IISER KOLKATA MAX-PLANCK-GESELLSCHAFT

Latent Factor Analysis and Regression of Multivariate Poisson Lognormal
Counts using Amortized Variational Inference

Ananyapam De
MS Thesis Presentation

Under supervision of Dr. Johannes Soeding

[J
IISER KOLKATA

Outline

¢ Quick Recap and Methodology for PLNmodels

» Our Methodology
% Extension to other GLMM’s
% Problems with initialization and optimization and fixes
%+ Speed Optimization and Time Complexity
% Results
> A sample demonstration
o Simulation Study
> Real datasets
> Runtime analysis
% Conclusion and Future directions

[J
IISER KOLKATA

Quick Recap

< Model Parameters:
peRP
2 E RDXD
B G RDXQ = -300
||
< Latent variables: i 50
2 €RP .
«» Covariates: ; 150
Xi = RQ :- 100
% Response variable: i 50
y € R” - ;

Methodology: PLNmodels

Two step procedure - E step and M step.

E step requires p(Z|Y), which is intractable for the Poisson Lognormal model.
Resort to variational approximation.

Used a Gaussian with a diagonal covariance as the variational distribution learnt
separately for each sample.

*» We use amortization for this to learn a set of pan-sample parameters, drastically
reducing the number of parameters to learn.

[J
IISER KOLKATA

Quick Recap: Our Methodology

(yn,znlxn,é’)]

N
p
ELBO(0, #) =) Eyt|ynxmdiws:) lln 4(Zn|yn, @)

n=1
Variational distribution: ¢(zy|yn,Xn, @,0) = N (2|, Sn)

S = (Ay + X3
pn = Sn(Aym, + X7 (u+Bx,))

== igll ; : DxD
Amortization I:> A, = diag ()‘M(yma ¢)) = RD
my = (ﬂni(ym, ¢)) eR

[J
IISER KOLKATA

Amortization

7

% Laplace Approximation
ni(Yi, @) = ¢ioln (€¢i’1 + yz)
In i (yi, @) = ¢i21n (6@’3 + yz)

7

% Neural Network

(ni — In(0.5 + y:)

3 ~ L 5
in X In(0:5:4: yi)) + dense(lin, 2, H) o (den.se(atan, H.H))" odense(atan, H, 2)

We use a Shallow neural network withH=6and L = 2.

[J
IISER KOLKATA

No more stochasticity!

N D
ELBO(6, ¢) = E, (> mpulnt=9"(z),0)) —H (@, N(1s,E)) +H n]
©9=3 (\; o il g<>))4\(q i))J (a:)

Entropy

Expected Conditional Log Probability: p(0,¢) Cross Entropy

When p is the Poisson distribution

S»3 [m : /]

1=1 n=1

[J
IISER KOLKATA

Properties of the Gaussian

0.

% Entropy

1 1
H(N(un, Sn)) = In |27eX,| = 3 In |X,,| + const

X/

% Cross Entropy

H(N(un,sn),./\/'(u, 2)) = [ln IBfE (g5 =) B (=) & T {E_ISH}] + const

b | =

[J
IISER KOLKATA

Extension to other GLMM'’s

@ If z ~ N(u,X) then z; ~ N (i, Xi;)
< Gauss-Hermite Quadrature

n

[e e~ Y wise)

00 i=1

n is the number of sample points used

w; are the weights computed using Hermite Polynomials

[J
IISER KOLKATA

Speed Optimization and Time Complexity

% Woodbury identity

A+ UV T=A" — Alp(C L vay) VAT

% Weinstein—Aronszajn identity

Iy + ABT| = |Ix + ATB|

Final Time Complexity: O(NDK? + NDQ)

Problems with initialization and 'J

.. . IISER KOLKATA
optimization
< Bad initial values can lead to local -
maximas of the ELBO and return B
ridiculous parameter estimates! 051

X/
0’0

These estimates can correspond to

parameters running off to infinity or
leading to singular covariance 20
matrices —25]

ELBO

% L-BFGS is quite fast but can often
cause convergence issues

= local_max
=3.5 1 ~—— global_max

0 2000 4000 6000 8000 10000
Iteration

Problems with initialization and "ﬁ:m%
optimization: Fixes

% Make heuristic estimates of the parameters before starting the optimization. Use
method of moments estimators.

< Optimize quantities by considering their constraints. (For example instead of
optimizing D, we optimize eps + In(D) which constrains D to only have positive
values).

% Neural Network should have low weights and the phi’s should be initialized with
reasonable values

% Include a strong and decaying prior in the ELBO which would heavily penalize large
values of the parameters.

% Use ADAM for optimization instead of L-BFGS.

[J
IISER KOLKATA

N = 50000
B=0
D=4 .

pand Y are known

Initialization: J 200, ‘Mlmmnon 600 800 1oco 0 200 ana e 600 [0) 1000
le7

o~ N(O, 0'2) 6 J/_.,-»--*"“'——'v L) 0.0
L ~ N(O, 02) s //"//»-{ E:, -0.5 f '

D ~ exp(N (0, 0°))
oc=0.1
t = 1000

‘.
~N w &
r &4
ELBO
1 |
~N -
-] wn

. IISER KOLKATA
Results: Sample Demonstration
-0.0033 -0.0096 -0.0091] -0.016 -0.027 -0.0083] -0.0048 -0.005 0:75 ___
-0.0069 0.0084 7 0.0058 | 1 V 0:25 . HpMSE 0.073 3.158
oo § Iy s 0.152 0.641
-0.0096 -0.0069 I -0.027 | 0.012 ' gl S 2:M_S'E 113 175.368
-0.50
-0.0091 | 0.0084 = 0.005 [-0.0083 | 0.0058 -0.0045 [~0.75 zbias 0.320 2.13

Correlation of Counts Our Model PLNmodels

. . IISER KOLKATA

Results: Simulation Stud

Q=2 | | Q=5 | | Q=10 |
T d | m o N € {50,500,1000}
: +F - _ | D ¢ {2,10,90}
2 -~ = # : Q € {2,5,10}
X e : _ i . sy
| T |- - - — |8 X ~ N(0, 1)
o R = 50
. * + 0 YO, v@ o y®)
T = T § Our model brings down
| = = :| MAE drastically by 50% !

[J
IISER KOLKATA

Real Datasets

“ Barent’s Data - describes the assemblages and distributions of 30 fish species in the
southwestern and central part of the Barents Sea with the covariates latitude,
longitude, temperature and depth

% Oaks Data - includes information on the abundance of 114 taxa, comprising of 66
bacterial OTUs (Operational Taxonomic Unit) and 48 fungal OTUs, across a total of 116

samples.

% Problems:
> Determining performance is difficult due to absence of true estimates.
> Choosing K can be a challenge. For now, we choose it by inspecting the dataset

and coming up with a reasonable K.

IISER KOLKATA

Barents Dataset

7/

Hyperparameters/ data set configuration:

£ %4

N

S

== sjunod
(=1 o o o o
o wn o (Y2} o o
™M ~ o~ Ll - v
| \ ,

ENII I min _i-_I
1m

[J
IISER KOLKATA

Results: Barents

Correlation Heatmap

(@) (b) ()
I' 1.00
0.75
0.50
0.25
c
g
k]
0.00 E
S
Q
-0.25
-0.50
-0.75
-1.00

Correlation of Counts Our Model PLNmodels

[J
IISER KOLKATA

Barents: Network Structure

\ 2>

- 2SN

: . 7 s,
AUOXAS /) (}QMAT"‘». RS Al

i X \;“‘ \ v'vy(< : N/ X /é"\ “.“\‘ \(”ﬁ.‘ ‘ ay 4
QNI =S e AR 8

7
>4 N > "g":‘ilé,,-,:\ / b
SR

¢

>
R SNH T
/ \FE_‘-‘&’A&‘,}
(V“!?‘k\&'

W2 S \Y > =

Our Model PLNmodels

£y

IISER KOLKATA

Trichoptera Dataset

#» Hyperparameters/ data set configuration:

> N=49)
> D=17

> Q=7

> 1factor -400

B30

Counts

200

100

[J
IISER KOLKATA

Results: Trichoptera

Correlation Heatmap

(a) (b)
. .

Correlation of Counts Our Model PLNmodels

o
o
o
Correlation

-0.25

-0.50

-0.75

-1.00

e

IISER KOLKATA

Results: Oaks

“» Hyperparameters/ data set configuration:
N =116
D =114
Q=11

3 factors

-300

YVYVYY

- 250

200

150

Counts

100

50

OTU Categories

[J
IISER KOLKATA

Results: Oaks

Correlation Heatmap

1.00

0.75

0.50

0.25

0.00

Correlation

-0.25

-0.50

-0.75

—-1.00

Correlation of Counts Our Model PLNmodels

[J
IISER KOLKATA

Runtime Analysis

< Currently our software takes an
average of 40 seconds (30 seconds
more than PLNmodels) for inference
with N=1000 samples.

W PLNmodels
40 { HEE Our method

% Profiling shows us this is due to
repeated function calls to
torch.einsum which are not
optimized for some computations in
PyTorch. 10

Average Runtime (seconds)

K/
L X4

PLNmodels is written in R/C++, our
software is in Python and PyTorch

[J
IISER KOLKATA

Conclusion

< Surpasses PLNmodels with unparalleled accuracy when tested on simulated datasets
at various parameter settings ranging from easy to hard.

% Helps us uncover subtle correlation structures not modelled accurately by
PLNmodels.

< We don't yet have a methodology for modelling covariates as factors which are
present in real datasets.

% Computational time is more than PLNmodels by the order of seconds/few minutes
which is optimizable according to our time complexity.

[J
IISER KOLKATA

Future Directions

< Investigate on more robust initializations and extending them
for other GLMM's

< Improve speed of the software
% Develop a method for modelling factors

% Developing a Poisson PCA for automatically choosing K and
inferring sparse networks

Thank you!
-

Problems to be addressed

- Speed:
- Used caching to store intermediate results for faster computations
Replaced einsum calls with matrix operations in torch
NOT significant speedup
Time complexity of our model: O(NDK"2)
- Time complexity of Chiquet's model: O(NSDK), but their model is about 5 to 7 times faster in practice.
- Convergence:
- Three main methods to overcome convergence issues:
- Betterinitialization
- Slower learning rate
- Better suited algorithms
- Even PLNmodels suffers from convergence issues. Check this issue here.
- PLNmodels use two backends: torch and nlopt
- The default behaviour of nlopt is CCSA while torch is RPROP, apparently CCSA is much more robust.
Read more here.
- For the Poisson Log normal model, to the best of my testing, the current initialization WORKS (finally! :)
- Extensions to other models like Bernoulli, Binomial, Gamma, Gumbel have the outline ready, but need to be
carefully implemented, tested and improved.

https://github.com/PLN-team/PLNmodels/issues/101
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/

Software Design: Extensions to other mGLMM'’s

- Functions that need to be implemented for each class:
- init_model_params () : Initialization of model parameters
- init_var_params() : Initialization of variational parameters (in
case of neural networks, no need to implement this function) GLMM Abstract class
- expCondLogProb () : This function computes this quantity below:

D
Eq.. (Z I p (il =97 (2i), 9))
i=1

- Gauss-Hermite Quadratur iyt Conditonal Yoz Probabilin: p(6.6)
- computeEtalLambda(): Using NN or the variational params, this
function computes these quantities:
- Next steps:
- Matbh stuff: Study possible robust initializ:
models.
- Codingstuff: Inherited Classes
- Discuss and possibly modify the design and the code to be
more efficient and roll out a package.
- Trying out other network architectures (layer normalization)
- Stat stuff: Derive and Implement
- Linear Discriminant Analysis
- Model Based Clustering
- Network Inference

(Y, @), Ail¥i P)pese

