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Preface 

My EXPERIENCE IS THAT OPTION PRICING THEORY is usually presented in a clinical 
and theoretical fashion . Book and classroom explanations often deteriorate into an 
unhelpful tangle of mathematics, out of which is born the Black-Scholes formula, 
without regard to simple economic intuition or real-world application. 

This tangled mess creates a "barrier to entry" that stops most students from 
mastering opt ion pricing theory. The accompanying lack of simple economic int u­
it ion makes it impossible for an individual to know how to use the t heory to trade 
options profitably on his or her own account. To compound this situation, the sig­
nificant differences between the assumed Black-Scholes world and the real world 
can easily transform a profitable strategy in the Black-Scholes world into a losing 
strategy in the real world. 

I remove t he above-mentioned barrier to entry- and thns distinguish t his book 
from its competitors-by giving clear explanations of Black-Scholes option pricing 
theory, by discussing direct applications of the theory to t rading, and by discussing 
differences between the theoretical Black-Scholes world and the real world and the 
impact of those differences on trading. 

My explanations of the theory do not go far beyond basic Black-Scholes for three 
reasons: First, a novice need not go far beyond Black-Scholes to make money in t he 
options markets; second , all high-level option pricing t heory is simply an extension 
of Black-Scholes; and third , there already exist many books that look far beyond 
Black-Scholes without first laying the fi rm foundation t hat I give here. In similar 
fashion, my trading advice does not go far beyond elementary call and put positions 
because more complex trades are simply combinations of these. 

T his book can be used as a supplement by students (undergraduate, masters, 
PhD) who need to better understand fundamental option pricing theory. It can also 
be used by anyone who has a basic understanding and wants to trade options for 
the first t ime. My trading advice is aimed at the novice, but it may also be useful 
to more experienced traders. It is limited to exchange-traded equity options in the 
US, but some of it applies to non-equity options; little of it applies to non-exchange­
traded options (e.g., those granted to employees as part of a compensation package 
and known as "warrants" in the US). 

I thank generations of undergraduate, MBA, and PhD students at MIT and 
Indiana University; Don Chance, Scott Chaput, Tony Hutchins, Mikhail Voropaev, 
and Craig Wisen for contributions; Genna Freeberg, the Chicago Board Options Ex-
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change, Incorporated (CBOE), and Thomson Financial fo r supplying market data; I 
Peter Grundy, Dale Hallett, and Vivien Pullar for technical assistance; Christopher 
Lembke at PR Newswire; and Kate Brown and the Department of Finance and 
Quantitative Analysis at the University of Otago for office space, resources, and 
hospitality during 2003. 

This book draws on my prize-winning teaching at Indiana University, and my 
practical trading experience in the US equity and equity options markets . Some 
parts of this book draw on my other book Heard on The Street: Quantitative Ques­
tions from Wall Street Job Inter'lJiews (see t he advertisement on the last page of this 
book) . 

My first option pricing classes were from Professors John C. Cox and Chi-hi 
Huang at MIT, and Professor Robert C. Merton at Harvard. My instruction can­
not help but influence some aspects of my presentation, but any errors are my 
own. If you discover any errors, or wish to give me feedback, send me an e-mail at 
timcrack@alum.mit.edu. The errata appears at www.BasicBlackScholes.com. 

T his book was written while I was a visiting scholar at the University of Otago 
in Dunedin, New Zealand , on sabbatical [r0111 my quantitative active equity research 
job at Barclays Global Investors (BGI) in London. Opinions expressed in this book 
are my own, and are not necessarily those of BGI nor of its parent company Bar·c1ays, 
PLC. 

TFC/BGI/2003 

I updated this book while holdi ng the Chair in Finance at Otago University in 
New Zealand. I now also thank Tiago Bento, Marianne Lown, and Andreas Stirne-
111ann. 

TFC/OU/ 2009 

I Any market data that appear within the body of the text without explicit acknowledgemenL 
are supplied by Thomson Financial , and provided as a courtesy by the Chicago Board Options 
Exchange, Incorporated. 
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Chapter 1 

Introduction to Options 

Options give you options. Owning an option (i.e.) being "long an option':) gives you 
the right to take an action. Selling an option that you do not already own (i.e., "writ­
ing an option") means, however, that you have sold your rights to a counterparty, 
and you therefore have an obligation to fulfil your counterparty's rights. 

Option contracts come in two elementary types: calls and puts. The names "call" 
and "put" come from the actions potentially taken by the holder of the contract (the 
long position) . Call options give the holder the right to buy, or "call ," the underlying 
asset away from the counterparty at a pre-agreed price (the "exercise" or "strike" 
price) . Put options give t he holder the right to sell, or "put," the underlying asset 
to the counterparty at the strike price . 

The underlying asset could be 100 shares of stock, a futures contract on 100 troy 
ounces of gold, 62 ,500 British pounds, or one of many other alternatives. The value 
of the underlying asset changes daily in the market, but t he strike price is fixed. 
This means that the value of the option changes daily. For example, other things 
being equal , if you hold t he right to buy a share of stock at a fixed price (i.e., you 
hold a call option) and the stock price rises, t hen the value of your call option rises 
too. Option contracts are thus one type of "derivative security" because they derive 
their val ue from the val ue of the underlying asset 1 

Options may be viewed as insurance contracts. Payment for an option is, corre­
spondingly, called the option "premium," and a seller who did not already own the 
option is referred to as an option "writeI'l'- a direct analogy to the nalnes "insurance 
premium" and "insurance underwriter." 

The trading of option contracts on organized exchanges is not a recent innova­
tion. Joseph de la Vega's 1688 book Confusion de ConfUSiones describes the stock 
exchange in Amsterdam (then the leading financial center of the world). He dis­
cusses futures contracts with monthly settlement , the clearinghouse, put and call 
options, and various transactions that have no current equivalent, as well as all 

I Differential calculus deri vatives derive their mathematical value from an underlying function . 
This is exactly the sort of mathematical tool needed to understand how fin ancial derivatives derive 
their financial value from an underly ing asset. Thus, di fferential calculus is popular for exploring 
the behavior of financial derivatives. 
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CHAPTER 1. INTRODUCTION TO OPTIONS 

manner of wonderful stock price manipulation schemes. It was roughly 300 years 
later that t he first organized exchange for formal options t rading in t he US opened 
in Chicago in April 1973. IVlodern options pricing t heory is a lso relatively recent . 
Although pioneering t heoretical work was conducted around 1900, option pricing 
theory has come into fu ll bloom only since the late-1960s. 

Other things being equal, a call option on a stock increases in value if t he stock 
price increases, so why buy a call option on a stock rather than simply buying the 
stock itself on margin?2 Buyi ng a call option on a stock and buying a stock on 
margin are simil81', in t hat both trades provide a "levered" posit ion in t he stock. 
That is, in both cases you put down less money t han the face value of t he stock 
that you control, bu t you reap benefits or suffer losses based on t he full face value 
of t he underlying stock. This multiplies, or "leverages," the return on your initial 
investment . This is where t he similarities between options on s tock and stock itself 
end . 

There are significant differences in liquidity between stock and options on stock. 3 

\\Then you buy 100 shares of stock on t he stock exchange, you buy t hem t hrough 
your broker from someone who has held t he stock before you. Conversely, anyone 
else who wants to buy stock wants to buy your stock, so you can sell yours to them­
again via your broker. There is typically just that one flavor of stock available for 
you to t rade. Options are different : There are many different maturi t ies and strike 
prices available for exchange-traded options on any given stock (each particular com­
bination is known as an ::option series") . T hese options do not COln e into existence 
unt il they are traded. For example, if you go long, 8l1d a counter party goes short, 
the option need not have been held by anyone before that t rade.4 Your long option 
posit ion may well be the first long posit ion to exist; and , if no one else t rades it, 
you may be the only person who ever holds options in that particular opt ion series. 
Although the organized exchanges try to improve liquidity by restricting the number 
of strike prices and maturi t ies of options t hat are available-thereby concentrating 
trade in a few option series- the fact is that options on a stock are much less liquid 
than the stock itself. Transactions costs (or simply "T-costs") for trading options 
on stock can therefore easily be 10 times those for trading the underlying stocks. 
T-costs differ markedly and predictably between different option series on a given 

2 A typical margin trade in the stock market involves buying a $100 stock lIsing $50 of your 
money and $50 borrowed from your broker. YOli must satisfy some simple requirements to be 
granted a "margin account ." Once granted , you do not actually have to ask to borrow the money 
to buy the stock, you s imply place the trade and the broker takes care of the deta ils- lending you 
cash up to 50% of the face value of the stock if you do not have enough cash in your margin account 
to execute the trade. It is not always 50%~see the discllssion of Regulation T (Reg '1') and pattern 
day trading in section 10.1.2. 

3ULiquidity" is the abili ty to get out of a position as quickly as possible at a price not too different 
from that most recently quoted. Good liquidity goes hand-in-hand with many market participants, 
high volume of trade, large market depth (i.e. , the volume you can trade without pushing prices 
agai nst you), and low transact ions costs . 

4S uying a security you do not own is called buy ing or "going long"; selling a securi ty you do 
own is "selling"; selling a security you do not own is short ing, or "going short ," or "writing" in the 
case of an option; and buying back a security you have already sold short is !:covering." Thus, you 
are said to "cover a short sale" when you unwind a short position. 
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stock- see the examples in section l.3 .2 and the detailed discussion in chapter 10. 

One result of the above discussion is that because you buy someone else's stock, 
and you can subsequently sell it on to someone else, stock is a long-term instrument, 
and it can potentially exist for longer than you may live. Stock ceases to exist only 
because of big events in the life of a company such as takeovers, mergers, liquidations, 
and so on. Stock options, however, are short-term instruments by design . They 
have maturities of between one day and three years. At the end of this t ime period, 
they "expire" and can no longer be traded. A by-product of this short lifespan 
is that, other things being equal (e.g., stock price, volatility, interest rates), Illost 
stock options decay in value simply with the passage of t ime (table 3.2 notes one 
exception). When trading options , short lifespan and time decay make it vital that 
you have not just a view, but an horizon. For example, if you think a stock price 
will rise 20% within three months, you might buy a speculative call option on the 
stock with a maturity greater than three months. 

The fact that so many different combinations of strike price and maturity exist 
is problematic. Which option series should you choose for a given view? If you buy 
the wrong call option on a stock, and even if the stock price rises significantly in 
value before the option expires, then time decay and T-costs can easily eat away 
most of your initial investment leaving you worse off than if you had simply bought 
the stock! 

In addition to having different strike prices and maturities, options can have 
different exercise styles. The style of an option refers to when that option is exercis­
able. There are three exercise styles for standardized options trading on US markets: 
American, European , and capped. An American-style option may be exercised at 
any time prior to its expiration. A European-style option may be exercised only 
during a specified period before the option expires (typically only on the expira­
tion date itself). Capped options are rare enough for us to ignore. European-style 
options are less sophisticated than American-style ones, and are therefore easier to 
price. 5 

You do not need to exercise an option to exit a long position; you may simply 
sell it. An option seller gives up a previously owned right, and is left with neither 
a right nor an obligation. Contrast this with an option writer who, by selling an 
option he or she does not already own, is left with an obligation. 

Which exercise style to use is often not your choice-unlike mat urity and strike, 
which may be chosen from among those option series on offer. For eXaInple, ignoring 
flex options, all Chicago Board of Options Exchange (CBOE)6 options on individual 
stocks are American style and you simply cannot get a European-style option on 

5 Where do the names "American-style" and "European-sty le" come from? I once went to a St. 
Patrick's Day seminar given by Nobel Prize winner Paul Samuelson at MIT (he wore bright green 
socks) during which he said that he had carefully chosen the names European and American back 
in the 19608. As a US immigrant from Europe, he wanted to take a swipe at snobby European 
economists who thought themselves more sophisticated than their American counterparts , so he 
named the more sophisticated exercise style American and the less sophisticated one European. 

6No one calls it the "Chicago Board of Options Exchange." They always drop the "of," and 
usually say simply the CEOE ('(see-bee-oh-ee") or just CBOE ("see-boe") . 
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CHAPTER 1. INTRODUCTION TO OPTIONS 

an individual stock. 7 If you are trading Foreign Currency (FX) opt ions on the 
Philadelphia Exchange (PHLX) , however, then you do have to make an explicit 
choice between American and European styles, but most people choose American 
style. If you are choosing equity index options on t he CBOE, t hen you need to 
be aware that different options have different exercise styles, and this affects the 
pricing- see chapter 10 for examples. 

Traded options are either physical delivery or cash-settled . Options on individual 
equities are usually physical delivery, but index options are usually cash-settled 
because it is too difficult to deliver a basket of stocks. 

1.1 Hedging, Speculation, and Arbitrage 

The CBOE is t he largest options exchange in the world . The dollar volume of trade 
on the CBOE rivals t hat of the trade in the underlying stocks on the New York Stock 
Exchange (NYSE) and the NASDAQ. Opt ions on futures are heavily traded on the 
Chicago Mercantile Exchange (CME), the Chicago Board of Trade (CBOT), and 
other exchanges, bu t these are beyond the scope of this book. One reason for the 
success of these markets is the liquidity provided by the many market part icipants. 
These include hedgers, specu lators, and arbi t rageurs, as well as "locals" who provide 
liquidity by trading on their own account. 

Hedgers want to reduce risk exposure due to changes in prices. This price risk 
exists in business because future price levels are uncertain. The hedger may be a 
farmer with unpredictable future costs, a business with unpredictable fu ture rev­
enues, or a trader with exposure to price risk in t he underlying stock. 

Speculators, conversely, willingly take on the price risk that hedgers want to 
avoid. Speculators may bet on a price move up or a price move down, but many 
other types of speculative trades exist ; e.g. , a "short straddle" position betting that 
the price does not move much in either direction (see exercise 1 on page 124). 

Arbitrageurs attempt to lock in riskless profits by simultaneously entering into 
transactions in one or more markets. When people in t he financial world use the 
word "arbitrage," they are typically not referring to the locking in of a sure profit 
without investment (what I call an "academic arbit rage" ). Rather, they are re­
ferring to "risk arbitrage," often simply called "risk arb." Traders say that risk 
arbitrage opportunities occur when attractive speculative opportunities involving 
an acceptable degree of risk are available. A typical risk arbit rage strategy involves 
trading in two or more related instruments to take advantage of some perceived 
pricing discrepancy. For example, I once held long positions in t hree Dow Jones 
Industrial Average (INDU) stocks balanced roughly dollar-for-dollar with a short 
position in INDU-tracking stock (the Dow Jones Diamonds with ticker symbol DIA 

7'l'he exception is that the CBOE will open a new "flex opt ion" series- where you get to choose 
the strike , maturity, and exercise sty le vir tually without restriction- if you wi ll do a trade for a 
minimum of 250 round lots (i.e.} 25,000 shares) or a minimum notional value (Le. , strike price times 
number of shares covered) of USDlm. 
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1.2. FORWARDS, FUTURES, AND OPTIONS 

that traded on t he AMEXB) . This was a risk arbi trage t rade betting t hat the three 
individual stocks would outperform the index. It was roughly market neutral in 
that the profit or loss on the position was almost uncorrelated with movements in 
t he broad market , and substantially less volatile. 

Although arbitrage opportunit ies are rare, and most arbi trageurs are actively 
engaged in risk arbitrage, not academic arbit rage, this does not mean that academic 
arbitrage is some foolish head-in-the-clouds ivory-tower academic concept; quite 
t he opposite is true. Arbitrageurs are typically risk arbitrageurs because genuine 
academic arbitrage opportunit ies, although frequent, are typically small and short­
lived . It is t he very presence of t he arbi trageurs that enforces t his. Indeed, many of 
our derivatives valuation arguments depend upon the absence of academic arbi t rage 
opportunities . 

Arbitrage relationships in the market are enforced because assets are related 
to each other. Put-call parity (section 3.6) is a prime example of this. Black­
Scholes option pricing theory is a special case because, unlike put-call parity, it is 
an arbitrage relationship that allows us to price a new asset in terms of simpler 
assets. 

1.2 Forwards, Futures, and Options 

This book is not about forwards or fu tures, but we need to discuss t hem in order 
to understand how they differ from options. We also need a foundation for under­
standing the relationship between the pricing of forwards/fu tures and the pricing of 
options. Some details of forwards/futures markets are discussed here, but the cor­
responding details for options markets are left for detailed coverage in section 10.l. 

A forward contract is a private agreement !J.etween two parties either to buy 
or to sell a specified quantity of an asset at a specified price, with delivery at a 
specified t ime and place. If you are long a forward , you agree to buy the underlying 
asset; if you are short , you agree to sell it. By convention, the agreed-upon delivery 
price yields a "fair" price for future delivery of the underlying asset . T hus, no cash 
need be exchanged when the contract is initiated.9 Indeed, no cash exchange occurs 
prior to the delivery date.JO '\lith no cash needed up front to induce either party 
to enter the contract, the economic value of the contract is zero at initiation by 
construction. In the US, forward contracts are typically used only by institutions 
and wealthy individuals- it is not a retail market.l1 

Throughout the life of a forwa.rd contract, the delivery price remains contractu-

8Note that following the acquisition of the American Stock Exchange by NYSE Euronext on 
October 1, 2008, the old AMEX has been renamed NYSE Alternext US LLC. 

9your counterparty (the "intermediary") is often a bank, and they make money by using a 
spread; that is, the quoted price if you are buying forward is higher than the quoted price if you 
are selling forward. 

10 An exception is that a specu lator may be asked to deposit a small margin up front . 
11 My New Zealand bank manager was happy to offer me a forward and to shade (i. e., reduce) 

the spread when I had USD ri sk to offiay, but my US bank manager claimed not to know what a 
forward contract was when I had GBP risk to ofHay. 
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CHAPTER 1. INTRODUCTION TO OPTIONS 

ally fixed. However, new forward contracts are being initiated every day by other 
parties, so new forward prices are reported in the financial markets every day. The 
forward price equals the delivery price when the contract is entered into (by defini­
tion), but the two prices are equal only by chance after this. The price you locked 
in at can be compared to the prices at which new contracts are negotiated to see if 
you now have a good deal or a bad one (i.e ., positive or negative economic value, 
respectively) . 

Like a forward, a futures contract is an agreement either to buy or to sell a 
specified quantity of an asset at a specified price, with delivery at a specified time 
and place. However, forwards and futures differ in many ways. Forward contracts 
are almost never traded on an organized exchange, and are almost always held to 
maturity. Futures contracts, however, are always traded on an organized exchange 
and are almost never held to maturity. Futures contracts are standardized to focus 
liquidity in only a few possible contracts- just like an option series. Forward con­
tracts, however, are negotiated; they are tailor-made contracts drawn up between 
you and your financial intermediary- more like a flex option, but with a bank as 
the counterparty. 

Unlike option contracts, which are either rights or obligations, forward and fu­
t ures contracts are always obligatiOl;s. The absence of any rights (i.e. , any option­
ality) in a forward or fu tures generates a linear payoff, in contrast to the nonlinear 
payoffs from options (see figure 3.1 on page 41)12 

Your order to buy a futures contract is typically met by a floor trader (i.e., a 
local) on the exchange. Immediately after the trade clears, the clearinghouse inter­
venes and takes offsetting positions with both customers. The clearinghouse is thus 
the counter party to all futures trades. Both you and the other customer look to the 
clearinghouse to fulfil the contract . If either party defaults on the contract, the clear­
inghouse steps in and becomes the seller or buyer of last resort. The clearinghouse 
assumes t he counterparty credit risk (and in return receives a small fee for each 
contract executed). To minimize this counter party credit risk, the clearinghouse 
imposes daily settlement and margins. 

Before you are allowed to open an account to trade US fu tures contracts, you 
must deposit cash, US government securities, or shares with your broker. The 
exchange ilnposes Inininll11n initial perfonnance bond (i.e., initial Inargin) levels 
and Ininiu1UIll lnaintenance perforlnance bond (i.e., maintenance margin) levels~ 

your broker 's requirements may be higher. The margin account mayor may not 
earn interest . The margin account acts as collateral to minimize the risk of default 
by customers. If you are heclging, the ini tial margin is usually less than if you are 
speculating because t he counterparty faces less credit/default risk by trading with 
you . 

Futures contracts are rnarked-to-market every day. At the close of trading (or 
at t he next day's open) , t he exchange establishes a settlement price. This price is 
used to compute gains and losses on the futures contract for that day. These gains 

121n fact , futures contracts do sometimes contain optionaiity, especially with regard to the quality 
of the asset to be delivered. 
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1.2. FORWARDS, FUTURES, AND OPTIONS 

or losses go into (or out of) your margin account. 
For CME agricult ural fu t ures, the initial margin is about 5- 10% of the value of 

the posit ion. The maintenance margin is typically about 75% of the initial margin. 
If your margin account falls below the maintenance margin , you get a margin call, 
and you must deposit more money in t he account to bring the balance back up 
to t he init ial margi n. This contrasts with stock options, which cannot be bought 
on margin on t he CBOE; you do, however , have to post margin if you short stock 
options- see section 10.1.4 for detai ls. 

To avoid your contractual obligat ion to take physical delivery, you should close 
out a long futures position on or before the posit ion day (the first day upon which the 
short position can notify the clearing corporation of the intent to make delivery) . 
The following day is the notice of intention day (when the clearing corporation 
matches the oldest long to the delivering short, notifies both parties, and the short 
invoices the long) . T he following day is the delivery day (when the short delivers t he 
warehouse receipt or financial instrument to the long and the long makes payment 
to the short). 

A forward contract and a futures contract yield t he same total profit or loss 
(assuming that the futures margin account does not earn interest, that the forward 
and fu t ures contracts have the same maturity, that the forward and futures prices 
are t he same at init iation, and that t he T-costs are the same) . The difference is 
that for the futures contract, the gain or loss accrues as a series of daily payments 
spread over the life of the contract, whereas the total gain or loss on the forward is 
realized only at maturity. 

For many years, the Securi ties and Exchange Commission (SEC) in the US 
prohibited futures contracts on individual equities. The law has now changed. A 
joint venture between the CBOE, the CME, and the CBOT led to t he launch in 
2002 of an electronic exchange "OneChicago" (,,''',. OneChi cago . com) trading single 
stock futures (SSFs) on the leading US stocks, futures on leading exchange-traded 
funds (ETFs) (see section 10.1.2), and some futures on sector indexes. Outside of 
the 1,000+ SSFs available through OneChicago, if you want a long futures-type 
payoff linked to an individual equity, your only choices are buying stock on margin , 
negotiating a forward with an investment bank, or "spread bett ing." 

The degree of leverage with a margin t rade is, however, much lower t han with 
futures because you put down 40- 50% with a margin trade, but only 5- 10% with 
fut ures. You could try to negotiate an individual equity forward contract with an 
investment bank, but t he t ime, effort, and fees required to do so are high unless you 
are a major player. In the UK, there is spread betting, which, as a form of betting, 
is free of capital gains and income tax for UK residents as of 2009.13 Spread betting 
often involves sports results, but financial spread betting is popular, and you can 
place online bets on US market outcomes (including individual equities) using UK 
spread betting finns. Like the old bucket shops described in many of t he novels by 
Edwin Lefevre , financial spread betting requires a small wager, with quoted prices 
typically drawn from the markets themselves . If, for example, you are betting on 

13Take a look at spread-betting firm www. igindex co. uk, for example. 
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CHAPTER 1. INTRODUCTION TO OPTIONS 

the FTSE 100 three months ahead, you place an "up bet" (i.e., buy order) of so 
many pounds sterling per point of index value if you t hink the FTSE 100 will rise 
above a quoted "offer price" (or a "down bet" selling order if you t hink the index 
will fall below a quoted "bid price") . You can close out the bet at any time with 
an offsetting trade at the most recent bid or offer. It is a tax-efficient futures-like 
position requiring a small initial bet , and having relatively low T-costs, but it is 
really only targeted at UK residents. Spread betting may also avoid compliance 
restrictions on equity trading if you work in a financial firm, but you should talk 
to your compliance officer before betting. If you are an individual small investor in 
the US, however, and you want an individual equity position more levered than you 
can get from margin trading, your only choices are SSFs and stock options. 

1.3 Introductory Option Examples 

The following examples introduce important terms and concepts. Throughout t he 
book, I give real-world examples with real-world dates and prices. Although these 
examples are necessarily drawn from the past, t he lessons to be learned are current. 

1.3.1 Buying a Protective Put 

Suppose you own one "round lot" (i.e., 100 shares) of Boeing (BA). It is 3:00PM 
EST Monday, April 14, 2003 in New York, and t he NYSE is open until 4:00PM EST. 

It is 2:00PM CST in Chicago and both equity options and LEAPS (long-term equity 
options) trade until 3:02PM CST. Ignoring after-hours trading, when liquidity can 
be quite low,14 you have one hour until t he markets close. 

BA just traded at $26.95 on the NYSE, up almost 50 cents on t he open. Your 
round lot of BA shares is now worth approximately $2,700. You are hoping this 
investment will help buy your son a used car for his 18th birthday- which falls 
conveniently on the Saturday following the t hird Friday in January 2005 (stock 
options usually expire on the Saturday following the third Friday of the month). You 
fear , however , t hat the t hreat of terrorism may lead to lower aircraft orders from 
airlines and that this wi ll push t he price of BA down before your son 's birthday. 
You want to be sure that you will have at least $2,000 to cont ribute toward your 
son's car on this date. What you need is an option that gives you the right to sell 
(or "put") your stock to someone else for $20 per share on or before this future date. 
Buying the put when you already own the stock is a "protective put" position- an 
options hedge. 

14For example, on ?vlonday, May 19 , 2003, 5,917,900 shares of AT&T ('1' ) changed hands on the 
NYSE during regular trading hours (RTH ), but only 400 changed hands in the after-hours (A H) 
ma rket. Por IVIcDonald 's (MCD), the a nalogous numbers were 3,927,000 during RTH and 200 AH. 
respectively. Note, however, t hat on Tuesday, 1day 20 , 2003 when news came out during the day 
t hat Canadian beef had mad cow disease, the numbers fo r ~IICD were 27,221 ,800 d uring Rr H a 
fall of $1.20 to about SI7) and 312 ,100 AH (a rise of $0.25) . respectively. foUo,,-oo. J:p.. a ~ ~ rise 
during Rl'H t he next day on volume of 2-1 :424,800 and a ... 0.01 fall d ~u.. 0- oIume 
of 185,000. The All market is like insu rance, in the sense t hat you do not usually use it but it is 
there when you need it . 
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1.3. INTRODUCTORY OPTION EXAMPLES 

A January 2005 put option on BA with a strike price of $20 is trading on the 
CBOE with ticker symbol ZBOMD; this is a LEAP. You look at your online bro­
kerage account screen: t he "ask price" for ZBOMD is $2.30 and the "bid price" is 
$2.15. The ask price is what t he market maker asks you to pay if you are buying; 
the bid price is what the market maker bids for your security if you are selling. 
T he ask is often called t he "offer" because the market maker offers the security to 
you at this price. The range $2 .15- $2.30 is the "bid-ask spread." The most recent 
trade was at $2.35 (j ust outside the spread); the market maker has adjusted prices 
downwards since then because the stock price has gone up. The bid and ask prices 
are quoted in dollars per share, and each put option contract is for one round lot of 
shares. T hus, you can buy insurance on your 100 BA shares for a total premium of 
$230. This guarantees t hat you can sell your stock for at least $20 per share on or 
before t he third Friday in January 2005. 

When it comes time to liquidate (presumably mid-January 2005), what you do 
with the put depends upon what happens to t he price of BA. If the price of BA 
is above $20 come January 2005, you sell your stock and the put contract mayor 
may not have enough value left in it to warrant the commission involved in selling 
it . If the stock price is very high at expiration, then the put is vir tually worthless, 
and you should certainly just let it expire worthless . If, however, BA is below $20 
come January 2005, then you can either exercise your option to sell BA at $20 per 
share or you can simply sell your valuable put, and also sell your stock. Close to 
expiration , t here is li ttle difference in profitability between these two strategies, so 
t here is typically no point in exercising the option. 

Unlike a forward or futures hedge, t he option hedge kicks in only when you need 
it (like insurance). Note, however, that SOlne people consider options an "expensive" 
hedging strategy relative to futures because of t he explicit up-front cost of the option 
($230 in our case). In addit ion , my broker would -charge me a commission of $10.99 
to buy this put, bringing the total cost for my insurance to $240.99. Be sure to 
choose one contract, not 100 contracts when you place the order- lOO contracts 
would cost $23,000 and cover 100 times your round lot of stock! 

We chose t he $20 strike put because you wanted a floor on your downside at 
$20. You may think $230 is too expensive (or, indeed, too cheap) for insurance. For 
comparative purposes, the quotes (i.e., bid and ask prices) for a range of J anuary 
2005 put options on BA are reported in table 1.1. These puts provide insurance 
ranging in price from $35 (for ZBOMB with a strike of only $10 per share) up to 
$2,340 (for ZBOMJ with a strike of $50 per share). 

Epilogue. With hindsight , worries in March 2003 about the J anuary 2005 price 
of BA were premature . Looking at figure 1.1 (pll ) we see that by January 2005 
BA had doubled to $50 per share. I can tell you that the $20-strike January 2005 
put option (ZBOMD) was quoted each day that month with a bid-ask spread of 
$0.00- $0.05. So, you could have bought it for a nickel a share (i.e., $5 for t he 
contract covering 100 shares) , and sold it for zero. There was zero trading volume 
in this put during this month and the $230 insurance contract expired worthless . I 
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CHAPTER 1. INTROD UCTION TO OPTIONS 

Table 1.1: January 2005 Put Option Quotes: BA, April 14, 2003 

Strike Ticker Bid Price Ask Price 

$10 ZBOMB SO. 15 $0.35 

S15 ZBOMC SO.85 SO.95 

$20 ZBOMD $2.15 $2.30 

$30 ZBOMF $6.80 $7.00 

$40 ZBOMH S1 4.1O $14.40 

$50 ZBOM J $23.00 $23.40 

Note: The bid and ask prices for these pu ts are in dollars per share, and each 
contract covers 100 shares. Buying one contract thus provides downside insur­
ance for one round lot of stock and costs 100 t imes the quoted ask price. (Data 
supplied by Thomson Financial , and provided as a courtesy by the Chicago 
Board Options Exchange, Incorporated. ) 

would have been happy with that outcome if I owned the round lot that doubled 
in value to $5,000. For comparison, note that the $50-strike put (ZBOMJ) was at­
t he-money during J anuary 2005, and was quoted as high as $0.85- $0.95 per share 
during the month . ZBOlvIJ traded 6,826 contracts that month, but by expiration 
(Friday, January 21 ), ZBMOJ was also quoted at $0.00- $0.05 and expired worthless. 
Note t hat BA continued to climb, reaching a high of over $107 per share before a 
downward slide triggered in late 2007 by the global credi t crisis. 

1.3.2 Introduction to Transactions Costs (T-Costs) 

Two patterns should jump out at you in t he pu t prices in table 1.1: First, the 
higher t he strike on the put, the more costly the opt ion. This is because higher­
strike options allow you to sell your stock for a higher price if you exercise them. 
Second, the higher the price of the option , t he smaller t he "relative spread" (i.e., the 
bid-ask spread as a proportion of the premi um). 

The width of t he bid-ask spread compensates t he market maker for the riskiness 
of holding inventory whi le trading with you, for the costs associated with processing 
your order, and for the risk that you may be better informed than he or she is (i.e .. an 
"adverse selection" cost) . There are many different drivers of these different costs. 
but you usually see lower relative spreads on a stock option when the stock is less 
volatile, when many market participants are trading t he option, and when the price 
of the option is high compared to its peers- see chapter 10 for more details. 

I usually assume that t he t rue value of a security is within the spread and 
approximately equal to the "mid-spread" (i.e., [bid+ask]/2). The difference between 
the ask price and mid-spread is how much you pay the market maker when you buy. 
The difference between the mid-spread and the bid price is how much ~uu pay the 
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CHAPTER 1. INTRODUCTION TO OPTIONS 

Table 1.2: T-Costs of Round Trip Put Option Trade (1 Contract): BA 

Strike Buy (A) Comm. 1 (B) Sell (C) Comm. 2 (D) T-Cost (E) He) 

$10 $35.00 $10.99 $15.00 810.99 $41.98 11 9.9% 

$15 $95.00 $10.99 $85.00 $1 0.99 $31.98 33.7% 

$20 $230.00 $10.99 $215 .00 $10.99 $36.98 16.1% 

$30 $700.00 $10.99 $680.00 $10.99 $41.98 6.0% 

$40 $1,440.00 $10.99 $1,410.00 $10.99 $51.98 3.6% 

850 $2,340 .00 $10.99 $2,300.00 $10.99 $61.98 2.6% 

Note: This table draws bid and ask prices from table 1.1. Column A is the ask 
(i .e., purchase) price for the put option contract. Column B is the commission 
my broker charges me to buy the option. Column C is the bid (i.e., sales) price 
for the put option contract. Column D is the second commission paid to sell 
the option. Column E is the total T-cost (E = A - C + B + D). Column F is 
the total T-cost as a percentage of the initial purchase price of the option. The 
percentage T-cost decreases dramatically if we buy the put option with higher 
strike. (Data supplied by T·homson Financial, and provided as a courtesy by 
t he Chicago Board Options Exchange, Incorporated. ) 

market maker when you sell. 15 These costs, like commissions, are components of 
T-costs. 

We can get a good feel for the relative T-costs of trading options by looking at 
an instantaneous "round-trip" trade: where for each option in table 1.1, we buy 
and t hen immediately sell one contract at the quoted prices.16 Table 1.2 shows how 
much it costs to do t his for the put options in table 1.1 using a $10.99 commission. 

The first row in table 1.2 refers to the option ZBOiVlB described in the first row 
in table 1.1. Its ticker symbol "Z-BOMB" is appropriate given that the T -cost to 
trade in and out of it exceeds the asking price of the security!17 It makes sense to 
consider the purchase of only one contract when it is insurance for only one round 
lot of stock and, as such, comparisons within table 1.2 are fair. If we are speculating, 
however, it makes more sense to perform the comparison using a fixed amount of 
money and buying more of t he cheaper contracts, thus prorating the commission 
(see the examples in section 1.3.3, following, and section 10.3). 

15Saying that value is mid-spread makes sense if order processing costs dominate inventory holding 
costs a nd adverse selection costs. If invento ry hold ing costs or adverse selection costs a re la rge, 
t hen my assumption may be poor (e.g. , ir inventory holding costs are high, the market maker may 
lower the ask price below the true va lue of the securi ty just to get his or her inventory down). 

16 A more realistic question to ask is what the T-cost is if you have a fixed number of dollars to 
invest. In this case, you can buy many more of t he lower-cost contracts, and the commission gets 
spread over them---see t he example in section 1.3.3. 

171 a m not saying that the spread is usuriolls. ?>. Iaking a market in options is a risky business, 
and spreads need to be wide. 

© 2009 Timothy Falcon Crack 12 All Rights Reser ved Worldwide 



1.S. INTRODUCTORY OPTION EXAMPLES 

1.3.3 Buying a Speculative Call 

It is early morning Monday, April 21 , 2003. The NYSE will open at 9:30 AM EST 

after a long Easter weekend. You have been watching McDonald's Corporation stock 
(MCD) in t he recent past. MCD closed most recently at $16 on the NYSE (on the 
previous Thursday). MCD has risen 33% over the last six weeks fTOm an almost 
lO-year low of about $12. IVICD rose about 15% over the last month, matching the 
performance of the Dow Jones Industrial Average (INDU) of which it is a member. 
You know that Mondays in general tend to be bullish for underpriced stocks in the 
US equity markets and that after a long weekend the effect is compounded. You 
also know, however, that Passover does not end until Thursday the 24th, so volume 
will be light on the US exchanges and this could spoil the pattern. You think that 
IVICD, like much of the market, will rise in late morning trading. You think this 
is the beginning of a medium-term price appreciation in MCD that may provide a 
25% (i.e., $4) gain over the next three months- far outstripping the Dow (INDU). 

You want to buy a call option to leverage your speculative view on MCD. MCD is 
on the March expiration cycle with equity options expiring in May, June, September, 
and December 200318 There are also LEAPS that expire in January 2004 and 
January 2005. 

If your three-month horizon is firm, the May and June expirations are too soon, 
and there is no point paying extra for the December expiration or the LEAPS. That 
leaves September. The most recent quotes (i.e., bid and ask prices) for September 
MCD call options are in table l.3. Volume of trade and "open interest" are also 
in table l.3. Near-the-money strike prices are available from $10 to $22.50 in $2.50 
steps. 

If you are correct, and your stock rises to $20 in three months, then, ignoring 
T-costs, each of these contracts should rise in fair value, with all but the last two 
being in the money (i.e. , stock price above strike for a call ) when you close your 
position in July. Which one should you buy? 

Assuming you have $1,000 to spend, and taking into account the projected 
growth in the value of the option and both commissions and spreads, my calculations 
suggest that the $17.50 strike option should be most profitable with the $20 strike 
option a close second (details on this calculation are left for section 10 .3). The $17.50 
strike option does not offer the highest forecast return based on Black-Scholes values 
with zero T-costs (the $20 strike and $22.50 strike options are superior). Once T-

18There are January, l-""ebruary, and March expiration cycles. Each stock is assigned to one of these 
cycles . The lVlarch cycle , for example, has nominal expiration dates of March, June, September, 
and December. I say "nominal" because, in fact , there are always two near-month expirations (the 
"front month" and the "second month") and two far-m onth expirationsj the latter two must come 
from that stock's expiration cycle, but the former two depend only upon which month it is now, and 
whether the equity option expiration date has passed for that month-usually the third Friday of 
the month. For example, on April 21,2003 , the (previously front-month) April options have already 
expired (on the previous Thursday because Friday was an exchange holiday), the May options are 
now the front month, the June options become the second month (stepping up from their previous 
position as far-month contracts), and the December options have just been introduced (as yet with 
zero open interest) as the second of the two far-month expirat ions (September and December). 
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Table l.3: September 2003 Call Option Data: MCD, April 17, 2003 

Strike Ticker Bid Price Ask Price Vol. 01'. I nt. 

$10.00 MCDIB $6.00 $6.20 0 573 

$12.50 MCDIV 53.70 53.90 3 1,5<1 7 

. 15.00 MCDIC 51.80 $1.90 30 5, 119 

517.50 MCDIW $0.60 SO.65 99 2,115 

$20.00 MCDID $0.15 $0.25 4 524 

$22.50 MCDIX 50.00 80.10 0 0 

Note: These market data are for September 2003 MCD call options. They 
were available pre-trade on Monday, April 21 , 2003, and therefore describe t he 
most recent close of trade on Thursday, April 17. The bid and ask prices for 
these calls are in dollars per share, and each contract covers 100 shares. The 
volume column records how many option contracts were bought that day; it is 
also the number of contracts that were sold that day, because you cannot buy 
unless someone simultaneously sells to you. The open interest column records 
how many contracts are held long at the close of trade; it is also the number 
of contracts held short at the close of trade, because you cannot go long unless 
someone simultaneously goes short. Note that MCDIX has a bid price of zero; 
that is not unusual for the furthest out-of-the-money option if open interest is 
zero. (Data supplied by Thomson Financial, and provided as a courtesy by the 
Chicago Board Options Exchange, Incorporated.) 

costs are taken into account , however, the $17.50 strike option is the most attractive 
(see section lO.3). The $17.50 strike option is the most expensive out-of-the-money 
call when the stock price is $16. Indeed, the most expensive out-of-the-money call 
is frequently the most profitable simple bullish trade after accounting for T-costs. 

You could easily triple your money wit h either the $17.50 or $20 strike options if 
you are correct .19 T his compares favorably to the only 25% gain that you forecast 
for t he stock. Of course, if you are wrong, and t he stock price halves, you can easily 
lose lOO% with these call options after T -costs, compared wit h only half t hat loss 
with the stock (see table lO.1 on page 173 for additional information). 

Ignoring T-costs, buying t he $22.50 strike option in table l.3 quadruples your 
money if the stock price rises by 25% in three months. In practice, however, t his 
out-of-the-money option is so lowly priced that its spread forms a large portion of T­
costs, and the projected return to each of the other options in table l.3 is significantly 
better after T-costs. See the analysis in section lO.3 starting on page 183, and also 
t he epilogue on page 186. 

19Th is leverage is why insider traders often use options for their illegal trades. The paper trai l 
left behind is so good, however, that many get caught. 
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Chapter 2 

Mathematics, Statistics, and 
Finance Prerequisites 

To understand opt ion pricing theory, we need to understand the mathematics, statis­
tics, and finance from which it is constructed. This necessarily involves exponentials 
and logarithms, normality and lognormality, expected values, rates of return , and 
some other prerequisites. 

2.1 Logarithms and Exponentials 

Logari thms and exponent ials appear in most option pricing formulae. Understand­
ing logarithms and exponentials is t hus essential if you are to understand basic 
option pricing theory. We will review each separately, then look at the inverse 
relationship between them. 

2.1.1 Logarithms 

The logarithm function may be defined as follows: if b1 = x, then I is the "logari t hm 
of x to the base b." This may be written as I = logb(x) . As long as b and x 
are positive, t hen I is a unique real number. The case b = e = 2.7182818 .. . 
(i.e., Euler 's number) yields "natural" logarithms; the case b = 10 yields "common" 
logari t hms.! T he natural logarithm function is used in opt ion pricing t heory. Some 
authors denote t he natural logari thm by loge( ·), or sometimes just by log( ·); I use 
the popular notation In (·) . For example, In (1.025) = 0.02469261. A graph of In (x) 
appears in figure 2.1. Note from figure 2.1 that natural logarithms are defined only 
for positive numbers. 

Logari t hms are used because they have special properties. One such property is 
t hat if x is very small, In(1 +x) is very close to x; can you see t his in figure 2.1? For 
example, In (1.0002) = 0.00019998 is very close to 0.0002. This property is used later 

IThe natural logarithm is also known as the Napierian logari thm, the hyperbolic logarithm, or 
as '~log to the base e." The common logarithm is also known as the Briggsian logarithm, or as "log 
to the base 10." Common logarithms are typically denoted as IOglO('), or jus t by logC ) · 
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CHAPTER 2. MATHEMATICS, STATISTICS, AND FINA NCE PREREQUISITES 

when different measures of returns are examined. For example, if R is a "simple" 
rate of return, and X == In (1 + R) is a "continuously compounded" rate of return 
(see section 2.4.2) , then for small ret urns, R and X are not very different. 

Another special property of logarithms is that the log of the pr-oduct equals the 
sum of the logs: In (X x Y) = In(X) + In (Y), for all X, Y > O. This is used when 
manipulating continuously compounded returns in chapter 8. Note also that In (X 7 

Y) = In (X ) - In (Y), for all X , Y > O. 

2.1.2 Exponentials 

The exponential function may be defined as follows: 

1. exp(x) :=; L~~O %~) where ~'OO'1 is infinity, and "kP' is read as "k factoriar' 
and is calculated as k! = k· (k - 1) · (k - 2) · ... · 2·1, if k is a posit ive integer, 
and O! == 1;2 or, equivalently, 

2. exp(x) == limn~oo (1 + ~r . 

The exponential function is typically denoted exp(·); you also often see it written 
as exp(x) = eX . For example, exp(0.02) = eO 02 = l.02020134. A graph of exp(x) 
appears in figure 2.2. Note from figure 2.2 that the exponential function always 
takes positive values . 

Like logs, exponentials also have special properties; one such is that the expo­
nential of the sum equals the product of the exponentials: exp(X + Y) = exp(X) x 
exp(Y), for all X , Y. This is used when manipulating stock prices in chapter 8. Note 
also t hat exp(X - Y) = exp(X ) 7 exp(Y), for all X, Y. 

2.1.3 Inverse Properties 

The exponential fu nction is the inverse of the logarithm function; t he logarithm 
function is t he inverse of the exponential function. Either function "undoes" the 
effect of the other.3 For example (with many decimal places to avoid rounding 
error), 

exp(0.020) l.02020134002676, and 

In( l.020201 34002676) = 0.020. 

Thus, In[exp(0.020)] = 0.020, or , more generally, In [exp(x)] = x for all x. It also 
works t he other way around , for example, 

In(l.020) 

exp(0.01980262729618) 

0.01980262729618, and 

l.020. 

2S0 , for example, 3! = 6, 4! = 24, 51 = 120, and 61 = 720. 
3Do not confuse the "inverse" wi th the "reciprocal." The inverse of f(x) is a function g( .) . such 

t hat g[J(xl ] = x and Jlg(xl] = x . The reciprocal of the function I(x) is a [unction h. such that 
h(x) = f/X) ' For example, the inverse of J(x) = x2 is g(x) = .;x, but the reciprocal of l IZ = x2 

is h(x) = ~. 
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2.1. LOGARITHMS AND EXPONENTIALS 
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Figure 2.1: The Natural Logarithm Function 

Note that 1n(l) = 0, and 1n(e) = 1, where e = 2.7182818 ... is Euler 's number. 
Note also that In(x) is defined only where x > O. 
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Figure 2.2: The Exponential Function . 

Note that exp(O) = 1, and exp(1) = e, where e = 2.7182818 ... is Euler's 
number. Note also that exp(x) is defined for all x, and is always positive. 
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2.2. NORMALITY AND LOGNORMALITY 

Thus, exp[ln (l.020)) = l.020, or, more generally, exp[ln(x)) = x for all x > O. These 
inverse properties are used later on to go backward and forward between normal 
and lognormal distributions. 

2.2 Normality and Lognormality 

Normality and lognormality are essential parts of basic opt ion pricing theory. For 
example, basic option pricing t heory typically assumes that "continuously com­
pounded" stock returns are normally distributed , and that stock prices are log­
normally distributed (further details on these assumpt ions are left for section 2.4) . 
Normality and lognormality are defined and described in terms of the logarithms 
and exponentials discussed in section 2.l. 

2.2.1 Normal Distribution 

A random variable X is distributed normal with mean v and variance ).2 if for any 
two numbers a and b satisfying -00 :s; a :s; b :s; 00 the probability that X falls 
between a and b is described by equations 2.1 and 2.2: 

P(a :S; X :s; b) l
x =b 1 _l(""'-")' ---e 2 ). dx 

x=a V2ii). 
(2.1) 

1::b 

/ x(x)dx, (2.2) 

1("-V)' where t he integrand4 /x (x) == ~ >. e-' -,;- is the probability density function 

(or simply "pdP') of the random variable X. The pdf describes how the probability of 
different possible outcomes of X is distributed over those different possible outcomes. 

If a random variable X is normal with mean v and variance ).2, I use the notation 
X ~ N(v, ).2 ), read as "X is distributed as normal, mean nu , and variance lambda 
squared. ') 

A typical normal distribution is shown in figure 2.3. The normal is also known as 
the "Gaussian" distribution (after the mathematician Carl Friedrich Gauss, 1777-
1855) .5 The normal distribution is symmetric, "bell-shaped," and described fully 
by its mean and variance. The distribution in figure 2.3 has mean and variance of 
v = 0.07 and), 2 = 0.02, respectively. 

2.2.2 Lognormal Distribution 

Lognormality is defined in terms of normali ty. A random variable Y is lognormal if 
and only if X == In (Y) is normal. It follows from the inverse properties in section 2.1 

4The "integrand" is that part of t he in tegra l that falls between t he "J" and t he "dx." 
5In fact , the Gaussian distribution is someth ing of a misnomer. The Gauss ian distribution was 

not d iscovered by Gauss, but by Abra ham de Moivre. He published his discovery in 1733 (44 
years before Gauss was born). Abraham de tVloivre arrived at the Gaussia n distribution as an 
approximation to the binomia l distribution (Kotz et a l. , 1982, pp347-348) . 
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Figure 2.3: A Normal Distribution 

0.4 0.6 

Note: The normal probability density function f(x) is plotted for the part icular 
parameter values // = 0.07 (the mean) and .\2 = 0.02. The functional form is 
given by 
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2.2. NORMALITY AND LOGNORMALITY 

that if X is normally distributed, then Y == exp(X ) is necessarily lognormally dis­
tributed . 

If Y is lognormal, so that In(Y) is normal (and In(Y) has mean 1/ and variance 
>-2 say) then 

j.Y~d 1 I (In(y)-")' 
P (e <:: Y <:: d) = e- ' -,- dy 

y~c J21f >-y 
for any 0 <:: c <:: d <:: 00 . The pdf for the lognormal distribution can be derived 
d irectly by substituting X = In(Y), x = In(y), dx = ~dy, a = In(e) , and b = In(d) 
into the pdf for t he normal distribution (you should try this)6 

A typical lognormal distribution is illustrated in figure 2.4. The lognormal dis­
t ribution shown is of the random variable Y = exp(X), where X ~ N(I/, >-2) and 
1/ = 0.07 and >-2 = 0.02. Although I quote 1/ = 0.07 and >-2 = 0.02, these are not 
the mean and variance of Y, but rather of X = In(Y) (see tables 2.1 and 2.2 for 
details) . The lognormal distribution is "right skewed," also known as "positively 
skewed." It looks as though its top has been shoved from the right while keeping its 
base fixed . A more skewed lognormal distribution is displayed in figure 2.5 for t he 
random variable Y = exp(X ), where X ~ N(I/, >-2) and 1/ = 0.07 and >-2 = 0.15. 

2.2.3 Inverse and Other Properties 

The special properties of logarithms and exponentials flow through to both nor­
mally and lognormally distributed random variables. For example, if XI and X2 
are both normally distributed, and are statistically independent , then X I + X 2 is 
a lso normally dis tributed . Thus, normality is closed under addition? There is a 
similar property for lognormally distributed random variables. If YI and Y2 are 
both lognormally distributed , and are statistically independent , then YI x Y2 is also 
lognormally dist ributed. Thus, lognormality is closed under multiplication. T his 
result can be proved using the closure properties of independent normals together 
with the defini tion of lognormality (you should try to prove it) . 

The relationships between logarithms and exponentials and between normality 
and lognormality enable you to infer the properties of one distribution from those 
of the other. This is useful in later chapters if, for example, you wish to infer t he 
behavior of stock prices (assumed lognormal) from the behavior of continuously 
cOlnpounded returns (assumed normal), or vice versa. 

The general resul ts are displayed in tables 2.1 and 2.3 (but details for prices 
and returns in particular are not covered until section S.l) . The results displayed in 
tables 2.1 and 2.3 are not meant to be immediately obvious-you should check t he 
algebra. 

Figures 2.3 and 2.4 display the normal and lognormal probabili ty density func­
tions using t he parameter values from the example in table 2.2. The two distribu­
tions appear quite similar except that the lognormal has been shifted to the right 

61 recommend Evans et al. (1993) as an exce llent reference book for most of the statistical 
distributions you are likely to meet. 

7 "Closed under operation CJ': means that applying operation 0 to a pair of independent random 
variables returns a random variable of the same family of probabili ty distributions . 
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Figure 2.4: A Lognorma l Distribution 

Note: The lognormal probability density function f(y) is plotted for the par­
ticular parameter values v = 0.07 and )..2 = 0.02. The mean is indicated at 
1.083 (see table 2.2). The functional form is given by 
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Figure 2.5: A Lognormal Distribut ion 

Note: The lognormal probability density function f(y) is plotted for the par­
ticular parameter values v = 0.07 and A,2 = 0.15. The mean is indicated at 
1.156 (see table 2.1 for the formula). The functional form is given by 
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Table 2.1: Translat ing from Normal to Lognormal: T heory 

Normal Logno rmal 

X ~ N(v,)") Y = exp(X ) 

" M EAN v eV + T 

MEDIAN v e" 

MODE v ev ->.2 

VARIANCE ), ' (e'"+>' ) X (eA' - I) 
STD. DEV. ), J(e'HA') x (eA' - 1) 

LIM ITS -00 < X < +00 O :SY <+oo 

Table 2.2: Translating from Normal to Lognormal: Example 

Normal Lognormal 

X ~ N(v,),') Y = ex p(X ) 

MEAN 0.07 1.08328707 

MEDIAN 0.07 1.07250818 

MODE 0.07 1.05127110 

VARIANCE 0.02 0.02370649 

STD. DEV. 0.14142136 0.1 5396913 

LIM ITS -00 < X < +00 O:S Y <+oo 

by about + 1, and a slight posit ive skew is visible. If you ignore t he slight skew, 
t hen for small X , one plus t he normally distributed X (i.e. , 1 + X ) is similar to 
t he lognormally distributed Y == exp(X ); that is, Y "" 1 + X. However, by defini­
tion, X == In (Y), so it follows, taking logs of both sides, that for small X , we have 
X "" In (l + X )-a well-known result . 

Exercise : Use the formulae in table 2.3 to confirm that if you are given 8 2 = 
0.02370649 and m = 1.08328707 for the lognormal, then it can be deduced that 
1/ = 0.07 and >.2 = 0. 02 for the normal (i .e., the reverse of the transformations in 
table 2.2). 
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Table 2.3: Translating from Lognormal to Normal: Theory 

Lognormal Normal 

Y (m,82) X = log(Y) ~ N (v, ),2) 

MEAN E(Y ) = m v = E(X) = In ( ~ ) 
1+( ';' )' 

VARIA NCE V ar(Y) = 8' ),2 = Var(X) = In [1+ (;;;)'] 

STD. DEV. Std(Y ) = 8 ), = Std(X) = In [1 + (;;;)'] 

LIMITS 0 <:: Y < +00 -00 < X < +00 

2.2.4 Z-Score and Cumulative Standard Normal 

Suppose that a particular observation x is drawn from a population that is normally 
distributed X ~ N(v, >.2). To get a feel for how "large" x is relative to the popu­
lation , we should ask how many standard deviations our observation x is from the 
mean v. This is just the distance between x and v scaled by the standard deviation 
>.. We denote this as z == (x - v)/ >.. The scalar z is a particular observation of the 
random variable Z == (X - v)/ >. that is itself a similarly scaled version of X. This 
particular scaling is referred to as a "standardization" of the original variable and the 
new variable Z is said to be distributed "standard normal," i.e., Z ~ N(O, 1). The 
standardized version , z, of the original particular observation, x, is often referred to 
as a "Z score ." 

The standard normal ranges between -00 and +00, but, in practice, few obser­
vations lie beyond plus and minus 3, 99% of the observations lie between plus and 
minus 2.58, 95% of t he observations lie between plus and minus 1.96, and 68% of 
the observations lie between plus and minus 1. 

VIe may now define a new function that tells us what percentage of a distribution 
lies below a particular value. This is t he "cumulative density function ," or "cdf." 
Formally, in the case of X ~ N (v, >.2 ), the cumulative density function Fx(x) 
(i.e., the cumulative normal) is derived from the normal probability density function 
fx(x ) as in equations 2.3 and 2.4: 

Fx (x) roo f u(u)du (2.3) 

1" 1 e-4(":\")' du 
-00 V2ii ), (2.4) 

Thus, Fx (x) is the area under the pdf fx(-) to the left of x. It follows, for example, 
that Fx (-oo) = 0, Fx (median) = 0.5, and Fx(+oo ) = 1 (i.e., total area under the 
pdf equals one) . Thus, the cumulative density takes values between zero and one. In 
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the case of the standard normal, the cumulative density function (i.e., cd f) is often 
denoted by "N (z)" == Fz(z) . Thus, N ( -(0) = 0, N (O) = 0.5, and N ( +(0) = 1. 

The cumulative standard normal has the property that 1 - N( z) = N ( -z) . This 
follows from the symmetry of the standard normal pdf about zero. 

2.3 Expected Values 

The expected value of a cont inuous random variable is t he mean of its pdf. If X has 
pdf fx( x ), and possible values of x range from -a to +b, then the expected value 
of X (i.e., the mean of X ) is denoted E (X ) and is given by equation 2.5: 

rx~+b 

E (X ) = Jx~-a x fx (x) dx. (2.5) 

Let me provide some simple intuition by showing clearly that equation 2.5 is directly 
analogous to working out the expected value of a random variable in the simpler 
discrete case. Suppose that X d is a discrete random variable t hat takes values 
{Xl, X2, ... , xn} with probabilit ies {Pl ,P2, ··· ,Pn}, respectively. Vie know that the 
sum of t he probabilities must be one: Li~~ Pi = 1. The expected value of X d is the 
weighted sum-with the Pi as weights- of t he possible realizations of X , as shown 
in equation 2.6: 

i = n 

E(X d)= L xi 'Pi (2.6) 
i =l 

For example, suppose Xd takes values 1, 2, and 4, with probabilities i, ~, and i, 
respectively, t hen 

1 
= 2-. 

4 

The continuous case in equation 2.5 is analogous to equation 2.6 and to our simple 
example because t he term f x(x) ·dx appearing under the integral sign in equation 2.5 
is just a probability; it is the area of a small vertical slice taken under the pdf of X 
(with height fx (x) and width dx). The sum of all such areas (tha t is, the integral 
J::~: f x(x)dx ) is equal to 1 by definition of a pdf. The integral sign itself is really 
just an elongated "S" (S. for §ummation). So equat ion 2.5 is really just a summation 
of possible realiza tions of X multiplied by their probabi li ty of occurrence and is 
perfectly analogous to the summation in equation 2.6. 

For concreteness, note t hat if X is distributed normal with mean v and variance 
),2, then X takes values between -00 and + 00 and it can be shown with considerable 
algebra that 

l
x~+oo 1 I (X_V)2 

E (X ) = X · e-' - ,- dx = v. 
x~-oo .j2; ), 

All of the foregoing comments wit h reference to random variable X also apply 
if we replace X by some ot her distribut ion Y == XIA. That is, if Y is the random 
variable X conditional upon having some information A, then we can work out 
"conditional Ineans" as in section 2.3.1. 
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2.3. EXPECTED VALUES 

2.3.1 Conditional Expected Values 

Let us take an extended example to demonstrate a conditional mean in the case of a 
normal distribution, and also to allow a result to be derived that can be used later. 
Consider the case where X ~ N(v, .\2) and Y == X IX> v. What is the mean of Y? 
That is, what is the expected value of X conditional upon the information that X 
is greater than its Inean?8 

Before we work it out, let us have an educated guess. Values of X greater than 
the mean v are distributed from v up to +00 but fall, on average, about one standard 
deviation of X higher than v. That is, the answer should be E(XIX > v) '" v +.\. 
Now we work it out formally: 

E(X IX > v) = E(Y) 1:~00 y . Jy(y)dy 

l:~:oo X· f (X lx>v)(x)dx 

l
x~+oo fx(x) 

x · --dx 
x~v 1/2 

2 ·1::+= X· fx(x)dx 

2· x ---e- ' -A- dx l
x~+oo 1 l(X-V)' 

x~v J2; .\ 

Note that at step (*), above, the conditional distribution f(x lx>v)(x) is calculated 

to be f~g) when x > v (and zero otherwise) because the distribution's probability 

mass has to be re-scaled to integrate to 1. Now, let z = x>.v (so that Z == (X - v)/.\ 
is standard normal), then dx = .\dz, and x = .\z + v. Plugging these into the last 
equation yields 

E(XIX > v) 2· x e ' A dx l
X~+oo 1 _2("=")' 
x~v J2; .\ 

1
z~+oo 1 1 , 

2· (.\z + v) J2; e-'z .\dz 
Z~O 2n .\ 

2 [.\ L:+oo zfz(z)dz + v 1::+00 
fz(Z)dZ], 

1 " where fz(z) == y'2;;e-'z . However , the first term is directly integrable 

1 

J2; ' 

8 VVe care about this question 01' questions like it because we are often interested in strategies 
that payoff in cases only where the stock price or) conditional upon today's stock price, the return 
on the stock is above (or below) a particular level related to the strike price of an option. 
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and the second term satisfies J::o+oo f z(z) = ~, because Z is standard normal. It 
follows then that 

E( X IX > v ) 

f2 )'Y; + v . (2.7) 

Our educated guess of E(XI X > v) "" v + .\ is quite close to the result from 

equation 2.7 that E(XIX > v) = v + ( J2/7f) .\ "" v + 0.80·.\. 
T here is substantial additional discussion of conditional expected values in sec­

tion 8.3.6. 

2.4 Rates of Return 

2.4.1 Statistical/ Distributional Arguments 

Consider a stock with market price P (t ) at point in t ime t. For simplicity, assume 
that there are no dividends or other distributions, and that t here are no taxes 
or T-costs. Suppose you observe t he (unrealistically volatile) stock prices P (I ) = 

$100, P (2) = $125, P (3) = $100, and P (4) = $80 at t he end of Monday, Thesday, 
Wednesday, and Thursday, respectively. 

The formula R'- l" = [P (t ) - P (t - I)JI P (t - 1) may be used to calculate the 
"simple return" to holding the stock from time t - 1 to t ime t. T hese returns are 
Rz == R I ,2 = 0.25, R3 == RZ,3 = - 0.20, and R4 == R3,4 = -0.20 in our exampleH 

Suppose you could buy the stock at t = 1 (close of business Monday) and 
sell it at t = 4 (close of business Thursday) . T he simple holding period return 
R I ,4, (from t = 1 to t = 4) can be calculated directly as a loss of 20%: R I ,4 = 

[P (4) - P (I )JI P (I ) = (80 -100) / 100 = - 0.20. 
You may also calculate RI ,4 using mult iplication (i.e., compounding) of the indi­

vidual daily returns. It is worth remembering that simple returns compound using 
multiplication. 

(1 + Rz)(1 + R3)(1 + R4) = 1.25 x 0.8 x 0.8 = 0.80 

-0.20. 

Simple returns are intuitive and straight forward. Many published facts and figures 
quote simple returns. Normal distributions are also intuitive and appear frequently 
in finance and in nature. Can simple returns be assumed normal? 

Although normality is the init ial statistical assumption of many models, there 
are at least two problems with using the assumpt ion of normality for simple returns. 

9The terms "return" and "rate of return" are interchangeable. Do not confuse them with the 
dollar return on an investment. 
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The first problem is that limited liability implies that actual simple stock returns 
cannot fall below - 1. The normal distribution, however , extends from - 00 to +00, 
so the theory would not match reality. In practice this is not a major concern w 

The second problem is that simple returns compound using multiplication , and 
normality is not dosed under mu\ti"lication (i.e., X , Y both norma\ '* X . Y never 
normal); t his is a serious concern. If the statistically independent simple returns Rl 
and R2 are normal, then so too are l+R\, and 1+R2, but the product (1+Rd(1+R2) 
is not . Thus, time aggregation (i.e., compounding) does not generate normal simple 
returns even when t11e individual returns are thelnselves normal simple returns . This 
would be impossibly clumsy and inconsistent in any t heoretical workll 

The problems with limited liability and compounding are solved by making a 
different statistical assumption. If R is a simple rate of return, we assume that 
X == In(l + R) is distributed normal, not R. The quant ity X = In(l + R) is t he 
cont inuously compounded rate of return. 

In place of the tradi t ional compounding factor (1 + R), we use instead the math­
ematically identical compounding factor eX; in place of the tradi tional discounting 
factor 1/(1 + R), we use instead the mathematically identical discounting factor eX; 
and thus in place of the traditional multi-period discounting factor 1/( l+RJY, we use 
the mathematically identical multi-period discounting factor e- X .T Sections 2.4.2 
and 2.4.3 discuss pratical interpretations of continuous compounding (with numer­
ical examples) and applications to pricing forwards and fut ures, respectively. 

From the propert ies of logarithms in section 2.1 (and the discussions in sections 
2.1 and 2.2), we know that if x is small, then In(l +x) is close to x . Thus, the simple 
rate of return R and the continuously compounded rate of return X = In (l + R) are 
not very different for small R. 

Although the logarithm t ransformation is slight, it eliminates t he aforementioned 
problems with limited liability and compounding. If X = In (l + R ) is assumed 
normal, then, by the defini t ion of lognormality, (1 + R) is lognormal and , therefore, 
ranges from 0 to +00. Thus, R ranges from - 1 to +00, solving our limited liability 
problem. From the properties of logarithms in section 2.1, we see also that 

which is equivalent to wri t ingl2 X l ,. = X2 + X3 + X 4 · 

IO lf you fit a normal distribution to the historical simple daily returns on a stock, the estimated 
standard deviation is almost always going to be so small relative to the mean that the lower tail 
of the fitted normal distr ibution does not breach the financial boundary of - 1 except with tiny 
probabil ity, i.e., N [(- l - ill/a) = E, where E is tiny. 

11 I like the discussion of normality/lognormality in section VI of Case M. Sprenkle's option pricing 
paper (Sprenkle [1961J). I also find Sprenkle's discussion ofrisk neutrality in section VII of his paper 
to be very clear. It is historically interesting to note that Sprenkle's option pricing formula is very 
closely related to the Black-Scholes formul a. Sprenkle did not pursue this area because he did 
not realize the general importance of option pricing at the time (personal communication Apri l 3, 
2008) . The relationships are discussed further in Black ( 1989). See also Haug (2007, section 1.3.2). 

12 lf you are having trouble with the subscripts, recall that R2 = R1,2, R 3 = R 2,3, and R 4 = R 3,4 ) 

so (1 + HI,4) = (1 + R1,2)( 1 + H2,3)(1 + H3,,) = (1 + H2)(1 + R3)(1 + H,) . The notation for X is 
analogous. 
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It follows that because normality is closed under addition, t ime aggregation 
generates normal continuously compounded returns when the individual returns are 
also (statistically independent) normal continuously compounded returns-solving 
our compounding problem. It is wor th remembering that continuously compounded 
returns compound using addition. 

If the continuously compounded return X t = In (l + Rt ) is assumed normal, then 

(1 + Rt ) is lognormal. It follows t hat the "price relat ive" P~~)I) is also lognormal, 

b p et) 1 P(t)-P(t-l) (1 R ) N l' 1 1" 1 ecause P(t-I) = + p et 1) = + t · onna Ity, ognonna Ity, snnp e returns, 
continuously compounded returns, and the price relative are all used extensively in 
Black-Scholes option pricing theory. 

Story: One candidate for a futures tradi ng position in Chicago was asked: 
"\"'ould you rather be beaten up, beat someone up , or run around the block 
naked?" The last response did not get him the job . 

Taken from uHeard on The Street: Quantitative Questions from "Vall Street Job 
Interviews," ©2008 T imothy Falcon Crack. See advertisement on last page of this book. 

2.4.2 Continuously Compounded Returns 

The arguments in section 2.4.1 revolve around statistical assumpt ions of economic 
models and , although necessary, are not very intuitive. This section contains more 
economic intuition. Section 2.4.3, which follows, applies continuous compounding 
to the pricing of forwards and fu t ures. 

Continuously compounded returns are just another way of quoting rates of re­
turn. As mentioned in section 2.4.1 , t hey are related to, and often approximately 
equal to, simple (i.e. , effective) rates of return. All good financial hand-held calcu­
lators have eX and In keys for manipulating continuously compounded returns. 

Suppose that you have $1,000 to invest and that a bank offers you a CD (i. e., cer­
t ificate of deposit) or term deposit with an annual percentage rate (APR) of 12% 
compounded m t imes per year for one year. The terminal value of your investment 
depends upon how many times per year the compounding takes place. The terminal 
value is calculated as $1,000 x ( 1 + O;~2 ) m, and is shown in table 2.4 for a range 
of values of m . The last row in the table shows what happens if you compound 
one billion times a second- effectively continuous compounding. Continuously 
compounded returns are APRs with extremely frequent compounding. For exam­
ple, if r = 0.12 is a continuously compounded return , t hen an investment earning 
t his rate has an annual growth factor of (1 + f,;)m = (1 + O;~2)m, where m is in­
finitely large. However, as defined in section 2.l.2 , for large m , (1 + f,;)m "" eT

• 

T his is t he same as (1 + E AR) for some simple effective annual rate EAR. Thus, 
(l+EAR) = eT

, or equivalently, r = In( l +EAR). For example, l.1275 = exp(0.12) 
or 0.12 = In (l + 0.1275), as in table 2.4. 
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2.4. RATES OF RETURN 

Table 2.4: APRs and Continuous Compounding 

Compounding Frequency at 12% Terminal Value Effective Rate 

(number of times compounded) of $1,000.00 of Return 

Annual (1) $1,120.0000 12.000% 

Semiannual (2) $1,123.6000 12.360% 
Quarterly (4) $1,125.5088 12.551% 
Monthly (12) $1,126.8250 12.683% 
Daily (365) $1,127.4746 12.747% 
Hourly (8760) $1,127.4959 12.750% 
Every Minute (525,600) 81,127.4965 12.750% 
Every Second (31,536 ,000) $1,127.4969 12.750% 
Every Nanosecond (3. 15EI6) 81,127.4969 12.750% 

Note: The terminal value and the effective annual rate of return increase with 
the compounding frequency; however, they are limited. An APR of 12%, even 
when compounded continuously, produces an effective yield of only 12.75%. 

Key SUffiluary: Continuously compounded returns are used in derivatives pric­
ing. They are APRs with extremely frequent compounding. For example, if 
T = 0.05 is a continuously compounded rate of return, then an investment earn­
ing this rate has an annual growth factor of (1 + ~)Tn = (1 + O~5)m) where m 
is infinitely large. However} for large m} (1 + ~)m ~ eT (which is much easier 
to calculate) . \;Ve compound at continuously compounded rate r over time period 
(T - t) using multiplicative growth factor er(T-t); we discount at continuously 
compounded rate r over time period (T - t ) using multiplicative discount factor 
e-r(T-t) 

Exercise: Check that (1 + 0!5)m and eO.05x I are 99.999% the same for m = 365, 
and ded uce that daily compounding (which most banks offer) is thus very close to 
continuous compounding. 

2.4.3 Pricing Forwards/Futures with Continuous Dividends 

In this section we use the continuously compounded return concept to deduce a fair 
price for forward delivery of a theoretical securi ty paying continuous dividends. 

To value forwards and futures, we need the following assumptions (for at least a 
sizable subset of market participants): t here are no T-costs and no restrictions on 
short sales; there is no counterparty credi t risk; market participants are price takers 
who prefer more wealth to less wealth; all net profits from trading are subject to 
the same tax rate; riskless borrowing and lending can be done at the same rate; and 
prices have adjusted so t hat there a re no arbitrage opportunities. 

We use the following notation: T is the delivery date (expressed in years); tis 
today (so T - t is the number of years to maturity); S is the price of the underlying 
asset; F is the forward price today; l' is a continuously compounded riskless interest 
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Derivative 
Now Expiration 

---+1--------------------+1--- Time 
t T 

Time to ~'I atu rity 

Figure 2.6: Derivative Security Timeline 

Note: OUf options, futures, and forwards are assumed to live from time t 
to time T. Both T and t are measured in years) so a six-month option has 
T - t = 0.50. 

rate per annum available today until time T.13 Recall that the delivery price, the 
forward price and the value of the forward contract are different concepts. Forward 
prices are quoted in the financial press every day as the delivery price at the initiation 
of new cont racts. The forward price is a fair delivery price, so the init ial value of the 
new cont racts is zero. As the forward price varies in the marketplace, contractua.lly­
fixed delivery prices look attractive or unattractive and this gives existing contracts 
positive or negative value, respectively. 

Consider a theoretical stock that provides a constant dividend yield. It may 
be thought of as "leaking" dividends continuously where the rate of leakage is a 
constant percentage of t he stock price. For example, if your stock leaks a continuous 
dividend of 10% per annum, and this morning's stock price was $100, then at the 
end of today you would expect to have received dividends of very slightly larger 
than $100 x 3~5 x 10%. 

If you continually reinvest dividends as t hey leak out of the company, then the 
number of units of stock you hold increases at a rate equal to the dividend yield 
on t he stock (let this be q per annum, say). Starting with one unit of stock and 
holding it for (T - t) years, yon therefore end up with 1 x eq(T- t ) = eq(T - t ) units 
of stock (alternatively, if you start with e-q(T - t ) units of stock, you end up with 
1 unit of stock after T - t years). This assertion is most clearly seen if we take 
a two-paragraph detour and consider FX investments as an analogy to stocks that 
pay continuous dividends . 

Suppose I live in the US, but receive a gift of GBP1,000 from a British relative. 
Suppose I place those GBP1 ,000 into a UK bank account that pays a continuously 
compounded interest rate of 5% per annum.!4 The bank account pays interest in 
GBP. At the end of one year, the balance is GBP1 , 000 x eO.os·! "" GBP1 , 051.27. 
That is, GBP1,000 has grown to GBP1, 000 x er(T-tj, where r· is t he Bri tish interest 
rate and (T - t) is the investment period. 

In a big-picture sense, one British pound may be considered to be a share cer-

13 A riskless bond that pays 81 in '1' years is thus worth $ e'T /'- I ) or equivalently, Se - r(T-t), today. 
14This is not as crazy as it sounds. Some US banks have offered continuous compounding 

(e.g. , Savers Bank in ~1,Ilassach usetts [\1l.1TJ. savers bank. com]) . It costs the bank little compared 
to daily compounding (see table 2.4 and the exercise on page 31) and attracts customers. 
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t ificate in a US-listed company called "Britain, Inc." When Britain does well (lower 
unemployment, higher productivity, etc.), the USD price of the pound rises; when 
Britain does poorly (higher unemployment , lower productivity, etc .), the USD price 
of the pound falls-just like a stock rising and falling when a company does well 
or poorly. IS A pound held in a UK bank pays dividends in units of more pounds. 
This is perfectly analogous to holding a share of stock in a corporation that runs 
a dividend reinvestment program (DRlP)16 From the pound example, it follows 
that if you hold 1,000 shares of stock in a theoretical company that pays continuous 
dividends at rate r per annum, and if you use their dividend reinvestment program 
to buy more stock, then after (T - t) years you have 1, 000 x er(T-t) shares of stock. 
Change t his to one share of stock and cont inuous dividend yield q, and we have t he 
assert ion we are trying to prove. 

To arrive at a fair price for future delivery of a security, we introduce a "cash-and­
carry strategy." This strategy duplicates (or "synthesizes") the payoff to a forward 
contract. A cash-and-carry strategy requires that you borrow enough money now 
to fund the purchase of the underlying security in the cash or "spot" market.!7 You 
then carry the underlying security through to the maturity of the forward, at which 
t ime you deliver it in exchange for a payment used to pay off the borrowing- thereby 
creating a synthetic forward. The costs associated with executing this strategy are 
referred to as "the cost of carry." 

A synthetic forward and an actual forward both perform the same economic 
function: they have no out-of-pocket cash flow at time zero, they deliver an asset at 
t ime T , and at time T a payment is made to the deliverer (which is used to repay 
t he loan in the case of the synthetic forward) . If t hey perform the same function and 
have an identically timed single cash flow, then these cash flows must be identical, 
or else an arbitrage opportunity exists. If we go long one and short the other, we 
can deduce t he cash flows. 

Consider a cash-and-carry strategy combined with a short forward: you borrow 
enough money at time zero to buy enough stock so that with reinvestment of divi­
dends you have one unit of stock to deliver at time T. Then you deliver the stock in 
exchange for the forward (delivery) price F, and you repay your borrowing. What 
are the cash flows? 

With a known continuous dividend yield q, you borrow enough money to buy 

15This is a powerful analogy. Britain , Inc. is a conglomerate of thousands of corporations, 
small firms, and so on, with millions of employees. Its extraordinary diversification explains why 
the volatility of returns to invest ing in the pound is much lower than the volatili ty of returns 
to investing in almost any individual British or US company. The same is true of most major 
currencies; and this relatively low volatility explains why, other things being equal, options on 
currencies are cheaper than options on stock. 

16DRIPs are run by many companies in the US (Fisher [2001]) . You can buy stock directly from 
the company, typically without a commiss ion and somet imes even at a discount from market price, 
and sign up to have all dividends paid to you in the form of additional shares of stock (even partial 
shares of stock when the dividend is nol sufficient for a full share). There are some restrictions on 
selling securities in these DRIPs: but they do not affect long-term investors. 

17The cash market is where the actual asset (as opposed to a derivative contract on the asset) is 
bought or sold for immediate del ivery, typically with payment one or two business days hence. 
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e-q(T- t) units of stock at time zero (at a price of S per share, this costs Se-q(T- t)) . 

At t ime T-t , you repay the borrowing at a cost of Se- q(T- t ) x er(T-t) = Se(r-q)(T-t) 

and collect the forward price F as per the contract. vVith no initial outlay, you have 
locked in a riskless cash flow at time T of F - Se(r - q)(T- t ) . No-arbitrage arguments 
mean that this quantity cannot be positive, and it cannot be negative; so, it must 
be zero. Thus, F = Se(r-q)(T-t ) is a fair price for fu ture delivery of the security 
with known continuous dividend yield q.1 8 

vVith F = S e(r-q)(T-t) , the higher the interest rate T on our borrowing, the 
more expensive it is for us to carry the security t hrough ti me (on borrowed funds) . 
The higher the dividend yield q, however , the fewer shares we need to buy up front 
(because dividend reinvestment causes our initial number of stocks to grow). Thus, 
interest rates increase our cost of carry, and the dividend yield decreases it. 19 If 
we express the cost of carry as a continuously compounded rate and label it "c," 
then in our case, c = T - q, and F = Sec(T - t) . With no dividends, the fair price for 
forward2o delivery is simply F = S er(T-t). 

Individual stocks do not pay continuous dividends, but portfolios do (approxi­
mately). We see this again when we apply our t heory to options on stock market 
indices in section 8.5.l. 

If S is the JPY price of the USD, t hen F = Sec(T-t) is a fair price for future 
delivery of the dollar, where c = r - p, and T and p are the continuously compounded 
Japanese and US riskless rates, respectively. 

Note: if S is in units of FXj USD, then F = Se(rFx -rus)(T- t) is also in un its 
of FXj USD, and the ordering of the countries whose interest rates appear in the 
exponent is the same as the ordering of the countries whose currencies appear III 

the units fract ion FXj USD. This is a simple example of "dimensional analysis." 

2.5 Other Prerequisites 

2.5.1 Equilibrium versus No-Arbitrage 

Finance theories derived using "equilibrium arguments" require that the theorist 
describes supply of the asset to be priced , describes demand of the asset to be 
priced, assumes that the market is in equilibrium (i.e., that supply equals demand), 

IS If the dividend y ield is known but varying , the equation is still correct, but with q in place of 
q, where ij is the average q over the life of the contract . 

19More generally, the cost of carry includes the fo llowing (with signed influence): interest rates 
(+) , storage costs (+) , dividends (-), convenience yield (-). "Convenience yie ld)) is the benefit 
derived from owning a consumption good. A consumption good is one not held primarily for 
investment purposes (e.g., the grain in the grain s ilo at the cereal factory, or the oil in the tank 
at the gas station). Even if the spot price of a consumption good is high relative to the forward 
price, the holder of the consumption good would not sell it in the spot market and replace it with 
a long forward- because of the convenience y ield . This means that one-half of the no-arbitrage 
argument co llapses and we can have an upper bound only on the forward price of a consum ption 
good: F :$ Sec(T - t ) . 

20Note that if r is non-stochastic, no-arbitrage arguments imply that the forward price equals 
the futures price (Cox and Rubinstein [1985, p62]) . 
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and then uses the equali ty of supply and demand to deduce a fair price for the 
asset at hand in equilibrium. The Capital Asset Pricing Model (CAPM) is one such 
example of this-though it is usually expressed in terms of expected rates of return 
on assets in equilibrium rather than equilibrium prices per se. 

"No-arbit rage arguments" are different; they rely upon the absence of arbitrage 
opportunities to deduce fair prices of assets. For example, in section 2.4.3, we use 
no-arbi trage arguments to deduce t he fair price for future delivery of a forward 
contract on a security. 

Although equilibrium arguments and no-arbitrage arguments are different, they 
are related. If a market is in equilibrium, t hen no arbi t rage opportunit ies can exist. 
That is, equilibrium implies no arbitrage, and any equilibrium model must not admit 
arbi t rage opportunities. The converse is not true. That is, no arbitrage does not 
imply equilibrium. 

The Black-Scholes opt ion pricing model is unusual because it can be derived 
using either equilibrium arguments or no-arbit rage arguments. 

2.5.2 Percent 

Sometimes, t he obvious needs to be stated explicitly. So, note that "cent" means 
100, as in l'century" or Ilcenturion," and that "per," in Inathematics, means division . 
It follows that 

8% 8 percent = 8 per cent 

= 8 perlOO =8 -o-100 
8 

100 = 0.08, = 

and thus t hat "8%," "eight percent," and "0.08" are perfectly interchangeable rep­
resentations of exactly the same number. 

One percentage point is broken down into 100 smaller units, called "basis points" 
or "bps" for short , and pronounced "bips" or "beeps." For example, if a mutual fund 
outperforms the index by ! %, it has 50 bps of outperformance. 

2.5.3 Binomial Coefficients 

The binomial coefficient (r) ;: k!(i1' k)! is a ratio of factori als (see t he definition 

of the factorial k! in section 2.1.2). So, for example, @ = 2fL = (~: i i\ = 3. The 

binomial coefficient (~) is often read as "three choose two," because (r) counts the 
number of ways to choose k items from a group of K without regard to order . For 
example, in the case K = 3, and k = 2, there are G) = 3 ways to choose two 
items without regard to order from the group of three items labelled (a, b, c) . These 
three choices are (a, b), (a, c), and (b, c), respectively. The phrase "without regard 
to order" means that (a , b) and (b, a) are considered to be the same. 

Binomial coefficients are seen most frequently in statistics as the coefficient of a 
probability term when using binomial distributions . Under some limiting conditions , 
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Table 2.5: Newswire Announcement of a Dividend 

JUNE 11, 2003 1:30 PM - BEDMINSTER, N.J., Jun 11, 2003 
/PRNewswire via COMTEX/ -- AT&T's Board of Directors today 
declared a regular dividend of $0.1875 (18 . 75 cents) per 
share, payable August 1, 2003, to AT&T common shareowners 
of record on June 30, 2003. Stock price: open: 19.30, 
low 19.29, high 20.52, close 20 .50, vol 8,601.600, up $1.20 
(6.22%). 

Note: This table shows a standard newswire announcement of a cash dividend. 
The declaration date is June 11 , 2003; the payment date is August 1, 2003; t he 
record date is Monday, June 30, 2003; t he ex-dividend date may be inferred 
to be four business days before the record date: Tuesday, June 24, 2003. The 
stock price jumped considerably on the news. (Reproduced with the permission 
of PR Newswire and AT&T.) 

binomial distributions can approximate normal distribut ions. Normal distribut ions 
are used heavily in Black-Scholes option pricing, and binomial coefficients appear 
naturally in option pricing when binomial distributions are used to approximate 
normals- see section 8.3.3. 

2.5.4 Ex-Dividend Process 

As at February 2009 ,21 45.5% of NYSE stocks pay dividends. The numbers are 
15.2% for the NYSE Alternext (the old AMEX), 27.3% for the NASDAQ, and only 
7.2% for the OTe bulletin board. The average across the NYSE, NYSE Alternext , 
and NASDAQ combined is 34.8%. These numbers were roughly 50% higher for 
the NYSE in the 1960s, 1970s, and 1980s, but dividend payment decreased 'in the 
1990s (often replaced by buybacks; see Lynch [2000, pI9]) . Dividend payment then 
steadily increased following the Jobs and Growth Tax Relief Reconciliation Act of 
2003 (which temporarily reduced the tax rates on dividend income in t he US), only 
to decrease slightly to the reported numbers during the 2007/ 2008/ 2009 global credit 
cn sls. 

A standard dividend announcement for a US company appears in table 2.5. 
Whether or not you can claim the most recently declared dividend depends upon 
when you bought the stock relative to the ex-dividend process described in figure 2.7. 

21 I got these numbers by querying dividend yields by exchange using a screening tool at my 
broker's Web site . 
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Ex-Dividend 

Declaration I Record Payment 

t t t t ime 
~ ____________ -A'~ 

cum-dividend 4 days 

ex-dividend 

Figure 2.7: US Ex-Dividend Timeline 

Note: The board of directors declares the dividend (and it becomes a legal 
liability of the company) on t he "declaration date." The stock then trades 

. "cum-dividend" C:cum" means (Iwith" in Latin); if you buy the stock you will 
get the dividend. The ex-dividend day is the first day the stock does not trade 
with the right to the dividend ("ex" means "without" in Latin). The "date of 
record" is t he date upon which official holders of the stock are acknowledged 
as being rightfully entitled to the recently-declared dividends. If you buy the 
stock on or after the ex-dividend date , then you are not the holder of record 
on the date of record. The stock price usually opens lower on the ex-dividend 
day by some tax-related fraction of t he dividend. There are typically four days 
between the ex-dividend day and the date of record for US individual stocks. 

Op Q uiz: An equity option contract on the CBOE usually covers one "round lot" 
of stock. What is a round lot of stock? 

Answe r: A round lot is 100 shares of stock. Note t hat sometimes, after a corporate 
act ion, the CBOE adjusts the nature of the underlying, and the option contract 
covers whatever is the new equivalent of what was a round lot, e.g. , shares in a 
merged entity after a merger. A round lot of options is also 100 contracts (usu­
ally covering 10,000 shares). The definition of a round lot may differ by security 
(e.g., five bonds) or by country (e.g. , 1,000 shares in New Zealand) , or by liquidity 
(e.g., 10 shares in a thinly traded stock). Contrast this with an "odd lot," which 
is a parcel of securities smaller than a round lot. 
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Chapter 3 

Option Pricing Foundations 

Speculative traders make money in options markets by using options as tools to 
exploit views about economic factors. For example, you may have a view about 
the level of an individual stock price, the level of a broad market index, or the 
volatility of returns in an individual stock. To get from having a view about an 
economic factor to knowing which option to trade, you need to understand which 
factors affect option prices, in which direction they affect them, and in what manner 
(i.e., weakly, strongly, linearly, nonlinearly, etc. ). 

In this chapter , we identify the factors that affect option prices and the direction 
of the relat ionships involved. We then place bounds on the relationships between 
these underlying factors and the option values . Black-Scholes option pricing must 
place the price of an opt ion within t hese bounds, or else there are arbitrage oppor­
tunities. These bounds help fuel our economic intuition for the manner in which 
changes in these factors lead to changes in option prices. This chapter also explores 
fundamental parity relationships between options. 

3.1 Factors Affecting Option Prices 

The factors generally regarded as affecting option prices appear in table 3.1. Recall 

Table 3 l' Factors Affecting Option Prices 
f actors Affecting Opt ion Prices 

Price of Underlying Asset 
Strike (i.e., Exercise) Price o f Option 
Time to Expiration (i.e., T ime to J.,IIaturity) of Option 
Variance of Returns on Underly ing Asset" 
Riskless Interest Rate" 
Present Value of Dividends from t to T 

"This is variance of continuously compounded returns . 
bThis is a continuously compounded in terest rate. 
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CHAPTER 3. OPTION PRICING FOUNDATIONS 

that we are using the timeline in figure 2.6 on page 32, that T - t is measured in 
years, and that r is a rate of retu rn. So, for example, T - t = 0.50 for a six-month 
option , and T = 0.05 for a 5% rate of return. 

Some factors that affect option prices are not ment ioned in table 3.1. There are 
direct factors like the CFO resigning for accounting fraud, or an envied invention 
by a competitor, or fears of war. vVe shall assume that these direct factors influence 
the option value t hrough one of the factors in table 3.1- lower stock price, higher 
perceived volatility, etc . T here are also indirect factors that are less likely to affect 
the fair value of the option, but may affect the price you pay. These include low 
liquidi ty during pre-holiday periods t hat results in wider bid-ask spreads, or lack of 
depth that Ineans your order Inoves prices against you (Le., it has "price ilnpact"), 
and sO OIl. We discuss these factors in chapter 10. 

3.2 Payoffs and Payoff Diagrams 

Most of our analysis focuses on "plain vanilla" options; i.e., standard calls or puts 
that are either American style or E uropean style. Anything else is an "exotic op­
tion ." 

The value of a standard call option at maturity is the payoff to the option; this 
payoff is written as the maximum of two quantit ies in equat ion 3.1. For fixed X , 
the formula in the equation is a function of terminal stock price S(T). If you plot 
value on the vertical and terminal stock price on the horizontal, you get t he kinked 
payoff diagrams famous in option pricing and illustrated in figW'e 3.1. Bachelier was 
the first to publish the kinked payoff diagram to a call (Bachelier [1900, p30J) 1 

1!;.l1(T ) = max[S(T) - X , OJ (3 .1) 

The first quantity in equation 3.1 is [S(T) - XJ. This is what you get if you 
exercise at time T and gain the stock by giving up the strike price (hence t he 
implicit "+" in front of t he stock price and the explicit "-" in front of the strike). 
The second quantity in equation 3.1 is zero. Zero is what you get if you let the 
option expire unexercised at t ime T. The value of t he standard call at maturity is 
thus the maximulll you can gain fr0111 choosing between exercising or not exercising 
the option. 

The same arguments lead to the value of the standard put option at maturi ty 
as shown in equation 3.2, and plotted in figure 3.1. 

Vp",(T ) = max [X - S(T ), OJ (3.2) 

An option position decays in value toward its final payoff as expiration ap­
proaches, so current value (at t ime t ) is typically a smoothed-out version of final 
val ue (at t ime T ). Do not confuse "decay" with "decrease." The decay effect helps 
you if the current value of your option position is less than the final value would 

I See also Zimmerman and Hafner (2007) for a discussion of the Bronzin option pricing work of 
1908. 
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3.2. PAYOFFS A ND PAYOFF DIAGRAMS 

Long Call Long Put 

x 5('1') x 5('1') 

x S(T) x 5('1') 

Short Call - $ Short Put 

Figure 3.1: P lain Vanilla Options: Terminal Payoffs 

Note: These payoff diagrams show the final (Le., time-T) dollar value of long 
and short calls and puts (European-style or American-style) as a function of 
the final val ue of the underlying; they ignore any initial cash ftow and assume 
the position is held to maturity. These simple payoff diagrams are composed of 
straight lines connected via kinks. The kinks are caused by the "max" function 
in equations 3.1 and 3.2, which in turn results from the choices embedded 
within the option contract . The terminal payoffs to the short positions are 
nowhere positive-in exchange for the up-front cash flow generated by shorting 
the option; the converse is true for the long positions. Zero payoffs are drawn 
as very slightly different from zero, so that they can be seen . 

be, given the current level of the underlying (as in the case of a deep in-the-money 
European-style put- see figure 3.3 on page 59-or a deep in-t he-money European­
style call on a stock with a high dividend yield-see discussion on page 109). 

If an option position includes short American-style options, t hen the payoff di­
agrmn Inay be nlisleading. If you are assigned an exercise on the short option, you 
never reach expiration. Similarly, if an option position includes options of differ­
ent maturity, then final payoff is an odd concept; and in this case, the plot is not 
necessarily composed of straight lines with kinks. 

I do not like payoff diagrams because they cause considerable confusion. Plotting 
value at maturity (or value at maturity adjusted by current price) does not tell you 
what is going on now. Payoff diagrams are useful to the extent that t hey describe 
t he shape of your payoff as a function of the under lying, and to the extent that 
you understand that current value (time t ) is a smoothed-out version of the final 
value (time T ). They are useful also in that understanding how the plot of value 
at time t t ransforms to the plot of value at time T implicitly requires that you 
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understand theta (d iscussed in section 7.6), but otherwise, I have no use for them. 

Key Points: Equations 3.1 and 3.2 give the option value at maturity as 
the greater of exercise value and zero. Prior to maturity, the option value 
is discounted expected payoff. That is, the option value at time t < T 
is the discounted expected value of equations 3.1 and 3.2. The "intrinsic 
value" of an option at time t is what it would be worth if someone waved 
a magic wand and forced the option to expire today. That is, if exercise 
value is positive, so too is intrinsic value; but if exercise value is negative, 
intrinsic value is zero. Intrinsic value is max[5(t) - X , OJ for· a call, and 
max[X - 5(t), OJ for a put.a If intrinsic value is positive, the option is "in­
the-money"; exercising it today would give you a positive payoff- ignoring 
T-costs. If 5(t) < X for a call or X < 5(t) for a put, then intrinsic value 
is zero, and the option is "out-of-the-money," or "underwater. " Even if at 
time t < T an option is out-of-the-money, the option can still have positive 
value because the market recognizes that ther·e is a chance that the option 
will have exercise value at maturity. If "5(t) "" X ," the option is "near 
the money"; and if "5(t ) = X ," the option is "at-the-money." In the latter 
case, intrinsic value must be zero. Any value in the option over and above 
intrinsic value is referred to as "time value" aT Uextrinsic value. lib The 
option value prior to maturity is thus the sum of intrinsic value and time 
value. Equations 3.1 and 3.2 state that time value is zero at expiration; if 
it is out-of-the-money at time T , then it will never be otherwise. Negative 
time value is discussed on page 44. 

«Some authors define intrinsic value as S(t) - X for a call. This aUows negat ive 
in trins ic value, which I think is contrary to the intrins ic nature or options. 

/, "Extrinsic value" is a phrase you are likely to hear only from traders on the floor of 
an organized exchange. 

3.3 Directionally Correct 

We need to identify, with as few assumptions as possible, the directional relationships 
between changes in the factors in table 3.1 and changes in the values of American 
and European calls and pnts. We assnme no T-costs, all trading profits are taxed 
at the same rate, borrowing and lending are available at the riskless interest rate, 
there is full use of short sale proceeds, and market participants seek out and destroy 
arbitrage opportunities. vVe denote European option values as "cO," and "pO," 
and American option values as "C(-)," and "P(-) ." T he directional effects are listed 
in table 3.2. 

Note first in table 3.2 t hat it says ceteris pari bus in t he tit le; this means "other 
things being equal." So, for example, in the second to last row we are asking what 
is the effect on option value of an interest rate rise, holding all other factors fixed. 
You may think t hat is a strange question to ask because if interest rates rise, then 
stock prices are likely to fall , and the effect on option price of a stock price fall is 
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Table 3.2: Effect of an Increase in the Factor on Equity Option Value 

Effect of an r ncrease in the Factor ceteris paribus 

Factor C 

S r 
X ! 

T - t (low S) r 
T - t (high S) r 

(J2 r ,. T 
D J 

(lThis assumes D = O. 
bThis requires r > O. 

i> -
P c . r.. 

p 

! r ! 
r 1 r 
r r" 1 a , b 

r I" ra 

r r r 
J r J 
r 1 T 

Note: The a rrows show the change in value of the indicated option given an 
increase in the factor defined in table 3.1. Uppercase letters denote American­
style options; lowercase letters denote European-style options. For X, the 
natural comparison is across option series, because X does not change for a 
given option. 

likely to far outweigh the effect on option price caused solely by interest rates rising. 
Similarly, news of a dividend increase often pushes stock prices up, which in turn 
increases the value of a call (contrary to the first "1" in the last row). This is true, 
but asking these questions holding all else equal allows us to understand individual 
effects. Combining our knowledge of these individual effects, and understanding 
how they interact, gives us a full understanding. \Ve now step through each row in 
table 3.2 to explain the orientation of the arrows. 2 

Stock Price and Strike Price. The first two rows of arrows in table 3.2 seem 
quite straightforward. For example, the more valuable is the stock, the more valuable 
is the right to acquire it for a fixed price; and conversely the less valuable is the 
right to give it up for a fixed price. Thus, higher stock price is good for a long call, 
and bad for a long put. The opposite applies for strike price: The more you have to 
give up to acquire the stock, the less valuable is the right to do so, and conversely 
for a put. 

Time to Maturity. Longer time to maturity is unambiguously good for plain 
vanilla American-style options. For example, everything you can do with a one­
month American-style call option you can also do with a two-month American-style 
call, and you get an extra month of option life in which to do it! The same is true of 

2These res ults apply only to plain vanilla options. If you have an exotic option, it may have 
quite d ifferent properties. For example, if you hold a "knock-out option" and the underlying is 
close to the barrier , then higher volati lity is almost certainly bad for you. 
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European-style call options when D = O. In fact , a call having a longer life is much 
like having higher volatility, because there are more possible outcomes. 

The argument for the European-style put differs. If the put option is far out­
of-the-money (i.e., stock price is very high), then longer life is good, because it 
increases the probability that the put option holder will see a positive payoff. If 
the European put option is deep in-the-money (i.e., stock price is very low), then 
because there is a lower limit of zero on the stock price , life might not get much 
better than this for the holder of a European put . Extending the life of the option 
could lead to many possible outcomes where the stock price is higher and the put 
payoff is lower. Consider, for example, the case where you hold a put option with 
a $10 strike price, and the stock has dropped from $12 when you bought the put 
to only a nickel ($0.05) now. If you could exercise the put now, you would get 
$9.95. Life does not get much better than this . The last thing you want is for 
someone to wave a magic wand and extend the life of the option. A European put 
option this deep in-the-money is valued simply as the present value (PV) of exercise 
p(t) = PV [X - S(T)] = X e-r(T-t) - S(t). This is below the exercise value X - S(t). 
As time passes, and if nothing else changes, the put option value "decays" upward 
in value to X - S. That is, a deep in-the-money European put with value below 
intrinsic value has negative time value because total value is t he sum of intrinsic 
value and time value. 

In theory, a deep in-the-money European put is the on ly case where you can 
see a plain vanilla option on a non dividend-paying stock trading below its intrinsic 
value; we discuss shortly the case of European-style calls trading below intrinsic: 
value in the presence of dividends. In practice, options on individual equities are all 
American style, and indices have non-zero dividend yields, so there is nowhere to 
look to see this. In the US in 2003, interest rates were low enough that long-dated 
deep in-the-money European-style index puts did not trade at a noticeable discount 
to exercise value. Let us look at some examples and learn some other lessons in the 
process. 

The CBOE has at least two popular European-style index option contracts. They 
are the SPX contracts on the S&P500 (i.e., on the SPX) , and the XEO contracts 
on the S&PIOO (i.e., on t he OEX).3 On May 6, 2003, the December 2004 700 strike 
XEO put (a LEAP with ticker "XLD XA-E") closed with a quoted bid and ask of 
224.80 and 226.80, respectively.4 The index closed at 472.71, up 3.42 on the day. 
Using this index value, the option had an intrinsic value of 227.29. On the face of 
it, the ask of 226.80 looks like a roughly 0.50 discount from exercise value. This 
may simply be because the put is deep in-the-money and European style. The XEO 
options close at 3:15PM CST in Chicago, and the NYSE closes at 4:00PM EST in New 
York. Given the different time zones, these closes are only 15 minutes apart . It is 
not at all clear, however , t hat these quotes (pulled from the CBOE Web site) are 

3That is, the underly ings are the SPX and OEX, respectively, but the option base Licker symbols 
are SPX and XEO, respectively. The older OEX contract on the OEX is the orig inal America n­
styled one. The newer XEO contracts are European-style ones introduced in mid-200l. 

"} noticed that almost all the long-dated XEO options had a spread or two points on th is day. 
The quotes must have been generated by an autoquote machine. 
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from t he same 15-minute window of trade on the CBOE. The volume in this XEO 
option was zero on May 6, and it is possible that the quotes were stale and referred 
to an earlier point in the day when the index was as high as 475.66. 

By 2009, US interest rates had fallen even fUl:ther (which should raise put prices 
and decrease the discount from intrinsic value). Deep in-the-money puts should not 
trade above intrinsic value, so we would expect to see the same or smaller discount 
when compared with 2003. Sure enough, on February 5, 2009, an $800-strike De­
cember 18, 2010 European-style put option on t he XEO (681 days to maturity) was 
quoted at $398.80-$402.10 when the index was at 398.49. The int rinsic value was 
$401.51, within the spread. 

Note that long-dated deep in-the-money European calls can trade at a discount 
from int rinsic value if t he dividend yield is high enough . For example, on February 
5, 2009 , a 250-strike December 17, 2011 European-style call option on the SPX was 
quoted at $564-$570 when the index was at 845.85. With interest rates at only 
1.3%, and a dividend yield of 3.6%, the value of this call had been pushed down 
below the intrinsic value of $595.85. It would take a rise in interest rates, or a drop 
in dividend yield to push t his opt ion's premium above intrinsic value. 

Several lessons follow from t hese examples. First, when pulling quotes, unless 
done in real t ime, there is no guarantee that they are coincident. Second, an option 
need not t rade to have a quoted bid and ask. You can have zero volume, but the 
market maker (or the market maker's autoquote machine) keeps moving the quotes 
during the day. Third, if you are paper trading, you may wish to do so with prices 
pulled live, not after the close o~ trade.5 Fourth, RTH for index options can differ 
from those for equity options. / Fifth , deep in-the-money European-style puts can 
trade at 17 discount to exercise value, but that discount is small when interest rates 
are 10w.vSixth, deep in-the-money European-style calls can trade at a discount to 
exercise value when there are dividends during the life of the call , but that discount 
is small when dividends are small or when interest rates are large. 

Volatility. Higher volatili ty means a larger spread of possible stock prices at time 
T . Consider the simple case of a non dividend-paying stock that will be worth either 
$90 or $110 two months from now, each price with a probability of one-half. A call 
option with a strike of $100 expiring at time T will t hus be worth either zero or 
$10 at time T , each price with a probability of one-half. The call option's present 
value is roughly6 (~ x $10) + (~ x $0) = $5. Now, suppose instead that returns 
to investing in the stock are more volatile, and the stock will take values of $80 
and $120, each with probability of one-half; then a similar calculation yields an 
opt ion value of $10. Thus, a greater spread of possible outcomes for the underlying 
stock is unambiguously good for the holder of a plain vanilla call or put option 

5 ':Paper t rading)) is when you keep a log of buys an d sells t hat you would have executed, but 
you do not actually trade. It is a good way to dip your toes in the water without gett ing your feet 
wet . 

6There is little harm in this simple example at t his stage) but note that a formal risk-neutral 
binomial option pricing valuation can give answers quite different to naive intuition; e.g., see the 
actual job interview question on page 95 at the end of chapter 6. 
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because it increases the expected gain from in-the-money payoffs but does not affect 
out-of-the-money payoffs. 

Interest Rates. Higher interest rates decrease t he present value of t he strike 
price. Other things being equal, t his increases the value of a call because the strike 
price you potentially give up has lower present value; conversely for a put. 7 

Dividends. Consider two stocks ident ical in all respects, except t hat one promises 
to pay an identically timed but higher dividend than t he other at some time between 
time t and t ime T. Suppose that t here are identically specified European call options 
written on these two stocks and that they expire at time T. Qivide.nds go . to tll_e 
.Q.~_n.~L9f.1he stock , not t he owner of the call option. Higher dividends mean more 
cash leaking out of the firm, and t his is bad for the future residual value of the firm 
that the European call option holder has claim to. Thus, the European call on the 
higher-dividend stock is the less valuable of the pair of options. 

How does the ability to exercise early and capture a dividend alter the above 
argument when we consider an American call? We shall see in section 3.4 that the 
only t ime the holder of an American call considers early exercise is just prior to 
t he stock going ex-dividend , and at that time the option has only its exercise value: 
5 - X . It follows that there are three distinct cases when applying the identical 
stock/different dividend argument to American-style calls. First, if the dividends 
on both stocks are so low t hat early exercise is optimal in neither case, then the 
European-style call argument applies. Second, if early exercise is optimal for the call 
option on the high-dividend stock, but not for the call on the low-dividend stock, 
t hen implicitly t he call on the low-dividend stock has "time value" over and above 
the exercise value just prior to the ex-dividend day. Thus, it is more valuable than 
the call on the high-dividend stock- which is worth only 5 - X just prior to the 
ex-dividend day. T hird , if early exercise is optimal for options on both stocks, then 
both options have the same value,S - X, just prior to ex-dividend , and thus the 
options must have the same value at time t. 

In summary, higher dividends are unambiguously bad for a European call option, 
but once t hey are so high t hat early exercise is optimal for an American call, then 
making them even higher no longer reduces t he value of the American call.8 See 
also the deeper discussion of dividends and early exercise in section 9. 1.2. 

You may have noticed that when stocks announce higher dividends, this is often 
treated as good news by shareholders who, upon this announcement, bid up the price 
of the stock. As already ment ioned, this effect is ignored above because of the ceteris 
paribus nature of t he argument. Besides, it is not t he dividend announcement , per 
se, that shareholders are reacting to in this case; it is t he implicit assurance from 

7See Chance (1994) for insightful elaboration on th is and related topics. 
8Suppose there is exactly one dividend paid on the stock bet.ween time t and time '1', and that 

the stock goes ex-dividend immediately after time t 1 . Then , if early exercise is optimal, the call 
value is simply C(t) = PV [S(t, ) - X [ = 5(t) - X e'(t ,-tl, which does not depend upon the s ize of 
the dividend. Thus, higher dividends no longer red uce call value. 
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the company that it is doing so well that it can afford to pay and sustain higher 
dividends. 

Ignoring the effect on current stock price of an unexpected increase in future 
dividends during t he life of your call option, call option price , be it American or 
European , will drop on the news-unless it is an American-style call and anticipated 
dividends were already so high as to make early exercise optimal (in which case there 
is no effect). If the announcement of higher dividends is fully antici pated , t hen there 
is no change in the value of the option because these dividends are already part of 
D in table 3. l.9 

Op Quiz: It is the middle of t he trading day on Tuesday, April 29, 2003. Weyer­
haeuser Co. (WY) has just traded at $50 per share on the NYSE. October 2003 
American-style call and put options on WY wit h strike price $50 are trading on the 
CBOE. Question 1: Which is more valuable: a round lot of WY or the October 
call option that gives you the right to buy a round lot of WY stock at $50 per 
share? Question 2 : vVhich is more valuable: 100 times the strike price (i.e ., a 
total of $5,000) or the October put that gives you t he right to sell a round lot of 
WY stock at $50 per share? Question 3: Still looking at the $50 strike options, 
would your answers be different tomorrow if significant news arrives overnight and 
WY opens at a price dramatically higher or lower than today (say, $80 per share 
or $30 per share)? 

Answer 1: The $50 stock is worth more t han the right to buy one share for $50 
(the call traded at only $4.20 per share on April 29). Answer 2: The $50 strike 
is worth more than the right to sell one share for $50 (the put traded at only 
$4 per share on April 29). Answer 3: Your answers do not change with stock 
price---unless stock price drops to zero, at which point the choices are equally 
valuable. 

Looking ahead , tables 3.3 and 3.4 note that S > C (R.3a) , and X > P 
(Rl3a), respectively. 

If the dividend to be paid is "abnormal ," e.g., a dividend per share above 10 
percent of the stock price, then the options exchange adjusts the option contract so 
that it covers more shares of stock (or shares of stock plus cash equivalent to the 
dividend ) in an attempt to indemnify the option holder. 

The dividend-related argument for put options is easier than for calls. Higher 
dividends are not an incentive for early exercise of a put (see section 3.5) . Thus, we 
need only consider the European case, in which higher dividends are unambiguously 
good for a put. 

9Dividend payments on individual US stocks are predictable. Companies manage dividend 
payments just as they manage earnings) so that there are few surprises. A naive model that uses 
the timing and quantity of last year's quarterly dividend to forecast this year's is quite accurate. 
Lintner (1956) is an excellent div idend policy article. 
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3.4 Call Options: Restrictions 

In addit ion to t he directional results of section 3.3, we present in this section and 
in section 3.5 some important economic restrictions on call and put option values. 
T hese restrictions and di rectional results give us a rough feel for where opt ion prices 
must lie, and how they must respond to changing factors. Black-Scholes option 
pricing serves exactly the same purpose: t he Black-Scholes formula locates an op­
tion price, and the fu nctional form of the formula tells how that price responds to 
changing factors that are inputs to the formula. Indeed , we shall see t hat, where ap­
propriate, the Black-Scholes formula satisfies each of the restrictions in t his section 
and section 3.5, and t hat it complies with the directional results in section 3.3.10 

These simple restrictions also allow us to explore the early exercise decision. Let 
me state t he obvious by noting that "early exercise" is a decision that applies only 
to American-style options. It is never discussed in the context of European-style 
options because t hey cannot be exercised prior to maturity. T hus, early exercise is 
not an issue in Black-Scholes pricing, but it creates important caveats for any trade 
you do t hat contains short American-style options-see chapter 10 for details. 

Let "C(S, T, X )" denote t he t ime-t value of an American call recognizing ex­
plicitly the dependence of C on S, T, and X . Ten restrictions on call values are 
presented: R1- R7 in table 3.3 and an additional t hree, R8- R lO. If you find t he 
notation in t he table daunt ing, t hen go directly to the discussion in section 3.4.1, 
and correlate the discussion there with the notation in table 3.3. 

Table 3.3: Restrictions on European and American Call Values 

Restrict ions on Call Values 

RI C(0,1', X) = 0 

R2 C(5, T, X) 2 max(O, 5 - X) 

R3 52. C(5, 1', X) 2, c(5, T , X) 2, max(0,5 - Xe - dT-' ) - D) 2d 0 

R4 [D = O,T > 0] =? [C(5, T, X ) = c(5,'1',X) ] 

R.5 [X, < X, ] =? [(X, - XI) > C(5, T , XI) - C(5, T, X,) ] 

R6 [XI < X , < X 3 ] =? [C(X,) s >. . C(X,) + (i - >.). C(X3 ) ]; >. = ~;=:~; 

R7 [51 < 5, < 53 ] =? [C(5,) S >. . C(5,) + (I - >.) . C(53 )]; >. = ~;=~; 

Note: "C(S, T , X )" and "c(S, T, Xl" denote t he t ime-t value of American­
style and European-style call options recognizing explicitly their dependence 
on stock price, expiration date, and strike price. These restrictions are discussed 
in section 3.4.1. 

lONote that, strictly speaking , Black-Scholes o ption pricing applies only to European-sty le call 
and put options on stocks that do not pay d ividends. Thus, only some of the directional resul ts of 
section 3.3 and some of the restrictions in sections 3.4 and 3.5 apply. In each of these cases, the 
B lack-Scholes formula is compliant. 
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C>5- X 

3.4 CA LL OPTIONS: RESTRICTIONS 

Option 
Expiration 

) I ti me 
T 

Figure 3.2: American Call Option Life with Dividends (Restriction R8) 

Note: This underlying stock pays two dividends, d 1 and d21 during the option's 
life (see section 2.5.4 for more details on t he ex-dividend process) . Away from 
the ex-dividend and expiration dates, the American call option takes value 
strictly greater than t he exercise value of the option. Sale of the option dom­
inates exercise during these periods. If there are no dividends, then the three 
"bubbles" become one long bubble, C > S - X everywhere, and early exercise 
is never optimal. 

• R8. If T > 0, call value (C, or c) must be strictly greater than (5 - X ) at any 
t ime other than the expiration date or just before an ex-dividend date (see 
figure 3.2) . Thus, early exercise of an American call option is never optimal 
unless it is just prior to an ex-dividend date (and in this case call value equals 
5 - X ). Ignoring T-costs, C = 5 - X implies that you are indifferent between 
exercise and sale of t he call ; 11 otherwise, sale is preferable to exercise. In 
practice, it usually does not pay to exercise a listed call early, and if it does 
pay, t he optimal t ime is almost a lways just before the last ex-dividend date 
during the life of t he option (Cox and Rubinstein [!illlli.. p144]; Hull [2000, 
pp259-261]) . If t here are no d ividends, then C > 5 - X at a ll t imes prior 
to maturity and early exercise is never optimal (Restriction R4). You do not 
need a non dividend-paying stock for this to hold; it is t rue for an option on 
a dividend-paying stock as long as t he stock pays no dividends during the life 
of the option. 

• R9. With ,. > 0, if the present value of the dividends to be paid during the 
remaining life of a call option will , at every point in time, be exceeded by 
the present value of the interest that can be earned on t he strike during the 
remaining life of the call option, t hen it will not be optimal to exercise the call 
before expiration (Cox and Rubinstein [1985, pI40]) . 

• RIO. If it is opt imal to exercise a call, then it is also optimal to exercise any 
otherwise identical call with a lower strike price, or a shorter time to maturity 
(Cox and Rubinstein [1985, pI40]). 

II ... and it is a good thing they have des ignated market makers on the CBOE because who else 
will buy it if it is about to drop in value. 
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American calls differ from American puts in that t hey have unlimited upside 
potential. This means t hat t here is always a benefi t to wait ing to exercise a call. 
Only if a dividend is about to be "lost" might this cost outweigh the benefi t of 
waiting- see the summary in t able 3.5 on page 54. 

3.4.1 D emonstra tion and Discussion of Call Restrictions 

When reading this section, refer to restrictions RI- RIO in section 3.4. Most of these 
restrictions can be demonstrated by both an informal economic intui tion argument 
and a formal no-arbitrag"'-.argument ; I choose whichever seems most appropriate. 

• RI says simply that t he American call 's right to buy a worthless asset is worthless . 
Implicit within t his is that zero is an "absorbing barrier" for asset value. T hat 
is, once asset value hi ts zero, it never escapes from that level; i.e., the stock 
price cannot bounce back and reach the strike price before maturity. 

• R2 gives an American call price a lower boundary of the greater of zero (because 
of limited liabili ty of t he call) or exercise value (because of t hreat of exercise) . 

• R3b says an American call is always worth at least what a European call is worth 
(because t he American call is more versatile) . 

• R3a and R3b say a call is never worth more than the underlying (otherwise short 
sell the call, buy t he stock, pocket the difference, and deliver t he stock if it is 
called from you) 12 

• R3c gives a lower boundary for a European call: the greater of zero (limited 
liabili ty of the call) or stock price less PV of strike less PV of dividends. If 
not, t hen buy the call, short sell the stock, lend t he P V of the strike, and invest 
the PV of the dividends; liquidate the dividends portion of your investment as 
needed to payout the dividend obligation on the short stock, and at expiration 
you have a positive amount whether t he option is in or out-of-t he-money. Note 
that R3d is t rue by defini tion when one argument of t he max function is zero. 

• R4 says that with no dividends, and with positive interest rates, t he American call 
is worth t he same as t he E uropean call (R3b already says it is not worth less) . 
This follows from RS: away from any dividends, and prior to maturity, you 
must have C > S - X , so you would rather sell the American-style call opt ion 
than exercise it early. It follows that without any dividends, t he American 
right to exercise early is worthless, and American and European calls must 
have t he same value. 

• If R5 does not hold, enter a vert ical spread (buy a call struck at X2 , sell a call 
struck at Xl , invest X2 - Xl , pocket the difference, and you are covered if 
the short call is exercised) . A t ighter bound holds if the options are European: 
e- r (T-t)( X 2 - X d ~ [c( X d - C( X 2)J . 

12Note that restriction 3a implicit ly depends upon the non-negativi ty of the price of the under­
ly ing. So, this is a sens ible restrict ion for a GBM, but makes no sense ror an A B~vI. See page 112. 
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• R6 and R7 say simply that call prices are convex in strike and in current stock 
price. These are here for completeness, ,md are not as important to us as 
the other restrictions. R6 can be proved via counterexample and no-arbitrage 
arguments, and t his is best understood with a picture. For completeness, note 
that R7 is not enforced by no arbitrage, and could, for example, be violated 
under some pathological dividend policies; however, it is an empirical fact 
(Cox and Rubinstein [1985, pp156- 157]) . 

• R8 says that C > S - X away from ex-dividend dates (see figure 3.2). If not, 
then either C = S - X , or C < S - X. In t he first case, if C = S - X , 
then S = C + X , so you can short sell t he stock and use the proceeds to buy 
the call and invest the remainder, X , in a deposit account earning interest. If 
your broker calls the stock back, t hen exercise the call using t he face value of 
t he deposit account and pocket t he interest earned; otherwise, do so when the 
next ex-dividend date arrives and pocket the interest . In the second case, if 
C < S - X, this is contrary to R2. 

• R9 and RIO seem sufficiently reasonable, so I do not provide a formal demonstra­
tion. 

You might think these restrictions are undermined because the arguments used 
to establish them are unrealistic. For example, you cannot borrow and lend at the 
same riskless rate in t he US, t he typical investor does not get full use of short sale 
proceeds, and many market participants cannot trade without incurring commissions 
and bid-ask spread costs. There are, however , two important real-world points 
to make here. The first point is t hat many trading costs (excluding spreads) are 
relatively low, even for the average investor, and especially in large volume when 
those costs are prorated. The second point is t hat market prices are determined 
"at the margin"; that is, the marginal trader (i.e., the next person to trade) is the 
one who moves prices. The marginal trader is often an institutional trader and 
institutional traders often have low, no, or even negative costs to trade and can 
negotiate full use of short sale proceeds. 13 So, while the individual investor might 
sit back and do nothing about a small but blatant violation of restrictions R1- R10 , 
the institutional trader with sophisticated computerized trading systems can pounce 
on it before you can snap your fingers.14 The net resul t is that, in practice, it is 
unusual to find genuine violations of R1- RIO other than very small ones that last 
no more than a few seconds. 

13 How can institutional traders have a negative marginal cost of trade? They can do so by buying 
a seat on the exchange and acting as a market maker so that they can collect, rather than pay, half 
the spread when they want to trade. 

14 1 spoke to a former student working for a Chicago trading firm. He said that he stood on 
the floor in one pit wearing a headset. A colleague stood in another pit also wearing a headset 
and trading a related but different-sized contract. Another colleague monitored both pits remotely. 
vVhen a price discrepancy appeared, the remote colleague instructed one to buy and one to sell in 
appropriate quantity. I asked my former student how long they had to get the arb trade off before 
a competitor would beat them to it; he snapped his fingers in reply. 
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Table 3.4: Restrictions on European and American Put Values 

Rest.rictions on Put Values 

Rll P (O, 1', X ) = X 

R12 P (S, :1', X ) 2: max(O, X - S) 

RJ3 X 2:. P (S, 1', X) ::>b p(S, T , X ) ::>0 max (O, D + X e- ,(T- t) - S) ::>d ° 
R14 [r > OJ => [P (S, T , X ) > p(S, T , X)j 

RJ 5 [X I < X,j => [( X, - X ,) > P (S, 1', X ,) - P(S, T , X ,)I 

R16 [XI < X , < X 3 j => [P (X, ) S A . P (X ,) + (1- A) . P(X 3) j; A = :~;= :~; 

R17 [S, < S, < S31 => [P (S, ) S A' P(S, ) + (1 - A) . P (S3)1; A = ;:=;; 

Note: :'P (S, T , X )" and "p(S, T ) X )" denote the time-t value of American-style 
and European-style put options, recognizing explicitly their dependence on 
stock price, expiration date, and strike price. These restrictions are discussed 
in section 3.5.1 . 

3.5 Put Options: Restrictions 

Let "P (S, T , X )" denote the time--t value of an American put , recognizing explicitly 
the dependence of P on S , T , and X. Nine restrictions on put values are presented: 
Rll- R17 in table 3.4 and an additional two, RIS- R19, following. These restrictions 
are demonstrated and discussed in section 3.5.1. 

• RIS. With r > 0, if there is some future time T prior to maturity of a put opt ion, 
and if during t he period ending at time T the present value of t he di vidends to 
be paid over t his period will a t all times exceed the concurrent present value 
of t he interest t hat can be earned on the strike price during the same period, 
t hen t he put should not be exercised before t ime T (Cox and Rubinstein [19S5, 
p147]) . 

• R19. If it is opt imal to exercise a put , then it also optimal to exercise any otherwise 
identical put with a higher strike price, or a shorter time to maturity (Cox 
and Rubinstein [1985, pI47]) . 

We cannot say, as we did for a call, that early exercise of an American put 
should be considered at only a few specifi c t imes. In fact , such a conclusion is 
not t rue at all. Suppose investor P is long an American put and long the stock. 
Suppose investor C is long an American call and has the strike in a bank account 
earning interest. Investor C has one factor that encourages early exercise (receiving 
t he dividend) and two that discourage it (losing t he interest that could be earned 
on t he strike and losing the opportunity to change his or her mind later about 
exercising) . Since exercise of a call just prior to the ex·dividend date is sufficient 
to receive t he dividend , t here is no reason to consider incurring losses at any other 
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time. If investor P exercises early, he or she gains the interest that can be earned on 
the strike, but forgoes t he opportunity to change his or her mind about exercising 
and loses the dividends that would have been earned had he or she waited. The 
factor encouraging early exercise of the American put is in effect at all times, not 
on just a few dates as with the call. T hus, early exercise of an American put may 
in general be optimal at any t ime. This difficult result is why an exact analytical 
pricing formula for an American put is an unsolved problem. 

3.5.1 Demonstration and Discussion of Put Restrictions 

• Rll says the right to sell a worthless asset is worth the strike you get (you would 
exercise immediately because the stock will never be worth less) . 

• Rl2 gives an American put price a lower boundary: the greater of zero (limited 
liability of the put) or exercise value (threat of exercise) . 

• R14 says that if interest rates are positive, an American put is always more than 
a European put (because it is more versatile). 

• R13a and R13b say a put is never worth more than the strike (otherwise, sell t he 
put, invest X of the proceeds and pocket the rest; you are covered if t he stock 
is put to you at X ). 

• R13c gives a lower boundary for a European put: the greater of zero (limited 
liability of t he put) or PV of strike less stock price plus PV of dividends. If 
not, borrow the PV of t he dividends plus the PV of t he strike, buy the put, 
buy the stock, and pocket the remainder. Use the stock dividends to repay 
the borrowed PV of dividends, and wait until maturity. If t he stock is worth 
more than the strike at maturity, sell the stock, pay back the borrowing, and 
pocket the difference. Otherwise exercise the put and pay back the borrowing; 
either way you are covered. Note that R13d is true by definition when one 
argument of the max function is zero. 

• If R15 does not hold, enter a vertical spread (buy put stuck at Xl , sell put struck 
at X2 , invest X2 - Xl , pocket t he difference, and you are covered if the short 
put is exercised). 

• R16 and R17 say simply that put prices are convex in strike and in current stock 
price (R16 can be proved via counterexample and no-arbitrage arguments)­
best understood with a picture. For completeness, note that Rl7 is not en­
forced by no arbitrage, and could be violated under some pathological dividend 
policies, however, it is an empirical fact (Cox and Rubinstein [1985, pp156-
157]) . 
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Table 3.5: Early Exercise Decision: Summary 

American Call + Strike American Put + Stock 

Costs of Early Exercise Lose In terest on St.rike Lose Dividends 

"Regrets" if S ! "Regrets" if S T 

Benefits of Early Exercise Dividend Capture Earn Interest. on Strike 

(Occasional Benefit ) (Always Available) 

Big Dividend Due Small Dividends Remaining 

·When to Exercise Early Close to Maturity Far from Maturity 

Just Prior to Ex-Div Date Deep In-'l'he-rvloney 

Note: The correct comparison (see put-call parity discussion in section 3.6) is 
between someone holding an American-style call plus the strike price versus 
someone holding an American-style put plus the stock. I assume here that you 
flip from holding one position to holding what you get when you exercise; so, 
for example, if you exercise t he call, you hold onto t he stock so received. The 
benefit to early exercise always exists for the American-style put; that is why 
exact a nalyt ical American-style put pricing is an as yet unsolved problem, and 
approximate analytical techniques or numerical techniques must be used . If 
you exercise an American call and give up the strike in exchange for t he stock , 
you may have "regrets" if the stock subsequently falls. These regrets, and those 
for the analogous American put case, are quantified explicitly in section 3.6.5 
via put-call parity. 

3.6 Put-Call Parity 

When the CBOE opened in April 1973, call option contracts were listed on 16 stocks, 
but puts did not appear until 1977 (source: www.cboe.com)15 Why did the CBOE 
introduce calls but not puts? It was partly to focus trade in as few contracts as 
possible, thereby providing liquidity, but it was also because it is possible to man­
ufacture a put via "put-call parity" by using a call, the stock, and some borrowing 
or lending. 

European-style put-call parity is an equality for same-strike options of the same 
maturity (Stoll [1969]); it is given in equation 3.3: 

J S + p - D = c + X e-r(T-t) (3 .3) 

Recall t hat D in the equation is the present value of dividends to be paid during 
t he life of t he option. Thus, if no dividends are due during the life of t he option, D 
drops out and the equation becomes S + p = c + X e-r(T-t) . I read this version as 

VHaving the stock together with the right to sell the stock is equivalent to having the 
right to buy the stock together with enough money to exercise that right. 

15Before 1973, and for some time afterward, t he members of t he Put a nd Call B rokers and Dealers 
Association traded calls and puts off t he exchange floor in a n illiquid "over-the-counter)) market. I 
t hink options traded informally on the precursor to the NYSE as far back as 200 years ago, but it 
is difficult to confirm t his. 
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Equation 3.3 can be proved as follows: At time t, buy the stock and the European 
put and borrow the present value of t he dividends (repaying this borrowing as the 
dividends are received). The cost is 8(t ) + p(t) - D. The payoff at time T is 
8 (T) + max[O, X - 8(T)]. If instead you buy the European call and invest the 
present value of the strike, the cost is c(t) + X e-r(T-t), and the payoff at time T 
is max[O, 8(T) - X ] + X. These payoffs are identical16 With identical payoffs, a 
no-arbitrage argument asserts that the initial costs must also be t he same. That is, 
equation 3.3 must hold. 

European-style put-call parity is a no-arbitrage relationship. Like many such 
relationships, it is not a t heory of pricing per se, but a theory of relative pricing. It 
does not tell us how to price any asset in terms of less complicated assets' prices. 
In this respect, put-call parity differs from Black-Scholes pricing which, although 
also a no-arbitrage relationship, gives an opt ion price in terms of less complicated 
economic statistics. Put-call pari ty does, however, have many uses as discussed in 
sections 3.6.1- 3.6.6, following . 

. 

Exercise: Look ahead to equations 8.1 7 and 8.1S (p120) and confirm that the 
Black-Scholes put and call formulae satisfy European put-call parity (i.e., equa­
tion 3.3). 

3.6 .1 Synthetic Instrume nts and Arbitrage 

European-style put-call parity shows us how to construct one instrument from oth­
ers. For example, rearranging equation 3.3 to read p = -8 + c+ X e-r(T-t ) + D , we 
see that a long put can be constructed by shorting the stock and using the proceeds 
to buy a call, while investing the balance in riskless bonds with value equal to the 
present value of the strike plus t he present value of the dividends. T he latter is 
liquidated as the short stock's dividends come due. Unwinding t he position at time 
T produces exactly the same payoff as owning a put. 

It follows that you may use put-call parity to design arbitrage strategies that 
take advantage of deviations from put-call parity. This is not for the novice: If you 
see an apparent deviation from put-call parity, t hen either your quotes are stale, or 
someone else just beat you to the trade, or t here is a big corporate action in progress 
that you do not know about. A novice will not profit from such a strategy. 

3.6.2 Leverage and Insurance 

Assume our stock pays no dividends during the life of the options. Then equation 3.3 
becomes 8 + p = c + X e-r(T-t) . If we rearrange t his to make c the focus, it reads 
c = 8 + p - X e-r(T- t ) . Thus, you can construct a call by buying the stock, buying 
a put, and borrowing the present value of the strike price. Buying a stock together 
with borrowing equates to buying a stock on margin (i.e., a levered stock position). 

1BUse the rule max(a, b) + c = max(a + c, b + c) to demonstrate this to yourself if i t is not a lready 
clear. 
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Buying a put provides downside protection if you own the stock (as per the protective 
put example in section 1.3.1 ) . vVe can thus rearrange European-style put call parity 
in t he absence of dividends to arrive at equation 3.4: 

v 

levered s tock 

p -insu rance 

(3.4) 

At the risk of repetition, t he first component , [5 - X e-r(T- t1j, represents stock own­
ership partially funded by a t heoretical borrowing equal to the present value of the 
strike. For example, if 5 = X = $100, 1" = 0.03, and T - t = 0. 5 (a six-month at­
the-money option on a $100 stock), then [5_Xe-r(T-t1j = $100 _$100e-0.03xO.50 "" 
$1.49. If a = 0.30 , then the Black-Scholes value of the put is approximately $7.53; 
and the call, as the sum of these parts, is worth a total of $9.02. The insurance 
portion of equation 3.4 is affected by volatili ty; the levered stock position is not . 

Key Point: Equation 3.4 describes t hree key characteristics of options. First, 
Jeyerarre. Second , a floor on your qownside: T hird , implicitly, because insurance 
policies are always for a fixed term and usually for one year or less, a limited 
lifespan. Another key characteristic of options is that T-costs are high relative to 
those in stocks- see section lO.1.4. - -

If the stock price is so low that [5 - X e-r(T- t1j is negative (5 = $98.50 is 
sufficient ly low using the nUinbers given ilnmediately above), then the borrowing 
fu lly funds the stock purchase and also funds a portion of the price of the put (the 
remaining unfunded portion being the price of the call). In this case, the put price 
is of greater magnitude but opposite sign to [5 - X e- r(T - t1J, and the excess of put 
price over 15 - X e-r(T- t)I is t he value of t he call. If [5 - X e-r(T - t)j = 0 , then 
t he borrowing exactly funds purchase of the stock, and the put and call prices are 
identical. 

Look at equation 3.4. For a fixed strike, X , and for 5 high enough that c > 0, 
t he higher the stock price, t he higher is [5 - X e-r(T-t1j, the lower is p , and the 
higher is c. Therefore, 5 grows more quickly in absolute dollar terms than p falls 
when 5 rises . Conversely, for a fixed strike, X , and for 5 high enough that c > 0, 
t he lower t he stock price, the lower is [5 - X e-r(T-t)j (turning quickly negative), 
the higher is the value of the insurance p , and the lower is c. Therefore, 5 falls 
more quickly than p rises for high and falling 5 (again , all in absolute dollar terms) . 
Other things being equal (except changing 5 ), higher 5 means a less levered call ; 
lower 5 means a more levered call. The opposite is true for a put. 

The payoff function to a call option is the familiar kinked payoff diagram that is 
fl at for low stock prices then rises, as in figure 3.1 on page 41. T he reason the payoff 
diagram is flat for low stock prices is that, as demonstrated in equation 3.4, a call 
owner holds insurance that provides downside protection in t he form of a protective 
put . That is, when the stock price falls, the put takes on sufficient value to offset 
the drop in the value of the levered stock position; but, as mentioned in the previous 
paragraph, the rise in the value of the put is less than or equal to the drop in the value 
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of the levered stock position. So, the call falls in value, down to, but not below, zero . 

Op Quiz: Suppose that you are absolutely certain that a particular stock's price 
is going to rise significantly over the next two months. How do you profit from this 
using options? 

Answer: The naive answer is to buy a call. However, buying a call is the same as a 
levered investment in t he stock plus the downside protection of a put (equation 3.4): 

levered s tock insurance 

If you are absolutely certain, why pay for the insurance? Either buy stock with 
borrowed money, or buy calls and sell puts. 

3.6.3 P lotting Put-Call Parity 

The present (i.e. , time-t) and terminal (i.e. , t ime-T) values of a European call opt ion 
are plotted as a function of 8 in the upper panel of figure 3.3 on page 59, assuming 
that D = O. The present value of the call option increases as stock price increases 
and approaches an asymptote that is parallel to, but slight ly higher than, the in­
the-money terminal value of the opt ion. I7 The terminal value of the option is t he 
same as the intrinsic value, so the excess of present value over terminal value is the 
t ime value. 

Put-call parity can be seen on figures 3.4 and 3.5 (pages 60 and 61 ) if we look at it 
from a Cartesian geometry standpoint. The plot of c against 8 has c on the "y-axis" 
and 8 on the "x-axis." The terminal value of the option runs along the line c = 0 
from 8 = 0 to 8 = X , and then rises along the line c = 8 - X (i.e., c = 1 x 8 + [-X]; 
a line of slope 1 and intercept - X in the 8-c plane). 

The present value of the option is a smooth curve rising from c = 0 when 8 = 0 
(this is restr iction R1 ) up to meet an asymptote which is the line with equation 
c = 8 - e-T(T - t)X (i.e., c = 1 x 8 + [_ X e-r(T-t) ] ; aline of slope 1 and intercept 
- X e-T(T-t) in the 8-c plane). The present value of the option is thus bounded below 
by c = 0 for 8 <:: X and bounded below by c = 8 - e-r(T-t) X for 8 ;:0: X. This is 
simply a restatement of restriction R3c: c( 8 , T , X ) ;:0: max(0, 8 - X e - r(T-t) - D ), 
with D = O. The difference between the call value and t he asymptote c = 8 -
Cr(T-t ) X is given by c - 8 + e-T(T - t) X. Put-call parity, however, tells us that this 
difference is the value of the put. 

In summary, then , t he call value is asymptotic to the line c = 8 -e-r (T-t) X. The 
call value is above this asymptote by a distance equal to the value of t he same-strike 
put with the same maturity. The line c = 8 - X is below this asymptote by a distance 
equal to [X - X e-r(T-t)]; i.e. , the benefit of delaying call exercise (see section 3.6.5 

17 A curve is l~asymptot i cll to a line known as an asymptote if the curve gets closer and closer to 
the line as you move along the graph. For exam ple, Y = .;, for x > 0 is asymptotic to the line y = 0 
as x - 00 and asymptotic to the line x = 0 as y - 00 . 
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for further details) . These statements are true over the full range of S. So, when 
S = 0, for example, t hen c is above S - e-r(T-t)X = _e-r(T-t)X = -PV(X) by a 
distance equal to p = e-r(T-t)X - S = Cr(T-t)X = PV(X). Indeed, t his can be 
seen clearly in figure 3.5. 

Let me emphasize that the algebraic manipulations in this section are not only 
an academic exercise. It is important that you understand how the value of an 
option is broken down into these component parts, how the parts relate to put-call 
parity, and how these parts both take and lose value with changes in S and other 
variables. 

Op Quiz: What happens to the plots of option value in figure 3.3 if r , <7, (T - t), 
or D rises? What if they fall? 

Answer: See table 3.2 (p43) for simple directional resu lts. For example, higher 
volatility, a, raises the plot of call value. The effect is most pronounced for near-the­
money options~\Vhere higher volatility lifts the plot and convexity (Le., curvature) 
decreases. Away-from-the-money call options, however, change little with changing 
volatility. I encourage you to download the spreadsheet Greeks tool mentioned in 
section 10.3 to explore these results. 

3.6.4 American-Style Put-Call Parity 

American put-call parity is a pair of inequalities for same-strike options of the same 
maturity as shown in equations 3.5 and 3.6: 

P +S- D < C+ X 
and C + Xe - r(T- t) < P + S 

(3 .5) 

(3 .6) 

If equation 3.5 does not hold , t hen P + S - D > C + X ; so, P + S > D + C + X. 
Therefore, to generate an arbitrage profit you should short the put and the stock 
and use the more than adequate proceeds to buy the call, invest the strike, and 
invest the present value, D , of the dividends. Now, pocket the excess and hold, 
using t he dividend-sized investment to payoff t he dividends on the short stock as 
they come due. If the short put is exercised and you are assigned the stock,18 then 
deliver the stock to your broker to cover the short stock, give the strike to the put 
holder , sell off t he call and then liquidate the remaining dividend-sized investment, 
putting arbitrage-earned money in your pocket. 19 

If equation 3.6 does not hold, then C + X e-,·(T-t) > P + S. So, sell the call , 
borrow the PV of the strike, buy the put and the stock, and pocket the excess. If 
you are assigned an exercise on the call before maturity, t hen deliver t he stock and 

18 If you are short an option and someone who is long exercises, then you may be 'Iassigned the 
exercise." That is, you are forced to buy the stock at the st.r ike if it is a put , and forced to sell the 
stock at the strike if it is a calL 

19This proof assumes that your broker cannot ask you to cover your short stock, or at least if 
you are asked to cover, you can ro ll over. 
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Figure 3.3: European Call and Put Values versus Underlying-No Dividends 

Note: The figure shows Black-Scholes call and put prices prior to maturity 
(smooth curve) and at maturity (kinked curve) as a function of stock price, 
other things being equal, assuming r = 0.12, X = 40, T - t = 0.75, D = 0, 
and a = 0.50. The deep in-the-money European put has value below exercise 
value. The comparable American put is worth at least the exercise value. The 
case of t he call is explored further in figures 3.4 and 3.5. 
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Figure 3 .4: European Call Value versus Underlying- No Dividends 

Note: We can see that the call value is asymptotic to the line c = S - PV(X ) 
as S gets large. For comparison, you should download the spreadsheet Greeks 
tool (see p183 for details ), and see how this asymptotic behavior changes as 
you increase the dividend yield on the stock. 
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Note: The exercise on page 65 asks you to draw an analogous figure to this: 
and also to figure 3.4, for a put . You shou ld be able to infer all you need from 
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receive the strike, which is more than enough to pay off the borrowing. You still 
have the put, which you can also selL You pocketed the initial excess, t he excess of 
strike over borrowing, and the put proceeds-an arbitrage. If you are assigned an 
exercise at maturity, then unwind in exactly the same way; but the strike covers the 
debt exact ly with no excess, and this is still an arbitrage. 

We cannot derive an equality for American put-call parity because one-half of 
the arbitrage argument breaks down. For example, if C is very high relative to P 
in equation 3.5 (strict inequality), you cannot generate an arbitrage by shorting the 
call, borrowing the strike, borrowing the present value of the dividends, and using 
the proceeds to buy the put and the stock. The reason is that if you are assigned 
an exercise on t he short call, although you have the stock to deliver, the receipt 
of the strike combined with liquidation of the put will not necessarily cover your 
borrowing. A similar argument applies to equation 3.6. Suppose the equation holds 
with strict inequality and you short the put and stock, using the proceeds to buy 
a call plus invest t he present value of the strike. If you are assigned an exercise on 
the short put , then the receipt of the stock can be used to cover your short stock, 
but the present value of the strike together with the liquidation value of the call will 
not necessarily suffice to pay the strike-and that is even ignoring that you need to 
meet dividends on the short stock in the interim. 

This breakdown in one-half of the arbitrage argument is analogous to the trading 
breakdown discussed in chapter 10 (see p174) when a short position is removed 
from your port folio against your wishes, but differs from the breakdown in the 
arbitrage argument we saw when trying to derive the forward price for a consulnption 
commodity (see footnote 19 on page 34) 20 

3.6.5 Put-Call Parity "Regrets" Decompositions 

I want to quantify explicitly the word "regrets" used in the early exercise summary 
in table 3.5 on page 54. As mentioned in the caption for that table, I assume you 
hold onto the position that you acquire when you exercise. 

Suppose you hold an American-style call option on a stock that does not pay 
dividends during the life of t he option. Then C = c by restriction R4, we can exploit 
the European-style put-call pari ty breakdown of call value given in section 3.6.2, and 
we can both add and subtract X as shown in equation 3.7. 

[D = 0, T > 0] => C c = [8 - PV(X)] + p 

[8 - X] + [X - PV(X) ] + P (3 .7) 

I now take the decomposition in equation 3.7 and label it explicitly in equation 3.8, 

20The consumption commodity argument breaks down because high cash prices do not induce peo­
ple to sell consumption commodities held in inventory for purposes of production. The American­
style put-call parity arbitrage argument breaks down, however, because you cannot rely upon an 
argument that requires you to hold a short American-style option for any length of time. 
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not forgetting that it assumes D = 0, and r > 0: 

C = [5 - Xl + JX - X e-r(T-t)l, + p 
~ . - (3.8) 

exercise delaying call exercise insurance . 
lime value or extrinsic value (if S > X ) 

We see in equation 3.8 that the value of an American call (ignoring dividends) 
can be broken down into t hree components. The first , labelled "exercise," is what 
you get if you pull the trigger and exercise right now (and it is negative if t he 
option is out-of- the-money). To understand the second term, labelled "delaying call 
exercise," note that if you exercise at time t , rather than at maturity, you have 
an outflow of X now instead of an out flow of X at t ime T. That is, you give up 
something of value X rather than giving up something of present value X e-r(T-t) . 
T he cost of doing this is [X Cr(T-t) - X l. The benefit of not doing it, and of delaying 
call exercise, is the exact opposite, [X - X e-r(T-t)], as in equation 3.8. The final 
term, p, is the same protective put insurance term we saw in section 3.6.2. 

The second and third terms in equation 3.8 are non-negative, and usually pos­
itive. If the option is in-the-money, and you exercise early, you get only the first 
term, and you throwaway the t ime value, or extrinsic value, described in the second 
and third terms. That is, you lose the interest you would have gained on the strike 
by delaying call exercise, and you lose your downside protection (these are the two 
costs to early exercise of a call listed in table 3.5 on page 54). If t he stock subse­
quently falls , then you have regrets because your naked stock position no longer has 
downside protection. That is, t he financial value of t hose regrets is simply t he value 
of t he put t hat protects your levered stock position from bearish moves. 

In the case where there are dividends and r > 0, equation 3.8 still applies 
away from ex-dividend dates . Just prior to ex-dividend dates, however, either it is 
optimal to exercise the option, in which case C = 5 - X , or it is not, in which case 
equation 3.8 still applies. If C = 5 - X, then it must be because the dividend is 
so large that the underlying will drop so far in value that you want to capture t he 
dividend. In the empirically usual case t hat this is the last dividend to be paid on 
the stock during the life of t he option, then the next dividend is worth D . If the 
benefits of exercise (or sale of t he option for 5 - X) outweigh t he costs, it must 
be that D 2 P (otherwise, P - D > 0, and equation 3.5 would then imply that 
C 2 5 - X + (P - D ) > 5 - X ). So, the dividend to be captured is worth more t han 
the American-style put, which in t urn is worth strictly more than the European­
style put (restriction R14 from table 3.4). That is, D 2 P > p. If we still think of 
the European-style put as the quantification of any regrets we have about the stock 
subsequently falling, then the dividend D is strictly larger than these, and we have 
an incentive to exercise t he call (or to sell it for 5 - X ). 

The "regrets" argument is complicated for an American put. Using restric­
t ion R14 in table 3.4 and European put-call parity, we have equation 3.9: 

P 2 p = c + X e-r(T-t) - 5 + D (3 .9) 
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Rearranging terms and adding and subt racting X yields equation 3.10: 

P::o: (X - S) + [Xe-r(T-tl - X] +c+ D (3 ,10) 

We now label the terms explicitly in equation 3.11: 

P ::o: (X - S) + ~ + J!.- - [X - X e-r(T-tl] 
~ , , 
e· upside dividends .. 

XCTClse interest on strike::: 0 

(3 ,11) 

Note t hat I reversed the second term [X e-r(T-tl - X] so t hat it would represent t he 
interest t hat could be earned on the strike over the life of the opt ion. Equat ion 3,11 
differs from the analogous equation 3.7 fo r calls because the latter is an equality. 

If exercise of an American-style put is optimal, you have P = X - S (in which 
case, you are indifferent between exercise and sale). T his means that c + D - [X -
X e-r(T- tl] must be ze'ro or sufficiently negative to drag t he put price down below the 
exercise value. Indeed, we can see fro m equation 3,11 , t hat c+ D -[X _Xe-,'(T-tl] :5 
0, else P > X - S , and early exercise wou ld not be optimal. 

Thus, early exercise implies c+ D :5 [X - X e-r (1' - t l ]21 A sufficient condit ion for 
c to be small is that the put be deep in- the-money. If dividends D are also small, 
then t he sum of c and D may be offset by t he interest able to be earned on t he 
strike-especially if expiration is distant, which makes [X - X e-r(T- tl] large. T hese 
are exactly the costs and benefits discussed for early exercise of a put in table 3.5 
on page 54; but what about the "regrets" mentioned in this table? 

Table 3.5 discusses exercise decisions for someone holding the American put plus 
t he stock: a protective put position, Vie may rearrange equation 3.11 to read 

~ ::0: Z-+ ~ + J!.- - JX - x e-r(T- tll, 
protect ive put s trike upside dividends .. 

interest on stri ke ~ 0 

(3 .12) 

If t he dividends are small, and the put is deep in-the-money (so c is small), and you 
are far from expiration (so [X _ Xe - r(T-tl] is large) , then you may have an incentive 
to give up both put and stock- via exercise-but you may have subsequent regrets 
if t he stock price rises, T his is because you have abandoned your market-linked 
position with upside potent ial (represented by stock on t he LHS of equation 3.12 or 
t he call on the RHS of equation 3,12) in favor of a fixed income posit ion represented 
by receipt of the strike X and interest on t he strike [X - xcc(T- t)] . You have 
also abandoned the dividends, "Regrets" in this case are represented by t he upside 
potential embodied within the call option t hat forms part of t he lower bound on t he 
RHS of equation 3.12. 

As mentioned previously, if you hold a deep in-the-money American put , life 
does not get much better t han t his for a pnt holder. T here is not much upside left 
for you, and there is a fair chance of you being worse 01I if you wait . Unlike the 
American call, the incentive to exercise early (or equivalently, to sell ) can come at 

21 Note the direct ion of the implication here. Optimal early exercise of the American put implies 
c + D::; [X - Xe-r(T- t)] . This inequali ty is thus necessary, but not sufficient. 
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any t ime during the life of the American put option. 

Exercise: Draw figures analogous to figures 3.4 and 3.5 for the case of t he Euro­
pean put . 

3.6.6 Put-Call Parity Intrinsic Value Decomposition 

Equation 3.8 can be rewritten to account for the difference between exercise value 
and intrinsic value of a call when 5 < X. I have replaced C by c with t he under­
standing that if D = ° and r > 0, then equations 3.13 and 3.14 also hold for t he 
American-style call. 

c = [5 - X ] + JX - X e-r(T-t)l, + p 

'-.--"' -exercise delaying call exe r cise in surance 

time value or e xtrinsic value (if 5 > X ) 

!nax(0,5 - X ) - max(O, X - 5), + JX - X e-r(T-t)l, + 
equal to s-x delaying call exerc ise 

p -insurance 

time value o r extrinsic value (if 5 > X ) 

!nax(0, 5 - X ), + JX - X e-r(T -t)l, + Jp - max(O, X - 5 ll, 

intrinsic value of call delaying c!Ioll exercise time value of put 

time value o r extrinsic value of call 

(3.13) 

It follows immediately from equation 3.13 that the t ime value of a call may be 
written in terms of the time value of a put plus the quantity [X - X e-r(T-t)] that 
does not change with changing 5 , as shown in equation 3.14. Thus , t he portion of 
t he option price that varies with volat ili ty and stock price, holding all else constant, 
is the same for both a put and a call. This can, of course, be deduced directly from 
put-call parity, equation 3.3 (p54). 

:' - max(O, 5 - X ). = JX - X e- r(T-t) ], + Jp - max(O, X - 5)] ., (3.14) 

time value of call delaying call exe rcise time value of put 

time val ue or extrins ic value of caU 

It is worth noting in equations 3.13 and 3.14 that although the time value of the call 
is non-negative (remember that D = 0), the t ime value of the put can be negative for 
a low enough stock price. This can be seen in t he lower panel of figure 3.3 on page 59 
for 5 below roughly $30, The non-negativity of t he time value of the call (remember 
D = 0) implies that p - max(O, X - 5 ) 2: X e-"(T- t) - X. Indeed , when 5 = 0, the 
t ime value of the call is zero, and the two terms on the RHS of equation 3.14 are of 
t he same magnitude but opposite sign: p - max(O, X - 5 ) = X e-,,(T -t) - X < 0. 
In this case, t he time value of t he put is t he negative of the time value of a deep 
in-the-money call ; that is, the negative of the interest that is earned by waiting to 
exercise a call. For t he put, this is the interest t hat is lost by not being able to 
exercise the put, The time value of a similarly specified but American-style put 
would be zero in the same circumstance (restriction Rll in table 3.4 on page 52) . 
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Chapter 4 

Risk-Neutral Option Pricing 

Opt ion pricing includes two main approaches: analytical pricing and numerical pric­
ing. In each case, you start with a model (Le., a simplified mathematical description) 
of the behavior of asset prices . Analytical pricing uses mathematics (often in great 
quantity) to derive an exact opt ion pricing formula based on the model of asset 
prices (e.g., the Black-Scholes formula). In cases where no exact formula can be 
derived , approximate option pricing formulae may exist (e.g., for American-style 
put options and for arithmetic average rate Asian options) . Analytical pricing is 
what "rocket scientists" do. Exact analyt ical solutions are quite rare. For example, 
I present some closed-form exact analytical results in sections 9.2.2- 9.2.4 that I have 
not seen elsewhere. 

Numerical pricing differs from analytical pricing. It uses a computer and many 
repetitions of a simple procedure to arrive at an estimated opt ion price. No exact 
pricing formula is used. Lit tle math is needed for the simple techniques discussed 
in this book, but complicated numerical methods are widely used by instit ut ional 
t raders. We explore numerical techniques to the extent t hat they improve under­
standing of Black-Scholes option pricing in chapters 5 and 6 and in section 7.5. 

Risk-neutral option pricing theory is the engine that drives almost all analytical 
and numerical option pricing theory; this chapter discusses the essentials. Note, 
however, that several different approaches to option pricing exist , and Black and 
Scholes (1973) contains two derivations, neither of which uses risk-neutral pricing 
(see section 4.4 .1). 

4.1 The Simple Answer: Traditional Methods Fail 

Traditional finance values both real and financial assets by forecasting future cash 
flows and discount ing these at a rate of return that reflects relevant risk. This 
discounted cash flow (DCF) analysis includes the Gordon-Shapiro dividend discount 
model for stocks (Gordon and Shapiro [1956]) ; bond pricing; and capital budgeting 
NPV analysis for new projects. The DCF discount rates are often calculated using 
the CAPI"!. 

Do the traditional methods work for options? That is, can we forecast the 
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expected payoff to an option and then discount this at a CAPM-generated rate? 
The silnple answer is "no"; the complex answer is disclIssed in section 4.5. 

vVhen you buy a call option on a stock, you take a posit ion in the stock , but 
you pay less t han t he stock price. This leverage makes t he option riskier t han t he 
stock: the option has a higher standard deviation of returns than the stock, and the 
option's {3 is of larger magnitude] than the stock 's {3. 

The degree of leverage in the option depends upon the level of the stock price 
relative to the strike price. For example, a call option that is deep in-the-money is 
stock- like (stock T $1 '* call T $1). A call that is deep out-of-the-money is much 
riskier (called a "lottery ticket" or a "cab" by some traders2 ). The relationships 
between beta for a stock and beta for call options on t hat stock are shown in 
equation 4.l.3 

(4.1) 

The degree of leverage of an opt ion (and therefore its {3) changes every t ime the 
stock price changes. It even changes over time if the stock price is constant because 
of time decay. A continuously and unpredictably changing {3 means that the required 
rate of return on t he option is also changing continuously and unpredictably. T he 
CAPM-required rate of return is valid for a n horizon of no more than an instant. 
The simple CAP M-required return on the option over the many t ime steps from t ime 
t to time T is not known. The traditional method fails; we cannot use standard DCF 
to value the option because we do not know the discount rate (it is a path-dependent 
randOlTI variable). 

4.2 Replication 

'ATe want to value an option. Let us assume that you can set up a trading strategy 
that exactly replicates the payoffs to a European stock option 4 Suppose that t his 
replicating strategy requires that you manage a portfolio of the underlying stock 
and a riskless bond (long the bond is riskless lending, short the bond is riskless 
borrowing). 

t I say '~magnitude /' because a calls's {:J is negative if the stock's beta is negative. 
'1 (ICab" is short for cabinet trade. This is one where a deep out-of-the-money option is liquidated 

at the lowest poss ible price. It might be o ne tick , a half-tick , or even zero. (A floor trader jokingly 
told me that it is call ed a cab because if you are reduced to buying these options, then you may 
soon be driving a cab at night to augment your income.) 

3The explicit relationship is f3c = Sfl.:" for a European caU, where b.. is the delta o f the call 
option. The scaling factor s;- is called the "elasticity" of the call option. 

4The technical requirement for this to be possible is described nicely in Jarrow and Rudd (1983). 
Essentially, it requires that for very small time horizons the value of the derivative and the value 
of the underlying be perfectly linearly correlated and 'l'-costs are zero . A diffus ion or a pure-jump 
process satisfies this, but if the underlying s tock price follows a jump-diffusion process (regardless of 
whether the jump size is determinist ic, stochastic, diversifiable, or non-diversifiable), then a repli­
cating portfolio cannot be formed, and the no-arb itrage pricing method fails (Cox and Rubinste in 
[1985, chapter 7]; IVlerton [1976]) . In the jump-diffus ion case where the size of the jump is random 
but diversifiable (i.e., non-systemat ic), then an equilibrium option pricing model can be derived 
and the Black-Scholes hedge works "on average." See section 9.4. 1 starting on page 166. 
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Assume also that t his replicating strategy is "self-financing" That is, whenever 
the strategy directs you to sell some stock and buy some bonds , then the proceeds 
from the sale of stock are exactly what is needed to buy bonds. Conversely, if the 
strategy directs you to sell bonds and buy some stock, the bond sale proceeds are 
exactly what is needed to buy the stock. Thus, the strategy finances itself, with no 
additional funds required from you after initiation. A strategy that directs you to 
change the proportions of holdings in the stock and bond through time is called a 
"dYllall1ic strategy.\) 

A dynamic, self- financing , replicating strategy has an init ial setup cost, but no 
maintenance costs . To find the init ial setup cost, you need to know how many shares 
of stock the strategy directs you to be long or short init ially, what dollar borrowing 
or lending is required initially, and what the stock price is. 

If the strategy is known to all market par ticipants, and if the stock price is visible 
to all , t hen everyone knows and agrees upon the init ial setup cost of t he replicat ing 
strategy. No-arbitrage implies t hat the setup cost of a dynamic, self-financing, 
replicating portfolio must equal the initial cost of the option. 

If everyone knows and agrees upon the ini t ial setup cost of the replicating strat­
egy, then- by no-arbi trage-no two people can disagree on the cost of an option. 
Even if one person is bullish, and the other is bearish, they agree on the cost of 
the option because they agree on t he start-up cost of t he replicating portfolio and 
that arbitrage opportunities cannot exist. The value of the option is therefore not 
a function of market view. 

Likewise, even if one person is risk seeking, and one person is risk averse, they 
agree on the cost of the option because they agree on the start-up cost of the 
replicating portfolio and that arbitrage opportunities cannot exist . The value of the 
option is therefore not a function of risk preferences. 

If the value of the option is not a function of risk preferences, then we may 
assume whatever we want about risk preferences of people in the economy. Let 
us assume that everyone in the economy is risk-neutral. This is a wildly inaccurate 
description of market participants , but option values are immune to the assumption, 
and it simplifies our valuation problem tremendously. 

In a risk-neutral world, market participants are indifferent towards risk and care 
only about expected return. In equilibrium, the expected return on every traded 
asset in such a world (including options) must be the riskless rate T. If any asset 
offers more (less), people buy (sell) until the price adjusts and the expected return 
equals T. 

If everyone requires the same rate of return on every asset all the time in this 
hypothetical economy, then we can use DCF after all to value options- with dis­
counting at r·. However, this is not standard DCF. We must be internally consistent. 
If we use risk-neutral pricing, then we must model the price process of any asset 
in the hypothetical risk-neutral world as having drift rate T . It is this process that 
determines the value of the derivative in the risk-neutral world. 

When modelling price processes in the risk-neutral world , we take the initial 
prices of assets to be the same as those in the real world, and we adjust the drift 
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Table 4 l' DCF' Traditional versus Risk-Neutral 
Real World DCF (Traditional) Risk-Neutral World DCF (Options) 

I. Forecast Expected CF in Real World. l. Forecast Expected CF in R-N World . 
2. 
3. 

Find f3 of Returns to Asset. 
Discount CF at Risk-Adjusted Rate (v ia CA PM). 2. Discount CF at r. 

Note: A comparison of the basic techniques for discounted cash flow (DCF) 
analysis using both traditional and risk-neutral approaches. 

rates of the prices to equal r . What we are doing is redistributing the real-world 
probabilities we attach to possible time-T stock price outcomes (but not altering 
t he outcomes) so that the mean of the final stock price distribution yields drift rate 
,. in the risk-neutral world. That is, equation 4.2 holds, and the expected price of 
the asset in the risk-neut ral world is the forward price: 

E*[S(T)IS(t )] = S(t) er(T-t), (4 .2) 

where E* denotes expectation in a risk-neutral world. These implicit "risk-neutral 
probabilities" appear explicitly in both (numerical) binomial option pricing and 
(analytical) Black-Scholes option pricing, both of which can rely upon risk-neutral 
pricing methods. 

Thus, our alternative to the traditional real-world expected cash flow coupled 
with a risk-adjusted discount rate (not feasible for options), is a risk-neutral world 
expected cash flow (assuming drift 'r) coupled with a riskless discount rate. T his is 
summarized in table 4.1. 

4.3 The Formula 

Let f be the average continuously compounded riskless interest rate from time t to 
time T. Let V denote the value of the derivative, t hen 

V(t ) = E7[e- f (T-t)V(T)], 

where E* denotes expectation in a risk-neutral world, and E t denotes expectation 
taken conditional upon time t information. The quantity V (T) is the value at time 
T of the derivative. For example, if T is t he expiration date of a European put, then 
V(T) = max[O, X ~ S(T)] . A call would have V (T) = max[O, S(T) ~ X]. 

If the riskless rate is known and constant, then the option value is given by 
equation 4.3: 

( 4.3) 

If the randomness driving V(T) can be described as a function of t he cont inuous 
pdf of S(T), then risk-neutral valuation may be attempted using a great deal of 
integral calculus. In this case, the "E" becomes an integral with respect to the 
randomness driving S(T). Solut ions may exist (e.g., Black-Scholes as derived in 
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section 8.2), but need not. Fortunately, risk-neutral valuation lends itself naturally 
to numerical procedures. 

For a discussion of where risk-neutral pricing fails, see section 9.4.1, and the 
summary in table 9.3 on page 170. For more advanced risk-neutral pricing (including 
luartingale Inethods), see section 4.4, following. 

4.4 Risk-Neutral Pricing Review 

This review emphasizes the bare bones of risk-neutral pricing and sets the stage for 
presenting three option pricing luethods. 

• The technical requirement for dynamic replication to be possible is described in 
footnote 4 (p68) . 

• If dynamic replication is possible, then by no-arbitrage the value of the derivat ive 
equals the start-up cost of a replicating portfolio. 

• If t he replication recipe is known (perhaps via an equilibrium CAPM pricmg 
approach as in the original Black and Scholes [1973J paper), then no two 
market participants can disagree on t he correct arbitrage-free price of the 
derivative. Thus, regardless of what we assume about t he preferences of market 
participants, the pricing of the derivative is the same. 

• vVe ease our calculations substantially by proceeding as if t he agents in t he econ­
omy are risk-neutral. That is , the risk is there, and they see the risk, but they 
ignore it completely. (I recall John Cox emphasizing in class at MIT that we 
are not assuming that anyone is really risk-neutral! It is simply that option 
prices are immune to assumptions about risk preferences, and this proves to 
be a very helpful assumption.) 

• In a risk-neutral economy, people care only about expected return; so, in equi­
librium, all traded asset s must offer the same expected return (else investors 
would still be shorting low-yield securities to invest in high-yield ones, and 
we would not yet be in equilibrium). The existence of a government-backed, 
fixed-rate, riskless asset means that the riskless rate is the equilibrium-required 
return on all securities in this economy. 

• If risk is not priced by market participants, then traded security prices (including 
derivatives) are simply discounted expected payoffs where discounting uses the 
riskless rate, and all traded security prices have riskless drift (less any dividend 
yield , of course, so that total expected yield is the riskless rate) . Although 
securit ies are expected to return a riskless yield, they are still risky, and the 
realized yield is uncertain. If risk were priced, then discount rates would need 
to be risk adjusted , perhaps via the CAPM (Arnold and Crack [2003], Arnold, 
Crack, and Schwartz [2008]) . 
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• Let B (t) == e,·t denote the price of a riskless money market instrument (i. e., you 
invest $1 at time 0, and it grows at riskless rate r). Then B (t) drifts upward 
at the riskless rate with no uncertainty. The money market account serves 
as a benchmark for performance in both the real and risk-neutral worlds. It 
seems natural to express other asset prices in terms of units of this asset.5 So, 
instead of looking at stock price S(t), we look at ~~:l (i.e., stock price using 
the bond as numeraire). 

• With B (t) drifting upward at the riskless rate, and S(t) expected to drift upward 

at the same rate in equilibrium in t he risk-neutral world, it follows that ~~:\ 
is expected to have no drift. 6 Another way to say this is that for any /';. t > 0, 
equation 4.4 holds: 

E* [S(t + /';. t) I S(t ) 1 = S(t) 
B(t + /';. t) B (t) B (t)' 

where E* denotes expectation in t he risk-neutral world. 7 

• Let st(t) == ~m, then equation 4.4 says that for any /';. t > 0, 

E* [SI(t + /';.t ) Is t(t) 1 = s t(t). 

(4.4) 

That is, the best guess of where st will be in the future (in the risk-neutral 
world) is where it is today. A random variable with this property is called 
a "lnartingale." This is silnilar to a simple version of the efficient Inarkets 
hypothesis (EMH) with no drift or predictability8 

• When we assume that traded securities have required returns equal to t he riskless 
rate in the risk-neutral world , we are really just redistributing the probabili­
ties we associate with possible final security price outcomes.9 However, some 
things stay the same. For example, if a stock price outcome occurs with prob­
ability zero in the real world, then it still occurs with probabi li ty zero in the 
risk-neutral world (thus, the range of possible outcomes does not change, only 

5This is referred to as a change of "numeraire." A l1umeraire is a base unit of measurement. 
T his is similar to changing units of measurement from USD to GBP, say, except that here we choose 
a USD-denominated money market account instead of GBP. Section 8.3 .4 descri bes what happens 
if you use the stock as numeraire. Hull (2000, sect ion 19.5) discusses other choices of numeraire. 

6The same is true if you replace S(t) with V(t) for any traded security with price V{t). 
7Look ahead to equation 8.26 in sect ion 8.3.3 ror contrasting results using the stock as numeraire. 
8The Et-.HI states, essentially, that news should be rapidly and unbiasedly reflected in stock 

market prices. As such, traders should not be able to consistently beat the market based on 
public information. This does not preclude predictability, just consistent abnormal profits (Lo 
and MacKinlay [1988]). 1 do not , or course, subscribe to the EM!-!. j'vlost academic studies of price 
reaction to some event look at many stocks and conclude that the average price react ion is accurate. 
That may be, but the average includes stocks that underreact and oveneact significantly, and there 
is money to be made by identifying them. 

9Note the word "traded" here. A ru tures price, for example, is not the price or a traded asset, 
so its drift need not be 1'. 

©2009 Timothy f alcon Crack 72 All Rights Reserved \Vorldwide 



4.4. RISK-NEUTRAL PRICING REVIEW 

their probability of occurrence; and the transformation of probabilities moves 
the expected return on IBM, say, from 12% per annum to whatever the T-bill 
yield happens to be). Similarly, if a stock price outcome occurs with prob­
ability one in the real world, then it still occurs with probability one in the 
risk-neutral world . 

• In probability theory, the mathematical function that allocates probability weight 
to outcomes in the sample space is called a "measure." Two probability mea­
sures that reassign probabilities to outcomes without changing the range of 
possible outcomes (as above) are called "equivalent measures ."l0 

• Thus, in the risk-neutral world , we reallocate probabilities iu an equivalent manner 
(i.e. , same range of possible outcomes), and the price of any traded asset 
when "de-trended" by the money market account follows a martingale. The 
probability measure (i.e., allocation of probabilities to outcomes) in the risk­
neutral world is thus called an "equivalent martingale measure." You see this 
expression in the more advanced derivatives literature. Section 8.3.4 describes 
a different equivalent Inartingale measure derived using a different l1ulneraire . 

I now present summaries of three derivative pricing methods. The first is Mer­
ton 's hedging argllment (section 4.4. 1). IVlerton's method predates risk-neutral op­
tion pricing, but belongs here for clarity because it is often incorrectly labelled as a 
risk-neutral technique. The second and third methods follow from our risk-neutral 
pricing discussion. They are the original Cox and Ross technique (section 4.4.2) and 
the more advanced Harrison and Kreps argument (section 4.4.3). 

4.4.1 First Method (Merton [1973]) 

Merton (1973) makes no risk-neutral assumptions or arguments whatsoever. His 
hedging argument is not a risk-neutral technique; I present it here to contrast it 
with the risk-neutral techniques following. Merton's hedging argument was first 
published with Merton's consent by Black and Scholes (1973) and is explored more 
fully in Merton (1973). Black and Scholes originally derived the option pricing for­
mula using an instantaneous CAPM argument (also presented in their 1973 paper), 
but Merton's approach is now more widely knownll Merton's hedging argument 
predates the Cox and Ross discovery of risk-neutral techniques (section 4.4.2) by 
three years and is not to be confused with the Harrison and Kreps approach that 
also uses partial differential equations (POEs) (section 4.4.3). 

IOThe re lationship between the two measures is captured by the Radon-Nikodym derivative. See 
Baxter and Rennie (1996, p65) for s imple intuition , and Musiela and Rutkowski (1992, pp1l4 , 121) 
for the advanced mathematics. 

11 Robert !vlerton and Myron Scholes were awarded the 1997 Nobel Prize in economics for the ir 
option pricing work. Fischer Black passed away in 1995. Had he lived, he would have shared in the 
prize of one mill ion US dollars. I spoke with Fischer Black on several different occasions between 
1991 and 1994 (at MIT, at Harvard, and at Goldman , Sachs). I did not know him- I was just one 
of the many people he spoke with one-to-one. 
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Note on PDEs: PDEs can be daunting to those without higher mathematics 
training. In section 7.6 , I look at PDEs as economic entities with s imple interpre­
tations that relate to hedged options positions. If you are not interested in hedging 
options posit ions, then you can skip any sections that explore PDEs without loss 
of continuity. 

Assume the stock price S (t ) fully reflects all relevant prior and current informa­
tion, and that the market reacts quickly to the arrival of new information. Consider 
a small time increment dt during which S changes to S + dS. A simple model for 
describing the return dff is one that breaks t he return into a predictable compo­
nent that you would expect in the absence of new information, and a random, or 
"stochastic," component driven by news. 

The predictable component is I"dt , where I" is the average annual rate of growth 
of the stock price, and dt is the time increment measured as a portion of a year . 
The random component is adw, where a is a measure of annual standard deviation 
of returns, and I1dw" is a rand0111 number drawn frGIn a nannal distribution with 
mean zero and variance dt. Combining t hese we get equation 4.5: 

dS S = I"dt + adw, (4.5) 

or, more correctly, equation 4.6: 

dS = I"Sdt + aSdw. (4.6) 

Equation 4.5 is a model of the arrival of information. It describes a "random walk" 
in t he stock price known as a geometric Brownian mot ion (GBM). We call "dw" 
a "Wiener process" after Norbert Wiener from MIT (see Harrison [1985J for more 
details) . 

Assume also that there is a riskless securi ty with price B at time t. \Ve may 
describe its return as dfJ = rdt because it contains no random component , or, more 
correctly, dB = r Bdt. 

Now introduce a simple option with value V , where V is assumed to be a function 
of the current value of the stock and t ime: V = V (S, t ). The option value may also 
be a function of a cont ractually stated exercise price X, an expiry time T , volatili ty 
a , and r . The option might be American style or European style; it might be a put 
or a call; or it might be much more complicated. 

If you have a reasonably well-behaved function V (S , t ), then Ito's Lemma asserts 
(via Taylor 's Theorem) t hat equation 4.7 holds.12 

av av 1 a2v 2 
dV = as dS + fit dt + 2 aS 2 (dS) (4 .7) 

With dS = I"Sdt + aSdw, and (<!..wj2 = dt , and all higher-order terms zero, equa­
tion 4.7 yields equation 4.8: 

av (av av 1 2 2a
2
V) 

dV = a s as dw + I"S as + fit + 2a S aS 2 dt (4 .8) 

12For more on Ito's Lemma: see Hull (2000) or tvlerton (1992). 
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Now, build a portfolio where you buy one option and sell 6. units of the stock. 
If 6. > 0, it is a short stock posit ion; if 6. < 0 it is a long stock position. Let I1 
denote the value of this portfolio, then I1 = V - S6. , and over a t ime interval dt the 
change in the value of this portfolio is given by equation 4.9: 

dI1 = dV - dS . 6. , (4.9) 

where 6. is held fixed over the time interval dt. Now plug equations 4.6 and 4.8 into 
equation 4.9 and collect terms: 

If we eliminate the stochastic component by choosing a portfolio with 6. = j%, then 
the changes in portfolio val ue must be deterministic: 

(
OV 1 2 202V ) 

dI1 = at + 2" S OS2 dt (4. 10) 

With no random component, the portfolio must offer the riskless rate of return , or 
t here would be arbitrage opportunities available. Thus, it follows that dI1 = rI1dt . 

Now plug I1 = V - 6.S plus the choice of 6. into dI1 = ,.I1dt and equate with dI1 
in equation 4.10. This yields the celebrated Black-Scholes PDE: 

(4. 11 ) 

Any derivative security whose price depends only upon the current value of S 
and on t, and which is paid for up front , must satisfy t he Black-Scholes equation or 
some variation of it that incorporates dividends or time-dependent parameters. 

Exercise: Use Merton's hedge argument to prove that the PDE for a derivative 
on a stock following an arithmetic Brownian motion (ABM): 

is given by 
8V 1 282V 8V 
at + 2" A 8S2 + "S 8S - "V = O. 

Hint: The derivation appears in section 9.2.1 with discussion. 

4.4.2 Second Method (Cox and Ross [1976]) 

Let V be the derivative price we seek, t hen the martingale property applied to 
de-trended V (i.e. , vt = VI B = Ve-rt ) implies 

:.£)2009 Timothy Falcon Crack 

vt (t) 

=;. V(t)e - rt 

=;. V (t) 

E* [vt (T) Iv t (t) ] 

E* [V (T )e-rTI V(t )] 

e-r(T-t) E* [V(T ) lV(t)]. 
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That is, t he derivative value today is the discounted expected payoff, where expec­
tations are taken in a world in which investors behave as if they are risk neutral, 
and discounting is done at t he riskless rate. 

I like t he ~isk-neutral world. discounted expected payoff approach because it 
does not require familiarity with PDEs, and it correlates directly with the IVlonte 
Carlo methods described in chapter 5. Indeed, I derive t he Black-Scholes formula 
in section 8.2 using precisely this approach. 

4.4.3 Third Method (Harrison and Kreps [1979]) 

Let V be the derivative price we seek, then the martingale property applied to de­
t rended V (i.e. , vt = VI B = V e-rt ) implies t hat dVt has no time trend; t hat is, 
no drift. We can apply Ito's Lemma to vt to calculate 

dvt = [time trendjdt + I)difFusion coefficientsjidwi, 

where d Wi is the it" Brownian motion driving the underlyings. If V is a funct ion of 
S it) and t only, and dS(t ) = ,.Sdt + crSdw then 

dvt (S (t), t) 

Ito 

where we used (dw . dw) = dt , and (dt . dw) = 0 (Merton [1992, pp122- 123]) . 
However, V t = V e-rt is a martingale in t he risk-neutral world by construction, so 
it must be that there is no drift term. Thus, we deduce that 

If we know the boundary conditions, we may now solve this (Black-Scholes) PDE to 
find t he option value V iSit ), t ) .13 A different initial process for dS yields a different 
PD E, as per t he exercise below. 

13There are many solutions to the POE. For example , ir V solves th is POE, then so to does 2 x V , 
and so too does -v. \Ve seek a particular solut ion to the POE that satis fies the initial conditions 
and boundary conditions for the problem at hand. These conditions will be simi lar to the econom ic 
restrictions appearing in sections 3.4 and 3.5. See chapter 7 and section 9.2.1. 

@2OQ9 Timothy Falcon Crack 76 All Rights Reserved \Vorldwide 



45. THE COMPLEX ANSWER: N ON-TRADITIONAL METHODS 

Exe rcise: Use Ito's Lemma (equation 4.7) to prove that for a stock bleeding a 
continuous dividend at rate p, 

dS = (IJ. - p)Sdt + " Sdw, 

t he Black-Scholes PDE is given by 

av 1 z za'v av at + "2" S as' + (1· - p)S as - rV = O. 

Hint : Be sure to account for t he dividend bleed using dII = dV - dS· 6. - pSdt· 6. 
in place of equation 4.9 in the lvlerton hedging argument (e.g., see vVilmott [1998, 
p77]). 

4.5 The Complex Answer: Non-Traditional Methods 

In section 4.1, I asked " ... can we fo recast the expected payoff to an opt ion and 
then discount this at a CAP M-generated rate?" The simple answer to the question 
was "no," because of t he t ime-varying and path-dependent discount rate. T his led 
us to risk-neutral pricing with riskless discount rates. The complex answer to t he 
question) however, is "yes," and there are two approaches. 

T he first approach is to find a single required rate of return on an option t hat 
can be used to discount projected payoffs in the real world. Cox and Rubinstein 
(1985, pp323-324) give enough information to derive a closed-form formula for t his 
real-world expected return on a European-style opt ion.14 You need, however, both 
t he current option value and the real-world return on t he underlying to implement 
t he formula. 

T he second approach (the one originally adopted by Black and ScllOles) is to 
accept t hat t he discount rate is time-varying and path-dependent . In t his case, the 
valuation must be performed in time steps: eit her discrete steps in , for example, a 
binomial framework (as in Arnold and Crack [2003J and Arnold , Crack, and Schwartz 
[2008]), or in continuous t ime using a special instantaneous version of the CAPM 
that holds only over time steps each of an instant (as in Black and Scholes [1973]) . 
Arnold and Crack (2003) demonstrate t hat DCF using CAP M-generated discount 
rates for each different possible real-world opt ion payoff leads to exactly t he same 
valuation as using risk-neutral discounting of real-world payoffs . The tree of possible 
opt ion payoffs is exactly the same in both cases. What changes between the real 
and risk-neutral worlds is t he discount rates and t he probabilities of seeing states of 
t he world that produce t he payoffs. 

Ironically, to execute the second approach, a risk-neutral option valuation has to 
be performed first to find the intermediate path-dependent discount rates- because 
t he discount rates depend upon the degree of leverage embedded in the option, and 

14 1 thank Mark Rubinstein for po in ting out the Cox and Rubinstein citation, and for telli ng me 
about a related but different concept: ~IJ ark Garman's "fugit" of an opt ion (Garman [1989]) . The 
fugit is the risk-neutral expected t ime until exercise. 
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that depends upon the option value, the stock price, the option delta, and the option 
beta at that point in time (see footnote 3 on p68 for a related formula and also the 
discussion in Arnold and Crack [2003]) . 
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Chapter 5 

Numerical Option Pricing: 
Monte Carlo 

5.1 Do I Need to Know This? 

This bo.o.k is abo.ut Black-Scho.les pricing, and abo.ut using it in the real wo.rld. So., 
yo.u may ask why yo.u sho.uld be read ing a chapter abo.ut Mo.nte Carlo. metho.ds. 
Yo.u can, in fact , skip all the numerical metho.ds parts (this chapter, chapter 6, 
and sectio.n 7.5) witho.ut lo.ss o.f co.nt inuity. I do. believe, ho.wever, that reading this 
chapter gives yo.u a much better feel fo.r t he data-generating pro.cess that Black­
Scho.les pricing assumes, fo.r what it means to. take an expected value in bo.t h the 
real and risk-neutral wo.rlds, and fo.r why American o.ptio.n pricing is co.mplex. 

5.2 Monte Carlo Methods 

Mo.nte Carlo., in the Principality o.f Mo.naco., is famo.us fo.r its casino.s. Casino.s are 
famo.us fo.r games o.f chance in which different po.ssible randDm o.utco.mes lead to. 
different po.ssible payo.ffs. Mo.nte Carlo. metho.ds are so. named because they use 
co.mputer-simulatio.ns o.f independent realizatio.ns o.f rando.m variables. In o.ptio.n 
pricing, the simulatio.ns are o.f po.ssible price paths o.f the underlying asset (in a 
hypo.thetical risk-neutral wo.rld). Each simulated price path generates an o.ptio.n 
payo.ff. The average Df these payo.ffs estimates the expected payo.ff. This average is 
then disco.unted (at riskless rate ,.) to. estimate o.ptio.n value. 

lVJo.nte Carlo. metho.ds are go.o.d fo. r Euro.pean-style o.ptio.ns, but they do. no.t wo.rk 
fo.r American-style o.ptio.ns (Bo.yle [1977]). I Mo.nte Carlo. metho.ds are suited to. path­
dependent o.ptio.n valuatio.n because each simulated path determines uniquely the 
payo.ff2 Lattice metho.ds do. no.t have this simple property because multiple paths 

1 Lattice methods (see chapter 6) give the present value (PV) of the option at each node, allowing 
comparison of PV and intrinsic value so you know whether to exercise. A Monte Carlo gives you the 
PV of the option only at the initial node and thus does not allow such intermediate comparisons . 

2 A path-dependent option is one for which the payoff depends not only upon the final underlying 
asset price, but also upon the path followed by the underlying asset price during the life of the option. 
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lead to a single node- see also footnote 2 on page 89. 
We create t he data for a Monte Carlo simulation. It follows that these data 

are so well behaved that the strongest statistical laws apply: Khinchine's Strong 
Law of Large Numbers and the Lindeberg-Levy Central Limit Theorem. These are 
the statistical engines that drive IVl0nte Carlo pricing. Risk-neut ral pricing is the 
financial engine. 

Khinchine's Strong Law of Large Numbers (SLLN) says that if the sample 
Xl , X 2 , · ·· , X n , ··. are IID3 with E(Xi ) = p (a finite number) for each i, then, 
with probability one 

_ 1 n 
X n == - L X i ---+ J-l, as n ---+ 00. 

11, i =l 

That is, in plain English, the sample mean approaches the true mean as the sample 
size increases . 

The Lindeberg-Levy Cent ral Limit Theorem (CLT) says t hat if the sample 
Xl, X2, . . . , X n , · ·. are IID with E(Xi) = p , and if var(Xi ) = ,,2 (a finite num­
ber) for each i , then 

vr;:(Xn - p) --> Z ~ N(O, 1) , as n --> 00. 

" 
That is, in plain English, t he sample mean is approximately normally distributed 

with dist ribution N (p , :') for large n 4 

5.3 M onte Carlo in Science 

In the physical sciences, Monte Carlo simulation is used to estimate t he expected 
value (i.e. , the mean) of a random variable. Many random variables with the same 
probability density are simulated , and their average is t he estimate of t he mean of 
the random variable (based on the SLLN). The simulation also produces a measure 
of how close the average is to the true mean (based on the CLT) . The precision 
increases as the number of simulation trials increases . 

Monte Carlo in science is useful for solving analytically intractable integral cal­
culus problems. For example, suppose that W ~ N(O, l ) (i.e., W is distributed 
standard normal) . Suppose that g(.) is the "weird funct ion ," given in equation 5.1 
and illustrated in figure 5.1: 

1 _ e xp(w ) 

g(W ) = [r(lwl, 7rlJ" + 10 max(w, 0) - e I H in ( wI) + 3, (5.1) 

where I'(. , .) is the incomplete gamma function,5 e is Euler's number, 7r = 3.14159 ... , 
and exp(x) == eX . 

3 "TID)) = independent and identically dist ributed. That is, each observation in the sequence is 
stat istically independent of each other observat.ion, a nd each is drawn from t he same statistical 
distr ibution. 

4ft. follows that as n -+ 00, then <7: -+ 0, and t hus Xn -+ J.L (cons ist.ent with t he SLLN). 
5The incomplete gamma funct ion is defined as f (x, v) ::= r/v) J :I:o s", - Ie- :lds, for x > 0 

(Abramowitz and Stegun [1972, p260J) . 
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How can I find the solut ion to the integral I-'g == E [g(W )] given in equation 5.2? 

I-'g E[g(W)] 

1+00 1 I 2 

g(w) l'Le-;;W dw 
-00 v21f 1:00 

{ [r (lwl, 1flJ' + 110 max(w, 0) - e 

Now, suppose you are talented enough to spend 10 hours completing the two-dozen 
pages of calculus needed to solve equation 5.2 analytically. Did you make any errors? 
Who is going to check your proof for you? How much extra time do you need if I 
change one term, say sin(lwl) to tan(lwl)? The beauty of Monte Carlo methods is 
that they circumvent the problems inherent in each of these questions. Indeed, if 
you can complete the analytical proof, then a Monte Carlo technique is probably 
the best way to check it. 

How do we find flg? Well , suppose I sample random numbers Wi from the stan­
dard normal distribution of W, and estimate I-'g = E[g(W )] using flg = ~ Li:.:! g(Wi) . 
The g(Wi ) are IID, so the SLLN says that with probability one, flg = ~ Li:.:! g(Wi) --> 

I-'g. Standard sample statistics tell us that ,,~ = ~ Li:.:dg(Wi) - flgj2 is a good esti--, 
mator of var[g(W )], so the CLT yields JLg as approximately N(I-'g, ':) for large n, 
and a 95% confidence interval for I-'g is 

A short computer program6 estimates the answer accurately in less than seven 
seconds: flg = 2.5388 with a standard error of 0.0003, and a 95% confidence interval 
of [2.5382, 2.5395]- see table 5.l. 

Compared to the 10 hours needed to write the two-dozen pages of calculus to 
solve the analyt ical problem in equation 5.2, it is easy to write this code, it is easy to 
check it (you can probably clo it yourself even if you do not understand MATLAB), 
it runs quickly, and it is also easy to adjust. For example, you can easily change 
"sin" to "tan" and rerun the code, all in less than 15 seconds. That is the power of 
Monte Carlo methods! 

6MATLAB language for the Monte Carlo in the last line or table 5.1: 
n=400000; w=randn(n,l ); aw=abs(w); g=«gammainc(aw, pi». Aexp(l» + O.l*max(w,O) -
exp(-sqrtCexp(w»./(l+sin(aw») + 3; mug=meanCg); sg=std(g)/sqrt(n); 
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Figure 5.1 : T he Weird Function g(-) 

~ 
Note: The figure plots g(w) = [r(iwi , 7f)]' + fa max(w , O) - e [' + . ''' '' '''I> [ + 3, 
where r (. ) .) is the incomplete gamma function, e is Euler's number, 11" is pi, and 
exp(x) '" eX. T his is the function whose expected value relative to a standard 
normal is calculated via Monte Carlo simulation in table 5.1 on page 83 . 
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Table 5.l: Monte Carlo Estimate of E [g(W )] for t he Weird Function 

Monte Carlo Estimation of {tg 

{tg 1* n n seconds 

2.6672 0.0489 10 0.00 
2.5502 0.0183 100 0.00 
2.5326 0.0069 1,000 0.01 
2.5371 0.0021 10,000 0.14 
2.5385 0.0007 100,000 1.69 
2.5387 0.0005 200,000 3.36 
2.5388 0.0003 400,000 6.73 

Note: This table shows a ~Ilonte Carlo simulation converging to a solution to 

the integral 1"9 == E[g(W) ] given in equation 5.2. it9 estimates 1"9' J (J~/n 
estimates the standard error of the est imator, n is the number of trials within 
the simulation, and "seconds" is the number of seconds taken on an old PC. 

Op Quiz: Figure 5.1 is a graph of the weird function g(w) . In section 5.3, we 
discussed analytical and numerical techniques for working out E [g(Wl ] where W is 
standard normal. Do you understand this well enough to see, by simply looking at 
figure 5. 1 and using your knowledge of the standard normal density, that E [g( Wl ] 
must be approximately 2.55? 

Answer: W is extremely unlikely to be smaller than - 3 or larger than + 3, and 
the bulk of the probability mass of W falls between - 2 and + 2. In this range, 
eyeballing the plot, g(wl takes values between about 2.3 and 2.8. The middle of 
this range is roughly 2.55. 

5.4 Monte Carlo for Options 

Our basic option valuation equation V (t ) = cr(T-t)E;[V(T)] (equation 4.3) is a 
discounted expected payoff in a risk-neutral world (i.e., a discounted mean payoff). 
The random variable is the termina l option payoff V (T ). The mean of V (T) is to 
be estimated via IVlonte Carlo. 7 We t hen discount this mean using riskless rate T . 

71 recommend Hunter and Stowe (1992) as an introduction to Monte Carlo methods for options. 
They review standard option pricing and discuss path-dependent options. Note, however, that their 

equation Ml reads 5 t H = SteT-~6 t+Sc:£"Jt;;t ) but should read S t+l = Ste(r-!u 2
)6. t+u eV"6t. 

©2009 Timothy Falcon Crack 83 All Rights Reserved Worldwide 



CHAPTER 5. NUMERICAL OPTION PRICING: MONTE CARLO 

5.4.1 Overview of the Method 

We use a computer to simulate a possible path for a stock price over t he life of 
the opt ion from time t to time T in a hypothetical risk-neutral world (details for 
this "simulation trial" appear in section 5.4.2). Calculate and record t he payoff 
to t he opt ion for t his first sample path. Call it V(Th. Now perform a second 
simulation t rial and record a second payoff: V (Th. Repeat until we have recorded 
V (T) J, V (Th, ... V (T Jn. 

The average V(T)n == ~ l:?=l V(T)i ---> E;[V(T)], as n ---> 00 (by the SLLN) . 
It follows that 

is our estimator of option value, because V (t) ---> cr(T- ')E;[V(T)] as n ---> 00. 
Our estimator is of the form if = a V;, (where a is t he discount factor). It follows 

that if [L , U] is a 95% confidence interval for Vn , then [aL, aU] is a 95% confidence 
interval for if = a Vn using simple properties of random variables. A 95% confidence 
interval for V(t) is thus (via the CLT) 

5.4.2 Generating Stock Price Paths 

The sample stock price paths are simulated so that they approximately follow a 
geometric Brownian motion (GBM) random walk. We break up the life of t he 
option from time t to t ime T into J equally spaced time steps tj = t + j(6.t ), for 
j = 0, 1, 2, ... , J, where 6.t == T:;'. T hus, to = t, and tJ = T. Then we simulate t he 
sample stock price path using:s 

for j = 0, 1, 2, .. . , J - 1, where S(to) = S (i ni t ial stock price), and EJ,E2, ... ,EJ are 
IID N(O, 1). 

5.4.3 Monte Carlo Put Option Example 

Consider a two-month European put option on Black and Decker (BDK) struck at 
X = $45. BDK closed recently at $4l.75. We shall ignore BDK's dividends. Based 
on the most recent two months of daily continuously compounded stock returns, let 
us assume that (j = 0.34 (section 8.7.1 shows how to estimate historical volatility). 
Let us also assume that t he shortest term safe interest rate is 0.055 (simple), or 

SLooking ahead, this is a discretization of equation 8.2 in t he ri sk-neutral world. 
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0.0535 (continuously compounded). There are 365 calendar days in a year, and 61 
over t he next two months (yes, you have to count). Let (tl. t) represent one day (so 
tl.t = 3~5) . Then t he first simulation trial looks as follows: 

s(to ) = $41.75 

[(0.0535- 4 xO.342 )( 3!s)+O.34 ~ !j+l] 
S(tj)e 

for j = 0, 1, 2, ... , J - 1, where 

fl, f2,·· · , fJ ~ IID N(O, 1), 

max($45 - S(TJ ), O) , where J = 61. 

Each simulation trial yields a payoff V (T) ; . The average of t hese payoffs converges 
to the Black-Scholes put price ($4.08) as the number of trials increase (see figure 5.2). 
Typically, you use at least 10,000 trials. 

The example is for a plain vanilla European put, so that we can compare the 
convergence to a known limit. In practice, the Monte Carlo technique is for exotic 
opt ions where no pricing formula exists . 

Exercise: Section 5.4.2 describes the evolution of stock price paths in the Monte 
Carlo method. It assumes that 

where <J+I ~ N(O,l). Prove that 

That is, that t he expected value of the stock price one step ahead in the risk-neutral 
world , conditional upon where it is now, is just the current price grossed up by the 
riskless rate. 

Hint: Plug in the formula for S(tJ+tl in terms of S(t j) and the standard normal 
<j+l. Multiply by the standard normal pdf and collect terms in the exponent, 
completing the square if necessary. Demonstrate that S(tj )er

( ,") pops out, leaving 
a pdf that integrates to one. 

5.4.4 Variance Reduction 

One problem with Monte Carlo is that it is slow. T his becomes less of a problem as 
technology advances. Several "variance reduction techniques" exist, however, to im­
prove the accuracy of numerically estimated option prices (other than simply using 
more simnlation trials in a Monte Carlo, or a finer mesh in the lattice technique). 

The "antithetic variable technique" calculates V (t) in the usual way using the 
- I 

<1's, hut also calculates V (t) usmg -<1's (which are also IID N(O,l) because of 
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F igure 5.2: Monte Carlo E uropean P ut Valuation and 95% C.l. 

ote: T his is for S = $41.75, T - t = :"5' X = $45, r = 0.0535, a = 0.34, and 
J = 61 steps of ~t = 3~5' The picture also gives the 95% confidence interval 
for t he put value estimator. The Black-Scholes E uropean-style put value of 
$4.08 is indicated. 
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Figure 5.3: Monte Carlo E uropean P ut Valuation Using Antit hetic Variable Tech­
lllque 

Note: T his is for S = $41. 75 , T - t = 3
6
6
1
5' X = $45, r = 0.0535 , <7 = 0.34, and 

J = 61 steps of (I':.t) = 3~5. The picture also gives the 95% confidence interval 
for the ant ithetic variable put val ue estimator. The Black-Scholes European­
style put value of $4.08 is indicated. 
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_ -I 

the symmetry of the normal). The average [V(t) + V(t) J/2 is more accurate, and 

converges more quickly, than V (t ). See figure 5.3. 
The "control variate technique" is for valuing derivative A (which has no analytic 

valuation formula) when there exists derivative B similar to A , for which a formula 
exists. For example, suppose A is an exotic arithmetic average Asian option, and 
B is a geometric average Asian option (see the formula in Haug [2007, p183)) . 
Calculate both VA, and VB using the Monte Cm'lo, and then find VB using the 
analytic formula. Then VA + (VB - VB) is a better estimator of VA than is VA. 

5.4.5 Drift and Dividends 

The exercise above asks you to show that if 

S(tj+I) = S(tj)e [(r-~ u2)(L'>t) +<7J(L'>t) 'H'], 

where Cj+1 ~ N(O, 1), then Et[S(tj+j) IS(tj)] = S(tj) er(L'>t). Thus, this really is , 
a model of stock prices evolving with a riskless drift in a risk-neutral world . To 
incorporate dividends paid at continuous rate p into our Monte Carlo, we simply 
change the data-generating process to 

new term 

1 
S(tj+l) = S(tj)e[ (r-p-~u2 )( L'>t )+<7J(L'>t) 'H,], 

for j = 0, 1, 2, ... , J - 1, where S(to) = S (initial stock price), and Ej, E2, ... , EJ are 
IID N(O, 1). With continuous dividends at rate p, we have the result 

and t he required return (and thus the discount rate) r is now made up of dividends 
at rate p plus capital gains at rate r - p. 
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Chapter 6 

Numerical Option Pricing: 
Lattice jBinomial 

6.1 Do I N eed to Know This? 

Let me repeat that although this book is about Black-Scholes option pricing, and 
you can skip t his chapter without loss of continuity, reading it may help even if you 
do not want to use numerical methods to price opt ions. In particular, t his chapter 
should give you a better feel for risk-neutral probabilities, for t he transformation 
from the risk-neutral world to the real world, for replication arguments, for later 
approximations to Black-Scholes pricing, and for differences between European and 
American-style option pricing. 

6.2 Lattice Pricing I: One-Step Model 

Latt ice methods break the life of t he option up into discrete equal time steps in a 
hypothetical risk-neutral world. At each step, the underlying asset value can jump 
to a fini te number of new possible values (typically two or three). Binomial option 
pricing (i.e., two possible stock price values one step ahead) first appears in Sharpe 
(1978, pp366- 371) , but it is not well developed there1 Cox, Ross, and Rubinstein 
(1979) and Rendleman and Bartter (1979) develop binomial option pricing as it is 
known today. Cox, Ross, and Rubinstein (1979) apply risk-neutral valuation and 
a limit ing argument to arrive at the Black-Scholes formula. Cox and Rubinstein 
(1985) provide a nice t reatment of binomial option pricing. 

We build a tree of possible stock prices from time t to time T in a risk-neutral 
world. We then work backwards from time T using risk-neutral valuation (and 
riskless discounting) to deduce the initial value of the derivative. Lattice methods 
are good for both American-style and European-style options, but are not so good 
for path-dependent options 2 

I Note that Parkinson (1977) uses a binomial approximation to the normal to allow numerical 
integration for pricing the American put. 

2Hull and White (1993) do, however, present an efficient procedure for valuing path-dependent 
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Su 

S v 
Stock Derivative 

Sd 

B Bond 

• 

Figure 6.1: Lattice Pricing: Evolution of Stock, Bond, and Derivative 

Note: From time t to time T (i.e. , over the time step I'>t ), the stock is modelled 
as going either up or down using multiplicative growth factors u and d. If the 
stock goes up, the derivative pays off Vu (that is a subscript); if the stock goes 
down, the derivative pays off Vd- The bond is riskless; so, its payoff is the same 
in both the up and down states. 

We begin with a simple one-step model. There are three assets: a stock, a 
riskless bond, and a European-style derivative. We seek the value of the derivative. 

Assume that the stock price is S at time t, and then either rises to S x u, or 
falls3 to S x d at time T. Let I'>t = T - t , then an investment of B dollars in the 
riskless bond at time t grows to be worth B er(t;tj dollars at time T. If S, u , and 
d are known, then the value of the derivative at t ime T can be deduced for both 
states of the world . Label these as "Vu" in the up state, and "Vi' in the down 
state, as in figure 6.1. For example, if the derivative is a European-style call option 
with strike X , then, because T is the expiration date, Vu = max(O, S x u - X) , and 
Vd = max(O, S x d - X) , which are both functions of known quantities. We value the 
derivative at time t by valuing a portfolio that replicates the time-T payoffs to the 
derivative. We construct this replicating portfolio by holding positions in the stock 
and the bond. We buy I'> shares of stock and invest B dollars in the riskless bond 
(I'> and B are to be determined; they may be positive or negative). The portfolio 
of stock and bond costs SI'> + B at time t , and must grow to have time-T value 
SuI'> + B er(t;t j in the up state, and Sdl'> + Ber(lltj in the down state-see figure 6.2. 
If the portfolio of stock and bond is to replicate the time-T payoff to the derivative, 

options. The procedure is involved, because you need Lo know the path followed to arrive at any 
node (this is clear in a tvlonte Carlo, but not clear in a lattice) . 

3 Although the binomial method presented here sets d < 1, this is only for convenience, and d 
need not be less than 1 as long as d ::; er(6t ) ::; u . See the discussion later in this section. 
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SI':,+B 
Replicating Portfolio 

Sdl':, + Ber(!!.t) 

Figure 6.2: Lattice Pricing: Evolution of the Replicating Portfolio 

Note: The portfolio that replicates the derivative begins with I:;. shares of stock 
and $B invested in the riskless bond. S grows to either S x u in the up state or 
S X d in the down state at time T; $B invested in the bond grows to Ber (6t) 

regardless of the state at time T. Do not confuse the I:;. shares of stock with 
the time step length (I:;.t)-it should be clear from the context. 

then its payoffs must be the same as the payoffs to the derivative in both states of 
the world. That is, equations 6.1 must hold. 

.. {Vu = SuI':, + Ber(!!.t) } . 
Denvatlve Payoffs Vd = Sdl':, + Ber(!!.t) Portfoho Payoffs (6.1) 

We know 11,,, Vd, S , u , d, r, and I':,t (see the numerical example on page 95 to 
make this concrete), so equations 6.1 are two equations in two unknowns (I':, and 
B). A small amount of linear algebra yields the particular I':, and B that solve the 
equations. These are given in equations 6.2 and 6.3: 

I':,t Vu - Vd 
S(u - d) 

UVd - dVu 

er(!!.t)(u - d) 

Exercise: Solve the linear algebra problem of two equations (equations 6.1) in 
two unknowns (I:;. and B) to arrive at equations 6.2 and 6.3. 

(6 .2) 

(6 .3) 

The portfolio with I':, and B from equations 6.2 and 6.3 replicates the payoff to 
the option. No-arbitrage arguments imply that the value of the derivative at time t 
must equal the start-up cost of the replicating portfolio. This yields equation 6.4. 

v = Sl':,t + Bt (6.4) 
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Plugging the values we obtained for {:,. t and Bt from equations 6.2 and 6.3 into the 
no-arbi trage result of equation 6.4 yields, after some algebra, equations 6.5 and 6.6: 

v 

where 7r * 

e-r (6' ) [7['Va + (1 - 7[ ')Vd] , 

er(At) - d 

u -d 
and {:,.t = the time step. 

Exercise: Show that plugging QU I' particular values ~t and Bt from equations 6.2 
and 6.3 into the no-arbitrage result in equation 6.4 yields equations 6.5 and 6 .6. 

(6.5) 

(6.6) 

This is risk-neut ral pricing. The (implicit) "risk-neutral probability" of an up 
move in the stock appears as 7[ ' . This is not t he actual probability of a price move, 
but t he probability of such a move in a risk-neutral world (i.e., a world where the 
stock price process with the bond as numeraire follows a martingale). If you work 
out the discounted expected value of the stock under the risk-neutral probabilities, 
you find that it is just S. Thus, you could have deduced that 7[' = eC~'~-d directly. 

Exercise: Prove algebraically that if 1r* in equation 6.6 is interpreted as a prob­
ability, then t he one-st ep (i.e., t;.t = T - t) binomial model describes stock price 
drift upward at rate r : 

EZIS(T )] = S(t )er(T- t) 

Hint: E:lS(T )] = I,,' S(t )u + (1 - Jr') S(t )d] , where .. ' 
tute for 1T * 1 collect terms, and simplify. 

Now substi-

In equilibrium, we need d <:: er (6' ) <:: u. If not, then returns to the riskless bond 
strictly dominate, or are strictly dominated by returns to the stock, and the less 
attractive of the two assets will be sold short in unlimited quantities to purchase the 
other asset with unlimited profit ; that is not an equilibrium. This result , combined 
with equation 6.6 , implies that 0 <:: ,,' <:: 1, just like a probability. To emphasize the 
expected DCF nature of this interpretation , equation 6.5 is repeated as equat ion 6.7, 
where I have, somewhat loosely, labelled t he risk-neutral probabilities "expected." 

expected expected 

1 1 
v = e- r (6t ) [ ( .. ') v" + (1 - .. ') Vd ] (6.7) 

T T i 
discount ed payoff puyoff 

Note t hat this is a change of probability only. The risk-neut ral model of asset 
price levels is identical to the real-world model (i. e., the same potential asset price 
outcomes for bond, stock, and deri vative). It is only the implicit probabilities of the 
up and down states that have adjusted to allow a stock price drift upwards at rate 
T (see the last exercise) . 
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6.3 Lattice Pricing II: J-Step Model 

I recall John Cox not ing in class at MIT that the one-step binomial model is certainly 
a poor representation of stock price behavior, but that by allowing many small steps, 
we obtain a model that has much better properties. 

In practice, we break the life of the option up into J small time steps from 
time t to t ime T. We label these time steps tj as follows: tj = t + j(.6.t), for 
j = 0, 1, 2, ... , J, where (.6.t) == 1';'. Thus, to = t , and tJ = T. 

At each step, the stock price is modelled as per the one-step case: 

S( ) _ { S(tj) x u; with prob. 7r*, 

tj+J - S(tj) x d; with prob. (1 - 7r'), 

£ * er(At) d S £ or j = 0, 1, 2, ... , J - 1, where 7r = u d . ee figure 6.3 or the two-step case. 

6.3.1 Choosing u and d- and Deducing r.* 

So, how do we choose u and d in practice? We choose u and d so that they describe 
the evolution of possible stock prices in a fashion that approximates the GBM as­
sumed by Black and Scholes. The following is an heuristic argument that should 
not be taken literally. 

l. vVe shall deduce u and d as multiplicative stock price growth factors of t he 
form e (,etum) for appropriately chosen "return ," where that return is the con­
tinuously compounded total (not annualized) return over the time period (.6.t). 

2. For ease of calculation ,4 I want to choose u = ~. If u = e+("eturn), this implies 
that d = e-( ,·etum). 

3. In t he risk-neutral world, our numerical method approximates a GBM with 
stock return over time step (.6.t) distributed as N[(r- ~"2)( .6. t),,,2(.6.t)l (look 
ahead to table 8.1 for details). Thus, we must , through choice of u and d, 
approximate a normally distributed total rate of return that has standard de­
viation " J( .6.t). We do not worry about the mean return yet- our subsequent 
choice of 7r* will give us the correct mean return. 

4. Little-known fact: s Suppose R is normally distributed with mean zero, and 
standard deviation A. Then, conditional on R being above zero, the expected 
value of R is approximately +A; and, conditional on R being below zero, 
the expected value of R is approximately - A. Thus, the continuous random 

4 Advanced aside: Note that th is does not necessarily imply a "recombining tree,!> You get 
recombination if the option price is path-independent , regardless of u and d. Further details are 
beyond the scope of this book. 

' The exact resuit is X ~ N(O, ).') implies E(XIX > 0) = A ~ '" 0.80 A. This is a speciai case 
of equation 2.7 on page 28. 

@2009 Timothy Falcon Crack 93 All Rights Reserved Worldwide 



CHAPTER 6. NUMERICAL OPTION PRICING: LATTICE/BINOMIAL 

variable R could be modelled roughly as the discrete random variable ~iscrete 
as in equation 6.8. 

+A; prob~ 

- A; prob ~ 
(6.8) 

Exercise: Demonstrate that the normally distributed continuous random 
variable R rv N(O, ),2) and the discrete random variable Rdiscrete (from equa­
tion 6.8) have the same mean and variance. 

5. We conclude that , in order to get the correct volatil ity, we should choose 
u = e+<7~ and d = e-<7V(~t) (with probabilities one-half) to approximate 
stock price evolution in the real world. The real-world drift rate is irrelevant 
for pricing the option when the underlying process is a geometric Brownian 
motion (Merton [1992]). 

6. With u and d so chosen, we may now deduce t he implicit risk-neutral proba­
bili t ies 7r* that produce drift rate r: 

E*[S(t + (L'l t»] S (t) er( ~t ) 

7r*S(t)u + (1 - 7r*)S(t)d 

7r*u + (1 - 7r*)d 
er (~t) - d 

u-d 

Thus, our choice of u and d t rickles down to the implicit probabi li ty 7r*, cor­
recting t he risk-neutral drift . So, we need not worry about drift when choosing 
u and d. 

7. These choices for 11 and d are t he same as those made by Cox, Ross, and 
Rubinstein (1979). To be exhaustive, however, you should know that the 
condit ions on the binomial parameters that guarantee convergence to a log­
normally distributed stock price process in continuous t ime leave one degree 
of freedom open to the researchers. Cox, Ross, and Rubinstein (1979) choose 
one of arbitrarily many possible definitions of the parameters in their limiting 
arguments. Other choices are available (see T ian [1993]). Note, however, that 
although many other choices for u and d give appropriate convergence in the 
limit as step sizes go to zero, Cox, Ross, and Rubinstein's choice is the only 
one that is consistent with risk-neutral pricing in discrete time (Nawalkha and 
Chambers [1995]). 

\\lith 11 and d as known functions of (J and L'l t, and with 7r* a known function of u, 
d, r , and L'l t, we can now work backwards through the stock price tree, discounting 
the terminal option payoffs using equations 6.5 and 6.6 to get initial option value. 
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In t he case of a European call or put, after some algebra, we can derive an explicit 
binomial option pricing fo rmula. Let us leave this formula unt il section 8.3.3, though, 
both because it provides a nice interpretation of Black-Scholes option pricing, and 
because more algebra is inappropriate until numerical examples are presented. 

6.3.2 Binomial Valuation Example 

Let us value a two-month European put option on Black and Decker (BDK) struck 
at $45. BDK closed recently at $4l. 75. Let us ignore BDK's dividends. Based 
on the most recent two months of daily continuously compounded stock returns, 
fj = 0.34 (section 8.7.1 shows how to estimate historical volati li ty). Let us assume 
that t he shortest-term safe interest rate is 0.055 (simple), or 0.0535 (continuously 
compounded). There are 12 months in a year, so T - t = 122 . Let (L'.t) represent 
one month (so (L'.t) = i2) . 

We calculate u = l.1031, d = 0.9065, and 7r* = 0.4982. We use u and d to 
build the stock price t ree, find the final option values, and discount back using 
V = Cr(C>t) [7r*Vu + (1 - 7r*)Vd]. The t ree in figure 6.3 shows the two time steps 
and the numbers: the estimated put price is $4.2786. 

From Black-Scholes, however, we can calculate the option price to be $4.08. We 
overpriced by 5%. So, how many time steps do we need, and how small should (L'.t) 
be? Figure 6.4 shows our binomial lattice pricing as the number of t ime steps within 
two months increases (and the length of t he t ime step correspondingly decreases). 

Actual Job Interview Question: Suppose that the riskless rate is zero. 
Suppose t hat a stock is at $100, and one year from now will be at eit her $130, or 
$70, wi th probabilit ies 0.80 and 0.20 , respectively. There a re no dividends. What 
is t he value of a one-year European call with strike $110? 

Taken from ': Heard on The Street: Quantitative Questions from Wall Street Job 
Interviews," © 2008 Timothy Falcon Crack. See advertisement on last page o f this book. 

Answer: If you said $16 (an 80% chance of getting $20), then you are wrong. Go back 
to equations 6.5 and 6.6 and try again. The correct answer is $10. 

Note: Looking at figure 6.4, we see that the number returned by the binomial 
lattice valuation bounces up and down as you increment the number of steps in 
the valuation. Thus, a simple method to improve accuracy is to take the average 
of the valuations arrived at by using, say, 50 and 51 steps, respectively. I think 
t his variance reduction method was first published by Mark Rubinstein. 
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$41. 7500 
$4.2786 

$46.0556 
$1.6236 

$37.8469 
$6.9529 

$50.8052 
$0.0000 

$41.7500 
$3.2500 

$34.3087 
$10.6913 

Figure 6.3: Lattice Pricing: Two-Step Tree, European Pu t 

Note: This figure shows a European put binomial lattice valuation with 
S = $41.75, T - t = f2' X = $45 , ,. = 0.0535, 17 = 0.34, and two t ime steps 
of (.0..t) = 1

1
2. The upper number in each pair is the stock value l starting at 

$41.75 and evolving through time using u = e+uJ(~t ) and d = e-O" V(.6.t). 

The lower number in each pair is the European put value. The put val­
ues terminate at the final nodes as max[O, X - SIT) ) = max(O, $45 - S) , 
and are discounted backwards through the tree using risk-neutral pricing 
V = e-'·("') [,,"V. + (1 - "")Vd) at each step. 
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6.3. LATTICE PRICING II: J-STEP MODEL 
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. . , ', . 

3.8 L-__ ~ ___ ~ __ ----L ___ -'---__ _ 

o 20 40 60 80 100 
# Time Steps within Two Months 

Figure 6.4: Lattice Pricing: European Put J ----; 00 

Note: This figure shows a European put binomial lattice valuation with S = 

$41.75, T - t = ,22 , X = $45, r = 0.0535 , a = 0.34, and time steps of (I'!.t ) = 
Ii J ' where J (the number of time steps within two months) is on the horizontal. 
The Black-Scholes European put value of $4.08 is indicated. Typically, at least 
30 time steps within the option's life are required for accuracy. 
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CHAPTER 6. NUMERICAL OPTION PRICING: LATTICE/BINOMIAL 
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0.26 ..... ...... "." 

0.24 L-_ _ ~ _ __ __'_ ___ ~ ___ ---'-___ __' 

o 20 40 50 80 100 
# Time Steps within Two Months 

Figure 6.5: Lattice Pricing: European Call 61 -> N(dd 

Note: This figure shows the value of ~ t = X('u-_~I) , using only the first time 

step, estimated for a European call with S = $41.75, T - t = 122' X = $45, 
,. = 0.0535, U = 0.34, and time steps of (6t = Ii J)' where J (the number 
of time steps within two months) is on the horizontal. 6 t approaches t he 
Black-Scholes European call's 6 = N(d l ) = 0.3422 as J (t he number of steps) 
increases. See the op quiz on page 102 for a related exercise. 
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6.4. LATTICE PRICING III: AMERICAN OPTIONS 

6.4 Lattice Pricing III: American Options 

Lattice methods extend naturally to American-style options. As you work backwards 
through the tree, you pause at each node, and ask "should I pull the trigger?" Is it 
more valuable to kill the option now through exercise, or to hold it for the next time 
step? The former is worth the intrinsic value (IV); the latter is worth the discounted 
expected payoff. 

At each node, the American option value is the maximum of two quantities: 

V max {IV, e - r (6t ) [7f*Vu + (1 - 7f*)VdJ} , where 

IV intrinsic value. 

Figure 6.6 is a numerical example for an American put with the same parameters 
as the European put example in figure 6.3. Figure 6.7 compares the values of the 
J-step American and European put valuations as the number of time steps with the 
option life J ---; 00. 

6.5 Adjusting for Dividends 

If the underlying pays continuous dividends at rate p, then the lattice of stock prices 
has drift of only,. - p, instead of T. The only change is that 7f * = e('-~ (:O -d replaces 
our previous 7f* . We still discount at the required rate of return r. 

If the underlying pays a lump-sum dividend d l at time T during the life of the 
option, then you proceed as follows: 

1. Model the growth of the ex-dividend process S* using a lattice (where S*(t) = 

S(t) - dle - T(r-t) initially). 

2. Use the terminal values of the S* tree to calculate the terminal option values . 

3. Add the values of the dividends back into the stock price tree prior to the 
ex-dividend dates. Thus, at time t + j(flt) < T, you replace S*[t + j(flt)J by 
S*[t + j(flt)J + d l e-r (r-t - j (6t)) . 

4. Work backwards through the tree discounting the option values using risk­
neutral valuation. If the option is American style, then you calculate compar­
ative intrinsic values using the cum-dividend price of the stock prior to the 
ex-dividend date. 

5. This is a recombining tree, but some methods for accommodating the dividend 
are not recombining. See Hull (2000, pp398-400) for details. 
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$41.7500 
$4.3787 

$46.0556 
$1.6236 

$37.8469 
$7.1531 

$50.8052 
$0.0000 

$41.7500 
$3.2500 

$34.3087 
$lO.6913 

Figure 6.6: Lattice Pricing: American Put, T wo-Step 1\·ee 

Note: The upper number in each pair is the stock value, starting at $41. 75 and 

evolving through time using u = e+O"~ and d = e-o~. The lower num­
ber in each pair is the American put value. The put values terminate at the 
final nodes as max[O, X - S(T) ] = max(O, $45 - S), then are discounted back­
wards through the tree using risk-neutral pricing and comparing to intrinsic 
value (IV): 

v = max {IV, e-'·("t) [rr'V" + (1 - rr')Vd ]} 

In this example, early exercise (or sale) is optimal at the node where S = 
$37.8469. Exercise (or sale) at this node yields $7.1531, whereas the DCF is 
only $6.9529 in the analogous node in figure 6.3. 
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6.5. ADJUSTING FOR DIVIDENDS 

3.8 '-__ ~ ___ ~ ___ ~ __ ~ ___ .....J 

o 20 40 60 80 100 
# Time Steps within Two Months 

Figure 6.7: Lattice Put Valuation (American versus European) 

Note: Valuation of an American and a European put using S = $41.75, T - t = 
1
2
2' X = $45, " = 0.0535, " = 0.34 , and time steps of (t-t = li;) , where J 

(the number of t ime steps wit hin two months) is on t he horizontal. The Black­
Scholes European put value of $4.08 is indicated. Both the European and 
American option valuations converge, but an exact, closed-form formula for 
what the American put value converges to is still an unsolved problem. 
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CHAPTER 6. NUMERICAL OPTION PRICING: LATTICE/ BINOMIAL 

Op Quiz: Figure 6.5 shows ll t = ~(~;-_~) -----+ N(d 1) as the number of time steps 
within two months J ~ 00 for a European call binomial lattice valuation problem. 
\·Vhat happens to L.\ t = X('u.--~) in t he European put binomial lattice valuation 
problem above as the number of t ime steps wit hin two months goes to infinity? 
You may need to study chapter 8 before answering. 

Answer: In the case of t he European put, ~ t 

(i.e., the delta of t he European put). 
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Chapter 7 

Partial Differential Equations 

7.1 Do I Need to Know This? 

The "Black-Scholes equation" is a partial differential equation (PDE). T he Black­
Scholes pricing formula is a particular solut ion to this PDE. Black (1989) tells t he 
story of searching for t he solution to the PDE so that he could price options. You 
can leave this short chapter out without loss of continuity, but reading it helps you 
to better understand where the Black-Scholes formula comes from and how the PDE 
that predates it provides economic intuition for some of the consequences of hedging 
opt ions positions. Skip to section 7.6 if you have no high level mathematics. 

7.2 PDEs 101 

PDEs are typically t he preserve of physical scientists. The famous "diffusion equa­
tion," ~ = ~, can be used to describe how changes in telnperature u are related 
to changes in time T, and distance x through, for example, a metal bar with one end 
held at a constant temperature. Loosely speaking, au, aT, and ax are small changes 
in temperature, time, and distance, respectively, and the ratio ~, for example, is a 
relative change in u versus T (like a slope on a graph of u versus T). 

To solve for the particular u( T , x) that describes the diffusion of heat through the 
bar as a function of time T and distance x, you need boundary and initial conditions 
describing behavior at t he boundaries, or at T = 0, respectively, for your particular 
bar1 For example, is heat applied to one end of the bar only, or to both? Is the 
heat constant at each end of t he bar [so, u( T, xd = U1, and u( T, X2) = U2]? Is one 
end insulated, so that iJu~:x ) = ° when x = X2? The diffusion equation can also 
describe how liquids mix (e.g., perfume diffusing through the air in a room with t he 
passage of time and the distance from source) . Farlow (1993) is an excellent book 
on PDEs. He presents good intuition and diagrams, with no finance. 

1 We should note that, analogously, if c satis fies the Black-Scholes POE, then so too do 2c, ~c, 
-5c, etc . Sat isfying the PDE may be a necessary condition for deriving the value of a derivat ive, 
but it not a sufficient condition. Sensible boundary and initial conditions must also be sati sfied. 
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CHAPTER 7. PARTIAL DIFFERENTIAL EQUATIONS 

7.3 Where Do Financial PDEs Come From? 

Sections 4.4.1 (p73) and 4.4.3 (p76) demonstrate how to generate financial PDEs by 
hedging arguments and by martingale arguments, respectively. We arrive, in those 
sections, at the Black-Scholes PDE for a stock paying no dividends: 

8V 1 2 282V 8V 
fit + 2" 5 852 + ,-5 85 - rV = 0, (7.1) 

and the Black-Scholes PDE for a stock paying continuous dividends as rate p: 

8V 1 2 282V 8V 
fit + 2" 5 852 + (r - p)5 85 - rV = O. (7.2) 

Note that these PDEs are associated with the data-generating process for the un­
derlying stock, and not with any particular option. That is, whether the option is a 
put or a call, for example, the PDE is the same. It is the boundary condit ions that 
determine the type of option whose price is a solution to the PDE. Some example 
boundary condit ions are given in section 7.4, following. 

With Black-Scholes, we usually solve the PDE by walking backwards from the 
final payoff boundary in much the same way as we walk backwards through the 
t ree in binomial option pricing2 This requires a change of variables. We turn the 
Black-Scholes equation (equation 7.1 ), which is a backward parabolic PDE, into a 
forward parabolic PDE, so final conditions for the backward equation become ini­
t ial conditions for the forward equation. See Musiela and Rutkowski (1997, p11S), 
Wilmott et al. (1997, section 4.4), Farlow (1993, Lessons 1 and 41), and section 7.4, 
following, for details. 

Exercise: Consider two pathological derivatives. The first is an investment of B 
dollars into the bond at time 0, and has value V( S, t) = Ber ' at time t; the second 
is an investment of S dollars at t ime 0 into a stock bleeding continuous dividends 
at rate p (with dividends reinvested back into the stock), and has value V(S, t ) = 
S(t)eP' at time t. Show that in the case of the bond, V(S, t) = Ber ' satisfies both 
equations 7.1 and 7.2. Show that in the case of the stock, V(S, t) = S (t )eP' satisfies 
equation 7.2. Write out V(S, t) for the case of an investment of S dollars at time ° into a stock that pays no dividends, and show that V(S, t) satisfies equation 7.1 
in that case. 

7.4 Transforming the PDE 

Numerical solution of PDEs is beyond t he scope of this book. Indeed , discussing 
PDEs at all is pushing the envelope. Some limited discussion of how you go about 
solving a PDE numerically is in order, however, because the change of variables 
and tentative steps toward solution provide some economic intuition , and remove 
barriers to entry for those who want to investigate furt her. 

2lndeed, some forms of numerical solution to the Black-Scholes PDE can be shown to be math­
emat ically equivalent to some forms of lattice prici ng. See Hull (2000, p422) . 
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7.{ TRANSFORMING THE PDE 

The Black-Scholes equation for a stock bleeding a continuous dividend yield p is 
given in equation 7.2. It is easier to solve the forward diffusion equation than the 
backward Black-Scholes equation; so, we make the change of variables from (S, t) to 
(x, T) described in equations 7.3-7.7: 

S 

t 

ViS, t) 

T 
T - 12 1 (thereby reversing time)) 

2" 
X u(x, T )e-~(/'2-1)x-[j-(t.2 - 1 ) 2 + t. ll T, where 

r' 
12' and 
2" 
(r - p) 

la2 
2 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

Plugging equations 7.3- 7.7 into equation 7.2 transforms the Black-Scholes equation 
into the diffusion equation shown in equation 7.8 (see the exercise following if you 
have the mathematics skills): 

AU 
aT 

Exercise: Let ,,(x, T) == -H', - I)x - [;\(,' - 1)2 + <l iT, and use t he chain rule 
results in equations 7.9-7.11, as follo-ws , 

ov ax ov aT 
ax .. at + aT' at' 
ov ax ov aT 
ax . 08 + aT . 08' and 

a [OV] ax a [OV] aT 
ax 08 . 08 + aT 08 . 08' 

to demonstrate that equations 7.3- 7.7 yield equations 7.12- 7.14: 

ov 
at 
ov 
08 

O'V 
082 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

Now plug equations 7.12- 7.14 into the Black-Scholes PDE, equation 7.2, cancel out 
the S terms, divide by ~0"2Xeli(X,T), label ~ as /'1, label (1~~) as /'2, and collect , , 
and cancel terms to arrive at the diffusion equation: equation 7.S. 

(7.8) 

The payoff function for the option (i.e., large t) determines the initial conditions 
(i.e. , small T) for u(x, T). The boundary conditions for the option (i.e., small Sand 
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CHAPTER 7. PARTIAL DIFFERENTIAL EQUATIONS 

large S) determine the conditions at infinity for u(x, r), that is, as x ---> ±oo. For a 
European-style call, the initial and boundary conditions are (in terms of x and r) 
given by equations 7.15- 7.17 (see the exercise following) : 

u(x, O) 

lim u(x,r) 
x-+oo 

lim u(x,r) 
x- - oo 

Inax (et(Lz+l )X _ e~(/'2 - 1)X, O) 

(eX _ e- nl) e! (L2 - 1)X+[t(/'2 - 1)2+/,1]T 

o 

(7.15) 

(7.16) 

(7.17) 

Exercise: Equation 7.16 describes the boundary behavior of u(x, T) as x gets large 
and positive. How is it derived? From equation 7.3, we see that x ~ +00 implies 
S ---> + 00 . Vve know from discussions in section 3.6.3 that for large 51 the call value 
is S - PV(X ). T hat is, V(S, t) ~ S - X e - r(r- t) = Xe' - X = X (e' _ Cr(T-t ) ). 

Equation 7.5, however, says that V(S,t) = Xu(x , T)e-4(~2-1)x- [Ht2 - 1)2 +1.1 J T . 
Equating these two expressions, cancelling X) using equations 7.4 and 7.6 to rewrite 
r(T - t) as Ttl, and collecting terms yields equation 7.16. Now use the functional 
form of the payoff to a European call to deduce equation 7.15 via similar arguments. 

7.5 PDE Solution by Finite Differences 

The basic idea underlying finite-difference methods is to replace the partial deriva­
tives in PDEs by finite-difference approximations; that is, to replace infinitesimal 
quantities by small finite quantities. We can rewrite the diffusion equation , equa­
t ion 7.S, replacing the partial derivatives on each side with approximate differences 
t hat look like slopes and change in slopes for discrete steps Or and Ox, respectively, 
to arrive at equation 7.1S as a discretized version of equation 7.S: 

u(x, r + or) - u(x, r) 
Or 

[U(X+JX';l -U(X ,T)] _ [U(X 'T)-~~X-JX'T) ] 

OX 
u(x + Ox, r ) - 2u(x, r) + u(x - Ox, r ) 

(ox)2 
(7.1S) 

Proceeding in this fashion, we approximate the partial derivatives on a grid over 
discretized time intervals, and discretized stock value intervals. We may rearrange 
equation 7.1S to solve for u{-, ' ) within the assumed grid as a recursive function 
of valnes of u(-, .) one step closer to the boundary. Boundary conditions are t hen 
used to st art the recursion, and you work backwards to find the initia l value of 
the funct ion u(x , r) . The details are well beyond the scope of this text. For a 
full explanation, see Brennan and Schwartz (197S), Farlow (1993, Lesson 3S), Hull 
(2000) , Wilmott et al. (1993), or Wilmott et al. (1997). 

Once your computer algorithm has solved t he diffusion equation in terms of 
the non-dimensional u(x, r), the values of the option V(S, t), in terms of financia l 
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variables, may be recovered using equation 7.19:3 

(7.19) 

7.6 PDE Interpretation: Greeks 101 

When an investment bank sells a derivative security to a corporate client, the bank 
is left with a short posit ion in t hat securi ty. Most banks do not want to remain 
exposed to t his speculative position. The bank makes money by charging a markup 
and offlaying their risk by using a trading strategy that replicates a long posit ion in 
the derivative. Varying degrees of complexity exist for the replicating strategy. 

Suppose that an investment bank sells a call option on a stock. If t he bank 
wants to replicate a long position in this option, then it needs to create a "synthetic 
derivative" that matches the original option to some degree. Ignoring the markup, 
at the very least the bank wants to replicate the value of the derivative (i.e., the 
height of the plot in figure 3.4 at today's stock price). Of course, as the stock price 
changes, the bank's synthetic derivative is not much of a hedge if it remains equal 
to the init ial value of the short posit ion . The bank can create a bet ter hedge by 
replicating both the height of t he plot of option value and its local sensit ivity to 
the changing stock price (i.e., t he slope) . This is a good hedge, but if t he plot of 
t he opt ion value has a great deal of curvature, for example if the opt ion is neal' the 
money and close to maturity, t hen the bank may also wish to replicate the curvature 
of t he plot of option value as a function of stock price. That is, t he bank may wish 
to replicate each of height, slope, and curvature of t he plot of option value as a 
function of stock price. 

In mathematics, a "Taylor series expansion" is a sum of terms of increasing order 
t hat can be used to approximate a function. The first three terms are related directly 
to height, slope, and curvature of the function to be approximated ; each term brings 
with it none of the previous (e.g., slope without height, curvature without height or 
slope, etc.). The more terms you take from the Taylor series expansion, the more 
accurate is the approximation to t he original function. This is analogous to creating 
more and more complex t rading strategies to replicate more and more characteristics 
of t he original option value as a function of t he underlying price. 

If we let V (S, t ) denote option value, t hen the slope of t he plot of option value 
with respect to stock price is known as "delta" and (t. == ~i); t he curvature is known 

as "gamma" and (r == ~~\;'). T hese are two of t he "Greeks" referred to in t he title 
of t his section. If t he bank replicates only value and slope of t he short opt ion , 
t his is known as a "delta hedge." Delta hedging usually uses only the underlying 
stock together with borrowing or lending (which we may think of as selling or buying 
bonds, respectively) . The replicating portfolio of stock and bond is managed through 
t ime, with proportions typically being adjusted on a daily basis, or perhaps twice 
daily if there is a lot of convexity. This is one example of a dynamic replicating 

3Wilmott et al. (1993) and Wilmott et al. {1997} misstate this recovery function. 

@ 2009 Timo thy Falcon Crack 107 A ll Rights Reserved Worldwide 



CHAPTER 7. PARTIAL DIFFERENTIAL EQUATIONS 

strategy as discussed in section 4.2 (p68). If the bank also replicates the curvature 
of the short option, then this is known as "delta-gamma hedging," or simply gamma 
hedging. Gamma hedging usually requires that aJl option be added to t he dynamic 
replicating strategy to help replicate the curvature of the option that was shorted . 
We discuss these hedges in more detail and with examples in section 8.8. 

You demonstrated in the exercise on page 104 that investments in both t he 
stock aJld the bond satisfy the Black-Scholes PDE. You will be asked to prove in 
section 8.3.7 that the Black-Scholes formula for calls or puts also satisfies the Black­
Scholes PDE. Delta-gamma hedging of stock options usually involves trading in 
these very instruments: t he stock, the bond, and another option, eit her a call or 
a put which is used to help replicate curvature. If a bank shorts a stock option 
and then enters a delta-gamma hedge, the bank has a posit ion in four inst ruments: 
the short opt ion, the stock, the bond, and another option. Each of these positions 
satisfies the Black-Scholes PDE. It follows that the overall net position of short 
option plus long replicating portfolio must, as a sum of the parts, also satisfy the 
Black-Scholes PDE. However, as a hedged position, we know that the value of the 
short option is replicated by the value of the replicating portfolio, as is the slope 
and the curvature. The bank is short the option and long the replicating portfolio; 
so if W now represents the net value of the hedged position, t hen W = 0, ~ = 0, 

and ~;r = O. We know that W , as the sum of parts that satisfy the Black-Scholes 
PDE, also satisfies it ; so, with continuous dividends at rate p, 

8W 1 2 282W 8W 
8t + 20' S 8S2 + (r - p)S 8S - rW = O. (7.20) 

The second , third , and fourth terms on t he LHS of equation 7.20 are zero, so we 
conclude t hat ijJf = O. That is, if you delta-gamma hedge t he short option, you 
create an overall position that does not decay in value simply with the passage of 
time. That is, the time decay characteristics of the replicating portfolio used to 
delta-gamma hedge match the time decay characteristics of t he short option. This 
is know as a "theta hedge," and you get it for free when you delta gamma hedge. 

The derivatives appeaJ'ing in t he Black-Scholes PDE are the t heta (8 ), gamma 
(r ), and delta (1'» , respectively. The Black-Scholes PDE in equation 7.20 may thus 
be rewritten to recognize explicitly the hedge parameters, as in equation 7.21: 

1 ? 2 
8 + 20'-S r + (r - p)S1'> - rV = 0 (7.21 ) 

As a final note, if you price your option using numerical techniques, then you 
cannot use aJlalytical calculus to derive the Greeks. You c~ however, find each 
of them via simple numerical techniques. For example, if V (S, t) is your numerical 
estimate of option value at today's stock price (via Monte Carlo, lattice, or numerical 
PDE solution), then for small l5S, 

- - - -
1'> = 8V "" V(S + I5S, t ) - V(S -I5S, t) 

8S (S + I5S) - (S - I5S) 

V (S + I5S, t) - V(S - I5S, t ) 
215S 
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Op Quiz: Options that decay rapidly in value tend also to have significant cur­
vature. That is, large negative 8 is often accompanied by large positive r. An 
at-the-money call close to maturity is a prime example. Are 8 and r always of 
opposing sign? Vlhy or why not? Restrict your answer to plain vanilla options. 

Answer: The last two terms of t he PDE, (r - p)St. - rV , tend to offset to some 
extent. The entire PDE adds to zero, so that leaves e + 4,,2 s2r taking a value 
close to zero. The coefficient 4,,2S2 > 0, so this means that e and r are typically 
going to be of opposite signs. Not only that, but their magnitudes are going to be 
correlated . For example, if e is large and negative then r is probably large and 
positive. There are two exceptions among plain vanilla puts and calls. First, a 
deep in-the-money European-style put has posit ive e, and will also have posit ive 
r unless it is so deep in-the-money that t he r is zero. This is illustrated in t he 
lower plot in figure 3.3 on page 59 for stock price between approximately $20 and 
$30. In this region, t he plot of put price has positive curvature (because t he slope 
is negative and is increasing towards zero as we read from left to right), but put 
value must decay upwards toward instrinsic value as maturity approaches, so , e 
is positive. Second, a deep in-the-money European-style call on a dividend-paying 
stock can be priced below intrinsic value (if dividend yield is high enough), and 
have both positive 8 and positive r. I encourage you to download the spreadsheet 
Greeks tool mentioned in section 10.3 to explore the Greeks. 

Op Quiz: We demonstrated above t hat a short option t hat is delta-gamma hedged 
is also automatically t heta hedged. What do you conclude about t he t ime decay 
of t he net value of t he hedged position if the short option is delta hedged only, and 
not gamma hedged? 

Answer: We know the value W of t he net hedged position satisfies the Black­
Scholes PDE. If the short option is delt a hedged only, then W = 0 and ~'X = O. 
Plugging these into the PDE, equation 7.20, we conclude that 

However, a delta hedge contains only stock and bond, neither of which contains 
any curvature with respect to stock price (the plots of stock or bond value versus 
stock price are straight lines with slope 1 and 0, respectively) . If V is t he value 
of the short option (a positive number), then any curvature in W comes from V 
alone. It must be that 

a w _ 1 2S2a2V 
8t - -"2" aS2 ' 

That is, the t ime decay in the overall delta hedged position is driven solely by t he 
degree of curvature of the short option. The very reasonable conclusion is that 
when the gamma (Le.) the curvature of option price with respect to stock price) 
is large, you have an incentive to gamma hedge both because you are not hedged 
against large moves in the underlying, but also because large gamma typically 
implies large theta for the overall delta hedged position. We discuss this in more 
detail in section 8.8. 
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Chapter 8 

Analytical Option Pricing: 
Black-Scholes 

8.1 Black-Scholes Assumptions 

Black and Scholes (1973) assume two fundamental assets: a bond with price B (·), 
and a stock with price S(·). The price of a third asset, a European-style call option 
on t he stock maturing at t ime T, is to be derived from the price of the other two 
assets . Black and Scholes also assume that there are no T-costs or taxes, all securities 
are perfectly divisible (so you can buy one-tenth of a share if you wish), the stock 
pays no dividends during t he life of t he option, security trading is continuous in 
time (so if you can trade at two points in time, you can also t rade at any t ime 
between those two points), securi ty trading is cont inuous in price (so t here are no 
eighths, sixteenths, or decimals, but arbi trarily fine price resolution), both the stock 
and riskless bond may be sold short with no restrictions and no margins, and the 
riskless interest rate T is constant . 

How do the price of the stock and the bond evolve through time? That is, 
what are the functional forms of the data·generating processes? We discussed a 
GBM random walk in the stock price with predictable and random components in 
section 4.4.1. This GBM is the price process assumed by Black and Scholes to help 
price their European-style call option. 

When an option pricing formula does exist, t he combination of the assumptions 
about market fri ctions (T-costs, taxes, etc.), t he assumed data-generating process, 
t he type of option (plain vanilla call , plain vanilla put, or exotic) , and the exercise 
style (American, European , or other) determine uniquely what that fo rmula is. For 
example, you can get a different fo rmula if you assume a different exercise style 
(e.g., sect ion 9.1.2), or a different data-generating process (e.g., section 9.2.1 ), or 
consider an exotic call opt ion (e.g., sections 9.2.2 and 9.2.3), or make some mix of 
different assumptions. Different options need not, however, have different option 
pricing formulae; see the Key Point on page 138. 

We assume a base observation at time 0, that now is t ime t , and that the option 
matures at time T. The prices of t he bond and the stock are assumed to grow as in 
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CHAP TER 8. ANALYTICAL OPTION PRICING: BLACK-SCHOLES 

equations 8.1 and 8.2 for any ° :S t :S T: 

B(t) 

S(t) 

exp(rt) 

S(O) exp { (/1 - ~(2) t + aw(t) } 

(8.1) 

(8.2) 

The term w(t) in equation 8.2 is a standard Brownian motion; its exponentiat ion in 
the equation produces a GBM in stock price. 1,2 The constants 'r, /1, and a are the 
instantaneous risk-free rate per annum, the instantaneous drift rate of the stock price 
per annum, and the instantaneous volati lity of continuously compounded returns on 
the stock, respectively. 

Among the properties of the standard Brownian motion w( t) are that it is ini­
tially equal to zero almost everywhere (i.e., with probability one) (equation 8.3), it 
is normally distributed with variance t (equation 8.4), and it has normal increments 
(equation 8.5) . 

w(O) 0, a .e., 

w(t) ~ N(O, t ), and 

w(t) - w(s) N(O, t - s), t> s . 

(8.3) 

(8.4) 

(8.5) 

We use equation 8.2 to calculate the ratio of S(T) to S(t) (i.e., t he "price relative") 
in equation 8.6: 

S(T) 
S(t) 

S (O) exp{(/1- ~(2)T + aw(T)} 

S(O) exp{(/1 - ~(2)t + aw(t)} 

= exp { (/1- ~(2) (T - t) + a [w(T) - w(t)]} 

Taking the natural log of both sides of equation 8.6 yields equation 8.7: 

In (~~~1) = (/1 - ~(2) (T - t) + a[w(T) - w(t)] 

(8.6) 

(8.7) 

From equation 8.4, the increment w(T) - w(t) is distributed normal N(O, T - t) , so, 
equation 8.7 implies equation 8.8 

(8.8) 

lyou may apply It<Vs Lemma (equation 4.7 on page 74) to B(t) and S(t) and write ( in the 
symbolic notation of stochastic calculus) that dS(t) = /lS(t)dt + a5(t)dw(t) and dB (t) = rB(t)dt. 
These imply E[5(t)15(0)[ = 5(0)e"' (consult table 2.1 on page 24 or do the calculus) , For additional 
details on Ito's Lemma, see Hull (2000) and Merton (1992). 

2 A GEM in stock price y ields an arithmetic Brownian motion (ABivI) in continuously com­
pounded stock returns. See Harrison (1985) for mathematical details of Brownian motion. Brown­
ian motion is named after the botanist Robert Brown, who noticed in 1827 that pollen (or almost 
any fine inso luble substance) exhibi ts random motion when suspended in water (Brown [1828]). The 
mathematics of this "Brownian motion" did not come until Bachelier (1900) and Einstein (1905). 
T he standard Brownian motion , w(t), is an "arithmetic" Brownian motion. If you exponentiate 
the s tandard Brownian motion, to get ew(t), you get a "geometric" Brownian motion (GBM). T he 
terms "arithmetic" and ~~geometric" refer to additive and multiplicative growth, respectively. 
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8.1 . BLACK-SCHOLES ASSUMPTIONS 

From equation 8.7 (and the propert ies of logs) it can also be seen that 

In[S(T )] = In [S (t)] + (t.t - ~a2) (T - t) + a[w(T) - w(t)], 

and , therefore, t hat, if S(t ) is known, 

What is t he probability distribut ion of terminal stock price S(T ) under t hese as­
sumptions? Well , if In [S(T )jS(t)] is normal, it follows that the price relative 
S(T) j S(t) is lognormal. Thus, the terminal price S(T), condit ional on S(t) , must 
also be lognormal. All of this information is summarized in tables 8.1 and 8.2.3 

Now look at a concrete example. Suppose that t he current stock price is S(t) = 
$40, the instantaneous stock price drift is I-' = 0.16 per annum, the standard devi­
ation of continuously compounded stock returns is a = 0.20 per annum, T = l.0 
(i.e., one year) , and t = 0.5 (so T - t = 0.5, and there are six months to maturity). 
Plugging all of t hese into tables 8.1 and 8.2 yields table 8.3. 

The probability density functions for continuously compounded return X and 
price relative Y given in table 8.3 are illustrated in figures 2.3 and 2.4 (on pages 20 
and 22, respectively). The distribution of terminal stock price S(T) is illustrated in 
figure 8.l. 

Why is there a rightward shift of approximately + 1 in going from figure 2.3 
(for cont inuously compounded return X ) to figure 2.4 (for price relative Y)? It is 
because Y = S(T )jS(t) is just one plus the simple rate of return on the stock, and 
simple and continuously compounded returns are close for small values; t hat is, for 
small X , Y is roughly X + l. 

In my example, the mean, median, and mode of S(T ), conditional on S(t ) = $40, 
are all above $40 (see table 8.3). This is because of the drift upward from t ime t to 
time T. If the volatility term a 2 is very large, the median and mode can fall below 
$40. However, the ordering of the mean , median , and mode remains unchanged. 
In particular, t he median of a lognormal distribution is always below its mean. It 
follows that , more often than not, the realized value of a lognormal random variable 
falls below its expected value. Thus, more often than not, the terminal stock price 
S(T ) falls below its expected value (expectation taken at t ime t). These results are 
a direct consequence of positive skewness. That is, the long right tail drags up the 
mean of t he distribution , but with little probability mass . 

3Table 8.1 is obtained by plugging v = (,u - ~(2 ) (1' - t) and >.2 = a 2 (T - t) into table 2.1 on 
page 24 (where v and ,\2 come from equation 8.8); table 8.2 is deduced in turn from the last column 
in table 8. 1. Note t hat some authors denote the mean of the distribution of X = In 18(1')/ S(t)1 
as llJ.L" X T," where p," = J.L - ~a2 , and T is time to expiration. T his may be consistent with 
mathemat ical convention) but it causes confusion here. I choose to denote the mean of X as 
"(JL - !(2) (1' - t)/) and my notation is cons istent with the representat ion of the underly ing process 
as dS(t) = !,S(t)dt + "S(t)dw(t) . 
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CHAPTER 8. ANALYTICAL OPTION PRICING: BLACK-SCHOLES 
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Figure 8.1: Lognormal Distribution of S(T) 

Note: The lognormal probability density function J[S(T )] for t he final stock 
price S (T ) is plot ted for the part icular parameter values S(t) = $40, I" = 0.16, 
(J = 0.20, T = 1.0 (one year), and t = 0. 5 (so T - t = 0.5 , and there are six 
months to maturity) . The functional form is 

1 _! (I" (S(T»-V ) 2 

J [S (T) ] = ~"f21i=21f~'\-S-(T~) e' , , 

where v 3.75887945 and.\2 0.02 are derived from reverse 
transformations-an exercise for the reader. 
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8.1. BLA CK-SCHOLES ASSUMPTIONS 

Table 8.1: Distribution of Return and Price Relative (Black-Scholes) 

Normal Lognormal 

- (SITn X - In 5(t) 
y _ S(T) 

- 5(t) 

MEAN (I' - ~ (1') (1' - t) eJ.J (T-t) 

MEDIAN (I' - ~(1') (1' - t) e(e-~")IT-') 

MODE (I' - ~(1') (1' - t) e(ll - ~u2) (T_t) 

VARIANCE (1'(1'-t) e21l(T-t) (eU2 ( T -t) _ 1) 

STD.DEV. (1~ Ve'eIT -') (e"IT-' ) - I) 

LIMITS -00 < X < +00 O:S Y < +00 

Note: Black and Scholes assume that, conditional upon S(t) , continuously 
compounded return X = In [S(T)(S(t) ] is distributed normal, and thus that 
the price relative Y = S(T)(S(t) is distributed lognormally. Replace I' with r 
to get risk-neutral distributions. 

8.1.1 A Note on Concavity and Geometric Averages 

Simple algebra implies that 

S(T) - S(t) 
1 + S(t ) 

S(T) 
S(t) . 

It follows from the "MEAN" row in table 8.1, therefore, that equation 8.10 holds: 

(8 .10) 

However, from the same row in table 8.1, equation 8.11 must hold: 

[ ( 
S(T) - S(t))] [(S(T))] In E 1 + S(t) = In E S(t) = J.L(T - t) (8 .11) 

Thus, the expected value of the cont inuously compounded return , equation 8.10, is 
less than the continuously compounded expected return, equation 8.11. Mathemat­
ically, In (-) is a nonlinear function, and E(-) is a linear operator. In other words, 
the average of the log is less than the log of the average because the logarithm func­
tion is concave. Economically, t he continuously compounded return per unit t ime 
is expected to produce growth in a stock price that gives a simple return exceeding 
the original continuously compounded return (arithmetic averages exceed geometric 
averages) . For further details, see the discussion in Hull (2000, pp240- 241), and my 
discussion of averages in Crack (2008, p208). 
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CHAPTER 8. ANALYTICAL OPTION PRICING: BLACK-SCHOLES 

Table 8.2: Distribution of Terminal Stock Price (Black-Scholes) 

Lognormal 

S(n 

MEAN S(t )e" (T- .) 

MEDIAN S(t)e(" - ~ a' )(T - . ) 

MODE ( " ) S (t )e " - ,a ('r -t) 

VA RIA NCE S2(l) e2 1,{T - t) ( e0'2(T - t ) _ 1) 
STD. DEV. JS'( t)e' "(T-. ) (ea'(T- .) - I) 

LIMITS o :S S(~') < +00 

Note: Black and Scholes assume that, conditional upon Set ), the terminal stock 
price S(T) is distributed lognormally. Replace jJ with l' to get risk-neutral 
distributions. 

8.2 Black-Scholes Derivation 

There are many ways to derive the Black-Scholes formula. For example, you can 
take the continuous limit of a binomial tree (see section 8.3.3); you can t ake straight 
expected values under a risk-neutral probability measure (see section 4.4.2 and later 
in this section); you can "chaJlge numeraire" as well as probability measure, apply 
Ito's Lemma, and derive a PDE with boundary conditions (as in section 4.4.3); you 
can arrive at the same PDE using Merton-type hedging arguments (see section 4.4-1 
and section 9.2.1); and you can use an instantaneous-CAPlvl derivation to derive an 
equilibrium version of t he model (this was Black and Scholes' original derivation of 
the model). T hese, and other techniques, lead to the Black-Scholes formulae given 
in equations 8.17 and 8.18 on p120 4 In t his section, I present a derivation of the 
Black-Scholes formula using straight expected values under a risk-neutral probability 
measure. 

From equation 8.6 on page 112, it is deduced that the terminal stock price, SeT), 
may be written as in equation 8.12: 

SeT) = Set) exp { (fi. - ~0"2) (T - t) + O"[w(T) - w(t))} 

Set) exp { (fi. - ~0"2) (T - t) + O"W}, (8 .12) 

where W == [weT) - wet)) is distribu ted as normal N(O, T - t) under the usual 
probability measure. 

4Note that a mathematically-equ ivalent representation of the Black-Scholes formula uses s imple 
interest rate 1'1 :::::: er 

- 1. 
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8.2. BLACK-SCHOLES DERIVATION 

Table 8.3: Continuously Compounded Returns, Price Relative, and Termina l Stock 
Price: Example 

Normal Lognormal Lognormal 

( S(T~ ) X = In Set) 
Y _ SeT) 

- S(t) SiT) 

MEAN 0.07 1.08328707 43.33148271 

MEDIAN 0.07 1.07250818 42 .90032725 

MODE 0.07 1.05127110 42.05084386 

VARIANCE 0.02 0.02370649 37.93038741 

STD. DEV. 0.141 42136 0.15396913 6.15876509 

LIMITS -00 < X < +00 Osy<+oo OS SiT) < +00 

Note: This table presents a numerical example for continuously compounded 
return X , price relative Y , and terminal stock price S iT). The current stock 
price is S it) = $40, the instantaneous stock price drift is !J. = 0.16 per annum, 
the standard deviation of cont inuously compounded stock returns is a = 0.20 
per annum, T = 1.0 (i.e., one year), and t = 0.5 (so T - t = 0.5 , and there are 
six months to maturity) . Consul t tables 8. 1 and 8.2 for the formulae underlying 
the numbers. 

It can be shown t hat w(t) (a standard Brownian motion under the usual prob­

a bility measure) may be written as w(t ) = w'(t ) - (I'~r) t , where w'(t) is a stan­

dard Brownian motion under the risk-neutral probability measure.5 Substituting 

w(t) = w'(t) - (~) t into equation 8.12 yields 

5(T) 5(t ) exp { (r - ~0'2 ) (T - t) + O' [w*(T) - w*(t)] } 

5(t ) exp { (r - ~0'2) (T - t) + O'W* } , (8. 13) 

where W * = [w*(T) - w*(t)] ~ N(O, T - t ) under t he risk-neutral proba bili ty mea­
sure.G 

5Th is is Girsanov's Theorem. For mathematical details on Girsanov's Theorem, see Girsanov 
( 1960), Karatzas and Shreve (1997), or Metivier ( 1982); for option pricing applications, see Harr ison 
and Pliska (1981 ) or Merton (1992). I recommend Nawalkha and Beliaeva (2007) for its easy to 
follow introduction to hjgh-level mathematical fin ance. 

6 [ f you are uncomfortable with the Girsf),l1ov Theorem transformation , but comfortable with the 
concept of a risk-neutral world, then let the differential equation dS(t) = rS(t)dt + O'S(t)dw*(t), 
with instantaneous drift r, be your starting point. Now apply Ito's Lemma to S(t) = 
5(0) exp {(r - to'2) t + O'w""( t) } to satisfy yourself that this is the solution to that differential 
equation. Compare this with footnote 1 on page 112. 
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CHAPTER 8. ANALYTICAL OPTION PRICING: BLACK-SCHOLES 

The conversion from the usual probability measure (real-world probabilities) to 
t he risk-neutral probability measure (risk-neutral world probabilities) allows the 
option to be priced via a straightforward discounted expected payoff calculation. 
The present value of a security in a risk-neutral world is the discounted value of its 
expected payoffs, with discounting at t he riskless rate and with expectations taken 
under t he risk-neutral measure. The same u is used in both the real and risk-neutral 
worlds. 7 

Distributional results for continuously compounded returns , price relative, and 
terminal stock price are presented in tables 8.1 and 8.2. These results do not hold 
under the risk-neutral probability measure. However , we need only replace J.L by r 
in tables 8.1 and 8.2 to get t he distributional properties of these random variables 
under t he risk-neutral probability measure. Black-Scholes pricing is performed with 
respect to t he risk-neutral distributions. 

T he price of the call option at time t is t he discounted expected payoff to the 
call option, where E* denotes expectation taken under the risk-neut ral probability 
measure. The expectation is taken conditional on information at time t ; t hat is, 
conditional on SIt) , as in equation 8.14: 

crt) = e-r(T-t ) E* {max[S(T) - X , OJ I S(t)} (8 .14) 

Let "v" play t he part of W' distributed N(O, T - t ) in equation 8.13 and sub­
stitute equation 8.13 into equation 8.14 to yield equation 8.15: 

r +oo () + crt ) = e-r(T- t) Jv~-oo (S(t)e ,. _~a2 (T- t)+av - X) /v(v) dv (8. 15) 

Note that I have used the conventional (United States) notation "(-)+" to denote 
max( . , 0). Note also t hat /v (v) is t he pdf of v. 

The terminal stock price, S IT ), is lognonnally distributed, conditional on SIt ), 
and v is normally distributed 8 Equation 8.15 is simply the expectation of a non­
linear funct ion of a normal random variable, v, taken with respect to its pdf. With 
v ~ N(O, T - t ), it follows from equation 2.1 (pIg) that the pdf of v is given by 
equation 8.16: 

(8. 16) 

Now subst itute equat ion 8.16 for /v (v) in equation 8.15 to get t he call option value 

crt) = e-r(T-t) l:~oo (S (t)e(,-~a2)(T-t)+av - xt 
X 

1 e-4(A=t)2 d 
rn= ;;r;---;. v . 

v27r vT-t 

7Note, however, that in models that incorporate higher-order moments such as skewness and 
kurtosis in the underlying data-generating process (via stochastic vo lati lity, with or without jumps), 
(j is not necessarily the same in the real and risk-neutral worlds, and higher-order moments can 
also differ (see sections 9.4. 1 and 9.4.2 for discussion of jumps and stochast ic volatili ty, respectively; 
and Arnold and Crack [20031 for an alternative pricing approach) . 

Byou should review equation 8. 13 to check that. the relationship between S(1') and v :::= W"' is 
as it should be between a lognormal and a normal random variable. 
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8.2. BLACK-SCHOLES DERIVATION 

To simplify, let E = v / JT - t so that dE = -I~V_ t and the call option value becomes 

e(t) = e-r(T-t) 5(t)e r-,o (T-t)+o'vT- t - X -- e- " dE. 1+00 ( (I 2) ~) + 1 1 2 

,~-oo ,f2; 

Let EO be such that (5(t)e(r - 1o')(T- t)+0,o-lT-t - X) = 0, then 

The formula for e(t) simplifies slightly because the integrand , and thus the integral, 
are each identically zero when E < EO . 

crt) = e-r(T-t) 5(t )e r- ,o (T- t)+o'vT-t _ X -- e-" dE 1+00 ( (1 2) ~) 1 I 2 

£.=EO .j2ir 

We now split t he integrand, and thus the integral , into two components: 

e(t) e-r(T-t) 5(t) e r-,o (T- t) +o'vT-t __ e- " dE 1+00 (' ') ~ 1 1 2 

'~'o ,f2; 
e-r(T-t) X -- e- " dE 1+00 1 1 2 

'~ 'o ,f2; 

Collect terms and simplify : 

c( t) 

Notice that the exponent in the integrand of the first term is a scaled perfect square 
satisfying 

12 ~ 1 2 1 ;m--;2 1'2 --(J (T - t) + (JEyT - t - -E = --(E - (JyT - t) = - - E 
2 2 2 2 ' 

where E' == E - (JJT - t. Now substitute E' into the first integral to simplify the 
expression for crt) : 

e( t) 
;

.+00 1 1 12 

5(t) -- e-" dE' 
E'=Eo-avT-t ,f2; 

Xe-r (T-t) - - e-" dE 1+00 1 1 2 

'~'o ,f2; 

The integrands are standard normal pdfs (i.e ., equation 2.1 with v = 0 and ,\ = 1). 
Therefore, the integrals involve standard normal cdfs (see section 2.2.4). T he option 
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value c(t ) may now be written in terms of the cumulative standard normal fnnction 
N(·) as follows: 

c(t) = S (t) [1 - N(EO - a/r - t)]- Xe-r(T- t) [1 - N(EO)] 

Recall from section 2.2.4, the property of the cumulative standard normal function: 
[1 - N(z)] = N( -z) . This may be used to simplify c(t): 

c(t) = S(t)N( -EO + a/T - t) - X e-r(T-t) N( -EO) 

It is straightforward algebraic manipulation to demonstrate that if 

EO = 1 {In (~) - (1' - ~(2) (T - t)} 
a/T-t S (t) 2 ' 

then 
In (Sf)) + (1' + ~(2)(T - t) 

-Eo+a/T-t= , 
a/T - t 

and 
In (¥) + (1' - ~(2 )(T - t ) 

-EO = . 
a/T - t 

If we label the latter two terms as d[ and d2 , respectively, we get the Black-Scholes 
formula for the price of a standard European call on a non dividend-paying stock: 

c( t) S(t)N(dd - e-"(T-t) X N(d2 ), where 

In (Sf)) + (r' + ~(2 )(T - t ) 
and 

a/T - t 

d[ - a/T - t. 

The put price is similarly shown to be 

p(t) = e-r(T-t) XN ( -d2 ) - S(t)N( -dtJ . 

(8 .17) 

(8.18) 

The Black-Scholes formula was first published in Black and Scholes (1972), though 
Black and Scholes (1973) is the better-known citation. The formula appeared in the 
classroom at MIT as early as 1971. 

8.3 Black-Scholes Interpretations and Intuition 

8.3.1 Interpretation I: Recipe for Replication 

vVe discussed option replication in sections 4.2 and 7.6. In section 7.6 we discussed 
t he height, slope, and curvature of the plot of option value versus underlying stock 
price and noted that, like a Taylor series expansion , the more option characteristics 
we replicate, the better t he hedge. We noted that the simplest hedge- a delta 
hedge- replicates only height and slope. 
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stock position bond position 
~, . , 

crt) = S(t) N(d1) - e-r(T-t ) X N(d2) 
'-v-" ' , 

Ll borrowing 

Figure 8.2: Black-Scholes Replication: Call; No Dividends 

Note: This is a summary of the replication argument in section 8.3.1 for a 
call on a stock that pays no dividends. /',. is the delta of the call ; it is the 
number of units of stock to be held in a continuously rebalanced portfolio that 
replicates the payoff to t he call. The negative bond position corresponds to the 
borrowing. 

The term N(d1) in the Black-Scholes call formula is the "delta," denoted "6.," 
of a call option on a stock that does not pay dividends. N(d1 ) is equal to g~\tJ 
and is thus the slope of the plot of option price versus stock price. It is also the 
number of units of stock you must hold in a continuously rebalanced portfolio that 
replicates the payoff to the call. That is, N(d1 ) is the number of units of stock that 
you must hold when using the dynamic self-financing replicating strategy mentioned 
in section 4.2 (p68) . 

The second term in the Black-Scholes call formula, e-r(T-t) X N(d2)' is the value 
of your borrowing in a continuously rebalanced portfolio that replicates the payoff 
to the call on a non dividend-paying stock. Figure 8.2 summarizes t he Black-Scholes 
replication strategy. 

Actual Job Interview Question: You are long a call option on MITCO stock. 
You have delta hedged your posit ion. You hear on the radio that the CEO of 
MITCO has just been arrested for running a massive POl1zi scheme. The stock 
price plunges $10. How do you adjust your hedge (qualitatively)? That is, do you 
borrow and buy stock or sell stock and lend? Explain carefully. 

Taken from "Heard on The Street: Quantitative Questions from Wall Street Job 
Interviews," ©2008 Timothy Falcon Crack. See advertisement on last page or this book. 

Answer: Borrow and buy stock. If you got it wrong, then ask yourself how the replicat ing 
port folio changes (i.e. , delta fa lls, so less stock is needed in the replicating portfolio). 
Then ask yourself whether you are long or short the replicating portfolio (you are short 
here). So, you need to reduce your short stock position. You do this by buying back 
(i.e. , covering) some of the short stock. 

8.3.2 Interpretation II: DCF, Cost/Benefit 

Our basic risk-neutral option valuation formula (equation 4.3 on page 70) is V(t) = 
e-r(T - t) E;[V(T)J, where V(T) is fina l payoff and the expectation is taken in a risk­
neutral world (indicated by the asterisk) . We derived the Black-Scholes formula 
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using this formula in section 8.2. T his basic valuation formula is just a DCF in the 
risk-neutral world , so we should be able to break the Black-Scholes formula down 
into costs and benefits that are weighed against each other. 

K ey Points: 

• The Black-Scholes call pricing formula Jar options on a stock that pays 
no dividends is given by 

crt ) = S (t)N(dJ ) - e- r(T- t)XN(d2 ), where 

In (¥) + (r + ~(2)(T - t ) 
~ , and 

oyT - t 

dJ - o J T - t. 

• The first term, S(t)N(dll, is the discounted expected benefit of owning 
the option, with expectations taken under· the "risk-neutral" probability 
measure. 

• The second term, e-r(T- tlXN (d2 ), is the discounted expected cost of own­
ing the option, with expectations taken under the risk-neutral proba­
bility m easure. N (d2 ) is the {risk-neutral} probability that the option 
finishes in-the-money; X is your cost if it does; and e-r(T- tl is the 
discounting factor. 

• Taken together, the two terms that campr·ise the Black-Scholes formula 
represent a DCF analysis that weighs costs and benefits. 

Why is N(d2 ) the risk-neutral probability that t he call option finishes in-the­
money? To answer this, first rewri te d2 as follows:9 

= _ (In (:fciJ) - (1· - ~(2)(T - t)) = _ (R* - MEAN) = _ * 
d2 ~ SD Z , oyT - t 

(8.19) 

where Z * = R" -~~AN , and 

• R* == In ( ~\~n I S(Tl=X = In (S~l ) is the smallest continuously compounded re­

turn required of the stock over the life of the option if t he option is to finish 
at-the-money (i.e., where final stock price S (T ) equals X ), 

• MEAN == (r - !(2)(T - t ) is the risk-neutral expected continuously compounded 
return on the stock over t he life of the option (see table 8.1 on page 115), and 

91 use the property of logarithms that In(A) = - In Ct), for any A > O. 
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• SD =' a.../T ~ t is the standard deviation of the continuously compounded return 
on the stock over the life of the option (see table 8.1 on page 115). 

The quantity R* just defined is a particular value of the normally distributed 

R =' In (~\~n . The ratio Z* = R'-~r;;AN is a particular value of the standard 

normally distributed Z = R-~&AN. The ratio Z* is thus a regular Z-score, and 
N(Z') tells how likely it is that R:S R' (i.e., that S(T) :S X and the call finishes 
at-the-money or worse in the risk-neutral world). By definition, N(d2 ) satisfies 
N(dz) = N( ~Z') = 1 ~ N(Z*), and is therefore the probability that the call fin­
ishes in-the-money (i.e., that S(T) > X) in the risk-neutral world. See the exercise 
on page 128. 

Op Quiz: The Black-Scholes put pricing formula for options on a stock that pays 
no dividends is given by 

p(t) e-r(T-t ) XN( ~d2) - S(t)N( -d.), where 

In (8~O) + (r + ~(J2)(T - t) 
and 

(JvT - t 

d, - (JvT - t. 

Which parts of the put formula represent the discounted expected benefits and the 
discounted expected costs of owning the put option? 

Answer: The first term, e - r(T - t) X N( - d2 ), is the discounted expected benefit of 
put option ownership. The second term, S(t )N( -d, ), is the discounted expected 
cost of put option ownership. N( -d2 ) is the risk-neutral probability that the put 
finishes in-the-money. 

Note that d j = d2+a.../T ~ t. The difference between d j and d2 involves both the 
volatility, a, and the time to expiration , .../T ~ t. Conditional on the option finishing 
in-the-money, the future cost to exercising is fixed at X , but the future benefit, S(T), 
is random. The additional term, a.../T ~ t, accounts for this additional randomness 
in the benefit compared to the cost. In fact, N(d1 ) has a risk-neutral probabilistic 
interpretation: The same argument that demonstrates that N(d2) = P'(S(T) 2: X) 

also demonstrates that N(d1) = P* (S(T) 2: Xe - o-
2
(T-t)) ,where P* denotes a risk­

neutral probability.lO That is, P* denotes probability in a world where the stock 
price process with the bond as numeraire follows a martingale. See also section 8.3.4 
where N(d1 ) has a stock-numeraire probabilistic interpretation. 

101 thank Victor VV. Goodman for this result. Any errors are mine. 
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Exercise 1: You buy a straddle struck at $40 (i.e., a long call and a long put both 
with strike price X = $40). Assume the posit ion costs $3, that the options are 
European style, and that you hold the posit ion until maturity. Under t he Black­
Scholes assumptions, prove that the real-world probability that you make a profit 
on this trade (ignoring the time value of money on the $3) is just 

P (profit) N( - Zu (43)) + N(Zu(37)), where 

In (sfu) - (I' - ~(2 )(T - t ) 

avT - t 

S(t) is today's stock price, and j..t is the real-world continuously compounded 
return on the stock per annum. 

Exercise 2: Satisfy yourself that if S - 00, then N(dJ) - 1, and 
N(d2 ) - 1. It follows t hat if S - 00, t hen c(t ) ~ S - PV(X ). Now, what 
happens to N(d, ), N(d2 l. and c(t) if S ---> O? 

8.3.3 Interpretation III: Binomial Limit 

Black-Scholes pricing is the limit of plain vanilla European binomial option pricing 
as the step size gets smaller and the number of steps gets larger-as discussed in 
section 6.3. This may be demonstrated numerically (as illustra ted in figure 6.4 on 
page 97); it may also be proved a lgebraically as follows. 

For a fixed maturity of option , say six months, very small step sizes go hand in 
hand with very many steps. The stock price can therefore follow a path t hrough the 
binomial tree that looks much like the random walk assumed by Black and Scholes . 
In the limit as step size goes to zero, and the number of steps goes to infinity, the 
possible paths through the binomial tree are GBMs. 

Consider a two-step t ree-like that in figure 6.3 on page 96. Let Vuu , Vud , 
and Vdd be the values of an option at the terminal nodes . Let Vu and Vd be the 
intermediate option values. Then , applying equation 6.5 (p92) to each node, we get 
equations 8.20- 8.22 (where 1f' = [er(6') - d]/(u - d) is t he risk-neut ra l probability 
of an up move as in equation 6.5): 

e-r(6t) [7r ' Vuu + (1 - 7r')Vud] 

e-r(6') [7r' Vud + (1 - 1f')Vdd] 

e-r(6') [7r ' Vu + (1 - 7r ' )Vd] 

(8.20) 

(8 .21 ) 

(8 .22) 

We may use equation 8.20 and equation 8.21 to substitute for Vu and Vd, respectively, 
in equation 8.22. Doing so, a nd collecting terms, yields equation 8.23: 

(8 .23) 

More generally, for a J -step tree, the same process of discounting the terminal 
payoffs and then working back through the t ree using recursive substitution to solve 
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for the ini t ial V , yields the general binomial option pricing formula in equation 8.24: 

(8 .24) 

where (;) = j' d~j )! is the usual binomial coefficient (see section 2.5.3, p35), and 
VuJdJ-j is the terminal payoff to the option after j "ups" and J - j "downs." To 
avoid confusion, note that in equation 8.23, 6.t = (T- t)/2, but that in equation 8.24 
the more general 6.t = (T - t) / J is used. 

The terminal payoff to a European call after j up steps and J - j down steps 
is VuJdJ-j = max[O, S(T) - X l = max[O, SujdJ -

j - Xl. We may plug t his into 
the general formula, equation 8.24, to obtain the binomial option pricing formula 
specific to a European call- equation 8.25: 

V = e-r(T- t) [t e) (.".·)j(l - .".·)J-j[SujdJ -
j - Xl] 

S [t e}""*)1(l - ."..)J-j ( ::~~~ ) ] 
_Xe- r(T-t) [t e) ("" , )j(1-.".·)J-j] 

Sip [a; J, ifl - X e-r(T- t)ip[a; J, .".']' (8.25) 

where a is t he minimum number of upward moves needed to place the call in-the­
money at expiration,l1 if = (ue-r (6t ) ).".', and ip is the complimentary binomial 

distribution ip [a; J,'xl = [L;=a (;),Xj(1- ,X)J- j] , which is just one minus the bino­

mial cdf. 

Exercise: Prove that 1 - 7r 
equation 8.25. 

(dcc('''l)( l - ""'). This is required to derive 

After some algebra , it may be demonstrated that t he binomial option pricing 
fo rmula for the European call , equation 8.25 , tends to t he Black-Scholes European 
call fo rmula as J -> 00 and (6.t ) -> 0 (Cox, Ross, and Rubinstein [1979l; Cox and 
Rubi nstein [1985, pp196-208l ; Tian [1993]) . Implicit within t his approximation is 
that a binomial distribution is being used to approximate t he normal distribution 
assumed by Black and Scholes (as mentioned in section 2.5.3 , p35). 

We already know that .".' in equation 8.25 is t he risk-neutral probability on an up 
move in the binomial t ree. T hat is, .".' is t he probability of a stock price rise within 
the binomial framework when the stock price process with the bond as numeraire 

" So, a is the smallest non-negative integer greater t han In [X/(S(t)dJ)J/ ln(u/d) (Cox and Ru­
binstein [1985, pJ78]). Compare R" to a in equation 8.19 on page 122. 
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follows a martingale. What may come as a surprise is t hat K == (ue-r(Llt) )1f* = 
u[l - de-r(Lltll/ (u - d) in equation 8.25 is t he probability of a stock price rise within 
the binomial framework when the bond price process with the stock as numeraire 
follows a martingale (see the exercise below) . This is an example of a competing 
numeraire with an associated equivalent martingale measure, albeit in the discrete 
case. 

T he Black-Scholes terms N(dd and N (d2) have discrete-time counterparts in 
11 [a; J , KJ and 11 [a; J , 1f*], respectively, in equation 8.25 (see t he Op Quiz on page 102 
and figure 6.5 on page 98 for numerical examples) . These counterparts, combined 
with t he competing bond-numeraire and stock-numeraire probabilities embedded 
within equation 8.25, lead to bond-numeraire and stock-numeraire probabilistic in­
terpretations of N (dd and N (d2 ), discussed in section 8.3.4. 

Exercise (difficult): Demonstrate that if K == (ue-,·("t ))11'* = u[l - de-r("t )j/(u­
d) is the probability of an up move in the binomial framework, then 

E [ B (t + 6.t) I B(t) 1 = B(t) 
S(t + 6.t) S(t) S(t ) , 

(8.26) 

where E denotes expectations taken with respect to the probabilities 7r. That is, 
under the probabilities K, the bond, de-trended by the stock, follows a martingale 
in the binomial framework. Compare equation 8.26 with equation 4.4 in section 4.4 
on page 71. 

8.3.4 Interpretation IV: Stock-Numeraire 

Section 8.3.3 discussed the discrete case of the competing-numeraire equivalent mar­
tingale probabilities 1f* and K corresponding to the binomial case of the risk-neutral 
and stock-numeraire worlds, respectively12 Just as we showed in section 8.3.2 t hat 
N(d2) = P*(S(T) > X ), we show here that N(dtl = P(S(T) > X), where P* and 
P are the risk-neutral and stock-numeraire equivalent martingale measures, respec­
t ively. That is, P* and P are the probability measures under which , respectively, the 
stock de-trended by the bond and the bond de-trended by the stock follow martin­
gales (see Musiela an d Rutkowski [1992, pp114, 120- 1211 for deep details including 
Radon-Nikodym derivatives) . 

Begin with the bond and stock price processes assumed by Black and Scholes 
(1973), as shown in equations 8.1 and 8.2 on page 112. We now ask what does 
equation 8.26 imply about the stock's drift f.', when applied to the stock and bond 
price processes in equations 8.1 and 8.2? Plugging equations 8.1 and 8.2 into equa­
t ion 8.26, replacing w (a standard Brownian motion under P ) in equation 8.2 wit h 
w (a standard Brownian motion under P), and using t ime t and time 0 (in place of 

12 1 thank Scott Chaput for contributions to th is sect ion. Any errors are mine. 

©2009 Timothy Falcon Crack 126 All R.ights Reserved \Vorldwide 



8.S. BLACK-SCHOLES INTERPRETATIONS AND INTUITION 

time t +!J.t and time t), equation 8.26 is transformed into equation 8.27: 

E [B(t) I B(O)] 
8(t) 8(0) 

=} E [8(0)e(l'-e;:21t+aW(t1 I 8~0) 1 

B(O) 
8(0) 

1 

8(0) 

=} e(r-I'+~a21t E [e- aw(t1] 1 (8 .27) 

However, e- aw(tl in this equation is lognormal because -crw(t) ~ N(O, cr 2t) under 
P by the properties of a standard Brownian motion (see p112). It follows from ta-

ble 2.1, on page 24, that E [e - aw(t1] = eo+ u~t, and plugging this into equation 8.27, 

we deduce that e(r-I'+a2)t = 1 under P. It follows that13 J.1. = T + cr 2 , if we are to 
have [B(t)/8(t)J follow a martingale under P. Let us now calculate P(S(T) > X) 
using this /-t . 

P(S(T) > X) - (S(T) X) 
P S(t) > 8(t) 

P >-
_ (s(0)e[(I,-~a2)T+aW(T)J X ) 

S(0)e[(I'-~a2)t+aw(t)J S(t) 

P >-
_ (e[(r+~a2)T+aW(T1J X) 

e[(r+1a2)t+aw(t)J 8(t) 

P (e[(r+ 1a2)(T-t1+a[w(Tl-W(t) J] > ~) 
S(t) 

p{[ (r + ~cr2) (T- t) +cr[w(T) -w(t)J] > In (8~))} 
_ ( In (s1t)) - (r + ~cr2) (T - t)) 
P [w(T) - w(t)] > ---"='--~--=----'---

cr 

_ (_ In (s1tJ - (r + 1cr2
) (T - t)) 

P V>-~:!"!"'----'-~-"--­
cr 

_( if In(sm)-(T+~tr2)(T-t)) 
P ~> ~ , yT-t cryT-t 

(8.28) 

where if == w(T) - w(t) ~ N [0, (T - t)l, by the properties of a standard Brownian 
motion (see p112). Now define Z == if/vT - t. By definition, Z is distributed 

13Note that the statement "tt = r + 0-
2

" assumes that the data-generating process is Set) = 

S(O) exp [(JL - ~0"2) t + (Tw(t) ] , where wet) is a standard Brownian motion under P. You cannot 
plug /-L = r + 0-2 directly into equation 8.2 on page 112) because the Brownian motion term is then 

mis-speci fled. 
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standard normal under P. Equation 8.28 thus yields equation 8.29, which leads to 
equation 8.30 via Z-score arguments: 

P (S(T) > X ) 

P(Z> - dtl 
1- N(-d,) 

N(d1), 

(8 .29) 

(8 .30) 

where I used the property of logarithms t hat -In(A) = In (*), for any A > 0, and 

the property of t he cumulative standard normal t hat 1 - N( -z) = N(z) . 

Exercise; Prove that N(d2 ) = P'(S(T ) > X ) by replicat ing equations 8.28, 8.29, 
and 8.30 for the P* risk-neutral measure. 

We now have the symmetrical results that N(d1 ) P(S(T) > X ) and N(d2 ) 

P '( S(T) > X ), where P and P' are the stock-numeraire and risk-neutral equiva­
lent martingale measures, respectively. That is, as stated earlier , P and P' are t he 
probability measures under which , respectively, the bond de-trended by the stock 
and the stock de-trended by the bond follow martingales. 

Exercise 1: The Black-Scholes put pricing formula for an option on a stock that 
pays no dividends is given by 

p(t) e - r(T - t ) XN ( - d2 ) - 8(t)N( - d,), where 

In (S5: )) + (r + ~(72)(T - t) 
and 

(7.,jT - t 

d, - (7.,jT - t. 

Use calculus to confirm that D. '" Zi\:\ = - N( - d,). 

Exercise 2: In the case where the stock pays continuous dividends at rate 
p, Merton (1973) extends the basic Black-Scholes formula by replacing 8 (t) by 
S(t)e - p(T-t) . Perform this replacement for the call ) rewrite the formula, and 
recalculate the call option delta to confirm that it now equals e - p(1'- t ) N(dr). The 
interpretation is simple: The replicating strategy now needs slightly fewer shares 
because dividends that leak out may be reinvested to create more shares. See 
section 8.5.1 (p139) for the full formulae. 

Do not lose sight of the fact that N(d1 ) and N(d2) are just numbers. The prob­
abilistic interpretations we place on them aiel our understanding, and , in the case 
of the bond-numeraire argument, allow us to use the risk-neutra l technique to price 
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stock position bond position 
~, . , 

crt) = S(t ) N(dd - [e-r(T-t) X J N(d2 ) 
'-v-''-v-' '----v----''-v-' 
PVs P(in) PVB P'(in) 

Figure 8.3: Competing-Nnmeraire Symmetry Black-Scholes Summary 

Note: This figure summarizes the competing-llumeraire symmetry results of 
section 8.3 .4 for a call on a stock with no dividends. The first term is the 
stock term; the second is the bond term. First term: S(t)N(dll is the stock 
position in a replicating portfolio (see section 8.3.1, p120); PVs is the present 
value of time-T stock price S(T); and F(in) = F (S(T) > X ) is the probability 
that the call finishes in the money in the stock-nume.raire world in which the 
bond price de-trended by t he stock price follows a martingale under F. Second 
term: _e-r(T-t) X N(d2 ) is the bond position in a replicating portfolio (see 
section 8.3.1 ); PVB is the present value of a discount bond with face value X 
that matures at t ime T; and P' (in) = P'(S(T) > X ) is t he probability that 
the call finishes in the money in the risk-neutral world in which the stock price 
de-trended by the bond price follows a martingale under p ' . 

options more broadly. T he original Black-Scholes instantaneous CAPM and Merton 
hedge arguments do not, however, contain these probabilistic interpretations; Black, 
Scholes, and Merton were not aware of these interpretations until several years after 
they had derived their origina l results (see section 4.4 .2, p75). 

You may have seen t he risk-neutral equivalent martingale measure result that 
N(d2) = P'(S(T ) > X ), but not the stock-numeraire equivalent martingale measure 
resul t, N(dd = P(S(T) > X ). I think t his is for historical reasons. The risk-neutral 
equiva lent martingale measure evolved natura lly out of work conducted by Cox and 
Ross (see Cox and Ross [1976]). This work, in turn, built on t he search, 10 to 15 
years earlier , for a solut ion to t he discount rate puzzle for op t ion pricing (e.g., Spren­
kle [1961J and Samuelson [1965]). The arrival of risk-neutral discounting solved the 
d iscount rate puzzle and was carried forward vigorously. In particular , in the risk­
neutral measure world, we have t he result that E*[S(T)IS(t) J = S(t)er(T-t ), and this 
holds for every security in t he risk-neutral world including options. In the stock­
numeraire world , however, we have t he result t hat E [Si(T )ISi(t )J = Si(t)e(r+ulHT- t) 
for stock i, and this is security-specific. Although the former appears intuitively 
more simple than the latter ,14 the Black-Scholes formula can be derived just as 
easily under the stock-numeraire equivalent martingale measure as it is under t he 
risk-neutral equivalent martingale measure; You just have to discount the option 
payoff using the stock numeriare. For an example of this, you can attempt the proof 
mentioned at t he end of the op quiz on page 135. 

14 .. . simpler because option returns are st ill path-dependent random variables in the stock­
numeriare world and this is unlike risk-neutral-world DCF, which simpli fies matters tremendously 
(as shown in sections 4. 1- 4.3 , pp67- 70). 
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Exercise : Figure 8.3 presents competing-numeraire symmetry results as an inter­
pretation of the Black-Scholes call formula. Vhite down the analogous result for 
the Black-Scholes put formula. 

A summary of t he competing-numeraire symmetry resnlts appears in figure 8.3. T he 
summary draws on results from section 8.3.l. The stock position in t he replicating 
portfolio of section 8.3.1 is composed of t he present value of future stock price and 
the probability that t he call finishes in-the-money if the stock is used as numeraire 
(where the bond price so de-trended follows a martingale under Pl. Similarly, and 
symmetrically, the bond position in the replicating portfolio is composed of the 
present value of a fu ture discount bond price and the probability that the call fin­
ishes in-the-money if t he discount bond is used as numeraire (where t he stock price 
so de-trended follows a martingale under P*). Be sure to see the stock-numeraire 
op quiz (p135) for another representation of the Black-Scholes formula. 

8.3.5 Interpretation V: Digital (Binary) Options 

The payoff to a standard call option may be broken down into payoffs to two exotic 
options: a "digital (or 'binari) asset-or-nothing option" and a "digital (or 'bi­
nary') cash-or-nothing option." The European digital asset-or-nothing pays S(T) 
if S(T) > X, and zero otherwise; hence its name. It is worth S(t)N(dJl today. 
T he European digital cash-or-nothing with "bet" size H pays H if S(T) > X , and 
zero otherwise; hence its name. It is worth He-r(T-tlN(d2). If H = X , then a 
long digital asset-or-nothing, combined with a short digital cash-or-nothing exactly 
replicates the payoff to a call. 

Exercise : Draw the payoff diagrams (terminal cash flow to option on the vertical 
versus terminal price of underlying stock on the horizontal) to both digital options. 
Note that for S(T) > X, the asset-or-nothing dominates the cash or nothing, and 
thus a regular call (Le., long asset-or-nothing and short cash-or-nothing with bet 
size H = X) is never worth less than zero. 

8.3.6 Interpretation VI: Conditional Payoffs 

The first term in the Black-Scholes formula for a call on a non dividend-paying stock 

is S(t)N(d]) , where d] = [In(SI X ) + (r + ~a2) (T - t)l 1 (aJ(T - t»). Could it 
be that equation 8.31 holds? 

S(t)N(dl) ~ e-r(T- t)E*[S(T)IS(T ) > Xl (8 .31 ) 

The answer is "no," even though the present value of the digital asset-or-nothing 
option is S(t)N(dIl, and t his option does indeed payoff S(T) when S(T) > X. Let 
us apply some simple economic intuition to prove that equation 8.31 is false before 
working out t he correction. 
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Suppose X is $100 and that S(t) is around $100. Consider a six-month option. 
Between now and expiration, the stock price could go up or down, so there must be 
a roughly 50% chance that the option will finish in-the-money. From section 8.3.2 it 
follows that N(d2 ) is roughly 0.50. N(dJ) is roughly the same as N(d2 ) by definition , 
so N(dd is also roughly 0.50. With S(t) "" $100 and N(dJ) "" 0.50, it follows that 
the digital asset-or-nothing option is valued at S(t)N(d1) "" $50, t hus fixing the 
LHS of equation 8.3l. 

What about the RHS of equation 8.31; i.e., e-r(T-t}E'[S(T)IS(T) > X J? Well , 
in my example, E'[S(T) IS(T) > Xl is t he expected value of the terminal stock 
price condit ional upon the stock price being above $100. This must be a num­
ber above $100 by defini t ion; something like $105, say. Discounting it back means 
that e- r(T- t} E'[S(T) IS(T ) > Xl must be a number of the order of $100. With 
S(t)N(d1 ) "" $50 and e-r(T-t}E'[S(T )IS(T) > Xl "" $100, the RHS of equa­
tion 8.31 is roughly twice the LHS in this case. It follows that S(t)N(d1 ) # 
e-r(T-t} E' [S(T) IS(T) > Xl. 

The asset-or-nothing option that pays off S(T) if S(T) > X and nothing other­
wise does not have payoff "S(T) IS(T) > X ." Rather, it has payoff Jx [S(T)], where 
IxO is an indicator function defined as follows: 

I ( ) - {X; if X > X , 
X x = 0; otherwise. 

That is, the digita l asset-or-nothing option has payoff 

if S(T) > X , 
otherwise, 

and this is not the same as S(T)IS(T) > X. 

(8.32) 

If we repeat t he portion of the calculus used in section 8.2 (p1l6) to arrive a t 
the first term S(t)N(d1 ) in the Black-Scholes call formula, we can confirm t hat 
equation 8.33 holds: 

S(t)N(d1 ) = e- r(T-t} E' {Ix [S(T)]} , (8.33) 

with Ix [S(T)l as given in equation 8.32. As a simple analogy, consider a random 
variable Y, defined as follows: 

1· , with probability 0.20 
2· , with probability 0.20 

Y= 3· , with probability 0.20 
4· , with probability 0.20 
5· , with probability 0.20 

Clearly, E(YIY > 3) = 4.5. Now consider a transformation of Y analogous to the 
payoff to an asset-or-nothing option that pays off Y if Y > 3, but zero otherwise; 
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label this U (for payoff in the 1!Pper part of the distribution): 

0; with probabili ty 0.20 
0; with probability 0.20 

U == max(Y,O) = 0; with probability 0.20 
4; with probability 0.20 
5; with probabili ty 0.20 

Clearly, E(U) = E [max(Y, a)] = 1.8 and t his differs from E(YIY > 3). The random 
variable U exists and has payoffs equal to zero when Y :::; 3. These zero payoffs 
and their probabilities are taken into account when finding E(U) = E [max(Y, 0)], 
but are ignored when calculating E(YIY > 3) because the conditional distribution 
Y IY > 3 takes values only when Y > 3 and is undefined otherwise. Thus, t he 
conditional probability distribution Y IY > 3 needs to be grossed up so that the 
probabilit ies sum to one. That is, 

YIY 3 = { 4; with probability 0.50 
> 5; with probabi lity 0.50. 

The relationship is that E(YIY > 3) = Pf,~~)3) = b:~g = 4.50. Using the earlier 
indicator function notation, we may write E(U) = E [h (Y )], and we may deduce 
equation 8.34: 

E(YI Y > 3) = E [h(Y)] 
P (Y > 3) 

(8.34) 

If we replace Y by S(T), and 3 by X , in equation 8.34, and multiply t hrough by 
e-r(T- t), we deduce equation 8.35 as the correction to equation 8.31: 

-r(1'-t) E*[S(T) IS(T) X ] = e- , (T- t)E* {Ix[S(T)]} = S(t)N(dd 
e > P*(S(T ) > X) N(d2) , 

where we have used t he fact that 

S(t)N(d1 ) = e-r(T- t) E* {Ix [S(T)]} , and 

N(d2 ) = P*(S(T) > X ). 

(8.35) 

The denominator, N(d2), in equation 8.35 is absent in equation 8.31. T his absence 
explains the earlier numerical example being out by a rough factor of two, because 

N(d2) "" 0.50 implies N(~2) "" 2. 
Riskless drift in the risk-neutral world implies E*[S(T)] = S(t )e,·(T-t) = F (t), 

where F (t) is the forward price. If we multiply both sides of equation 8.35 by 
edT- t ) , we can use this resul t to deduce equation 8.36 relating the conditional and 
uncondit ional expectations of S(T) to the forward price F (t) : 

er(T- t)S(t )N(dd 
E '[S(T)IS(T) > X] = N(d

2
) 
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= E '[S(T)] N (dd 
N(d2 ) 

= F () N(d1 ) 
t N(d2 ) 

132 

(8 .36) 
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Equation 8.36 is interesting for several reasons: 

• T he relationship d1 = d2 + a JT - t, and t he monotonic increasing nature of 
NO, imply t hat N(dl) > N(dz), and thus that the multiplier in equation 8.36 

satisfies Z~~:l > 1. The multiplier ZI~:l is an adjustment factor that adjust s 
upward the unconditiona l expectation E'[S(T)) to arrive at the conditional 
expectation E ' [S(T) IS(T) > X), which is more relevant for option pricing. 

• Equation 8.36 can be rearranged to yield equation 8.37: 

S(t)N(d1) = e-,·(T-t) E'[S(T)IS(T) > X)N(d2) (8.37) 

Equation 8.37 may be substit uted directly into the Black-Scholes call pricing 
formula (equation 8.17, p120) to yield equation 8.38: 

e(t) = e- r(T- t) {E'[S(T)IS(T) > X) - X} N(d2), 

In (¥) + (r - !a2 )(T - t) 
where dz = 

aJT-t 

(8.38) 

Key Point: Equation 8.38 gives us another way of looking at Black-Scholes: 

e{t) = e-r(T-t) {E'[S{T) IS{T) > X ] - X} N{d2 ), 
'-...-" '" ' '-.,.-'' 

where d2 = 

discounted expected net payoff 

In (¥) + (,' - !a2 )(T - t) 

"JT - t 

(8.39) 

T here is risk-neutral probability P'{in) = N{d2 ) that the call option finishes in­
the-money. In that case, your risk-neutral expected benefit is E'[S{T)IS{T) > X], 
and your risk-neutral expected cost is X. The risk-neutral expected future benefit 
of call option ownership is E '[S{T)IS{T) > X ] . N{d2 ), and this is identical to 
er(T-t) S(t )N(d

J
) . 

• If S(t) is very large relative to X , i.e., X « S(t), the call is so likely to finish in­
the-money that E'[S(T)IS(T) > X) "" E'[S(T)) must hold , and equation 8.36 

then implies that Z~~: l must be very close to one. Indeed, when X « S(t) , 
both N(d,) and N(d2) are very close to one, and so must be t heir ratio. 

• If the call option is so deep in-t he-money that E'[S(T) IS(T) > X) "" E'[S(T)), 
then equation 8.39 implies t hat 

c(t) = e-r(T-t) {E'[S(T)IS(T) > X ) - X} N(d2) 

"" e- r(T - t) {E'[S(T)) - X} N(d2) 

e-r(T- t) [F (t) - X) N(d2 ) 

"" e-,·(T-t) [F(t) - X ), (8.40) 
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where F (t ) = E*[S(T)l = er(T-t) S(t ) is t he forward price, and t he last step 
follows because N(d2) '" 1 for deep in-the-money options. That is, a deep 
in-the-money call has roughly the same expected payoff as a forward contract , 
where at t ime T , you agree to pay X and receive today's F (t ) . 

• When X is very large relative to S(t), i.e., S(t) « X , the call is deep out-of­
the-money and it is very unlikely that t he stock will finish above X at time 
T. The conditional expectation E*[S(T)IS(T ) > X ], however, ignores any 
other possibili ty and grosses up the probability to use a pdf defined only 
over S(T) > X. This means that E*[S(T)IS(T) > Xl must be close to 
X, but slightly higher. For large X , each extra dollar of X thus increases 
E*[S(T)IS(T) > Xl by almost exactly a dollar. Wit h E*[S(T)IS(T) > Xl so 
X -like, equation 8.36 implies that 

and thus that for large X , 

er(T-t) S( t )N(dtl 

N(d2 ) 
;::::::: x , 

N(dl ) X X 
N(d2) '" er(T t)S(t) = F(t)' 

The ratio ~f~;l can thus be arbit rarily large for large X ; i.e. , for deep out-of­
t he-money call options . 

• For the stock options that I trade, t he typical range of values of ~f~;l is something 
like 1- 1.50. 

Exercise: In a similar vein to equation 8.39, demonstrate that equation 8.41 holds 
for European puts. 

pet) 

d2 = 

e-r(T-tl {X - E* [S (T) IS(T) < Xl} N( -d2 ) 

In (~) + (,. - 4(2)(T - t) 

uvT-t 

Hint: Begin by showing that 

+r(T- tlS (t)N( d) 
E *[S(T) IS (T) < Xl = e N( - d

2
) - 1 , 

t hen substit ute t he result into equation 8.18 (p120) for a put . Recall that 

rwo 
E *[S(T) IS(T) < Xl = Jw~-oo S(t)e(r-1 u'HT- tl+uw fw (w) dw, 

(8.41) 

for Wo such that S(t)e(,·-ta'HT-tl +uw" = X , where W ~ N [O, (T - t) l is a Brownian 
motion. 
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Op Quiz (difficult): Can you use the stock-numeraire results of section 8.3.4 
to derive a conditional expectation result analogous to equations 8.39 and 8.41 
but ending in N(dd for the call and N( - dr) for the put? 

Answer: Yes, we may write e(t ) = { S(t) - X · E [f/i!) IS(T) > X ] } N(dr), and 

p(t) = {X . E [fig IS(T) > x] -S(t) } N( - dr), where E(.) is expectation un­

der the stock-numeraire measure. To derive these, note that the option payoff is 
discounted using the stock-numeraire backwards from time T to time t: 

- [ S(t) I 1 E S(T) [S(T ) - Xl S(T) > X !!J:3:J 
'-v-' ' .. ' P(in) 

discount factor (stochastic) conditional net payoff 

e(t) (8.42) 

- [ S(t) S(t) I ] 
E S(T)' S(T) - S(T) X S(T) > X N(dr) (8.43) 

L~" , -"i:E [*II:,,} > xl) ~ 
discount factor 

(8.44) 

Note 1: I thank Andreas Stirnemann for supplying the solut ion to this op quiz; 
any errors are mine. 

Note 2: We can break up the discount factor, pull out S(t), and write the ex­

pression for the call concisely as e(t) = S(t) { 1 - X . E [ si'T) IS(T) > X ] } N(d r ), 

but some of the economic intuition is lost; a similar result holds for the put. 

Note 3: Comparing equation 8.44 to Black-Scholes, you should be able to 

deduce that E [ f{g IS(T) > X] = e - r(T-t ) ~~~:l · 
Hint: If you attempt the tedious proof of these results, be sure to use 
/l. = ,. + (J'2 (see p127), and to rescale the conditional pdf by P( in) = N(d,) for 
the integral (analogous to step (*) on page 27). 

8.3,7 Interpretation VII: PDE Solution 

The Black-Scholes formulae are solutions to PDEs. We showed in sections 4.4,1 and 
4.4,3 that financial PDEs can be generated by hedging arguments and by martin­
gale arguments, respectively, \Ve discussed PDE generation further in section 7.3 
and followed up with discussions of solut ion techniques in sections 7.4 and 7.5, and 
interpretations in section 7.6. Section 8.8, later in this chapter , also discusses the 
Greeks and PDEs. 

©2009 Ti mothy Falcon Crack 135 All Rights Reserved Worldwide 



CHAPTER 8. ANALY TICAL OPTION PRICING: BLACK-SCHOLES 

Exercise: \¥e demonstrated in the exercise on page 104 that simple investments 
in both the stock and the bond satisfy the Black-Scholes PDE. Prove now that 
Black-Scholes call and put formulae satisfy t he Black-Scholes PDE. Be sure to use 
the original no-dividend version of the Black-Scholes formulae if you use the no­
dividend PDE, and the IVIerton continuous-dividend version of the Black-Scholes 
form ulae (see section 8.5.1) if you use the continuous-d ividend PDE. 

8 .3.8 Interpretation VIII: See figure 3 .3 

In figure 3.3 (p59), we plotted the value of the European call and put versus the 
underlying stock price using the Black-Scholes formula. For t he call , a tangent line 
drawn anywhere has slope N(d J ) and intercept _e-r(T-t ) X N(d2) ' For t he put, a 
tangent line drawn anywhere has slope -N( -dJ) and intercept e-T(T-t ) X N( -d2). 
See t he summaries in equations 8.45 and 8.46: 

crt ) -y-axis 

p(t) -y-axis 

S(t) N(dJ) _e- T(T-t ) X N(d2) 
_'-v-" . 
x-axis s lope intercept 

e- T(T- t)XN(-d2) - N(-dJ ) S (t) 
, . '----.,.-----"-

inte rcept slope x -axis 

(8.45) 

(8.46) 

At firs t glance, crt) = S(t)N(d J ) - e- "(T- t) XN (d2) appears to have the form 
crt) = S . a + b, where a = N(d J ) and b = _e-r(T-t) X N(d2)' If a and bare 
not functions of S, then it follows immediately tha t in the Soc-plane, a and b must 
be the slope and intercept, respectively, of any tangent line. Note, however, that 
both N(dJ ) and N(d2) aTe functions of S. It follows that both a = N(dd and 
b = -e- r(T- t)X N(d2) are functions of S and my statements about slopes and in­
tercepts are not immediate, but need to be derived (see the exercise fo llowing). 

Exercise: Given equation 8. 17 (p120) , and equation 8.18 (p120), prove that 
g~\:\ = N(dIJ and g~\:\ = - N( - dd. Deduce, therefore, that a line drawn tan­
gent to the plot of option value must have these slopes, with intercepts as stated 
in equations 8.45 and 8.46. 

8.4 Approximations to B lack-Scholes 

The more intuition you have about Black-Scholes pricing, the more likely it is that 
you can derive approximations to the form ula t hat allow you to distill the essent ial 
characteristics. 

For example, Cox, Ross, and Rubinstein (1979) use a binomial approximation 
to t he Brownian motion to derive binomial option pricing and t he binomial option 
pricing formula (see my equations 8.24 and 8.25, pages 125 and 125). T his provides 
intuition insofar as providing an approximation to t he price process that is easy to 
understand. A second example is that a deep in-the-money call is worth crt) '" S(t)-
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e-T(T-t)X (see sections 3.6.2-3.6.3 on pp55- 57 and equation 8.40 on page133) . T his 
approximation is based on the simple observation that high likelihood of exercise 
removes the N(di ) terms . 

8.4.1 Louis Jean Baptiste Alphonse Bachelier (1900) 

Modern option pricing theory derives from the work of Robert Merton, Fischer 
Black, and Myron Scholes in t he very early 1970s. They, in turn, were inspired by 
Paul Samuelson 's work at MIT in the mid- to late-1960s. Samuelson, in turn , was 
inspired by Louis Bachelier 's work around 1900 at the Sorbo nne, in Paris. Bachelier 
derived a closed-form option pricing formula that is closely related to the Black­
Scholes formula. 

There are many ways to arrive at Bachelier's formula. I derive it first in t his 
section using simple intui tion and loose mathematics. I then derive a generalization 
of it using PDEs in section 9.2.1. 

Take an at-the-money call (i.e., S = X ). Assume r = 0 (it is t he least important 
input in Black-Scholes anyway, and it is not far wrong in the US in 2009). With 
risk-neutral drift zero, there is roughly a fifty-fifty chance that the option expires 
in-the-money as opposed to being worthless in a risk-neutral world. With r = 0, the 
formula for option value as discounted expected payoff then simplifies to expected 
payoff, and reduces to equation 8.49: 

c(t) "" (P' (S T) . E*[payoffIS Tl) + (P'(S 1) . E*[payoffIS 1J) 

~ . E*[S(T) - S(t)IS Tl + ~ . [OIS 1J (8.47) 
2 2 

~ . E'[S(T) - S(tllS Tl (8 .48) 

~ . S(t) . E' [S(T) - S(t ) 1ST] (S.49) 
2 S(t) 

For small returns, [S(T) - S(t)JlS(t) "" In [S(T)/S(t)J. We may deduce from ta­
ble 8.1 on page 115 that t he continuously compounded rate of return In [S(T)/S(t)J 
is normal with risk-neutral mean (r - ~lT2)(T - t) and standard deviation uJT - t. 
' 'Vith r assumed zero, this mean is roughly zero (e.g., u = 0.30, and T - t = 0.5 
implies ~u2(T - t) = 0.0225). Although it is the cont inuously compounded return 
that is distributed normally, not [S(T) - S(t)JI S(t) , we shall d ispense with formality 
and use the above-mentioned approximat ion [S(T) - S(t)JlS(t) "" In [S(T)/S(t)J to 
drive a special case of equation 2.7 (see p28) as follows: 

Y ~ N(O , >,2) implies E(YIY > 0) = >,~ 
This resul t allows us to replace E' {[S(T) - S(t)J / S(t)1 S T} in equation 8.49 with 

uJT - tf'i, thus yielding equations S.50 and 8.51. 

c( t) '" 1 ~ - . S(t) . uJT - t -
2 7r 

(S .50) 
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=} c( t) '" 
S(t)u~ 

..f2ii 
(8 .51) 

Equation 8.51 is very close to Bachelier 's option pricing formula. In fact, Bachelier's 
ABM has the data-generating process dS = a Adw, where a A is volatili ty of price 
change. If a is the volatili ty of returns to the GBM, then the volatili ty a A in the 
ABM is roughly equal to as. Replacing as in equation 8.51 by a A yields Bachelier's 
original 1900 option pricing formula given in equation 8.52: 

crt) 
aA~ 

..f2ii 

'" 0.4 · a A >/T - t 

(8.52) 

Key Point: Louis Bachelier's equation 8.52 is the ABlvI equivalent of my GBM­
derived equation 8.51: 

crt) 
UA~ 

J2i. 
S(tju~ 

J2i. 
'" O.4S(tjuvT - t . 

For S = X, and ,. = 0, Bachelier's formula is within about 2% of Black-Scholes 
pricing. It works for both puts and calls. It also tells us how at-the-money option 
values change given changes in S(t), a , and T - t . Be careful- it compares at-the-­
money options only. 

My first book, Heard on The Street, (Crack [2008]) contains over 170 quanti­
tative finance job interview questions (see the last page of t his book for details). 
For example, "What is t he value of a t hree-mont h at-the-money (i.e., S = X ) call 
option on a $100 stock when the a is 40? Please assume ,. = 0 (it is the least 
important ingredient anyway) and assume also that the stock pays no dividends. 
You have 10 seconds to perform the calculation in your head. Now tell me how your 
answer changes if it is a put ." Well , it is 0.40 t imes $100 times 0.40 t imes >/0.25. 
We know >/0.25 = 0.50, so multiply in your head... . .. equals $8. For at-the-money 
options when T = 0, the European put and call have the same value. If you go to 
the Black-Scholes formulae and work it out, you get $7.97 for the call and for the 
put. Not a bad approximation! See section 9.2.1 for more general ABM results. 

Exercise: Prove that if S = X and ,- = 0 then put-call parity implies crt) = p(t); 
that is, the at-the-money European call and put have the same value if interest 
rates are zero. 

I think it may be useful for you to compare equation 8.39 (pI33) with equa­
tion 8.47 (pI 37). Both involve a breakdown of option payoff into two cases, one 
of which is zero . Both involve mult iplication of t hose payoffs by the probability of 
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occurrence, and both involve discount ing . E quation 8.39 implicitly drops t he zero­
payoff case and equation 8.47 discounts at a zero rate, but I do think additional 
intuition for equation 8.39 can be gained by looking at equation 8 .47. 

Exercise (difficult): Derive my version of Bachelier's formula, equation 8.51, 
directly from the Black-Scholes call formula, equation 8.17, by plugging in S = X 
and T = 0, and approximating the height of the standard normal curve by its 
height at zero (i.e., 1/ V2ii ). Hint: If a > 0 and small, then N(a) - N( - a) is 
t he area under t he standard normal curve from - a to +a, and this is roughly 

rectangular with basea-(-a) = 2aand heightfz(z)I,~o = -b-e-tz'l = + 
\/211' z=o ..., 27r 

Op Quiz: Use my version of Bachelier's option pricing formula, equation 8.51, to 
deduce what happens to the price of an at-the-money call if (a) t ime to maturity 
is multiplied by a factor of four, (b) volatil ity, a, doubles, or (c) stock price Set) 
goes up 50%. 

Answer: The formula is cit) '" 0.40S(t)aVT - t. (a) The option price is related 
to t ime to maturity t hrough the surd v. SO, if maturity is four times as far away, 

t hen price changes by a factor of J4 = 2; i.e., it doubles. (b) The option price is 
linear in volatility, a , so doubling the volatility doubles the price. (c) If stock price 
goes up 50%, the option is no longer at-the-money, and Bachelier's formula does 
not apply. The delta of an at-the-money call is approximately one-half. The delta 
of a deep in- the-money call is approximately one. If you know the stock went from 
$40 to $60, say, then the option probably increased by about 0.75·$20 = $15 (where 
0.75 is the average of the deltas of one-half and one, and $20 = 6.S = $60 - $40). 

8.5 Immediate Extensions 

8.5.1 Index: Merton (1973) 

Merton (1973) generalizes the no-dividend Black-Scholes formula to the case of calls 
and puts on underly ing assets paying continuous dividends at rate p, as shown in 
equat ions 8.53 and 8.54: 

cit) 

pet) 

= S (t )e-p(T-tlN(dl ) - e-r(T- tl XN(d2), and 

e-r(T-tl X N( - d2 ) - S (t)e-p(T-tl N( -d1), where 

In (Sfl) + (I· - P + 1,,2)(T - t) 
and 

"JT - t 

In (Sfl) + (r - p- ~(2)(T- t) ~ 
_-'....:..'--'-_ _ ~=c'-___ = d 1 - av T - t . 

aJT-t 
d2 = 

(8.53) 

(8.54) 

Merton's model works well for European index opt ions where div idends, although 
clustered, are closer to continuous than the lump sum payment for an individual 
stock. If, however , an underlying stock pays lump sum dividends of present value D 
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during the life of the option, then you may plug S · = S - D into t he Black-Scholes 
formulae and, in theory, you should use some 17* > 17 since the ex-dividend process 
is more volatile (see footnote 2 on page 154). 

Exercise: Derive lvlerton's call pricing formula, equat ion 8.53, by replacing S(t) 
with S(t)e-p(T-') throughout the original Black-Scholes call formula, equation 8.17 
(1'120), You need to lise the properties of logarithms and exponentials discussed 
in chapter 2. 

8.5.2 Futures: Black (1976b) 

Black (1976b) applies Merton's model to futures options by putting" in place of p 
and assuming that futures prices follow a GBIVI. 

Exercise (difficult) : Black assumes that futures options may be priced as if the 
fut ures price is the price of a traded asset that bleeds a continuous dividend at rate 
T. Explai n why we can replace p by 7' to price futures options in the risk-neutral 
world. 

8.5.3 FX: Garman and Kohlhagen (1983) and Grabbe (1983) 

Garman and Kohlhagen (1983) and Grabbe (1983) apply Merton's model to FX 
options with the foreign interest rate in place of p (recall the discussion of FX in 
section 2.4.3 (p31) establishing FX as an asset paying a continuous dividend). Thus, 
t he price of USD-denominated call and put options on GBP, for example, are given 
by equations 8.55 and 8.56, respectively: 

crt) 

p(t) 

S(t) e-Tca(T-t) N(dd - e-Tvs(1'- ') X N(d2), and 

e-"U8(1'-t) X N( -d2) - S (t)e-"ca(1' -t) N( -dd, where 

In (SJ)) + (rus -rCB + ~(72)(T - t) 
and 

I7JT - t 

In (SJ)) + (rus - "CB - ~(72)(T - t) 
-'-----'------,=_---- = d j - 17 JT - t. 

I7JT - t 

(8.55) 

(8.56) 

Be cautious in placing the interest rates into equations 8.55 and 8.56. For a 
USD-denominated option on FX, the US interest rate is the discount rate, and the 
foreign interest rate is the continuous dividend yield on the underlying. Thus, the 
US rate goes into the discount factor adjacent to the strike, and the GB rate goes 
into t he discount factor adjacent to the price of the underlying. Note that each of 
crt), p(t) , X, and S(t) are denominated in USD per GBP in equations 8.55 and 8.56. 
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Exercise: Use the Garman-Kohlhagen formulae, equations 8.55 and 8.56, to prove 
that 6 = c ,,· x IT-t ) N (d J ) for an FX call , and 6 = _e-rvxIT-t) N( - dd for an 
FX put, where 

In ( S,~ ) ) + ("DOM - "FX + ~(2 )(T - t ) 
d

j 
= __ ~-L ______ ~==~ ________ ___ 

(f VT - t 

and T D OM and T P X are the domestic and foreign interest rates respectively. Hint: 
Recall that D. = ;~\~)) and ;~\~~, for a call and put, respectively. 

8.6 Application: The Adequation Formula for FX Op­
tion Parity 

Many people are perplexed by FX forwards and options. They have trouble under­
standing the symmetry1 5 For example, if you are long a USD-denominated GBP 
forward , you are agreeing to buy GBP and make payment using USD. You are also, 
equivalently, agreeing to sell USD and receive payment in GBP. Thus, a long USD­
denominated GBP forward is economically identical to a short GBP-denominated 
USD forward. Similarly, a USD-denominated GBP put must be economically iden­
tical to a GBP-denominated USD call . 

In the exercise on page 142, I ask you to verify an FX pari ty relationship , equa­
t ion 8.57 (the "adequation formula"), between a USD-denominated FX put and an 
FX-denominated USD call. The relationship described is Q. P = S · (QX ) · c, where 
t he FX put covers Q units of FX, S and X are in USD / FX, p is the USD / FX price 
of the put, and c is the FX/ USD price of the call. For ease of interpretation , I 
place Q, redundant ly, on both sides of t he equation. Before you try the exercise , 
you must confirm, via dimensional analysis, that equation 8.57 even makes sense. 
Dimensional analysis means we look at the uni ts in which each side of the equation 
are expressed, and confirm that they are the same. For example, if the LHS is in 
GBP / USD and the RHS is in USD/(GBp2

), then something is wrong. 
Suppose we have an FX put that gives us the right to sell Q = 1, 000 GBP at a 

strike X = 1.6500USD/ GBP, when the exchange rate is S = 1.6000USD/ GBP. As­
sume for the sake of argument that we have already calcnlated p = 0.032USD / GBP. 
Then, Qp = SQXc (equat ion 8.57) implies t hat c = Qp/(SQX ) = 0.012, but do the 
dimensions work out? A dimensional analysis of the adequation formula appears in 
fi gure 8.4. In our case, c must be in GBP / USD, and both sides are, ultimately, in 
USD. The units of the LHS and the RHS are consistent, and, having passed t his 
initial test , we may proceed to t he exercise. 

Why do I have only one (J in the equations in the exercise on page 1427 That 
is, why do I not have aus and apx ? The answer is that the a used is the volat ility 

15See Detemple (2001) and Haug (2007, section 1.2) for other symmetry results . 
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P(GBP)p(USD/GBP~ = S (USD/ GBP)JQ(GBP)X (USD/ GBP)! 'c(GBP/USD), . 
usn usn . 

GBP . 
usn 

F igure 8.4: Dimensiona l Analysis for the FX Options Adequa tion Formula 

Note: This is a dimensional analysis of the FX option parity relationship given 
in equation 8.57 (the adequation formula) . See the exercise immediately before 
equation 8.57 for further details. 

of continuously compounded returns to a US investor holding FX, and that this is 
identical to the volatility of continuously compounded returns to a foreign investor 
holding USD. I leave that as an exercise for those of you who like mathematics. 

Exercise (difficult): Let an FX put cover Q units of FX, and let 5 and X be 
in USD per unit of FX. Then the corresponding USD call covers QX USD, and is 
priced in FX (so its price is multiplied by (Q X ) to get total FX price of the call , 
and by S to convert its total price to USD). Please verify the adequation formula, 
equation 8.57: 

Q. p 5· (QX ) · c , where (8.57) 

p X e-rus(T-t) N ( - d2) - Se-r"'x (T- t) N( - dd , 

c = S'e-rus(T-t) N( d;) - X 'e- r"'x(T-t ) N(d; ), 

5' 
1 

S' 
X' 

1 
X ' 

( s' ) , 2 

d' 
In X' + (TFX - '·US + 20' )(T - t ) , = 

O'JT - t 
d' 2 = d; - O'vT - t, 

d, = 
In (f) + (TUS - ,'FX + 4O'2)(T - t ) 

and 
O' v T - t 

d2 d, - O'JT - t . 

8.7 Black-Scholes Implementation 

There a re two ways to t hink about implementa tion. First, you can collect the 
numbers for all the raw inputs to Black-Scholes pricing, including an estimate of a 

based on historical stock returns, and then use the inputs and the formula to deduce 
what t he option price should be. You will be very lucky if the price t ha t you deduce 
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;8 within the bid-ask spread, and you will be a fool if you buy or sell the option based 
on the difference between the calculated price and the price in the marketplace. This 
method gives insight into how the inputs to Black-Scholes are constructed, but it 
is largely of academic interest. Second, you can look at what the option price is 
in the marketplace, then use observed numbers (i.e., interest rate, dividend yield, 
stock price, etc.) to deduce what volatility number is implicitly being used by the 
market to price the option. In this case, you place your faith in the market and use 
the model, populated by a combination of observed and implied parameters, as a 
guide to which options to trade. Apart from volatility estimation, the two methods 
agree. 

Let me point out here, before we get to chapter 10, that as a trader I make 
money by identifying mispriced stocks and using options to capitalize on my view. 
I do not look for mispriced options or academic arbitrage opportunities. Rather, I 
assume that the market correctly prices options relative to the stock, and I calibrate 
the option pricing model to fit the market. I then feed my forecast of future stock 
price and volatility, accounting for deviations of Black-Scholes from reality, into the 
calibrated model to guide me in my choice of which options to buy or sell. 

Black-Scholes pricing requires 5(t) (today's stock price), X (the strike), r (an 
interest rate), T - t (time to maturity), p (dividend yield), and (J (volatility) . In 
theory, if you are t rading an option, then the stock price 5 (t ) that you use in Black­
Scholes is the price that the option dealer in Chicago would trade a t to delta hedge 
his or her resulting option position . So, if you are buying a call, the dealer will 
buy stock to delta hedge his or her short call. You should therefore use the ask 
price for the stock as 5(t)- that is the price he or she is going to pass on to you. 
In practice, bid-ask spreads are very t ight in New York now that stocks trade on 
decimals. Intraday stock price moves are large enough that whatever you used for 
5(t) is going to be stale by the time you come to trade the option anyway. Just 
take the most recent trade price and then revise it if need be when you are ready to 
trade. 

T he strike price X is contractually specified. I usually set up a spreadsheet to 
have a half-dozen strikes to look at. The spacing of the strikes depends on the price 
of the stock. See section 10.1.1 for institutional details. 

In theory, r is a short-term safe interest rate, and it is constant through t ime­
though the theory does goes through with r (average r from t to T) in place or r. 
In practice, you take the continuously compounded yield on a T-bill of maturity 
closest to that of your option. Eurocurrency rates work too, especially for currency 
options. In theory, you should choose whether to use a LIBOR or LIBID rate 
depending upon whether the option dealer who delta hedges your trade is going to 
be borrowing money (at the LIBOR rate) or lending money (at t he LIBID rate).16 

160n February 12, 2009, my Bloomberg screen quoted three-month USD LIBOR as 1.23125 
and three-month USD LIBID as 1.10625. The quoted LIBOR rate is the official British Banking 
Association (BEA) fix, but historically "LIBID was considered to be 1/ 8th or 12.5 basis points 
below LIBOR. However, we do not believe that this holds true anymore and that the spreads in 
most currencies would be a lot tighter in today's market environment. However, we have never 
officially stated the relationship between BBA LIBOR and LIBID and have never provided LIBID 
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Table 8.4: HP17B/ HP19B T-Bi ll Yield Code 

T~BILL~YIELD: R=- (3657N) x LN(1 - (N736000) x ((BID+ASK)72» 

Note: This code is for the HP17B or HP19B, but also works on the HP17BII 
and HP19BII. This code implements equation 8.58 to estimate the continuollsly 
compounded yield on a T-bill using the average of the bid and ask prices. 

For example, if you are buying a three-month USD-denominated GBP call opt ion 
(i.e., t he right to buy GBP using USD), then the dealer will hedge by borrowing the 
denomination and buying the underlying. T hat is, in this case, t he dealer borrows 
USD (paying r equals three-month USD LIB OR) and buys GBP (yielding p equals 
three-month GBP LIBID). In practice, the dealer hedges using FX futures because 
they have lower T-costs than physical FX. 

You may choose to use USD LIBOR and LIBID in place of T-bill yields, on 
the grounds that they represent actual borrowing and lending costs (remember that 
only the US Treasury can borrow at the T-bill yield). In practice, the Black-Scholes 
model is quite robust to choice of T, and the difference of the bid-ask spread or the 
credit spread will be of litt le importance. 

Averaging the bid and the ask, the continuously compounded yield on aT-bill 
with N days to maturity and Wall Street Journal bid and ask quotes B and A, 
respectively, is given in equation 8.58 (Cox and Rubinstein [1985, p255]). HP17B 
and HP19B code for implementing the equation appears in table 8.4. 

r = - 365 In [1 _ ~ (B + A) ] 
N 36000 2 

(8.58) 

The term to maturity (T - t) is measured in years. Thus, a 24-day option has 
T - t = }6~ (yes, you must count actual days) . For long-term options, I usually just 
use T - t = /0.1/12 , where /0.1 is the number of months to maturity. 

Like the interest rate T , the dividend yield p is a continuously compounded 
rate. Stock dividends are quite consistent and predictable from one year to another. 
They are usually listed on online brokerage Web sites . Remember to continuously 
compound the number. For example, a $20 stock paying 60 cents in dividends over 
the next year has a dividend yield of p = In (l + 0.60/ 20) which is slightly lower 
than 0.60/20 . If dividend yields are very low, whether you continuously compound 
or not makes little difference. 

The volatility (7 comes from one of two sources: estimation via historical prices 
of the underlying or direct inference from prices of related options. 

fixings. You might still fi nd a few screen pages around e.g., on Bloomberg, who simply take the BBA 
LIBOR rates and subtract 1/8th mathematically to arrive at a LIBID rate. However, this can lead 
to all sorts of problems e.g. negative interest rates in the case of JPY .. " (personal communication 
from a BBA Director June 16, 2004). 

©2009 Timo th)' Falcon Crack 144 All Rights Reserved \Vo d dwide 



8.7. BLA CK-SCHOLES IMPLEMENTATION 

8.7.1 Method I: Estimate Historical IJ 

To estimate IJ from historical prices, take two to three months of daily data (N 
observations, let us assume) . Some people use as many days back in t ime as t here 
are days remaining in t he life of the option. In my opinion, anything older than six 
months is too old to be relevant . 

Let R" == S(nl(nS(~)- l ) denote the simple rate of return on day 11., where 8(11.) is 
t he closing price of t he stock on day n. We estimate the daily mean and variance 
of cont inuously compounded returns using equations 8.59 and 8.60: 

1 N 

ild = N 2::= In(l + Rn) (8.59) 
n=l 

N 
· 2 = _1_ 2::= [In( l + Rn) - ildf (8 .60) "d N- 1 

n= l 

The Black-Scholes formula needs annualized II. VYe know that the variance of 
a random walk is linear in time (i. e., variance of the sum of the daily returns is 
t he sum of the variance of the daily returns), so standard deviation, as the square 
root of variance, increases with the square root of t ime. Volatility is recognized as 
being generated on t radi ng days (with 252- 254 trading days per an num). T hus, the 
annual II is estimated as a = adv252, where lId is t he daily volatility estimate from 
equation 8.60. 

In practice, stock prices do not follow random walks. T here is substantial 
auto-correlation in stock retnrns. T here is significant short-term, negative auto­
correlation corresponding to price reversals and microstructure-induced price dis­
creteness, and significant long-term, posit ive auto-correlation corresponding to price 
moment um. This means that, for example, using daily, weekly, or monthly returns 
and grossing up to get annual volatili ty will give you different answers. Daily ob­
servations are favored. 

Historically, US stocks priced $1- $10 have had annual II (historical or implied) 
in t he range 30%-100% while stocks priced over $10 have had annual II in the range 
10%- 60%. In late March 2009, I pulled from my Bloomberg terminal historial and 
implied volatili ties on all S&P500 stocks with listed options. T he volatili ty numbers 
were almost exactly twice the historical numbers. This demonstrates that in times 
of crisis these volatili ties can rise dramatically across the board . A typical a in 2009 
is 50% per annum (i.e. , roughly 3.0% per day). 

Exercise: Confirm that II = 0.50 per annum implies ad '" 0.03 per day. 

T wo common deviations observed using historical estimates of II are t hat model 
estimates are below market prices for near-to-maturi ty opt ions, and t hat if variance 
is estimated to be high (conversely low), model prices are higher (conversely lower) 
than market prices. The latter may be just an error-in-variables problem. That is, 
when you estimate volatility to be high, it probably is high; but ex ante you are 
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more likely to have a posit ive estimation error in your calculation than a negative 
one. The converse holds for low estimates of volatility. 

8.7.2 Method II: Infer Market Forecast u 

Today is the first day in the rest of the life of the option you are analyzing. lVlarket 
participants price t he option using their aggregate forecast of volatility over the re­
maining life of the option. This is a forward-looking estimate of volatility. History 
is history, so why look backwards to forecast the future? That is like driving while 
looking in t he rear view mirror. It works in slow markets where not much is hap­
pening, but otherwise it makes little sense. It makes more sense to use the market 
aggregate forecast of volatili ty. Suppose that S = $100, X = $100, r' = 0.05, p = 0, 
T - t = 0.5 , and a European call option 's price is $12. We may infer, via Black­
Scholes (I leave this as an exercise), t hat the volatility number implicitly being used 
is (J = 0.386. T his is the "implied volatili ty," "implied vol," or simply the "vol." 
Traders often quote and trade options using implied volatilities rather t han prices. 

Although Black-Scholes is for European options, t here is nothing to stop us 
finding the implied volatility for an American-style option using Black-Scholes. That 
is, what (J when plugged into t he European option pricing formula gives the price 
we see for the American option in the marketplace? Many t raders, myself included, 
use the Black-Scholes formula to understand how American-style options behave. 

1 mentioned that when 1 set up a spreadsheet , 1 often look at several different 
strike prices simultaneously. Using the implied volatility to look at my projections 
of stock price and volatili ty, 1 choose the option that gives me the most attractive 
combination of good upside potential if my most likely forecast is correct, and not too 
terrible downside performance if my forecast is wrong (see my spreadsheet t rading 
tool in section 10.3). You do need to be wary, however, of differences in implied 
volatility with the maturity and strike of an option. 

Fixing the strike, implied volatilities vary with t he maturity of options on a 
stock. That is, t raders use different volatili ties to value long-maturity and short­
maturi ty options (Derman and Kani [1994, pp2- 3]; Hull [2000, chapter 17]) . This is 
called the "term structure of implied volatility." Fixing maturity, implied volatili t ies 
vary with the strike price of t he option; this is the "volatility skew" or "volatili ty 
smile" (see t he discussion in section 9.4.2 and figure 8.5 on page 148). The variation 
in shape of the skews or smiles changes from month to month, bu t longer-dated 
contracts typically have less steep skews, as indicated for S&P500 index calls in 
figure 8.5. Many t raders use a matrix of implied volatility for a cross section of 
maturity and moneyness, which allows them to pick off t he volatili ty appropriate 
for t hei r particular pricing problem. This is called matrix pricing. 

1 am not much concerned about the term structure of volatility. The horizon of 
my forecast of stock performance usually determines the minimum horizon of the 
option 1 want to use, allowing a few months or more as a buffer. My view is usually 
so short-term, however, that the term structure is irrelevant . The volatility skew, 
though, does need to be accounted for. You need a different implied volati li ty for 
each strike price (see section 10.3). 

© 2009 Timothy Falco n C r a ck 146 A II Rights Reserved World wide 



S.S. SYNTHETIC OPTIONS: GREEKS 102 

Op Quiz 1: From your Bloomberg terminal (or working with prices from your 
online broker), you should see that the implied volatility is not the same for puts 
and calls on the same underlying with the same maturity and strike. Does this 
violate European put-call parity? 

Answer: If they are European-style options, and you have accounted correctly 
for bid and ask prices, then yes; but this is very unlikely in practice. If they 
are American-sty le options, then no, because there is no reason why they should 
satisfy European put-call parity. 

op Quiz 2: Suppose that S = $100, X = $100, T = 0.03, p = 0, T - t = 0.5 , and 
a European call option is priced at $15. What is the implied volatility? 

Answer: The answer must be higher than the 0.386 number mentioned in sec­
tion 8.7.2, because the option price is higher and r is not important enough to 
change the answer much. 111y first guess is 0.50, and I am close: a = 0.5114793. 

Exercise: If you have access to a Bloomberg terminal, enter the line SPX 
<INDEX> SKEW < GO > (see figure 8.5 on page 148). Are the implied volatility 
smiles different for puts and calls? Why, or why not? Try a big stock like Eastman 
Kodak: EK <EQUITY> SKEW < GO>. If you do not have a Bloomberg terminal, try 
calculating the implied volati lities of out-of-the-money, at-the-money, and in-the­
money puts on a heavily traded stock and plotting the result. My spreadsheet tool 
allows you to do this easily (see section 10.3). My brokerage's Web site also has 
analytical tools to do this. 

8.8 Synthetic Options: Greeks 102 

Suppose that a US investment bank, USIB , sells a tailor-made USD-denominated 
GBP call option to a UK corporation, UKCorp, so that UKCorp can hedge some 
USD receivables. This is a pedagogical example only, because UKCorp is more likely 
to use an exchange-traded GBP call (with lower T-costs and more liquidity than 
one purchased from an investment bank) . 

The t ransaction leaves USIB with a short position in a GBP call. USIB wants to 
pocket the markup and neut ralize the short GBP call exposure by dynamically repli­
cating a long GBP call17 The dynamic replication can be standard ("delta hedg­
ing" ), or more advanced C'delta-gaIllllla hedging"), or more advanced still ("delta­
galllllla-vegalS hedging"), and so on , depending upon how much exposure they want 
to neutralize. 

171n practice, USIB hedges its "derivatives book;" that is, the overall net position. 
18Sensitiv ity of a derivative to changing volatility is called "vega." 
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8.8.1 Delta Hedging 

To delta hedge the short European GBP call , USIB must go long t. = e -p(T- t) N (d 1) 

GBP,19 and borrow X Cr(T-t ) N(d2 ) USD. Remember to multiply both by the num­
ber of GBP covered by the call. The delta, t. , and the borrowing vary through t ime. 

8.8.2 Delta-Gamma (and Theta) Hedging 

Delta hedging creates a synthetic derivative that is similar to the real derivative. 
They have the same value, and the same delta. Thus, the overall position for USIB 
is of value zero, and is delta-neutral. These two conditions a re satisfied by using 
two assets in the replicating portfolio (underlying and borrowing/ lending) . 

Op Quiz: If USIB sells a USD-denominated GBP call option to a client (i.e., the 
right to buy GBP using USD), prove that USIB loses for sure on a delta hedge if 
t here is a large move in the underlying. Hint: Draw a picture or do t he algebra. 

Answer: If you plot the picture of the value of the call that was sold and the 
value of the long synthetic call, you see that the plot of call value has curvature, 
but that the plot of the value of the synthetic is tangent to the call plot at today's 
underlying price and has no curvature. A big price move up means t he short call 
increases in value by more than does t he replicating portfolio whose value follows 
t he line tangent to t he call plot. Similarly, a big price move down sees t he short 
call decrease in value by less than does t he replicating portfolio's linear position. 
USIB is long the linear relat ionship and short the convexity, so loses in either 
scenario. Algebraically, if V is v~l~e, th~n .overallae~~~it io~;alue is synthetic. l.ess 
actual: Vsyn ~ Vcall = 0, by defi llltlOn. Sllllliarly, ---as ~ at' = 0, by defimtlOn 

. a2 v. a2 v of a delta hedge. For conveXIty, however, ai/l" ~ as"fjll < ° because t he call 
has positive convexity and t he synthetic has none . These three quantities are 
t he height, slope, and curvature, respectively, of the plot of the net value of t he 
delta hedged position versus price of the underlying. Thus, at today's underlying 
price, the plot has value zero, slope zero about t hat point, but negative convexity. 
Today's underlying price thus yields the peak of a "value hill" that is flat on top ; 
small changes in price have no effect, but big changes see us sliding down t he hill. 

For options, "garnlna,ll "convexity:" "curvature," and ((f " are identical in lnean­
ing, and refer to the curvature (i.e., rate of change of slope) of the plot of option 

value as a function of the underlying20 T hat is, r '" ~~~ . 
Looking at figure 3.3 on page 59, we see that r "" 0 (i.e., t here is no curvature) 

for deep in-the-money and deep out-of-the-money options, and that r is maximized 
(and positive) near-the-money. This is true for puts and calls. 

19 1n practice, it would be cheaper for US IB to hedge using GBP fu tures rather than physical 
GBP, and a slight adjustment to the number of contracts may be needed. 

20 ln bond pricing, ~4curvature)) and "convexity" differ. What we call "convexity" in bond pricing 

is usually * / P , where y is yield ; whereas curvature is just *. 
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Neither t he underlying nor the borrowing/lending have any convexity as a func­
tion of S. Rather, both vary linearly in value for changes in S. However, t he call 
changes nonlinearly for changes in S (i.e., the plot of call value versus S has curva­
ture). Thus , delta hedging alone exposes you to gamma-risk (USIB loses for sure on 
the hedge if there is a large move in the underlying- as per t he op quiz on page 149). 

Delta hedging a call option is a first-order approximation to replication of a call 
option. It is analogous to estimating the change in a bond price using duration only, 
instead of incorporating bond convexity. If USIB wants its overall position to be 
value-z-ero, delta-neutral, and gamma-neut ral , it needs to add a t hird asset to its 
replicating portfolio. The obvious choice is a readily available security with some 
gamma of its own: for example, a short-dated, at-the-money, exchange-traded GBP 
call option. 

For a standard European call on a security paying a continuous dividend yield 
at rate p, the gamma is given by equation 8.61: 

r 
e[- p(T-t)-4 dll 
ScrJ27r(T - t ) , 

where 

In (f) + (r- p+ ~cr2)(T - t) 
cry'T - t 

(8 .61 ) 

You cannot simply throw a call option into t he replicating portfolio , because it 
contributes some delta of its own that would unbalance the delta hedge. Rather, 
you need to solve a simple system of equations for the replicating portfolio as shown 
in equations 8.62: 

Vc 
6 c 
rc 

+ NsS 
+ Ns6s 
+ Nsrs 

+ NTVT 
+ N T 6 T 

+ NTr" 

(8 .62) 

where B , S , and T refer to the borrowing/lending, stock, and traded call, respec­
tively. Let B = $1 invested in bonds (i.e., lent), then NB , Ns, and NT are the 
unknown number of dollars in borrowing/ lending (+ for lending, - for borrowing), 
number of units of underlying to buy (+ for long, - for short), and number of traded 
calls to buy (+ for long, - for short ), respectively. 

We know rB = 0, rs = 0, 6 B = 0, and6s = 1, so we may solve equations 8.62 
to find equations 8.63- 8.65: 

Ns 

NB 

@ 2009 Timothy Falcon Crack 

rc 
r T 

6 c - NT 6 T 

6 c - (~~ ) 6 T 

VC - NsS - NTVT 

(8.63) 

(8.64) 

Vc - (6 c - ~~ 6 T ) S - (~~ ) VT (8.65) 
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Exercise: Verify that equations 8.63, 8.64, and 8.65 solve the gamma hedge sys­
tem) equations 8.62. 

In practice, everyone delta hedges, but not everyone gamma hedges. For exam­
ple, rather than gamma hedge, USIB typically updates its delta hedge every day. 
This is an attempt to dynamically replicate convexity. In theory, with no T-costs, 
you can dynamically replicate convexity by updating your delta every instant. In 
practice, if USIB rebalances its delta hedge too frequently, it is guaranteed one re­
sult: a loss! T-costs reduce the frequency with which yon can rebalance. Investment 
banks nse delta, gamma, and vega to quantify the level of risk in their portfolios, 
and adjust their hedges when the exposure becomes unacceptable. 

In practice, r hedging is done by t hose who face convexity: those who sell short­
term options, sell exotics, or face specific strike "pin risk." Pin risk is the risk 
associated with being short a near-the-money, close-to-maturity option; your delta 
flips between zero and one as the option flips from being slightly out-of-the-money 
to slightly in-the-money. If you are only delta hedging, then you risk getting pinned 
down with the wrong delta. 

We demonstrated in section 7.6 that delta-gamma hedging automatically pro­
vides theta hedging. It is worth repeating here in case you skipped chapter 7. Theta, 
denoted "8," measures the decay in value of a derivative with the passage of time; it 
can be of either sign (see the op quiz on page 109). T heta is given by 8 = ~. The 
Black-Scholes PDE with continuous dividends (equation 7.2, p104) may be rewritten 
as equation 8.66: 

(8.66) 

Both the derivative and the replicating portfolio satisfy equation 8.66, so the net 
hedged position also satisfies it . If you delta-gamma hedge, then V = 0, ~ = 0, 
and r = 0 for the net hedged position. It thus follows from equation 8.66 that 
8 = 0 for the net hedged position. That is, delta-gamma hedging automatically 
provides theta hedging. In other words, the time decay characteristics of a synthetic 
derivative created via the delta-gamma hedge match those of the original derivative. 

Unfortunately, delta-gamma hedging produces an overall position that is quite 
sensitive to changes in volatility. If you want the overall position to have value zero, 
and be delta-gamma-vega neutral , then a fourth security (most likely a long-dated , 
at-the-money option) must be added to the replicating portfolio with appropriate 
rebalancing via a four-equation system of equations analogous to equations 8.62. 

Each of the above-mentioned "Greeks" can be estimated using numerical option 
pricing routines. 

Note, finally, that all of the foregoing is based on a Black-Scholes world. The 
real world is different. This means that a hedged position that is delta-gamma-vega 
neutral still changes in value with small changes in stock price and/or volatility. 
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Chapter 9 

Beyond Black-Scholes 

There exist many option pricing formulae and techniques that go beyond the pre­
ceding chapters. 1 Most of these techniques reduce to Black-Scholes pricing when the 
complexit ies they model are assumed away. I consider Black-Scholes pricing to be 
the "80% solution" insofar as the majority of the theoretical intuition that a novice 
needs to trade options can be gleaned from it. 

In chapter 10, I present some practical ad hoc adjustments t hat allow you to 
use Black-Scholes pricing even t hough many of t he assumptions underlying it are 
violated. In t his chapter, I present well-known results in American-style option 
pricing (to contrast with the European-style results), as well as some new formulae 
that relate to odd cases I have come across and seen nowhere else. The latter 
formulae include opt ion prices under a general ABM (to generalize the Bachelier 
formula seen in section 8.4.1, p137 and in contrast to the GBM results of Black­
Scholes), and some exotic option formulae (in contrast to the plain vanilla results). 
I also discuss jump and stochastic volatility models. You may skip this chapter 
without loss of cont inuity. 

9.1 American-Style Options 

Black-Scholes pricing applies to European-style options only. Here is a list of sim­
ple points to keep in mind when considering American-style versus European-style 
opt ion pricing: 

• T he right to exercise early is what dist inguishes an American option from its 
European counterpart . Any approach to valuat ion must consider t he value of 
this right . 

• Most exchange-traded options are American style. Most over-the-counter (OTC) 
options are European style (see section 10.1.2). Many financial instruments 
have American-style option features embedded in them (e.g. , call provisions 
in a corporate bond or Treasury bond). 

I For an excellent compilation of option pricing formulas, computer code, practical advice, and 
more, T recommend Haug (2007). 
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• "Early exercise is not optimal" means that an option is worth more alive t han 
dead. That is, you can get more by selling the option t han you can by exer­
cising it. If the underlying does not pay dividends, then early exercise is not 
optimal for a plain vanilla American call: and thus American and European 
calls have equal value. See restrictions R4 and R8 on pp48- 49. 

• Early exercise of an American call option is optimal if, and only if, a dividend 
is about to be prud and it is large enough to replace the interest lost on the 
strike price, and the loss of the time value of t he call. If t he dividend is small , 
or the time to maturity is large, early exercise of an American call is unlikely 
to be optimal. See the summary in table 3.5 on page 54. 

• The benefi t to early exercise of an American put is the ability to earn interest on 
the strike. The cost is that you give up any possible addit ional payoff (i.e. , loss 
of t ime value). If it is a protective put, then you also lose dividends. 

• The payoff to a put is bounded above by t he strike (unlike a call which has un­
limited upside). Therefore, if the stock price is low enough (i.e., any potential 
additional profit on the put is low enough), then early exercise of an American 
put opt ion may be optimal. Contrast t his with a European put where t he 
price can be lower than X - S if t he put is deep in-the-money. 

• In general, it can be optimal to exercise a plain vanilla American put any time 
when it is deep in-the-money. This makes analysis so difficult that no exact, 
closed-form analytical pricing formu la exists in this case. 

• If early exercise is optimal, then ignoring T-costs, selling t he option yields the 
same payoff as exercising, and you may be indifferent between exercise and 
sale. 

9 .1.1 Approximate Analytical Pricing 

Pseudo-American Pricing: Black (1975) 

Let c( t, T, S) denote the Black-Scholes time-t call price for a European option ma­
turing at time T. Assume the stock pays a dividend d] at t ime tl < T. An American 
call matures at time T. Black's pseudo-American call value is 

C(t) = max[c(t, tl , S), c(t, T , S' )], 

where S'(t) = S (t ) - pV(dt} 2 The formula can be generalized to the many divi­
dends case. 

Given t hat exercise should rationally occur only at date tl, or at date T , t he 
option's life ends at one of these two dates (with no intermediate exercise). Thus, 
we take the maximum of two European option values with these lifespans. 

2For C(t/P1 5+ ), you may use a slightly higher volatility in t he formula: (7* = (j s pt(dd (Hull 
[2000, footnote 5, p400j) . 
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Op Quiz (difficult): Black (1975, p41 ) estimates a pseudo-American call op­
tion value as t he maximum value of two European-style options maturing at t he 
American-style option's ex-dividend date tl and maturity T , respectively. He ad­
justs t he stock price for the latter option by subtracting t he present value of divi­
dends. Why is this an approximation only? What does Black ignore? 

Answer: Black ignores the compound option (Le. , option on an option; see pIS7) 
nature of t he problem. An American-style call carries with it the right to give up 
the remaining life of the opt ion in exchange for a cash flow. This is the right to 
exchange an option for cash; it is an option on an option with exercise decision 
reserved until t ime t j • Black simplifies by assuming, in essence, that you can 
deduce now which way that decision will go by identifying the more valuable of 
t he two European-style options. Section 9.1.2 gives the exact answer. 

MacMillan (1986) and Barone-Adesi and Whaley (1987) 

MacMillan (1986) and Barone-Adesi and Whaley (1987) present approximate option 
pricing formulae for American puts and American puts and calls, respectively. These 
papers approximate the following Black-Scholes PDE and then solve it:3 

Bot h aJlalyses note that if V (American option value) satisfies the PDE, and 
v (European option value) satisfies the PDE, then the additional value e, where 
V = v + e, also satisfies the PDE. In this case, e is t he value of t he right to 
exercise early. The PDE for e is set up , approximated in functional form, and 
then approximated by removing the derivative wit h respect to time. This produces 
an ordinary differential equat ion that may be solved directly. 

9.1.2 Exact Analytical Pricing 

Calls: Roll (1977) , Geske (1979), Whaley (1981) and the Early Exercise 
Decision 

Consider a stock with price S that pays a single dividend d\, with ex-dividend date 
t\ < T. Suppose that it is now t ime t1, immediately prior to time t\ , that we own 
an American-style call on the stock with strike X , and that we are trying to decide 
whether to exercise or not. If we exercise, we receive the stock worth S(tll and 
capture the dividend d\, but we give up X and kill the option; if we do not exercise, 
we are left holding an American-style call on the ex-dividend stock. Assuming the 

3Note t hat for American-style options the PDE equali ty becomes a n inequality. The PDE= O 
if exercise is not opt imal, but the POE ::; 0 if early exercise is optimal. This is because of t he 
opportunity loss associated with not exercising optimally. See Wilmott et a1. (1993, pp55- 61) and 
Wilmott (1998, ppI28- 129) for more details. 
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stock falls by the full value of the dividend, the stock price at time tt, immediately 
after tl, is S (tt) = S(tll- dl · Wit h no dividends remaining, the American-style 
call is worth the same as a European-style call : c(S(tn, T - ttl. Our decision is 
therefore whether to exercise for payoff S(tll - X = S(tn + dl - X , or not to 
exercise and be left holding a call of value c(S (tn, T - ttl. 

T here is a particular value of t he ex-dividend price S(tn (or equivalently, of t he 
cum-dividend price S(tl) reduced by the dividend d l ) for which we are indifferent 
between exercising and not exercising. Indifference requires that this particular 
value equates the two above-mentioned payoffs; that is, it solves equation 9.1: 

S(tn + dl - X = c(S (ttJ, T - tl ) (9. 1 ) 

We do not need to wait until t ime tl to figure out the solution to equat ion 9.l. 
Rather , it can be solved in advance by looking for the particular value S(tn = S, 
say, such that S+dl- X = c(S, T-tl).4 This requires an iterative (i. e., t rial and er­
ror) solution using the Black-Scholes formula. For S(tn < S (i.e., S(tll < S + dtl, 
early exercise and dividend capt ure are not optimal (the dividend yield is too low­
see the box immediately below); for S(tn > S (i.e., S(tll > S + d l ), early exercise 
is optimal. 

Subtle Point: I state immediately above that S(t,) < S +dr means the dividend 
yield is too low for early exercise to be optimal. It looks, however, as if S(t , ) < 
S + d, implies that S (t,) is low relative to dr , and thus that t he dividend yield 
is high. In fact , if the hurdle S + dr is so high that S(t,) is below it , then d" 
other things being equal, must be small, and the dividend yield must also be 
small. This is because the hurdle S is a function of d r (i.e., S = S(dr)), and 
an increase in d1 produces a more than compensating drop in S(dt}. Thus, the 
sum S(d , ) + dr actually decreases with increasing dr. A small dividend , d r (and 
thus a low dividend yield), thus corresponds to a high hurdle, S(dr) + dr, and 
this makes it more likely that S(t , ) will fall below the hurdle. As an exercise, 
you can differentiate equation 9.1 (evaluated at s(ti) = S(d r )) implicitly with 
respect to dr to prove that 8!~~d :; - 1, with equality only if the call option is 
deep out-of-the-money. It follows that for other than the deep out-of-the-money 
case 8IS(dd+d,] < 0 as stated 

1 ad ) 1 • 

If S(t1) > S + dj , and the call holder exercises early, he or she effectively gives 
up a European-style call option worth c(S(tn, T - t1) = c(S(t,) + d1, T - ttl, in 
favor of a cash flow of S(tn + d1 - X = S(tll - X. It is as though the original 
American-style stock option holder is short a call option on the European-style call 
option on the stock (i.e., short an opt ion on an option) and has been assigned an 
exercise, forcing him or her to give up t he option and receive S(tn - X . 

An option on an option is referred to as a "compound option." Our compound 
option observation is a step towards solving the American-style call option pricing 

4Note that jf there are no dividends, then S = 00, early exercise is never optimal, and this 
pricing techn ique yields the Black-Scholes formula. 
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problem. The above-mentioned short option on the Enropean call option has strike 
price S(tll- X = S(tt) + dJ - X ; this is, however , an nnknown quantity at time t . 
If we consider instead a componnd option with known strike price 5 + dJ - X , and 
introduce a third option to adjust the payoffs, we can solve the problem. 

Consider a portfolio of options composed of the following: 

1. A long Enropean-style call option on the stock with strike X and matnrity 
date T (this is t he option you lose at date tl if you exercise early; it is also 
t he long-dated option in the Black pseudo-American approximation). 

2. A short European-style compound option with option 1 as underlying, strike 
X = 5+dJ-X, and matnrity date tt, where 5 solves 5+dJ- X = c(5, T -tJ). 

3. A long Enropean-style call option on the stock with strike 5 and expiration 
date tt. 

It can be shown that if S(tt) < 5 (i.e., S(tll < 5+dJ), then options 2 and 3 expire 
worthless, leaving only option 1. Conversely, if S(tt) > 5 (i.e., S(tll > 5 + dJ), 
then options 2 and 3 expire in-the-money: You are assigned an exercise on option 2 
and must deliver option 1, receiving 5 + d l - X; you exercise option 3 by paying 5 
and receiving the stock worth S(tt). The net payoff is S(tt) + d l - X = S (t l ) - X. 
It follows that the portfolio of t hree options has t he same payoff as the payoff to t he 
American-style call option , and must have t he same value. 

Exercise: Demonstrate that the payoff to the portfolio of three options in sec­
tion 9.1.2 is identical to the payoff to the American-style call in the cases where 
S(ti) > Sand S(tn < S. 

If the ex-ante ex-dividend process S(t) - e-r(t, - t)dl follows a GBM, then op­
tions 1 and 3 may be valued using Black-Scholes; option 2 may be valued using t he 
Geske (1979) compound option pricing formula. The net result is the Roll-Geske­
Whaley exact formula for the value of an American call option on a stock paying a 
single dividend dl at t ime tl: 

c = (S - dle- rr, )N(bJ) + (S - dl e-TTl)M (aJ , - bJ; -A) 
_Xe-rr M (a2, -b2; -A) - (X - dl)e - rr

, N (b2), where 

In (S-dlF'Tl ) + (r + ~a2)T 
aJi 

a1 -aJi, 

In [(S - d1 e- rTl ) /5J + (I' + ~a2)T1 
a.jT] 

bl - a.jT], 

tl - t, T = T - t. 
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S is the actual stock price. As in Black's model, u is the volatility of S - d l e-rTl 

J\I/ (a , b, p) is t he cumulative standard bi-variate normal function '" As before, S 
appearing in bi , solves c(S, T - tJl = S + dl - X, and is thus the ex-dividend upper 
exercise boundary for the American-style call. 

If early exercise is not optimal, S = 00, bl = b2 = -00 , and the formula reduces 
to regular Black-Scholes . Otherwise, S < 00, and the call should be exercised at tl 
if S(t;-) > 5+d l . 

If there are several dividends, then set tl equal to the final ex-dividend date 
during the life of the option and use the Roll-Geske-Whaley formula, replacing 
S with the original stock price reduced by the present value of all but the final 
dividend. 

Perpetual American Puts and Calls 

A perpetual American-style put or call does not age. It follows that it has no theta 
(i.e. , no t ime decay). Thus, the PDE becomes an ordinary differential equation 
(ODE) that may be solved using standard techniques. See Crack (2008) for deriva­
tions based on course work taken with Merton , or Merton (1992) for the original 
results. 

Let Ii be the lower exercise boundary for t he perpetual American put; then for 
S 2:: Ii == ;;!I ' the perpetual American put is worth (Crack [2008]) 

V(S) (X _ Ii) (~)'\2 = (-.3.-) [(.\2 - 1)S]'\2 where 
Ii 1 - .\2 .\2X 

- (r - p - ~(2) - J (r - p - ~u2r + 2u2r 
(72 

Let 5 be the upper exercise boundary for the perpetual American call; then for 
o :S S :S (;i!l) == 5, it may be shown that a perpetual American call is worth 

(Crack [2008)) 

V (S) = where 

9.2 Some New Formulae 

9.2.1 Arithmetic Brownian Motion 

We have argued previously that t he same option but with different data-generating 
processes, or the same data-generating processes but with a different option, typi­
cally gives rise to different option pricing formulae. Suppose now that instead of a 

5See Haug (2007, p471) fo r an approximation to ,."/L·,·) analogolls to those in my appendix , 
sections A. l and A.2, for the univa riate standard normal. 
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GBM driving a stock price process (i .e., equation 4. 6 on page 74), we have a general 
ABM as in equation 9.2: 

(9.2) 

where (I A is t he volatili ty of stock price in the ABM, not the volatility of stock 
returns that we have previously denoted (I. 

Equation 9.2 is a poor model of stock price behavior because it admits negative 
stock prices. For small (I A, and for initial prices far from zero, however, it should 
yield option prices close to Black-Scholes . 

Equation 9.2 is a generalization of the Bachelier data-generating process; Bache­
lier assumes the drift J1- is zero. In fact, Bachelier assumes that expected returns, 
in general, should be reduced to zero through competit ive market forces; and thus 
he assumes J1- = 0, r = 0, and that the expected return on the option is zero . He 
is, implicitly, assuming both that people are risk-neutral aJld that t he risk-neutral 
expected return is r = O. Unlike the Cox-Ross and Harrison-Kreps techniques that 
price options as if people are risk-neutral, Bachelier assumes t hat people really are 
risk-neut ral. Under these assumptions, Bachelier derives equation 8.52 for at-the­
money options (pl38) and repeated here as equation 9.3: 

c( t) = _(I A:.:..V.:..,T~-_t 
v'21f 

(9 .3) 

In my other book, Heard on The Street (Crack [2008]), I provide a generalization 
of Bachelier's option pricing that does not require that the option be at-the-money, 
but still assumes t hat " = O. I reproduce my generalization here as equation 9.4: 

c(t) = (IAvT - t [N'(d) + N(d) . d] , 

(IAvT - t [ ~;: +N(d)'+ (9.4) 

where d = 
S (t) - X 

(9.5) 
(IAVT -( 

My option pncll1g formula, equat ion 9.4 , is mathematically equivalent to equa­
tion A.5 in Smith (1976). 

Exercise: Substitute S(t) X into equation 9.4 to arrive at t he less general 
equat ion 9.3. 

Mikhail Voropaev has suggested to me a generalization of my equation 9.4 that 
does not require r = 0 (personal communication June 4, 2003; any errors are mine)6 
His solution requires t hat we solve the PDE generated by the ABM process in equa­
tion 9.2. 

6 A colleague has pointed out to me that Poitras (1998) uses an ABM derivation similar to mine 
to price spread options. 
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Let us use the Merton no-arbitrage technique to derive the PDE (see section 4.4.1). 
I repeat Ito's Lemma as equation 9.6 , where V is the derivative value we seek: 

If dS = /-ldt + IJA dw , and (dwj2 = dt, and all higher-order terms are zero, 
equation 9.6 yields equation 9.7: 

(9 .6) 

then 

(9.7) 

You can compare equation 9.7 to equation 4.8 (p74) to see the differences due to 
the arithmetic, as opposed to geometric, process. 

Now build a portfolio where you are long one European call option and short 
t. units of the stock. Let n denote the value of this portfolio, then n = V - St.; 
and over a time interval, dt, the change in the value of this portfolio is given by 
equation 9.8: 

dn = dV - dS . t., (9.8) 

where t. is held fixed over the time interval dt. Now plug equations 9.2 and 9.7 into 
equation 9.8: 

If we eliminate the stochastic component of the portfolio by choosing t. = ~~ , then 
the changes in portfolio value must be deterministic: 

(9.9) 

vVith no random component, the portfolio must offer the riskless rate of return , or 
there would be arbitrage opportunities available. Thus, it follows that dn = ,·ndt. 

Now plug n = V - t.S plus the definition of t. into dn = Tndt and equate 
with dn in equation 9.9. This yields t he ABM Partial Differential Equation in 
equation 9.10: 

(9.10) 

Compare the ABM PDE in equation 9.10 to the GBM PDE in equation 4. 11 (p75). 
The only difference is that equation 9.10 has a 17;\ as a pre-multiplier in the convexity 
term, whereas equation 4.11 has 1J

2S 2 . In fact, having 17 as volatility of (continuously 
compounded) returns implies immediately that volatility of price must be close to 
IJS (i.e., IJA '" IJS). It follows that the two PDEs (equations 9.10 and 4.11 ) are very 
similar . 

We seek the solution to equation 9.10 that satisfies the boundary conditions 
for a European call option on an ABl"I stock pnce process. A certain level of 
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Orwellian "doublethink" is required here for at least two reasons. First, we already 
know that the ABM process unreasonably admits negative stock prices. Second, as 
an empirical economist, thinking about calibrating the ABM process to a stock, I 
have to assume that when S gets near zero, then u A gets near zero too (because 
u A '" uS) . Thus, any ABM solution I have is local only. That is not, however, what 
the mathematics says, and it is not t he problem we are solving. So, what are the 
boundary conditions? 

The GBlVI boundary condition that says call price is zero when stock price is 
zero does not make sense for an ABlV!. 7 In other words, restriction R1 from table 3.3 
(p48) does not apply to the ABM call price because the data-generating process in 
equation 9.2 is too rigid to allow u A '" uS to tend to zero as S does. Restriction R1 
says that if stock price goes to zero in the GBM case, then it will take infinite time 
for the stock price to reach t he strike, and so t he call option is worthless . In t he ABM 
case, stock prices can, however , freely go negative . The appropriate ABM boundary 
condition is t hus that if stock price is infinitely negative, it will take infinite time 
for the stock price to reach the strike price, and so the call option is worthless (as 
per t he transformed boundary condition, equation 9.19, below). 

We shall change the variables in equation 9.10 from V(S, t) to u(x, r), apply 
the chain rule results, equations 7.9- 7.11 (p105), and then demonstrate that the 
reduced POE so obtained and the transformed boundary conditions that go with it, 
correspond to a problem that we have already solved . 

Begin with t he change of variables in equations 9.11- 9.13: 

x Ser(T-t ) (9.11) 

r = ~ [e2r(T- t) - 1] (9.12) 
2r 

u(x,r) er(T-t)V(S, t) (9.13) 

Equation 9.13 implies V (S, t ) = e- r(T- t)u(x, r ) = u(x, r)j v(l + 2rr) , where I used 
er(T- t) = V(l + 27'7). The chain rule results, equations 7.9- 7.11 , now yield equa­
tions 9.14- 9.16: 

oV [ au r(u-xz~)] (9.14) = J(l + 2rr) - or + (1 + 2rr) ot 

av au 
(9 .15) 

as ax 
a2 v a2u 
aS2 J(1 + 2rr) ax2 (9.16) 

Plugging equations 9.14- 9.16 into the ABM POE equation 9.10, collecting terms, 
and cancelling yields the reduced POE equation 9.17: 

au 1 2 a2u 
ar = '2 UA ax2 

(9 .17) 

7 A transformed version of this boundary condition appears in equation 7.17. 
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Now, if we pause to reconsider the simpler problem where r = 0, we see that 
the transformations x = S, T = T - t, and V = u(x, T) , when applied to the ABM 
PDE, equation 9.10, produce exactly the same reduced PDE, equation 9.17. Indeed, 
these transformations are obtained when you let ,. tend to zero in equations 9.11-
9.13. The boundary condit ions equations 9.18 and 9.19, and the initial condition, 
equation 9.20, are also the same in t he two problems (see exercise 2 on page 162): 

lim U(X,T) x-X (9.18) 
x.---..+oo 

lim U(X ,T) 
x--oo 

0 (9.19) 

u(x,O) max(O,x - X ) (9.20) 

Thus, the solution to our general problem must take exactly the form of the r = 0 
case in equation 9.4: U = o"AJT[N'(d) + N(d) . d] with d = (x - X )/ (aAJT) · 
Unwinding equations 9.11- 9.13 then yields the final solution as in equations 9.21-
9.23: 

c(t) - r (T - t) 
e2r(T-t ) - 1 

[N'(d) + N(d) . d] (9.21 ) e aA 
2r 

- r (T - t) 
e2r(T - t) - 1 [~:: +N(d)'d] (9 .22) e aA 

2r 

where d = 
S(tV(T- t) - X 

(9 .23) 
je2r(T - t ) _ 1 

CIA 2r 

Exercise 1: Substitute l' = 0 into equation 9.21 to arrive at my less general 
equation 9.4. Hint: You may need to use L'Hopital's rule with respect to 1': 

L'Hopital's rule: Let limx denote some limit (e.g., x ~ 0 or x ~ +00) . Let g(x) 
and h(x) be the numerator and denominator of a ratio ·whose limiting behavior 

we are interested in. If limx g(x) = 0 and limx h(x) = 0, but lim, i.:~~; is a finite 

I·· I I' g(x ) I' il=l. l1lut, t len Imx h("X) = l1l1x h'(x ) ' 

Exercise 2: Demonstrate that the ABlvI solution equation 9.4, when transformed 
using x = S, T = T - t, and V = u(x, T), satisfies t he reduced PDE, equation 9. 17, 
and the boundary conditions equations 9.1 8 and 9.19, and the initial condition 
equation 9.20, and is thus, as claimed, the solution to the reduced problem in the 
general ABM case. Hint: limd __ oo N(d) . d = O. 

T he aforementioned similarity between the ABM PDE in equation 9.10 and the 
GBM PDE in equation 4.11 leads to a similarity between the numerical output of 
the Black-Scholes formula and of t he generalized ABM formula equation 9.2l. Re­
placing a in the Black-Scholes formula with a A/ S gives Black-Scholes results very 
close to equation 9.21 , but with some biases related to moneyness. The majority 
of the biases are removed by replacing a in the Black-Scholes formula with t he ad 
hoc term aA / [( S + X) / 2] (i.e. , using the average of stock price and strike price to 
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scale the volatility); in this case, the two formulae agree quite closely8 It follows 
that although equation 9.21 has a functional form quite different from that of t he 
Black-Scholes formula , it is, in fact , economically and numerically very simila r to it . 

Exercise: Three ABM opt ion pricing formulae are given in t his section: equa­
tions 9.3, 9.4, and 9.21. Use put-call pari ty to deduce the price of the put in each 
case. Remember that S = X and l ' = 0 in the fi rst case, r = 0 in the second case, 
and there are no restrictions in t he t hird case. 

Exer cise: Prove t hat for t he two generalized ARM formulae, equations 9.4, and 
9.21, e:,. '" g~\~) = N(d), with d given by equat ions 9.5 and 9.23, respectively. 
Having done t hat, ask yourself what is t he delt a for Bachelier's origina l ABM 
option pricing formula, equat ion 9.3? H int : Equation 9.3 does not vary wit h 
S. If we need to est imate UA, however, then U A ;;:::::: as, and, at least empirically, 
e:,. '" g~\~\ "" a v T - t/V27f, or, alternatively, e:,. "" aAvT - t/ [S V27fI. 

Exercise: Let a t '" a l -{,(~~';)' ) , and show that equations 9.21- 9.23 may be 
rewrit ten as 

c 

d 

(S - e-,(T - t) X) N(d) + a t ~N' (d) 

S - e- , (T - t ) X 

at~ 

where d from equation 9. 23 has been rewritten in t erms of a t . 

Now show) using the same notation) tha t 

c = e - ,(T- t) [E"(S(T )IS(T ) > X ) - X l N(d), 

(9.24) 

(9.25) 

(9.26) 

where e-r(T - t ) E"(S(T )IS(T) > X ) = S + at ~t(d), and E"( ·) is risk-neut ral 
expectation in t he ABM world. Compare equation 9.26 with equation 8.39 (1'133) 
and equation 8.42 (1'135). 
H int : You might like to begin by proving t hat P"(S(T ) > X ) = N(d) . 
Note: I t hank Andreas Stirnemann for suggesting t he results in this exercise. 

9.2.2 Power Option I: Crack (1997) 

The payoff to t he European power call is max [S"( t ) - X , 0). Crack (1997) provides 
a general formula , under Black-Scholes assumptions, when the underlying pays a 
continuous d ividend at rate p. It is difficult to imagine t his opt ion used for anything 

8Schachermayer a nd Te ichmann (2008) give a detailed comparison of Bachelier pricing and 
Black-Scholes pricing, but t hey do not ment ion my (TA/[(S + X )/2j approxima tion . 
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other than speculation. See Crack (2008) for more details, including t he strange 
curvy-kinked payoff plots. 

The power options described here and in t he next section are exotic because, 
alt hough they are European calls and puts, their payoffs are non-standard. You 
could , however, view the power call in this section as a standard European call on 
S"'(t), but S(t) is t he natural asset price, and with respect to that asset price the 
option is certainly exotic. 

c(t) 

p(t) 

J( 

Exercise: Check that plugging in Q: = 1 reduces the power option I formulae 
to t he Merton formulae, and t hat plugging in both a = 1, and p = 0 yields t he 
standard Black-Scholes formula. 

9.2.3 Power Option II: Crack (1997, 2008) 

Jarrow and Turnbull (1996, p175) describe a European "powered option" with payoff 
[S(T ) - Xl" if S(T) 2: X, and zero otherwise (where a = 2). No pricing formula 
appears. Crack (1997, 2008) gives the general integer-a formula for the no-dividend 
case under Black-Scholes assumptions (see also Haug [2007, pll9]). 

c(t) i) - X) ,,-j (a) sj (t)e [(j-1) (r+J",') (T-t )] N(d2 _j), where 
j~O J 

In (¥) + (r+ [~- l] ,,2) (T- t) 

"JT - t 
for I = 2, 1, ... , 2 - fr, 

and ("') "",("~ .)' is the usual binomial coefficient . J J. () J . 
To extend the formula to t he case of continuous dividends at rate p, replace S (t) 

by S(t)e-p(T-t) throughout to get 

c(t) 
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Life of Option 

Option 
Expiration 

I t ime 
To 

Figure 9.1: Forward on an Option: T imeline 

Note: At time TF J the forward expires and the long posit ion takes delivery of 
an at-the-money European call option that lives until time To. 

In(¥l) + (1 - p+ [~- l] 0-2
) (T -t) 

o-JT - t 
for I = 2, 1, . .. , 2 - 0:. 

Exercise: Check that plugging in a: = 1 reduces the power option II formulae 
to the Merton formulae, and that plugging in both Q = 1, and p = 0 yields the 
standard Black-Scholes formula. 

9.2.4 Forward on an At-the-Money Option: 
Crack-Ma ines (Crack [1997]) 

A corporation wanting to hedge exposure to its issue of executive compensation 
options can hedge with a forward on an option (see figure 9.1 ). In t he case where the 
underlying pays continuous di vidends at rate p, the Crack-Maines formula (Crack 
[19971) for the forward price of an at-the-money call option is given in equation 9.27:9 

F S(t)e(r - p)(Tp-t ) [e - P(To-Tp ) N (dIl- e - r(To -Tp ) N(d2)] (9 .27) 

for d, 
(r - p + ~0-2) J To TF 

and 
0-

(1' - P - ~0-2)JTo TF =--=-
-'---'---=---'--'---''-----'- = d 1 - 0- J To - T F. 

0-

Exercise: Check that in the special case where t = TF (i.e., the forward expires 
today), equation 9.27 reduces to the Merton formula, and that if t = T p , and 
p = 0, then it red uces to the Black-Scholes formu la. Confirm also that if To = TF 
(i.e. , the option has no life), then F = O. 

9 1 thank Stanton R. Maines for s uggest ing this problem to me in 1997. 
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9.3 Summary of Option Pricing Methods I: 
Plain Vanilla versus Exotic Options 

Table 9 1· Pricing Methods Summary· Plain Vanilla Options 

European-Style American-Style 

Put Call Put Call 

No d ivi- Black-Scholes pu t Black-Scholes call No exact formula Black-Scholes call 
dends formula formula (use approximat ion formula (early ex-

formula, t ree, or fi - ercise is never opti-
nite differences) mal) 

Lump sum Use S ' =S- PV ( O) Use S· =S -P\I(D) No exact fo rmula Roll-Geske-Whaley 
dividend D in Black-Scholes in Black-Scholes (use approximation formula. or Black's 

formula, tree. or fi- pseudo formula 
nite differences) 

Continuous Use S · =Se-('("' -t ) Use S ' = Se - ('('I'-I) No exact fonnula Adjust Roll-Geske-
dividends at in Black-Scholes in Black-Scholes (use approximatio n Whaley formula 
rate p (Merton 's formula) (Merton's formula) formula, t ree, or fi-

nite differences) 

s=( f~:~C) Use p = TFX Use p = TFX Use P = TFX in the Usep = TFX in the 
in Merton 's for- in Merton 's fol'- above above 
mula (Garman- mula (Garman-
Kohlhagen/Grabbe Kohlhagen/ Grabbe 
formula) formula) 

All cases: Monte Car lo, lattice, or finite d ifferences Lattice 01' finite differences 
Numerical 

Table 9.2: Pricing Methods Summary: Exotic Options 

Europea n-Style American-Style 

Path-Independent Path-Dependent Path-Independent Path-Dependent 

Lattice, Monte Carlo, Monte Carlo, fin ite dif- Lattice or fi nite differ- Lattice (difficu lt ) or fi-

or finite difference ference, latt ice (MIi- ences nite d ifferences 
cu lt) 

.,. or a formula if you can derive it 

9.4 Other Data-Generating Processes 

9.4.1 Jump Risk, Replication, and Risk-Neutral Pricing 

Black and Scholes (1973) assume that stock prices are cont inuous. That is, t hey 
assume that you can draw the stock price history without lifting your pencil from 
the paper. You need only stand on the floor of an exchange, watch a real-time feed , 
or read the Wall Street Journal headlines after an "event ," however , to see that 
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prices are not continuous. Most big stock price jumps are in response to the arrival 
of news in the market, whereas most small stock price jumps are due to t he random 
ebb and flow of non-information-based (i.e. , liquidity-motivated) transactions. 

A "jump" price process is a price process that has infrequent jumps (i.e. , disconti­
nuities) in it . If the jump process is a very simple one, both the Merton no-arbitrage 
technique and risk-neutral pricing can still be used to hedge and price options on 
an asset whose price follows the process. If the jump process is more complicated, 
the no-arbitrage and risk-neutral techniques break down. 

A simple jump process example (that is not a diffusion) has dff = I'dt+ (J -1 )d7r 
(Cox and Ross [1976, pI47]) . In this example, J - 1 is the jump amplit ude (where 
J ::: 0), d7r takes t he value + 1 with probability >.dt and 0 with probabilitylO 1 - >'dt. 
The percentage stock price change dff can thus jump suddenly to J - 1 (which may 
itself be random) ; such a jump pushes S to SJ. 

In the simple jump process example, if J is fixed (i .e., J - 1 is a non-random 
jump amplitude) , a riskless hedge portfolio can be formed, and options on an asset 
whose price follows t his simple jump process can be valued using the Merton no­
arbitrage technique or risk-neutral pricing. ll The only real difference between this 
"pure Poisson process" case and the simple binomial option pricing situation (Sharpe 
[1978J; Cox, Ross, and Rubinstein [1979J; Rend leman and Bartter [1979J; COX and 
Rubinstein [1985]; my chapter 6) is that the arrival time of t he jump up or jump 
down is a random variable. You do not need to know when t he stock price will jump 
to hedge the risk in a binomial setting. This pure Poisson process is a special case 
of the more general jump diffusion process discussed next . 

Consider a jump diffusion process (using Merton's notation) : dff = (a - >'k )dt + 
(Jdw + dq, where dq = 0 if the "Poisson event" (i.e., the jump) does not occur, 
dq = (Y - 1) if the jump does occur, (Y - 1) is a spike producing a finite jump 
in stock price from S to SY, a is t he instantaneous expected rate of return on 
the stock, (J2 is the instantaneous variance or returns assuming no jump occurs, 
dw is a Wiener process, >. is the number of arrivals that you expect per unit time, 
k == E(Y - 1) where E is the expectation operator over the random variable Y, and 
dw is assumed independent of the Poisson process dq (see Merton [1992, p313]). 

When (J = 0 and Y == dq + 1 is non-random, you get Cox and Ross's simple 
jump process above, and the no-arbi trage technique can be used to hedge and price 
options on the jump process. Otherwise, when (J > 0 and var(Y) ::: 0, it is not 
possible to form a riskless hedge portfolio or use the no-arbitrage technique (Cox 
and Ross [1976, p147J; Cox and Rubinstein [1985, pp361- 371J; Merton [1992, p316]). 

Both the (non-jump) diffusion process and the (non-diffusion) simple jump pro­
cess are t he continuous limits of discrete binomial models. However, the jump­
diffusion is not. It is for this reason that a riskless hedge cannot be formed in the 
jump-diffusion case (Cox and Rubinstein [1985, pp361-371]). 

The fu ndamental reason that t he no-arbitrage technique can be used to hedge 

lOIn this example, 7r is a continuous time "Poisson process;" ). is the "in tensity" of the process. 
11 1 thank John Cox for explaining to me why such jump processes can be perfectly hedged 

(personal communication [February ] 7, 1994]). 
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and price options in t he standard Black-Scholes world is linearity. In continuous 
time, the Black-Scholes option price is an instantaneously linear function of the stock 
price; instantaneous changes in the two are perfectly correlated. Portfolio building 
is a linear operation, and it follows that payoffs to the option can be perfectly 
replicated by building and continuously rebalancing a portfolio of the stock and the 
bond. Linearity breaks down when the jump term has positive variance-the call 
price becomes a nonlinear function of t he stock price and perfect hedging is not 
possible (lvlerton [1992, p316]). 

Although the no-arbitrage technique fails to price t he option on t he jump diffu­
sion process, you can price the option using an equilibrium argument . An install­
taneous CAPM approach may be used- as it was in the original Black and Scholes 
(1973) paper. The information that causes jumps may be assumed to be firm-specific 
(i.e., unsystematic and diversifiable)12 You can hedge out the non-jump part of the 
option and deduce that the remainder (the jump) must have zero beta and, there­
fore, a riskless rate of return . This yields a PDE that Merton has solved to give the 
call option price as an infinite summation: 

C(S(t), T - t) = f {exP[-A(T - t!lIA(T - t)]n x 

n=O n. 

En{W[S(t)Xnexp(-Ak(T - t )), (T - t);X,,,2,,-n}. 

Here Xn is a random variable with the same distribution as the product of n IID 
random variables each identically distributed to the random variable Y (recall that 
Y - 1 is the random percentage change in stock price when ajump occurs), Xo ;: 1, 
En is the expectation operator over the distribution of X n, alld W[S, (T-t); X, ,,2, T] 
is the standard Black-Scholes pricing formula (see Merton [1992, pp318- 320] for a 
full discussion of the foregoing and Haug [2007, section 6.9.1] for practical issues). 

You cannot perfectly hedge the call when the underlying follows the general jump 
diffusion [" > 0, var(Y) :::: 0]. However, you can hedge out t he continuous parts of 
the stock and option price movements. This leaves a risky hedge portfolio following 
a pure jump process (with stochastic jump size). If you follow the Black-Scholes 
hedge when you are short the option , then most of the time you earn more than 
the expected rate of return on the risky hedge portfolio. However, if one of those 
occasional jumps occurs (i.e. , news arrives), you suffer a reasonably large loss- as 
per the op quiz on page 149. In the non-diversifiable jump case, the return to the 
hedge portfolio when there is ajump balances t he return during normal t ime to some 
extent , but not well enough to make t he equilibrium return on the hedge equal to 
t he riskless rate; as mentioned above, the hedge is risky. 

In general, t here is no way to adjust the parameters of the hedge technique (,,2, 
for example) to get a better hedge (see Merton [1992, pp316- 317] for a full discussion 

12Note that in s ituations where the size of the jump is assumed to be syst.ematic, the risk-neutral 
pricing technique cannot be used to value options. Hull (2000, p446, footnote 13) directs the reader 
to Naik and Lee (1990) for a discussion of this point. 
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of the issues) 13 

If the underlying asset price is modelled as a jump process, t he standard Black­
Scholes call option formula misprices the option. Both the magnitude and the 
direction of the mispricing of the Black-Scholes model relative to the jump model 
vary with the assumed distribution for the size of the jump (Trippi et al. [1992]). 

Finally, if you model the underlying stock price path as a trinomial tree, then 
three possible stock price outcomes and only two assets mean you cannot form 
a perfect hedge. In this case, there does not exist a unique set of risk-neutral 
probabilities. No-arbitrage arguments do determine bounds on option price, and the 
option price must fall between the extremes that are possible given the different risk­
neutral probabilities that are admitted by the model. Although different risk-neutral 
probabilities exist, they must lead to the same solution in the limit as step size tends 
to zero. Equilibrium pricing methods work; and the equilibrium option price in a 
trinomial world , in general, depends upon risk-preferences. See the summary in 
table 9.3. 

9.4.2 Stochastic Volatility 

If the Black-Scholes assumptions are correct, then t he implied volatilit ies of options 
should fall on a horizontal line when plotted against strike price. However, what 
we actually see are smiles and skews depending upon the underlying asset and the 
time period (Hammer [1989J; Sullivan [1993]; Murphy [1994J ; Derman and Kani 
[1994J; and my sections 8.7.2 and 10.3). Prior to the Crash of 1987, you typically 
saw symmetrical smiles when you plotted implied volatilities against strike price. 
Now you are more likely to get non-symmetrical skews, or smirks (see figure 8.5 on 
page 148) . 

Option prices are determined by supply and demand, not by t heoretical formulae. 
The t raders who determine opt ion prices are implicitly modifying t he Black-Scholes 
assumptions to account for volatility that changes both with t ime and with stock 
price level. 14 This is contrary to the Black and Scholes (1973) assumption of constant 
volatility irrespective of stock price or time period. That is, traders assume a = 

a(S(t), t), whereas Black and Scholes assume a is just a constant. 
If volatility is changing with both t he level of the underlying and time, then the 

distribut ion of future stock price is no longer lognormal. Black-Scholes option pric­
ing, however, takes discounted expected payoffs relative to a lognormal distribution . 
As volatili ty changes t hrough time, you are likely to get cont rasting periods of little 
activity in the stock followed by periods of intense activity in the stock. These peri­
ods produce peakedness and fat tails, respectively (together called "leptokurtosis") , 
in stock ret urns distribut ions. Fat tails are likely to lead to some sort of smile effect, 

lJFor theoretical and empirical comparisons of the Merton (1976) jump process call option pricing 
and the standard Black-Scholes pricing, see Ball and 'lb rous (1985). 

14 For example , Black (1976a) notes that a i as S L and vice versa. This "leverage effect" is 
discussed further in section 10.4.1. If you have access to a Bloomberg terminal, run the regression 
analys is VIX < INDEX> SPX < INDEX> lIRA < GO > or VIX < INDEX> IBM < INDEX> lIRA <GO> a nd 
you should see a clear negative effect . 
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because they increase t he chance of payoffs away-from- the-money. The interaction 
of skewness and kurtosis of returns gives rise to many different possible smile effects 
(Hull [2000, chapter 17J; Krause [1998, 1'1'145-148]). 

Stochastic volatility models attempt to account for volatili ty t hat changes as 
a function of both t ime and stock price level (Hull and White [1987J; Scott[1987J; 
Wiggins [1987J; Hull [2000]) . Applications to FX options include Chesney and Scott 
(1989) and Melino and Turnbull (1990). 

The effect of stochastic volatili ty on opt ion values is similar to t he effect of 
a jump component: both increase the probability that out-of-the-money options 
will finish in-the-money, and increase the probability t hat in-the-money options will 
finish out-of-the-money (Wiggins [1987, 1'1'360- 361]). Whether an implied volatili ty 
smile is skewed left, is skewed right, or is symmetrical in a stochastic volatility model 
depends upon the sign of the correlation between changes in volatili ty and changes 
in stock price (Hull [2000, chapter 17J; Krause [1998, 1'1'145-148]). 

9.5 Summary of Option Pricing Methods II: 
Discrete versus Continuous Models 

Table 9.3: Option Pricing Methods (No-Arbitrage versus Equilibrium) for Different 
Models of Securi ty Price Behavior 

Model Perfect Risk-Ne utra l Equilibr ium 
Hedge? Prici ng? Pricing? 

< Yes Yes Yes 
( Discrete eAPM works) 

Binomial 

~ No Yes (not unique) Yes 
( Teed Price of Risk) 

Trinomial 

dS = "Sdt + (J - L )Sd~ 
Pure Jump Yes Yes Yes 
(Cox-Ross) (Limit of Binomial) 

dS = /tSdt + uSdw 
Diffusion Yes Yes Yes 

(B lack-Scholes) (Limit of Binomial) 

dS = "Sdt + aSdw + (J - l )Sd". 
Jump-Diffusion No No Yes 

(w ith Diversifiable Jump Risk) ( In5t. eA PM \"'orks) 

dS = "Sdt + a Sdw + (J - I )Sd~ 
Jump-Diffusion No No Yes 

(with Non-Diversifiable Jump Risk ) (Need to Price Jump Risk ) 

©2009 T imot hy Falcon Crack 170 All Rights Reserved \Voddwide 



Chapter 10 

Trading 

I love trading. I love actively trying to beat the market. It is a game of pure skill 
in which genuine players cannot sit on the fence; they must put their money where 
their mouth is, and their success or failure is quantified indisputably in dollars and 
cents. Actively trading stocks is like playing with fire: It takes skill and discipline to 
avoid getting burned. Actively trading options is the financial equivalent of throwing 
gasoline on that fire. 

From September 1929 until mid-1932 , the broad market in t he US dropped 
90% (Chernow [1990, p323]); each $1,000 invested fell to be worth only $100. You 
may think that sounds bad, but table 10.1 indicates that about one-third of CBOE 
options positions that investors enter fare much worse-losing the full 100%. Not 
only t hat, but most options are of maturity eight months or less, so the loss is much 
more rapid than that following the crash of 1929! 

The "Hard" Word: I like the old joke "How do you make a small fortune in 
the stock market?" The punch line is "Start with a large fortune!" Making money 
in the markets is hard work. There are many books, seminars, and videos that 
promise easy riches from trading; but t he "systems" they offer are for suckers. The 
best financial advice I have ever heard is: "If it looks too good to be true, then it 
probably is too good to be true." Or, put in other words, If it looks like a duck, 
walks like a duck, and quacks like a duck, then it probably is a duck! Unless you 
are good at forecasting stocks and the market, you will not consistently make good 
money in the markets. 

The financial outcomes of persistent ignorance and foolishness are often indis­
tinguishable. At least ignorance can be addressed by education. This chapter is a 
collection of practical observations and advice. With this advice under your belt , 
I am hopeful that you will at least keep your head above water while you are try­
ing to find out if you are any good at forecasting the markets. If you are good at 
forecasting, then you will make much more money with my advice than without it. 
I recommend strongly that you trade only with "risk capital"; that is, money that 
you can afford to lose in the blink of an eye. 
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CHAPTER 10. TRADING 

10.1 Institutional Details 

The booklet Characteristics and Risks oj Standardized Options (CAROSO) is avail­
able for free from the CBOE both in hard copy form and online1 This section 
presents similar but less detailed information. 

10.1.1 Options Specifications 

Listed equity options on the CBOE are American-style. Generally, t he option covers 
one round lot of shares or ADRs2 The exercise price and option premium must be 
multiplied by the number of underlying shares to get the aggregate exercise price 
and aggregate premium. For example, on July 30, 2003, an Eastman Kodak (EK) 
August $20 strike call option was quoted at $7.90- $8.00. T his call gives the right 
to buy 100 shares of EK for $20 per share, or a total exercise price of $2000 (for a 
total premium of $800 if you are going long). EK traded around $28 per share on 
that day. 

Listed equity options have maturi ties up to about eight months (except for 
LEAPS). They trade on one of three expiration cycles: in any given month, there 
are two near-month expirations, and two far-month expirations (see footnote 18 on 
p13 for more details) . Ignoring exchange holidays, equity options expire on t he Sat­
urday following the third Friday of the expiration month. 3 Stock LEAPS options 
have lives of up to three years and always expire in January. LEAPS usually have 
ticker symbols that differ from regular equi ty options--{)ften starting with a "V" or 
a "z" or an "L." LEAPS convert to regular equity options (and their ticker symbols 
change) when their maturity is short enough to join the regular expiration cycle. 

US index options usually give t he right to buy $100 times the underlying index, 
though beware "reduced value" options that use only one-tenth the index as t he 
underlying. Index options may be American style or European style. They are 
always cash settled. Their maturit ies are usually less than four months, except for 
LEAPS. Index LEAPS always expire in December. 

If you are short an option , and someone who is long exercises, you may be 
"assigned the exercise." That is, you are forced to buy the stock at the strike if it 
is a put, and forced to sell the stock at t he strike if it is a call . There are a few 
business days between a properly tended exercise notice to a broker and subsequent 
assignment to a randomly chosen option writer. 

Note that if you are long a call, a cash dividend is bad news (see the dividends 
section beginning on page 46) . Thus, call holders may try to capture dividends 

lCopies of CAROSO are avai lable from your broker) online at \01\1\1. cboe. com, by calling 1-888-
OPTIONS ( in the US), or from The Options Clearing Corporation , One North \.yacker Drive, Suite 
500, Chicago, Tllinois 60606. Coogle the full title and you will find a free PDF copy online. 

2 An ADR is an American Depository Receipt . It is a USD-denominated stock, trading in the 
US, but representing ownership in a foreign corporation. 

3Each month I get this type of message from my broker: "The last day to trade equity option 
contracts expiring on Saturday,May 17th will be );1"iday, JVlay 16th. If you do not have sufficient 
buying power to cover potential exercises or assignments, please deposit funds or close out your 
position before close of market on Friday." 
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Table 10.1: How Do People Exit Their CBOE Option Positions? 

Close Out 60% 
Exercise/ Assigned 10% 

Expire \Northless 30% 

Note: Roughly 60% of CBOE options are exited via offset (sell to close a long, 
or buy to cover a short ). Ten percent of options are exercised; Either you are 
long and you exercise your right to buy or sell , or you are short and the Options 
Clearing Corporation (OCe) assigns you the e..xercise of someone who is long. 
Thirty percent of options expire worthless (your rate of return is -100%!). 
Source: Personal communication with CBOE staff, 1997. 

by exercising (and call writers are more likely to be assigned exercises) as the ex­
dividend date approaches. 

Adjustments can be made by the exchange to standardized terms of listed eq­
uity options. In general , no adjustment is made for ordinary cash dividends (less 
than 10% of market value of underlying) . A stock split , stock dividend, or stock 
distribution can lead to an adjustment in t he number of underlying shares or t he 
exercise price, or both. For example, you hold a MMM 150 call , and MMM has a 
3 for 2 stock split. The option could be adjusted to cover 150 shares with strike 
$100 (total strike is unchanged at $15,000). As a general rule, if the ratio is a whole 
number (e.g., as in a 2 for 1 split), t he number of underlying shares is not adjusted. 
Instead, the exercise price is decreased, and t he number of outstanding options is 
increased. For example, you hold an MMM 150 put, and MMM has a 2 for 1 stock 
split. You end up with two put options, each on 100 shares, with strike $75 4 

Strike prices are initially set close to t he underlying share price. Addit ional 
strikes are set at 2 ~-point intervals (if the strike is less than $25) , 5-point intervals 
(if the strike is bet';een $25 and $200), and lO-point intervals (for strikes over $200).s 
Options with identical terms form a series; e.g., IBM 100 Nov calls are one series . 
IBM puts are one class; IBM calls are another class. New series are introduced when 
the underlying trades through the highest or lowest strike price available, or when 
one series expires . 

Open interest is the number of long (or short) contracts alive. When an option is 
exercised , the open interest drops by one. The number of contracts you can hold on 
one side of t he market (i.e. , long calls plus short puts, or long puts plus short calls) 
or exercise over five consecutive business days is limited to the position limit (or 
exercise limit). This lies between 4,500 and 99,000 options, depending upon market 
capitalization of the underlying. 

The holder of an option considers t he Opt ions Clearing Corporation (OCe), 

<lOther corporate actions cause adjustments: if a stock is converted to a debt security, the under­
ly ing changes to debt; after a spinoff, the underlying may be two companies) stocks in appropriate 
proportions; similarly for mergers; but no adjustment is made for tender offers or exchange offers . 

50 ne "point" is one dollar. 
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CHAPTER 10. TRADING 

rather than any particular option wri ter, to be his or her counterparty. Similarly, 
option writers are obligated under the OCC system, and are not tied to any par­
ticu lar option holder. Once the OCC identifies matching orders from a buyer and 
a seller, it cuts any link between the parties and steps in as the counterparty. All 
premiums and settlement payments are made to and paid by OCC (via your broker 
and a "clearing member" who clears your broker 's trades with the OCC). T here has 
never been a default by t he OCC. 

10.1.2 Exchanges, Regulatory Bodies, and Securities 

When you trade stocks on the NYSE or options on the CBOE, there is a designated 
market maker who must quote a bid-ask spread and buy from you if you want to 
sell , and sell to you if you want to buy. Exchange rules limit t he size of the spread 
and the speed with which t he market maker can move the spread. This is not so in 
the futures (and futures options) market . In the futures market, t he floor traders 
can step back and not trade if t hey do not want to---typically at the very t ime you 
severely need liquidity. T hus, futures and futures options carry a liquidity risk not 
seen with NYSE stocks or CBOE stock options. 

Limitations on daily price moves in t he futures market mean that daily price 
limits are likely to be hi t more frequently than are aggregate price limits in the 
stock market . When a price limit move up or down happens, the futures market 
"locks limit up" or "locks limit down," t he exchange halts trade, and that may be 
the end of trade for that day. The market may lock limit again with the first trade 
of the next day, and so on. You may find yourself locked into your losing position 
for several days, and unlike the CBOE where you cannot lose more t han 100% of 
the option premium, you can lose much more t han 100% of your initial outlay in 
fu tures 6 

When you are short an option, or a stock for t hat matter , you are at the mercy of 
whomever is long. You can be forced to cover a short stock position at any t ime.7 A 
short American-style option can, similarly, be exercised at any t ime by the person in 
the long posit ion-optimality be damned! If you do have a short as an integral part 
of your strategy, and someone just pu lled the rug out from under your feet, then you 

6 Although option contracts contain leverage, that leverage is only implicit, because when you 
buy options on the CBOE you lTIust pay for them in full up front. vVhen you buy a stock on the 
NYSE and you do not do so on margin, you s imila rly pay for the s tock in full up front . I t hink of 
these as 1I1imited liability" trades, because you cannot be asked for any additiona l money to support 
the position. This is ana logolls to owning fully paid-up shares in a limited Hability compa ny, where 
the directors of the company cannot ask you for any additional money to support your holding. 
This differs from buying a st.ock a nd choosing to do so on marg in or buying futures where you have 
no choice but to do so on marg in. In t. hese cases, you have an explicitly levered pos ition in t.he 
inst.rument, a nd your broker a nd/ or t he exchange can ask for more money if t he trade goes agains t 
you. 

7D'Avolio (2002) indicates that. forced covering is a ra re event and is accompan ied by unusua lly 
high t rad ing volume and volat il ity. He states t hat in any given month , on average, only 2% of 
stocks loaned out are recalled . A long put can substit.u te for a short. s tock when the stock is too 
hot to borrow, but beware unsustainable implied volati li t ies that can quickly eat your long option 
profits if t hey fall. 
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will probably have to close your entire position down. For t his reason, and others, 
the CBOE has recently (mid-2001) introduced European-style options (ticker XEO) 
on the S&P100 to complement the European-style options (ticker SPX) that already 
trade on the S&P500. 

If you are short stock, you face two costs that long stock holders do not. First, 
there is t he general tendency for stock markets to rise over time. If you are short, 
you are swimming against t hat current. Second, when you are short a stock, you 
pay the dividends on the stock to whomever is in t he long position. Dividend yields 
in the US have fallen to the extent t hat dividend costs are not, on average, very 
high nowadays. If you are short a call on a stock or long a put on a stock, then 
you still face t he fi rst "swimming" cost, and with leverage to boot, but you are not 
liable for dividends, because dividends go to t he person who is long the stock, not 
long an option on t he stock. 

Federal Reserve Board "Regulation T" ("Reg T" for short) governs how much 
cred it may be extended to clients of broker-dealers. Reg T defines which securi­
ties are eligible and establishes initial margin requirements for both long and short 
positions. For options, it defers to the SEC-approved exchange-imposed margin 
requirements (Sec 220.12[f]) . 

You can borrow, at most, 50% of the value of marginable securities from your 
broker. Not all stocks are marginable: For example, section 220.11 of Reg T says that 
to be marginable, OTC (i.e., not NYSE or NYSE Alternext) stocks must (among 
other requirements) be priced over $5, have more than $4 million capital, have over 
400,000 shares outstanding, be publicly traded for at least six months, and the 
issuing ent ity has to have existed for at least three years. The net resul t is t hat 
small stocks (i .e., low market capitalization stocks) and low-priced stocks might not 
be marginable. 

Reg T Sec 220.12 (c) deals with short sales of eligible equity securities. It states, 
essentially, t hat margin money must remain in the margin account to t he extent of 
150% of the current market value of the security sold short, or 100% of the current 
market value if there exists a security held in t he account that is easily exchangeable 
into an offsetting position. If a long call is to be used as margin to offset a short 
sale of the underlying security, then it must be an American-style option issued 
by a registered clearing corporation and listed or traded on a registered national 
securi t ies exchange, and must have a strike price at or below the price at which the 
underlying securi ty was sold short. In other words, you cannot use the short sale 
proceeds except to post them as margin money or to buy a call on the short security. 

In 2001, t he NASD modified margin requirements for frequent traders. The 
essentials are that if you make fo ur or more round-trip equity trades during any 
five-business-day period, and if t his represents more than 6% of you r total trading 
activity during t his period, t hen you are labelled a "pattern day trader." You are 
then required to have at least $25,000 capital in your margin account. You are also 
allowed to use up to four times this for intraday trading (i.e., you are allowed to 
trade on as little as a 25% margin), but you must go home flat or face a margin call 
for the other 25%. "Going home fl a t" means that you close out your positions at 
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day's end; i.e., that the plot of your wealth versus the stock price is flat- hence the 
term. 

Regular trading hours (RTH) for stocks in New York are 9:30AM to 4:00PM EST 

(New York time). RTH for equity options in Chicago are 8:30AM to 3:02PM CST 

(Chicago time) . Note that 9:30AM EST is 8:30A M CST . RTH hours for other option 
products in Chicago may differ. The exchange Web sites give t he trading hours for 
each product . 

Extended trading hours for stocks in New York are 8:00 to 9:15AM and 4:15 
to 6:30PM EST Monday to Friday. The extended trading hours sessions use order 
matching by Electronic Communication Network (ECN). The ECN looks for match­
ing orders, so round lot orders are much more likely to fill. After hours (AH) stock 
trading often takes place at the NYSE close price, though it need not. I t hink people 
trading in the AH m8J·ket want fills , and are happy to go with the NYSE close to 
get it done. The fact that a stock's price does not move during AH trade does not 
therefore tell you anything about the information flow; it does not imply that the 
stock will not jump tomorrow morning. Spreads and price fluctuations can be large 
outside of RTH. For example, in the AM session on July 8th, 2003, Eastman Kodak 
was quoted at $26.77- $27.39 and AT&T was quoted at $19.56-$20.50. During ex­
tended trading hours, my broker allows only unrestricted limi t orders (no fill-or-kill , 
all-or-none, etc.), no short sales, no options, no mutual funds, and no bonds. 

There are over 10,000 stocks available to trade in the US. They trade on the 
NYSE, t he NYSE Alternext, t he NASDAQ, the OTC "Bulletin Board," and t he 
"Pink Sheets." Stocks trading on the Bullet in Board and Pink Sheets are ones that 
do not satisfy the requirements for trading on the NASDAQ or for listing on the 
NYSE Alternext or NYSE. T here is not much liquidity in or reliable information 
about these stocks; execut ion of orders for them may be slow and costly. 

Opt ions can be purchased from investment banks rather t han organized ex­
Ch8Jlges. This is an over-the-counter (OTC) market.8 Financial institutions trade 
t hese options with other financial institutions and with corporate clients. Most OTC 
options are European-style, whereas most exchange-traded options are American­
style. 

OTC options are more expensive than exchange-traded options. This is because 
you must pay for an investment bank's expertise in structuring complicated deals, 
and because the bank must make a profit . Competition between investment banks 
reduces the cost of common OTC products. However, unique or complicated prod­
ucts may have a large premium attached- perhaps an ROF9 It should be pointed 
out, however, that you are often getting what you pay for ; e.g. , peace of mind. 

\/ifhen I started investing, you could tell from a stock's ticker symbol whether it 

8Do not confuse the term OTC used for an investment bank with OTe used to refer to the 
Bulletin Board now, or the NASDAQ in the past; they are distinct in their meaning. Although they 
both refer to marketplaces with no physical exchange floor , the investment bank provides potentiully 
non-standardized financial instruments whereas the Bulletin Board now (or the NASDAQ of 20 
years ago) attempts to be exchange- like. 

9 At least one investment bank is on record as having routinely referred to the "rip-off factor," 
or ROF , in complicated deals with cl ients. 
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traded on the NASDAQ or on the NYSE or the AMEX (now the NYSE Alternext); 
three or fewer letters meant the NYSE or the AMEX, and four or five letters meant 
NASDAQ. That is not strictly true any more, but it is often true. 

It is relatively easy to find ticker symbols for stocks; many Web sites have "ticker 
lookup" facilities. If you know the ticker for the stock, you can look up the "option 
chain" to find the "chain" of options that is attached to the stock (i .e. , all t he 
different option series) . Some Web sites will, however, just give you the near-the­
money options; be sure you know what you are looking at because many other option 
series may exist that are not listed by default. I have noticed that different data 
vendors may use slightly different tickers for the same option, so the CBOE's Web 
site may have a slightly different ticker for an option than you see on your online 
brokerage screen. 

T here has been an excellent trend in recent years toward the introduction of 
exchange-traded funds (ETFs) . An ETF is a portfolio that can be bought and 
sold just like a stock, but which is designed to track very closely a broad market 
index, a sector index, or some other index or group of stocks. ETFs are useful for 
hedging stock or options positions. ETFs have numerous advantages over mutual 
funds: ETFs can be bought and sold (and sold short) at intraday prices, whereas 
most mutual funds can be traded only at market close prices; there is no uptick rule 
for most ETFs;10 ETFs are often very heavily t raded and that goes hand-in-hand 
with very low T-costs (e.g., the NYSE Alternext ETFs DIA and SPY that track the 
INDU and SPX, respectively, have extremely low spreads). ETFs, unlike mutual 
funds, do not have to sell their holdings to redeem institutional investors who sell. 
This means that they are less likely to generate capital gains that could generate a 
tax bill for those still in the fund. One disadvantage of ETFs over regular mutual 
funds is that t heir flexibility may tempt poor market timers into active strategies 
that lose over t he long term. 

Finally, roughly half of all individual equity option trading and 90% of all eq­
uity index option trading takes place on the CBOE. The CBOE is one of five US 
exchanges that trade options (source: www.cboe . com). 

10.1.3 Brokers 

There are discount brokers and full-service brokers. Full-service brokers offer advice 
and assistance in placing trades. They charge you 10- 20 times what a discount 
broker charges you for the same execution. They may get commissions based on 
your t rades, and they may be trying to dump stock that their company owns. The 
former is an incentive for them to advise you to t rade too much; the latter is an 
incentive for them to advise you to trade the wrong securit ies. A discount broker 
may charge you only $5-$20 to place an order. Shop around for a discount broker 

lOThe uptick rule was introduced by the SEC in 1938 a half-dozen years after the stock market 
collapse. It says you cannot sell short unless the most recent trade was on an uptick; that is, unless 
the price just ticked up. The SEC rescinded the rule in July 2007, but I think there is a 50-50 
chance that a tick rule will be re-introduced in some form by 2010. 
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who has been in business for a while and has charges that are low for t he type of 
trad ing you typically do. 

One problem with using a discount broker is t hat naive investors might acciden­
tally buy the wrong stock (Rashes [2001]). For example, they might buy the stock 
with t icker symbol FORD thinking it is Ford Motor Company, which actually has 
ticker symbol F, or they might buy RYN (Ryonier) thinking it is Ryan Air, which 
actually has ticker symbol RYAAY. 

My discount broker executes trades very quickly: typically within five seconds, 
and usually within one or two seconds if I am trading round lots. The slowest US 
trade I ever did was shorting the DIA, and that took maybe 15 seconds to fill. 

I used to get phone calls from Chicago futures brokers with heavy foreign accents 
saying something like " ... now surely, Dr. Crack, you have seen that sugar prices are 
at a three-year low ... " or " ... if you have two thousand dollars that you can afford to 
lose ... " They wanted to run a portion of my money for me (and generate commissions 
for themselves). You would be better off giving your $2,000 to the American Red 
Cross; at least t he life you save might be your own. 

Section 10.1.2 discusses Reg T and margins. For stocks t hat are marginable, 
your online broker should have a list online of the maintenance margin requirements 
for each stock. This should be something like 40%, but with requirements of 50% or 
100% for more volatile stocks. Thus, $5,000 in your margin account may give you a 
buying power of as much as $12,500 of stock. 

Equity options can be illiquid. If you hold options in your account, it may be 
that no one has traded any options from that series in the last few days. Your broker 
may mark to market using the last trade rather than the most recent bid or ask. 
This means that the value of your option posit ion reported by your online broker 
may be extremely stale. It may show a large gain or loss over the last time you 
checked your balance, when in fact the security is currently quoted very differently. 
Also, even if the option traded only 10 seconds ago, option spreads mean that you 
may see your option value reported at the ask (if the last transaction was a customer 
buy), and this is different from what you can get if you try to sell now at the bid. 
The bottom line is that illiquidity leads to infrequent trade and wide spreads, so 
the last transaction in an option does not necessarily reflect relevant information 
for your next trade. Be sure to check the current bid-ask spread before trading . In 
similar vein, option illiquidity can lead to non-execution of some order types that 
are linked to actual trades. See section 10.4.4 for an example. 

My broker gives a "liquidation value" for my account that completely ignores 
any margin borrowing that has to be repaid. As such , it does not represent what I 
think of as liquidation value. Be sure to understand how your broker reports your 
positions, and do the arithmetic before trading. 

10.1.4 T-Costs 

n·aders incur transactions costs (T-costs). T-costs are either direct or indirect. Di­
rect T-costs include commissions, spreads, and margin interest . Indirect T -costs 
include price impact, price slippage and execution risk, price improvement (neg-
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atively), payment for order flow, and the consequences of internal crossing. It is 
arguable whether other costs, like taxes or dividend obligations on a short sale of 
stock, are T-costs. 

Commissions. l\'fost brokers charge at least a fixed dollar sum. For example, 
$8 for a market order (see section 10.4.4) in shares and $10 for a market order in 
stock options, in unlimited quantity. There may, however, be a schedule of prices 
depending upon the number of contracts traded. For example, one well-known 
discount broker charges a $5 commission for market orders up to 5,000 shares, but 
an additional one cent per share, retroactive to the first share, for market orders 
over 5,000 shares. They charge $5 plus $1.50 commission per contract for market 
orders in listed equity options or index options, with a minimum commission of 
$15. For limit orders (see section 10.4.4), they have an identical schedule, except 
that $10 replaces $5. The numbers given here are all for online trades. If you 
place a broker-assisted trade, they charge an extra $12 for shares and a minimum 
of $25 for options. Using all these numbers, the least expensive commission is for 
an online market order in fewer than 5,001 shares ($5); the most expensive is for a 
broker-assisted limit order in options (at least $25). This discount broker charges 
a flat commission of $19 for option exercises or assignments. If the option expires 
unexercised, no commission is charged for its expiration. 

As already ment ioned , commissions from full-service brokers can be 10- 20 times 
larger than the above-mentioned commissions from discount brokers. 

Spreads. We discussed bid-ask spreads in section 1.3.2 (plO), and in many other 
places throughout this book. Small t raders typically buy at the ask and sell at the 
bid. In theory, the difference is pocketed by the market maker. 

In practice, prices can be so volatile that the market maker collects only a portion 
of the spread, and some markets do not even have market makers. For example, the 
New Zealand Stock Exchange (NZX), as of 2009, does not have designated market 
makers. The bid-ask spread on the NZX is determined solely by how tightly spaced 
the inner limit orders on a stock are in the centralized limit order book. At least 
five levels of limit orders and depth are freely visible to all traders, with only the 
occasional hidden order. 

The relative spread (Le., spread divided by option price) on an option can be 10 
t imes the relative spread on the underlying stock. I argue in section 1.3.2 that this is 
not usurious, but appropriate . Making a market in options is a risky and expensive 
business, and there is substantial regulatory oversight on the size of spreads in stocks 
and options in the US. 

Margin. Long puts or calls must be paid in full; they cannot be bought on margin. 
Uncovered (i .e. , naked) writers must, however, deposit an initial margin of 100% of 
the option proceeds plus 20% of the aggregate contract value (current equity price 
multiplied by $100) minus the amount by which the option is out-of-the-money, 
if any. Minimum initial margin is 100% of the option proceeds plus 10% of the 
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aggregate contract value. Your broker ll1ay require a higher initial Inargin. So, to 
be clear, you do not get to use the option proceeds if you sell naked optionsll 

No options margin is required for writing covered calls; i. e., when you own the 
stock already. This is because t he credit risk is zero. However, if the underlying 
stock is bought on margin , and the option is in-the-money, the extent to which 
the call is in-the-money is subtracted from t he stock price when calculating the 
investor 's equity position (meaning t hat you may not be able to withdraw margin 
funds as the stock price rises) . 

Margin Interest. A stock margin trade is partially funded using money borrowed 
from your broker. You pay margin interest on the borrowing. T he interest rate is 
usually some quoted prime or base rate with an adjustment depending upon the 
level of borrowing (Le., the debit balance) . Margin rates are quite competitive. 
For example, in 2009, one well-known US discount broker charged a base rate of 
3.99% but an adjustment of +3.00% for a debit balance of $1- $49,999, +2.00% for 
$50,000- $249,999, +1.00% for $250,000- $999,999, and no adjustment (equal to the 
base rate) for $1 ,000,000 or more. 

Price Impact. If you buy stock, you consume part of the depth at the ask, and you 
create upward pressure on the stock price. A very large market order can consume 
all the depth at the ask and t hen walk up the limit order book, thereby pushing 
prices against the t rader. This movement of prices against your favor is called "price 
iInpact" or "lnarket ilnpact ." Do not be fooled into lllistaking this upward move in 
prices as good for you. Even though you are going long and price rises are good 
for people in long positions, the temporary order imbalance t hat forces you to pay 
higher prices is a genuine cost to you 12 

T he larger the capitalization of the stock, t he more liquid it is, and t he less likely 
is price impact. The smaller the trader and the smaller the trade, the less likely is 
price impact . 

You can move t he stock price against you without trading in the stock. For 
example, if you buy a call option on a stock, and the option market maker hedges 
by buying stock, then the market maker's buying creates upward price pressure on 
t he stock. That is, even t hough you yourself are not buying stock, your t rade can 
still move the stock price against you . The option market maker has already built 
this hedging cost into his or her bid and ask quotes . 

Price Slippage and Execution Risk. Between your deciding to place an order , 
placing an order, and having it filled , the price can move. T his "price slippage" is 
a particula r concern in fast markets, in illiquid securities, or when you are trying 

11 Aside: U you want to create a long-short position in equi t ies , t hen each Sl you have in your 
margin acCO Wl t allows you to go long $1 and short 81. Ha lf o f your original dolla r is the 50% margin 
for the long side, and the other half, together wit h the $1 short proceeds, is the 150% margin for 
the short s ide. 

12 An exception might be if you are an informed t rader known to be informed , and your price 
impact is a permanent repricing to refl ect your perceived in formation. 
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to execute different legs of a strategy. For example, I once wanted to trade an 
index option that did not appear on my online brokerage screen. I called them 
up, and they did a broker-assisted t rade for me. They charged me only the online 
commission, but the price had moved against me a couple of eighths in the interim. 

Price Improvement. One broker used to advertise in the Wall Street Journal 
with a picture of a French Revolution guillotine and the phrase, The way some 
brokers handle your trade, it '8 no wonder' they call it an execution! 

The faster your order is executed, the less likely it is that you get a "price im­
provement" on the quoted bid or ask. I remember standing on the floor of the 
NYSE in mid-1 994 watching a specialist "stop" incoming small orders. A "stopped 
order" is guaranteed the quoted bid or ask, but given the ability for price improve­
ment should an opposing order appear that can be crossed with it strictly within 
t he spread (Ready [1999]) . P rice improvement can also come from an off-exchange 
competing market maker; for example, a regional exchange like the Boston Stock 
Exchange (BSE)13 

The opportunity for price improvement means a higher quality execution. It 
follows t hat rapid execution by discount brokers may go hand-in-hand with poorer 
quality execution. There is thus a trade-off between speed of execution and quality 
of execution . 

Payment for Order F low and Internal Crossing. Your broker does not nec­
essarily send your t rade in a NYSE stock to the floor of the NYSE. Other exchanges 
and market makers exist, and they may pay your broker a penny or two a share 
to route your order to t hem. Your broker may even cross the trade internally by 
matching your order with another customer's order, or by trading from their own 
inventory, and therefore keep the spread for themselves. 

You may still hit t he quote that the NYSE specialist broadcasts, but you miss 
out on any opportunity for price improvement. Again, a rapid execution might not 
be a high-quality execut ion . I have even seen brokers advertise $0 commissions; 
presumably, the quality of execution was exceptionally poor. 

Tax. Laws change and different traders have different tax situations, so you must 
confirm any information here with your tax advisor. 

Gains and losses on options are taxed as capital gains and losses. Gains and losses 
are recognized when an option expires unexercised,14 or when an op t ion posit ion is 
closed out with an offsetting trade. Commissions are all tax deductible . 

When a call option is exercised, the person in the long position is t reated as if 
he or she purchased the stock at the strike plus the call premium (and this total is 

13The ESE was acquired in 2008 by the NASDAQ. I visited the ESE in the mid- 1990s before it 
moved to its new bui lding. It ,vas all screen-based, not open outcry; so, unlike the NYSE floor, it 
was nearly silent. 

14you might let an in-the-money option expire without exercise if t he T-costs exceed the intrinsic 
value. Many brokers automatically exercise your option at expiration if it is sufficiently in-the­
money to cover T-costs. 
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compared to the subsequent sale price of t he stock to calculate taxable profits); a 
call option writer who is assigned an exercise is treated as if he or she sold stock at 
the strike plus the premium (and this is offset against the price of the stock purchase 
required to meet the assignment). 

\Vhen a put option is exercised, the person in the long position is t reated as if 
he or she sold the stock at the strike less the premium (and this is offset against 
the original stock purchase price); a put option writer who is assigned an exercise is 
treated as if he or she purchased the stock at t he strike less the premium (and this 
net cost is offset against the subsequent selling price of the stock). 

If you think a stock that you lost money on and sold is going to bounce back, 
and you repurchase the losing stock within 30 calendar days of the date you sold it , 
you cannot claim a loss for tax purposes- it is a "wash sale." This applies to the 30 
days prior to the sale, as well as the 30 days after the sale (i .e., a 61-day period). 
Selling a stock and buying a call also comes under the wash sale rule because buying 
a call is tax-equivalent to buying the stock itself. 

10.2 Black-Scholes Assumptions and 
Violations 

The assumptions of Black-Scholes option pricing are severe; t hey have to be to lead 
to a simple closed-form formula . The real world differs from the assumpt ions used 
to deri ve Black-Scholes pricing in at least t he following respects: t he volatility a 

changes with changing stock price; bid-ask spreads exist and they are necessarily 
large in options markets; stock and option prices are often restricted , either explic­
itly by minimum tick sizes15 or implicitly by market participants, and are thus not 
continuous variables but discrete ones; there exist many different interest rates T , 

and they change through time; most exchange-traded options are American style 
not European style; many OTe opt ions are more complex still; stock prices do not 
follow a GBM, but a process that is often at least partly predictable; options mar­
kets are not open always- you cannot trade in continuous time; COlTIlnissions existj 
price processes for the underlying stock are discontinuous- not just because prices 
are restricted by tick size, but because significant news moves prices significantly 
creating "jump discontinuities"; the implied volatility used to price options of differ­
ent maturity differs and similarly for options of different moneyness, giving rise to 
a "term structure of implied volatility" and "volatili ty smiles" or "volatility skews," 
respectively. 

The net result of all t his is that t he Black-Scholes formula appears, at first blush, 
to be mis-specified in a dozen different ways if you want to use it to help you trade 
equity options in the US. From a practical standpoint, however, the formula is quite 
robust with regard to t he majority of these mis-specificat ions. So, I find the B1ack­
Scholes formula a helpfu l and accurate guide for my options trading. I do, however, 

15The tick s ize is the minimum allowable price variation. T he tick size in equity o ptions and 
equity LEAPS on the CBOE is SO.05 for premiums below $3, and $0. 10 otherwise. 
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have to allow for spreads, commissions, and variations in volatility through time, 
across moneyness, and across maturity. This is described in a spreadsheet setting 
next. 

10.3 The Spreadsheet Tools 

Two simple EXCEL spreadsheet tools accompany this book. The first spread­
sheet is a learning tool focused on the Greeks; The second spreadsheet is a trading 
tool into which you feed a view on a stock. The first spreadsheet (and any sub­
sequent revised version) is named bbsGREEKS.xls and can be downloaded from 
www.BasicBl ackScholes. com and opened using the password "mary Ie bone" (in 
lowercase letters and without t he quotes). This spreadsheet is about 100Kb, and 
uses no VB. The second spreadsheet (and any subsequent revised version) is named 
bbs.xls and can be downloaded from www.BasicBlackScholes . com using the pass­
word "marylebone" (in lowercase letters and without t he quotes); be sure to enable 
macros when you use this one. This spreadsheet is about 140Kb, and uses VB to 
reset spinner-controlled cells to original values. 

Let us return to the speculative call example in section l.3.3 (p13). Assume 
that it is Monday, April 21 , 2003, that MCD closed most recent ly at $16, that you 
t hink t hat it will rise to $20 per share within three months and t hat this will be 
accompanied by no change in the shape of the volatility skew. Let me assume t hat 
you have 90% confidence in your view. Your worst-case scenario is that MCD will 
fall to $14 per share after t hree months, but there is little likelihood of that- MCD 
having recently risen from its roughly lO-year low of just over $12. Your confidence 
level is high enough t hat options are viable, but which options posit ion should you 
choose? Let me restrict the choice to long call options (anything more complicated 
can be analyzed using the same methods) . 

MCD is on the March expiration cycle with equity options expiring in May, June, 
September, and December 2003 (you discover t his as soon as you look at the option 
chain attached to MCD on your brokerage screen or investment Web site). There 
are also LEAPS that expire in January 2004 and January 2005. If your t hree-month 
horizon is quite firm , t hen the May and J une expirations are too soon, and there is 
no point paying extra for t he December expiration or the LEAPS. That leaves just 
September. Near-the-money str ike prices a re available from $10 to $22.50 in $2.50 
steps. The most recent quotes (i .e., bid and ask prices) for September MCD call 
options were reported in table l.3 (p14), and are repeated here in table 10.2. 

I mentioned the simple EXCEL spreadsheet trading tool bbs.XLS above. You 
can feed in my above- mentioned view on MCD (forecast stock price at forecast 
horizon) and get out the answer to my question: "Which opt ion best capitalizes on 
my view?" This is a simple and parsimonious tool t hat I have found very useful in 
day- to-day trading. 

Beyond the instructions, there are four worksheets within t he spreadsheet. The 
content and function of t he worksheets are as follows: 

1. Source Data. Enter the horizon of your forecast t = h, your forecast , your 
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Table 10.2: September 2003 Call Option Data: MCD, April 17,2003 . 

Strike Ticker Bid Price Ask Price Vol. Op. Int . 

$10.00 MCDIB 86.00 $6.20 0 573 

$12.50 MCDIV 83.70 $3.90 3 1,547 

815.00 MCDIC $1.80 $1.90 30 5,119 

$17.50 MCDIW $0.60 $0.65 99 2,115 

$20.00 MCDID $0. 15 $0.25 4 524 

$22.50 MCDIX $0.00 $0.10 0 0 

Note: These market data are for September 2003 MCD call options. They were 
available pre-trade on Monday, April 21, 2003, and therefore describe the most 
recent close of trade on Thursday, April 17. The bid and ask prices for these 
calls are in dollars per share, and each contract covers 100 shares. Table 1.3 
(p14) contains the same data as this table, but with more details. (Data 
supplied by Thomson Financial, and provided as a courtesy by the Chicago 
Board Options Exchange, Incorporated.) 

worst-case scenario, the term to maturity of the option series you want to 
use, the bid and ask prices of these options, your budget constraint, and the 
requested stock-specific and market data. Click on the toggle boxes to indicate 
whether to use the forecast or worst-case scenario in the rest of the spreadsheet, 
and whether you are looking at calls or puts. For my MCD scenario, I click 
on the spinners to increase my forecast of stock price at t = h from $16 to 
$20, and to decrease my worst-case scenario from $16 to $14. 

II. Calibrate Volatility, Fit Skew and Spread. By default , the default implied 
volatility from worksheet I is used to price the options at t = O. Click on the 
spinners until the indicated pricing error is as small as possible for each option; 
doing so fits the volatility smile/skew. Below the calibration section are two 
simple models: The first fits the volatility skew as a function of moneyness; 
the second fits the bid-ask spreads you implicitly entered in worksheet I as a 
function of option price and moneyness. Details of the modelling technique 
appear in the text boxes in the worksheet . As mentioned, the models are sim­
ple and parsimonious, yet perform quite well over a wide range of examples 
and scenarios. You may alter the two moneyness-related inputs to the spread 
model, if you wish. For my MCD scenario, I am able to fit the volatility skew 
quite well at t = O. The option pricing is within a penny, and the percentage 
pricing error is below 2.5% in all cases. You should look at figure 8.5 (pl48) 
to see a sample of the range of shapes that smiles/skews can take on. 

III. Forecast Ignoring T -Costs. The forecast of stock price together with the 
model of the volatility skew are imported from worksheets I and II; you have 
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the option to override both without affecting the content of the earlier work­
sheets . Forecasts of option price at your horizon t = h are calculated assuming 
t he same volatility skew as a function of moneyness. For my MCD scenario, 
t he fit of the volat ility skew at t = h looks reasonable, and I see no reason to 
override the model. So, I go straight to the final worksheet. 

IV. T -Costs and Option Return. Forecast option prices at t = h (from work­
sheet III), together with actual prices at t = 0 (from worksheet I) are combined 
with forecast spreads (using the model from worksheet II) to calculate returns 
on each option. A plot appears that shows the t heoretical Black-Scholes re­
turn ignoring T -costs'6 and t he actual return using your stated budget and 
T-costs. A third return is calculated using T-costs and assuming investment in 
exactly one contract . You can override the worksheet I budget constraint here 
without affecting the content of worksheet 1. For my MCD scenario, the fitted 
spreads look fine, and I see no reason to override the model. The two best 
real-world strategies (strike $17.50 and $20), shaded green and blue, respec­
t ively, are also the two best strategies in the theoretical Black-Scholes world 
(but with transposed rankings). The worst real- world strategy (strike $22.50), 
however , looks very attractive in the theoretical Black-Scholes world, ranking 
a close third behind the two leaders. This marked difference illustrates the 
importance of accounting for T-costs. 

Notes on the Spreadsheet Trading Tool 

• Source data appear as blue text, and you can edit these at will. You should not , 
however, a lter the contents of cells with red or black text : The former are 
driven by spinners or toggle boxes, and the latter feed off other cells; changing 
them alters the function of the spreadsheet . 

• Beware stale data when pulling bid and ask prices from the Web. Did the option 
trade on this day? Is t here any open interest? If the option 's price/ quote 
looks wrong relative to those of its peers, then it probably is and you should 
revise it to make it consistent with its peers. 

• T he spreadsheet tool uses the Merton form of the Black-Scholes formula (equa­
tions 8.53 and 8.54 on page 139). This ignores the fact that t he traded options 
are American-style. Fitting the volatili ty skew accounts for much of the mis­
pricing, but there could be problems if big stock dividends are expected close 
to the expiration of a call option , or if puts are deep in-the-money. T he latter 
is not really a problem when interest rates are very low. 

• The spreadsheet tool deals only with calls and puts. If you create a new spread­
sheet for more complicated positions (e.g., option spreads), then to the extent 

16Mathematicians only: If you are up for a challenge, t ry solving a [C(S( h) ,X,t- ~~c(S(O)' X ,t-O) 1 = 0 

for X to see the formal theoretical Black-Scholes strike-optimal call op t ion . Be sure to check the 
SOC to confirm that it is a maximum. 
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that the opt ions offset, the bid-ask spread of t he spread position should be 
slightly lower than the sum of the bid-ask spreads for the component parts. 

• The spreadsheet model of volatility takes into account the volatility smile or skew, 
but ignores any term structure of volatility. You can adjust the spreadsheet 
to account for this by sampling a short-dated option (probably best to use 
one of maturity T - h observed at t = 0) and using the relative shapes of the 
volatility skews as a function of moneyness to forecast the change in the shape 
of the skew between t = 0 and t = h. 

• The Black-Scholes formulae in all their many forms can never return a negative 
option value. If you enter the Black-Scholes formula and you get a negative 
number, then you have made a mistake. 

• Forecast option prices in my spreadsheet tool must be a multiple of a one-nickel 
t ick size if below $3, and a one-dime tick size if above $3. Forecast spreads 
must be multiples of these same tick sizes depending upon the location of 
the spread mid-point relative to the $3 boundary. You can override forecast 
spreads, but they must be a multiple of nickels. 

• Finally, for t he MCD case, using the worst-case scenario indicates substantial 
losses for the option series under consideration. A longer-dated option, how­
ever, has slower time decay, and gives a smaller percentage loss, albeit at a 
greater up-front cost. If the confidence you hold in your view is low, or if your 
risk aversion is high, then use a longer-dated option than t he expiration t hat 
is immediately beyond your horizon. The lower your confidence or the higher 
your risk aversion, the longer-dated should be the option you use. If your 
confidence is quite low or your risk aversion quite high, t hen either t rade t he 
stock, or do not trade at all' My threshold for t rading the option as opposed to 
the stock is 80-90% confidence; below that , I use either LEAPS or t he stock. 

Epilogue. MCD did rise by 25%, but within two months rather than within three 
as shown in figure 10.1 (p188). My three-month view was still correct, with MCD 
dropping back to roughly $20 at t he three-month mark before rising again. Ta­
ble 10.3 shows the prices of the table 10.2 options at the two-month mark. The 
spreadsheet tool's forecast of option prices and spreads was surprisingly good for 
such a simple model (e.g., at the three-month mark, the price forecast was within a 
few percentage points of realized prices, and four of the six spreads were perfectly 
correct, with the other two quite close) . In practice, the volatili ty skew steepened 
slightly for the in-the-money options, but my forecast pricing was close because deep 
in-the-money options are not very sensitive to volatili ty. T he steepening volatili ty 
skew may have been a term structure of volatility pattern. 

Note that MCD continued to appreciate, reaching almost $66 per share in August 
2008. Unlike BA (see figure l.1 on page 11), MCD 's price was very resilient during 
the 2007/ 2008/ 2009 global credit crisis. MCD is t hus a stalwart (Lynch [2000, 
p112]) , whereas BA is a cyclical (Lynch [2000, p119]) . 
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Table 10.3: September 2003 Call Option Data: MCD , June 09 , 2003. 

Strike Ticker Bid Price Ask Price Vol. Op. Int. 

$10.00 MCDIB $11.00 $11.20 0 440 

$12.50 MCDIV $8.50 $8.70 3 1,523 

$15.00 MCDIC $6.10 $6.30 132 5,438 

$17.50 MCDIW $3.90 $4.10 259 4,473 

$20.00 MCDlD $2.05 $2.20 1,860 2,951 

$22.50 MCDIX $0.80 $0.90 313 427 

Note: These market data are for September 2003 MCD call options. They 
were available pre-trade on Monday, June 9, 2003, and therefore describe the 
most recent close of trade on Friday, June 6. MCD closed at 21.06 on this day 
(rising to 21.12 in after hours trading). The bid and ask prices for these calls 
are in dollars per share, and each contract covers 100 shares. (Data supplied 
by Thomson Financial, and provided as a courtesy by Chicago Board Options 
Exchange, Incorporated. ) 

10.4 Trading Experiences and Lessons 

Eight common sense trading lessons: 

l. Naked options are riskier than stocks , and the T-cost s can eat you alive if you 
choose your options poorly. Do not trade options until you understand them. 
Once you understand them, do not trade them in place of the stock unless 
your confidence is justifiably high (in my case, 80- 90%) . 

2. Do not blindly follow the advice of others. Before entering a position, conduct 
your own fundamental and technical analysis of the stock. 17 Remember to 
analyze your stock relative to others wit hin its industry. Lynch (2000) has 
much good advice on this. 

3. After a stock gets hammered down in price, implied volatility is high and dies 
down over the next couple of weeks. If you want to buy options on a stock 
that has just dived, wait a couple of weeks for the commotion to die down. 
At-the-money options are roughly linearly priced in sigma (see equation 8.51 
on page 138), so if you buy call options immediately after a dive, and during 
a panic, and if implied volatility halves over the coming fortnight , then you 
lose half your money while the stock is doing nothing. You probably also 
face a wide spread because the market maker needs to be compensated for 

17Fundamental analysis is almost the oppostive of technical analysis. Fundamental analysis 
looks at fundamentals like earnings, PE ratios, leverage, cash flow , etc. Technical analysis looks for 
patterns in stock prices and volumes. Fundamental analysis tends to be long-term oriented whereas 
technical analysis tends to be short-term oriented. 
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10.4. TRADING EXPERIENCES AND LESSONS 

uncertainty. The high and decaying implied volatility problem is not an issue 
for the stock except insofar as it implies higher spreads. T he relative spread 
(spread divided by security price) is so much lower for t he stock t han for the 
option, however, that this is not really an issue. 

4. Take account explicitly of the T-costs for entering and exiting the options 
position (as in my spreadsheet tool in section 10.3) . An attractive strategy 
that ignores T-costs may be unattractive once T-costs are taken into account. 

5. Do not buy cheap, deep out-of-the-money options unless you recognize that 
t hey are essentially lottery t ickets. Not only is the likelihood of profi t low, 
the T-costs as a portion of price may be over 100%. Conversely, why buy 
deep in-the-money options when you can buy the stock on margin wi th lower 
T-costs? 

6. Options positions magni fy stock-specific risk. Undiversified option portfolios 
jump around like the proverbial pig on a pogo stick. Holding options on at 
least three stocks substantially reduces this risk. 

7. Trade actively only with risk capital; that is, money you can afford to lose all 
of tomorrow. 

8. Be unemotional. Sell when it is time to sell and buy when it is time to buy­
without hesitation. 

10.4.1 Stylized Facts 

For options on a given stock, other things being equal, the higher t he open interest, 
volume of trade, and price of t he option, the lower the T-costs as a percentage of the 
premium. Conversely, the higher the degree of leverage, other things being equal , 
the higher are the T-costs as a percentage of the premium. Historically, there has 
been more open interest and volume of trade in calls than in puts. Within an option 
series , open interest and volume of trade are typically highest near t he money, but 
relative T-costs are typically lowest for deep in-the-money options. After significant 
price moves, however, lagging residual open interest can exist for a time away from 
the money. Across opt ion series, the near-month or second-month contracts often 
have the largest open interest . LEAPS can be relatively stock-like in their behavior; 
and thus, although they may be t hinly traded, t heir premiums may be so high, and 
t heir leverage so low, t hat t heir relative T-costs can be quite small. 

There is a well-known J-shaped pattern in T-costs during the trading day: T­
costs fall after the open and rise again later in the day. Late morning is often t he 
cheapest time to place trades. If I want to enter or exit a position , and I do not 
expect much activity in the stock, I wait until lOA M EST and try to complete the 
t rade before II AM EST. 

CBOE bid-ask spread updates are partly driven by NYSE and NASDAQ trans­
act ions and quote revisions. There is, however, a delay of perhaps 5- 10 seconds. So, 
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CHAP TER 10. TRADING 

if you are t rading in large enough size, and react quickly enough, you can sometimes 
get a fill before t he CBOE market maker 's quote is revised. In a rising market, the 
options market maker may walk t he ask up, then pause wi th a temporarily wider 
spread, t hen walk the bid up . The end result is t hat if you are selli ng, it can pay to 
wait a minute; similarly for buying in a falling market . 

Fischer Black argued that as stock price rises, other t hings being equal, volatili ty 
of stock returns falls (Black [1976a]) . This is called the leverage effect. A balance 
sheet constructed using market values of debt and equity is less levered after a stock 
price rise, and so, volatility of returns to equity holders should decline. If you are 
forecasting volatility and stock price, then t his is worth considering, bu t any change 
in stock price strong enough to alter t he financial leverage of a company probably 
goes hand-in-hand with a change in market perceptions strong enough to revise t he 
original estimate of volatili ty of the returns to equity holders. 

It has been well known for many years that stocks exhibit both reversals and 
momentum. These are simple examples of stock price patterns associated with 
technical analysis . Reversals are short-term changes in direction . For example, a 
stock t hat jumped up 4% today is likely to fall 1- 2% tomorrow; and a stock that fell 
8% today is likely to rise 2- 4% tomorrow. Momentum is a longer-term phenomenon: 
A stock that has consistent ly risen over the last six months is likely to continue 
rising in t he near future. T hese (sometimes) unreliable patterns in individual stocks 
translate into (often) reliable patterns in the broad market. A consequence of this 
is that, if t he stock you are watching is whiplashing to and fro without any trend 
and you want to enter or exit, you should wait for an up (if selling) or a down (if 
buying). If not, you may regret it the next day. 

I read a biography of Jesse Livermore (Smitten [2001]) . Apparently, JL (as he 
was called) made about USDlOOm during t he crash of 1929. He went from rags 
to riches several t imes during his life and ended up shooting himself dead. T here 
is much advice in Smitten's book, and also in JL's own stock trading book, but 
some of it is out of date now. My opin ion is that online t rad ing and increasing 
automation in t he markets has increased the speed with which stocks react (and 
overreact) to information. I think one-day reversals in t he market are now much 
more frequent t han they were in JL 's day, and t hat this provides new opportunit ies, 
while simultaneously removing some momentum opportunit ies that were there. 

Suppose you have been watching a stock fo r a month, and you have had t he 
growing feeling in your gut that it is almost t ime to trade, and then you get t he 
strong desire to pull the trigger, and then you fi nally know that you have to do the 
trade. My experience is t hat if it is a Friday, t hen do not wait unt il Monday to put 
t he trade on. \Vait ing unt il Monday gives everyone else t he weekend to process t he 
data, and t he stock may "gap up" at t he open on Monday. An exception is that if 
you have watched a sudden run-up in price during the week, t hen waiting to buy 
until a reversal on Monday or Tuesday is a good idea if you think t he run-up is 
overdone. 

I mention several t imes in t his book that markets behave differently around hol­
idays because people behave differently around holidays. If you are actively t rading, 
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10.{ TRADING EXPERIENCES AND LESSONS 

you need to be aware of exchange holidays and holidays that are not exchange hol­
idays. For example, I was holding two round lots of AT&T (T) and saw a nice 
run-up in the price of T leading up to the Memorial Day long weekend . I dumped 
the 200 shares last thing Friday because I assumed that the market would drop like 
a stone first thing Tuesday on low volume, and that I could buy the shares back 
more cheaply before the people who took a four-day weekend returned to work and 
heavy volume continued to lift the price-and that is exactly what happened. 

You are often "shadow boxing" with other market participants. It helps if you 
can forecast how they will behave. For example, I was watching T move during early 
July 2003 and noticed on severa l days that t he stock price would rise no higher than 
$19.99 during the trading day. This resistance level was clearly due to limit orders 
to sell placed at $19.99. Some market participants had placed limit sells at $19.99 
because they t hought t hat still other participants had placed limit sells at $20, 
and the $19.99 traders wanted to capture the price rise without having to compete 
for execution with the $20 traders. The selling pressure at $19.99 was sufficient 
to eat up all demand and stop the stock going any higher. Thus, the orders to 
sell at $19.99 were filled , or partially filled, but no limit orders to sell a t $20 were 
executed. Similarly, watching Eastman Kodak (EK) during mid-July 2003, it fell 
to $26.01 then rebounded strongly due to limit orders to buy placed just above 
$26. Noone with a limit order to buy EK at $26 got filled . Similarly, I watched 
Ford (F) stock t rade down to $1.01 in late November, 2008, without ever hitting $1 
(see figure 10.2); Noone with a limit order to buy F at $1 got filled . Within a few 
weeks, F had rebounded strongly back to $3.55. Placing a limit order at a round 
dollar figure may lead to non-execution. Rather, you must shadow box with your 
opponents and give up a few pennies to make it more likely t hat you get the fill. 

There are patterns in volume, too. For example, on July 2, 2003, AH volume on 
Twas 1,012,000 shares compared to 5,657,700 shares during t he day and 2,728,300 
shares t he next day. This extraordinary AH volume was because the NYSE closed 
at 1:00PM on July 3 for the July 4 long weekend, and many people wanted to get 
their trades off ahead of time to take the extra half-day holiday. 

Mondays and F\·idays differ from other weekdays. Many academic papers explore 
"day-of-the-week anomalies." They try to explain how and why the first and last 
day of the trading week, or days on or around holidays (e.g., Easter, Passover, 
Rosh Hashanah , Yom Kippur , MLK Day, Presidents' Day, etc.) , differ from other 
"normal" trading days . IS Many academics seem to think that all trading days 
should be the same. I used to t hink so myself until I started trading actively. Now I 
think t he academics have their heads in the sand and need a swift kick in the rump. 
Of course, Mondays and F\·idays and days following holidays are different. People 
behave differently on t hese days! They have had time to think at the beginning of 
the week, and they want to close ou t posi tions and go home flat at the end of the 
week- so that they can have more t ime to t hink. \Vhen do you get the most liquidity 
on the NYSE? Probably 1O:30A M on a Tuesday if Monday was not a holiday. Why? 

l80f course, some anomalies are bogus and are caused by data snooping. See, for example, my 
lunar phase anomaly paper (Crack [1999]). 
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10.4. TRADING EXPERIENCES AND LESSONS 

... because people had t he weekend to think about what they were going to trade; 
they watched the market on Monday to confirm that everything was in order; they 
got t heir trades ready and did some checking on TUesday morning; and they wanted 
to get their trades in before lunch. 

10.4.2 Information Sources 

The World Vllide Web is an excellent information source. For example, if you want 
to know the trading hours of the major exchanges, when exchange holidays are, or 
t he detailed contract specifications of a LEAP, you will find them on the official 
home page of the relevant exchange. 

Market data are freely available from your online brokerage company or from 
Web sites like www . bigcharts. com or www.bl oomberg. com. Up-to-date accounting 
data (the most recent quarterly and annual statements) are free from sites like 
www .marketwatch. com. You also find legal insider trading reports there . You can 
download 10-Qs, lOoKs and the like from the EDGAR section of www.sec.gov. 
If you are a professional, then you have Bloomberg or Reuters machines close by 
and ready access to data sources like DataStream, IBES, \VorldScope, FactSet, or 
Compustat. 

Corporate Web sites' investor relations sections often give a calendar of events 
(e.g., earnings announcements), but their financial data are typically stale. Earnings 
announcement dates can help you understand when to expect price moves. For 
example, one mid-July I knew that Eastman Kodak (EK) was to announce second­
quarter performance and, almost certainly, a recovery strategy on Ju ly 23. The 
stock was down and heading down going into the announcement. I expected good 
news and plans for further recovery, so I bought options on 2,000 shares. EK jumped 
10% as soon as the news arrived, and I made a healthy profit. 

If you like graphical presentations to help you trade, you are in trouble when it 
comes to options. You cannot easily look at plots of t ime series of prices for options 
because, unlike stocks, t he liquidity is so low that a time series of prices is distorted . 
So, I look to the time series of stock prices to gain technical information. 

Some Web sites provide free tools. For example, www. bloomberg. com lets you 
rank all members of t he SPX (S&P500) or INDU (Dow Jones Industrial Average) 
by dollar price change or rate of return. This tells you how your stock has clone 
relative to other members of the index it belongs to. My online broker now offers 
free tools for calculating all the Greeks. 

I have found that formal training in financial statement analysis is very valuable. 
You do not necessarily have to take a class, but you should get some books and 
do some studying. You need to be able to at least read a balance sheet, income 
statement , and statement of cash fl ows, and understand how they are intimately 
linked. Knowing a half-dozen key accounting ratios is also important. I t hink an 
elementary understanding of financial statement analysis is a prerequisite to reading 
Lynch (2000). My personal favorites are Brigham and Gapenski (1985, but not t he 
later editions) and Anthony (1999); the latter is easier to find . 
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10.4.3 Other n'ading Tips and Tools 

If you have never t raded options or stocks before, I recommend that you spend six 
months "paper trading." Paper trading means that you record trades in real time 
in a book or spreadsheet and track their performance. You take account of T-costs, 
and you learn lessons without losing money. Paper trading helps you ident ify your 
strengths and weaknesses as a t rader. 

Once you know your strengths and weaknesses, you can fight them actively. For 
example, one weakness of mine is that I trade too much. Anot her is that, although 
I am good at picking lows both in individual stocks and in the broad market, I am 
usually one or two days early. I am less talented at picking short-term highs, and 
often want to exit a position 10 days too soon. To counter these weaknesses, I now 
like to place an explora tory trade, which I then expand upon within a week. A 
position entered into five or 10 contracts at a time can be exited five or 10 contracts 
at a time. This helps me smooth out my tendency to both buy too soon and sell too 
soon, and also meets my basic (irrational?) desire to trade too much. The moral of 
the story is that weaknesses, once identified, can be addressed actively. 

Nine times out of 10 I trade in Dow 30 stocks. That is, members of the Dow 
Jones Industrial Average. There are four reasons for this. First, liquidity is very 
high in these stocks, and that goes hand-in-hand with low T-costs. Second, there is 
a lot of information about these stocks readily available in the public arena. Third , 
so many people follow these stocks, that they often get hammered down in price 
when bad news arrives- creating a buying opportunity. Fourth, I have limited time 
to t rade. I can therefore follow only a limited group of stocks. 

Choose the group of stocks you are most interested in and follow them every 
day. Do not look only at closing price, but at intraday prices for today and for the 
last 10 days and daily prices for the last six months and the last year or two. After 
doing this for the stocks that interest you, focus more seriously on those that pass 
some sort of filter that is meaningful to you (price has moved more than x percent 
in the last n days, PI E ratio is below a certain level, etc .) . My online brokerage site 
has free filter tools. 

Be aware of exchange holidays, holidays that a re not exchange holidays, regula­
tory meetings (e.g., FOMC meetings), and important days in the lives of the stocks 
that interest you (e .g., preliminary earnings announcements, dividend payments, 
etc.). Also, be aware of what price level represents a breakeven, given spreads and 
commissions j on your existing positions. 

\¥hen you do settle on a stock, and want to choose an option, use some sort of 
tool to help you (like my spreadsheet trading tool discussed in section 10.3). Be sure 
to build a buffer zone into the horizon of your options in case your view is correct, 
bu t not realized until a month after your expectation. There is nothing worse that 
having your options expire worthless two weeks before a massive price spike that 
would have been in your favor. 

Efficient markets be damned! I often watch the markets during the trading 
day. When a piece of good news arrives about a stock, there is often an almost 
immediate pop upwards in price as those folks watching the market adjust for it. 
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However, lots of people get their market news from PBS's Nightly Business Review, 
or the Wall Street Journal, or Morning Business Report, or some "Veb site t hat is 
updated overnight. So, sure enough, that stock rises t he next day when the "second 
crowd" want to buy. This one-day lag in the reaction to news is something I see over 
and over agai n. \Vhat should you do about it? Well , if the second crowd cause the 
stock to open higher the next day, you already missed both the first reaction and 
the jump at t he open, so you may want to find something else to trade. There is, 
however, often a slower movement as t he second crowd trickle their trades in during 
the course of t he day. It pays to watch stocks during t he day and get trades off well 
before the close. 

I am almost always on the long side only; t hat is where my strengths lie. It 
also means that I am not swimming against t he current, and I have no obligation 
to repay dividends- as short sellers must do. Perhaps it is because the market 's 
reactions are so rapid on the short side that it is easier to trade the long side. This 
may also explain why people are so much more likely to be long than short , even 
when the market is diving. Do I risk t he broad market swamping my individual 
stock view? Yes, but as t ime passes I have realized that my individual stock views 
are almost always t ied into my broad market view. So, I do not place an unhedged 
bullish trade on an individual stock if I t hink t he broad maJ"ket is going to sink 
during my holding period. Two related and overlapping points: F irst, if you are in 
the market all the t ime, then a market-neutral stance can make sense, because you 
are riding with the ups and downs of the broad market; second, most of my trades 
are closed out well within 30 days . If you are forecasting big moves for individual 
stocks at very short horizons, then a market-neutral approach is not necessary. T his 
is, of course, exactly t he sit uation that speculative opt ions are designed for. 

For every 10 trades I put on, seven are profitable, one breaks even , one is un­
profitable, and the relnaining one is like watching a sublnarine Inovie: For exaluple, 
I am long, and the captain of t he boat gives the order "Crash Dive! Dive! Dive! 
Dive!"; my position sinks like a stone and I liquidate immediately. My failure is 
usually because news arrives in the public aJ"ena that damns the stock to hell and 
back. Knowing the release date for important information (e.g., preliminary earn­
ings) gives me an opportunity to protect myself from news whose t iming is known 
in advance, but there is li tt le I can do about surprise announcements. 

If you work for a capital markets firm, you are almost certainly subject to compli­
ance restrictions. My British employer required t hat UK employees obtain explicit 
permission to trade before entering any posit ion, that they hold stock for 30 days 
before selling, and t hat they not trade options without explicit permission from the 
UK corporate head. In t he US office, it was a 60-day holding period. Clearly, t his 
stifles any short-term or options trading strategy. 

A fina l curious observation is that t he proximity of Indiana University (IU) to 
Chicago meant t hat my IU students often equated "trading" with "options trading" 
or "futures t rading." They seemed to be strangely unaware that securit ies trading 
jobs exist outside of options and futures. 

@2009 Timo t hy Falcon Crack 195 All Rights Reserved Worldwide 



CHAPTER 10. TRADING 

Paratrading 

Suppose I find a $30 stock that I think will rise 30% in t he next two months. I 
know that I will be watching the stock closely over this time period. I also know 
that during this two-month period there will be half-a-dozen days when my close 
attention reveals to me that t he stock is going to fall 50 cents to a dollar over the 
next 24 hours followed by a slow climb back up (often t his fall comes as a next-day 
reversal after a rapid rise). 

T-costs for round-trip options trades are high-often 10 times what you see in 
the stock. If I buy options to reflect my long-term (i.e., two-month) view that t he 
stock is going up , T-costs mean that it does not pay to sell the options before a 
fall and buy them back more cheaply afterward. So, rather than just buying call 
options, I often buy call options and stock simultaneously. When I forecast a sudden 
stock price drop in the short term, I continue to hold my options, but I sell my stock. 
I usually buy the stock back within 48 hours for 50 cents to a dollar less than I sold 
it. I call this "paratrading." I might do this five times during a two-month option­
holding period. Of course, if you are no good at short-term trade t iming, then t his 
is a useless strategy for you . 

At first glance, holding the stock side- by-side with the options offsets t he leverage 
in my options posit ion and undermines the mot ivation for holding options as opposed 
to stock in the first place. Closer inspection reveals, however, that what I am actually 
doing by trading in and out of t he stock is leveraging the information flow that my 
close examination of t he stock generates in support of my options position. This 
allows me to employ my short-term t rade timing skills without being eaten alive by 
the T -costs of t he options. 

By moving ou t of the stock before a fall , and back into it at lower levels, I am 
not holding the stock continuously, and I am not deleveraging my options position. 
I am, in fact, leveraging up my options position to squeeze more juice out of it over 
a limited time horizon . T he final payoff to my paratrading may be the same as if I 
had used a more highly levered option to start with, but t he intermediate portfolio 
values when paratrading are much less volatile. 

Paratrading achieves several aims: First, while holding a long-term (e.g. , a two­
month) bullish view reflected in my options posit ions, my equity trade t iming allows 
me to profit from short-term bearish moves without being eaten alive by options 
T-costs. Second, the investment of time I make in following the stock on a day-to­
day basis really only allows me to pick a good exit point as far as the options are 
concerned. Using my investment of time to paratrade in and out of the stock avoids 
wastage of equity intelligence. Third, and not least, short-term trade timing meets 
my desire to trade frequently. 

One variation on paratrading is t hat if! have a long-term bu llish view on a stock, 
for example, but my confidence is not yet high enough to buy options, then I can 
enter a 100% equity position and wait until my confidence builds; at which point, 
I liquidate some or all of the equity position and buy options19 This variation on 

19Be sure you understand the wash sale rules before aUempting this sort of trade; see page 182. 
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paratrading has t he added benefit that when it comes time to swap out of the stock 
and into the option, intraday t iming is not very important . For example, if the 
stock just shot up, the stock position you liquidate recoups part of the opportunity 
cost of having not yet bought the call option. This is particularly useful if you are 
trading US stocks from outside the US (because it reduces the importance of trade 
timing across time zones). 

10.4.4 Orders and Executions 

Educate yourself in the different types of orders. I suggest the glossary page at 
your online brokerage or a simple financial information Vveb site. Be aware of the 
following: 

• A market order is executed at whatever price it hits the spread, and may even 
get a chance for price ilnprovelnent. There is no assurance, however, that a 
market order will hit the most recently quoted bid or ask. Sometimes, I use a 
limit order with limit price equal to current bid or ask, so that I know that I 
will get the price I want or not get my order filled at all. 

• A stop order is supposed to bail you out of a losing position. It is triggered the 
first time a trade goes off at your stop price. A stop order does not guarantee 
order execution at or near the stop price. Once activated, your stop order 
becomes a market order that competes with all market orders. There are stop 
limit orders, but they are less likely to get filled. 

• A stop loss sell order on an option does not necessarily get triggered when the 
bid drops to or below the stop price . If no one is trading the option, then no 
trades are happening, and the order will likely not be triggered simply by the 
llloving quote. That is a serious concern in less liquid options. 

• If you are shorting stock, be aware that it can take longer to get the fill than 
going long because of possible uptick rules (see the footnote on page 177). 

• Suppose you are long a stock at $20. Suppose yon are happy to sell and take the 
profit at $25, but also want to sell and stop your losses at $15. Ideally, you 
place a stop order at $15, and a simultaneous limit sell at $25. Unfortunately, 
it does not work that way. If the stock shoots up over $25 and falls back below 
$15, you are oversold . As such, your broker does not let you place these trades 
simultaneously. 

• I like limit orders. They can be slightly more costly to place than market orders, 
but they take care of trade timing for me at a fixed price (with the risk, of 
course, that they are not executed). For example, if! see an option whiplashing 
up and down in price, and I am happy to buy at $4, then I leave a limit order 
to buy in place at $4. I have even had limit orders hit when I was asleep in 
a different country and would otherwise have missed a one-off intraday price 
spike. 
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10.4.5 Market Views and Opinions 

Market views come from experience and two forms of intelligence: access to public 
information that helps you win the battle and your ability to think and reason to 
process that information. How you form market views is a very personal exercise. It 
is different for everyone, and most individual investors are wrong most of the time. 
I can give you advice, but whether it is useful to you depends upon where your 
strengths lie. 

I have two fundamental philosophies for trading US equities and equity options. 
My first philosophy is t hat US investors overreact. This means that there are tem­
porary imbalances in supply and demand for equity t hat lead to stock prices that are 
unrealistically high or unrealistically low. I think investors overreact more frequently 
on the downside than on the upside. I also think that stocks that are hammered 
down too far in price will reliably come back up at a slow pace, but over a short pe­
riod of time, and that stocks that are overpriced can remain overpriced for extended 
periods, but will often drop like a rock when they do correct. In my view, the fre­
quency of over-pessimistic price drops and the pace, reliability, and predictability of 
the following price appreciation make underpriced stocks more sui table for options 
trading t han overpriced stocks. 

My second philosophy is that the US market for corporate control is severe and 
uncompromising. When an otherwise good US company has a poor quarter due to 
some temporary influence, the price often gets hammered far below where it should 
be. The management know that shareholders can vote them out, and they have an 
extrelnely strong incentive to cut costs, look for new sources of revenue, increase 
productivity, increase market share, etc .- or lose their jobs. The end result is that I 
often see companies with good profit margins, a strong core business, a strong brand 
name, and extremely good prospects whose stock price has fall en 10-50% in a short 
period of t ime because of a poor quarter. vVi thin t hree months, they announce a 
strategy for recovery and the stock price jumps back to where it was. 

10.4.6 The Deathly Slow Crawl 

You buy options at the ask and sell them at the bid; so, even if you are right on the 
direction of the stock, it can take some time before an option position is profitable. 
For example, suppose the quoted bid-ask spread on a call option is $5.10- $5.30, and 
you submit a market order to buy one contract. Assume your order actually gets 
fi lled at $5.35, either because another order took out the size available at t he ask 
and the quote moved before yonr order arrived, or because your quotes were stale 
when you placed the order, or because of price slippage. Ignoring commissions, you 
have to wait for the bid to move from $5.10 up above $5.35 before you can sell at a 
profit. Assume you would be happy to sell at $7.50 for a 40% gain. 

Suppose good news arrives that drives up t he stock price. Well, the news may 
increase uncertainty also, and the option spreads may widen , so that the spread may 
move to $5.20- $5.50. You still cannot sell at a profit. The spreads move around 
a lot during the day, but the next day you might see $5.25- $5.60 and still not be 
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able to sell at a profit. The next day you might see a quote of $5.40- $5.60 that 
jumps back down to $5.30-$5 .50 by day's end. After a week, you might see a high 
of $7.50- $7.70 t hat falls back to $6.80- $7.00 by day's end. You wanted to sell at 
$7.50 and could have done so if you had placed a limit order to sell at $7.50 that was 
good until cancelled. You place your limit order now, but the next day the quote 
falls to $6.20- $6.50. It t akes another week for the bid to get back up to $7.50 when, 
unbeknownst to you, your limit order takes you out of your position while you are 
on the golf course. You check into the market the next morning and are excited to 
see your option trading at $9.50-$9.80, but then you realize that you already sold 
for $200 less. 

Compared to the stock, t his deathly slow crawl of t he option spread into prof­
itable terri tory can take what seems like an eternity. Option spreads are so wide 
that it is very hard , for example, to buy and sell an option profitably during the day. 
For a stock, however, it is much easier to do a profitable round-trip trade within the 
day. 

10.5 Trading Tools: Greeks 103 

The Greeks (delta, gamma, theta, and vega) are not some academic head-in-the­
clouds, ivory-tower concept. They are real measures of your exposure to gain and 
loss . In addition to using a spreadsheet trading tool to help choose options positions, 
I always think about delta, gamma, and theta, and less often about vega. I have in 
my mind figures 3.3 and 3.4 (pp59-60): The slope (delta) tells me what I make per 
dollar change in the underlying; the curvature (gamma) tells me how delta changes 
and is typically directly related to the magnitude of time decay (i .e., of thet a) . You 
can explore the properties of delta, gamma, and theta using the spreadsheet Greeks 
tool that accompanies this book; see section 10.3 for details. I am not a volatility 
trader ,2o so I do not often worry about sensitivity to volatili ty (vega) . The exception 
is that if a stock has just crashed, for example, and I think it is underpriced, I will 
wait for volat ili ty to die down before entering a bullish position, especially one that 
is very sensit ive to volatility (like LEAPS). Conversely, if I am in a position that is 
sensitive to volatility, and volatility has just spiked in my favor, I do not hesitate 
to liquidate if I think I can lock in a gain and reenter the position after normalcy is 
resulned. 

10.6 Spread Positions and Other Strategies 

There exist many option spreads and other positions. A spread position is typically 
composed of at least one long option and at least one short option. Many other 
popular strategies exist that are not spreads. The component option positions used 
to establish the strategy are often referred to as the "legs" of t he strategy. The 

20Yoiatility traders often use delta-neutral (or close to it) positions like straddles or strangles; 
these positions are of no use to me. Rather, I take directional bets. 
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organized exchanges give away free booklets/brochures that detail several dozen of 
t he most popular option combinations2 1 The payoff to a "bull spread" is shown in 
figure 10.3. 

Often the same essential payoff structure can be achieved in multiple ways (due 
to put-call pari ty) : One choice will generate a cash flow up front (typically retained 
for margin purposes) ; t he other will cost money up front. It follows that if you 
are are entering one of these positions, your broker may ask if you want to place a 
specific "net credit" or "net debit" order; i.e ., one that generates a specific amount 
of money up front , or one that costs a specific amount of money up front (analogous 
to a limit order). 

Exercise: How can you construct a bull spread using puts? How does the payoff 
dia.gram differ from figure 10.3? 

Option values are addi tive (the value of a portfolio of options is t he sum of the 
value of the component parts, appropriately signed for long or short positions) . All 
of the foregoing analysis of individual option posit ions carries over directly to com­
binations. T he only exceptions I can think of are t hat the options market maker 
will probably charge a slightly smaller spread for an option posit ion than t he sum of 
t he spreads for the component parts, especially if t he position involves options t hat 
offset to some extent or if it is in large volume (several round lots) . If you look at 
quoted spreads on the individual options, t hen the sum of those is at least a rough 
upper bound on what you will pay. 

The tern1S "vertical," ':horizontal )" and "diagonal" as applied to spread positions 
are a holdover from the days when opt ions were quoted in a grid with different 
maturities along the horizontal and different strikes down the vert ical. 

Vertical spreads use different-strike, same-maturity options. For example, bull 
and bear spreads are t he most popular trades for bulls and bears (see figure 10.3). 
Calendar (or "time" or "horizontal") spreads use same-strike opt ions of different 
maturities. For example, you might buy a long maturity option and sell a short 
maturity option (either both calls or both puts) . The higher (alternat ively lower) the 
strike, the more bullish (al ternatively bearish) is the position. A "reverse calendar 
spread" buys the short maturity option and sells the long maturity option. Diagonal 
spreads use options with different strikes and difl·erent maturities. 

A final note: If you are a novice who is trading option combinations, you may be 
tempted to try to enter a position that uses put-call parity or one of t he restrict ions 
from chapter 3 to lock in a relative mispricing that seems to exist within the quotes 
from the exchange floor. Any novice t rader who t ries to lock in some apparent 
mispricing on the exchange floor is almost certainly doomed. If you think there is a 
relative mispricing, t hen either you read t he quotes incorrectly, or your quotes are 

21 So me booklets/ brochures can be downloaded for free from the education/ learning sec Lion of 
the exchanges' Web s ites (www.cboe .com, 'W\I\I . cme. com, W\N' . cbat. com) , or by calling their toll-free 
number. The information for spread positions in futures options applies equally well to equity 
options . 
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Figure 10.3: Bull Spread (Calls) : Terminal Payoff 

Note: This plot is of terminal (i.e., time-T) dollar payoffs to a bull spread 
composed of a long call at strike XI plus a short call at strike X 2 > XI. The 
terminal payoff to this bull spread is nowhere negative-in exchange for the 
up-front cost of entering t he posit ion. Note that X 2 > X I implies the call with 
strike X 2 is cheaper than the call with strike X l (as per the second row in 
table 3.2 on page 43). The possible profit is bounded above by X 2 - XI (as per 
R5 in table 3.3 on page 48); X 2 - X, is also the vertical distance covered by 
the payoff diagram . The general shape of the payoff is upward sloping-hence 
the name "bull spread. I) Zero payoffs are drawn here as very slightly different 
from zero, so that they can be seen. 

stale, or the pit t raders know t hat the stock is about to pay a big dividend t hat 
you do not know about, or go bankrupt , or something else. The people in the pits 
are extremely astute. There is no way that you will "take t hem to the cleaners." 
Even if t here is a mispricing, when you go to place your spread , the market maker 
will probably quote a price for the spread as a whole, not the individual legs, and 
his or her spread will not allow for you to exploit a mispricing. On top of that, by 
the time you get t he different legs of the trade done, price slippage means that any 
mispricing, if it ever existed, will be gone. 
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Appendix A 

HP Source Code 

The Hewlett Packard (HP) 17B, 19B, and 12C handheld business calculators pro­
vide a convenient level of programming. The HP17B/HP19B Equation Solver is 
especially user-friendly. This appendix contains option pricing source code for the 
HP17B, HP19B, and HP12C. 

A.I HPI7B/HPI9B Black-Scholes 

The Black-Scholes European-style call and put option pricing formulae for a stock 
that pays no dividends are given in equations 8.17 and 8.18 on page 120. In those 
equations, r is the instantaneous risk-free rate per unit time, (J is the instanta­
neous annualized standard deviation of continuously compounded returns on the 
stock, S(t) is the observed stock price at time t, X is the strike price, the call option 
matures at time T , the t ime to maturity is T-t, and NO is the standard normal cdf. 

Story: Late one winter's evening at MIT (1994 I think), I was helping Nobel Prize 
winner Franco Modigliani operate our photocopier. VIle somehow got onto the 
topic of the Crash of 1987 and he said "Yes, that is when I made all my money," 
He said he had been watching the market and, thinking it overvalued, he had 
bought out-of-the-money index puts (presumably S&P500 index options at that 
time). He said he made a bundle. He had tried it several t imes since then without 
success. At my office doorway another time, he told me that when pronouncing 
his name I should "drop the 'g'-it's the mark of a true Italian"- and that is how 
he pronounced it. 

Taken from "Heard on The Street: Quantitative Questions from 'Wall Street Job 
Interviews," ©2008 Timothy Falcon Crack. See advertisement on last page of this book. 

My HP17B call pricing source code appears in table A.I. It uses S, X, R, SIG, 
and TAU to denote S(t), X, T, (J, and T - t , respectively. The terms Dl, D2, ND1, and 
ND2 denote d j , d2 , N(d1 ), and N(d2), respectively. The "1\" character is obtained 
by using the regular yX button on the keypad, or as one of the "other" characters 
available on the "alpha" menu on the HP17B; the ,,~" character is also one of the 
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"other" characters available on t he "alpha" menu on the HPI7B; there really are 
blank spaces in "S(N01) OR S(N02) " and similarly phrased terms; and each line of 
t he equation follows from the previous one without interruption. 

I have adapted a polynomial approximation to t he cumulative standard normal 
from Hull (2000, 1'252). Hull, in t urn, takes the approximation from Abramowitz 
and Stegun (1972). My version, in equation A.l, is equivalent mathematically to 
Hull 's, but I have reformulated it so t hat it can be entered into the Equation Solver 
as a single equation: 

N(x) 
1 1 e-" 2 3 4 S [ I X' 1 2+ sgn(x) 2 - I2ir (td+ t2! + t3J +t,1i +tsJ) (A.l ) 

{ 1; 
if x> 0, 

sgn(x) - 1; if x < 0, 
O· if x = 0, , 

J 
1 

-
1 +g · lxl 

tl = 0.319381530, 

t2 -0.356563782, 

t3 = l. 781477937, 

t4 = - l.821255978, 

t5 l.330274429, 

9 = 0.2316419. 

The order in which variables first appear in t he source code determines the order 
in which they appear on t he HP menu. In some places, my source code appears 
convoluted so as to produce a menu system that is logically ordered. J 

The call pricing code takes about 20 seconds to verify, but executes quickly2 T he 
order of evaluation of terms is important. You must fi rst input S, X, R, SIG, and TAU. 
You then press the MORE button and press 01 , D2 , N01 , and N02 in that order (the 
order in which they appear on the menu). You cannot , for example, calculate N (d1) 

wi thout first calculating d1. You may then press CALLa You can test my HP17B 
code with t he following example: S=50, X=45, R= 0.02, SIG= 0.30, and TAU= 0.75 
imply 01 = 0.5932, 02= 0.3334, N01 = 0.7235, N02=0.6306, and CALL=8.220l. 

One advantage of my source code is t hat, as part of the calculation, the formula 
gives the values of t he opt ion 's delta, N01 , and t he risk-neutral probability of fi n­
ishing in-the-money, N02. One disadvantage of my source code is t hat you cannot 

ITony Hutchins has suggested to me a nice trick for avoiding this convolution: Begin the code 
with something tri vial like ... :ox (S+X+R+SIG+TAU). .. to set the order of t he menu variables 
(personal communication, August 28, 2003). 

2If you want to see how they evaluated the Black-Scholes formula many years ago, see the option 
pricing "nomogram" in Sharpe (1978, pp377- 378). It involves the drawing of vertical and horizontal 
lines and interpolation on a preprinted chart. 

3My Black-Scholes call pricing source code has been independently verified by many others. If 
you type it all in , and your HP tells you that the equation is invalid , then check your typing s lowly 
and carefully; do not waste t ime by delet ing it and s tarting again. 
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Table A.l: HP17B/ HP19B Black-Scholes Call Code 

BLACK~SCHOLES~CALL: IF(S (01) OR S (02) : IF(S(Ol) : (LN(S7 X) 
+ (R+O. 5 x (SIGI\2)) x (TAU)) 7 (SIG x SQRT (TAU)) -01: 02- (01- (SIG x 
SQRT(TAU)))):IF(S(N01) OR S(N02):IF(S(N01):N01-(0.5+SGN(01 
) x (0.5- «(17SQRT(2 x PI)) x EXP( -0 . 5 x Ol 1\2) x (0. 319381530x (17 
(1 +0. 2316419 x ABS(01)) )-0. 356563782x (17 (1 +0. 2316419xABS(0 
1))) 1\2+1.781477937 x (17 (1 +0.2316419 x ABS (01))) 1\3-1.8212559 

78x (17 (1 +0. 2316419 x ABS (01) )) 1\4+1. 330274429 x (17 (1 +0.2316 
419 x ABS (01))) 1\5)))) : N02- (0. 5+SGN(02) x (0 . 5-(17SQRT (2x PI) ) 
x EXP( -0. 5 x 021\2) x (0. 319381530 x (17 (1 +0. 2316419 x ABS (02)))­
O. 356563782 x (1 7 (1 +0. 2316419 x ABS(02))) 1\2+1. 781477937 x (17 
(1 +0. 2316419 x ABS(02))) 1\3-1. 821255978x (1-Hl +0. 2316419 x ABS 
(02))) 1\4+1.330274429 x ( 17( 1+0.2316419 x ABS(02)))1\5)))):CAL 
L-(SxN01-EXP( -Rx TAU) x Xx N02))) 

Note: This code is for the HPI7B or HPI9B, but also works on the HPI7BII, 
and HPI9BII. Hutchins (2003) states that my code also works on the HP200LX. 
Hutchins (2003) supplies Black-Scholes pricing code for the HP17BII that is 
shorter and more versat ile than my code, but his code uses the newer "G (.) ," 
and "L(-) " functions, and therefore does not run on the original HP17B. 
Hutchins' code does, however, run on the HPI9B which, although not doc­
umented in the manual, is the first HP business calculator to recognize the 
"G(-) /' and "LC·)" funct ions. 

solve directly for implied volatility. You can, however, quickly solve for the implied 
volatility a indirectly as follows. Let "c" denote t he actual call value. Let "0-" be 
an initial guess of the implied volatility. Calculate c(o-) using your HP. Now update 
your guess for the implied volatility using the assignment: 0-' = o-c/c(o-) , and repeat 
this iterative updating until c and c( 0-) a re as close as you want . 

To adjust the European call pricing formula for continuous dividends (either for 
equity or for FX), we simply replace Set ) by S (t )e- p(T- t) throughout the equation, 
where p is the rate of dividends per unit t ime. This corresponds to replacing S by 
S x EXP (-RHO x (TAU)) throughout t he source code (although some algebra ic simpli­
fication is possible). You can , alternatively, use the source code as it stands simply 
by entering the numerical value for S (t )e-p(T-t) in place of S et). 

The source code for the European-style put appears in table A.2. Once both 
t he put and call valuation formulae coexist in the Equation Solver, all variables are 
common to registers in both equations and need not be re-entered. To value the put, 
you value the call , exit the call valuation equation , enter the put valuation equation , 
and press the PUT button 4 This yields 2_5502 as the put price using the numbers 

4'1'0 save time, you can use the call equation to value the put. Change the sign of the volat ili ty by 
pressing RCL, SIG, +/-, and SIG. Then press 01 , D2 , N01, N02, and CALL. T he answer is the negative 
of the put price (Haug [2007, pll]). Alternatively, after calculating d1 and d2 , press ReL, 01 , +/- , 
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Table A.2: HP17B j HP19B Black-Scholes Put Code 

BLACK~SCHOLES~ PUT: PUT-CALL=-S+ X x EXP ( -Rx TAU) 

Note: This code is for the HP17B or HP19B, but also works on the HP17BII 
and HP19BII. It runs side-by-side with the call pricing code in table A.I. The 
put price is derived from the call price using the put-call parity relationship 
without dividends. 

from the call price calculation. 
In the specia l case where dividends a re paid at a continuous rate p per unit time, 

the present value of dividends to be paid prior to the maturity of t he option is just 
S et ) x (l _e-p(T-t)) . It follows that the put-call parity relationship with cont inuous 
dividends at ra te p per unit t ime is S(t)e- p(T- t) + pet ) = c( t) + X e-r(T-t) . To adj ust 
the European put pricing source code for continuous dividends, you replace S by 
SxEXP(-RHOx (TAU» in both the call and put pricing source code-as ment ioned 
earlier. 

A.2 HP12C Black-Scholes 

Tony Hutchins has kindly given permission for me to reproduce his HP12C program 
for calculating Black-Scholes option prices (Hutchins [2003]) ; it is reproduced here 
in table A.3. T he program is 99 lines. If using t he HP12C P latinum, it must be in 
RPN mode. T he program uses the fo llowing financial registers: n : T - t, i: 7' x 100, 
PV: S, PMT: f7 x 100, and FV: X . 

The storage registers RO, R1 , and R2 are not used; R3 ends up with N(dJ) (the 
call delta); R4 ends up with the put value; R5 ends up with the call value; R6 ends 
up with PV(X)N(d2) . The put delta may be obtained as "RCL 3 1 -" (that is, 
-N( -d1) = N (d1 ) - 1) . The final stack registers a re as fo llows: T: 0; Z: d1 ; Y: put 
valne; X: call value (you can cycle through the four stack registers using the "Rl" 
key) . 

You can test the Black-Scholes HP12C program using t he key strokes in ta­
ble A.4 . The input values in table A.4 are the same as t hose used to test the 
HP17B j HP19B code in section A.1, but the answers for the option prices d iffer 
slightly because different approximations are used here. 

Tony Hutchins' approximation for N(-) uses his own clever approximation to the 
upper-tail probability of a standard normal (UTPN) and is given in equation A.2 
(Hutchins [2003]) : 

N(x) { 
UTPN(-x) 

1 - UTPN(x) 
for x < 0, 
for x 2: 0, 

(A.2) 

and Dl to replace d1 by - d l . Now do the same for d2 , and then press the ND! and ND2 buttons. 
Now press the CALL button to get the negat ive of the put price. 
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where UTPN(x) 

and ,,(x) 

A. 2. HP1 2C BLACK-SCHOLES 

, 2 
e-'X ,,(x)[(187· ,,(x) - 24) . ,,(x) + 87J x 0.002 

1 
~ . 

1 + 3.006 

Table A.3: BP12C Black-Scholes Call and Put Code 

Key Strokes Display Comments 

f P / R OG- start with line 00 showing 
RCL n 01- 45 II get (1' - t) (only the once) 
RCL i 02- 45 12 get r% (only the once) 
% 03- 25 r·(1'-t) 
CBS 04- 16 
g e" 05- 43 22 
RCL FV 06- 45 15 get X (only the once) 
x 07- 20 
STO 4 08- 44 4 R4 = PV(X) 
x ~Y 09- 34 T - t again 
g SQRT 10- 43 21 

RCL PMT 11- 45 14 get a% (only the once) 
% 12- 25 a.j1' - t 
STO 3 13- 44 3 temporary until line 26 
RCL PV 14- 45 13 get 5 (again at line 91 ) 
RCL 4 15454 

16- 10 
g LN 17- 4323 In[S/ PV(X)[ 
x~Y 18- 34 u~ 
~ 19- 10 In[S/ PV(X )[/[u.j1' - t) 
g LST X 20- 43 36 u~again 
2 21- 2 
STO 5 22- 44 5 R5 = 2, just has to be nonzero 
~ 23- 10 to flag the first pass 

+ 24- 40 d, = In [S / PV(X ))/iu.j1' - t ) + [u~J/2 
STO 6 2~ 44 6 R6 = d, 
RCL 3 26453 
- 27- 30 d,=d, -u~ 
STO 3 28- 44 3 Store x = dj on (3 - j)th pass, for reuse at line 65 
ENTER 29- 36 
x 3G- 20 d' ) 

g SQRT 31- 43 21 abs(d j ) 

g LST X 32- 43 36 dJ NB: stack is enabled 
2 33- 2 

34- 10 
CBS 35- 16 
g eX 36- 43 22 exp[( - dJ) / 2) 
x~Y 37- 34 abs(dj ) NB: stack is enabled 
3 38- 3 Next 10 lines construct: 

39- 48 " (defined below) 
0 4G- 0 
0 41- 0 
6 42- 6 

43- 10 
1 44- 1 
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APPENDIX A. HP SOURCE CODE 

Table A.3: continued ... 

Key Strokes Display Comments 

+ 45- 40 
I/x 46- 22 u = 1/(1 + abs(dj) / 3.006) 
x 47- 20 exp( -dJ ( 2) . u 
g LSTX 48- 43 36 Place 2 copies o f u back in 
g LSTX 49- 43 36 an enabled stack 
I 50- I Next 15 lines construct: 
8 51- 8 exp( -dJ ( 2) . u . [( 187u - 24) . u + 87] x 0.002 
7 52- 7 

x 53- 20 
2 54- 2 
4 55- 4 
- 56- 30 
x 57- 20 
8 58- 8 
7 59- 7 

+ 60- 40 
x 61- 20 

62- 48 T his multiplies by 0.002 and 
2 63- 2 completes the calculation of 
% 64- 25 UTPN[abs(dj ) ] 

RCL 3 65- 45 3 Bring back dj 

x ~ Y 66- 34 
STO 3 67- 44 3 Store the UTPN [abs(dj ) ] 

C LX 68- 35 If d, S O we have N(dj ) 
x ~Y 69- 34 already, 
g xs.y 70- 43 34 and we jump to the last 
g CTO 77 71- 43 ,33 77 section 
I 72- I otherwise, N(dj) = I - UTPN(dj ) 

STO - 3 73- 44 303 
CBS 74- 16 
STO x 3 75- 44 203 R.3= alternate N(dj) 
x ~ Y 76- 34 preserves d l in stack at end 
!tC L 5 77- 45 5 Loop tfl ag' 
g x= o 78- 43 35 
g GT0 89 79- 43,33 89 Second pass goes to 89 
RCL 6 80- 45 6 Recall d, (R6 gets re-used) 
RCL 3 81- 45 3 First pass now processes N(d2 ) 

!tCL 4 82- 45 4 Recall PV(X) from 1st section 
x 83- 20 
STO 6 84- 44 6 R6=PV(X)N(d,) 
CLX 85- 35 a zero in R5 
STO 5 86- 44 5 signifies second pass. 
x~Y 87- 34 Bring back d 1 and o ff we go ... 
u GTO 28 88- 43,33 28 back to line 28: then back here 0 

x ~ Y 89- 34 CI1SLUe5 d1 in the IZ ' register at end 
RCL 3 90- 45 3 Processing of N(d l ) etc. 
RCL PV 91- 45 13 second recall of S 
STO - 4 92- 44 30 4 R4= PV(X ) - S 
x 93- 20 S · N(d,) 
RC L 6 94- 45 6 PV(X) . N(d,) 

- 95- 30 This is the Call Value 
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A.S. HP17B/ HP19B BINOMIAL PRICING 

Table A.3: continued .. 

Key Strokes Display Comments 
STO +4 96- 44 40 4 R4 - Put value 
RCL 4 97- 45 4 Put Value to s tack 
x~Y 98- 34 Leave Call Value displayed 
STO 5 99- 44 5 R5= Call value (backup) 
f 

A.3 

P/ R done 

Note: This 99-line program for the HP12C allows you to calculate Black-Scholes 
call and put prices without dividends. The approximation is quite accurate. 
T he code uses "r%" and \'0-%/' so) for example, T = 0.02 implies that r% = 2, 
and a = 0.30 implies a% = 30. If you have an HP12C Platinum, note that at 
lines 71 , 79, and 88 you need to precede the line number with a zero (e.g., line 71 
becomes: g GTO 077) because the Plat inum uses three digits for line numbers. 
Also note that the "Display" differs slightly on t he 12C Plat inum and that you 
have to have the machine in RPN, not ALG, before entering the code. Source: 
Hutchins (2003) , with permission and slight amendment. 

Table A.4: HP12C Black-Scholes Call and Put Code: Example 

Key Strokes Display Comments 

f 4 not blank sets 'FIX 4' display 
0.75 n 0.7500 n=0.75 (=1' - t) 
2 i 2.0000 i= 2 (=r x 100) 
50 PV 50.0000 PV=50 (=5) 
30 PMT 30.0000 PMT=30 (= u x 100) 
45 FV 45.0000 FV=45 (= X ) 
RI S running wait 12 seconds 

8.2199 call value 

x<y 2.5500 put value 

Note: After entering the Black-Scholes program in table A.3, you can use these 
key strokes to confirm that you have it correct. Source: Hutchins (2003), with 
considerable amendment. 

HP17B/HP19B Binomial Pricing 

The binomial option pricing model of chapter 6 (pS9) Can be evaluated on the HP17B 
and HP19B handheld calculators. This makes sense, however , only for pedagogical 
examples where t he binomial tree has few t ime steps; beyond t hat, the repetit ive 
nature of the pricing method makes practical implementation on the HP17B or 
HP19B pointless. 

Binomial pricing relies on replication . If you are to replicate the payoffs to the 
option by trading in t he stock and the bond, you need to buy l> units of stock and 
lend B dollars (with l> and B given by equations 6.1 and 6.2, respectively). This 
leads to equations 6.5 and 6.6 that give t he current option price V asa function of 
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APPENDIX A. HP SOURCE CODE 

V 

DELTA 

B 

Table A.5: HP17B/ HP19B Lattice/ Binomial Code 

«VU- VD) x R+U x VD-D x VU)-HRx (U-D)) 

(VU-VDh «U-D) x S) 

(- (VU-VD) +«U-l ) x VD) - «D-l) x VU) h (R x (U- D)) 

Note: This code is for t he HP17B or HP19B, but also works on the HP17BII 
and HP19BII. The three equations correspond to equations 6.5 , 6. 1, and 6.2 , 
respectively. Note that R= e- r (6t ) . Judicious use of the HP memories allows 
the user to work backwards very swiftly through a small multi-period tree to 
find the initial value. 

u, d, Vu , Vd , r , and 6t, where u and d are multiplicative stock price growth factors; 
Vu is t he value of the option next period if the stock price increases from S to S x u; 
Vd is t he value of t he option next period if the stock price decreases from S to S x d; 
,- is t he continuously compounded risk-free interest rate; and 6t is t he length of the 
t ime step. 

Equations for V, 6 , and B appear in table A.5. T he variables are self-explanatory, 
except for R, which is given by R= e- r(lH). The source code is convoluted so as to 
produce a logical ordering of variables in the HP menu. 

A.4 An HP17B/ HP19B Warning 

I left my HP17B in my desk fo r a month, and the batteries died. Even with new bat­
teries, I was unable to get any response whatsoever using either of the two reset com­
mands (CLR+ THIRD MENU KEY, or CLR+FIRST MENU KEY+ SIXTH MENU KEY) . Touch­
ing the battery contacts simultaneously with a coin produced some signs of life, but 
only in t he form of meaningless characters. T he first reset command above, t ried 
again, produced no change. The second reset command above, tried again , brought 
my HP17B back to life at the cost of losing continuous memory. Dropping your HP 
can also reset the memory. If you let your batteries die, t hese steps may save your 
repair costs. 
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