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A simple example

Suppose we generate our data in the following manner-

How to infer  and  given ?

x ∼ N (μ ​,σ ​ )0 0
2

μ ​0 σ ​0 X = (x ​,x ​, ...,x ​)1 2 n
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A rather practical example

Now, suppose we generate our data as follows-

How to infer  and  given ?

z ∼ N (μ ​,σ ​ )0 0
2

x ∼ Pois(e )z

μ ​0 σ ​0 X = (x ​,x ​, ...,x ​)1 2 n
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Setup

Let x be the set of observed variables and z be the set of latent variables
with joint density p(z,x). The inference problem is to compute the condi-
tional density of the p(z|x).

We can write the conditional density as

p(z∣x) = ​ =
p(x)
p(z,x)

​ ∝
p(x)

p(x∣z)p(z)
p(x∣z)p(z)

3



Approximate Inference

1. The Slow Markov Chain Monte Carlo
2. The OverPowered Variational Inference!
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Variational Inference

Instead of sampling from the exact conditional density , we ap-
proximate our conditional density using a "close-enough" density which
is simple enough to sample from. Our problem now becomes an opti-
mization problem!

p(z∣x)
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But how does this help?

Notice that minimizing the KL is same as maximizing the ELBO. Hence our
goal now is to maximize this ELBO!

KL(q(z∣ϕ)∣∣p(z∣x)) = q(z∣ϕ) ln ( ​ )dz∫
p(z∣x)
q(z∣ϕ)

​ =

ELBO(ϕ)

​E ​[ ln ( ​ )]q(z∣ϕ)
q(z∣ϕ)
p(z∣x)

ln(p(x)) − KL(q(z∣ϕ)∣∣p(z∣x))
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Maximizing the ELBO

Impressive! But ...

Not always available in closed form
Not scalable
Not fast enough

ELBO(ϕ) = E ​[ ln ( ​ )]q(z∣ϕ)
q(z∣ϕ)
p(z∣x)
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Advances leading to Stochastic Variational
Inference

Gradient estimators of the ELBO
Robbin's Monro Algorithm
Natural Gradient
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Gradient Estimators of the ELBO

​ ​

∇ ​ELBO(ϕ)ϕ = E ​ ∇ ​ ln q(z∣ϕ) lnq(z∣ϕ) [ ϕ
q(z∣ϕ)
p(x, z∣θ)

]

≈ ​ ​ ∇ ​ ln q(z ∣ϕ) ln ​

S

1

s=1

∑
S

ϕ
s

q(z ∣ϕ)s

p(x, z ∣θ)s

where z ∼ q(z∣ϕ)s
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Robbin's Monro Algorithm

Usage

Given a function  such that

It helps us find  such that 

For our case,  where

g(ϕ)

E(g(ϕ)) = f(ϕ)

ϕ∗ f(ϕ) = 0

E ​(g(ϕ)) =q ∇ ​ELBO(ϕ)ϕ

g(ϕ) = ∇ ​ ln q(z∣ϕ) ln ​ϕ
q(z∣ϕ)
p(x, z∣θ)
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Algorithm

At every iteration , we update  as follows-

where  is an independent draw from  and the step sizes  follow-

t ϕ

ϕ =(t) ϕ +(t−1) ρ ​g ​ ϕ ,t t ( (t−1))

g ​t g(ϕ) ρ ​t

ρ ​ =∑ t ∞ and  ρ ​ <∑ t
2 ∞
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Natural Gradient

Euclidean gradient overshoots in regions of high curvature and becomes
very slow in regions of low curvature
Riemannian metric structure instead of the Euclidean metric structure
Direction of steepest descent for Riemannian spaces is not the same

Mapping a manifold to a flat coordinate system distorts distances.
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Natural Gradient

Solution: We compute the gradient directly on the globe!

Suppose we have a parameter space-

So what do you think should be this distance metric?

Θ = {w ∈ R }n

Euclidean Distance: ∣dw∣ =2
​ dw ​

i=1

∑
n

( i)
2

Riemannian Distance: ∣dw∣ =2
​g ​(w)dw ​dw ​,

i=1

∑
n

i,j i j
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Natural Gradient

The Fisher Information metric-

These three ideas together give us Stochastic Variational Inference
which is fast and scalable!

[I(ϕ)] ​ =i,j E ​ log f(z;ϕ) ​ log f(z;ϕ) ∣ ϕ[(
∂ϕ ​i

∂
) (

∂ϕ ​j

∂
) ]
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