selection criteria that focus on multi-step-ahead predictors can similarly be
derived and are treated in Findley (1991), Bhansali (1999), and Ing (2004).

Other model selection criteria Myriads of model selection criteria have
been proposed in the literature and it is impossible to review them all. Here we
just want to mention some of the more prominent criteria not yet discussed.
Theil (1961) was perhaps the first to suggest using the adjusted R2 as a model
selection criterion. Maximization of the adjusted R2 amounts to minimization
(with respect to M) of

(n− kM )−1RSS(M).

Another early criterion that was apparently suggested by Tukey is given by

Sn(M) = ((n− kM )(n− kM − 1))−1RSS(M). (12)

It is—similarly to Mallows’s Cp—obtained from an unbiased estimator of the
out-of-sample mean squared error of prediction in a linear regression model,
where now the vector of regressors is assumed to be independent and iden-
tically normally distributed with mean zero and the expectation defining
the mean squared error of prediction is also taken over the regressors (in
the observation as well as in the prediction period). This criterion is further
discussed in Thompson (1978a, b), Breiman and Freedman (1983), and Leeb
(2006b). Cross-validation provides another method for model selection (Allen
(1974); Stone (1974); Shao (1993); Zhang (1993a); Rao and Wu (2005)). Gen-
eralized cross-validation was introduced by Craven and Wahba (1979) and in
the linear regression context of Example 1 amounts to minimizing

GCVn(M) = (n− kM )−2RSS(M).
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Note the close relationship with Tukey’s Sn(M). Also in the context of a stan-
dard linear regression model with nonstochastic regressors, Foster and George
(1994) introduced the so-called risk inflation criterion based on considering
the minimization of the maximal inflation of the risk of the PMSE over the
infeasible “estimator” that makes use of the knowledge of the (minimal) true
model. This criterion is given by

RICn(M) = RSS(M) + 2kM log(K)σ̂2.

See also George and Foster (2000). On the basis of considerations of the
code length necessary to encode the given data by encoding the fitted candi-
date models, Rissanen (1978, 1983, 1986a, b, 1987) introduced the minimum
description length (MDL) criterion and the closely related predictive least
squares (PLS) criterion; cf. also the review article by Hansen and Yu (2001)
as well as Rissanen (1989). These criteria are also closely connected to Wei’s
(1992) Fisher information criterion (FIC). For more on this criterion see Chan
(2008). Finally, if prediction at a value xf. of the regressor vector different
from the values in the sample is of interest and if the steps in the derivation of
Mallows’s Cp are repeated for this target, one ends up with a criterion intro-
duced in Allen (1971). This criterion depends on the chosen xf. and hence is
an early precursor to the so-called focused information criterion of Claeskens
and Hjort (2003). For a discussion of further model selection criteria see Rao
and Wu (2001).

Relationships between criteria For many model selection problems such
as, e.g., variable selection in linear regression or order selection for autore-
gressive processes the criteria AIC, AICC, FPE, Mallows’s Cp, Tukey’s Sn,
cross-validation, as well as generalized cross-validation are “asymptotically
equivalent” (Stone (1977); Shibata (1989)). These asymptotic equivalence re-
sults typically hold only for quite “small” families M of candidate models
(e.g., for fixed finite families); in particular, kM typically has to be small
compared with n for the asymptotic equivalence results to bear on the finite-
sample behavior. If kM is not small relative to n, the asymptotic equivalence
does not apply and these criteria can behave very differently. For more discus-
sion on the relationship between various criteria see, e.g., Söderström (1977),
Amemiya (1980), Teräsvirta and Mellin (1986), and Leeb (2006b).

A comment Criteria like Mallows’s Cp, the AIC, the FPE, and so on
have been derived as (asymptotically) unbiased estimators for mean squared
error (of prediction) or Kullback–Leibler discrepancy for certain estima-
tion problems. Often these criteria are also used in contexts where they
are not necessarily (asymptotically) unbiased estimators (e.g., in a pseudo-
likelihood context), or where no formal proof for the unbiasedness property
has been provided. For example, for Gaussian autoregressive models the AIC
is (approximately) unbiased (Findley and Wei (2002)) and takes the form
log σ̂2(k) + 2k/n, where σ̂2(k) is the usual residual variance estimator from
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an AR(k) fit. This latter formula is, however, routinely also used for model se-
lection in autoregressive models with non-Gaussian (even heavy-tailed) errors
without further justification. Another example is model selection in GARCH
models, where procedures like minimum AIC are routinely applied, but for-
mal justifications do not seem to be available.

Relationship between model selection criteria and hypothesis tests
The model selection procedures described in Section 1.2.1 and in the present
section are closely related. First observe that in a setting with only two nested
models, i.e., M1 ⊆ M2, the minimum AIC procedure picks model M2 if and
only if the usual likelihood ratio test statistic of the hypothesis M1 versus
M2 exceeds the critical value 2(kM2 −kM1). In general, the model M selected
by minimum AIC is characterized by the property that the likelihood ratio
test statistic for testing M against any other model M ′ ∈ M (nesting M or
not) exceeds the respective critical value 2(kM ′ − kM ). For more discussion,
see Söderström (1977), Amemiya (1980), Teräsvirta and Mellin (1986), and
Section 4 in Pötscher (1991).

2 Properties of Model Selection Procedures and of
Post–Model–Selection Estimators

We now turn to the statistical properties of model selection procedures and
their associated PMSEs. In particular, questions like consistency/inconsisten-
cy of the model selection procedure, risk properties, as well as distributional
properties of the associated PMSE are discussed. In this section we concen-
trate on the case where the set M of candidate models contains a correct
model; furthermore, M is here typically assumed to be finite, although some
of the results mentioned in this section also hold if M expands suitably with
sample size or is infinite. The case of model selection from a set of models
that are potentially only approximations to the data-generating mechanism
is discussed in Section 3.

2.1 Selection probabilities and consistency

The focus in this subsection is on the model selection procedure ̂M viewed
as an estimator for the minimal true model (given that it exists). For defi-
niteness of discussion, consider the linear regression model as in Example 1
with an N(0, σ2In)-distributed error term. Assume for simplicity of presen-
tation further that the set M ⊆ Mall of candidate models contains the full
model Mfull and is stable with respect to intersections, meaning that with
M and M ′ belonging to M, also M ∩ M ′ belongs to M. [This is, e.g., the
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case for M = Mall or M = Mnested.] Under this condition, for each value of
the parameter θ ∈ R

K there exists a minimal true model M0 = M0(θ) given
by

M0 =
⋂

θ∈M∈M
M.

[If M = Mall, then M0 is given by the set of all parameters θ∗ that have
θ∗i = 0 whenever θi = 0. If M = Mnested, then M0 is given by the set of all
parameters θ∗ that have θ∗i = 0 for all i > p0(θ), where p0(θ) is the largest
index such that θp0(θ) �= 0 (and p0(θ) = 0 if θ = 0).] The quality of ̂M
as an estimator for M0 can be judged in terms of the “overestimation” and
“underestimation” probabilities, respectively, i.e., in terms of the probabilities
of the events

{̂M �= M0, ̂M ⊇ M0} (13)

and
{̂M � M0}. (14)

Note that (13) represents the case where a correct model containing superflu-
ous regressors is selected, whereas (14) describes the case where an incorrect
model is selected.

A model selection procedure is consistent if the probabilities of overesti-
mation and underestimation converge to zero, i.e., if

lim
n→∞

Pn,θ(̂M = M0) = 1 (15)

for every θ ∈ R
K . If

lim
n→∞

Pn,θ(̂M � M0) = 0 (16)

for every θ ∈ R
K , but ̂M is not consistent, we say that ̂M is conservative.

We note that any reasonable model selection procedure will satisfy (16).
Suppose that in the context of the linear regression model considered here
the regressors also satisfy the “asymptotic stationarity” condition X ′X/n →
Q, where Q is a positive-definite matrix. If ̂M is then obtained through
minimization of a criterion of the form

CRIT(M) = log(RSS(M)/n) + kMCn/n, (17)

it is well known that ̂M is consistent if the penalty satisfies Cn/n → 0 and
Cn → ∞ as n → ∞; and it is conservative if Cn is bounded (e.g., Geweke
and Meese (1981)). In particular, it follows that the minimum BIC procedure
(i.e., Cn = logn) is consistent, whereas the minimum AIC procedure (i.e.,
Cn = 2) is conservative. [That the FPE is conservative was already noted in
Akaike (1970) in the context of selecting the order of stationary autoregres-
sions.] If the asymptotic stationarity condition X ′X/n → Q does not hold,
the conditions on Cn for consistency/conservatism change and are related to
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the rate of increase of the largest and smallest eigenvalues of X ′X (Pötscher
(1989)). We note that these results are not tied to the normality assumption
or the assumption of independent and identically distributed errors made
here for the sake of simplicity, but hold under more general assumptions.
For further consistency results in the context of linear regression models,
see Nishii (1984), An and Gu (1985), Rao and Wu (1989), and Zheng and
Loh (1995, 1997); Chen and Ni (1989) provide consistency results for linear
regression models with short-memory time series errors, while Ing and Wei
(2006) allow also for long-memory errors; see also Hidalgo (2002). Consis-
tency results for model selection based on (17) or on closely related criteria,
but for model classes other than linear regression, can be found in Hannan
and Quinn (1979) and Quinn (1980) for stationary autoregressions and in
Hannan (1980, 1981) for stationary autoregressive moving average (ARMA)
models (see also An and Chen 1986 and Chapter 5 of Hannan and Deistler
(1988) for more discussion and references); in Paulsen (1984), Tsay (1984),
Pötscher (1989), and Wei (1992) for nonstationary autoregressions (the last
two of these papers considering also more general classes of stochastic regres-
sion models); in Knight (1989) for infinite variance autoregressions; in Kohn
(1983) and Nishii (1988) for general parametric models; and in Haughton
(1991) for nonlinear regression models. Similar results hold for criteria like
FPEα if α is made dependent on sample size in an appropriate manner and
are discussed in several of the references just given. Consistency results for
the PLS criterion can be found, e.g., in Rissanen (1986b), Hemerly and Davis
(1989), and Wei (1992). The papers on consistency mentioned so far consider
a finite set of candidate models (which in some results is allowed to expand
with sample size, typically slowly). In the context of order selection of sta-
tionary ARMA models, Pötscher (1990) discussed a modification of BIC-like
procedures and established consistency without any restriction on the size
of the set of candidate models, i.e., the result applies even for M being the
(infinite) set of all ARMA models; see also Pötscher and Srinivasan (1994).
We are not aware of any published formal results establishing consistency
of model selection procedures in GARCH models, although such results are
certainly possible. Francq et al. (2001) established that the AIC and related
criteria are conservative procedures in the context of autoregressive condi-
tional heteroscedasticity (ARCH) models.

Model selection procedures based on tests are typically consistent if the
critical values employed by the tests are chosen in such a way that they
diverge to infinity at an appropriate rate. Otherwise the procedures are typ-
ically conservative. Consistency results of this sort are provided in Pötscher
(1983) in the context of selecting the order of ARMA models and in Bauer
et al. (1988) for a “thresholding” procedure in a general (semi)parametric
model. For a follow-up on the latter paper, see Bunea et al. (2006).

The limits of the model selection probabilities in the case of conserva-
tive model selection procedures were studied in Shibata (1976), Bhansali and
Downham (1977), Hannan (1980), Geweke and Meese (1981), Sakai (1981),
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Tsay (1984), and Quinn (1988). Further studies of the overestimation and
underestimation probabilities in various settings and for various model selec-
tion procedures can be found in Zhang (1993b), Shao (1998), Guyon and Yao
(1999), and Keribin and Haughton (2003).

Since it seems to be rarely the case that estimation of M0 is the ultimate
goal of the analysis, the consistency property of ̂M may not be overly im-
portant. In fact, as we shall see in the next subsection, consistency of ̂M
has detrimental effects on the risk properties of the associated PMSE. This
may seem to be counterintuitive at first sight and is related to the fact that
the consistency property (15) does not hold uniformly with respect to the
parameter θ (Remark 4.4 in Leeb and Pötscher (2005)). Furthermore, in a
situation where none of the models in the class M are correct (see Section 3),
that is, if only “approximate” models are fitted, the concept of consistency
becomes irrelevant.

2.2 Risk properties of post-model-selection estimators

As already noted in Sects. 1.2.1 and 1.2.2 it is important to realize that—
despite the ideas underlying the construction of PMSEs—a PMSE does not
come with an automatic optimality property; in particular, its risk is by no
means guaranteed to equal the risk target (4). For example, while MCn(M)
given by (5) is an unbiased estimator of the mean squared error MSEn,θ(M)
of the estimator ̂θ(M) based on model M , minimizing MCn(M) gives rise to a
random ̂M and an associated PMSE ˜θ that is a random convex combination of
the estimators ̂θ(M) based on the various models M ∈ M. As a consequence,
the mean squared error of ˜θ is no longer described by any of the quantities
MSEn,θ(M) (or by the risk target (4) for that matter), since ˜θ falls outside
the class {̂θ(M) : M ∈ M}.

The risk properties of PMSEs have been studied for model selection pro-
cedures based on test procedures in considerable detail; see Judge and Bock
(1978), Giles and Giles (1993), Magnus (1999), and Danilov and Magnus
(2004). For procedures based on model selection criteria, investigations into
the risk properties of PMSEs can be found in Mallows (1973), Hosoya (1984),
Nishii (1984), Shibata (1984, 1986b, 1989), Venter and Steele (1992), and
Foster and George (1994). A basic feature of risk functions of PMSEs that
emerges from these studies is best understood in the context of the simple
normal linear regression model (Example 1) when selection is only between
two models M1 and M2 = Mfull, where M1 is obtained from M2 by restrict-
ing the k2 × 1 subvector θ2 of the (k1 + k2)× 1 parameter vector θ = (θ′1, θ

′
2)

′

to zero. Recall that in this example the quadratic risk MSEn,θ(̂θ(M1)) is
an unbounded quadratic function of θ2, which achieves its minimal value
σ2k1 on the set {θ : θ2 = 0}, i.e., when model M1 holds, whereas the
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quadratic risk MSEn,θ(̂θ(M2)) is constant and equals σ2(k1 + k2). Hence,
MSEn,θ(̂θ(M1)) < MSEn,θ(̂θ(M2)) whenever θ2 = 0, and this inequality per-
sists for θ2 �= 0 sufficiently small (by continuity of the mean squared error).
However, as θ2 moves away from the origin, eventually the inequality will be
reversed. Now, the risk MSEn,θ(˜θ) of the PMSE ˜θ will typically also be less
than the risk of ̂θ(M2) for parameter values which have ‖θ2‖ sufficiently close
to zero, but it will rise above the risk of ̂θ(M2) as ‖θ2‖ becomes larger; even-
tually the risk of ˜θ will attain its maximum and then gradually approach the
risk of ̂θ(M2) from above as ‖θ2‖ increases further and approaches infinity.
As stressed by Magnus (1999), for many PMSEs there will be even regions
in the parameter space (for intermediate values of ‖θ2‖) where the risk of
the PMSE will actually be larger than the larger of the risks of ̂θ(M1) and
̂θ(M2). Figure 5 in Leeb and Pötscher (2005) gives a representation of the
typical risk behavior of a PMSE.

2.2.1 Limiting risk in the case of consistent model selection

Continuing the previous example, suppose ̂M is a consistent model selection
procedure for M0, i.e., ̂M satisfies (15), where the minimal true model M0 is
here given by

M0 =

{

M1 if θ2 = 0
M2 if θ2 �= 0

.

Assume also that X ′X/n → Q > 0 for n → ∞. Then Pn,θ(̂M = M1) will
typically go to zero exponentially fast for θ2 �= 0 (Nishii (1984)). It is then
easy to see that

lim
n→∞

MSEn,θ(˜θ) =

{

σ2k1 if θ2 = 0
σ2(k1 + k2) if θ2 �= 0

. (18)

That is, for each fixed θ the limiting risk of the PMSE coincides with the
(limiting) risk of the restricted estimator ̂θ(M1) if model M1 obtains, and
with the (limiting) risk of the unrestricted estimator ̂θ(M2) if model M2 is
the minimal true model. Put yet another way, the limiting risk of the PMSE
coincides with the (limiting) risk of the “oracle,” i.e., of the infeasible “es-
timator” based on the minimal true model M0. This seems to tell us that
in large samples consistent model selection typically results in a PMSE that
has approximately the same risk behavior as the infeasible procedure that
uses ̂θ(M1) if θ2 = 0 and uses ̂θ(M2) if θ2 �= 0. Note that this procedure is
infeasible (and hence is sometimes dubbed an “oracle”), since it uses knowl-
edge of whether θ2 = 0 or not. The above observation that in a “pointwise”
asymptotic analysis (that is, in an asymptotic analysis that holds the true
parameter fixed while letting sample size increase) a consistent model selec-
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tion procedure typically has no effect on the limiting risk of the PMSE was
made in Nishii (1984); see also the discussion of the so-called oracle property
in Section 2.3. Unfortunately, this result—while mathematically correct—is a
statistical fallacy and does not even approximately reflect the risk properties
at any given sample size, regardless of how large: It can be shown that—
despite (18)—the worst-case risk of any PMSE based on a consistent model
selection procedure diverges to infinity, i.e.,

lim
n→∞

sup
θ

MSEn,θ(˜θ) = ∞ (19)

holds. Hence, in terms of worst-case risk a PMSE based on a consistent model
selection procedure is much worse than, e.g., the least squares estimator based
on the overall model (which has constant risk σ2(k1 + k2)), or than a PMSE
based on a conservative procedure (which typically has bounded worst-case
risk, cf. (20)). This phenomenon, which is in striking contrast to (18), has
been observed at different levels of generality by Hosoya (1984), Shibata
(1986b), Foster and George (1994), Leeb and Pötscher (2005, 2008a), and
Yang (2005, 2007). As shown in Leeb and Pötscher (2008a), the unbounded-
ness phenomenon (19) also applies to so-called sparse estimators as consid-
ered, e.g., in Fan and Li (2001); cf. Section 4. We note that the finite-sample
behavior of the risk function of the PMSE, which gets lost in a pointwise
asymptotic analysis, can be captured in an asymptotic analysis that makes
the true parameter dependent on sample size; see Leeb and Pötscher (2005).

2.2.2 Limiting risk in the case of conservative model selection

Results on the limiting risk in this case were provided in Hosoya (1984), Nishii
(1984), Shibata (1984), and Zhang (1992). For conservative model selection
procedures the limiting risk of the associated PMSE does not satisfy (18). In
fact, in this case it can be shown that the limiting risk of a PMSE is typically
larger than the limiting risk of the corresponding oracle (i.e., the infeasible
“estimator” based on the minimal true model M0), except if the minimal true
model is the overall model. Hence, for conservative model selection procedures
a pointwise asymptotic analysis already reveals some of the effects of model
selection on the risk of the PMSE, although the full effect is again only seen in
an asymptotic analysis that makes the true parameter dependent on sample
size (or in a finite-sample analysis, of course); see Leeb and Pötscher (2005)
for an extensive discussion. In contrast to PMSEs based on consistent model
selection procedures, the worst-case risk of a PMSE based on a conservative
procedure is typically bounded as sample size goes to infinity, i.e.,

lim
n→∞

sup
θ

MSEn,θ(˜θ) < ∞ (20)

typically holds.
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2.2.3 Admissibility results

Admissibility or inadmissibility of PMSEs in various classes of estimators
was discussed in Sclove et al. (1972), Stone (1981, 1982), Takada (1982), and
Kempthorne (1984).

2.2.4 Consistency of post-model-selection estimators

A PMSE is typically consistent regardless of whether the model selection
procedure is consistent or conservative; this follows, e.g., from Lemma 2 in
Pötscher (1991). In fact, PMSEs will often be even uniformly consistent; cf.
Propositions A.9 and B.1 in Leeb and Pötscher (2005) and Theorem 2 in
Pötscher and Leeb (2007).

2.3 Distributional properties of post-model-selection
estimators

As noted in Section 1.1, a PMSE η̃ is a random convex combination of the
estimators η̂(M) computed on the basis of model M . As a consequence, the
distribution of η̃ will typically be more complex than the distribution of η̂(M),
which often will be asymptotically normal. Sen (1979) derived the asymptotic
distribution of n1/2(η̃ − η) in a maximum likelihood framework for indepen-
dent and identically distributed data when the model selection procedure
consists in choosing from two nested models M1 ⊆ M2 on the basis of the
likelihood ratio test. Pötscher (1991) obtained the asymptotic distribution for
the case when model selection is from a nested family M1 ⊆ M2 ⊆ . . . ⊆ MP

and is based on a general-to-specific hypothesis testing scheme; the framework
in Pötscher (1991) is also more general than the one in Sen (1979) in that it
allows for dependent data and M-estimators other than maximum likelihood.
Furthermore, Pötscher (1991) derived not only the unconditional, but also
the conditional asymptotic distribution of n1/2(η̃− η). Here the conditioning
is on the event of having chosen a particular model. See Pötscher and Novak
(1998) for further results and a simulation study. In the same framework as
in Pötscher (1991), but confining attention to the normal linear regression
model, Leeb and Pötscher (2003) and Leeb (2005, 2006a) obtained the un-
conditional as well as the conditional finite-sample distribution of n1/2(η̃−η)
(as well as their limits under local alternatives). From the above references
it transpires that the asymptotic as well as the finite-sample distributions of
n1/2(η̃ − η) are complicated and, in particular, are typically decidedly non-
normal, e.g., they can be bimodal. Furthermore, these distributions depend
on the unknown parameter η in a complicated way. As a consequence of these
results, the usual confidence intervals naively applied to PMSEs do not have
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correct coverage probability, not even asymptotically (Saleh and Sen (1983);
Pötscher (1991); Zhang (1992); Kabaila (1998); Kabaila and Leeb (2006)).
For further results on distributional properties of PMSEs based on conser-
vative model selection procedures, see Sen and Saleh (1987), Dijkstra and
Veldkamp (1988), Kabaila (1995), Pötscher (1995), Ahmed and Basu (2000),
and Hjort and Claeskens (2003). Shen et al. (2004) in their Theorem 3 incor-
rectly claim that the asymptotic distribution of the PMSE based on, say, the
AIC, is normal.

The results discussed in this subsection so far apply to conservative model
selection procedures. It is important to note, however, that the finite-sample
results in Leeb and Pötscher (2003) and Leeb (2005, 2006a) also apply to con-
sistent model selection procedures based on general-to-specific testing (i.e.,
procedures where the critical values diverge to infinity at an appropriate rate
with sample size), since for fixed sample size n it is irrelevant whether we
view the critical values as being constant or as depending on n. Hence, the
conclusions regarding the finite-sample distributions of PMSEs drawn in the
previous paragraph carry over to the case of consistent model selection. When
it comes to the pointwise asymptotic distribution of PMSEs based on consis-
tent model selection procedures a difference arises: It is easy to see that the
pointwise asymptotic distribution of n1/2(η̃−η) is then typically normal and
coincides with the (pointwise) asymptotic distribution of n1/2(η̂(M0) − η),
where η̂(M0) is the infeasible “oracle” that makes use of knowledge of the
minimal true model M0. This was noted in Hannan and Quinn (1979) and
Lemma 1 in Pötscher (1991), who also issued a warning regarding the statis-
tical interpretation of this result. Nevertheless, this property of PMSEs based
on consistent model selection procedures has frequently—and incorrectly—
been interpreted in the literature as saying that consistent model selection
has no effect asymptotically on the distributional properties of the parameter
estimator and that one can estimate θ asymptotically as efficient as if knowl-
edge about the minimal true model were available: Two prominent examples
are Bunea (2004) and Fan and Li (2001), who advertise this property of their
estimators, the latter authors dubbing this property the “oracle property.”
However, this interpretation is a fallacy: The “oracle property” is essentially
a reincarnation of the “superefficiency” phenomenon à la the “superefficiency”
of Hodges’s estimator, and does not reflect actual statistical performance.
Other instances in the literature where this misleading interpretation has
been reported include Geweke and Meese (1981), Lütkepohl (1990, p. 120),
Hidalgo (2002), Hall and Peixe (2003), and Dufour et al. (2006). Mathemat-
ically speaking, the problem is that convergence of the finite-sample distri-
butions to their asymptotic counterparts is highly nonuniform in the param-
eter, and that the “oracle property” results are only pointwise asymptotic
results. This has already been noted by Shibata (1986a) and Kabaila (1995,
1996). While pointwise asymptotics are unable to capture the effects of con-
sistent model selection, a more appropriate asymptotic analysis that allows
the true parameter to depend on sample size very well reveals these effects;
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see Leeb and Pötscher (2005) for an extensive discussion. The nonuniformity
in the convergence of the finite-sample distributions is of course related to
the unboundedness of the maximal risk, cf. (19), discussed in the previous
subsection.

2.3.1 Estimation of the distribution of post-model-selection
estimators

As discussed already, the finite-sample (as well as the asymptotic) distribu-
tion of PMSEs typically depends on unknown parameters in a complicated
fashion. In order to be able to utilize such distributions for inference one has
to estimate these distributions. While consistent estimators for the distribu-
tion of PMSEs can be constructed, it was shown in Leeb and Pötscher (2006b,
2008b) that such estimators are necessarily of low quality in the sense that
no estimator can be uniformly consistent. Such “impossibility” results also
arise for a large class of shrinkage-type estimators: see Leeb and Pötscher
(2006a), Pötscher and Leeb (2007), and Pötscher and Schneider (2007). See
also Section 2.3 in Leeb and Pötscher (2005) for a simple exposition of the
issues involved here.

2.3.2 Confidence sets post model selection

Problems related to the construction of valid confidence intervals after model
selection are discussed in Kabaila (1995, 1998), Pötscher (1995), Kabaila and
Leeb (2006), Leeb (2007), and Pötscher (2007).

3 Model Selection in Large- or Infinite–Dimensional
Models

In Section 2 we mainly concentrated on the case where there exists a true
model in the set of candidate models M and where the cardinality of M is
finite and independent of sample size n. It can, however, be argued that the
need for model selection is particularly great when the dimension of the can-
didate models (e.g., number of potentially important explanatory variables) is
large in relation to sample size and/or no model in M is correct (i.e., the mod-
els fitted to the data constitute only an approximation to the data-generating
process). To analyze a scenario like this, it is often more appropriate to as-
sume that the true data-generating process is infinite-dimensional, and that
one tries to identify a “good” finite-dimensional model on the basis of the
data.
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Throughout this section, we consider the following “infinite-dimensional”
extension of Example 1: In the setting of that example, assume that the
number of regressors, i.e., K in (1), is infinite. To ensure that the response Y
and its mean Xθ are well defined, assume that θ as well as the row-vectors
of X are square-summable, i.e., θ and X ′

i,· are in l2. Moreover, assume that
the infinite-dimensional “matrices” (i.e., operators on l2) X ′X/n converge in
the operator norm to an invertible operator Q as n → ∞. We also make the
assumption that the vector of errors u is distributed as N(0, σ2In), 0 < σ2 <
∞. Given a sample of size n, consider model selection from a family Mn

of finite-dimensional candidate models. Throughout, we always assume that
each model M ∈ Mn is such that the n × kM matrix of those explanatory
variables included in the model M has full column-rank kM ; we make this
assumption for convenience, although it is not necessary for all the results
discussed below. The collection of candidate models Mn considered at sample
size n is assumed to be finite or countable, and it is allowed to depend on
sample size satisfying Mn ⊆ Mn+1 (although this is again not necessary for
all the results discussed below). This setting is sufficiently general to present
the relevant results, while it is sufficiently simple to keep the notation and
assumptions manageable. We refer to the literature for more general results.

One of the early analyses of model selection in infinite-dimensional models
is Shibata (1980); see also Shibata (1981a, b). In essence, these papers estab-
lish that the PMSE based on the AIC (or the FPE) is pointwise asymptoti-
cally loss-efficient provided that the true data-generating process is infinite-
dimensional (and that the collection of candidate models Mn increases ap-
propriately with n). In the setting of (1) with K = ∞ as introduced above,
define the loss Ln(θ, θ̄) of an estimator θ̄ of θ (taking values in l2) as

Ln(θ, θ̄) = (θ̄ − θ)′
X ′X

n
(θ̄ − θ),

and let Rn(θ, θ̄) = En,θ(Ln(θ, θ̄)) denote the corresponding risk. Given a
model selection procedure ̂M , Shibata (1981b) compared the loss of the
PMSE ̂θ(̂M), i.e., Ln(θ, ̂θ(̂M)) with the minimum of the losses of the least-
squares estimators ̂θ(M) corresponding to all the models M in Mn, i.e., with
infM∈Mn Ln(θ, ̂θ(M)). If ̂MAIC is chosen by the minimum AIC method, i.e.,
̂MAIC is a (measurable) minimizer of AICn(M) over M ∈ Mn, then Shibata
(1981b) showed that

Ln(θ, ̂θ(̂MAIC))

infM∈Mn Ln(θ, ̂θ(M))
p−→ 1 (21)

provided that the true parameter θ is truly infinite dimensional (i.e., has in-
finitely many nonzero coordinates), provided that the candidate models are
nested in the sense that Mn = {M(p) : 0 ≤ p ≤ Kn}, and provided that
the number of candidate models Kn + 1 satisfies Kn → ∞ and Kn = o(n).
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[The model M(p) here refers to the model containing the first p regressors;
cf. Example 1.] Relation (21) continues to hold if in the denominator loss is
replaced by risk. All these results carry over if, instead of the AIC, either
Mallows’s Cp or the FPE is used for model selection (cf. Theorems 2.1, 2.2,
3.1, and the discussion leading up to Assumption 1, as well as Section 5 in
Shibata (1981b)). Shibata (1981b) pointed out that (21) does not hold for
model selectors based on BIC-type model selection criteria. The results in
Shibata (1981b) in fact allow for classes of candidate models more general
than the nested case considered here, provided that the condition that θ
is infinite-dimensional is replaced by a more complicated condition that, in
essence, requires that the candidate models considered at sample size n do
not fit the true data-generating process “too well”; see Assumptions 1 and
2 in Shibata (1981b). For order selection in autoregressive models approxi-
mating an infinite-order autoregressive data-generating process, results sim-
ilar to those just presented were given by Shibata (1980); here models were
evaluated in terms of their predictive performance out of sample, where the
model selection and fitting step on the one hand and the prediction step on
the other hand are based on two independent realizations of the same time
series. Recently, Ing and Wei (2005) obtained parallel results for the case
where one and the same realization of the process is used for the estimation,
selection, and prediction step. Shibata (1981a) also considered selection of ap-
proximating autoregressive models where the models were evaluated by the
performance of the corresponding estimate of the spectral density (at a fixed
frequency). Pointwise asymptotic loss-efficiency results in the above sense
were also established in Li (1987), Polyak and Tsybakov (1990), and Shao
(1997) for a variety of other methods, including generalized cross-validation
and cross-validation, and under somewhat different sets of assumptions. See
also Breiman and Friedman (1983) for a similar result about the criterion (12)
when models are evaluated by their predictive performance out of sample.

All the pointwise asymptotic loss-efficiency results for conservative model
selection procedures like (21) mentioned above rely on the central assumption
that the true data-generating process is “not too well approximated” by the
finite-dimensional candidate models considered at sample size n as n → ∞. In
the simple setting considered in (21), this is guaranteed by assuming that θ is
infinite-dimensional, and, in more general settings, by conditions like Assump-
tion 2 in Shibata (1981b). If that central assumption is violated, statements
like (21) will typically break down for conservative model selection proce-
dures (like the AIC or the FPE). In fact, Shao (1997) considered a scenario
where the BIC and related consistent model selection procedures are point-
wise asymptotically loss-efficient when the true model is finite-dimensional.
[This is in line with the discussion of the “oracle” phenomenon in Section 2.2
for the case of finitely many candidate models.] These findings suggest a di-
chotomy: If the true model is infinite-dimensional, conservative procedures
like the AIC are pointwise asymptotically loss-efficient, while consistent pro-
cedures like the BIC are not; if the true model is finite-dimensional, the



Model Selection 911

situation is reversed (under appropriate assumptions). However, one should
not read too much into these results for the following reasons: The true model
may be infinite-dimensional, suggesting an advantage of the AIC or a related
procedure over the BIC. At a given sample size, however, one of the finite-
dimensional candidate models may provide a very good approximation to
the true data-generating process, and hence the pointwise asymptotic loss-
efficiency result favoring the AIC may not be relevant. Conversely, the true
model may be finite-dimensional, suggesting an advantage of consistent pro-
cedures like the BIC, but, compared with the given sample size, some of the
nonzero parameters may be moderately small, thereby fooling the consis-
tent model selection procedure into choosing an incorrect model which then
translates into bad risk behavior of the PMSE. Mathematically speaking, the
problem is that the asymptotic loss-efficiency results discussed above are only
pointwise results and do not hold uniformly with respect to the parameter θ:
Kabaila (2002) showed, in a simple setting where (21) holds, that for given
sample size n, there exists a parameter θ = θn with infinitely many nonzero
coordinates such that

Ln(θ, ̂θ(̂MAIC))

Ln(θ, ̂θ(̂MBIC))
≥ 1,

and such that the ratio on the left-hand side in the above expression is greater
than 2 with probability larger than 0.13. This shows that the results of Shi-
bata (1981b), which entail that

lim sup
n→∞

Ln(θ, ̂θ(̂MAIC))/Ln(θ, ̂θ(̂MBIC)) ≤ 1

for every fixed θ as n → ∞, do not hold uniformly in θ (as for fixed n there
exists a parameter θ for which the situation is reversed). Similarly, Shao’s
(1997) asymptotic loss-efficiency results for consistent procedures mentioned
above are only pointwise asymptotic results and thus similarly problematic.
Compare this with the discussion of the “oracle” phenomenon in Section 2.2
showing that consistent model selection procedures have bad maximal risk
properties when selecting from a finite family of finite-dimensional models.

Given the dichotomy arising from the pointwise asymptotic loss-efficiency
results, attempts have been made to devise “adaptive” model selection pro-
cedures that work well in both scenarios, i.e., procedures that combine the
beneficial properties of both consistent and conservative procedures but avoid
their detrimental properties. While this can be achieved in a pointwise asymp-
totic framework (Yang (2007); Ing (2007)), it is not surprising—given the
preceding discussion—that it is impossible to achieve this goal in a uniform
sense: No model selection procedure can simultaneously be consistent (like
the BIC) and minimax-rate adaptive (like the AIC) as shown in Yang (2005).
This is related to the fact that consistent model selection procedures lead to
PMSEs that have maximal risk that diverges to infinity as sample size in-
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creases, even for finite-dimensional models; see the discussion regarding (19)
in Section 2.2.

The discussion so far again demonstrates that pointwise large-sample limit
analyses of model selection procedures can paint a picture that is misleading
in the sense that it need not have much resemblance to the situation in finite
samples of any size. We now turn to two recent lines of research that analyze
model selection procedures from a different perspective. Both of these lines of
research rely on a combination of finite-sample results and asymptotic results
that hold uniformly over (certain regions of) the parameter space, instead of
pointwise asymptotic analyses.

In recent years, finite-sample risk bounds for PMSEs have been developed
in considerable generality; see Barron and Cover (1991), Barron et al. (1999),
and the references given in that paper. The following results are adapted from
Birgé and Massart (2001) to our setting. Assume that the error variance σ2

is known. For a (finite or countable) collection Mn of candidate models,
consider the model selector ̂M that minimizes the following Cp-like criterion
over M ∈ Mn:

crit(M) = RSS(M) + κ(1 +
√

2lM )2σ2kM .

This criterion depends on the user-specified constants κ > 1 and lM ≥ 0 that
are chosen so that

∑

M∈Mn,

kM>0

e−lMkM ≤ Σ < ∞. (22)

[For κ(1 +
√

2lM )2 = 2 this criterion coincides with (6) up to an irrelevant
additive constant.] Then the resulting PMSE ̂θ(̂M) has a risk Rn(θ, ̂θ(̂M)) =
En,θ[Ln(θ, ̂θ(̂M))] satisfying

Rn(θ, ̂θ(̂M)) (23)

≤ C(κ)n−1

[

inf
M∈Mn

(

||(I − PM )Xθ||2 + σ2kM (1 + lM )
)

+ σ2Σ

]

,

for θ ∈ l2, where the constant C(κ) is given by C(κ) = 12κ(κ+ 1)3/(κ− 1)3;
cf. Theorem 2 and (3.12) in Birgé and Massart (2001), and observe that
(1+

√
2x)2 ≤ 3(1+x) for x ≥ 0. We stress that the upper bound in (23) holds

under no additional assumptions on the unknown parameter θ other than
θ ∈ l2. The upper bound in (23) equals C(κ) times the sum of two terms. The
first one is the infimum over all candidate models of a “penalized” version of
the bias of the model M , i.e., ||(I−PM )Xθ||2/n, where the “penalty” is given
by σ2kM (1 + lM )/n. It should be noted that Rn(θ, ̂θ(M)), i.e., the risk when
fitting model M , is given by Rn(θ, ̂θ(M)) = ||(I −PM )Xθ||2/n+σ2kM/n. If,
in addition, the constants lM can be chosen to be bounded, i.e., lM ≤ L for
each M ∈ Mn, while still satisfying (22), it follows from (23) that
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Rn(θ, ̂θ(̂M)) ≤ (1 + L)C(κ)
[

inf
M∈Mn

Rn(θ, ̂θ(M)) +
σ2

n
Σ

]

. (24)

Provided that lM ≤ L for each M ∈ Mn, we hence see that the risk
of the PMSE ̂θ(̂M) is bounded by a constant multiple of the risk of the
minimal-risk candidate model plus a constant. Suppose that one of the finite-
dimensional candidate models, say, M0, is a correct model for θ, and that
M0 is the smallest model with that property. Then infM∈Mn Rn(θ, ̂θ(M)) is
not larger than σ2kM0/n; in that case, the infimum in (24) is of the same
order as σ2Σ/n. Conversely, suppose that θ is infinite-dimensional. Then
infM∈Mn Rn(θ, ̂θ(M)) typically goes to zero slower than 1/n, with the ef-
fect that infM∈Mn Rn(θ, ̂θ(M)) is now the dominating factor in the upper
bound in (24). Birgé and Massart (2001) argued that, without additional as-
sumptions on the true parameter θ, the finite-sample upper bound in (24)
is qualitatively the best possible (cf. the discussion leading up to (2.9) in
that paper); see also Sects. 3.3.1 and 3.3.2 of that paper for a discussion of
the choice of the constants κ and lM in relation to the family of candidate
models Mn. It can furthermore be shown that the maximal risk of ̂θ(̂M) over
certain regions Θ in the parameter space is not larger than a constant times
the minimax risk over Θ, i.e.,

sup
θ∈Θ

Rn(θ, ̂θ(̂M)) ≤ C(Θ, κ, L) inf
θ̄

sup
θ∈Θ

Rn(θ, θ̄), (25)

where the infimum is taken over all estimators θ̄, and where the constant
C(Θ, κ, L) depends on the quantities indicated but not on sample size. Results
of that kind hold, for example, in the case where the candidate models are
the nested models M(p) and the parameter set Θ ⊆ l2 is, after an appropriate
reparameterization, a Sobolev or a Besov body (cf. Section 6 of Birgé and
Massart (2001) or Section 5 of Barron et al. (1999)). We also note that
the results of Barron et al. (1999) are more general and cover the Gaussian
regression model discussed here as a special case; similar results continue to
hold for other problems, including maximum likelihood density estimation,
minimum L1 regression, and general projection estimators. For further results
in that direction, see Barron (1991, 1998), Yang and Barron (1998), and
Yang (1999). Furthermore, Birgé (2006) derived results similar to (23)–(25)
for model selection based on preliminary tests. He found that the resulting
PMSEs sometimes perform favorably compared with the estimators based on
penalized maximum likelihood or penalized least squares considered above,
but that the implementation of the preliminary tests can be difficult.

Risk bounds like (23)-(25) are sometimes called “oracle inequalities” in the
literature (although there is no precise definition of this term). Informally,
these bounds state that the risk of the PMSE is “not too far away” from the
“risk target,” i.e., from the risk corresponding to the model or to the estimator
that an all-seeing oracle would choose.
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Beran (1996) also studied the loss of PMSEs, but had a different focus.
Instead of concentrating on oracle inequalities for the risk, Beran studied the
problem of estimating the risk or loss of PMSEs; see also Kneip (1994), Beran
and Dümbgen (1998), and Beran (2000). For the sake of simplicity, consider
as the collection of candidate models at sample size n the set of all nested
models of order up to n, i.e., Mn = {M(p) : 0 ≤ p ≤ n}, assume again that
the variance σ2 is known, and let ̂MCp denote a (measurable) minimizer of
Mallows’s Cp objective function

MCn(M) = RSS(M) + 2kMσ2 − nσ2

over the set of candidate models. It then follows from Theorem 2.1 and Ex-
ample 3 of Beran and Dümbgen (1998) that

En,θ

∣

∣

∣

∣

Ln(θ, ̂θ(̂MCp)) − inf
M∈Mn

Ln(θ, ̂θ(M))
∣

∣

∣

∣

≤ C√
n

(

σ2 + σ

√

θ′
X ′X

n
θ

)

(26)
and

En,θ

∣

∣

∣Ln(θ, ̂θ(̂MCp)) − n−1MCn(̂MCp)
∣

∣

∣ ≤ C√
n

(

σ2 + σ

√

θ′
X ′X

n
θ

)

, (27)

where C is a constant independent of n, X , θ, and σ2. The relation (26)
is similar to (24) in that it relates the selected model to the best model.
[Of course, the results in (24) and (26) are qualitatively different, but we
shall not discuss the differences here. Beran and Dümbgen (1998) also pro-
vided a bound similar to (26) for the risk instead of the loss; moreover, they
showed that an extension of ̂θ(̂MCp), which is based on smooth shrinkage, is
asymptotically minimax over certain regions in parameter space.] The result
in (27) differs from those discussed so far in the sense that it shows that
the loss of the model selected by Mallows’s Cp, i.e., Ln(θ, ̂θ(̂MCp)), which is
unknown in practice, can actually be estimated by n−1 times the value of
the Cp objective function MCn(̂MCp), provided only that

√
n is large in rela-

tion to σ2 + σ(θ′X ′Xθ/n)1/2. [Note that the upper bounds in (26) and (27),
although unknown, can be estimated, because θ′X ′Xθ/n can be estimated.
The error variance σ2 is assumed to be known here; in practice, σ2 can often
be estimated with reasonable accuracy.] A similar statement also holds for
the risk corresponding to the model selected by Cp. The ability to actually
estimate the risk or loss of the PMSE is important, because it allows for infer-
ence after model selection, like, e.g., the construction of asymptotically valid
confidence balls. See Beran (1996, 2000) and Beran and Dümbgen (1998) for
results in that direction. We also note that these papers allow for more gen-
eral classes of candidate models and also for more general estimators, that
is, for estimators based on smooth shrinkage.
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So far, we have considered the fixed-design setting, i.e., the regressors were
assumed to be nonrandom. The case of random design was studied by Baraud
(2002), Wegkamp (2003), and Birgé (2004), based on the results of Barron
et al. (1999). Leeb (2006b) gave results similar to (26) and (27) in the case
of random design, where the loss is defined as squared-error loss for out-of-
sample prediction, when a variant of the generalized cross-validation criterion
(or the criterion (12)) is used for model selection. Predictive inference after
model selection is studied in Leeb (2007).

4 Related Procedures Based on Shrinkage and Model
Averaging

Classical shrinkage-type estimators include the James–Stein estimator and re-
lated methods (cf. James and Stein (1961); Strawderman and Cohen (1971)),
or the ridge estimator (cf. Hoerl and Kennard (1970)). In recent years, there
has been renewed interest in shrinkage-type estimators; examples include the
bridge estimator of Frank and Friedman (1993), the nonnegative garrote of
Breiman (1995), the lasso of Tibshirani (1996), the lasso-type estimators an-
alyzed by Knight and Fu (2000), the smoothly clipped absolute deviation
(SCAD) estimators proposed by Fan and Li (2001), or the adaptive lasso of
Zou (2006). Many of these estimators just mentioned are instances of penal-
ized maximum likelihood or least squares estimators.

Model averaging estimators—instead of selecting one candidate model and
the corresponding estimator—form a weighted sum of the estimators corre-
sponding to each of the candidate models where the weights typically are al-
lowed to depend on the data. Model averaging estimators occur naturally in a
Bayesian framework, where each model is weighted by its posterior probabil-
ity. Good entry points into the considerable amount of literature on Bayesian
model averaging are Hoeting et al. (1999) or Brown et al. (2002); see also
the references given in these papers. Of course, model averaging methods
have also been analyzed from a frequentist perspective; see, e.g., Buckland
et al. (1997), Magnus (2002), Juditsky and Nemirovski (2000), Yang (2001,
2003), Hjort and Claeskens (2003), Danilov and Magnus (2004), Leung and
Barron (2006), as well as Bunea et al. (2007).

Both shrinkage-type estimators and model averaging estimators can be
regarded as extensions of PMSEs: Clearly, PMSEs can be viewed as special
cases of shrinkage-type estimators, in the sense that PMSEs restrict (shrink)
certain individual components of the parameter vector to zero. PMSEs can
also be viewed as a particular case of model averaging estimators, where the
weights are such that the selected model gets weight 1 and the other mod-
els get weight 0; cf. (2). This suggests that a number of phenomena that
one can observe for PMSEs have counterparts in the larger class of shrink-
age estimators or the class of estimators based on model averaging: Certain
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shrinkage estimators like the SCAD of Fan and Li (2001) or the adaptive
lasso of Zou (2006) can have a “sparsity property” in the sense that zero
components of the true parameter are estimated as exactly 0 with proba-
bility approaching 1 as sample size increases (provided that the estimator’s
tuning parameter is chosen appropriately); consistent PMSEs have the same
property. It is therefore not surprising that shrinkage estimators that have
this “sparsity property” perform unfavorably in terms of worst-case risk in
large samples (cf. the discussion in Section 2.2). In particular, the worst-case
risk of shrinkage estimators that have the sparsity property increases to in-
finity with sample size; cf. Leeb and Pötscher (2008a). Also, the phenomena
discussed in Section 2.3, namely, that the distribution is typically highly non-
normal and that the cumulative distribution function of PMSEs cannot be
estimated with reasonable accuracy, also occur with shrinkage estimators or
model averaging estimators; cf. Leeb and Pötscher (2006a), Pötscher (2006),
Pötscher and Leeb (2007), and Pötscher and Schneider (2007).

5 Further Reading

Apart from the expository articles already mentioned (Hocking (1976);
Thompson (1978a, b); Amemiya (1980); Giles and Giles (1993); Hansen and
Yu (2001); Rao and Wu (2001); Leeb and Pötscher (2005)), the article by
DeGooijer et al. (1985) provides a survey of model selection in time series
analysis; see also Chapter 5 of Hannan and Deistler (1988). The Bayesian
approach to model selection is discussed in Hoeting et al. (1999) and Berger
and Pericchi (2001).

The books by Judge and Bock (1978), Linhart and Zucchini (1986), Choi
(1992), McQuarrie and Tsai (1998), Burnham and Anderson (2002), Miller
(2002), Saleh (2006), and Konishi and Kitagawa (2008) deal with various
aspects of model selection.

There is also a considerable body of literature on model selection and
related methods in the areas of machine learning and empirical risk mini-
mization, mainly focusing on classification and pattern recognition problems;
see, e.g., Boucheron et al. (2005) and Cesa-Bianchi and Lugosi (2006).

We finally mention a development that circles around the idea of auto-
mated discovery and automated modeling; for an introduction see Phillips
(2005) and references therein.
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Nonparametric Modeling in Financial
Time Series

Jürgen Franke, Jens-Peter Kreiss and Enno Mammen

Abstract In this chapter, we deal with nonparametric methods for discretely
observed financial data. The main ideas of nonparametric kernel smoothing
are explained in the rather simple situation of density estimation and regres-
sion. For financial data, a rather relevant topic is nonparametric estimation of
a volatility function in a continuous-time model such as a homogeneous dif-
fusion model. We review results on nonparametric estimation for discretely
observed processes, sampled at high or at low frequency. We also discuss
application of nonparametric methods to testing, especially model validation
and goodness-of-fit testing. In risk measurement for financial time series, con-
ditional quantiles play an important role and nonparametric methods have
been successfully applied in this field too. At the end of the chapter we discuss
Grenander’s sieve methods and other more recent advanced nonparametric
approaches.

1 Introduction

Flexible stochastic modeling is a relevant topic not only for financial time
series, and nonparametric methods offer a unified approach for statistical in-
ference in many fields of applications. Firstly developed for independent data,
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nonparametric methods play a growing role in the area of dependent data
as well as in time series analysis. In time series analysis, one early reference
regarding nonparametric kernel estimation is Robinson (1983). He stated mul-
tivariate central limit theorems for estimators of finite-dimensional densities
of a strictly stationary process. Furthermore, he studied the asymptotics for
estimators of conditional densities and conditional expectations under strong
mixing conditions. The literature on nonparametric financial time series anal-
ysis is not restricted to kernel smoothing and its generalizations (like local
polynomial estimators, LPEs). Other approaches that have been considered
in the literature include smoothing splines, orthogonal series estimators and
curve estimators from the area of learning theory. In this chapter we mainly
focus on kernel and local polynomial smoothing methods for time series.

Besides estimation of relevant statistical quantities, nonparametric meth-
ods offer a general approach for testing, especially for goodness-of-fit tests,
model checking and validation. A widely implemented idea uses comparisons
of completely nonparametric estimators with parametric or semiparametric
model based counterparts. The null hypothesis of the parametric or semi-
parametric model is rejected if the two estimators differ too much. Also, in a
rather informal way nonparametric methods may be viewed as a diagnostic
tool for model building.

This chapter starts with a general description of smoothing methods for
time series (Section 2). In Section 2.1, we explain general ideas in nonpara-
metric density estimation. Section 2.2 then investigates the more complex
nonparametric estimation of a conditional expectation.

So far, the underlying data are discretely observed time series. Of course
for financial time series, the underlying modeling quite often is done in con-
tinuous time. However, also for a continuous-time model, typically the data
are discretely observed. Section 2.3 treats nonparametric methods for dis-
cretely observed financial continuous-time models. In particular, we discuss
nonparametric methods for diffusions. A main problem here is the estima-
tion of the volatility function. Estimation is quite different for data that are
observed with high or with low frequency, respectively.

In Section 3, we come back to the already mentioned application of non-
parametric methods to the area of testing and model checking. Another rele-
vant application of nonparametric methods is nonparametric quantile estima-
tion. Conditional quantiles are an important tool for defining risk measures
on the basis of financial time series. The famous value at risk (VaR), for
example, is given directly by a quantile of the return distribution, but also
the so-called expected shortfall as a coherent measure of risk uses conditional
quantiles in its definition as expected excess loss above the VaR. We give an
overview of this field in Section 4.

Section 5 is on advanced nonparametric modeling, where we mainly deal
with dimension reduction techniques like additive models and functional prin-
cipal components and with nonstationary models. The final section discusses
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Grenander’s sieve methods (Section 6) and concludes this chapter on non-
parametric methods and their application to financial time series.

For further reviews on nonparametric methods for time series, including
applications in finance and financial econometrics, we refer the interested
reader to the following monographs and overview articles: Härdle and Linton
(1994), Pagan and Ullah (1999), Fan and Yao (2003), Fan (2005), Gao (2007)
and Zhao (2008a). Readers mainly interested in nonparametric and semipara-
metric generalizations of autoregressive (AR) conditional heteroscedasticity
(ARCH) modeling are also referred to the chapter by Linton (2008) in this
handbook.

2 Nonparametric Smoothing for Time Series

In this section, we deal with the main principles and results of kernel smooth-
ing methods in the field of time series analysis. In order to keep the situation
as simple as possible, but still relevant, we are going to start with the fun-
damental problem of density estimation. For this problem, the main ideas of
kernel smoothing can be formulated without major technical difficulties. It is
argued that under suitable assumptions regarding the dependence structure
of the underlying time series data, we more or less obtain results compara-
ble to the classical independent and identically distributed situation. Besides
this, we briefly review some applications of density estimation in the area of
finance.

2.1 Density estimation via kernel smoothing

Let us assume that we have observations X1, . . . , Xn of a stationary and
real-valued univariate time series at hand. We assume that the stationary
distribution exists and that it possesses a continuous density p, say. It is
intended to estimate this density p on the basis of our data. One standard
density estimator is the so-called Nadaraya–Watson kernel density estimator,
which has the following form

p̂(x) =
1
nh

n
∑

t=1

K

(

x−Xt

h

)

. (1)

Here, x denotes a fixed value in R, K is a probability density (called ker-
nel) and h > 0 denotes a so-called bandwidth. The bandwidth is a cru-
cial parameter in kernel smoothing and has to be chosen with great care.
Typically, one chooses the kernel K such that it has a compact support.
In many cases K : [−1,+1] → R; often-used kernels on [−1,+1] are
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K(u) = 3/4 (1 − u)2 (Epanechnikov kernel) and K(u) = 15/16 (1 − u2)2,
the so-called biweight or quartic kernel. Kernels with unbounded support are
K(u) = 1/

√
2π exp(−u2/2), the standard normal kernel, or the logistic kernel

K(u) = exp(u)/(1 + exp(u))2.
For compactly supported kernel K, it holds that the summands of the

Nadaraya–Watson kernel density smoother are nonvanishing if and only if
an observation Xt falls in a small neighborhood of the fixed value x. If one
ensures through an assumption regarding the dependence structure of the
underlying data that observations falling in such an neighborhood are fairly
separated in time, it is reasonable to expect that the asymptotics of the
Nadaraya–Watson density estimator for time series data satisfying such a
dependence assumption do not significantly differ from the asymptotics in
the much simpler independent and identically distributed setting.

A classical assumption for a dependence structure is, of course, mixing.
The notion of strongly mixing observations, which has been used in many
applications, is defined as follows.

Definition 1 (Section 1.1 in Bosq (1996))
A process (Xt : t ∈ Z)) is said to be α-mixing or strongly mixing if

αk := sup
t∈Z

(sup (|P (B ∩C) − P (B)P (C)|)) , (2)

where the second “sup" is over all sets B and C, with B ∈ σ(Xs, s ≤ t) and
C ∈ σ(Xs, s ≥ t+ k) .
The “supt∈Z

" may be omitted if (Xt) is stationary.

For observations that are strongly mixing and strictly stationary we have
the following result for the asymptotic distribution of the Nadaraya–Watson
kernel density estimator.

Theorem 1 (Theorem 2.3 in Bosq (1996))
Let (Xt : t ∈ Z) denote a real-valued strictly stationary process. Assume
that whenever t1 < t2 < t3 < t4 (Xt1 , . . . , Xt4) possesses a density, which
is almost surely uniformly bounded (i.e., ‖ supt1,...,t4 pt1,...,t4‖∞, that for
the two-dimensional densities ps,t and the univariate stationary density p
sups<t ‖fs,t − f ⊗ f‖∞ holds and that p is bounded and twice continuously
differentiable with a bounded second derivative. Furthermore, if αk = O(k−β),
where β ≥ 2, and if hn = c

log lognn
−1/5, c > 0, then for all integers m and all

distinct x1, . . . , xm such that f(xi) > 0

(nhn)1/2
(

p̂(xi) − p(xi)
(

p̂(xi)
∫

K2(u)du
)1/2

, 1 ≤ i ≤ m

)

→ N (0, 1)m, (3)

where N (0, 1)m denotes the m-dimensional standard normal distribution.

From Theorem 1 it is easily seen that p̂(x) and p̂(y) for x �= y are asymptot-
ically independent. Heuristically, this can be explained as follows for kernels
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K with compact support. For h small enough, the sets of observations—which
enter into the computation of these two estimators—are disjoint. Further-
more, if one considers the time lag between two observations, one falling into
the neighborhood of x and the other one falling into the neighborhood of
y, one observes that this time lag typically is rather large. The assumptions
regarding the decay rate of the strong mixing coefficients then imply asymp-
totic independence. Even more, the time lag between observations falling in
one and the same neighborhood around x, say, is also large. By the same
reasoning as above, this leads to the fact that the asymptotics of the kernel
density estimator for strongly mixing time series observations are exactly the
same as for independent and identically distributed observations. This holds
as long as the mixing coefficients decay sufficiently fast. Hart (1996) coined
for this fact the term “whitening by windowing.”

The result of Theorem 1 can easily be extended to bandwidths h with
other rates of convergence. If the bandwidth h is of order n−1/5 or slower, an
additional bias term of order h2 shows up and is not asymptotically negligible
as it is in Theorem 1 .

The problem of nonparametric density estimation has been dealt with ex-
tensively in the literature. An early reference is Collomb (1984), but there
are lots of others for the univariate as well as for the multivariate case. The
various results typically differ in the exact assumption for the dependence
structure of the underlying time series data X1, . . . , Xn . Lu (2001) proved
the asymptotic normality of a kernel density estimator under a so-called near
epoch dependence, which is weaker than the notion of strong mixing (Defi-
nition 1) introduced above. Informally speaking, a sequence of observations
is called near epoch dependent if a future observation can be approximated
by an autoregressive function of increasing lag order.

In contrast to the independent and identically distributed and the above-
described weakly dependent cases, one obtains for long range dependent ob-
servations that the asymptotic distribution of a kernel density smoother does
not localize. It is only tight in the usual function spaces with supremum dis-
tances (Csörgö and Mielniczuk (1995)). Long-range dependence is said to be
present if the autocovariance function of the time series is not summable or,
equivalently, if the spectral density has a pole at zero frequency. For a recent
application in the case of long range dependent volatility models, see also
Casas and Gao (2008).

A further and promising dependence concept is the notion of weak depen-
dence, which was introduced by Doukhan and Louhichi (1999). It has been
successfully applied to different linear and especially nonlinear time series
situations. The notion of weak dependence assumes bounds on the covari-
ance of functions of observation tuples that are separated in time. Such an
assumption typically can been verified in various nonlinear situations.

For the practical implementation of kernel density estimators, one major
problem is the (data-adaptive) selection of a proper bandwidth h > 0. Results
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for selection rules based on leave-one-out or cross-validation approaches can,
for example, be found in Hall et al. (1995) or Hart and Vieu (1990).

For examples of applications of kernel density estimation in finance we
refer to Stanton (1997), Donald (1997) and Aït-Sahalia (1996b). The latter-
most paper, for example, applies nonparametric kernel density estimation
in order to price interest rate securities. Pritsker (1998) investigated the
performance of nonparametric density estimators (and also nonparametric
regression) when applied to persistent time series.

2.2 Kernel smoothing regression

Having dealt with nonparametric density estimation for dependent data, we
now proceed to the further topic of kernel and local polynomial smoothing
in nonparametric regression. The main goal of nonparametric regression is
the estimation of a conditional expectation m(x) = E[Y |X = x] of a random
variable Y given X on the basis of observations (X1, Y1), . . . , (Xn, Yn) .

In many applications X and Y are observations of one and the same time
series, e.g., m(x) = E[Xt|Xt−1 = x] represents the simplest univariate case
or in a multivariate setup we may have m(x) = E[Xt|(Xt−1, . . . , Xt−k) =
(x1 . . . , xk)]. A simple model in this framework is a nonparametric AR–ARCH
model of the following form

Xt = m(Xt−1) + σ(Xt−1) · εt , t ∈ Z (4)

with error variables εt that have conditional mean zero and unit variance,
given the past Xt−1, Xt−2, .... For nonparametric kernel smoothing in such a
discrete time model see Franke et al. (2002a).

In the following, we describe the local polynomial estimator (LPE) for esti-
mation of a conditional expectation. LPEs were introduced in Stone (1977).
Tsybakov (1986), Fan (1992, 1993) and Fan and Gijbels (1995) discuss the
behavior of LPEs for nonparametric regression in full detail. Masry (1996a)
and Hjellvik and Tjøstheim (1995) applied LPEs to dependent data, including
nonparametric autoregressive models.

Local polynomial smoothers are defined as follows. A pth-order LPE m̃p
h(x)

of m(x) = E[Y |X = x] is given as â0 = â0(x,X0, . . . , XT ), where â =
(â0, . . . , âp−1)′ minimizes

Mx =
T
∑

t=1

K

(

x−Xt−1

h

)

(

Xt −
p−1
∑

q=0

aq

(

x−Xt−1

h

)q
)2

. (5)

Here, as above, h > 0 denotes the bandwidth h of the LPE. For p = 0
the local polynomial smoother is also called a local constant smoother or
Nadaraya–Watson estimator.
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Typically, one assumes that the kernel K is a nonnegative density function
of bounded total variation with supp(K) ⊆ [−1, 1] . For Nadaraya–Watson
smoothing p = 0, one also uses kernels that have vanishing higher-order mo-
ments. These kernel functions must also have negative values. For such ker-
nels, Nadaraya–Watson smoothers achieve faster rates of convergence if the
regression function m fulfills higher-order smoothness conditions. For positive
kernels, the same rates can be achieved for smooth regression functions m
by choosing higher values of p. For K, no smoothness assumptions beyond
Lipschitz continuity are needed, at least they do not lead to a better asymp-
totic performance of the estimator. For finite samples, more regular kernels
can result in smoother estimated regression functions.

A solution of the least-squares problem in (5) leads to the following rep-
resentation of the LPE m̃p

h:

m̃p
h(x) =

n
∑

t=1

wh(x,Xt−1, {X0, . . . , Xn−1})Xt (6)

=
[

(D′
xKxDx)−1D′

xKxX
]

1
,

where X = (X1, . . . , Xn)′ ,

Dx =

⎛

⎜

⎜

⎝

1 x−X0
h · · · (x−X0

h )p−1

...
...

. . .
...

1 x−Xn−1
h · · · (x−Xn−1

h )p−1

⎞

⎟

⎟

⎠

and

Kx = Diag
[

K(
x−X0

h
), . . . ,K(

x−Xn−1

h
)
]

.

Above, [·]1 denotes the first entry of a vector.
At first sight, the analysis of m̃h seems to be quite involved, because the

Xt’s are dependent and enter into the right-hand side of (6) at several places.
But typically, it can be shown that by some approximations one can replace
the LPEs by quantities of much simpler structure. In a first step the weights
of the LPE can be written as (cf. (6))

wh(x,Xt−1, {X0, . . . , Xn−1})

=
p−1
∑

q=0

dq(x, {X0, . . . , Xn−1})K
(

x−Xt−1

h

)(

x−Xt−1

h

)q

,

where dq(x, {X0, . . . , Xn−1}) = ((D′
xKxDx)−1)1,q+1 .

Here, Mij denotes the (i, j)th entry of a matrix M . The functions dq
depend on {X0, . . . , XT−1} in a rather smooth manner. Under reason-
able assumptions, dq(x, {X0, . . . , Xn−1}) can be replaced asymptotically by
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d
(∞)
q (x) =

(

(ED′
xKxDx)

−1
)

1,q+1
. In an asymptotic discussion this allows us

to approximate wh(x,Xt−1, {X0, . . . , Xn−1}) by the weights

w(x,Xt−1) =
p−1
∑

q=0

d(∞)
q (x)K

(

x−Xt−1

h

)(

x−Xt−1

h

)q

,

which depend only on a single value Xt−1 .
For the Nadaraya–Watson kernel regression estimator (i.e., p = 0) one gets

m̃0
h(x) =

∑n
t=1K

(

x−Xt

h

)

Yt
∑n

t=1K
(

x−Xt

h

) . (7)

Asymptotic results for LPEs are widely available in the literature. Typi-
cally and as mentioned above, it is assumed that the underlying observations
(X1, Y1), . . . , (Xn, Yn) fulfill a strong mixing assumption. Under some further
assumptions, Masry (1996a) gives a pointwise asymptotic (i.e., for fixed x)
normality result for m̃p

h(x). As an extension, Masry (1996b) deals with uni-
form asymptotic results (i.e., asymptotic results of the behavior of supremum
distances of the LPE from the underlying function m). Moreover, the special
case of univariate observations can be found in Masry and Fan (1997). For the
special case where all covariables are lagged observations of the underlying
time series itself, we refer to Masry and Tjøstheim (1994).

Nonparametric modeling for stochastic volatility (SV) models is also re-
lated to nonparametric regression and autoregression. A simple SV model is
given by the following model equation:

Xt = σtηt , log(σ2
t ) = m

(

log σ2
t−1

)

+ s
(

log σ2
t−1

)

· εt , t = 1, . . . , n. (8)

Here, the volatility is driven by a nonparametric AR-ARCH model. The re-
lation of this model to nonparametric autoregression is obvious. In (8) it
is assumed that the errors ηt have conditional mean of 0 and conditional
variance of 1, given the past, and that the conditional mean of εt is zero.
Additionally, one can also assume that the bivariate errors (ηt, εt) are inde-
pendent and identically distributed, allowing or not allowing a dependence
between ηt and εt, e.g., a nonvanishing or vanishing correlation. Nonparamet-
ric inference for such models is discussed in Franke et al. (2003). As expected,
owing to the fact that we only can observe the variables Xt, it turns out that
the situation is related to nonparametric regression with errors in variables.
The errors in observing the covariates complicate statistical inference and
lead to slow convergence rates for nonparametric estimators. Related results
for volatility density estimation are found in Van Es et al. (2003, 2005).

LPEs are not the only possible approach for nonparametric estimation
of regression functions. Possible alternative methods are, on one hand, or-
thogonal series estimators and, on the other hand, smoothing or regression
splines. We refer to Wahba (1990), Stone (1994), Newey (1997) and Härdle



Nonparametric Modeling in Financial Time Series 935

et al. (1998). The reason why we mainly restrict our discussion within this
chapter to kernel smoothing is that all these alternative methods typically
do not allow for an explicit expression of the limiting distribution. This leads
to some difficulties in the implementation of testing procedures and the con-
struction of confidence intervals. For local polynomials we shall discuss tests
and confidence intervals in subsequent sections.

One may consider the behavior of nonparametric procedures under depen-
dency conditions other than strong mixing. Above, we already mentioned the
concept of weak dependence introduced in Doukhan and Louhichi (1999).
Asymptotic results of Nadaraya–Watson kernel type regression estimators
under this dependence concept can be found in Ango Nze et al. (2002) and
Ango Nze and Doukhan (2004). The concept of near epoch dependence (see
above) was used by Lu and Linton (2007) to treat local linear fitting.

We conclude this section by briefly mentioning some applications of non-
parametric density and regression estimates in the field of financial time se-
ries. Aït-Sahalia and Lo (1998) suggested a nonparametric fitting of option
prices and moreover constructed a nonparametric estimator of the state-price
density. Aït-Sahalia and Duarte (2003) also dealt with shape-constrained non-
parametric estimation and moreover gave applications to finance. Fan and
Yao (1998) applied local linear regression to the squared residuals for esti-
mating the conditional variance or volatility function of stochastic regression
with a focus on finance.

2.3 Diffusions

In the field of continuous-time modeling of financial data a time-homogeneous
diffusion process (Xt : t ≥ 0) is frequently used. Such a process is given by
the following stochastic differential equation:

dXt = m(Xt) dt + σ(Xt) dWt . (9)

In (9) (Wt : t ≥ 0) denotes a standard Brownian motion and the functions
m(·) and σ2(·) are the drift (or mean) and the diffusion or variance process,
respectively. We refer to Jiang and Knight (1997) for regularity conditions
ensuring regular and stationary solutions of (9).

In a nonparametric approach one wants to estimate both functions without
assuming any parametric functional form. Of course, especially an adequate
specification of the diffusion function is of great importance because it has a
great influence on pricing of derivatives.

A discrete version of (9) is given by

Xt+δ −Xt = m(Xt) · δ + σ(Xt) ·
√
δ · εt , (10)
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where (εt) denotes a sequence of independent and identically distributed and
standard normally distributed random variables. Equation (10) is known as
the so-called Euler-approximation scheme with approximation rate δ−1/2 .
An alternative discrete-time model is obtained via the Itô–Taylor expansion
with convergence rate δ−1, which reads as follows

Xt+δ −Xt = m(Xt) · δ + σ(Xt) ·
√
δ · εt +

1
2
σ2(Xt) · δ · (ε2t − 1) . (11)

The two functions m and σ2 can be derived from the first two moments of
the conditional distribution of increments

m(x) = lim
δ→0

E

(

Xt+δ −Xt

δ
|Xt = x

)

(12)

and

σ2(x) = lim
δ→0

E

(

(Xt+δ −Xt)2

δ
|Xt = x

)

. (13)

It is obvious how nonparametric regression estimators can be used in this
context if we observe the diffusion Xt on a fine grid t = kδ, k = 1, . . . , n,
of interval [0, T ]. The Euler approximation suggests applying the classical
nonparametric regression estimators with Xk ≡ Xkδ as regressor variables
and Yk ≡ (X(k+1)δ −Xkδ)/δ as responses. Proceeding as in (7), we obtain an
estimator m̂(x) of m(x). Using Zk ≡ (X(k+1)δ −Xkδ)2/δ as responses, we get
a nonparametric estimator σ̂2(x) of the diffusion function (Stanton (1997),
Fan (2005)).

An asymptotic investigation can be done by letting δ → 0. Since the stan-
dard deviation of Yk approximately is of order δ−1/2 we get nonconsistency
for the estimator of the drift (in contrast to the estimation of the diffusion
function). An alternative estimator of the drift function is given by the fol-
lowing equation (Jiang and Knight (1997)):

m̂(x) =
1

2π̂(x)
∂
(

σ̂2(x)π̂(x)
)

∂x
. (14)

Here, π denotes the stationary density (which is assumed to exist) and π̂(x) is
an estimator of π(x), e.g., the kernel density estimator. Under some regularity
conditions, Jiang and Knight (1997) showed pointwise consistency of the es-
timator (13) and derived its asymptotic distribution. Furthermore and under
stronger conditions, consistency of the modified drift function estimator (14)
is derived. Jiang and Knight (1997) also applied the proposed nonparametric
estimators to short-term interest rate models.

Jacod (2000) investigated a nonparametric estimator of kernel type for
the diffusion function in situations in which we observe our data at time
points k/n, k = 1, . . . , n. Hoffmann (2001) and Bandi and Nguyen (2003)
provided a general asymptotic theory for nonparametric estimates of the
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diffusion function in a stationary situation based on discrete observations.
Hoffmann (2001) also gave optimal rates in the minimax sense. Mostly, the
asymptotic analysis is done for an increasing sample size that comes from
more frequent observations in a fixed interval, e.g., k/n, k = 1, . . . , n . An
alternative approach would allow an increasing observation period. This is
covered in Bandi and Phillips (2003), who investigated discretely observed
homogeneous stochastic differential equations with minimal requirements for
the data generating process. The asymptotic analysis in this paper was done
for increasing observation frequency as well as for increasing observation time
span. The method developed applies also to nonstationary data.

Stanton (1997) suggested the use of higher-order approximations of con-
ditional expectations like the mean and variance function in nonparametric
diffusion. Stanton developed on the basis of these approximations nonpara-
metric kernel estimates for continuous-time diffusion processes that are ob-
served at discrete grids. He illustrated his results for various financial data
sets. Fan and Zhang (2003) discussed the proposal of Stanton (1997) and
investigated asymptotic bias and variance properties of the estimators. The
main assumptions in order to obtain consistency and asymptotic expressions
for bias and variance are the typical assumptions regarding the bandwidth h
of the kernel estimator (like h → 0 and nh → ∞ or nh3 → ∞ as n → ∞).
Furthermore it is assumed that the distance δ between two subsequent obser-
vations of the diffusion process fulfills δ → 0 and that δ multiplied by some
power of the sample size n converges to infinity. The last assumption ensures
that the range over which one can (discretely) observe the diffusion increases.

A completely different asymptotic approach is needed for the discussion
of low-frequency observations. Here, for discretely observed data Xk·δ, k =
0, 1, . . . , n, the sampling frequency δ−1 is not large. This suggests an asymp-
totic approach where δ is fixed as the number of observations n tends to
infinity. The estimation problem for σ(·) turns out to be more involved. The
main idea in Gobet et al. (2004) is to construct in a first step an estimator
of quantities of the form E [f(Xδ) |X0 = x ] and to identify in a second step
from such conditional expectations the unknown variance function σ(·). It
shows that this more or less leads to a deconvolution problem. For a thor-
ough investigation of the situation of fixed sampling frequency we refer to
Gobet et al. (2004). For an extension to nonparametric estimation for Lévy
processes from low-frequency observations see Neumann and Reiss (2007).

3 Testing

A major motivation behind the application of nonparametric methods is
checking and validating parametric and semiparametric models. Such a check
can be based on a comparison of the statistical results from a nonparametric
analysis with the parametric or semiparametric findings. Formally, this leads
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to specification or goodness-of-fit tests. In this section we will discuss such
approaches.

A correct specification as well as an adequate model evaluation is espe-
cially important for the variance, or volatility function, σ(·) because this
function directly affects derivative pricing. This is true for discrete-time
and continuous-time models. Testing whether or whether not a hypotheti-
cal continuous-time model is correctly specified has attracted much interest
in the literature. A major part of the literature concentrates on the case of
discretely observed samples Xtδ, t = 1, . . . , n, arising from discrete approxi-
mations like (10).

An early reference promoting the idea of comparing a completely non-
parametric estimator and its model-based, typically parametric, counterpart
is Härdle and Mammen (1993). In this paper, such an approach was dis-
cussed and investigated in detail for independent and identically distributed
(Xt, Yt). The authors used the regression problem as an example and mainly
considered the comparison along the usual L2 distance of both regression
estimates. In the case of a parametric hypothesis for a regression function
m, the test uses a parametric estimator m

̂θ and a nonparametric estima-
tor, e.g., the Nadaraya–Watson estimator m̃0

h, defined in (7). In the paper,
it is argued that it is not reasonable to use the L2-distance test statistic
Tn =

∫

[m̃0
h(x)−m

̂θ(x)]
2w(x) dx, where w is some weight function. We briefly

explain this for the special case of a simple hypothesis m = m0 and m
̂θ = m0.

For this case one can show that (for certain choices of bandwidths) a test
based on the statistic Tn is asymptotically equivalent to a linear test based
on the statistic 2

∫

[E∗
0 [m̃0

h(x)] −m0(x)]][m̃0
h(x) − E∗

0 [m̃0
h(x)]]w(x) dx. Here,

E∗
0 [·] denotes the conditional expectation on the hypothesis m = m0, given

the covariates Xt. Thus, asymptotically, the test Tn is not an omnibus test
but a linear test that checks only for deviations in one direction. This mis-
behavior of the test is caused by the fact that the bias of the nonparametric
estimator does not vanish, i.e., that E∗

0 [m̃0
h(x)]−m0(x) is not asymptotically

negligible. A simple idea solves this bias problem. If one adds to m (or in
general to m

̂θ) a term that is asymptotically equivalent to the bias of m̃0
h on

the hypothesis, then in the difference of m̃0
h and the biased version of m

̂θ the
bias cancels out. One way to add a bias is to use a smoothed version of m
(or of m

̂θ, respectively), i.e.,

∑n
t=1K

(

x−Xt

h

)

m
̂θ(Xt)

∑n
t=1K

(

x−Xt

h

) .

Implementing this new estimator ofm into an L2-distance test statistic results
in the following test statistic:

˜Tn =
∫

[

∑n
t=1K

(

x−Xt

h

)

[Yt −m
̂θ(Xt)]

∑n
t=1K

(

x−Xt

h

)

]2

w(x) dx.



Nonparametric Modeling in Financial Time Series 939

This is the test statistic that was proposed in Härdle and Mammen (1993).
There it was shown that ˜Tn has an asymptotic normal distribution and that
it behaves like an omnibus test. The asymptotic normality result is only good
for theoretical considerations and it is not accurate enough for applications
to data sets with moderate sample sizes. The reason is that asymptotic nor-
mality comes from asymptotic independence of values of the nonparametric
estimator m̃0

h at points that differ more than h. In a certain sense, one applies
a central limit theorem for a sum of O(h−d) independent summands, where
d is the dimension of the covariates Xt. Also for relatively large values of the
sample size, the value of h−d may be relatively small, leading to a poor normal
approximation of the test statistic. In Härdle and Mammen (1993) the wild
bootstrap idea from parametric linear models was proposed for nonparamet-
ric regression and its asymptotic consistency was shown. Kreiss et al. (2008)
followed this proposal and considered testing problems for simple models in
time series regression with applications to volatility testing. Besides para-
metric models they also considered lower-dimensional nonparametric models
(e.g., additive nonparametric models) as hypothetical models to be tested.

Aït-Sahalia (1996a) applied the concept of parametric versus nonparamet-
ric fits in order to test a parametric structure of stationary densities, which are
implied by (parametric) continuous-time models. Hong and Li (2002) applied
this approach to testing parametric models for the transition densities. They
did this in univariate diffusions and in various related and extended models of
continuous-time financial time series. See also Chen et al. (2008) for a model
specification test of a parametric diffusion process based on kernel estimation
of the transitional density of the underlying process. All approaches can be
viewed as goodness-of-fit tests (based on discrete observations) for specific
continuous-time models.

Aït-Sahalia et al. (2001) gave a general description of these nonparametric
testing methods and they applied them to testing different specifications of
option prices, including the standard parametric Black–Scholes model, semi-
parametric specifications of the volatility surfaces and general nonparametric
specifications. They proposed a test of a restricted specification of regression.
Their test is based on comparing the residual sum of squares from kernel
regression. They also discussed cases where both the restricted specification
and the general model are nonparametric.

Following a comparable line of argument, Aït-Sahalia et al. (2005) de-
veloped a specification test for the existence of jumps in discretely sampled
jump-diffusions, again based on a comparison of a nonparametric estimate
of the transition density or distribution function with their corresponding
parametric counterparts.

Further recent applications of the testing approach described to financial
data are presented in Arapis and Gao (2006) and Thompson (2008).

Finally, we refer to Gao et al. (2007) for some general aspects of specifica-
tion testing in cases where nonstationary covariables are present.
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Model validation can also be based on confidence bands for the function of
interest. A valid test, e.g., for a parametric hypothesis, is given by checking
whether the parametric estimate is entirely contained within such a band.
For the implementation of this idea the main problem is the computation of
the (asymptotic) distribution of a kind of supremum distance of the nonpara-
metric estimator from the true underlying function. For the simple model (4)
corresponding results can be found in Neumann and Kreiss (1998), Franke
et al. (2002b) and Zhao and Wu (2007). Especially, Franke et al. (2002b)
gave consistency results for uniform bootstrap confidence bands of the au-
toregression function based on kernel estimates. Franke et al. (2004) extended
those results to kernel estimates of the volatility function and applied them
to checking for symmetry of volatility. The application of simultaneous con-
fidence bands to nonparametric model validation in a variety of models used
in financial econometrics can be found in Zhao (2008b).

4 Nonparametric Quantile Estimation

Conditional quantiles are the key to the most important risk measures for
financial time series. The value at risk (VaR) is directly given by a quantile of
the return distribution, but also the expected shortfall as a coherent measure
of risk. Artzner et al. (1997) used conditional quantiles in its definition as
expected excess loss above the VaR.

Let Yt denote a stationary real-valued time series representing, e.g., the
return of an asset at time t. Then, for given level α, the conditional quantile
qαt of Yt given information Ft−1 is defined by

pr( Yt ≤ qαt | Ft−1 ) = α.

In financial statistics, many methods for estimating the quantile qαt are
volatility based, i.e., they start from a general stochastic volatility (SV) model

Yt = μt + ηt, ηt = σtεt

with independent and identically distributed (0,1) innovations εt, and with
μt, σ

2
t being the conditional mean and variance of Yt given Ft−1. Then, the

conditional quantile is simply qαt = μt+σtqαε , where qαε denotes the α-quantile
of the law of the innovations. For VaR calculations, a popular method is based
on the GARCH(1,1) model, where μt = 0, σ2

t = ω + aY 2
t−1 + bσ2

t−1.
A nonparametric approach may be based on a nonparametric autoregres-

sion with exogenous input and autoregressive conditional heteroscedastic-
ity with exogenous components (ARX–ARCHX–like model), where μt =
μ(Xt−1), σ2

t = σ2(Xt−1) and where the d-dimensional predictor variableXt−1

may consist of finitely many past returns Ys, s < t, as well as of past values
of other financial time series, e.g., index returns, market trend and volatility
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indicators, foreign exchange and interest rates, etc. To estimate the condi-
tional quantile qαt in such a model, it suffices to estimate the local trend and
volatility functions μ(x) and σ(x), which is discussed in Section 2.2.

The volatility-based approach to estimating conditional quantiles has two
drawbacks. On one hand, the distribution of the innovations εt has to be spec-
ified, e.g., as standard normal or as heavy-tailed like some t distribution. On
the other hand, Engle and Manganelli (2004) have pointed out that volatility-
based estimates of VaR tacitly assume that extreme negative returns show the
same kind of random pattern as the majority of typical returns which mainly
determine the volatility estimate. To avoid these problems, Engle and Man-
ganelli (2004) considered a class of models, called CaViaR, i.e., conditional
AR VaR, where the conditional quantile qαt is specified as a parametric func-
tion of finitely many of its own past values as well as of past returns. They
proposed estimating the unknown model parameters directly by following
the regression quantiles approach of Koenker and Bassett (1978); see also
Koenker (2005). It is based on observing that the conditional α-quantile is
given as

qαt = argmin
q∈R

E
{

|Yt − q|α
∣

∣ Ft−1

}

, (15)

where |z|α = (α − 1)z1(−∞,0](z) + αz1(0,∞)(z) denotes the so-called check
function.

For estimating conditional quantiles directly in a nonparametric manner,
it is convenient to replace the common nonparametric AR or ARX models
by a quantile ARX model (QARX):

Yt = qα(Xt−1) + ηt,

where the conditional quantile of ηt given Ft−1 is zero. Then, qαt = qα(Xt−1).
If this is a model for asset returns Yt and α ≈ 0, the quantile function
qα(x) directly describes the location of the extreme losses without having to
consider some scale measure. If some quantile analogue of volatility is required
nevertheless, the QARX model may be specified to a QARX–ARCHX process

Yt = qα(Xt−1) + sα(Xt−1)εt,

where the quantile innovations εt are independent and identically distributed
to α-quantile 0 and α-scale 1. Here, the α-scale of a real random variable Z
having α-quantile qαZ is defined as the α-quantile of |Z − qαZ |α.

Similarly to estimating the conditional mean by a local least-squares poly-
nomial estimate, we get nonparametric estimates of the quantile function
qα(x) by minimizing the local sample version of (15). For the special case
of a local constant approximation, we get a kernel estimate q̂α(x, h) from a
sample (Yt, Xt−1), t = 1, . . . , N, as
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q̂α(x, h) = argmin
q∈R

1
Nh

N
∑

t=1

∣

∣Yt − q
∣

∣

α
K

(

x−Xt−1

h

)

,

where K is a kernel function as in Section 2. Equivalently, we get q̂α(x, h) by
inverting the corrresponding Nadaraya–Watson kernel estimate,

̂Fh(y|x) =
∑N

t=1 1(−∞,y](Yt) K
(x−Xt−1

h

)

∑N
t=1K

(x−Xt−1
h

) ,

of the conditional distribution function F (y|x) = E
{

1(−∞,y](Yt)
∣

∣Xt−1 = x
}

.
The quantile kernel estimate q̂α(x, h) has theoretical properties similar to

those of the corresponding Nadaraya–Watson kernel estimate of the condi-
tional mean, e.g., consistency for N → ∞, h → 0, Nh → ∞, bias and variance
expansions, asymptotic normality and uniform consistency (Abberger (1996),
Cai (2002), Franke and Mwita (2003)). It is related to the local median of
Truong and Stone (1992) corresponding to α = 0.5 and the special case of a
rectangular kernel; see also Boente and Fraiman (1995). It provides a robust
alternative to the Nadaraya–Watson estimate as a conditional measure of
location.

Other nonparametric approaches to estimating conditional quantiles are
based on neural networks Chen and White (1999) or, more generally, sieve
estimates (Franke et al. (2007)), Section 6 of this chapter), or on support
vector machines (Christmann (2004)).

5 Advanced Nonparametric Modeling

The nonparametric regression and autoregression models of the last sections
are more or less of the form response = nonparametric function + noise. In
particular, in the case of multivariate covariates, the nonparametric methods
behave poorly for moderate sample sizes and achieve only slow rates of con-
vergence. This so-called curse of dimensionality can be circumvented by more
structured models. A classic example is additive nonparametric models where
the components of the multivariate covariate vector enter only additively into
the regression. Such additive nonparametric models are an important tool in
nonparametric regression. They allow a flexible modeling, are easy to inter-
pret and there exist stable and reliable estimators. Thus, they avoid a lot
of problems that are present if one uses a full dimensional nonparametric
regression model. A classic estimation approach in additive modeling is the
backfitting estimator (Hastie and Tibshirani (1991)). Mammen et al. (1999)
have developed a closed asymptotic theory for a version of backfitting called
smooth backfitting. Related models appear for panel and cross-section data
where nonparametric approaches can be used to describe the dynamics of the
individual time series or of underlying factors. Nonparametric autoregression
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models for panels were used in Mammen et al. (2008) and in Linton et al.
(2008). These estimators are also defined as solutions of empirical integral
equations. For semiparametric generalized ARCH (GARCH) type approaches
see also the chapter by Linton (2008) in this handbook.

A further approach uses nonparametric methods to reduce the dimension
of the underlying data to finite-dimensional summaries and studies the dy-
namics of the data by applying classical methods from vector autoregression
to the finite-dimensional vectors. This approach was applied in Borak et al.
(2008), Fengler et al. (2007) and Brüggemann et al. (2008) for modeling the
dynamics of implied volatility surfaces. Theoretical work includes the proof
of the following oracle property for different models. A vector autoregression
analysis based on the fitted finite-dimensional process leads asymptotically
in first order to the same results as an analysis based on the unobserved true
process. This property allows a simple and closed asymptotic distribution
theory for the statistical analysis.

Nonparametric principal component analysis for implied volatility surfaces
was used in Cont and da Fonseca (2002) and Benko et al. (2008). Connor et al.
(2007) considered an additive model with time-varying scalar coefficients and
applied this approach to the Fama–French model and to testing the capital
asset pricing model.

Linton and Sancetta (2007) used kernel smoothing to estimate conditional
distributions and expectations given an infinite past. Their estimator was
based on smoothing with respect to an increasing number of lagged values.

Financial modeling often requires the inclusion of nonstationary compo-
nents. Nonparametric smoothing for nonstationary diffusions was discussed in
Bandi and Phillips (2003); see also the discussion in Section 2.3. Nonparamet-
ric regression with nonstationary covariates and nonparametric density esti-
mation for nonstationary processes were also considered in Phillips and Park
(1998), Moloche (2001) and Karlsen and Tjøstheim (2001). The approach in
the last two papers was generalized to additive models in Schienle (2007). It
turns out that for the additive model consistent nonparametric estimation
is possible, even in situations in which the full dimensional nonparametric
regression model cannot be estimated consistently. Moreover, nonparamet-
ric regression models with nonstationary errors were studied in Linton and
Mammen (2008). They used the method of differencing the nonparametric
model in order to transform the data to an additive model with stationary
errors.

Recently there has been growing interest in statistics of models, which
allow for a huge number of parameters, even much larger than the sample
size. The essential assumption is that a much smaller number of parameters
is significantly different from zero. Data of this type naturally arise in finance.
For a recent application with high-dimensional covariance matrices see Fan et
al. (2007b). It also can be expected that the new developments in statistical
learning with high-dimensional data will find further important applications
in finance.
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In Fan et al. (2007a), it is proposed to combine two independent nonpara-
metric estimators of the volatility matrix—one based on the time domain
and the other one based on the state domain—to form a new aggregated
estimator in order to circumvent the curse of dimensionality.

Often, it is known that a function fulfills certain shape constraints such
as monotonicity, convexity, etc. Such constraints naturally arise in different
settings of finance. Incorporating the constraints in the estimation leads to
a more accurate estimate. A general smoothing framework for nonparamet-
ric estimation under shape constraints is presented in Mammen (1991) and
Mammen et al. (2001). Discussion of shape-constrained nonparametric esti-
mation with applications to finance can be found in Aït-Sahalia and Duarte
(2003).

6 Sieve Methods

Up to now, we have mainly considered nonparametric function estimates
based on local smoothing. Owing to the local sparseness of data in spaces
of higher dimensions, these methods work well only for low-dimensional pre-
dictor variables. To cope with this curse of dimensionality, semiparametric
models or models with constraints like additivity on the functions to be esti-
mated may be considered; see also the last section. Another possibility is to
consider Grenander’s method of sieves (Grenander (1981)). We illustrate the
idea for a nonparametric ARX model

Yt = m(Xt−1) + εt,

where Yt is real-valued and Xt−1 ∈ R
d may consist of past values Yt−1, . . . ,

Yt−p as well as of past values of other time series. (Yt, Xt−1),∞ < t < ∞, is
assumed to be a stationary process. To estimate the autoregressive function
m(x) from a sample (Yt, Xt−1), t = 1, . . . , n, we approximate it by a function
mn ∈ Gn, where Gn = {g(x; θ); θ ∈ Θn} is a parametric class of functions,
and the dimension Dn of the set Θn of admissible parameters depends on
sample size n. We consider the nonlinear least-squares estimate of θ,

̂θn = arg min
θ∈Θn

n
∑

t=1

(

Yt − g(Xt−1; θ)
)2
, (16)

and we get mn(x) = g(x; ̂θn) as a sieve estimate of m(x).
The method becomes nonparametric by choosing the function classes Gn

to be increasing with sample size n and by assuming that they have a univer-
sal approximation property, i.e., their union G∞ = G1 ∪G2 ∪ . . . is dense in an
appropriate function space containing m(x), e.g., the space L2(μ) of functions
that are square-integrable with respect to the stationary distribution of Xt.
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Under appropriate assumptions regarding the time series and the estimation
procedure, it can be shown that the sieve estimate is nonparametrically con-
sistent in the sense that E((mn(Xs)−m(Xs))2 =

∫

(mn(x)−m(x))2μ(dx) →
0 for n → ∞ provided that Dn → ∞ too with the right rate (Franke and
Diagne (2006)).

Frequently, the size of the parameters is bounded, i.e., |θ| ≤ Δn, θ ∈ Θn,
for a kind of norm | · |, and, then, the consistency depends on a combination
of rate conditions on Dn and Δn → ∞. In practice, one could use a few large
parameter values or, alternatively, many small parameters to approximate
m(x) without overfitting. Parameter dimension and size Dn and Δn deter-
mine the smoothness of the nonparametric function estimate similarly to the
bandwidth in local smoothing. They can be data adaptively chosen by the
same kind of methods (using cross-validation, bootstrap or other approxima-
tions of the mean-square prediction error), but sieve estimates are typically
applied in situations where Xt is high-dimensional and the sample size n is
large. In this case, an affordable and computationally feasible method is sim-
ple validation, i.e., part of the sample, say, (Yt, Xt−1), t = 1, . . . , N, is used as
a training sample for calculating estimates for various parameter dimensions,
and the rest of the data (Yt, Xt−1), t = N + 1, . . . , n, are used as a validation
sample for comparing the predictive performance of the resulting function
estimates.

For analyzing financial time series, the still most popular type of sieve es-
timate uses output functions of feedforward neural networks. The theoretical
properties of those estimates have been thoroughly investigated by White and
his coworkers. Here, the corresponding function classes Gn consist of functions

g(x; θ) = v0 +
Hn
∑

h=1

vhψ
(

w0i +
d

∑

i=1

whixi
)

,

Hn
∑

h=0

|vh| ≤ Δn. (17)

The Dn = 1 + Hn + Hn(1 + d)-dimensional parameter vector θ consists of
all the network weights v0, ..., vHn , whi, h = 1, ..., Hn, i = 0, ..., d. ψ is a given
function, for application to financial time series typically of sigmoid shape,
e.g., ψ(u) = tanh(u).

For more than one decade, neural networks have been a well-established
tool for solving classification and forecasting problems in financial applica-
tions (Bol et al. (1996), Refenes et al. (1996)). In particular, they have been
used for forecasting financial time series to generate trading signals for the
purpose of portfolio management as in Evans (1997) and Franke (1998). Al-
ternatively, as for portfolio allocation, the main goal is to achieve on average
a large return combined with a small risk, not to get precise forecasts of fu-
ture prices. Neural networks may be used to get the allocation directly as the
output of a network by replacing the empirical mean-square prediction error
in (16) by an economically meaningful performance measure, e.g., the risk-
adjusted return (Heitkamp (1996), Franke and Klein (1999)). In risk manage-
ment, neural networks were used for nonparametric estimation of volatility in
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Franke (2000) and Franke and Diagne (2006) and of corresponding volatility-
based VaR (see Section 4). If, for example, a time series Yt follows a nonpara-
metric ARCHX model Yt = σ(Xt−1)εt, then a neural-network-based volatility
estimate is σn(Xt−1) = g1/2(Xt−1; ̂θn), where g(x; θ) is given by (17) and ̂θn
minimizes

n
∑

t=1

(

Y 2
t − g(Xt−1; θ)

)2
,

as σ2(x) is the conditional variance of Yt given Xt−1 = x.
Neural networks (Chen and White (1999)) and other sieve estimates

(Franke et al. (2007)) can also be used for estimating conditional quantile
functions directly, providing an approach to VaR calculation based on more
information than just the past prices of the asset under consideration. Again,
a regression quantile approach may be used (see Section 4). The quantile
function qα(x) is estimated by qαn (x) = g(x; ̂θn) with now

̂θn = arg min
θ∈Θn

n
∑

t=1

∣

∣Yt − g(Xt−1; θ)
∣

∣

α
.

Another example of sieve estimates corresponds to the qualitative thresh-
old ARCH (QTARCH) models of Gouriéroux and Montfort (1992); see also
Section 5.4 of Gouriéroux (1997). Allowing for a general predictor variable,
they are of the form

Yt =
p

∑

i=1

αi1Ai(Xt−1) +
( p
∑

i=1

βi1Bi(Xt−1)
)

εt,

where εt are i.i.d. (0,1) innovations, and A1, . . . , Ap, B1, . . . , Bp are two par-
titions of the predictor space R

d. If p is allowed to increase with sample size
n this model can be interpreted as a sieve approximation to the general non-
parametric ARX–ARCHX model Yt = m(Xt−1) + σ(Xt−1)εt with classes Gn
consisting of piecewise constant functions. Franke et al. (2007) considered
quantile sieve estimates based on that function class including a classifica-
tion and regression tree (CART) like algorithm (Breiman et al. (1984)) for
choosing the partition adaptively from the data. In a related approach, Au-
drino and Bühlmann (2001) considered VaR calculation based on piecewise
parametric GARCH models. Many other function classes which may be used
for constructing sieve estimates are discussed in the survey of Györfy et al.
(2002).

Sieve estimates have also been used for modeling the nonparametric com-
ponents in semiparametric models. The efficiency for the resulting parametric
estimators was considered in Chen and Shen (1998) and Ai and Chen (2003).
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Modelling Financial High Frequency
Data Using Point Processes

Luc Bauwens and Nikolaus Hautsch

Abstract We survey the modelling of financial markets transaction data
characterized by irregular spacing in time, in particular so-called financial
durations. We begin by reviewing the important concepts of point process the-
ory, such as intensity functions, compensators and hazard rates, and then the
intensity, duration, and counting representations of point processes. Next, in
two separate sections, we review dynamic duration models, especially autore-
gressive conditional duration models, and dynamic intensity models (Hawkes
and autoregressive intensity processes). In each section, we discuss model
specification, statistical inference and applications.

1 Introduction

Since the seminal papers by Hasbrouck (1991) and Engle and Russell (1998)
the modelling of financial data at the transaction level is an ongoing topic
within financial econometrics. This has created a new literature, often referred
to as "the econometrics of (ultra-)high-frequency finance" or "high-frequency
econometrics". The peculiar properties of financial transaction data, such as
the irregular spacing in time, the discreteness of price changes, the bid-ask
bounce as well as the presence of strong intraday seasonalities and persistent
dynamics, has spurred a surge in new econometric approaches. One important
strand of the literature deals with the irregular spacing of data in time. Taking
into account the latter is indispensable if one seeks to exploit the full amount
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of information in financial transaction data. For example, the timing and
frequency of order and trade arrivals carry information on the state of the
market and play an important role in market microstructure analysis, for the
modelling of intraday volatility as well as the measurement and prediction of
liquidity, transaction costs and implied liquidity risks.

Accounting for the irregular occurrence of transaction data requires us to
model the series as so-called financial point processes. We label the inter-event
waiting times as financial durations and classify them according to the events
of interest, with the most common being trade durations and quote durations,
defined by the time between two consecutive trade or quote arrivals, respec-
tively. Price durations correspond to the time between cumulative absolute
price changes of given size and can be used as a volatility measure. Similarly,
a volume duration is defined as the time until a cumulative order volume of
given size is traded and captures an important dimension of market liquidity.
For more details and illustrations, see Bauwens and Giot (2001) or Hautsch
(2004).

One important property of transaction data is that market events are
clustered over time implying that financial durations follow positively auto-
correlated processes with strong persistence. In fact, the dynamic properties
of financial durations are quite similar to those of (daily) volatilities. These
features may be captured in alternative ways through different dynamic mod-
els based on either duration, intensity or counting representations of a point
process.

This chapter reviews duration- and intensity-based models of financial
point processes. In Section 2, we introduce the fundamental concepts of point
process theory and discuss major statistical tools. In Section 3, we review the
class of dynamic duration models. Specifying a (dynamic) duration model is
arguably the most intuitive way to characterize a point process in discrete
time and has been suggested by Engle and Russell (1998), which inspired
a large literature. Nevertheless, Russell (1999) realized that a continuous-
time setting on the basis of the intensity function constitutes a more flexible
framework which is particularly powerful for the modelling of multivariate
processes. Different types of dynamic intensity models are presented in Sec-
tion 4.

2 Fundamental Concepts of Point Process Theory

In this section, we discuss important concepts in point process theory which
are needed throughout this chapter. In Section 2.1, we introduce the notation
and basic definitions. The fundamental concepts of intensity functions, com-
pensators and hazard rates are defined in Section 2.2, whereas in Section 2.3
different classes and representations of point processes are discussed. Finally,
in Section 2.4, we present the random time change theorem which yields a
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powerful result for the construction of diagnostics for point process models.
Most concepts discussed in this section are based upon Chapter 2 of Karr
(1991).

2.1 Notation and definitions

Let {ti}i∈{1,...,n} denote a random sequence of increasing event times 0 <
t1 < . . . < tn associated with an orderly (simple) point process. Then,
N(t) :=

∑

i≥1 1l {ti≤t} defines the right-continuous (càdlàg) counting func-
tion. Throughout this chapter, we consider only point processes which are
integrable, i.e. E[N(t)] < ∞ ∀ t ≥ 0. Furthermore, {Wi}i∈{1,...,n} denotes
a sequence of {1, . . . ,K}-valued random variables representing K different
types of events. Then, we call the process {ti,Wi}i∈{1,...,n} an K-variate
marked point process on (0,∞) as represented by the K sequences of event-
specific arrival times {tki }i∈{1,...,nk}, k = 1, . . . ,K, with counting functions
Nk(t) :=

∑

i≥1 1l {ti≤t}1l {Wi=k}.
The internal history of an K-dimensional point process N(t) is given by

the filtration FN
t with FN

t = σ(Nk(s) : 0 ≤ s ≤ t, k ∈ Ξ), Nk(s) =
∑

i≥11l {ti≤s}1l {Wi∈Ξ}, whereΞ denotes the σ-field of all subsets of {1, . . . ,K}.
More general filtrations, including e.g. also processes of explanatory variables
(covariates) {zi}i∈{1,...,n} are denoted by Ft with FN

t ⊆ Ft.
Define xi := ti − ti−1 with i = 1, . . . , n and t0 := 0 as the inter-event

duration from ti−1 until ti. Furthermore, x(t) with x(t) := t − tN̆(t), with
N̆(t) :=

∑

i≥1 1l {ti<t} denoting the left-continuous counting function, is called
the backward recurrence time. It is a left-continuous function that grows
linearly through time with discrete jumps back to zero after each arrival
time ti. Finally, let θ ∈ Θ denote model parameters.

2.2 Compensators, intensities, and hazard rates

In martingale-based point process theory, the concept of compensators plays
an important role. Using the property that an Ft-adapted point process N(t)
is a submartingale1, it can be decomposed into a zero mean martingale M(t)
and a (unique) Ft-predictable increasing process, ˜Λ(t), which is called the
compensator of N(t) and can be interpreted as the local conditional mean
of N(t) given the past. In statistical theory, this decomposition is typically
referred to as the Doob-Meyer decomposition.

1 An Ft-adpated càdlàg process N(t) is a submartingale if E[|N(t)|] <∞ for each t and if
s < t implies that E[N(t)|Fs] ≥ N(s).
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Define λ(t) as a scalar, positive Ft-predictable process, i.e. λ(t) is adapted
to Ft, and left-continuous with right hand limits. Then, λ(t) is called the
(Ft-conditional) intensity of N(t) if

˜Λ(t) =
∫ t

0

λ(u)du, (1)

where ˜Λ(t) is the (unique) compensator of N(t). This relationship emerges
from the interpretation of the compensator as integrated (conditional) hazard
function. Consequently, λ(t) can be also defined by the relation

E[N(s) −N(t)|Ft] = E
[∫ s

t

λ(u)du
∣

∣

∣Ft

]

, (2)

which has to hold (almost surely) for all t, s with 0 ≤ t ≤ s. Letting s ↓ t leads
to the heuristic representation which is more familiar in classical duration
analysis. Then, λ(t) is obtained by

λ(t+) := lim
Δ↓0

1
Δ

E [N(t+Δ) −N(t)| Ft] , (3)

where λ(t+) := limΔ↓0 λ(t +Δ). In case of a stationary point process, λ̄ :=
E[dN(t)]/dt = E[λ(t)] is constant.

Equation (3) manifests the close analogy between the intensity function
and the hazard function which is given by

h(x) := f(x)/S(x) = lim
Δ→0

1
Δ

Pr[x ≤ X < x+Δ|X ≥ x] (4)

with x denoting the (inter-event) duration as represented by the realization of
a random variableX with probability density function f(x), survivor function
S(x) := 1−F (x), and cumulative distribution function (cdf) F (x) := Pr[X ≤
x]. Whereas the intensity function is defined in (continuous) calendar time,
the hazard rate is typically defined in terms of the length of a duration x and
is a key concept in (cross-section) survival analysis.

2.3 Types and representations of point processes

The simplest type of point process is the homogeneous Poisson process defined
by

Pr [(N(t+Δ) −N(t)) = 1 |Ft ] = λΔ+ o(Δ), (5)
Pr [(N(t+Δ) −N(t)) > 1 |Ft ] = o(Δ), (6)
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with Δ ↓ 0. Then, λ > 0 is called the Poisson rate corresponding to the
(constant) intensity. Accordingly, equations (5) and (6) define the inten-
sity representation of a Poisson process. A well-known property of homoge-
nous Poisson processes is that the inter-event waiting times xi are indepen-
dently exponentially distributed, leading to the duration representation. In
this context, λ is the hazard rate of the exponential distribution. Further-
more, it can be shown (see e.g. Lancaster (1997)) that the number of events
in an interval (a, b], N(a, b) := N(b) − N(a) is Poisson distributed with
Pr[N(a, b) = k] = exp[−λ(b − a)][λ(b − a)]k/k!, yielding the counting rep-
resentation. All three representations of a Poisson process can be used as the
starting point for the specification of a dynamic point process model.

Throughout this chapter we associate the term duration models to a
model of the (discrete-time) duration process observable at the event-times
{ti}i=1,...,n. Then, researchers parameterize the conditional distribution func-
tion F (xi|Fti−1) or, alternatively, the conditional hazard rate h(xi|Fti−1).
Generally, such a model should aim, in particular, at fitting the dynamical
and distributional properties of durations. The latter is often characterized
by the excess dispersion, corresponding to the ratio between the standard de-
viation to the mean. In classical hazard rate models employed in traditional
survival analysis, the hazard rate is typically parameterized in terms of co-
variates, see e.g. Kalbfleisch and Prentice (1980), Kiefer (1988) or Lancaster
(1997). The most well-known hazard model is the proportional hazard model
introduced by Cox (1972) and is given by

h(x|z; θ) = h0(x|γ1)g(z, γ2), (7)

where θ = (γ1, γ2), h0(·) denotes the so-called baseline hazard rate and g(·)
is a function of the covariates z and parameters γ2. The baseline hazard rate
may be parameterized in accordance with a certain distribution, like e.g., a
Weibull distribution with parameters λ, p > 0 implying

h0(x|γ1) = λp(λx)p−1. (8)

For p = 1 we obtain the exponential case h0(x|γ1) = λ, implying a con-
stant hazard rate. Alternatively, if p > 1, ∂h0(x|γ1)/∂x > 0, i.e. the hazard
rate is increasing with the length of the spell which is referred to as "posi-
tive duration dependence". In contrast, p < 1 implies ”negative duration de-
pendence”. Non-monotonic hazard rates can be obtained with more flexible
distributions, like the generalized F and special cases thereof, including the
generalized gamma, Burr, Weibull and log-logistic distributions. We refer to
the Appendix to Chapter 3 of Bauwens and Giot (2001) and to the Appendix
of Hautsch (2004) for definitions and properties. Alternatively, the baseline
hazard may be left unspecified and can be estimated nonparametrically, see
Cox (1975).

An alternative type of duration model is the class of accelerated failure
time (AFT) models given by
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h(x|z; θ) = h0[xg(z, γ2)|γ1]g(z, γ2). (9)

Here, the effect of the exogenous variables is to accelerate or to decelerate the
time scale on which the baseline hazard h0 is defined. As illustrated in Section
3.1, AFT-type approaches are particularly attractive to model autocorrelated
duration processes.

Because of their discrete-time nature, duration models cannot be used
whenever the information set has to be updated within a duration spell,
e.g. caused by time-varying covariates or event arrivals in other point pro-
cesses. For this reason, (discrete-time) duration models are typically used in
a univariate framework.

Whenever a continuous-time modelling is preferential (as e.g. to account
for the asynchronous event arrivals in a multivariate framework), it is more
natural to specify the intensity function directly, leading to so-called inten-
sity models. One important extension of a homogenous Poisson process is to
allow the intensity to be directed by a real-valued, non-negative (stationary)
random process λ∗(t) with (internal) history F∗

t leading to the class of dou-
bly stochastic Poisson processes (Cox processes). In particular, N(t) is called
a Cox process directed by λ∗(t) if conditional on λ∗(t), N(t) is a Poisson
process with mean λ∗(t), i.e. Pr[N(a, b) = k|F∗

t ] = exp[−λ∗(t)] [λ∗(t)]k /k!.
The doubly stochastic Poisson process yields a powerful class of probabilistic
models with applications in seismology, biology and economics. For instance,
specifying λ∗(t) in terms of an autoregressive process yields a dynamic inten-
sity model which is particularly useful to capture the clustering in financial
point processes. For a special type of doubly stochastic Poisson process see
Section 4.2.

A different generalization of the Poisson process is obtained by specifying
λ(t) as a (linear) self-exciting process given by

λ(t) = ω +
∫ t

0

w(t − u)dN(u) = ω +
∑

ti<t

w(t − ti), (10)

where ω is a constant, w(s) denotes a non-negative weight function, and
∫ t

0
w(s)dN(s) is the stochastic Stieltjes integral of the process w with respect

to the counting process N(t). The process (10) was proposed by Hawkes
(1971) and is therefore named a Hawkes process. If w(s) declines with s,
then, the process is self-exciting in the sense that Cov[N(a, b), N(b, c)] > 0,
where 0 < a ≤ b < c. Different types of Hawkes processes and their applica-
tions to financial point processes are presented in Section 4.1. In alternative
specifications, the intensity is driven by an autoregressive process which is
updated at each point of the process. This leads to a special type of point
process models which does not originate from the classical point process lit-
erature but rather from the autoregressive conditional duration (ACD) lit-
erature reviewed in Section 3 and brings time series analysis into play. The
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resulting model is called an autoregressive conditional intensity model and is
considered in Section 4.2.

Finally, starting from the counting representation of a Poisson process
leads to the class of count data models. Dynamic extensions of Poisson pro-
cesses in terms of counting representations are not surveyed in this chapter.
Important references are e.g. Rydberg and Shephard (2003) and Heinen and
Rengifo (2007).

2.4 The random time change theorem

One fundamental result of martingale-based point process theory is the (mul-
tivariate) random time change theorem by Meyer (1971) which allows to
transform a wide class of point processes to a homogeneous Poisson process:

Theorem 1 Assume that a multivariate point process (N1(t), . . . , NK(t)) is
formed from the event times {tki }i∈{1,...,nk}, k = 1, . . . ,K, and has continuous
compensators ( ˜Λ1(t), . . ., ˜ΛK(t)) with ˜Λk(∞) = ∞ for each k = 1, . . . ,K.
Then, the point processes formed from { ˜Λk(tki )}{i=1,...,nk}, k = 1, . . . ,K, are
independent Poisson processes with unit intensity.

Proof. See Meyer (1971) or Brown and Nair (1988) for a more accessible
and elegant proof.

Define τk(t) as the (Ft-)stopping time obtained by the solution of
∫ τk(t)

0
λk(s)ds = t. Applying the random time change theorem to (1) implies

that the point processes ˜Nk(t) with ˜Nk(t) := Nk(τk(t)) are independent
Poisson processes with unit intensity and event times { ˜Λk(tki )}{i=1,...,nk} for
k = 1, . . . ,K. Then, the so-called integrated intensities

Λk(tki−1, t
k
i ) :=

∫ tki

tki−1

λk(s)ds = ˜Λk(tki ) − ˜Λk(tki−1) (11)

correspond to the increments of independent Poisson processes for k =
1, . . . ,K. Consequently, they are independently standard exponentially dis-
tributed across i and k. For more details, see Bowsher (2007). The random
time change theorem plays an important role in order to construct diagnostic
tests for point process models (see Section 4.3) or to simulate point processes.
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3 Dynamic Duration Models

In this section, we discuss univariate dynamic models for the durations be-
tween consecutive (financial) events. In Section 3.1, we review the class of
ACD models, which is by far the most used class in the literature on finan-
cial point processes. In Section 3.2, we briefly discuss statistical inference for
ACD models. In Section 3.3, we present other dynamic duration models, and
in the last section we review some applications.

3.1 ACD models

The class of ACD models has been introduced by Engle and Russell (1997,
1998) and Engle (2000). In order to keep the notation simple, define xi in the
following as the inter-event duration which is standardized by a seasonality
function s(ti), i.e. xi := (ti−ti−1)/s(ti). The function s(ti) is typically param-
eterized according to a spline function capturing time-of-day or day-of-week
effects. Time-of-day effects arise because of systematic changes of the market
activity throughout the day and due to openings of other related markets. In
most approaches s(ti) is specified according to a linear or cubic spline func-
tion and is estimated separately in a first step yielding seasonality adjusted
durations xi. Alternatively, a non-parametric approach has been proposed by
Veredas et al. (2002). For more details and examples regarding seasonality
effects in financial duration processes, we refer the reader to Chapter 2 of
Bauwens and Giot (2001) or to Chapter 3 of Hautsch (2004).

The key idea of the ACD model is to model the (seasonally adjusted)
durations {xi}i=1,...,n in terms of a multiplicative error model in the spirit of
Engle (2002), i.e.

xi = Ψi εi, (12)

where Ψi denotes a function of the past durations (and possible covariates),
and εi defines an i.i.d. random variable. It is assumed that

E[εi] = 1, (13)

so that Ψi corresponds to the conditional duration mean (the so-called "con-
ditional duration") with Ψi := E[xi|Fti−1 ]. The ACD model can be rewritten
in terms of the intensity function as

λ(t|Ft) = λε

(

x(t)
ΨN̆(t)+1

)

1
ΨN̆(t)+1

, (14)

where λε(s) denotes the hazard function of the ACD error term. This for-
mulation shows that the ACD model belongs to the class of AFT models.
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Assuming εi to be standard exponentially distributed yields the so-called Ex-
ponential ACD model. More flexible specifications arise by assuming εi to
follow a more general distribution, see the discusssion after equation (8). It
is evident that the ACD model is the counter-part to the GARCH model
(Bollerslev (1986)) for duration processes. Not surprisingly, many results and
specifications from the GARCH literature have been adapted to the ACD
literature.

The conditional duration, Ψi, is defined as a function Ψ of the information
set Fti−1 and provides therefore the vehicle for incorporating the dynamics
of the duration process. In this respect it is convenient to use an ARMA-type
structure of order (p, q), whereby

Ψi = Ψ(Ψi−1, . . . , Ψi−q, xi−1, . . . , xi−p). (15)

For simplicity, we limit the exposition in the sequel to the case p = q = 1.
The first model put forward in the literature is the linear ACD model,

which specializes (15) as

Ψi = ω + βΨi−1 + αxi−1. (16)

Since Ψi must be positive, the restrictions ω > 0, α ≥ 0 and β ≥ 0 are usually
imposed. It is also assumed that β = 0 if α = 0, otherwise β is not identified.
The process defined by (12), (13) and (16) is covariance-stationary if

(α + β)2 − α2σ2 < 1, (17)

where σ2 := Var[εi] < ∞, and has the following moments and autocorrela-
tions:

(1) E[xi] := μx = ω/(1 − α− β),
(2) Var[xi] := σ2

x = μ2
x σ

2 1−β2−2αβ
1−(α+β)2−α2σ2 ,

(3) ρ1 = α (1−β2−αβ)
1−β2−2αβ and ρn = (α+ β)ρn−1 for n ≥ 2.

The condition (17) ensures the existence of the variance. These results are
akin to those for the GARCH(1,1) zero-mean process. They can be general-
ized to ACD(p,q) processes with p, q > 1. In applications, estimates of α+ β
are typically found to be in the interval (0.85,1) with α lying in the interval
(0.01,0.15). Since the ACD(1,1) model can be written as

xi = ω + (α+ β)xi−1 + ui − βui−1, (18)

where ui := xi − Ψi is a martingale difference innovation, the resulting auto-
correlation function (ACF) is that of an ARMA(1,1) process that has AR and
MA roots close to each other. This type of parameter configuration generates
the typical ACF shape of clustered data. Nevertheless, the ACF decreases
at a geometric rate, though it is not uncommon to find duration series with
an ACF that decreases at a hyperbolic rate. This tends to happen for long
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series and may be due to instabilities of parameters which give the illusion of
long memory in the process. In order to allow for long range dependence in
financial duration processes, Jasiak (1998) extends the ACD model to a frac-
tionally integrated ACD model. For alternative ways to specify long memory
ACD models, see Koulikov (2002).

A drawback of the linear ACD model is that it is difficult to allow Ψi
to depend on functions of covariates without violating the non-negativity
restriction. For this reason, Bauwens and Giot (2000) propose a class of log-
arithmic ACD models, where no parametric restrictions are needed to ensure
positiveness of the process:

lnΨi = ω + β lnΨi−1 + αg(εi−1), (19)

where g(εi−1) is either ln εi−1 (log-ACD of type I) or εi−1 (type II). Using
this setting, it is convenient to augment Ψi by functions of covariates, see
e.g. Bauwens and Giot (2000). The stochastic process defined by (12), (13)
and (19) is covariance-stationary if

β < 1, E [εi exp{αg(εi)}] < ∞, E [exp{2αg(εi)}] < ∞. (20)

Its mean, variance and autocorrelations are given in Section 3.2 in Bauwens
and Giot (2001), see also Fernandes and Grammig (2006) and Bauwens et al.
(2008). Drost and Werker (2004) propose to combine one of the previous ACD
equations for the conditional duration mean with an unspecified distribution
for εi, yielding a class of semi-parametric ACD models.

The augmented ACD (AACD) model introduced by Fernandes and Gram-
mig (2006) provides a more flexible specification of the conditional duration
equation than the previous models. Here, Ψi is specified in terms of a power
transformation yielding

Ψ δ1
i = ω + βΨ δ1

i−1 + αΨ δ1
i−1[|εi−1 − ξ| − ρ(εi−1 − ξ)]δ2 ,

where δ1 > 0, δ2 > 0, ξ, and ρ are parameters. The so-called news impact
function [|εi−1 − ξ| − ρ(εi−1 − ξ)]δ2 allows a wide variety of shapes of the
curve tracing the impact of εi−1 on Ψi for a given value of Ψi−1 and the
remaining parameters. The parameters ξ and ρ are shift and rotation param-
eters, respectively. If ξ = ρ = 0, the linear ACD model is obtained by setting
δ1 = δ2 = 1, the type I logarithmic ACD model by letting δ1 and δ2 tend to 0,
and the type II version by letting δ1 tend to 0 and setting δ2 = 1. Fernandes
and Grammig (2006) compare different versions of the AACD model using
IBM price durations arising from trading at the New York Stock Exchange
(NYSE). Their main finding is that "letting δ1 free to vary and accounting
for asymmetric effects (by letting ξ and ρ free) seem to operate as substitute
sources of flexibility". Hautsch (2006) proposes an even more general aug-
mented ACD model that nests in particular the so-called EXponential ACD
model proposed by Dufour and Engle (2000) implying a kinked news impact
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function. As a counterpart to the so-called semiparametric GARCH model
proposed by Engle and Ng (1993), Hautsch (2006) suggests specifying the
news impact function in terms of a linear spline function based on the sup-
port of εi. He illustrates that the high flexibility of this model is needed in
order to appropriately capture the dynamic properties of financial durations.

Another way to achieve flexibility in ACD models is to use the idea of mix-
tures. The mixture may apply to the error distribution alone, as in De Luca
and Zuccolotto (2003), De Luca and Gallo (2004) and Hujer and Vuletic
(2007), or may involve the dynamic component as well. Zhang et al. (2001)
propose a threshold ACD model (TACD), wherein the ACD equation and the
error distribution change according to a threshold variable such as the pre-
vious duration. For J regimes indexed by j = 1, . . . , J , the model is defined
as

xi = Ψi ε
(j)
i , (21)

Ψi = ω(j) + β(j)Ψi−1 + α(j)xi−1 (22)

when xi−1 ∈ [rj−1, rj), and 0 = r0 < r1 < . . . < rJ = ∞ are the threshold
parameters. The superscript (j) indicates that the distribution or the model
parameters can vary with the regime operating at observation i. This model
can be viewed as a mixture of J ACD models, where the probability to be
in regime j at i is equal to 1 and the probabilities to be in each of the other
regimes are equal to 0. Hujer et al. (2002) extend this model to let the regime
changes be governed by a hidden Markov chain.

While the TACD model implies discrete transitions between the individ-
ual regimes, Meitz and Teräsvirta (2006) propose a class of smooth transition
ACD (STACD) models generalizing linear and logarithmic ACD models. Con-
ditions for strict stationarity, ergodicity, and existence of moments for this
model and other ACD models are provided in Meitz and Saikkonen (2004)
using the theory of Markov chains. A motivation for the STACD model is,
like for the AACD model, to allow for a nonlinear impact of the past duration
on the next expected duration.

3.2 Statistical inference

The estimation of most ACD models can be easily performed by maximum
likelihood (ML). Engle (2000) demonstrates that the results by Bollerslev and
Wooldridge (1992) on the quasi-maximum likelihood (QML) property of the
Gaussian GARCH(1,1) model extend to the Exponential-ACD(1,1) model.
QML estimates are obtained by maximizing the quasi-loglikelihood function
given by
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lnL
(

θ; {xi}{i=1,...,n}
)

= −
n

∑

i=1

[

lnΨi +
xi
Ψi

]

. (23)

For more details we refer to Chapter 3 of Bauwens and Giot (2001), Chapter
5 of Hautsch (2004), and to the survey of Engle and Russell (2005).

Residual diagnostics and goodness-of-fit tests can be performed by evalu-
ating the stochastic properties of the ACD residuals ε̂i = xi/̂Ψi. The dynamic
properties are easily analyzed based on Portmanteau statistics or tests against
independence such as proposed by Brock et al. (1996). The distributional
properties can be evaluated by Engle and Russell’s (1998) test for no excess
dispersion using the asymptotically standard normal test statistic

√

n/8 σ̂2,
where σ̂2 denotes the empirical variance of the residual series. Dufour and
Engle (2000) and Bauwens et al. (2004) evaluate the models’ goodness-of-fit
based on density forecasts using the probability integral transform as pro-
posed by Diebold et al. (1998). A nonparametric test against distributional
misspecification is proposed by Fernandes and Grammig (2005) based on the
work by Aït-Sahalia (1996). Statistics that exclusively test for misspecifica-
tions of the conditional mean function Ψi have been worked out by Meitz and
Teräsvirta (2006) using the Lagrange Multiplier principle and by Hautsch
(2006) using (integrated) conditional moment tests. A common result is that
too simple ACD specifications, such as the ACD or Log-ACD model are
not flexible enough to adequately capture, even in-sample, the properties of
observed financial durations. However, in order to avoid the problem of po-
tential over-fitting a serious comparison of ACD specifications should rely on
out-of-sample evaluations.

3.3 Other models

ACD models strongly resemble ARCH models. Therefore it is not surpris-
ing that Taylor’s (1986) stochastic volatility model for financial returns has
been a source of inspiration of corresponding duration models. Bauwens and
Veredas (2004) propose the stochastic conditional duration (SCD) model as
an alternative to ACD-type models. The SCD model relates to the logarith-
mic ACD model in the same way as the stochastic volatility model relates
to (a restricted version of) the exponential GARCH model by Nelson (1991).
Thus the model is defined by equations (12), (13), and

lnΨi = ω + β lnΨi−1 + γεi−1 + ui, (24)

where ui is iid N(0, σ2
u). The process {ui} is assumed to be independent of the

process {εi}. The set of possible distributions for the duration innovations εi is
the same as that for ACD models. This model generates a rich class of hazard
functions for xi through the interplay of two distributions. The latent variable
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Ψi may be interpreted as being inversely related to the information arrival
process which triggers bursts of activity on financial markets. The ”leverage”
term γεi−1 in (24) is added by Feng et al. (2004) to allow for an intertemporal
correlation between the observable duration and the conditional duration.
Bauwens and Veredas (2004) use a logarithmic transformation of (12) and
employ QML estimation based on the Kalman filter. Strickland et al. (2006)
use Bayesian estimation with a Markov chain Monte Carlo algorithm. For
ML estimation, Feng et al. (2004) use the Monte Carlo method of Durbin
and Koopman (2004), and Bauwens and Galli (2008) use efficient importance
sampling.

The ACD and SCD models reviewed above share the property that the
dynamics of higher moments of the duration process are governed by the
dynamics of the conditional mean. Ghysels et al. (2004) argue that this feature
is restrictive and introduce a nonlinear two factor model that disentangles
the movements of the mean and that of the variance of durations. Since
the second factor is responsible for the variance heterogeneity, the model is
named the stochastic volatility duration (SVD) model. The departure point
for this model is a standard static duration model in which the durations are
independently and exponentially distributed with a gamma heterogeneity, i.e.

xi =
Ui

aVi
=

H(1, F1i)
aH(b, F2i)

, (25)

where Ui and Vi are two independent variables which are gamma(1,1) (i.e.
exponential) and gamma(b, b) distributed, respectively. The last ratio in
(25) uses two independent Gaussian factors F1i and F2i, and H(b, F ) =
G(b, ϕ(F )), where G(b, .) is the quantile function of the gamma(b, b) dis-
tribution and ϕ(.) the cdf of the standard normal distribution. Ghysels et al.
(2004) extend this model to a dynamic setup through a VAR model for the
two underlying Gaussian factors. The estimation of the model requires sim-
ulation methods.

3.4 Applications

ACD models can be used to estimate and predict the intra-day volatility of
returns from the intensity of price durations. As shown by Engle and Russell
(1998), a price intensity is closely linked to the instantaneous price change
volatility. The latter is given by

σ̃2(t) := lim
Δ↓0

1
Δ

E

[

(

p(t+Δ) − p(t)
p(t)

)2
∣

∣

∣

∣

∣

Ft

]

, (26)
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where p(t) denotes the price (or midquote) at t. By denoting the counting
process associated with the event times of cumulated absolute price changes
of size dp by Ndp(t), we can formulate (26) in terms of the intensity function
of the process of dp-price changes. Then, the dp-price change instantaneous
volatility can be computed as

σ̃2
(dp)(t) = lim

Δ↓0

1
Δ

Pr [|p(t+Δ) − p(t)| ≥ dp |Ft ] ·
[

dp

p(t)

]2

= lim
Δ↓0

1
Δ

Pr
[

{Ndp(t+Δ) −Ndp(t)} > 0 |Ft

]

·
[

dp

p(t)

]2

:= λdp(t) ·
[

dp

p(t)

]2

, (27)

where λdp(t) denotes the corresponding dp-price change intensity. Hence, us-
ing (14), one can estimate or predict the instantaneous volatility of the price
process p(t) at any time point. Giot (2005) compares these estimates with
usual GARCH based estimates obtained by interpolating the prices on a grid
of regularly spaced time points. He finds that GARCH based predictions
are better measures of risk than ACD based ones in a Value-at-Risk (VaR)
evaluation study.

ACD and related models have been typically used to test implications of
asymmetric information models of price formation. For example, the model of
Easley and O‘Hara (1992) implies that the number of transactions influences
the price process through information based clustering of transactions. Then,
including lags as well as expectations of the trading intensity as explanatory
variables in a model for the price process allows to test such theoretical pre-
dictions. For a variety of different applications in market microstructure re-
search, see Engle and Russell (1998), Engle (2000), Bauwens and Giot (2000),
Engle and Lunde (2003), and Hafner (2005) among others. Several authors
have combined an ACD model with a model for the marks of a financial
point process. The basic idea is to model the duration process by an ACD
model, and conditionally on the durations, to model the process of marks.
Bauwens and Giot (2003) model the direction of the price change between
two consecutive trades by formulating a competing risks model, where the
direction of the price movement is triggered by a Bernoulli process. Then, the
parameters of the ACD process depend on the direction of the previous price
change, leading to an asymmetric ACD model. A related type of competing
risks model is specified by Bisière and Kamionka (2000). Prigent et al. (2001)
use a similar model for option pricing. Russell and Engle (2005) develop an
autoregressive conditional multinomial model to simultaneously model the
time between trades and the dynamic evolution of (discrete) price changes.
An alternative approach based on a dynamic integer count model is proposed
by Liesenfeld et al. (2006).
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A related strand of the literature studies the interaction between the trad-
ing intensity and the trade-to-trade return volatility. Engle (2000) augments
a GARCH equation for returns per time unit by the impact of the inverse of
the observed and expected durations (xi and Ψi), and of the surprise xi/Ψi.
A decrease in xi or Ψi has a positive impact on volatility while the surprise
has a reverse influence. Ghysels and Jasiak (1998) and Grammig and Wellner
(2002) study a GARCH process for trade-to-trade returns with time-varying
parameters which are triggered by the trading intensity. Meddahi et al. (2006)
derive a discrete time GARCH model for irregularly spaced data from a con-
tinuous time volatility process and compare it to the ACD-GARCH models
by Engle (2000) and Ghysels and Jasiak (1998).

4 Dynamic Intensity Models

In this section, we review the most important types of dynamic intensity mod-
els which are applied to model financial point processes. The class of Hawkes
processes and extensions thereof are discussed in Section 4.1. In Section 4.2,
we survey different autoregressive intensity models. Statistical inference for
intensity models is presented in Section 4.3, whereas the most important
applications in the recent literature are briefly discussed in Section 4.4.

4.1 Hawkes processes

Hawkes processes originate from the statistical literature in seismology and
are used to model the occurrence of earthquakes, see e.g. Vere-Jones (1970),
Vere-Jones and Ozaki (1982), and Ogata (1988) among others. Bowsher
(2007) was the first applying Hawkes models to financial point processes.
As explained in Section 3.2, Hawkes processes belong to the class of self-
exciting processes, where the intensity is driven by a weighted function of the
time distance to previous points of the process. A general class of univariate
Hawkes processes is given by

λ(t) = ϕ
(

μ(t) +
∑

ti<t w(t − ti)
)

, (28)

where ϕ denotes a possibly nonlinear function, μ(t) is a deterministic function
of time, and w(s) denotes a weight function. If ϕ is a positive function, we
obtain the class of nonlinear Hawkes processes considered by Brémaud and
Massoulié (1996). In this case, μ(t) and w(t) can take negative values since
the transformation ϕ(·) preserves the non-negativity of the process. Such a
specification is useful whenever the intensity may be negatively affected by
the process history or covariates. For instance, in the context of financial
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duration processes, μ(t) can be parameterized as a function of covariates.
Stability conditions for nonlinear Hawkes processes are derived by Brémaud
and Massoulié (1996). For the special case where ϕ is a linear function, we
obtain the class of linear Hawkes processes originally considered by Hawkes
(1971). They are analytically and computationally more tractable than their
nonlinear counterparts, however, they require μ(t) > 0 and w(t) > 0 in order
to ensure non-negativity.

As pointed out by Hawkes and Oakes (1974), linear self-exciting processes
can be viewed as clusters of Poisson processes. Then, each event is one of two
types: an immigrant process or an offspring process. The immigrants follow
a Poisson process and define the centers of so-called Poisson clusters. If we
condition on the arrival time, say ti, of an immigrant, then independently of
the previous history, ti is the center of a Poisson process, Υ (ti), of offspring
on (ti,∞) with intensity function λi(t) = λ(t− ti), where λ is a non-negative
function. The process Υ (ti) defines the first generation offspring process with
respect to ti. Furthermore, if we condition on the process Υ (ti), then each
of the events in Υ (ti), say tj , generates a Poisson process with intensity
λj(t) = λ(t − tj). These independent Poisson processes build the second
generation of offspring with respect to ti. Similarly, further generations arise.
The set of all offspring points arising from one immigrant are called a Poisson
cluster. Exploiting the branching and conditional independence structure of a
(linear) Hawkes process, Møller and Rasmussen (2004) develop a simulation
algorithm as an alternative to the Shedler-Lewis thinning algorithm or the
modified thinning algorithm by Ogata (1981) (see e.g. Daley and Vere-Jones
(2003)). The immigrants and offsprings can be referred to as "main shocks"
and "after shocks" respectively. This admits an interesting interpretation
which is useful not only in seismology but also in high-frequency finance.
Bowsher (2007), Hautsch (2004) and Large (2007) illustrate that Hawkes
processes capture the dynamics of financial point processes remarkably well.
This indicates that the cluster structure implied by the self-exciting nature of
Hawkes processes seem to be a reasonable description of the timing structure
of events on financial markets.

The most common parameterization of w(t) has been suggested by Hawkes
(1971) and is given by

w(t) =
P
∑

j=1

αje
−βjt, (29)

where αj ≥ 0, βj > 0 for j = 1, . . . , P are model parameters, and P denotes
the order of the process and is selected exogenously (or by means of informa-
tion criteria). The parameters αj are scale parameters, whereas βj drive the
strength of the time decay. For P > 1, the intensity is driven by the super-
position of different exponentially decaying weighted sums of the backward
times to all previous points. In order to ensure identification we impose the
constraint β1 > . . . > βP . It can be shown that the stationarity of the process
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requires 0 <
∫ ∞
0
w(s)ds < 1, which is ensured only for

∑P
j=1 αj/βj < 1, see

Hawkes (1971).
While (29) implies an exponential decay, the alternative parameterization

w(t) =
H

(t+ κ)p
, (30)

with parameters H , κ, and p > 1 features a hyperbolic decay. Such weight
functions are typically applied in seismology and allow to capture long range
dependence. Since financial duration processes also tend to reveal long mem-
ory behavior (see Jasiak (1998)), this specification may be interesting in fi-
nancial applications.

Multivariate Hawkes models are obtained by a generalization of (28). Then,
λ(t) is given by the (K × 1)-vector λ(t) = (λ1(t), . . . , λK(t))′ with

λk(t) = ϕ
(

μk(t) +
∑K

r=1

∑

tri<t w
k
r (t− tri )

)

, (31)

where wk
r (s) is a k-type weight function of the backward time to all r-type

events. Using an exponential decay function, Hawkes (1971) suggests to pa-
rameterize wk

r (s) as

wk
r (t) =

P
∑

j=1

αkr,je
−βk

r,jt, (32)

where αkr,j ≥ 0 and βkr,1 > . . . > βkr,P > 0 determine the influence of the
time distance to past r-type events on the k-type intensity. Thus, in the
multivariate case, λk(t) depends not only on the distance to all k-type points,
but also on the distance to all other points of the pooled process. Hawkes
(1971) provides a set of linear parameter restrictions ensuring the stationarity
of the process.

Bowsher (2007) proposes a generalization of the Hawkes model which al-
lows to model point processes that are interrupted by time periods where
no activity takes place. In high-frequency financial time series these effects
occur because of trading breaks due to trading halts, nights, weekends or
holidays. In order to account for such effects, Bowsher proposes to remove
all non-activity periods and to concatenate consecutive activity periods by a
spill-over function.

4.2 Autoregressive intensity processes

Hamilton and Jordà (2002) establish a natural link between ACD models
and intensity models by allowing the ACD model to include covariates that
may change during a duration spell (time-varying covariates). Their so-called
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autoregressive conditional hazard (ACH) model relies on the idea that in the
Exponential ACD model, the intensity corresponds to the inverse of the con-
ditional duration, i.e. λ(t) = Ψ−1

N̆(t)+1
. They extend this expression by a func-

tion of time-varying regressors z
˜tj

, where ˜tj denotes the arrival times in the
covariate process and j is such that tN̆(t) <

˜tj < t. Then,

λ(t) =
1

ΨN̆(t)+1 + z′
˜tj
γ
, (33)

where γ is a vector of unknown parameters.
An alternative model which can be seen as a combination of a duration

model and an intensity model is introduced by Gerhard and Hautsch (2007).
They propose a dynamic extension of a proportional intensity model due
to Cox (1972), where the baseline intensity λ0(t) is not specified. Their key
idea is to exploit the stochastic properties of the integrated intensity and to
re-formulate the model in terms of a regression model with unknown left-
hand variable and Gumbel distributed error terms. See Kiefer (1988) for a
nice illustration of this relation. To identify the unknown baseline intensity
at discrete points, Gerhard and Hautsch follow the idea of Han and Haus-
man (1990) and formulate the model in terms of an ordered response model
based on categorized durations. In order to allow for serial dependence in
the duration process, the model is extended by an observation-driven ARMA
structure based on generalized errors. As a result, the resulting semiparamet-
ric autoregressive conditional proportional intensity model allows to capture
serial dependence in durations and to estimate conditional failure probabili-
ties without requiring explicit distributional assumptions.

In the autoregressive conditional intensity (ACI) models introduced by
Russell (1999), the intensity function is directly modeled as an autoregressive
process which is updated by past realizations of the integrated intensity. Let
λ(t) = (λ1(t), . . . , λK(t))′. Russell (1999) proposes to specify λk(t) in terms
of a proportional intensity structure given by

λk(t) = Φk
N̆(t)+1

λk0(t)sk(t), k = 1, . . .K, (34)

where ΦN̆(t)+1 captures the dynamic structure, λk0(t) is a baseline intensity
component capturing the (deterministic) evolution of the intensity between
two consecutive points and sk(t) denotes a deterministic function of t captur-
ing, for instance, possible seasonality effects. The function ΦN̆(t) is indexed
by the left-continuous counting function and is updated instantaneously after
the arrival of a new point. Hence, Φi is constant for ti−1 < t ≤ ti. Then, the
evolution of the intensity function between two consecutive arrival times is
governed by λk0(t) and sk(t).

In order to ensure the non-negativity of the process, the dynamic compo-
nent Φki is specified in log-linear form, i.e.
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Φki = exp
(

˜Φki + z′i−1γ
k
)

, (35)

where zi denotes a vector of explanatory variables observed at arrival time ti
and γk is the corresponding parameter vector. Define εi as a scalar innovation
term which is computed from the integrated intensity function associated
with the most recently observed process, i.e.

εi :=
K
∑

k=1

⎛

⎝1 −
∫ tk

Nk(ti)

tk
Nk(ti)−1

λk(s)ds

⎞

⎠ yki , (36)

where yki defines an indicator variable that takes on the value one if the i-th
point of the pooled process is of type k and zero otherwise. According to
the random time change argument presented in Section 2.4, εi corresponds
to a random mixture of i.i.d. centered standard exponential variates and
thus is itself an i.i.d. zero mean random variable. Then, the (K × 1) vector
˜Φi =

(

˜Φ1
i , . . . ,

˜ΦKi

)′
is parameterized as

˜Φi =
K
∑

k=1

(

Akεi−1 +Bk
˜Φi−1

)

yki−1, (37)

where Ak = {akj } denotes a (K × 1) parameter vector and Bk = {bkij} is a
(K ×K) matrix of persistence parameters. Hence, the fundamental principle
of the ACI model is that at each event ti all K processes are updated by
the realization of the integrated intensity with respect to the most recent
process, where the impact of the innovation on the K processes can be dif-
ferent and also varies with the type of the most recent point. As suggested
by Bowsher (2007), an alternative specification of the ACI innovation term
could be ε̃i = 1 − Λ(ti−1, ti), where Λ(ti−1, ti) :=

∑K
k=1 Λ

k(ti−1, ti) denotes
the integrated intensity of the pooled process computed between the two
most recent points. Then, following the arguments above, ε̃i is a zero mean
i.i.d. innovation term. Because of the regime-switching nature of the persis-
tence matrix, the derivation of stationarity conditions is difficult. However, a
sufficient (but not necessary) condition is that the eigenvalues of the matrices
Bk for all k = 1, . . . ,K lie inside the unit circle.

As proposed by Hautsch (2004), the baseline intensity function λk0(t) can
be specified as the product of K different Burr hazard rates, i.e.

λk0(t) = exp(ωk)
K
∏

r=1

xr(t)p
s
r−1

1 + ηsrx
r(t)ps

r
, psr > 0, ηsr ≥ 0. (38)

According to this specification λk(t) is driven not only by the k-type backward
recurrence time but also by the time distance to the most recent point in all
other processes r = 1, . . . ,K with r �= k. A special case occurs when psr = 1
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and ηsr = 0, ∀ r �= s. Then, the k-th process is affected only by its own
history.

Finally, sk(t) is typically specified as a spline function in order to capture
intraday seasonalities. A simple parameterization which is used in most stud-
ies is given by a linear spline function of the form sk(t) = 1 +

∑S
j=1 ν

k
j (t −

τj) · 1l {t>τj}, where τj , j = 1 . . . , S, denote S nodes within a trading period
and νj the corresponding parameters. A more flexible parameterization is
e.g. given by a flexible Fourier form (Gallant (1981)) as used by Andersen
and Bollerslev (1998) or Gerhard and Hautsch (2002) among others.

If K = 1 and η1
1 = 0, the ACI model corresponds to a re-parameterized

form of the Log-ACD model. If the ACI model is extended to include time-
varying covariates (see Hall and Hautsch (2007)), it generalizes the approach
by Hamilton and Jordà (2002). In this case, all event times associated with
(discrete time) changes of time-varying covariates are treated as another point
process that is not explicitly modelled. Then, at each event time of the covari-
ate process, the multivariate intensity is updated, which requires a piecewise
computation of the corresponding integrated intensities.

A generalization of the ACI model has been proposed by Bauwens and
Hautsch (2006). The key idea is that the multivariate intensity function
λ(t) = (λ1(t), . . . , λK(t))′ is driven not only by the observable history of
the process but also by a common component. The latter may be considered
as a way to capture the unobservable general information flow in a financial
market. By assuming the existence of a common unobservable factor λ∗(t)
following a pre-assigned structure in the spirit of a doubly stochastic Poisson
process (see Section 2.3), we define the internal (unobservable) history of λ∗(t)
as F∗

t . We assume that λ(t) is adapted to the filtration Ft := σ(Fo
t ∪ F∗

t ),
where Fo

t denotes some observable filtration. Then, the so-called stochastic
conditional intensity (SCI) model is given by

λk(t) = λo,k(t)
(

λ∗
N̆(t)+1

)σ∗
k

, (39)

where λ∗
N̆(t)+1

:= λ∗(tN̆(t)+1) denotes the common latent component which is
updated at each point of the (pooled) process {ti}i∈{1,...,n}. The direction and
magnitude of the process-specific impact of λ∗ is driven by the parameters
σ∗
k. The process-specific function λo,k(t) denotes a conditionally deterministic

idiosyncratic k-type intensity component given the observable history, Fo
t .

Bauwens and Hautsch (2006) assume that λ∗i has left-continuous sample
paths with right-hand limits and follows a log-linear zero mean AR(1) process
given by

lnλ∗i = a∗ lnλ∗i−1 + u∗i , u∗i ∼ iid N(0, 1). (40)

Because of the symmetry of the distribution of lnλ∗i , Bauwens and Hautsch
impose an identification assumption which restricts the sign of one of the
scaling parameters σ∗

k. The observation-driven component λo,k(t) is specified
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as the ACI model described above. However, in contrast to the basic ACI
model, in the SCI model, the innovation term is computed based on the
observable history of the process, i.e.

εi =
K
∑

k=1

{

−) − lnΛo,k
(

tkNk(ti)−1, t
k
Nk(ti)

)}

yki , (41)

where ) denotes Euler’s constant, ) = 0.5772. Here, Λo,k
(

tki−1, t
k
i

)

is given
by

Λo,k
(

tki−1, t
k
i

)

:=
N(tki )−1
∑

j=N(tki−1)

∫ tj+1

tj

λo,k(u)du

=
N(tki )−1
∑

j=N(tki−1)

(

λ∗j
)−σ∗

k Λk (tj , tj+1) (42)

corresponding to the sum of (piecewise) integrated k-type intensities which
are observed through the duration spell and are standardized by the corre-
sponding (scaled) realizations of the latent component. This specification en-
sures that εi can be computed exclusively based on past observables implying
a separation between the observation-driven and the parameter-driven com-
ponents of the model. Bauwens and Hautsch (2006) analyze the probabilistic
properties of the model and illustrate that the SCI model generates a wide
range of (cross-)autocorrelation structures in multivariate point processes. In
an application to a multivariate process of price intensities, they find that
the latent component captures a substantial part of the cross-dependencies
between the individual processes resulting in a quite parsimonious model.
An extension of the SCI model to the case of multiple states is proposed
by Koopman et al. (2008) and is applied to the modelling of credit rating
transitions.

4.3 Statistical inference

Karr shows that valid statistical inference can be performed based on the
intensity function solely, see Theorem 5.2. in Karr (1991) or Bowsher (2007).
Assume a K-variate point process N(t) = {Nk(t)}Kk=1 on (0, T ] with 0 < T <
∞, and the existence of a K-variate Ft-predictable process λ(t) that depends
on the parameters θ. Then, it can be shown that a genuine log likelihood
function is given by
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lnL
(

θ; {N(t)}t∈(0,T ]

)

=
K
∑

k=1

[

∫ T

0

(1 − λk(s))ds+
∫

(0,T ]

lnλk(s)dNk(s)

]

,

which can be alternatively computed by

lnL
(

θ; {N(t)}t∈(0,T ]

)

=
n

∑

i=1

K
∑

k=1

(−Λk(ti−1, ti)) + yki ln
[

λk(ti)
]

+ TK.(43)

Note that (43) differs from the standard log likelihood function of duration
models by the additive (integrating) constant TK which can be ignored for
ML estimation. By applying the so-called exponential formula (Yashin and
Arjas (1988)), the relation between the integrated intensity function and the
conditional survivor function is given by

S(x|Ft) = exp [−Λ(t, t+ x)] , (44)

where S(x|Ft) := Pr[(tN̆(t)+1 − t) ≥ x|Ft]. This is the continuous counter-
part to the well-known relation between the survivor function and the hazard
rate, S(xi) = exp(−

∫ xi

0 h(u)du). Hence, by ignoring the term TK, (43) cor-
responds to the sum of the conditional survivor function and the conditional
intensity function. However, according to Yashin and Arjas (1988), the ex-
ponential formula (44) is only valid if S(x|Ft) is absolutely continuous in Ft,
which excludes jumps of the conditional survivor function induced by changes
of the information set during a spell. Therefore, in a continuous, dynamic set-
ting, the interpretation of exp (−Λ(ti−1, ti)) as a survivor function should be
done with caution.

The computation of (43) for a Hawkes model is straightforward. In the case
of an exponential decay function, the resulting log likelihood function can be
even computed in a recursive way (see e.g. Bowsher (2007)). An important
advantage of Hawkes processes is that the individual intensities λk(t) do not
have parameters in common and the parameter vector can be expressed as
θ =

(

θ1, . . . , θK
)

, where θk denotes the parameters associated with the k-type
intensity component. Given that the parameters are variation free, the log
likelihood function can be computed as lnL

(

θ; {N(t)}t∈(0,T ]

)

=
∑K

k=1 l
k(θk)

and can be maximized by maximizing the individual k-type components
lk(θk) separately. This facilitates the estimation particularly when K is large.
In contrast, ACI models require to maximize the log likelihood function with
respect to all the parameters jointly. This is due to the fact that the ACI
innovations are based on the integrated intensities which depend on all in-
dividual parameters. The estimation of SCI models is computationally even
more demanding since the latent factor has to be integrated out resulting in
an n-dimensional integral. Bauwens and Hautsch (2006) suggest to evaluate
the likelihood function numerically using the efficient importance sampling
procedure introduced by Richard and Zhang (2007). Regularity conditions
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for the maximum likelihood estimation of stationary simple point processes
are established by Ogata (1981). For more details, see also Bowsher (2007).

Diagnostics for intensity based point process models can be performed by
exploiting the stochastic properties of compensators and integrated intensi-
ties given in Section 2.4. The model goodness-of-fit can be straightforwardly
evaluated through the estimated integrated intensities of the K individual
processes, eki,1 := ̂Λk(tki−1, t

k
i ), the integrated intensity of the pooled process

ei,2 := ̂Λ(ti−1, ti) =
∑K

k=1
̂Λk(ti−1, ti), or of the (non-centered) ACI resid-

uals ei,3 :=
∑K

k=1

(

̂Λk(tki−1, t
k
i )
)

yki . Under correct model specification, all
three types of residuals must be i.i.d. standard exponentially distributed.
Then, model evaluation is done by testing the dynamic and distributional
properties. The dynamic properties are easily evaluated with Portmanteau
statistics or tests against independence such as proposed by Brock et al.
(1996). The distributional properties can be evaluated using Engle and Rus-
sell’s (1998) test against excess dispersion (see Section 3.2). Other alternatives
are goodness-of-fit tests based on the probability integral transform (PIT) as
employed for diagnostics on ACD models by Bauwens et al. (2004).

4.4 Applications

Dynamic intensity models are primarily applied in multivariate financial point
processes or whenever a continuous-time setting is particularly required,
e.g. to account for time-varying covariates. One strand of applications fo-
cusses on the modelling of trading intensities of different types of orders in
limit order books. Hall and Hautsch (2007) apply a bivariate ACI model to
study the intensities of buy and sell transactions in the electronic limit or-
der book market of the Australian Stock Exchange (ASX). The buy and sell
intensities are specified to depend on time-varying covariates capturing the
state of the market. On the basis of the buy and sell intensities, denoted
by λB(t) and λS(t), Hall and Hautsch (2007) propose a measure of the con-
tinuous net buy pressure defined by ΔB(t) := lnλB(t) − lnλS(t). Because
of the log-linear structure of the ACI model, the marginal change of ΔB(t)
induced by a change of the covariates is computed as γB −γS , where γB and
γS denote the coefficients associated with covariates affecting the buy and
sell intensity, respectively (see eq. (35)). Hall and Hautsch (2006) study the
determinants of order aggressiveness and traders’ order submission strategy
at the ASX by applying a six-dimensional ACI model to study the arrival
rates of aggressive market orders, limit orders as well as cancellations on both
sides of the market. In a related paper, Large (2007) studies the resiliency of
an electronic limit order book by modelling the processes of orders and can-
cellations on the London Stock Exchange using a ten-dimensional Hawkes
process. Russell (1999) analyzes the dynamic interdependence between the
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supply and demand for liquidity by modelling transaction and limit order
arrival times at the NYSE using a bivariate ACI model.

Another branch of the literature focusses on the modelling of the in-
stantaneous price change volatility which is estimated on the basis of price
durations, see (27) in Section 3.4. This relation is used by Bauwens and
Hautsch (2006) to study the interdependence between instantaneous price
change volatilities of several blue chip stocks traded at the NYSE based on
a SCI model. In this setting, they find a strong evidence for the existence of
a common latent component as a major driving force of the instantaneous
volatilities on the market. In a different framework, Bowsher (2007) analyzes
the two-way interaction of trades and quote changes using a two-dimensional
generalized Hawkes process.
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Resampling and Subsampling for
Financial Time Series

Efstathios Paparoditis and Dimitris N. Politis

Abstract We review different methods of bootstrapping or subsampling
financial time series. We first discuss methods that can be applied to generate
pseudo-series of log-returns which mimic closely the essential dependence
characteristics of the observed series. We then review methods that apply
the bootstrap in order to infer properties of statistics based on financial
times series. Such methods do not work by generating new pseudo-series of
the observed log-returns but by generating pseudo-replicates of the statistic
of interest. Finally, we discuss subsampling and self-normalization methods
applied to financial data.

1 Introduction

Consider a discrete time process describing the behavior of log-returns

Rt = log
(

1 +
Pt − Pt−1

Pt−1

)

, t = 1, 2, . . .

where {Pt, t = 0, 1, 2, . . .} is the price of a financial asset observed at time t,
t can be measured in seconds, minutes, hours, days, etc. Standard examples
for Pt are prices of company-shares quoted at major stock exchanges, interest
rates and foreign exchange rates among different currencies. A Taylor series
argument shows that Rt is close to the relative returns (Pt−Pt−1)/Pt−1 which
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are free of unit and describe the relative change over time of the price process.
Statistical inference for such financial time series has received considerable
interest in the last decades leading to a vast and growing literature.

A general class of models proposed to describe the behavior of log returns
is given by the following multiplicative model

Rt = μt + σt · εt, (1)

where μt and σt are random variables measurable with respect to the σ-field
Ft−1 = σ(Rt−j , j = 1, 2, . . .) and {εt} denotes a sequence of i.i.d. random
variables independent of {Rt−j, j ≥ 1} with zero mean and unit variance.
It is also assumed that εt is independent of the conditional (on the past
log-returns Rt−j , j = 1, 2, . . .) mean μt and of the conditional (non-negative)
volatility function σ2

t . By model (1) the direction of the price change at
time t is determined by the sign of εt, while the order of magnitude of this
change by the volatility process σ2

t which is independent of εt. In what follows
we assume for simplicity that μt ≡ 0 and concentrate on bootstrap-based
statistical inference for the conditional variance σ2

t of the log-returns.
Several of the statistical models proposed in the literature specify the

volatility function σ2
t as a function of the observable past values Rt−j and

σ2
t−j , j = 1, 2, . . .. For instance, {Rt} follows a general nonnegative ARCH(∞)

equation if for some known nonnegative function w(·),

w(Rt) = ρtξt, (2)

where

ρt = a+
∞
∑

j=1

βjw(Rt−1), (3)

{ξt} is a sequence of i.i.d. nonnegative random variables, a ≥ 0 and βj ≥ 0,
j = 1, 2, . . .; see Robinson (1991), Giraitis et al. (2000) and Kazakevičius and
Leipus (2002). Eξ21 < ∞ and

∑∞
j=1 β

2
j < 1 imply weak stationarity of ρt.

The class (2)-(3) is rich enough and includes as special cases the classical
ARCH(p) process (Engle (1982)) as well as the ARCH(∞) process obtained
for w(x) = x2,

R2
t =

(

a+
∞
∑

j=1

βjR
2
t−j

)

ε2t .

Under certain assumptions on the behavior of the bj ’s this class includes also
the GARCH(p,q) models, Bollerslev (1986); see also Taylor (1986).

An alternative approach to the above ARCH(∞) model class is the class
of stochastic volatility models a simple form of which is given if σt in (1)
satisfies

σt = g(ht), with ht = a0 + a1ht−1 + et, (4)
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where g(·) > 0 is a known function and {et} is an i.i.d. process indepen-
dent from {εt}. For |a1| < 1 the process ht is strictly stationary. Notice that
the heteroscedastic variation of Rt described by σ2

t is driven by the unob-
servable latent process {ht} and not by the lagged values of the log-returns
Rt−1, Rt−2, . . .. Thus for this model class, the volatility function is modeled as
a strictly stationary process {σ2

t } independent of the i.i.d. noise process {εt}
avoiding therefore any kind of feedback between the noise and the volatility
process; cf. Shepard (1996).

Given a time series R1, R2, . . . , Rn of log-returns, one is commonly in-
terested in the construction of point or interval estimators of the volatility
function σ2

t and in testing hypothesis about this function. Several estimation
methods have been proposed in the literature depending on the assumptions
imposed on σ2

t . They rank from parametric methods designed when σ2
t be-

longs to certain parametric classes of models to fully nonparametric methods
based on weak assumptions on the function of interest. In this context, non-
parametric procedures are useful not only because they lead to estimators of
the underlying volatility function without imposing too restrictive assump-
tions but also because they are very useful for model selection and testing by
means of comparing parametric and nonparametric estimates; cf. for instance
Kreiss et al. (2008).

Assigning properties of estimators of σ2
t is usually carried out by means

of asymptotic considerations where the expressions obtained for the asymp-
totic quantities usually depend in a complicated way on characteristics of the
underlying process. This makes alternative approaches based on bootstrap
methodology appealing. During the last decades different bootstrap methods
have been proposed in the context of financial time series. Some early applica-
tion of the bootstrap in financial time series mainly based on i.i.d. resampling
(cf. Maddala and Li (1996) and Ruiz and Pascual (2002) for a review) are not
appropriate and may lead to wrong conclusions since log-returns are not in-
dependent despite their vanishing correlation. Thus approaches to bootstrap
financial time series should take into account their dependence structure or
at least those aspects of this dependence structure which are important for
the particular inference problem at hand.

Nonparametric methods to bootstrap time series which are based on re-
sampling with replacement from blocks of consecutive observations can in
principle be applied to financial series, and their properties to approximate
the distribution of statistics of interest can be investigated provided the un-
derlying stochastic process obeys some appropriate weak dependence, e.g.,
mixing conditions. For mixing properties of some commonly used time se-
ries models with applications in finance, see for instance, Carrasco and Chen
(2002). Under appropriate mixing conditions, bootstrapping a series of log-
returns R1, R2, . . . , Rn can be done by randomly choosing with replacement a
number of l, l = [n/b], blocks of b consecutive values {Rt, Rt+1, . . . , Rt+b−1}
from all possible n− b blocks; cf. Künsch (1989), Liu and Sign (1992), Politis
and Romano (1994); see also Bühlmann (2002) and Härdle et al. (2003) for an
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overview and the monograph by Lahiri (2003). Although such general block-
ing techniques preserve the dependence structure of the observations within
blocks, they have not been widely used in the context of financial time series.
A reason for this might be that since it is common to impose some kind of
model structure in describing the behavior of financial time series, efficiency
considerations make model-based bootstrap methods more attractive. Fur-
thermore, and concerning nonparametric estimators of the volatility function
σ2
t , it is well-known that the dependence structure of the underlying process

affects the limiting behavior of the estimators only through the behavior of
certain finite dimensional, stationary distributions of the process. This again
suggests that bootstrapping nonparametric estimators for financial time se-
ries can be successfully done without mimicking the whole and probably very
complicated dependence structure of the observed series.

In Section 2 we review different methods to bootstrap financial time
series, that is methods that can be applied to generate pseudo-replicates
R∗

1, R
∗
2, . . . , R

∗
n of the observed series of log-returns. Such methods are de-

signed in a way that mimics closely the essential dependence characteristics
of the observed time series or at least those characteristics which are im-
portant for inferring consistently properties of the statistics of interest. In
Section 3 we concentrate on the somewhat different problem on how to apply
the bootstrap in order to infer properties of statistics based on financial time
series. Such methods do not work by generating new pseudo-observations of
the observed log-returns that preserves their dependence structure, but by
generating pseudo-replicates of the statistic of interest. Section 4 is devoted
to subsampling and self-normalization methods applied to financial data.

2 Resampling the Time Series of Log–Returns

The bootstrap procedures described in this section generate replications
R∗

1, R
∗
2, . . . , R

∗
n of the series of log-returns. Bootstrap-based inference is then

provided by approximating properties of the statistics based on the original
time series R1, R2, . . . , Rn by the corresponding properties of the statistics
based on the bootstrap replicates R∗

1, R
∗
2, . . . , R

∗
n.

2.1 Parametric methods based on i.i.d. resampling of
residuals

The basic idea to bootstrap a series of log-returns when parametric assump-
tions on the volatility function σ2

t (·) are imposed, is to obtain residuals using
the estimated parametric model and to generate new pseudo-series of log-
returns using the estimated model structure and i.i.d. resampling of residuals.
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More specifically, suppose that

Rt = σt(θ)εt (5)

where the function σ2
t (θ) belongs to some parametric family of functions with

θ ∈ Θ and Θ a finite dimensional parameter space. Furthermore, {εt} denotes
a sequence of i.i.d. random variables with zero mean and unit variance.

As an example consider a GARCH(p,q) specification of σ2
t (θ) given by

σ2
t (θ) = c+

p
∑

i=1

aiR
2
t−i +

q
∑

j=1

bjσ
2
t−j , (6)

θ = (c, a1, . . . , ap, b1, . . . , bq)
′
, c > 0, ai ≥ 0, bj ≥ 0 and p and q nonnega-

tive integers. Strictly stationarity of the stochastic process {Xt, t ∈ Z} with
E(X2

t ) < ∞ follows if
∑p

i=1 ai +
∑q

j=1 bj < 1, Bollerslev (1986); see also
Bougerol and Picard (1992). Let {̂θ = ̂θn, n ∈ N} be a sequence of esti-
mators ̂θ = (ĉ, â1, . . . , âp,̂b1, . . . ,̂bq)

′
of θ, for instance, the commonly used

conditional maximum likelihood estimator. Define standardized residuals

ε̂t =
ε̃t − ñ−1

∑

i ε̃i
{ñ−1

∑

i ε̃
2
i − (ñ−1

∑

i ε̃i)2}1/2
,

where ε̃t = Rt/σt(̂θ) are the estimated model residuals and ñ = n−p. Pseudo-
series of log returns following a GARCH(p,q) model structure can then be
generated using the equation

R∗
t = σt(̂θ)ε∗t ,

where σt(̂θ) is the specification (6) of the conditional variance function with
θ replaced by its estimator ̂θ, {ε∗t} is an i.i.d. sequence with ε∗t ∼ Fn and Fn
is the empirical distribution function of the ε̂t’s.

In most applications of such a parametric bootstrap procedure it is as-
sumed that εt has finite fourth moments, i.e., Eε4t < ∞. For instance and
for εt being standard Gaussian errors, Kokoszka et al. (2004) use this boot-
strap method to construct confidence intervals for the autocorrelations of the
squares of log-returns, while Miguel and Olave (1999) considered paramet-
ric bootstrap prediction intervals for ARCH processes. The assumption of
finite fourth moments is crucial for proving consistency of such a parametric
bootstrap, since, loosely speaking, this assumption ensures asymptotic nor-
mality of the estimator involved with an appropriate,

√
n-rate of convergence.

Without such a moment assumption consistency of this parametric bootstrap
procedure might be questionable.

For instance, let ̂θ∗ be the estimator of θ based on the pseudo-returns
R∗

1, R
∗
2, . . . , R

∗
n and consider the problem of estimating the distribution of an

appropriately rescaled version of ̂θ−θ by the corresponding distribution of the
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bootstrap estimator ̂θ∗ − ̂θ. In such a context, consistency of the parametric
bootstrap procedure depends on the limiting behavior of ̂θ− θ which in turn
depends on the distribution of the i.i.d. errors εt. If E(ε1)4 < ∞ then it has
been shown by Berkes et al. (2003) that under some regularity conditions,√
n(̂θ−θ) ⇒ N(0, (Eε41−1)Σ−1

θ ) as n → ∞, whereΣθ = E(σ−4
1 (θ)U(θ)U

′
(θ))

and U(θ) is the r-dimensional vector of first derivatives of σ2
1(θ) = σ2

1(a, b, c)
with respect to the components of a = (a1, . . . , ap), b = (b1, . . . , bq) and c,
evaluated at θ. The asymptotic normality of

√
n(̂θ− θ) in this case, suggests

the use of the distribution of
√
n(̂θ∗ − ̂θ) to approximate the distribution of

the former statistic. However, if E(ε41) = ∞ then the normalizing sequence of
the estimation error ̂θ− θ is no more

√
n and the limiting distribution of the

appropriately normalized sequence ̂θ− θ differs from a Gaussian law and de-
pends on the distribution of the squared errors ε21; see Straumann (2005) and
Hall and Yao (2003). In such situations, subsampling offers an alternative; cf.
Politis et al. (1999). A subsampling based approach to infer properties of pa-
rameter estimators for GARCH processes which is asymptotically valid under
general assumptions on the distribution of the errors εt has been proposed
by Hall and Yao (2003); see Section 4 for details.

2.2 Nonparametric methods based on i.i.d. resampling
of residuals

If instead of a parametric structure for σ(·) the general nonparametric model

Rt = σ(Rt−1, Rt−2, . . . , Rt−p)εt, (7)

is assumed, then the volatility function σ2(·) can be estimated in a non-
parametric way and pseudo-series of log-returns can be generated using the
estimated volatility function and i.i.d. resampling of estimated residuals.
Meaningful statistical inference for σ2(·) in a nonparametric context, re-
quires however, that the discrete time Markov process {Rt} following (7)
satisfies some stability and ergodicity conditions which can be achieved by
imposing some restrictions on the distribution of the errors εt and on the
function σ : Rp → (0,∞). For instance, when p = 1, {Rt} is geometri-
cally ergodic if the density fε of ε is absolutely continuous and positive ev-
erywhere, infx∈R σ(x) > 0, σ is bounded over bounded sets and satisfies
lim sup|x|→∞E|σ(x)ε1|/|x| < 1; cf. Franke et al. (2002b).

Let σ̂2(x1, . . . , xp) be a nonparametric estimator of σ2(x1, . . . , xp) =
E(R2

t |Rt−1 = x1, . . . , Rt−p = xp) and define standardized residuals

ε̂t =
ε̃t − ñ−1

∑

i ε̃i

{ñ−1
∑

i ε̃
2
i − (ñ−1

∑

i ε̃i)2}1/2
,
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where ε̃t = Rt/σ̂(Rt−1, Rt−2, . . . , Rt−p), t = p+1, p+2, . . . , n and ñ = n−p.
Pseudo-series of log returns can then be generated as

R∗
t = σ̂(R∗

t−1, . . . , R
∗
t−p)ε

∗
t , (8)

where the ε∗t ’s are i.i.d. random variables with ε∗t ∼ Fn and Fn is the empirical
distribution function of the ε̂t; cf. Franke et al. (2002a).

To fix ideas, let p = 1 and consider the following nonparametric estimator
of the volatility function

σ̂2
h(x) =

1
̂fRt(x)

1
(n− 1)

n−1
∑

t=1

Kh(x−Rt)(Rt+1 −Rn)2, (9)

where h is a smoothing bandwidth, K a smoothing kernel and Rn =
n−1

∑n
t=1 Rt. Notice that centering by the sample mean Rn is used since

it is assumed that μt = 0. If the conditional mean function μt is not con-
stant and μt = m(Rt−1) with m(·) some smooth function, then Rn should
be replaced by a nonparametric estimator m̂h(Rt−1) of the conditional mean
function m(Rt−1) = E(Rt|Rt−1); see Fan and Yao (1998) for details and for
a comparison of different estimators of the volatility function.

The bootstrap procedure described above can be applied to approxi-
mate the distribution of random variables like

√
nh(σ̂2

h(x) − σ2(x)) and
supx∈[a,b] |σ̂2

h(x) − σ2(x)|, for some a < b, or of some standardized ver-
sions thereof. Franke et al (2002b) established under certain regularity con-
ditions absolute regularity and geometric ergodicity of the bootstrap process
{R∗

t , t ∈ Z} and applied these results to show validity of the correspond-
ing nonparametric bootstrap procedure in approximating the distribution
of supremum type statistics of the conditional mean estimator. Franke et al.
(2000a) consider applications to pointwise statistics while Franke et al. (2004)
investigated properties of such a bootstrap procedure for the construction of
confidence bands for the volatility function.

Notice that an inherent problem common in applications of the bootstrap
to estimate the distribution of nonparametric estimators is how to deal with
the bias. In particular, and decomposing the statistic of interest in a stochastic
and in a bias term, i.e., writing
√
nh(σ̂2

h(x) − σ2(x)) =
√
nh(σ̂2

h(x) − E(σ̂2
h(x)) +

√
nh(E(σ̂2

h(x)) − σ2(x)),

makes it clear that if one is interested in applying the bootstrap in order
to approximate the distribution of

√
nh(σ̂2

h(x) − σ2(x)), then such a boot-
strap procedure should approximate correctly the behavior of both terms on
the right hand side of the above decomposition. In this context correct es-
timation of the bias term requires a kind of oversmoothing, i.e., the use of
an estimator σ̂2

g(x) to generate the pseudo-variables R∗
t ’s in (8) for which

the bandwidth g satisfies g > h and h/g → 0 as n → ∞. The bootstrap
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statistic used to approximate the distribution of
√
nh(σ̂2

h(x) − σ2(x)) is then
given by

√
nh(σ̂∗2

h (x) − σ2
g(x)) where σ̂∗2

h (x) is the estimator (9) with Rt re-
placed by the bootstrap pseudo-variables R∗

t and Rn by R
∗
n = n−1

∑n
t=1R

∗
t .

An alternative to such a bootstrap estimation of the bias would be explicit
bias correction; see Hall(1992) for a discussion of this issue in the context of
independent data.

Although the above nonparametric bootstrap procedure can be success-
fully applied to estimate the distribution of the nonparametric estimators
of interest, it fails if the process of log-returns does not follow model (7).
The reason for this is that in this case the stationary distribution of the
bootstrap variables (R∗

t , R
∗
t−1, . . . , R

∗
t−p) does not converge to the desired

stationary distribution of (Rt, Rt−1, . . . , Rt−p). In fact and for Rt−1,t−p =
(Rt−1, Rt−2, . . . , Rt−p), we expect is such a case that the conditional distri-
bution function P (R∗

t ≤ ·|R∗
t−1,t−p = x) of the bootstrap process will behave

asymptotically like FUt(·/σ(x)) where FUt denotes the stationary distribution
function of Ut = Rt/σ(x) and σ(x) =

√

σ2(x) with σ2(x) = E(R2
t |Rt−i =

xi, i = 1, 2, . . . , p). This distribution differs however from the conditional dis-
tribution function P (Rt ≤ ·|Rt−1,t−p = x) of the underlying process if model
(7) is not correct.

2.3 Markovian bootstrap

Model (7) is a special case of a more general p-th order Markovian process,
that is a process {Rt, t ∈ Z} which satisfies

P (Rt ∈ A|σ(Rs, s < t)) = P (Rt ∈ A|Rt−1, Rt−2, . . . , Rt−p),

for all A ∈ B(R) and all t ∈ Z. Suppose that such a model describes the
behavior of log-returns and denote by FRt|Rt−1,t−p

(· |x) = P (Rt ≤ y|Rt−i =
xi, i = 1, 2, . . . , p) the one-step transition distribution function. Assume that
the corresponding conditional probability measure possesses a density with
respect to Lebesgue measure which we denote by fRt|Rt−1,t−p

(·|x). Notice that
model (7) is a specific Markov process with one-step transition distribution
function given by FRt|Rt−1,t−p

(y|x) = Fε(y/σ(x)) where Fε is the distribution
function of the error ε1.

Imposing conditions on FRt|Rt−1,t−p
(·) which ensure stationarity and ge-

ometric ergodicity of the associated Markov chain, bootstrap replicates of
log-returns can be generated using the Markovian model structure without
specifying its functional form. Rajarshi (1990) proposed such a bootstrap
approach based on a nonparametric estimator ̂fRt|Rt−1,t−p

(·|x) of the one
step transition density fRt|Rt−1,t−p

(·|x). Such a nonparametric estimator is
for instance given by
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̂fRt|Rt−1,t−p
(y|x) =

n
∑

t=p+1

Kb((y,x) − Rt,t−p)
/

n
∑

t=p+1

Kb(x − Rt−1,t−p),

where b is the bandwidth used to estimate the stationary densities of interest.
New series of pseudo-replications can then be generated as

R∗
t ∼ ̂fRt|Rt−1,t−p

(·|R∗
t−1, R

∗
t−2, . . . , R

∗
t−p).

A different approach which does not require explicit nonparametric estima-
tion and resamples directly the original series of log-returns in an appropri-
ate way preserving their Markovian dependence structure, has been proposed
by Paparoditis and Politis (2001a). Given a series R∗

t−p, R
∗
t−p+1, . . . , R

∗
t−1 of

pseudo log-returns, their approach works by generating a new pseudo-variable
R∗
t as

R∗
t = RJ ,

where J is a discrete random variable taking values in the set {p + 1, p +
2, . . . , n} with

P (J = s) =
Wb(R∗

t−1,t−p − Rs−1,s−p)
∑n

l=p+1Wb(R∗
t−1,t−p − Rl−1,l−p)

for s ∈ {p + 1, p + 2, . . . , n}, where R∗
t−1,t−p = (R∗

t−p, R
∗
t−p+1, . . . , R

∗
t−1).

Here Wb(·) = b−pW (·/p), where b is the so-called resampling width and W (·)
a p-dimensional, nonnegative and symmetric resampling kernel with mean
zero. Notice that this procedure resamples the observed log-returns in a way
according to which the probability of Rs being selected is higher the closer is
its preceding segment (Rs−1, Rs−2, . . . , Rs−p) to the last generated bootstrap
segment (R∗

t−1, R
∗
t−2, . . . , R

∗
t−p).

Properties of Markovian bootstrap procedures have been investigated by
Rajarshi (1990) and Paparoditis and Politis (2001a); see also Horowitz (2003).
Applications of such a bootstrap procedure in order to approximate the dis-
tribution of nonparametric conditional moment estimators and for construct-
ing pointwise confidence intervals have been investigated by Paparoditis and
Politis (2002). Notice that in approximating correctly the bias of the non-
parametric estimators involved, a kind of oversmoothing condition is needed
here as well leading to some restrictions on the behavior of the resampling
width b compared to the smoothing bandwidth h. In particular, b should
satisfy b > h and b/h → 0 as n → ∞.

We stress here the fact that for the kind of nonparametric estimators
discussed in this paper, the range of applicability of the above Markovian
procedures goes far beyond the Markov process class. This is due to the fact
that the Markovian resampling schemes described above mimics correctly the
(p+1)-dimensional stationary distribution of (Rt, Rt−1, . . . , Rt−p) even if the
underlying process is not Markov. This property suffices to establish consis-
tency of the above Markovian bootstrap procedures applying to estimate the



992 E. Paparoditis and D.N. Politis

distribution of the nonparametric estimators of interest for a very broad class
of stochastic processes; see Paparoditis and Politis (2002) for details.

3 Resampling Statistics Based on the Time Series of
Log–Returns

In the context of dependent data it is possible in certain situations to apply
the bootstrap to some statistics of interest without generating new time series
of pseudo-observations that preserve the dependence structure of the observed
time series. Such applications resample directly the statistic of interest in a
way which mimics correctly those characteristics of the dependence structure
of the underlying process which are essential for the random behavior of the
statistic of interest.

Suppose for instance, that we are interested in approximating the poinwise
distribution of

√
nh(σ̂2

h(x)−σ2(x)) by means of the bootstrap. As it has been
already stressed, for a bootstrap procedure to be successful in approximat-
ing correctly the (limiting) distribution of this statistic, it is not necessary
to imitate the whole and probably very complicated dependence structure
of the underlying process of log-returns. For this, it suffices to mimic cor-
rectly the (p+1)-dimensional stationary distribution of (Rt, Rt−1, . . . , Rt−p).
This is a consequence of the basic fact that the asymptotic distribution of
nonparametric estimators does not reflect the dependence structure of the
underlying process beyond the (p + 1)-dimensional structure; cf. Robinson
(1983). Hart (1995) called this the whitening by windowing effect. This ba-
sic observation has motivated the development of bootstrap procedures that
generate pseudo-replicates (R∗

t , R
∗
t−1, . . . , R

∗
t−p) of (Rt, Rt−1, . . . , Rt−p) in a

way that mimic correctly the joint distribution of the last random vector,
without generating new pseudo-series of log-returns.

3.1 Regression bootstrap

The regression bootstrap is a nonparametric bootstrap procedure which gen-
erates replicates of the pairs {(Rt,Rt−1,t−p), t = p+ 1, p+ 2, . . . , n} denoted
by {(R∗

t ,Rt−1,t−p), t = p + 1, p + 2, . . . , n} by using a fixed design, het-
eroscedastic regression model with errors obtained by i.i.d. resampling from
estimated model residuals; cf. Franke et al. (2002a). Notice that in this re-
sampling scheme only the random variable Rt is bootstrapped while Rt−1,t−p

is treated as a (conditionally) fixed design. In particular, the bootstrap vari-
ables R∗

t are generated using the equation

R∗
t = σ̂g(Rt−1, Rt−2, . . . , Rt−p)ε∗t , (10)
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where the ε∗t are independent random variables such that ε∗t ∼ Fn and Fn is
the empirical distribution function of the estimated errors ε̂t given in Section
2.2. Notice that the random variables R∗

t are (conditional on the observed se-
ries) independent with E∗(R∗

t )=0 and Var∗(R∗
t )= σ̂2

g(Rt−1, Rt−2, . . . , Rt−p).
Thus the dependence structure of the series of log returns is not preserved
by this bootstrap method. The distribution of

√
nh(σ̂2

h(x) − σ2(x)) can now
be approximated by that of

√
nh(σ̂∗2

h (x) − σ̂2
g(x)), where, for p = 1,

σ̂∗2

h (x) =
1

̂fRt(x)

1
(n− 1)

n−1
∑

t=1

Kh(x−Rt)(R∗
t+1 −R

∗
n)2,

and R
∗
n = n−1

∑n
t=1R

∗
t . The bandwidth g used in (10) can be chosen so

that the above bootstrap procedure estimates also correctly the bias term√
nh(E(σ̂2

h(x)) − σ2(x)) of the nonparametric volatility function estimator.
For this an oversmoothing type condition should be satisfied, i.e., g > h with
h/g → 0 as n → ∞; cf. Franke et al. (2002a).

3.2 Wild bootstrap

The wild bootstrap methodology can be also applied in the context of finan-
cial time series to estimate the distribution of some nonparametric estimators
of interest; see Franke et al. (2002a) and Kreiss (2000). To fix ideas, let p = 1
and consider the centered log-returns Yt = Rt − Rn, t = 1, 2, . . . , n. Let fur-
ther ηt, t = 1, 2, . . . , n be a sequence of independent, identically distributed
random variables satisfying E(ηt) = 0, E(η2

t ) = 1. For higher order per-
formance the distribution of ηt is often chosen such that additionally the
condition E(η3

t ) = 1 is satisfied; cf. Mammen (1992) for a discussion.
The wild bootstrap works by generating pairs {(Y ∗

t+1, Rt), t = 1, 2, . . . , n−
1} where

Y ∗
t+1 = σ̂2

g(Rt) + ε∗t+1, (11)

and
ε∗t+1 =

[

Y 2
t+1 − σ̂2

h(Rt)
]

· ηt+1 (12)

Notice that E∗(Y ∗
t+1) = σ̂2

g(Rt) and V ar∗(Y ∗
t+1)

2 = (Y 2
t+1 − σ̂2

h(Rt))2. Fur-
thermore, the bootstrap random variables Y ∗

t+1 are (conditional on the ob-
served sample) independent, i.e., the dependence structure of the observed
time series is not preserved by this bootstrap scheme. In fact, in the boot-
strap world the Y ∗

t+1’s are generated according to a fixed design nonpara-
metric regression model with mean σ̂2

g(Rt) and variance V ar∗(ε∗t+1). Now,
to approximate the distribution of

√
nh(σ̂2

h(x) − σ2(x)) the wild-bootstrap
statistic

√
nh(σ̂∗2

h (x) − σ2
g(x)) can be used, where
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σ̂∗2

h (x) =
1

̂fRt(x)

1
(n− 1)

n−1
∑

t=1

Kh(x−Rt)(Y ∗
t+1)

2.

Notice that in order to capture correctly also the bias term of the above
nonparametric estimation, and similar to all bootstrap approaches discussed
so far, an oversmoothing type condition is needed by the wild bootstrap as
well; see Franke et al. (2002a) and Kreiss (2000).

Although the wild bootstrap does not preserve the dependence structure of
the observed series, it resamples correctly the distribution of the nonparamet-
ric statistics of interest. This bootstrap scheme is robust against model mis-
specifications, at least as far as the estimation of the distribution of pointwise
statistics like

√
nh(σ̂2

h(x) − σ2(x)) is concerned; cf. Kreiss (2000). Neumann
and Kreiss (1998) applied a wild bootstrap to the construction of uniform
confidence bands for the conditional mean based on supremum type statistics
and using strong approximation results under the assumption of a Markovian
model. Kreiss (2000) considered the problem of estimating by means of a wild
bootstrap procedure the distribution of the sup-distance involved in the con-
struction of simultaneous confidence intervals for the volatility function. His
approach is also based on the assumption that the underlying process obeys
a Markovian dependence structure.

3.3 Local bootstrap

Another simple and totally model free way to bootstrap nonparametric esti-
mators in time series is the so-called local bootstrap; see Shi (1991) for the
case of i.i.d. data and Paparoditis and Politis (2000) for the case of depen-
dent data. This bootstrap method generates replicates {(R∗

t ,Rt−1,t−p) ; t =
p+1, p+2, . . . , n} of the observed pairs {(Rt,Rt−1,t−p) ; t = p+1, p+2, . . . , n}
by correctly imitating the conditional distribution FRt,Rt−1,t−p(·|x) of the log-
returns. In contrast to the regression bootstrap, the local bootstrap resamples
the observed values Rt by giving more resampling weights to the values Rs

for which Rs−1,s−p is close to Rt−1,t−p.
For p = 1 and for the problem of estimating the distribution of the non-

parametric estimator (9) of the conditional variance function, this procedure
can be described as follows. Let p = 1 and Yt = Rt−Rn, t = 1, 2, . . . , n. Boot-
strap replicates {(Y ∗

t+1, Rt), t = 1, 2, . . . , n − 1} of the pairs {(Yt+1, Rt), t =
1, 2, . . . , n−1} are then generated so that the bootstrap pseudo-variable Y ∗

t+1

satisfies
P (Y ∗

t+1 = Ys+1|Rt) =
Wb(Rt −Rs)

∑n−1
l=1 Wb(Rt −Rl)

.

Here b is the so-called resampling width which determines the neighborhood
from which replicates of Yt+1 are selected and W (·) a resampling kernel. It
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is easily seen that

E∗((Y ∗
t+1)

2|Rt = x) =
1

̂fRt,b(x)

1
(n− 1)

n−1
∑

t=1

Wb(x−Rt)(Rt+1 −Rn))2,

i.e., E∗((Y ∗
t+1)

2|Rt = x) = σ̂2
b (x). This suggests that the distribution of√

nh(σ̂2
h(x) − σ2(x)) can be approximated by that of

√
nh(σ̂∗2

h (x) − σ̂2
b (x))

where

σ̂∗2

h (x) =
1

̂fRt,h(x)

1
(n− 1)

n−1
∑

t=1

Kh(x −Rt)(Y ∗
t+1)

2.

Consistency properties of such a bootstrap procedure for estimating the
distribution of pointwise statistics based on nonparametric estimators of con-
ditional moments for time series data have been established by Paparoditis
and Politis (2000). Ango Nze et al. (2002) used such a procedure to estimate
the distribution of nonparametric moment estimators under weak dependent
assumptions (see Doukhan and Louchichi (1999)).

4 Subsampling and Self–Normalization

Subsampling for dependent data is a method valid in extreme generality. To
define it, let ̂θn = ̂θn(R1, . . . , Rn) be an arbitrary statistic that is consistent
for a general parameter θ at rate an, i.e., for large n, the law of an(̂θn−θ) tends
to some well-defined asymptotic distribution J . The rate an does not have to
equal

√
n, and the distribution J does not have to be normal; we do not even

need to know its shape, just that it exists. Let ̂θi,b = ̂θb(Ri, . . . , Ri+b−1) be the
subsample value of the statistic computed from the ith block of length b. The
subsampling estimator of J is ̂Jb,SUB defined as the empirical distribution of
the normalized (and centered) subsample values ab(̂θi,b − ̂θn) for i = 1, . . . , q
where q = n− b+ 1.

The asymptotic consistency of ̂Jb,SUB for general statistics under very
weak conditions was shown in Politis and Romano (1994); consequently, con-
fidence intervals and/or tests for θ can immediately be formed using the
quantiles of ̂Jb,SUB instead of the quantiles of the (unknown) J . Notice that
if only a variance estimator for an̂θn is sought, it can be constructed by the
sample variance of the normalized subsample values ab̂θi,b for i = 1, . . . , q;
consistency of the subsampling estimator of variance was shown by Carlstein
(1986) under some uniform integrability conditions.

In addition to the usual requirement b → ∞ as n → ∞ but with b/n →
0, the conditions of Politis and Romano (1994) boil down to:

C1 The series {Rt} is strictly stationary.
C2 The series {Rt} is strong mixing.
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C3 The rate an is known.

Notice that condition C3 is important for the practical construction of confi-
dence intervals and tests, not for the consistency of subsampling as a method.

Although Conditions C1-C3 are quite weak, they manage to exclude a
number of interesting settings pertaining to financial time series since the
latter are often plagued by heteroscedasticity, long-range dependence, and
heavy tails. Fortunately, all the above conditions can still be relaxed. A re-
view of non-standard conditions for which (variations of) the block bootstrap
are consistent can be found in Politis (2003) together with a discussion on
the important issue of block size choice; see also the monograph by Lahiri
(2003). Condition C1 can easily be relaxed to just asymptotic stationarity
as enjoyed, for example, by Markov processes that are generated with an ar-
bitrary (non-equilibrium) start-up distribution; see Politis et al. (1999, Ch.
4). The strong mixing condition C2 has been recently relaxed to the weak
dependence condition of Doukhan and Louhichi (1999); see Ango Nze et al.
(2003). Finally, condition C3 was relaxed since Bertail et al. (1999) showed
how to construct subsampling-based estimators of the rate an that can be
employed for the construction of confidence intervals and tests.

The above can be seen as small improvements/perturbations on the origi-
nal Conditions C1-C3. We now describe in more detail how to address major
break-downs of those conditions using two broad techniques: (a) examination
of the time series of subsample values ̂θi,b for i = 1, . . . , q, and (b) the idea
of self-normalization.

To elaborate on using technique (a) in order to relax Condition C2, con-
sider the familiar situation of a unit-root test such as the set-up in Paparoditis
and Politis (2003). Under the unit-root hypothesis the data are not strong
mixing, not even weakly dependent; however, the subsample values of the
Phillips-Perron (say) unit-root statistic are weakly dependent and thereby
the validity of subsampling is preserved; see Politis et al. (1999, Theorem
12.2.1), Politis et al. (2004), and Romano and Wolf (2001).

The same idea can be applied to relax Condition C1. For example, consider
a series that is not strictly stationary, e.g., heteroskedastic. If the subsample
values of the pertinent statistic have distributions that converge to the limit
J in a uniform way, then subsampling remains consistent; see Politis et al.
(1997). An important example is least squares regression with dependent
errors and/or covariates; subsampling is shown to work here under conditions
without assuming a stationary or homoskedastic error structure (Politis et al.
1997, Theorem 3.4).

The idea of self-normalization is closely related to that of studentization.
To describe it, we now focus on a particular example that may defy Condition
C3: assume Condition C1, and consider the simple case where the statistic of
interest ̂θn = n−1

∑n
t=1 Rt is the sample mean which is an estimator of the

expected value θ = E(Rt) (assumed to be finite). As previously mentioned,
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the rate an is not necessarily
√
n. Two major avenues resulting in a rate that

is less than
√
n are heavy tailed data, and/or long-range dependence.

To fix ideas, suppose that an = nα for some unknown α ∈ (0, 1]. A suc-
cessful self-normalization entails constructing a positive statistic, say ̂ζn > 0,
that converges to some limit distribution Q at a rate explicitly related to the
unknown α. For example, consider the case where nα−δ

̂ζn has limit distri-
bution Q for some known value δ > 0. Then, subsampling can be applied
to the self-normalized quantity (̂θn − θ)/̂ζn that converges to a well-defined
distribution at the known rate nδ. Strictly speaking, the joint convergence
of (nα(̂θn − θ), nα−δ

̂ζn) to the pair (J,Q) is required; see e.g. Politis et al.
(1999, Theorem 11.3.1) for a precise statement.

Typically, the search for a suitable ̂ζn starts with an estimated stan-
dard deviation for ̂θn—hence the connection to studentization. The self-
normalization method for subsampling was first used by Hall et al. (1998)
in the context of a long-range dependent data. Hall and Yao (2003) also em-
ploy self-normalization in connection with bootstrap with smaller resample
size on the residuals of heavy tailed GARCH processes. As is well-known,
the bootstrap with smaller resample size is closely related to subsampling in
the i.i.d. case; see Politis et al. (1999, Ch. 2.3). The case of self-normalized
subsampling for heavy tailed time series was addressed by McElroy and Poli-
tis (2002), and Kokoszka and Wolf (2004). McElroy and Politis (2006) is the
only paper to-date that achieves a self-normalization in a setting exhibiting
both heavy-tails and long-range dependence.
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Markov Chain Monte Carlo

Michael Johannes and Nicholas Polson

Abstract This chapter provides an overview of Markov Chain Monte Carlo
(MCMC) methods. MCMC methods provide samples from high-dimensional
distributions that commonly arise in Bayesian inference problems. We re-
view the theoretical underpinnings used to construct the algorithms, the
Metropolis-Hastings algorithm, the Gibbs sampler, Markov Chain conver-
gence, and provide a number of examples in financial econometrics.

1 Introduction

The Bayesian solution to any inference problem is a simple rule: compute
the conditional distribution of unobserved variables given observed data. In
financial time series settings, the observed data is asset prices, y = (y1, ..., yT ),
and the unobservables are a parameter vector, θ, and latent variables, x =
(x1, ..., xT ), and the inference problem is solved by p (θ, x|y), the posterior
distribution. The latent variables are either unobserved persistent states such
as expected returns or volatility or unobserved transient shocks such as price
jump times or sizes.

Characterizing the posterior distribution, however, is often difficult. In
most settings p (θ, x|y) is complicated and high-dimensional, implying that
standard sampling methods either do not apply or are prohibitively expensive
in terms of computing time. Markov Chain Monte Carlo (MCMC) methods
provide a simulation based method for sampling from these high-dimensional
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distributions, and are particularly useful for analyzing financial time series
models that commonly incorporate latent variables. These samples can be
used for estimation, inference, and prediction.

MCMC algorithms generate a Markov chain,
{

θ(g), x(g)
}G

g=1
, whose sta-

tionary distribution is p (θ, x|y). To do this, the first step is the Clifford-
Hammersley (CH) theorem, which states that a high-dimensional joint dis-
tribution, p (θ, x|y), is completely characterized by a larger number of lower
dimensional conditional distributions. Given this characterization, MCMC
methods iteratively sample from these lower dimensional conditional distri-
butions using standard sampling methods and the Metropolis-Hastings algo-
rithm. Thus, the key to Bayesian inference is simulation rather than opti-
mization.

The simulations are used to estimate integrals via Monte Carlo that nat-
urally arise in Bayesian inference. Common examples include posterior mo-
ments of parameters, E [θ|y] , or state variables, E [x|y], or even expected
utility. Monte Carlo estimates are given by

̂E (f (θ, x) |y) = G−1
G
∑

g=1

f
(

θ(g), x(g)
)

≈
∫

f (θ, x) p (θ, x|y) dθdx = E (f (θ, x) |y) .

The rest of the chapter is outlined as follows. In Section 2, we explain the
components and theoretical foundations of MCMC algorithms. Section 3 pro-
vides a few examples from financial econometrics, and Section 4 provides a
list of notable references.

2 Overview of MCMC Methods

To develop the foundations of MCMC in the simplest setting, we consider
sampling from a bivariate posterior distribution p (θ1, θ2|y), and suppress the
dependence on the data for parsimony. For intuition, it is useful to think of
θ1 as traditional static parameters and θ2 as latent variables.

2.1 Clifford–Hammersley theorem

The Clifford-Hammersley theorem (CH) proves that the joint distribution,
p (θ1, θ2), is completely determined by the conditional distributions, p (θ1|θ2)
and p (θ2|θ1), under a positivity condition. The positivity condition requires
that p (θ1, θ2) , p (θ1) and p (θ2) have positive mass for all points. These re-
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sults are useful in practice because in most cases, p (θ1, θ2) is only known
up to proportionality and cannot be directly sampled. CH implies that the
same information can be extracted from the lower-dimensional conditional
distributions, breaking “curse of dimensionality” by transforming a higher di-
mensional problem, sampling from p (θ1, θ2), into easier problems, sampling
from p (θ1|θ2) and p (θ2|θ1).

The CH theorem is based on the Besag formula: for any pairs (θ1, θ2) and
(θ

′
1, θ

′
2),

p (θ1, θ2)
p
(

θ′1, θ
′
2

) =
p(θ1|θ

′
2)p(θ2|θ1)

p
(

θ
′
1|θ

′
2

)

p
(

θ
′
2|θ1

) . (1)

The proof uses the fact that p (θ1, θ2) = p (θ2|θ1) p (θ1), which, when applied
to (θ1, θ2) and (θ

′
1, θ

′
2), implies that

p (θ1) =
p (θ1|θ′2) p (θ′2)
p (θ′2|θ1)

.

The general version of CH follows by analogy. Partitioning a vector as θ =
(θ1, θ2, θ3, . . . , θK), then the general CH theorem states that

p (θi|θ−i) � p (θi|θ1, θ1,...,θi−1, θi+1, ..., θK) ,

for i = 1, ...,K, completely characterizes the joint distribution p (θ1, ..., θK).
An important case arises frequently in models with latent variables. Here,

the posterior is defined over vectors of static fixed parameters, θ, and latent
variables, x. In this case, CH implies that p (θ, x|y) is completely character-
ized by p (θ|x, y) and p (x|θ, y). The distribution p (θ|x, y) is the posterior
distribution of the parameters, conditional on the observed data and the la-
tent variables. Similarly, p (x|θ, y) is the smoothing distribution of the latent
variables given the parameters.

2.2 Constructing Markov chains

To construct the Markov chains for MCMC with the appropriate limiting
distribution, we use direct sampling methods for known distributions and
otherwise use indirect sampling methods such as the Metropolis-Hastings
algorithm. First, we describe the indirect methods and then explain the
Gibbs sampler and hybrid algorithms, which combine aspects of Metropolis-
Hastings and direct sampling methods.
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2.2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm provides a general approach for
sampling from a given target density, π (θ) . MH uses an accept-reject ap-
proach, drawing a candidate from a distribution q (θ) that is accepted or re-
jected based on an acceptance probability. Unlike traditional accept-reject
algorithms, which repeatedly sample until acceptance, the MH algorithm
samples only once at each iteration. If the candidate is rejected, the algo-
rithm keeps the current value. In this original form of the algorithm, the
entire vector θ is update at once. Below, modifications are discussed that
update θ is blocks, using the intuition from CH.

Specifically, the MH algorithm repeats the following two steps G times:
given θ(g)

Step 1. Draw θ′ from a proposal distribution, q(θ′|θ(g))

Step 2. Accept θ′ with probability α
(

θ(g), θ′
)

,

where

α
(

θ(g), θ′
)

= min
(

π(θ′)
π(θ(g))

q(θ(g)|θ′)
q(θ′|θ(g)) , 1

)

.

To implement the accept-reject step, draw a uniform random variable,
U ∼ U [0, 1], and set θ(g+1) = θ′ if U < α

(

θ(g), θ′
)

, leaving θ(g) unchanged
(θ(g+1) = θ(g)) otherwise. It is important to note that the denominator in
the acceptance probability cannot be zero, provided the algorithm is started
from a π−positive point since q is always positive. The MH algorithm only
requires that π can be evaluated up to proportionality.

The output of the algorithm,
{

θ(g)
}∞
g=1

, is clearly a Markov chain. The
key theoretical property is that the Markov chain, under mild regularity, has
π (θ) as its limiting distribution. We discuss two important special cases that
depend on the choice of q.

Independence MH

One special case draws a candidate independently of the previous state,
q(θ′|θ(g)) = q(θ′). In this independence MH algorithm, the acceptance cri-
terion simplifies to

α
(

θ(g), θ′
)

= min
(

π(θ′)
π(θ(g))

q(θ(g))
q(θ′)

, 1
)

Even though θ′ is drawn independently of the previous state, the sequence
generated is not independent, since α depends on previous draws. The
criterion implies a new draw is always accepted if target density ratio,
π(θ′)/π(θ(g)), increases more than the proposal ratio, q(θ(g))/q(θ′). When
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this is not satisfied, an balanced coin is flipped to decide whether or not to
accept the proposal.

When using independence MH, it is common to pick the proposal density
to closely match certain properties of the target distribution. One common
criterion is to ensure that tails of the proposal density are thicker than the
tails of the target density. By “blanketing” the target density, it is less likely
that the Markov chain will get trapped in a low probability region of the
state space.

Random-walk Metropolis

Random-walk (RW) Metropolis is the polar opposite of the independence MH
algorithm. It draws a candidate from the following RW model,

θ′ = θ(g) + σεg+1,

where εt is an independent, mean zero, and symmetric error term, typically
taken to be a normal or t−distribution, and σ is a scaling factor. The algo-
rithm must be tuned via the choice of σ, the scaling factor. Symmetry implies
that

q
(

θ′|θ(g)
)

= q
(

θ(g)|θ′
)

,

with acceptance probability

α
(

θ(g), θ′
)

= min
(

π(θ′)/π(θ(g)), 1
)

.

The RW algorithm, unlike the independence algorithm, learns about the den-
sity π (θ) via small symmetric steps, randomly “walks” around the support
of π. If a candidate draw has a higher target density value than the current
draw, π(θ′) > π(θ(g)), the draw is always accepted. If π(θ′) < π(θ(g)), then a
unbalanced coin is flipped.

2.2.2 Gibbs sampling

The Gibbs sampler simulates multidimensional posterior distributions by it-
eratively sampling from the lower-dimensional conditional posteriors. The
Gibbs sampler updates the chain one component at a time, instead of up-
dating the entire vector. This requires either that the conditional posteriors
distributions are discrete, are a recognizable distribution (e.g. normal) for
which standard sampling algorithms apply, or that resampling methods, such
as accept-reject, can be used.

In the case of p (θ1, θ2), given current draws,
(

θ
(g)
1 , θ

(g)
2

)

, the Gibbs sampler
consists of
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1. Draw θ
(g+1)
1 ∼ p

(

θ1|θ(g)2

)

2. Draw θ
(g+1)
2 ∼ p

(

θ2|θ(g+1)
1

)

,

repeating G times. The draws generated by the Gibbs sampler form a Markov
chain, as the distribution of θ(g+1) conditional on θ(g) is independent of past
draws. Higher dimensional cases follow by analogy.

2.2.3 Hybrid chains

Given a partition of the vector θ via CH, a hybrid MCMC algorithm updates
the chain one subset at a time, either by direct draws (‘Gibbs steps’) or via
MH (‘Metropolis step’). Thus, a hybrid algorithm combines the features of
the MH algorithm and the Gibbs sampler, providing significant flexibility in
designing MCMC algorithms for different models.

To see the mechanics, consider the two-dimensional example. First, assume
that the distribution p (θ2|θ1) is recognizable and can be directly sampled.
Second, suppose that p (θ1|θ2) can only be evaluated and not directly sam-
pled. Thus we use a Metropolis step to update θ1 given θ2. For the MH
step, the candidate is drawn from q

(

θ′1|θ
(g)
1 , θ

(g)
2

)

, which indicates that the
step can depend on the past draw for θ1. We denote the Metropolis step as
MH

[

q
(

θ1|θ(g)1 , θ
(g)
2

)]

, which implies that we draw θ
(g+1)
1 ∼ q

(

θ′1|θ
(g)
1 , θ

(g)
2

)

and then accept/reject based on

α
(

θ
(g)
1 , θ′1

)

= min

⎛

⎝

p
(

θ′1|θ
(g)
2

)

p
(

θ
(g)
1 |θ(g)2

)

q
(

θ
(g)
1 |θ′1, θ

(g)
2

)

q
(

θ′1|θ
(g)
1 , θ

(g)
2

) , 1

⎞

⎠ .

The general hybrid algorithm is as follows. Given θ
(g)
1 and θ

(g)
2 , for g =

1, ..., G,

1. Draw θ
(g+1)
1 ∼ MH

[

q
(

θ1|θ(g)1 , θ
(g)
2

)]

2. Draw θ
(g+1)
2 ∼ p

(

θ2|θ(g+1)
1

)

.

In higher dimensional cases, a hybrid algorithm consists of any combination
of Gibbs and Metropolis steps. Hybrid algorithms significantly increase the
applicability of MCMC methods, as the only requirement is that the model
generates posterior conditionals that can either be sampled or evaluated.
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2.3 Convergence theory

To understand why MCMC algorithms work, we briefly discuss convergence
of the underlying Markov chain for the case of the Gibbs sampler. The argu-
ments for convergence of MH or hybrid algorithms are similar.

The Markov transition kernel from state θ to state θ′ is P (θ, θ′) =
p (θ′1|θ2) p (θ′2|θ′1) ,and by definition,

∫

P (θ, θ′) dθ′ = 1. The densities p (θ1|θ2)
and p (θ2|θ1) will typically have either discrete or continuous support, and in
nearly all cases the chain can reach any point or set in the state space in one
step. To establish convergence, we first identify the limiting distribution. A
stationary probability distribution, π, satisfies the integral equation

π (θ′) =
∫

P (θ, θ′) π (θ) dθ.

If the chain converges, then π is also called the limiting distribution. It is
easy to verify that the stationary distribution of the Markov chain generated
by the Gibbs sampler is the posterior distribution, π (θ) = p (θ1, θ2):

∫

P (θ, θ′) p (θ) dθ = p (θ′2|θ′1)
∫

θ2

∫

θ1

p (θ′1|θ2) p (θ1, θ2) dθ1dθ2

= p (θ′2|θ′1)
∫

θ2

p (θ′1|θ2) p (θ2) dθ2

= p (θ′2|θ′1) p (θ′1) = p (θ′1, θ
′
2) = π (θ′) .

To establish convergence to the limiting distribution, the chain must satisfy
certain regularity conditions on how it traverses the state space. Starting
from an initial π-positive point, the Markov chain in Gibbs samplers can
typically reach any set in the state space in one step, implying that states
communicate and the chain is irreducible. This does not imply that a chain
starting from a given point, will return to that point or visit nearby states
frequently. Well-behaved chains are not only irreducible, but stable, in the
sense that they make many return visits to states. Chains that visit states or
sets frequently are recurrent. Under very mild conditions, the Gibbs sampler
generates an irreducible and recurrent chain. In most cases, a measure theo-
retical condition called Harris recurrence is also satisfied, which implies that
the chains converge for any starting values.

In this case, the ergodic theorem holds: for a sufficiently integrable function
f and for all starting points θ,

lim
G→∞

1
G

G
∑

g=1

f
(

θ(g)
)

=
∫

f (θ) π (θ) dθ = E [f (θ)]
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almost surely. Notice the two subtle modes of convergence: there is the con-
vergence of the Markov chain to its stationary distribution, and Monte Carlo
convergence, which is the convergence of the partial sums to the integral.

In practice, a chain is typically run for an initial length, often called the
burn-in, to remove any dependence on the initial conditions. Once the chain
has converged, then a secondary sample of size G is created for Monte Carlo
inference.

3 Financial Time Series Examples

While there are many examples of MCMC methods analyzing financial time
series models, we focus on just three prominent examples, providing references
at the end for other applications.

3.1 Geometric Brownian motion

The geometric Brownian motion is the simplest model,

yt = μ+ σεt,

where εt ∼ N (0, 1) and yt are continuously compounded returns. The like-
lihood function is p

(

y|μ, σ2
)

, and p
(

μ, σ2|y
)

is the joint posterior. We as-
sume independent conjugate priors, p (μ) ∼ N (a,A) and p

(

σ2
)

∼ IG
(

b
2 ,

B
2

)

,
where IG denotes the inverse Gamma distribution, and a,A, b, and B are hy-
perparameters.

CH implies that p
(

μ|σ2, y
)

and p
(

σ2|μ, y
)

are the complete conditionals,
which are given by Bayes rule as

p
(

μ|σ2, y
)

∝ p
(

y|μ, σ2
)

p (μ)

p
(

σ2|μ, y
)

∝ p
(

y|μ, σ2
)

p
(

σ2
)

.

Straightforward algebra implies that

p
(

μ|y, σ2
)

∼ N
(

aT , AT
)

and p
(

σ2|y, μ
)

∼ IG
(

bT

2
,
BT

2

)

,

where

aT = AT

(

y

σ2/T
+
a

A

)

, AT =
(

1
σ2/T

+
1
A

)−1

bT = b+ T and BT = B +
∑T

t=1
(yt − μ)2 ,
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where T−1
∑T

t=1 yt = y.
The fact that the conditional posterior is the same distribution (with dif-

ferent parameters) as the prior distribution is a property of the prior known
as conjugacy.

Since both distributions are standard distributions, the MCMC algorithm
is a two-step Gibbs sampler. Given current draws,

(

μ(g),
(

σ2
)(g)

)

, the algo-
rithm iteratively simulates

1. Draw μ(g+1) ∼ p
(

μ|
(

σ2
)(g)

, y
)

∼ N

2. Draw
(

σ2
)(g+1) ∼ p

(

σ2|μ(g+1), y
)

∼ IG.

This example is meant to develop intuition. In most cases, one would chose
a dependent prior of the form

p
(

μ, σ2
)

∝ p
(

μ|σ2
)

p
(

σ2
)

,

where p
(

μ|σ2
)

∼ N and p
(

σ2
)

∼ IG. This is known as the NIG is the
normal-inverse gamma joint prior. In this case, MCMC is not required as one
can draw directly from p

(

μ, σ2|y
)

.

3.2 Time-varying expected returns

Next, consider a model with time-varying expected returns,

yt = μt + σεt

μt = αμ + βμμt−1 + σμεt.

The parameter vector is θ =
(

σ2, αμ, βμ, σ
2
μ

)

and the state variables are μ =
(μ1, ..., μT ). We assume standard conjugate priors, σ2 ∼ IG and (αμ, βμ, σμ)
∼ NIG, suppressing the parameter of these distributions. CH implies that
p
(

σ2|αμ, βμ, σ2
μ, μ, y

)

, p
(

αμ, βμ, σ
2
μ|σ2, μ, y

)

, and p
(

μ|σ2, αμ, βμ, σ
2
μ, y

)

are
the complete conditionals.

The Gibbs sampler for this model is given by:

1.
(

σ2
)(g+1) ∼ p

(

σ2|α(g)
μ , β(g)

μ ,
(

σ2
μ

)(g)
, μ(g), y

)

∼ IG

2.
(

α(g+1)
μ , β(g+1)

μ ,
(

σ2
μ

)(g+1)
)

∼ p
(

αμ, βμ, σ
2
μ|

(

σ2
)(g+1)

, μ(g), y
)

∼ NIG

3. μ(g+1) ∼ p
(

μ|
(

σ2
)(g+1)

, α(g+1)
μ , β(g+1)

μ ,
(

σ2
μ

)(g+1)
, y

)

∼ FFBS,

where the third step refers to the forward-filtering, backward sampling algo-
rithm. This algorithm applies in conditionally Gaussian state space models,
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and requires three steps:

Step 1. Run the Kalman filter forward for t = 1, ..., T to get the
moments of p

(

μt|θ, yt
)

Step 2. Sample the last state from μ̂T ∼ p
(

μT |θ, yT
)

Step 3. Sample backward through time: μ̂t ∼ p
(

μt|μ̂t+1, θ, y
t
)

.

where yt = (y1, ..., yt). The FFBS algorithm provides a direct draw of the vec-
tor μ from its conditional distribution, which is more efficient than sampling
the expected returns, μt, one state at a time.

The output of the algorithm can be used for Monte Carlo integration. For
example, the smoothed estimate of the latent state at time t is given by

1
G

G
∑

g=1

μ
(g)
t ≈

∫

μtp (μt|y) dμt = E (μt|y) .

3.3 Stochastic volatility models

A popular discrete-time stochastic volatility model is given by

yt =
√

Vt−1εt

log (Vt) = αv + βv log (Vt−1) + σvε
v
t ,

where, for simplicity, we assume the errors are uncorrelated. Again, a NIG
prior for

(

αv, βv, σ
2
v

)

is conjugate for the parameters, conditional on the
volatilities.

The only difficulty in this model is sampling from p
(

V |αv, βv, σ2
v, y

)

. This
distribution is not a recognizable distribution, and due to its high dimen-
sion, a direct application of MH is not recommended. The simplest ap-
proach is to use the CH theorem to break the T -dimensional distribution
p
(

V |αv, βv, σ2
v , y

)

into T 1-dimensional distributions,

p (Vt|Vt−1, Vt+1, θ, yt+1) ∝ p (yt+1|Vt) p (Vt+1|Vt, θ) p (Vt, |Vt−1, θ) ,

for t = 1, ..., T . This distribution is again not recognizable, but it is easy
to develop proposal distributions that closely approximate the distribution
using independence MH, although the random-walk algorithm also applies
and works well in practice. This is typically referred to as a single-state
volatility updating step.
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Thus, the hybrid MCMC algorithm for estimating the stochastic volatility
requires the following steps: given

1.
(

α(g+1)
v , β(g+1)

v ,
(

σ2
v

)(g+1)
)

∼ p
(

αv, βv, σ
2
v |V (g), y

)

∼ NIG

2. V (g+1)
t ∼ MH

[

q
(

Vt|V (g)
t−1, V

(g)
t , V

(g)
t+1, θ

(g+1)
)]

for t = 1, ..., T .

When implementing this model, care needs to be taken with the Metropo-
lis step. It is common to try alternative proposal distribution and perform
simulation studies to ensure the algorithm is working properly.

4 Further Reading

For a textbook discussion of the Bayesian approach to inference, we recom-
mend the books by Raiffa and Schlaifer (1961), Bernardo and Smith (1995),
Robert (2001), or O’Hagan (2004). Robert and Casella (2005) or Gamerman
and Lopes (2006) provide excellent textbook treatments of MCMC meth-
ods. They provide with details regarding the algorithms (e.g., tuning MH
algorithms) and numerous examples.

It is impossible to cite all of the important papers developing MCMC
theory and building MCMC algorithms in different applications. We here
provide the briefest possible list, with an emphasis on the initial MCMC
approaches for various different models. The extensions to these foundational
papers are numerous.

One important precursor to MCMC methods in Bayesian statistics is
Tanner and Wong (1987), who introduced algorithms using data augmen-
tation. Gelfand and Smith (1990) provided the first MCMC applications in
Bayesian statistics. Smith and Roberts (1993) and Besag, Green, Higdon, and
Mengersen (1995) provide overviews of MCMC methods.

Regarding the underlying theory of MCMC algorithms, The Clifford-
Hammersley theorem was originally shown in Hammersley and Clifford (1970)
and the Besag formula is in Besag (1974). The original Metropolis random-
walk algorithm is given in Metropolis et al. (1953), and the independence
version in Hastings (1973). Geman and Geman (1984) introduced the Gibbs
sampler for sampling posterior distributions and proved convergence proper-
ties. Tierney (1994) provides a wide range of theoretical convergence results
for MCMC algorithms, providing verifiable conditions for various forms of
convergence and discussing hybrid algorithms. Chib and Greenberg (1995)
provide an overview of the Metropolis-Hastings algorithm.

With regard to specific models, there are a number of important founda-
tional references. For simplicity, we list them in chronological order. Carlin
and Polson (1991) developed MCMC algorithms for models with scale mix-
ture of normal distribution errors, which includes the t, double exponential,
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logistic, and exponential power family error distributions. Carlin and Polson
(1992) and develop MCMC algorithms for discrete regression and categorical
observations and for the probit model, see Albert and Chib (1993). Carlin,
Gelfand, and Smith (1992) and Chib (1998) developed algorithms for time
series models with change-points. Diebold and Robert (1994) analyzed finite
mixture models with MCMC methods. Carlin, Polson, and Stoffer (1992) de-
velop MCMC methods for nonlinear and non-normal state space models, and
Carter and Kohn (1994, 1996) developed the FFBS algorithm for estimation
in a range of non-normal state space models. McCulloch and Tsay (1993)
analyze Markov switching models.

MCMC methods have been broadly applied in stochastic volatility mod-
els. Jacquier, Polson, and Rossi (1994) first developed MCMC algorithms for
the log-stochastic volatility models, with Jacquier, Polson, and Rossi (2004)
providing extensions to correlated and non-normal error distributions. Er-
aker, Johannes, and Polson (2003) analyzed time series models with jumps
in prices and volatility. Jones (1998), Eraker (2001) and Elerian, Shephard,
and Chib (2001) develop approaches for MCMC analysis of continuous-time
models by simulating additional high-frequency data points between obser-
vations. Also, see the chapter by Chib, Omori, and Asai in this handbook for
further references for multivariate problems. For a more extensive review of
MCMC methods for financial econometrics, see Johannes and Polson (2005).
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Particle Filtering

Michael Johannes and Nicholas Polson

Abstract This chapter provides an overview of particle filters. Particle filters
generate approximations to filtering distributions and are commonly used
in non-linear and/or non-Gaussian state space models. We discuss general
concepts associated with particle filtering, provide an overview of the main
particle filtering algorithms, and provide an empirical example of filtering
volatility from noisy asset price data.

1 Introduction

Filtering generally refers to an extraction process, and statistical filtering
refers to an algorithm for extracting a latent state variable from noisy data
using a statistical model. The original filtering applications were in physical
systems, for example, tracking the location of an airplane or missile using
noisy radar signals, but filtering quickly became a crucial theoretical and
empirical tool in economics and finance due to widespread use of models
incorporating latent variables.

Latent variables capture unobserved changes in the economic environment.
In many cases, there is clear evidence for time-variation, but the underlying
causes are unknown or difficult to quantify. For example, in finance, it is
clear that asset return volatility time-varies, but it is difficult to identify
factors generating the variation. To capture the variation, common models
assume that volatility is unobserved but evolves through time as a stochastic
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process. In macroeconomics, a similar challenge occurs when modeling time-
varying components that drive aggregates. For example, the key component
in “long-run risk” models is a highly persistent unobserved variable driving
consumption and dividend growth rates.

Given the widespread use of latent variables in economic models, a central
challenge is to develop statistical methods for estimating the latent variables.
This chapter discusses a computational approach for filtering known as the
particle filter.

To understand the nature of the filtering problem and why particle fil-
ters are useful, the formal problem is defined as follows. A statistical model
generates the observed data, a vector yt, and the conditional distribution of
yt depends on a latent state variable, xt. Formally, the data is generated by
the state space model, which consists of the observation and state evolution
equations,

Observation equation: yt = f (xt, ε
y
t )

State evolution: xt+1 = g
(

xt, ε
x
t+1

)

,

where εyt+1 is the observation error or “noise,” and εxt+1 are state shocks. The
observation equation is often written as a conditional likelihood, p (yt|xt), and
the state evolution as p (xt+1|xt). Both of these distributions typically depend
on static parameters, θ, whose dependence is suppressed, except where ex-
plicitly noted.

The posterior distribution of xt given the observed data, p (xt|yt), solves
the filtering problem, where yt = (y1, ..., yt) is the observed data. Beginning
with Kalman’s filter, computing p (xt|yt) uses a two-step procedure of pre-
diction and Bayesian updating. The prediction step combines the current
filtering distribution with the state evolution,

p
(

xt+1|yt
)

=
∫

p (xt+1|xt) p
(

xt|yt
)

dxt, (1)

providing a forecast of next period’s state. Next, given a new observation,
yt+1, the predictive or “prior” views are updated by Bayes rule

p
(

xt+1|yt+1
)

︸ ︷︷ ︸

Posterior

∝ p (yt+1|xt+1)
︸ ︷︷ ︸

Likelihood

p
(

xt+1|yt
)

︸ ︷︷ ︸

Prior

. (2)

The problem is that p (xt|yt) is known analytically only in a limited number
of settings, such as a linear, Gaussian model where p (yt|xt) ∼ N

(

xt, σ
2
)

and p (xt+1|xt) ∼ N
(

xt, σ
2
x

)

. In this case, the Kalman filter implies that
p(xt|yt) ∼ N

(

μt, σ
2
t

)

, where μt and σ2
t solve the Kalman recursions. In

nonlinear or non-normal models, it is not possible to analytically compute
p(xt|yt). In these settings, p (xt|yt) is a complicated function of yt, and sim-
ulation methods are typically required to characterize p (xt|yt).



Particle Filtering 1017

The particle filter is the most popular approach. A particle filter simulates
approximate samples from p(xt|yt), which are used for Monte Carlo integra-
tion to estimates moments of interest such as E [f (xt) |yt]. Particle filters
use a discrete approximation to p(xt|yt) consisting of states or “particles”,
{

x
(i)
t

}N

i=1
, and weights associated with those particles,

{

π
(i)
t

}N

i=1
. A particle

approximation is just a random histogram.
Recursive sampling is the central challenge in particle filtering: given a

sample from pN (xt|yt), how to generate a random sample from the particle
approximation to p(xt+1|yt+1) after receiving a new data point yt+1? Essen-
tially this is a problem of using a discrete approximation to the integral in
(1) and then sampling from pN

(

xt+1|yt+1
)

. Since there are multiple ways
to sample from a given distribution, there are many different particle filters.
For example, importance sampling is commonly used to sample from non-
standard distributions, and different importance densities generate different
particle filters.

This chapter provides an introduction to these particle filters, and out-
lines a number of the most common algorithms. Before delving into details,
it is important to understand the two main reasons why particle filters are so
popular. First, particle filters are very flexible and adaptable. Like all Monte
Carlo methods, particle filters can be adapted to the particular model specifi-
cation under consideration. In particular, it is possible to develop accurate fil-
ters for non-linear models with fat-tailed and asymmetric error distributions.
These are particularly important for applications where errors are often not
normally distributed. Second, particle filters are easy to program and com-
putationally very fast to run, in terms of computing time. For these reasons,
particle filters provide an attractive filtering methodology.

2 A Motivating Example

The following provides a common setting in which particle filters are useful.
Consider a simple log-stochastic volatility model

yt+1 =
√

Vt+1ε
y
t+1

log (Vt+1) = αv + βv log (Vt) + σvε
v
t+1,

where εyt+1and εyt+1 are independent standard normal and Vt is the condi-
tional variance. Again, the parameters are assumed to be known. This is a
benchmark specification for modeling time-varying volatility. The top panel
of Figure 1 provides a simulated sample path of returns from the specifica-
tion with αv = 0, βv = 0.95, and σv = 0.10. By merely observing the data,
it is clear that the conditional volatility time varies, as the amplitude of the
fluctuations vary over time.
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Fig. 1 Simulated returns (top panel) and summaries of the filtering distribution through
time (bottom panel) for a logarithmic stochastic volatility model.

This model has conditionally normal errors, but is nonlinear, because of
the term

√

Vt+1ε
y
t+1. Alternatively, the observation equation can be written

as
log (yt+1)

2 = log (Vt+1) + log
(

εyt+1

)2
,

which leads to a model that is linear in log (Vt+1), but is now non-normal
because log

(

εyt+1

)2 is X 2 with one degree of freedom.
Given this structure, how can Vt be filtered from the observed data? One

approach would be to ignore the nonlinearity/non-normality and use the
Kalman filter. Alternatively, the model could be linearized using the extended
Kalman filter. Both of these approaches are inefficient and biased. Another
alternative would be to use deterministic numerical integration to compute
the integral in equation (1) and characterize p (Vt|yt). This is computationally
more difficult, but may work satisfactorily in some settings. In higher dimen-
sional settings, these deterministic numerical integration schemes suffer from
Bellman’s curse of dimensionality.

Alternatively, the particle filter, as described in the following sections, can
be used. The results of the particle filter are displayed in the bottom panel of
Figure 1. Here, the true states are given by the dotted line, filtered estimates,
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E
(√
Vt|yt

)

, by the solid line, and estimates of the (5%, 95%) quantiles in the
shades. These are all naturally computed as output from the particle filter.

3 Particle Filters

A particle filter is a discrete approximation, pN (xt|yt), to p (xt|yt), generally

written as
{

π
(i)
t , x

(i)
t

}N

i=1
, where the weights sum to one,

∑N
i=1 π

(i)
t = 1. The

support of the discrete approximation, the x(i)
t ’s, is not preset as would be

the case in deterministic approximation schemes, but rather is the stochastic
outcome of a simulation algorithm. Thus, the support of the distribution, the
x

(i)
t ’s, change from period to period. Thus, a generic particle approximation

is given by
pN

(

xt|yt
)

=
∑N

i=1
π

(i)
t δ

x
(i)
t
,

where δ is the Dirac function.
The particle approximation can be transformed into an equally weighted

random sample from pN (xt|yt) by sampling, with replacement, from the

discrete distribution,
{

π
(i)
t , x

(i)
t

}N

i=1
. This procedure, called resampling, pro-

duces a new sample with uniformly distributed weights, π(i)
t = 1/N . Resam-

pling can be done in many ways, but the simplest is multinomial sampling.
Other methods include stratified sampling, residual resampling, and system-
atic resampling.

The discrete support of particle filters makes numerical integration easy
because integrals becomes sums. For example,

pN
(

xt+1|yt+1
)

∝
∫

p (yt+1|xt+1) p (xt+1|xt) pN
(

xt|yt
)

dxt (3)

∝
N
∑

i=1

p (yt+1|xt+1) p
(

xt+1|x(i)
t

)

π
(i)
t , (4)

where the proportionality sign, ‘∝,’ signifies that the normalizing constant
does not depend on xt+1. Given the discretization, the central problem in
particle filtering is how to generate a sample from pN

(

xt+1|yt+1
)

. Equation
(3) implies that pN

(

xt+1|yt+1
)

is a finite mixture distribution, and different
sampling methods generate alternative particle filtering algorithms, each with
their own strengths and weaknesses.

In general, there are two sources of approximation errors in particle fil-
tering algorithms. Approximating p (xt|yt) by pN (xt|yt) generates the first
source of error. This is inherent in all particle filtering algorithms, but can be
mitigated by choosing N large. Importance sampling or other approximate



1020 M. Johannes and N. Polson

sampling methods generate the other source of error, which is present in some
particle filtering algorithms. Importance sampling generates an approximate
sample from N (xt|yt), which in turn approximates p (xt|yt). This leads to a
second layer of approximation errors.

It is useful to briefly review common uses of the output of particle filtering
algorithms. The main use is to estimate latent states. This is done via Monte
Carlo. A particle approximation of E (f (xt) |yt) is

EN
(

f (xt) |yt
)

=
∫

f (xt) pN
(

xt|yt
)

dxt =
N
∑

i=1

f
(

x
(i)
t

)

π
(i)
t .

As N becomes large, the particle estimates converge by the law of large num-
bers and a central limit theorem is typically available, both using standard
Monte Carlo convergence results.

The filtering distribution is useful for a likelihood based parameter estima-
tion and model comparison. Although in the rest of the chapter we assume
parameters are known, a central problem in state space models is estimating
the parameters, θ. In the case when parameters are unknown, the particle
filter can be used to compute the likelihood function. The likelihood of the
observed sample is denoted as L

(

θ|yT
)

. In time series models, the likelihood
is given by

L
(

θ|yT
)

=
∏T−1

t=0
p
(

yt+1|θ, yt
)

.

In latent variable models, the predictive distribution of the data p (yt+1|yt, θ)
is not generally known, but rather given as an integral against the filtering
distribution:

p
(

yt+1|yt, θ
)

=
∫

p (yt+1|θ, xt+1) p (xt+1|θ, xt) p
(

xt|θ, yt
)

dxtdxt+1,

where p (yt+1|θ, xt+1) is the conditional likelihood, p (xt+1|θ, xt) is the state
evolution, and p (xt|θ, yt) is the filtering distribution, all conditional on the
unknown parameters. Given a particle approximation to p (xt|yt, θ), it is
straightforward to approximate the predictive likelihoods, and therefore to
estimate parameters or compare models with likelihood ratios. For the rest
of the chapter, we suppress the dependence on the parameters.

The rest of the chapter discusses three common prominent particle filtering
algorithms. For parsimony, focus is restricted to particle methods for approx-
imating the filtering distribution, p (xt|yt), and we do not discuss methods
such as sequential importance sampling (SIS), that generate samples sequen-
tially from the smoothing distribution, p (xt|yt), where xt = (x1, ..., xt).
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3.1 Exact particle filtering

The easiest way to understand particle filtering is to consider situations in
which importance sampling is not required, because direct i.i.d. sampling
from pN

(

xt+1|yt+1
)

is feasible. This is called exact sampling, and leads to
an exact particle filter. To see how this works, first note that

p (yt+1, xt+1|xt) ∝ p (yt+1|xt) p (xt+1|xt, yt+1) , (5)

which implies that the filtering recursion can be expressed as

p
(

xt+1|yt+1
)

∝
∫

p (yt+1|xt) p (xt+1|xt, yt+1) p
(

xt|yt
)

dxt, (6)

where p (yt+1|xt) is the predictive likelihood and p (xt+1|xt, yt+1) is the pos-
terior distribution of the new state given the previous state and the new
observation.

This representation generates a different mixture distribution for pN (xt+1|
yt+1

)

than the one commonly used in particle filtering algorithms, which is
given in 3. Given a particle approximation to pN (xt|yt),

pN
(

xt+1|yt+1
)

∝
N
∑

i=1

p
(

yt+1|x(i)
t

)

p
(

xt+1|x(i)
t , yt+1

)

(7)

=
N
∑

i=1

w
(i)
t p

(

xt+1|x(i)
t , yt+1

)

,

where the normalized first stage weights are

w
(i)
t =

p
(

yt+1|x(i)
t

)

∑N
i=1 p

(

yt+1|x(i)
t

) .

Since p (yt+1|xt) is a function of only xt and yt+1, these weights are known
upon receipt of the new observation, which implies that pN

(

xt+1|yt+1
)

is
a standard discrete mixture distribution. Sampling from a discrete mixture
distribution is straightforward by first selecting the mixture index and then
simulating from that mixture component. This simple procedure leads to
exact particle filtering algorithm is

Step 1. Draw z(i) ∼ MultN

(

{

w
(i)
t

}N

i=1

)

for i = 1, ..., N and set x(i)
t = x

z(i)
t

Step 2. Draw x
(i)
t+1 ∼ p

(

xt+1|x(i)
t , yt+1

)

for i = 1, ..., N,
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where MultN denotes an N−component multinomial distribution. Since this
generates an i.i.d. sample, the second stage weights in the particle approxi-
mation π(i)

t are all 1/N .
The intuition of the algorithm is instructive. At Step 1, upon observation of

yt+1, the resampling step selects the particles that were most likely, in terms
of the predictive likelihood, p

(

yt+1|x(i)
t

)

, to have generated yt+1. After this
selection step, the algorithm simulates new particles from the component
distribution p

(

xt+1|x(i)
t , yt+1

)

. The advantage of this algorithm is that it
eliminates the second source of errors that can arise in particle filters. By
directly sampling from pN (xt|yt) , there are no importance sampling errors.
Any remaining Monte Carlo errors can be minimized by choosing N large.
It is also possible to sample the discrete distribution in other ways, such as
residual or systematic sampling.

The exact particle filtering approach requires that the predictive likelihood

p (yt+1|xt) =
∫

p (yt+1|xt+1) p (xt+1|xt) dxt+1

can be computed and that

p (xt+1|xt, yt+1) ∝ p (yt+1|xt+1) p (xt+1|xt)

can be sampled. In many models, these distributions are known or straight-
forward modifications of the general algorithm can be used to generate exact
samples from pN . One such example is given below. In general, exact parti-
cle filtering is possible in models with (a) linear observation equations, (b)
non-Gaussian errors that can be represented as a discrete or scale mixture of
normal distribution, and (c) models with state evolutions that have additive
errors, but nonlinear conditional means. This would occur when

xt+1 = f (xt) + εxt+1

and f (xt) is a known analytical function of xt. In particular, this allows for a
wide range of observation or state errors, including finite mixtures of normal
error distributions, t-distributed errors, or double exponential errors. Thus,
the class of models in which exact sampling is possible is quite broad.

3.1.1 Example: Linear, Gaussian filtering

To see how exact sampling operates, consider the simple case of filtering in
linear Gaussian models: p (yt|xt) ∼ N

(

xt, σ
2
)

and p (xt+1|xt) ∼ N
(

xt, σ
2
x

)

.
The exact or optimal filtering algorithm requires two distributions, p (yt+1|xt)
and p (xt+1|xt, yt+1) , which are both easy to characterize:
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p (yt+1|xt) ∼ N
(

xt, σ
2 + σ2

x

)

and

p (xt+1|xt, yt+1) ∝ p (yt+1|xt+1) p (xt+1|xt) ∼ N
(

μt+1, σ
2
t+1

)

,

where
μt+1

σ2
t+1

=
yt+1

σ2
y

+
xt
σ2
x

and
1

σ2
t+1

=
1
σ2
y

+
1
σ2
x

.

An exact particle filtering algorithm is

Step 1: Sample z(i) ∼ MultN

(

{

w
(

x
(i)
t

)}N

i=1

)

and set x(i)
t = x

z(i)
t for i = 1, ..., N

Step 2: Draw x
(i)
t+1 ∼ N

(

μ
(i)
t+1, σ

2
t+1

)

for i = 1, ..., N

where

w
(

x
(i)
t

)

= exp

⎛

⎜

⎝−

(

yt+1 − x
(i)
t

)2

2 (σ2 + σ2
x)

⎞

⎟

⎠

/

N
∑

i=1

exp

⎛

⎜

⎝−

(

yt+1 − x
(i)
t

)2

2 (σ2 + σ2
x)

⎞

⎟

⎠

and μ(i)
t+1 displays the dependence on x(i)

t . This generates an equally weighted

sample
{

x
(i)
t+1

}N

i=1
from pN

(

xt+1|yt+1
)

, thus π(i)
t+1 = 1/N .

3.1.2 Example: Log-stochastic volatility model

A more interesting example is the log-stochastic volatility model, as described
in Section 2. The model can be written as

log (yt+1)
2 = xt+1 + εt+1

xt+1 = αv + βvxt + σvε
v
t+1,

where εt+1 has a log
(

χ2
1

)

distribution. To develop the particle filtering al-
gorithm, it is useful to approximate the log

(

χ2
1

)

distribution with a discrete
mixture of normals with fixed weights,

∑K
j=1 pjZ

j
t+1 where Zj

t+1 ∼ N (μj , σ2
j )

and μj and σj are known. This approximation is can be made arbitrarily
accurate, and in practice 10 mixture components is sufficient.

The key to an efficient particle filter is the introduction of an auxiliary
indicator variable, st+1, that tracks the mixture components. For example, if
st+1 = j, then

p
(

log (yt+1)
2 |xt+1, st+1 = j

)

= N (xt+1 + μj , σ
2
j ).
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The introduction of an additional latent variable is called data augmenta-
tion and is commonly used when developing Markov Chain Monte Carlo
algorithms. Given the additional auxiliary variable, the exact sampling algo-
rithm consists of two steps: (1) resampling persistent state variables, in this
case, xt = log (Vt), and (2) simulating xt+1 and st+1.

For the first step, the predictive density is

p(yt+1|xt) =
K
∑

j=1

pjN (αv + βvxt + μj , σ
2
j + σ2

v),

and thus
w (xt) =

p (yt+1|xt)
∑N

i=1 p (yt+1|xt)
.

Note that st+1 is i.i.d., so there is no information available at time t to forecast
its value. The second step requires drawing from

p (xt+1, st+1|xt, yt+1) ∝ p (xt+1|st+1, xt, yt+1) p (st+1|xt, yt+1) .

The distribution p (st+1|xt, yt+1) is a known discrete distribution since

p (st+1 = j|xt, yt+1) ∝ p (yt+1|xt, st+1 = j) pj ,

where
p (yt+1|xt, st+1 = j) = N

(

αv + βvxt + μj , σ
2
v + σ2

j

)

.

Similarly,

p (xt+1|st+1, xt, yt+1) ∝ p (yt+1|st+1, xt) p (xt+1|xt)

is a convolution of two normal distributions, which is also a normal distribu-
tion. Together, these two steps can be used to provide an exact sample from
pN

(

st+1, xt+1|yt+1
)

.
Figure 1 displays a summary of the output of the algorithm, for the sim-

ulated path of returns discussed earlier. The bottom panel displays the true
simulated volatilities,

√
Vt, in red dots, the posterior mean, EN

(√
Vt|yt

)

,
is the solid line, and the shaded area displays the (5%, 95%) quantiles of
pN

(√
Vt|yt

)

.

3.2 SIR

In settings in which exact sampling is not possible, importance sampling
is typically used. One of the first, most popular, and most general particle
filtering algorithm is known as the sampling importance resampling (SIR)
algorithm. The algorithm is simplicity itself, relying only on two steps: given
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samples from pN (xt|yt),

Step 1. Draw x
(i)
t+1 ∼ p

(

xt+1|x(i)
t

)

for i = 1, ..., N

Step 2. Draw z(i) ∼ MultN

(

{

w
(i)
t+1

}N

i=1

)

and set x(i)
t+1 = xz

(i)

t+1,

where the importance sampling weights are given by

w
(i)
t+1 =

p(yt+1|x(i)
t+1)

∑N
i=1 p(yt+1|x(i)

t+1)
.

Prior to resampling, each particle had weight w(i)
t+1. After resampling, the

weights are equal, by the definition of resampling. The SIR algorithm has
only two mild requirements: that the likelihood function can be evaluated
and that the states can be simulated. Virtually every model used in practice
satisfies these mild assumptions.

The justification for the algorithm is the weighted bootstrap algorithm or
SIR algorithm, which was first developed to simulate posterior distributions,
of the form L (x) p (x), where L is the likelihood and p the prior. The algo-
rithm first draws an independent sample x(i) ∼ p (x) for i = 1, ...N , and then
computes normalized importance weights w(i) = L

(

x(i)
)

/
∑N

i=1 L
(

x(i)
)

. The
sample drawn from the discrete distribution

{

x(i), w(i)
}N

i=1
tends in distribu-

tion to a sample from the product density L (x) p (x) as N increases.
In the case of the particle filter, the target density is

p
(

xt+1|yt+1
)

∝ p (yt+1|xt+1) p
(

xt+1|yt
)

. (8)

Given an independent sample from pN (xt|yt), the algorithm samples from

pN
(

xt+1|yt
)

=
∫

p (xt+1|xt) pN
(

xt|yt
)

dxt,

by drawing x
(i)
t+1 ∼ p

(

xt+1|x(i)
t

)

for i = 1, ..., N. Since pN (xt|yt) is a dis-

crete distribution, this implies that
{

x
(i)
t+1

}N

i=1
is an independent sample from

pN (xt+1|yt). Resampling with the appropriate weights provides an approxi-
mate sample from p

(

xt+1|yt+1
)

.
To see the simplicity of the algorithm, consider the benchmark case of

filtering in the linear Gaussian model considered earlier. The SIR algorithm
requires simulating from p (xt+1|xt) ∼ N

(

xt, σ
2
x

)

and evaluating unnormal-
ized weights, which take the form

p (yt+1|xt+1) ∝ exp

(

−1
2

(yt+1 − xt+1)
2

σ2

)

.
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3.2.1 Problems with the SIR algorithm

There are a number of problems with SIR. One problem is sample impov-
erishment or weight degeneracy, which occurs when a vast majority of the
weight is placed on a single particle. When this occurs, the resampling step
results in a single particle being sampled multiple times. Thus resampling
does not fix the sample impoverishment/weight degeneracy problem, it just
hides it. Another related problem is that the states are drawn from the prior
distribution, p (xt+1|xt), without accounting for the next period’s observa-
tion, yt+1. This implies that the simulated states may not be in important or
high likelihood, p (yt+1|xt+1), regions. In models with outliers, a large yt+1 is
observed, but the SIR algorithm draws samples from p

(

xt+1|x(i)
t

)

ignoring
the new observation.

To mitigate this problem, it is possible to choose an alternative importance
density. Instead of drawing from p (xt+1|xt), it is possible to draw from an
importance density that depends on yt+1,

x
(i)
t+1 ∼ q

(

xt+1|x(i)
t , yt+1

)

.

In this case the unnormalized weights are

w
(i)
t+1 ∝

p(yt+1|x(i)
t+1)p

(

x
(i)
t+1|x

(i)
t

)

q
(

xt+1|x(i)
t , yt+1

) .

The “optimal” importance sampling density, in terms of minimizing the vari-
ance of the importance weights, is p (xt+1|xt, yt+1).

3.3 Auxiliary particle filtering algorithms

An alternative when the SIR algorithm performs poorly is the auxiliary par-
ticle filter (APF). The original description of the APF used the idea of auxil-
iary variables. The algorithm we provide motivates the APF as an importance
sampling version of the exact sampling algorithm given in the previous sec-
tion.

Like exact sampling, the APF consists of two steps: resampling old parti-
cles and propagating states. Unlike the exact sampling algorithm, the APF
uses importance sampling when it is not possible to evaluate p (yt+1|xt) or
sample directly from p (xt+1|xt, yt+1). The exact mixture weights p (yt+1|xt)
are approximated by an importance weight q (yt+1|xt) and the posterior dis-
tribution p (xt+1|xt, yt+1) is approximated by the importance distribution
q (xt+1|xt, yt+1). The APF algorithm is given by:
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Step 1: Compute w
(

x
(i)
t

)

=
q
(

yt+1|x(i)
t

)

∑N
i=1 q

(

yt+1|x(i)
t

) for i = 1, ..., N

Step 2: Draw z (i) ∼ MultN

({

w
(

x
(i)
t

)})

and set x(i)
t = x

z(i)
t

Step 3: Draw x
(i)
t+1 ∼ q

(

xt+1|x(i)
t , yt+1

)

for i = 1, ..., N

Step 4: Reweight: π
(

x
(i)
t+1

)

∝ target
proposal

=
p
(

yt+1|x(i)
t+1

)

p
(

x
(i)
t+1|x

(i)
t

)

q
(

yt+1|x(i)
t

)

q
(

x
(i)
t+1|x

(i)
t , yt+1

) .

The weights at the end of the algorithm are the importance sampling weights.
There is no need to resampling additionally using these weights, in fact, this
introduces additional Monte Carlo error.

Like exact sampling, the APF resamples first, which is important to in-
sure that high likelihood states are propagated forward. The performance of
the APF is driven by the accuracy of the importance densities. If these are
poor approximations, the APF may not perform much better than the SIR
algorithm, and in some extreme cases, could even perform worse. A final ad-
vantage of the APF algorithm is its flexibility, as it allows for two importance
densities. This allows the algorithm to be tailored to the specific application
at hand.

4 Further Reading

Research on particle filtering methods has exploded recently over the past
10 years. It is impossible to cite all of the relevant work, and we will instead
focus on the initial theoretical contributions, important review papers, and
applications. For textbook discussions, see the monographs by Doucet, de
Freitas, and Gordon (2001) and Ristic, Arulampalam, and Gordon (2004).
These books provide more details, numerous alternative algorithms and ex-
tensions to improve performance, and extensive lists of references. Cappe,
Godsill, and Moulines (2007) provide a very readable and up to date review
article.

The sampling/importance resampling algorithm appears in Rubin (1987)
and Smith and Gelfand (1992). The foundational particle filtering algorithm
appears in Gordon, Salmond, and Smith (1993). Liu and Chen (1995, 1998)
provide key contributions to sequential importance sampling. Pitt and Shep-
hard (1999) developed the auxiliary particle filter and discuss various exten-
sions and applications. Other important contributions are in Kitigawa (1996),
Hurzeler and Kunsch (1998), Carpenter, Clifford, and Fearnhead (1999), and
Kunsch (2005)
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For applications in economics and finance, Kim, Shephard, and Chib
(1998) and Chib, Nardari and Shephard (2006) apply particle filters to uni-
variate and multivariate stochastic volatility models. Johannes, Polson, and
Stroud (2008) develop particle filters for continuous-time jump-diffusion mod-
els, with option pricing applications. Pitt (2005) discusses particle filtering
approaches for maximum likelihood estimation. Fernandez-Villaverde and
Rubio-Ramirez (2005) use particle filters for parameter estimation in gen-
eral equilibrium macroeconomics models.

There is also a growing literature applying particle filters for sequential
parameter learning and state filtering, see, for example Liu and West (2001),
Storvik (2002), Fearnhead (2002), Johannes, Polson and Stroud (2005, 2006),
and Johannes and Polson (2006).
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Symbols
L2-free lunch, 602
Lp–estimator, 101 ff.
T -forward measure, 635
α–mixing, 62
β–mixing, 62
10-year bond futures, 222

A
Absolutely regular, 62
Accelerated failure time models, 957
ACD, see autoregressive conditional

duration
ACD model, 960 ff.

applications, 965 ff.
EXponential, 962
exponential, 961
fractionally integrated , 962
linear, 961
logarithmic, 962
semi-parametric, 962
smooth transition, 963
statistical inference, 963 ff.
threshold, 963

ACF, 197
ACVF, 197
Adaptive choice of interval of homogeneity,

176
Adaptive nonparametric estimation, 175 ff.
Adaptive pointwise estimation method

application, 180
Adaptive pointwise method, 175
Additive models, 160
Additive nonparametric models, 942
Admissible strategy, 411
Advanced nonparametric modeling, 942 ff.
Affine SV diffusions, 246

Affine term structures, 624 ff.
AFT models, see accelerated failure time

models
AG–DCC GARCH model, 213
Aggregation of risks, 748 ff.
AIC, 223, 703, 896
AICC, 897
Akaike information criterion, 896
Akaike’s information criterion, 223, 703
Algorithm

Metropolis-Hastings, 1004
APF, see Particle filtering–auxiliary

algorithms
APF algorithm, 1026
Applications of copulas in finance and

economics, 778 ff.
Approximate martingale estimating

functions
diffusion, 547

AR process
first order continuous time, 466

AR(p) process
nonstationary

least-squares estimate, 699 ff.
AR(1) process

nonstationary
least squares estimate, 697

AR–ARCH model
nonparametric, 932

Arbitrage free market, 616
Arbitrage opportunity, 601
Arbitrage theory from a market

perspective, 600 ff.
Arbitrage theory from an individual

perspective, 605 ff.
ARCH effects

testing, 121 ff.
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ARCH effects in daily and monthly returns
testing, 122

ARCH modelling
nonparamteric, 156 ff.
semiparamteric, 156 ff.

ARCH process, 115 ff.
absolute value, 852
generalized, 19 ff.
least absolute deviations estimator, 102
least squares estimation, 87 ff.
Markov switching, 27 ff.
nonparametric, 30
power, 852
qualitative threshold, 946
semiparametric, 30
switching, 875 ff.

ARCH(∞) process, 70 ff., 984
association, 75 ff.
CLT, 75 ff.
dependence structure, 75 ff.
infinite variance, 77 ff.
integrated, 77 ff.
linear, 79 ff.
long memory properties, 70 ff.
stationarity, 73 ff.
stationary solution, 73
Volterra representation, 73 ff.

ARCH(1) process
absolute continuity of stationary

solution, 65
continuity of stationary solution, 65
fitted to white noise, 105
moments, 56 ff.
strict stationarity, 45 ff.
tail behavior, 65

ARCH(p) process, 18 ff.
ARIMA models

fractional, 711
ARMA GARCH process

quasi maximum likelihood estimation,
94 ff.

self weighted QMLE, 100 ff.
ARMA process

continuous time
joint distributions, 467

continuous time
causality, 463
distinct autoregressive zeroes, 465
inference for, 478 ff.
kernel, 463
long memory Lévy-driven, 475
of Pham-Din-Tuan, 468
recovering the driving noise process,

468

continuous-time
application to stochastic volatility

modelling, 474 ff.
connections with discrete–time ARMA

processes, 470 ff.
Gaussian

embeddable, 473
Lévy–driven continuous–time, 456 ff.
second–order Lévy–driven continuous-

time, 460 ff.
self weighted LSE, 100

ARX model
nonparametric, 944

Asset price models, 403 ff.
Asset prices

non-Gaussian models, 411 ff.
Asset pricing

first fundamental theorem, 411
fundamental theorem, 601
second fundamental theorem, 411

Asset returns
stylized facts, 114 ff.

Asymmetric GARCH models, 132
Asymmetric generalized DCC GARCH

model, 213
Attainable claim, 411, 616
Autocorrelation function, 197
Autocovariance function, 197
Autoregression

continuous-time, 458
Autoregressive conditional duration

models, 960 ff.
Autoregressive conditional hazard model,

970
Autoregressive conditional intensity model,

970
Autoregressive intensity processes, 969 ff.
Autoregressive process, 741
AV–GARCH process, 34
Average lag j realized volatility, 588

B
Baba–Engle–Kraft–Kroner model, 205, 370
Backfitting estimator, 942
Backward equation, 514
Bandwidth, 929
Base asset returns, 760
Base assets, 760
Base–asset return methods

multivariate, 760 ff.
multivariate extensions, 763

Baseline hazard rate, 957
Basel II Accord, 730
Bayesian information criterion, 223, 703
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BEKK model, 205, 218, 370
diagonal, 205
scalar, 206

BEKK–GARCH model, 222
Bias correction procedure

bootstrap, stochastic volatility, 296
Bias reduction, 520

jackknife, 521 ff.
BIC, 223, 703, 897
Bilinear process, 79 ff.
Binary sequential sample segmentation,

850
Bipower variation

h-skip, 564
realized, 564

Bipower variation and jumps, 563 ff.
Black Scholes Merton model

shortcomings, 409 ff.
Black volatility, 639
Black’s formula for caplets, 639
Bond

zero coupon, 618
Bond price dynamics, 619
Bootstapping GARCH processes, 987
Bootstrap

Markovian, 990 ff.
Bootstrap confidence bands for volatility

function, 989
Bootstrapping a general nonparametric

ARCH process, 988
Bootstrapping a p-th order Markovian

process, 990
Bootstrapping nonparametric estimators

bias problem, 989
Breaks in the conditional mean

residual CUSUM test, 859
Brownian motion

DDS, 515
fractional, 712
geometric, 500
Riemann-Liouville fractional, 712

BV, 564

C
Càdlàg paths, 440
Calibration, 604
Caplets, 639

Black’s formula, 639
Caps

definition and market practice, 638 ff.
CAR(1) process, 466
CARMA process, see ARMA process,

continuous-time
CARMA(2,1) process, 466

Causal CARMA process, 463
Causal linear process, 256
CCC model, 370
CCC–GARCH model, 210, 219 ff.
CDO, see collateralized debt obligation
CDS, see credit default swap
CGMY Lévy processes, 452
Change of numeraire

forward measures, 635
option pricing, 635 ff.

Change point alternative
test of, 173 ff.

Change–point tests
nonparametric, 863

Change–point tests in long memory, 861 ff.
Change–point tests in returns and

volatility, 851 ff.
Change–points in the distribution, 863 ff.
Characteristic exponent, 444
CIR process, 545
CIR-model, 542, 547
Claim

attainable, 411, 616
Class L

distribution of, 429
Clifford–Hammersley theorem, 1002 ff.
COGARCH process, 432, 476

approximating, 432 ff.
fitted to Intel stock, 434

COGARCH(1,1) process, 486, 660
absolute continuity of stationary

solution, 65
COGARCH(p,q) process, 476
Coherent risk measure, 732
Cointegrated stochastic process, 715
Cointegrated vector autoregressive models,

874
Cointegrating coefficients

interpretation, 678 ff.
Cointegrating rank, 715

determination, 723 ff.
Cointegrating vectors, 715

semiparametric estimation, 718 ff.
Cointegration, 671 ff.

and integration definition, 675 ff.
asymptotic analysis, 686 ff.
asymptotic distribution of estimators,

687 ff.
asymptotic distribution of rank test, 686

ff.
autoregressive formulation, 673
examples, 672 ff.
fractional, 708 ff.
further topics, 689 ff.
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Granger’s Representation Theorem, 675
ff.

hypotheses on adjustment coefficients,
682

hypotheses on long-run coefficients, 681
I(1) model

interpretation, 680 ff.
I(2) model, 690 ff.
likelihood analysis of I(1) model, 683 ff.
modeling of, 673 ff.
normalization of parameters of I(1)

model, 681
rational expectations, 689
regression formulation, 673
testing, 723 ff.
the models H(r), 680
unobserved component formulation, 674

Cointegration rank, 676
Collateralized debt obligation, 795

pricing, 796
tranches, 796

Collateralized debt obligation pricing
copula based approach, 796
cumulative losses approach, 796
full modeling approach, 796

Comparing competing volatility forecasts
using a volatility proxy, 815

Comparison of many volatility forecasts,
817 ff.

Compensating, 441
Complete market, 616
Complete market model, 616
Complete model, 411
Conditional copula, 772
Conditional correlation model

dynamic, 761
Conditional correlations

model, 210 ff.
Conditional covariance matrix

models, 204 ff.
Conditional duration, 960
Conditional duration mean, 960
Conditional duration model

stochastic, 964
Conditional hazard rate, 957
Conditional heteroscedasticity, 171
Conditional heteroscedasticity models, 171

ff.
Conditional mean

GARCH and forecasts, 142
Conditional quantiles

nonparametric estimation, 941
Conditional return variance and realized

volatility, 561 ff.

Conditional tail expectation, 735
Conditional VaR forecasts, 834
Conditional variance

explanatory variables, 119
Conditional variance and correlation

model, 210 ff.
Conditional variance model

dynamic, 756 ff.
Confidence sets

post model selection, 908
Constant conditional correlation GARCH

model, 210
Constant conditional correlation model,

370
Contingent T -claim, 616
Continuous record likelihood function, 502
Continuous time finance, 233
Continuous time GARCH, 482 ff.

asymmetric COGARCH(1,1) process,
487

COGARCH(1,1), 486 ff.
volatility process, 486

COGARCH(p,q) process, 487
defined by stochastic delay equations,

489 ff.
designed for option pricing, 490 ff.
multivariate COGARCH(1,1) process,

487
weak, 488

Continuous time GARCH process
diffusion limit, 484 ff.

Continuous time models
stochastic volatility, 286 ff.

Continuous time processes
nonparametric estimation, 164

Continuous–time ARMA process, 456 ff.
Continuous–time processes

extremes, 652 ff.
Continuously compounded forward rate,

619
Continuously compounded spot rate, 619
Convergence of maxima, 194 ff.
Convergence of point processes, 195 ff.
Convolution equivalent distributions, 658
Copula

conditional, 772
pseudo, 772

Copula–based models, 767 ff.
estimation and evaluation, 775 ff.

Copula–based models for time series, 771
ff.

Copulas in finance and economics
applications, 778 ff.

Corporate bond spreads, 795
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Corporate bonds
pricing

structural approach, 789 ff.
Correlation forecasts

comparison
introduction, 801 ff.

evaluation, 801 ff.
Counting function

right-continuous (càdlàg), 955
Counting process, 449
Counting representation of a Poisson

process, 957
Coupon bonds

reduced form approach, 791
Covariance forecasts

portfolio optimisation, 831 ff.
Cox processes, 958
Cox-Ingersoll-Ross model, 501

transition density, 501
Credit default swap contract, 792
Credit default swap premium, 794
Credit default swap spreads, 792 ff.
Credit risk, 730, 736, 764

regulatory reporting, 738
Credit risk correlation, 795 ff.
Credit risk modeling, 786 ff.
Curse of dimensionality, 161, 942
CUSUM test, 847
CVAR models, 874
CVAR processes

switching, 877 ff.

D
Daily realized volatility, 248
Daily return

hypothetical, 758
DCC–GARCH model, 212, 222
DDS Brownian motion, 515
Decomposition

Galtchouk-Kunita-Watanabe, 607
Default probabilities, 788 ff.
Defaulted bonds

recovery rates, 789
Density estimation

kernel smoothing, 929 ff.
Diagonal BEKK model, 205
Diagonal VEC model, 204
Dickey–Fuller statistic, 698
Diebold-Mariano and West test, 816
Diffusion

approximate martingale estimating
function, 547

efficient estimation, 548 ff.
fixed frequency

asymptotics, 532 ff.
generalized method of moments, 539
GMM, 539
high frequency asymptotics, 548 ff.
likelihood inference, 536 ff.
maximum likelihood estimator, 536
non-martingale estimating functions, 546
one-dimensional

explicit martingale estimating function,
543

quasi maximum likelihood estimation,
537

Diffusion coefficient, 444
Diffusion function

nonparametric estimation, 936
Diffusion model

Nelson’s, 661
Diffusion process

d–dimensional, 531
high-frequency observations, 937
likelihood function, 536
low-frequency observations, 937
nonparametric, 935 ff.
nonparametric estimation, 935 ff.
time-homogeneous, 935 ff.

Direct comparison of competing volatility
forecasts, 815 ff.

Direct evaluation of volatility forecasts,
804 ff.

Direct resampling of a statistic, 992 ff.
Discounted price, 601
Discrete market rates, 638
Discrete–time processes

extremes, 655 ff.
Discretely sampled stochastic differential

equations
parametric inference, 531 ff.

Distribution
convolution equivalent, 658
subexponential, 658

Distribution function
tail–equivalent, 657

Distribution of class L, 429
DMW test, see Diebold-Mariano and West

test
Double smooth transition conditional

correlation GARCH model, 214
Doubly stochastic Poisson processes, 958
Drift condition

Heath–Jarrow–Morton, 629 ff.
HJM, 630

Drift function
nonparametric estimation, 936

Drift parameter, 443
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DSTCC–GARCH model, 214, 221 ff.
DTGARCH, 25
Duration model, 957
Duration representation of a Poisson

process, 957
Dynamic conditional correlation GARCH

model, 212
Dynamic conditional correlation model,

761
Dynamic conditional variance model, 756

ff.
quasi maximum likelihood, 756

Dynamic correlation MSV model, 388 ff.
Dynamic duration models, 960 ff.
Dynamic intensity models, 967 ff.

applications, 975 ff.

E
ECCC–GARCH model, 211, 218
Edgeworth expansions

volatility estimation, 591
Efficient method of moments, 295
Efficient sampling

microstructure noise, 564 ff.
EGARCH process, 34 ff., 132

adequacy of, 35
EMM, 295
Empirical term structure, 628
Encompassing tests

for direct comparison of volatility
forecasts, 828 ff.

Epanechnikov kernel, 930
Equivalent martingale measure, 407, 600
Ergodic

geometrically, 62
Ergodicity, 52 ff.
Estimating functions

martingale, 538 ff.
Estimation

indirect inference, 522 ff.
moment based, stochastic volatility, 268

ff.
small Δ-optimal, 549

Estimation bias
reduction techniques, 520 ff.

Estimator
model averaging, 915 ff.
Nadaraya-Watson, 217
post model selection, 890
shrinkage, 915 ff.

Euler approximation, 936
Evaluating volatility and correlation

forecasts, 801 ff.
Evaluating volatility predictions, 146

Evaluation of volatility forecasts
direct, 804 ff.
tests, 804 ff.

EWMA forecast, 143
Exact particle filters, 1021 ff.

linear, Gaussian filtering, 1022
log-stochastic volatility model, 1023

Exchange rates
dollar–pound and dollar–yen, 337 ff.

Expected shortfall, 735, 754, 757
EXponential ACD model, 962
Exponential ACD model, 961
Exponential GARCH, 132
Exponential GARCH process, 34 ff.
Exponential Lévy model, 412
Exponential SARV model, 277 ff.
Exponentially weighted moving average

forecast, 143
Extremal index, 194, 655
Extremal index function, 663 ff.

definition, 656
Extreme value distribution, 358
Extreme value theory, 654 ff.
Extremes

limit theory, 194 ff.
Extremes of continuous–time processes,

652 ff.
Extremes of discrete–time processes, 655 ff.
Extremes of processes in continuous time,

656
Extremes of stochastic volatility models,

355 ff.

F
Factor ARCH model, 208
Factor model, 207 ff., 395

affine term structure, 624
Factor MSV model, 379 ff.
FF–GARCH model, 209
FHS, see historical simulation, filtered
FIARCH(∞) process, 78
FIC, 703

strong consistency, 704
FIGARCH, 29
Final prediction error, 896
Financial high frequency data

modelling using point processes, 953 ff.
Financial modeling, 446 ff.
Financial point processes, 954
Financial time series

consequences of structural breaks, 840 ff.
Markov Chain Monte Carlo, 1008 ff.
nonparametric modeling, 926 ff.
resampling and subsampling, 983 ff.
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structural breaks, 839 ff.
stylized facts, 31 ff.

Fine structure, 445
Finite activity, expectation, 444 ff.
First fundamental theorem of asset pricing,

411
Fisher’s information criterion, 703

strong consistency, 704
Flat volatility, 639
Flesaker–Hughston fractional model, 644 ff.
Fluctuation detector, 847
Fluctuations in variance

stochastic volatility, regression model,
272 ff.

Fokker–Planck–Kolmogorov equation, 514
Forecast evaluation statistics, 147
Forecast optimality tests

multivariate volatility forecasts, 807 ff.
univariate volatility forecasts, 805 ff.

Forecasting the volatility
real data application, 150 ff.

Forecasting the volatility of multiperiod
returns, 145 ff.

Forecasts
simulation-based, 145

Forecasts from asymmetric GARCH(1,1)
model, 144 ff.

Forecasts from GARCH(1,1) model, 143 ff.
Forward equation, 514
Forward measures

change of numeraire, 635
Forward process model, 448
Forward rate

continuously compounded, 619
instantaneous, 619

Forward rate dynamics, 620
Forward rate models, 629 ff.

Musiela parameterization, 631 ff.
Fourier transform, 443
FPE, 896
Fractional ARIMA models, 711
Fractional Brownian motion, 712
Fractional cointegration, 708 ff.

I(d)–type I, 710 ff.
I(d)–type II, 710 ff.
models, 715 ff.
parametric models, 716 ff.
semiparametric models, 715
tapering, 717
type-I bivariate model, 719

Fractionally integrated ACD model, 962
Fractionally integrated GARCH, 28 ff.
Full factor GARCH model, 209

Functional form of volatility function, 159
ff.

Fundamental theorem of asset pricing, 601

G
Galtchouk-Kunita-Watanabe decomposi-

tion, 607
GARCH

logarithmic, 35
multivariate

nonparametric approaches, 215 ff.
semiparametric approaches, 215 ff.

multivariate models, 203 ff.
GARCH and forecasts for the conditional

mean, 142
GARCH effects

testing, 121 ff.
GARCH estimates

numerical accuracy, 125
GARCH factor model, 207 ff.
GARCH model

asymptotic properties of quasi maximum
likelihood estimators, 85 ff.

GARCH models
asymmetric, 132

GARCH process, 115 ff., 157 ff.
Lp–estimators, 101 ff.
adaptive estimation, 159
adequacy of, 32
asymmetric generalized DCC, 213
asymmetric models for daily returns, 134
bootstrap procedure, 987
changing over time, 164
conditional mean specification, 118 ff.
constant conditional correlation, 210
continuous time, 476 ff.
continuous time approximation, 481 ff.
diagonal VEC, 204
double smooth transition conditional

correlation, 214
double threshold, 25
dynamic conditional correlation, 212
ECCC, 211
efficient estimation, 158 ff.
embedding in stochastic recurrence

equation, 189 ff.
estimation, 85 ff., 123 ff.

under constraints, 104 ff.
estimation for daily and monthly returns,

127 ff.
evaluation of estimated models, 127
exponential

adequacy of, 35
extensions, 131 ff.
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extreme value theory, 186 ff.
full factor, 209
generalized orthogonal, 208
in mean, 30, 163
integrated, 140 ff.
introduction, 17 ff.
least absolute deviations estimator, 102
long memory, 137 ff.

daily returns, 141 ff.
Markov switching, 27 ff.
matrix exponential, 206
mixing properties, 188 ff.
model selection, 126 ff.
multivariate, 201 ff.
non-Gaussian error distributions, 135 ff.
non-Gaussian models for daily returns,

137
nonclosedness under temporal aggrega-

tion, 482
nonlinear, 23 ff.
nonparametric, 159
overview, 17 ff.
power, 21
prediction, 142 ff.
quadratic flexible, 213
quasi maximum likelihood estimation,

90 ff.
quasi-maximum likelihood estimation,

126
regime switching dynamic correlation,

215
semi-parametric conditional correlation,

217
smooth transition conditional correla-

tion, 214
strict stationarity, 188 ff.
stylized facts, 119 ff.
subsampling, 988
tails, 190 ff.
testing for long memory, 139
threshold, 24 ff.
time varying conditional correlation, 214
time varying smooth transition

conditional correlation, 214
two component model, 139 ff.
varying coefficient, 168 ff.
VC, 212
VEC, 204

GARCH processes
family of, 20 ff.
practical issues in the analysis, 112 ff.
switching, 875 ff.

GARCH(1,1) process, 481

absolute continuity of stationary
solution, 65

asymmetric forecasts, 144 ff.
continuity of stationary solution, 65
diffusion limit, 484 ff.

statistical nonequivalence, 485
forecasts, 143 ff.
moments, 56 ff.
strict stationarity, 45 ff.
stylized facts, 31 ff.
tail behavior, 65
volatility process, 481
weak, 488 ff.

closedness under temporal aggregation,
488

GARCH(p,q) process, 19 ff., 187
β–mixing, 63
ARCH(∞) representation, 54 ff.
ARMA type representation, 171
asymptotic normality of sample

autocorrelation, 64
autocorrelation of squares, 61
causality, 44, 51
comparison with EGARCH, 37 ff.
conditional variance, 54 ff.
continuous time, 476
defined for non-negative time, 66
distributional properties, 43 ff.
ergodicity, 53
exponential, 34 ff.
fractionally integrated, 28 ff.
integrated, 28 ff., 52
kurtosis, 59
mixing, 43 ff.
moments, 57 ff.
smooth transition, 23 ff.
stationarity, 43 ff.
strict stationarity, 49 ff.
strong mixing, 63
time varying, 26
unique stationary solution, 51
weak stationarity, 54

GARCH–M process, 31
GARCH-in-mean process, 30, 119, 163

multivariate, 204
GARCH-M model, 119
Gaussian QML estimator, 348
GCV, 898
General pricing formula, 617
Generalized ARCH, 19 ff.
Generalized method of moments, 270
Generalized Ornstein–Uhlenbeck process,

424 ff.
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Generalized Ornstein–Uhlenbeck–model,
657 ff.

Generalized orthogonal GARCH model,
208

Geometric Brownian motion, 446, 500
Markov Chain Monte Carlo, 1008 ff.

GFDCC–GARCH model, 213
Gibbs sampling, 1005
GJR GARCH process, 21
GO–GARCH model, 208
GOF–GARCH model, 209, 222
Goodness-of-fit tests

nonparametric methods for, 937 ff.
GOU–model, see Generalized Ornstein-

Uhlenbeck–model
Granger Representation Theorem, 677
Gumbel distribution, 361

H
H-self-similar Lévy process, 429
H-self-similar process, 429

Lamperti transform, 429
H-skip bipower variation, 564
Hawkes process, 958, 967 ff.

multivariate, 969
Hazard rate

baseline, 957
conditional, 957

Heath–Jarrow–Morton drift condition, 629
ff.

Heteroscedasticity models
conditional, 171 ff.

High frequency data
modelling using point processes, 953 ff.

High frequency data with random times
separating successive observations,
293 ff.

High-low price range estimator, 565
Historical shock

dynamically uncorrelated, 762
Historical simulation, 739

filtered, multivariate, 761 ff.
filtered, univariate, 757 ff.

Historical simulation method, 754
HistSim, see historical simulation method
HJM drift condition, 630
Homogeneity

test of, 173 ff.
Homogeneous Poisson process, 956
Hyperbolic distribution, 450

generalized, 378
Hypothesis testing

regime switching models, 881 ff.

Hypothesis testing in multivariate
GARCH, 218 ff.

Hypothetical daily return, 758

I
I(1) model

derivation of rank test, 684 ff.
likelihood analysis, 683 ff.
maximum likelihood estimation, 684 ff.
reduced rank regression, 683
specifications of the model, 683

I(1) model for cointegration
interpretation, 680 ff.

IARCH(∞) process, 78
IGARCH, 28
IGARCH effects

spurious, 842
IGARCH process, 140
IGARCH(p,q) process, 52
Implied volatility, 410
Importance sampling

stochastic volatility, 325 ff.
Incomplete market, 600
Increments

stationary, independent, 440
Indirect evaluation of volatility forecasts,

830 ff.
Indirect inference

misspecification, stochastic volatility,
304 ff.

Indirect inference estimation, 522 ff.
Indirect inference estimator, 523
Indirect least squares, 298
Infill asymptotics, 502
Infill likelihood function, 502
Infill likelihood methods, 502 ff.
Infinite activity, 445
Information criterion

AIC, 896
AICC, 897
Akaike, 896
Bayesian, 897
BIC, 897

Instantaneous forward rate, 448, 619
Instantaneous short rate, 619
Insurance risk, 744 ff.
Integrability properties, 444
Integrated GARCH, 28 ff.
Integrated GARCH model, 140 ff.
Integrated of order d

stochastic process, 711
Integrated process

multivariate case, 713 ff.
univariate case, 710 ff.



1040 Index

Integrated quarticity, 561
Integrated variance, 560
Integrated volatility, 588
Integration, 676

and cointegration definition, 675 ff.
Intensity function

statistical inference, 973 ff.
Intensity representation of a Poisson

process, 957
Interest rate modeling

general background, 615 ff.
Interest rate theory, 614 ff.
Interest rates

based on stochastic discount factors, 642
ff.

change of numeraire, 632 ff.
contract function, 620
discrete market rates, 638
factor models, 620 ff.
forward rate models, 629 ff.
martingale modeling, 623 ff.

inverting the yield curve, 627 ff.
modeling under the objective measure,

621 ff.
Interest rates and the bond market, 618 ff.
Interval of homogeneity

adaptive choice of, 176
Intra-daily returns

structural breaks, 854
Inverse square-root model, 501

transition density, 501
Inverting the yield curve, 627 ff.
Investment strategy, 406
IQ, 561
IV, 560

J
Jackknife estimator, 521
Jacobi diffusion, 545
Jacobsen condition, 549
Jumps and bipower variation, 563 ff.

K
K-variate marked point process, 955
Kalman filter, 341
Kalman filter methods

stochastic volatility, 316 ff.
Kernel estimator, 929 ff.

bandwidth, 929
Kernel regression estimator, 934
Kernel smoothing

density estimation, 929 ff.
asymptotic distribution, 930

local polynomial, 932 ff.

regression, 932 ff.
Kronecker product, 57
Kurtosis, 59

L
Lévy process

bivariate, 424 ff.
Lévy jump diffusion, 450
Lévy LIBOR market model, 448
Lévy measure, 425, 444

Lebesgue density, 451
Lévy Ornstein-Uhlenbeck process, 426 ff.
Lévy process, 440
α-stable, 453
bivariate

Lévy-Khintchine representation, 424
definition, 459
distributional description, 443 ff.
examples, 449 ff.
exponential, 446
generalized hyperbolic, 451
hyperbolic, 450
jump type, 438 ff.
Meixner, 453
probabilistic structure, 439 ff.
purely discontinuous, 441
standardized second-order, 460

Lévy–driven continuous–time ARMA
process, 456 ff.

Lévy–Itô decomposition, 441
Lévy–Khintchine form

triplet, 443
Lévy-Itô representation, 425
Lévy-Khintchine representation

bivariate Lévy process, 424
Lévy exponent, 424
Lévy process

discretisation, 430 ff.
H-self-similar, 429

Lagged volatility proxy, 805
standardised, 805

Lamperti transform, 509
of an H-self-similar process, 429

LARCH(∞) process, 79
Latent process, 172
Latent variables, 1015
Least absolute deviations estimator, 102
Least squares estimation of ARCH

processes, 87 ff.
Leverage effects, 331 ff.

asymmetric, 131 ff.
LGARCH process, 35
LIBOR forward rate, 618
LIBOR market model
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existence, 641
pricing caps, 641

LIBOR market models, 638 ff.
LIBOR spot rate, 618
Life insurance risk, 744 ff.

parametric modeling, 745 ff.
Likelihood function

Whittle approximation, 349
Likelihood inference for diffusions, 536 ff.
Likelihood ratio (LR) test, 107
Likelihood ratio test

supremum, 173
Limit theory for extremes, 194 ff.
Linear ACD model, 961
Linear process

causal, 256
Liquidity risk, 764
Local bootstrap, 994 ff.
Local contrast function

Whittle, 350
Local linear fit to volatility function, 160
Local polynomial estimator, 932 ff.
Locally stationary processes, 164
Log–returns

i.i.d. resampling
nonparametric methods, 988 ff.
parametric methods, 986 ff.

resampling, 986 ff.
Log-squared volatility process

tail behavior, 357
Logarithmic ACD model, 962
Logarithmic GARCH, 35
Long memory, 163 ff., 260, 711

covariance, 73
distributional, 73
testing, 139
weakly stationary process, 346

Long memory GARCH model for daily
returns, 141 ff.

Long memory GARCH processes, 137 ff.
Long memory stochastic volatility, 345 ff.

applications, 352
basic properties, 346 ff.
generalizations, 352
parametric estimation, 347 ff.
semiparametric estimation, 349 ff.

Long–memory effects
spurious, 841

Long-memory in volatility
tests, 862

Long-range dependence, 260
Loss function

robust
definition, 818

Loss portfolios, 735 ff.
LR ratio test

supremum, 179
LR test supremum, 173

M
Mallows’s Cp, 895
Market microstructure noise

estimating volatility in presence of, 576
ff.

Market model
complete, 616

Market price of risk, 408, 622 ff.
Market risk, 730, 738 ff., 764

scaling, 740
Market risk models, 739
Markov Chain Monte Carlo, 1000 ff.

constructing Markov chains, 1003 ff.
convergence theory, 1007 ff.
financial time series examples, 1008 ff.
geometric Brownian motion, 1008 ff.
hybrid chains, 1006
stochastic volatility models, 1010 ff.
time-varying expected returns, 1009 ff.

Markov switching models, 872 ff.
Markov-switching ARCH, 27 ff.
Markov-switching GARCH, 27 ff.
Markovian bootstrap, 990 ff.
Martingale

martingale measure, 447
Martingale estimating functions, 538 ff.
Martingale measure

equivalent, 407
Matrix exponential GARCH process, 206
Matrix exponential transformation, 390
Maxima

convergence of, 194 ff.
Maximum domain of attraction, 655
Maximum likelihood

approximate methods based on
continuous record likelihood, 516 ff.

approximate methods based on
transition densities, 503 ff.

based on closed–form approximation,
509 ff.

based on continuous record likelihood,
502 ff.

based on Euler approximation, 504 ff.
based on Hermite expansions, 509 ff.
based on realized volatility, 516 ff.
based on transition densities, 499 ff.
comparison of various methods by Monte

Carlo, 519 ff.
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exact Gaussian method based on time
changes, 515 ff.

exact methods, 499 ff.
multivariate continuous time models,

524 ff.
numerical methods, 514 ff.
saddlepoint approximations, 511 ff.
simulated infill methods, 512 ff.

Maximum likelihood estimation
quasi, 89 ff.

MCMC, see Markov Chain Monte Carlo
MDH, 236
Mean factor model, 382 ff.

Bayesian analysis, 384 ff.
Measuring return volatility, 557 ff.
Measuring volatility

stochastic volatility, 287 ff.
Method of moments, 270

generalized, 270
Methods for detecting structural breaks,

843 ff.
partial–sums change–point statistics, 845

ff.
Metropolis-Hastings algorithm, 1004

independence, 1004
random-walk, 1005

MGARCH process, 201 ff.
application, 222 ff.

MH, see Metropolis-Hastings algorithm
Microstructure noise, 564 ff.

efficient sampling, 564 ff.
volatility forecasting, 567

MIDAS approach, 293
MIDAS regression model, 293
Mincer–Zarnowitz regression, 805

augmented, 805
improved using generalised least squares,

808 ff.
Mincer–Zarnowitz regression on transfor-

mations of volatility proxies, 806
ff.

Mincer–Zarnowitz test
simulation study, 810 ff.

Mincer–Zarnowitz–GLS test
simulation study, 810 ff.

Misspecification testing in multivariate
GARCH, 219 ff.

Mixed data sampling approach, 293
Mixing
α–, 62
β–, 62
strongly, 62 ff., 188, 930

Mixture of distributions hypotheses, 236
ML, see maximum likelihood

Model averaging estimators, 915 ff.
Model checks

nonparametric methods for, 937 ff.
Model estimation, 173
Model risk, 764
Model selection, 888 ff.

based on selection criteria, 894 ff.
based on tests, 892 ff.
conservative, 901
consistent, 901
generalized cross-validation, 898
infinite-dimensional models, 908 ff.
large-dimensional models, 908 ff.
properties, 900 ff.
selection probabilities, 900 ff.

Model selection procedures, 892 ff.
Model validation

nonparametric methods for, 937 ff.
Modeling

conditional versus unconditional, 740
Models for fractional cointegration, 715 ff.
Models of the conditional covariance

matrix, 204 ff.
Moment based estimation

stochastic volatility, 268 ff.
Moment based estimation with realized

volatility, 288 ff.
Moment estimator, 104
Moment generating function, 451
Money account process, 619
Monte Carlo analysis

stochastic volatility, 322 ff.
Monte Carlo simulation, 739
MS models, see markov switching models
MSRV, see Multiple scales realized

volatility
MSV model

basic, 369 ff.
dynamic correlation, 388 ff.
factor, 379 ff.
mean factor

Bayesian analysis, 384 ff.
Multi-scale realized volatility, 585 ff.
Multiple breaks tests, 848 ff.
Multiple scales realized volatility, 585
Multiple volatility factors, 328
Multivariate GARCH

application, 222 ff.
hypothesis testing, 218 ff.
misspecification tests, 219 ff.
models, 203 ff.
statistical properties, 218
tests for extensions of the CCC–GARCH

model, 221
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Multivariate GARCH processes, 201 ff.
Multivariate GARCH–in-mean model, 204
Multivariate quadratic variation measures,

568 ff.
Multivariate stochastic volatility, 365 ff.
Multivariate time series

copula–based models, 772 ff.
Multivariate volatility forecasts

forecast optimality tests, 807 ff.
Musiela equation, 631
MZ regression, see Mincer–Zarnowitz

regression

N
Nadaraya–Watson kernel estimator, 929 ff.
Nadaraya-Watson estimator, 217
Near unit roots, 694 ff.
Nelson’s diffusion model, 661
Neural network

feedforward, 945
Newey–West estimator, 817
News impact, 131 ff.
News impact curve, 133
News impact function, 962
NIG, see Normal inverse Gaussian
No free lunch with vanishing risk, 602
No-arbitrage condition

distributional implications
realized volatility, 568

Non–Ornstein–Uhlenbeck process, 659 ff.
Non-equally spaced observations

volatility estimation, 586 ff.
Non-life insurance risk, 747 ff.
Non-martingale estimating functions

diffusion, 546
Nonparametric approach, 158 ff.

multivariate GARCH, 215 ff.
Nonparametric ARCH process, 30

bootstrap procedure, 988
Nonparametric bootstrap procedure

bias problem, 989
Nonparametric change–point tests, 863
Nonparametric estimation

adaptive, 175 ff.
diffusion process, 935 ff.

Nonparametric GARCH process, 159
Nonparametric methods

goodness-of-fit test, 937 ff.
testing, 937 ff.
uniform confidence bands, 940

Nonparametric modeling, 926 ff.
additive, 942
advanced, 942 ff.

Nonparametric quantile estimation, 940 ff.

Nonparametric smoothing, 929 ff.
Nonparametric versus parametric fit, 937

ff.
Nonstationary diffusions

nonparametric estimation, 943
Normal inverse Gaussian (NIG), 452
Numeraire, 601
Numeraire asset, 616

O
Observation switching models, 872 ff.
One-dimensional diffusion

explicit inference, 543 ff.
Operational risk, 730, 742 ff.
Option pricing

change of numeraire, 635 ff.
complete models, 607
general framework, 410 ff.
martingale modelling, 603 ff.
quadratic hedging, 606 ff.

Ornstein–Uhlenbeck process, 420 ff., 466,
500, 545, 658 ff.

autoregressive representation, 430
basic properties, 423
definition, 422
discretely sampled, 431 ff.
driven by Brownian Motion, 422 ff.
estimation, 431
Gaussian, 493
general time changes, 428
generalised, 483
generalized, 424 ff., 657 ff.

non–Ornstein–Uhlenbeck, 659 ff.
hypothesis testing, 431
Lévy driven, 492
stationary Lévy-driven, 458

OU process, see Ornstein–Uhlenbeck
process

P
P-th realized power variation, 561
Pair–wise comparison of volatility forecasts,

816 ff.
Parametric models for fractional

cointegration, 716 ff.
Partial–sums change–point statistics, 845

ff.
Particle filter

generic particle approximation, 1019
Particle filtering, 1014 ff.

auxiliary algorithms, 1026 ff.
exact algorithm, 1021
example, 1017 ff.

Particle filters, 1019 ff.
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exact, 1021 ff.
linear, Gaussian filtering, 1022
log-stochastic volatility model, 1023

sampling importance resampling, 1024 ff.
Passive risk model, 755
Pearson diffusion, 545
Percentile function, 757
Perpetuities, 430
Persistent volatility, 282 ff.
PGARCH, 132
PLS criterion, 703
PMSE, 890
Point process

backward recurrence time, 955
compensator, 955
convergence of, 195 ff.
financial, 954
fundamental concepts, 954 ff.
hazard function, 956
intensity, 956
marked, 955
submartingale, 955
survivor function, 956
types and representations, 956 ff.

Point process convergence, 358 ff.
application to stochastic volatility, 360 ff.

heavy-tailed case, 363
light-tailed case, 360 ff.

Poisson process
compound, 449
counting representation, 957
doubly stochastic, 958
duration representation, 957
homogeneous, 956
intensity representation, 957

Portfolio
modeling dynamic risk, 755 ff.
self financing, 615

Portfolio optimisation
as application of covariance forecasts,

831 ff.
Portfolio risk model

univariate, 755 ff.
univariate extensions, 759 ff.

Portmanteau test, 219
Positive term structure, 642
Post-model-selection estimators

distributional properties, 906 ff.
estimation of distribution, 908
properties, 900 ff.
risk properties, 903 ff.

Power GARCH process, 21, 132
Power variation

p-th realized, 561

Predictable covariation process, 607
Prediction

GARCH model, 142 ff.
Predictive least squares criterion, 703
Pricing caps in the LIBOR model, 641
Pricing corporate bonds

option-based approach, 790
structural approach, 789

Pricing formula
general, 617

Pricing measure, 602
Probabilistic potential, 643
Probability of default and recovery

modeling, 788 ff.
Process

H-self-similar, 429
Ornstein–Uhlenbeck, 658 ff.
predictable covariation, 607
self-exciting, 958

Processes in continuous time
extremes, 656

Proportional hazard model, 957
Pseudo copula, 772

Q
Q-dynamics, 621
QGARCH process, 21
QML estimator

Gaussian, 348
QMLE approach, 173
QMLE on the boundary, 106 ff.
Quadratic flexible GARCH model, 213
Quadratic hedging, 606 ff.
Quadratic return variation and realized

volatility, 559 ff.
Quadratic variation, 287, 559, 582
Quadratic variation measures

multivariate, 568 ff.
Quantile estimation

nonparametric, 940 ff.
Quartic kernel, 930
Quarticity

integrated, 561
Quasi log likelihood, 173
Quasi maximum likelihood approach, 173
Quasi maximum likelihood estimation, 89

ff.
ARMA GARCH process, 94 ff.
efficiency, 95 ff.
GARCH process, 90 ff.

Quasi MLE approach, 173
QV, 560
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R
R/S statistic, 139
Random measure of jumps, 442
Random time change theorem, 959
Random times separating successive

observations
high frequency data, 293 ff.

Random-walk Metropolis, 1005
Range estimator

high-low price, 565
Rational model, 646
Realized bipower variation, 564
Realized power variation, 561
Realized QV process, 247
Realized variance, 148

market microstructure, 249
Realized volatility, 247 ff., 409, 554 ff., 579,

582
average lag j, 588
daily, 248
distributional implications of no-

arbitrage condition, 568
efficient sampling, 564 ff.
empirical applications, 566 ff.
future research, 569 ff.
long memory, 567 ff.
market microstructure, 249
microstructure noise, 564 ff.
model specification and estimation, 569
moment based estimation, 288 ff.
multi-scale, 585 ff.
volatility forecasting, 567 ff.

Realized volatility and conditional return
variance, 561 ff.

Realized volatility and quadratic return
variation, 559 ff.

Realized volatility estimator, 560
aymptotic distribution, 560 ff.
consistency, 560
presence of jumps, 564

Recovery rates on defaulted bonds, 789
Recurrence equation

nonanticipative, 50
random, 45, 483 ff.

continuous time analogues, 484
Reduced form models, 737 ff.
Reduced form models of volatility, 292 ff.
Regime switching dynamic correlation

GARCH model, 215
Regime switching models, 871 ff.

hypothesis testing, 881 ff.
introduction, 871 ff.
likelihood based estimation, 879 ff.
markov switching, 872 ff.

observation switching, 872 ff.
switching ARCH, 875 ff.
switching CVAR, 877 ff.
switching GARCH, 875 ff.

Regression
kernel smoothing, 932 ff.
Mincer–Zarnowitz, 805

Regression bootstrap, 992 ff.
Regressors

selection, 890
Regularly varying, 191, 357
Relative price changes, 440
Relative pricing, 599
Representation theorem

Granger, 677 ff.
Resampling for financial time series, 983 ff.
Resampling log–returns, 986 ff.

direct resampling of a statistic, 992
local bootstrap, 994 ff.
nonparametric methods based on i.i.d.

resampling, 988 ff.
parametric methods based on i.i.d.

resampling, 986 ff.
regression bootstrap, 992 ff.
subsampling, 995 ff.
wild bootstrap, 993 ff.

Residual CUSUM test for detecting breaks
in the conditional mean, 859

Residual empirical process, 700
Resolvent, 648
Return volatility

estimation, 558
measuring, 557 ff.

Returns
change–point tests, 851 ff.

RIC, 899
Riemann-Liouville fractional Brownian

motion, 712
Right-continuous (càdlàg) counting

function, 955
Risk

aggregation, 748 ff.
credit, 736, 764
different kinds, 729 ff.
insurance, 744 ff.
life insurance, 744 ff.

parametric modeling, 745 ff.
liquidity, 764
market, 738 ff., 764
model, 764
non-life insurance, 747 ff.
operational, 742 ff.
scaling under normality, 741

Risk factor mapping, 735 ff.



1046 Index

Risk measures, 732 ff.
Risk model

passive, 755
Risk neutral valuation formula, 617
Riskless interest rate, 618
Robust loss function

definition, 818
Rogers Markov potential approach

stochastic discount factors, 648
RSDC–GARCH model, 215
Running sample maxima

extremal behavior, 663 ff.
RV, 560

S
S&P 500, 180
S&P 500 index futures, 222
Sample autocovariance function

behaviour of, 197 ff.
Sample maxima

running
extremal behavior, 663 ff.

stochastic volatility
limit distribution, 362 ff.

Sample maximum
tail behavior, 661 ff.

Sampling importance resampling, 1024 ff.
problems with the algorithm, 1026

SARV model, 279 ff.
Exponential SARV model, 277 ff.

Scalar BEKK model, 206
Scale measure, 533
Scaling of market risks, 740
Score matching estimator, 302
Second fundamental theorem of asset

pricing, 411
Selection of regressors, 890
Self financing portfolio, 615
Self weighted LSE

ARMA process, 100
Self weighted QMLE

ARMA GARCH process, 100 ff.
Self-decomposability, 429
Self-financing strategy, 601
Self-similarity, 429
Semi-parametric ACD model, 962
Semi-parametric conditional correlation

GARCH model, 217
Semimartingale, 441

canonical representation, 441
jump part, 441
special, 441

Semiparametric approach
multivariate GARCH, 215 ff.

Semiparametric ARCH, 30
Semiparametric autoregressive conditional

proportional intensity model, 970
Semiparametric estimation of the

cointegrating vectors, 718 ff.
Serially-correlated noise

volatility estimation, 587 ff.
Sharpe ratio, 623
Short rate

instantaneous, 619
Short rate model, 625 ff.

BDT, 626
Black–Derman–Toy, 626
CIR, 626
computational tractability, 626
Cox–Ingersoll–Ross, 626
Dothan, 626
extended CIR, 626
extended Vasiček, 626
Ho–Lee, 626
Hull–White, 626
mean reversion, 627
positive short rates, 627
Vasiček, 626

Shrinkage estimators, 915 ff.
Sieve methods, 944 ff.
SII, 295
Simple forward rate, 618
Simple spot rate, 618
Simulated method of moments, 295, 300

stochastic volatility, 300 ff.
Simulated-score matching, 295
Simulated-score matching estimator, 301
Simulation based indirect inference, 295
Simulation smoothing algorithm, 342
Simulation-based bias correction

stochastic volatility, 296 ff.
Simulation-based estimation

stochastic volatility, 295 ff.
Simulation-based forecasts, 145
Simulation-based indirect inference

stochastic volatility, 298 ff.
SIR, see sampling importance resampling
Sklar’s theorem, 768
Slepian model, 657
Small Δ-optimal estimation, 549
SMM, 295, 300
Smooth backfitting, 942
Smooth transition ACD model, 963
Smooth transition conditional correlation

GARCH model, 214
Smooth transition GARCH, 23 ff.
Smoothing algorithm, 341
Smoothing by averaging
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volatility estimation, 595
Smoothing methods

stochastic volatility, 320
Solvency II project, 730
SPCC–GARCH model, 217, 222
Spot rate

continuously compounded, 619
Spot volatility, 238, 639
Spread modeling

intensity based approach, 790
Spurious IGARCH effects, 842
Spurious long-memory effects, 841
Square root model, 501, 518, 542, 545

inverse, 501
Squared range as volatility proxy, 821
Squared returns ARCH representation, 852
SR–SARV process, 275
SR–SARV(p) model, 274 ff.
SSLP, see Lévy process, standardized

second-order
Stable distributions, 453
Standard & Poor’s 500

regression effects, 335 ff.
volatility estimation, 334 ff.

Standard & Poors 500, 180
State price density process, 643
State-space methods, 340 ff.
Stationarity

strict, 44
weak, 53 ff.

Statistical inference based on the intensity
function, 973 ff.

Statistical properties of multivariate
GARCH, 218

STCC–GARCH model, 214, 221
STGARCH, 23
Stochastic conditional duration model, 964
Stochastic conditional intensity model, 972
Stochastic discount factors, 642 ff.

conditional variance potentials, 647
construction of a protential, 646
Rogers Markov potential approach, 648

Stochastic exponential, 428
Stochastic process

cointegrated, 715
integrated of order d, 711
strongly mixing, 930

Stochastic recurrence equation, 189 ff.
Stochastic regression

model selection, 702 ff.
Stochastic volatility, 36

basic model, 327 ff.
bias correction procedure, bootstrap, 296
conditional moment restrictions, 283 ff.

continuous time models, 286 ff.
dynamic correlation model, 388 ff.
efficient method of moments, 245
EMM, 245
empirical illustrations, 333 ff.
fat tails, 281 ff.
feedback, 284 ff.
feedback effects, 333
generalizations, 327 ff.
importance sampling, 325 ff.
in mean, 333
indirect inference, 243

misspecification, 304 ff.
inference based on return data, 242 ff.
Kalman filter prediction, 319 ff.
kurtosis, 282 ff.
leverage effects, 284 ff., 331 ff.
likelihood evaluation, 319 ff.
limit distribution of sample maxima, 362

ff.
linearization, 316
local variance estimator, 245
long memory, 241

applications, 352
basic properties, 346 ff.
generalizations, 352
parametric estimation, 347 ff.
semiparametric estimation, 349 ff.

long-range dependence, 328
marginal distribution

heavy-tailed case, 357 ff.
light-tailed case, 356 ff.
tail behavior, 356 ff.

Markov chain Monte Carlo, 243
MCMC algorithm, 371
mean factor model, 382 ff.
mean factor multivariate

Bayesian analysis, 384 ff.
measuring volatility, 287 ff.
mixture of distributions hypotheses, 236
modelling jumps, 240 ff.
moment based estimation, 268 ff.
moment based inference, 242 ff.
Monte Carlo analysis, 322 ff.
multiple volatility factors, 328
multivariate, 365 ff.

basic model, 369 ff.
factor model, 379 ff.
heavy-tailed measurement error

models, 377 ff.
leverage effects, 373 ff.
no leverage effects, 369 ff.

multivariate models, 241 ff.
option pricing, 246 ff.



1048 Index

origin, 235 ff.
overview, 233 ff.
parameter estimation, 312 ff.
persistent, 282 ff.
point process convergence, 360 ff.
pratical aspects, 312 ff.
proposal density, 323 ff.
quadratic variation process, 239
quasi-likelihood based on Kalman filter

methods, 316 ff.
QV process, 239
realized QV process, 247
reduced form models, 292 ff.
regression effects, 329 ff.
simulated method of moments, 300 ff.
simulation based bias correction, 296 ff.
simulation based estimation, 295 ff.
simulation based indirect inference, 298

ff.
simulation based inference, 243 ff.
skewness, 284 ff.
smoothing methods, 320
statistical leverage effect, 237
tail behavior of the marginal distribution,

356 ff.
heavy tails, 357 ff.
light tails, 356 ff.

univariate models, 240 ff.
variance of the variance, 281 ff.
volatile volatility, 282 ff.
with additive noise, 331
with heavy tails, 330
with long memory, 345 ff.

Stochastic volatility duration model, 965
Stochastic volatility model, 255, 984

closedness under temporal aggregation,
491

continuous time, 482
approximating, 493 ff.
sampling at discrete frequencies, 491 ff.

continuous time approximation, 481 ff.
covariance structure, 258 ff.
discrete time, 481
ergodicity, 257 ff.
extremes, 355 ff.
fundamental properties, 255 ff.
Markov Chain Monte Carlo, 1010 ff.
moments, 261 ff.
nonparametric, 934
of Barndorff-Nielsen and Shephard, 458,

492, 494
of Hull and White, 493
of Taylor, 494
of Wiggins, 493

probabilistic properties, 255 ff.
sample autocovariance

asymptotic theory, 263 ff.
stong mixing, 257 ff.
strict stationarity, 256
tails, 261 ff.
volatility process, 481
with CARMA modelled volatility, 494

Stochastic volatility specification
higher order moments, 281 ff.

Stochastic volatilty
linearized, 321

Stock indices
prices, 446

Stock price
diffusion model, 412
exponential Lévy model, 412

Strong mixing, 62 ff., 257, 930
Structural breaks

change–point tests in long memory, 861
ff.

change–points in the distribution, 863 ff.
empirical processes and the SV class of

models, 854 ff.
methods for detection, 843 ff.
multiple breaks tests, 848 ff.
tests based on empirical volatility

processes, 851 ff.
tests based on parametric volatility

models, 858 ff.
Structural breaks in financial time series,

839 ff.
consequences, 840 ff.

Structural breaks in intra-daily returns,
854

Structural breaks in the unconditional
variance, 841

Structural models, 737
Structural variable, 172
Subexponential distributions, 261, 658
Subsampling and self–normalization, 995 ff.
Subsampling for financial time series, 983

ff.
Subsampling for GARCH processes, 988
Superreplication theorem, 605
Supremum likelihood ratio test, 173
Supremum LR ratio test, 179
SV, 556
SV model, 255, see stochastic volatility

model
log-normal, 239

SV model specification
higher order moments, 281 ff.

Switching ARCH processes, 875 ff.
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models, 875 ff.
properties, 877

Switching CVAR processes, 877 ff.
models, 878 ff.
properties, 879

Switching GARCH processes, 875 ff.

T
T-bond, 618
Tail balancing condition, 357
Tail behavior of sample maximum, 661 ff.
Tail–equivalent distribution functions, 657
Tails of a GARCH process, 190 ff.
Tapering, 717
Temporal aggregation, 121

GARCH pocess, 482
stochastic volatility model, 491
weak GARCH(1,1) process, 488

Tenor, 639
Term structure

empirical, 628
Term structure equation, 622
Test

Diebold-Mariano and West, 816
portmanteau, 219

Test of homogeneity, 173 ff.
finite sample critical values, 179 ff.

Testing
nonparametric methods for, 937 ff.

Testing for cointegration, 723 ff.
Testing for long memory, 139
Tests for extensions of the CCC–GARCH

model, 221
Tests for long–memory in volatility, 862
TGARCH, 24
TGARCH process, 132
Theorem

Clifford–Hammersley, 1002 ff.
random time change, 959

Threshold ACD model, 963
Threshold GARCH, 24 ff., 132
Time domain Gaussian QML estimator,

348
Time series

copula–based models, 771 ff.
estimation, 775 ff.
evaluation, 775 ff.

nonparametric smoothing, 929 ff.
Time series with unit roots, 694 ff.
Time varying conditional correlation

GARCH model, 214
Time varying smooth transition conditional

correlation GARCH model, 214
Time-varying expected returns

Markov Chain Monte Carlo, 1009 ff.
Time-varying GARCH, 26
Top Lyapunov exponent, 50
Tracking error minimisation, 832 ff.
Tracking portfolios

estimating time–varying weights, 832 ff.
Trading strategy, 601
Triplet of local characteristics, 443
TSRV, see two scales realized volatility
TVCC–GARCH model, 214
TVGARCH, 26
TVSTCC–GARCH model, 214, 223
Two component GARCH model, 139 ff.
Two factors volatility model, 290
Two scales realized volatility, 583

averaging over sampling frequencies, 595
distribution, 584
number of subsamples, 584
selecting the number of subsamples, 593

U
Unconditional variance

structural breaks, 841
Uniform confidence bands

nonparametric methods for, 940
Unit root

MA(1) process, 698
Unit root models, 696 ff.
Unit root testing problem, 697
Unit roots, 694 ff.
Univariate time series

copula–based models, 773 ff.
Univariate volatility forecasts

forecast optimality tests, 805 ff.
optimal, 804

Univariate volatility proxies, 803
Utility indifference price, 608
Utility indifference pricing, 607 ff.

V
Value at risk, 733 ff., 753

stylized facts, 753 ff.
Value at risk models, 752 ff.
VaR, see value at risk
Variance gamma, 452
Variance of the variance, 281 ff.
Variance–covariance method, 739
Vasicek model, 500, 518

transition density, 501
VC–GARCH model, 212
VEC model, 218

diagonal, 204
VEC–GARCH model, 204, 219
Viable market, 600
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Volatile volatility, 282 ff.
Volatility

Black, 639
change–point tests, 851 ff.
estimating in presence of market

microstructure noise, 576 ff.
implied Black, 639
testing for asymmetric effects, 131

Volatility and correlation forecasts
performance by simulation, 810 ff.

Volatility estimation
computational and practical implemen-

tation, 592 ff.
edgeworth expansions, 591
high versus low liquidity assets, 594
noise correlated with price, 589 ff.
non-equally spaced observations, 586 ff.
robustness to data cleaning procedures,

594 ff.
serially-correlated noise, 587 ff.
smoothing by averaging, 595
tick time sampling, 592
transactions or quotes, 592 ff.

Volatility estimators, 579 ff.
non stochastic case, 579 ff.
nonparametric stochastic case, 582 ff.
parametric case, 579 ff.

Volatility factor models, 379 ff.
Volatility forecasting, 293, 567 ff.

microstructure noise, 567
Volatility forecasts

application in derivatives pricing, 834
application in portfolio decisions, 834
comparison

introduction, 801 ff.
comparison via derivative pricing, 834
direct comparison, 815 ff.
direct comparison via encompassing

tests, 828 ff.
evaluation, 801 ff.
indirect evaluation, 830 ff.
multiple comparison, 817 ff.
optimal univariate, 804
other methods of indirect evaluation,

833 ff.
pair–wise comparison, 816 ff.
robust loss functions for comparison, 818

ff.
Volatility forecasts comparison

choosing robust loss functions, 823 ff.

model confidence set, 818
multivariate

robust loss functions, 825 ff.
problems with non–robust loss functions,

819 ff.
reality check, 817

Volatility function
bootstrap confidence bands, 989
functional form, 159 ff.
local linear fit, 160

Volatility model
two-factors, 290

Volatility of multiperiod returns
forecasting, 145 ff.

Volatility of volatility, 315
Volatility parameter, 405
Volatility predictions

evaluation, 146
Volatility proxy, 801

adjusted squared range, 821
conditionally unbiased, 804
decomposition, 808
lagged, 805
univariate, 803

Volatility signature plot, 565
Volatility smile, 410
Volatility term structure, 640
Volterra representation, 73 ff.

W
Wald test, 107
WAR(1) process, 394
Whitening by windowing effect, 992
Whittle approximation, 349
Whittle contrast function

local, 350
Whittle estimator, 103 ff.

local, 350
Wild bootstrap, 993 ff.
Wishart distribution

inverted, 368
Wishart process, 391 ff.
Wishart process model, 368

Y
Yield curve

inverting, 627 ff.

Z
Zero coupon bond, 618
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