
Ananyapam De

MS Thesis Presentation

Under supervision of Dr. Johannes Soeding

Latent Factor Analysis and Regression of Multivariate Poisson Lognormal
Counts using Amortized Variational Inference

Outline
❖ Quick Recap and Methodology for PLNmodels
❖ Our Methodology
❖ Extension to other GLMM’s
❖ Problems with initialization and optimization and fixes
❖Speed Optimization and Time Complexity
❖ Results

◦ A sample demonstration
◦ Simulation Study
◦ Real datasets
◦ Runtime analysis

❖Conclusion and Future directions

❖ Model Parameters:

❖ Latent variables:

❖ Covariates:

❖ Response variable:

Quick Recap

Methodology: PLNmodels

❖ Two step procedure - E step and M step.
❖ E step requires p(Z|Y), which is intractable for the Poisson Lognormal model.
❖ Resort to variational approximation.
❖ Used a Gaussian with a diagonal covariance as the variational distribution learnt

separately for each sample.
❖ We use amortization for this to learn a set of pan-sample parameters, drastically

reducing the number of parameters to learn.

Quick Recap: Our Methodology

Amortization

Amortization

❖ Laplace Approximation

❖ Neural Network

We use a Shallow neural network with H = 6 and L = 2.

No more stochasticity!

Properties of the Gaussian
❖ Entropy

❖ Cross Entropy

Extension to other GLMM’s

❖

❖

Speed Optimization and Time Complexity

❖ Woodbury identity

❖ Weinstein–Aronszajn identity

Final Time Complexity:

Problems with initialization and
optimization

❖ Bad initial values can lead to local
maximas of the ELBO and return
ridiculous parameter estimates!

❖ These estimates can correspond to
parameters running off to infinity or
leading to singular covariance
matrices

❖ L-BFGS is quite fast but can often
cause convergence issues

Problems with initialization and
optimization: Fixes
❖ Make heuristic estimates of the parameters before starting the optimization. Use

method of moments estimators.
❖ Optimize quantities by considering their constraints. (For example instead of

optimizing D , we optimize eps + ln(D) which constrains D to only have positive
values).

❖ Neural Network should have low weights and the phi’s should be initialized with
reasonable values

❖ Include a strong and decaying prior in the ELBO which would heavily penalize large
values of the parameters.

❖ Use ADAM for optimization instead of L-BFGS.

Results: Sample Demonstration

Results: Sample Demonstration

Our Model PLNmodelsCorrelation of Counts

Results: Simulation Study

Our model brings down
MAE drastically by 50% !

Real Datasets
❖ Barent’s Data - describes the assemblages and distributions of 30 fish species in the

southwestern and central part of the Barents Sea with the covariates latitude,
longitude, temperature and depth

❖ Oaks Data - includes information on the abundance of 114 taxa, comprising of 66
bacterial OTUs (Operational Taxonomic Unit) and 48 fungal OTUs, across a total of 116
samples.

❖ Problems:
➢ Determining performance is difficult due to absence of true estimates.
➢ Choosing K can be a challenge. For now, we choose it by inspecting the dataset

and coming up with a reasonable K.

Barents Dataset
❖ Hyperparameters/ data set configuration:

➢ N = 89
➢ D = 30
➢ Q = 4
➢ K = 5

Results: Barents
Correlation Heatmap

Our Model PLNmodelsCorrelation of Counts

Barents: Network Structure

Our Model PLNmodels

Trichoptera Dataset
❖ Hyperparameters/ data set configuration:

➢ N = 49
➢ D = 17
➢ Q = 7
➢ 1 factor

Results: Trichoptera
Correlation Heatmap

Our Model PLNmodelsCorrelation of Counts

Results: Oaks
❖ Hyperparameters/ data set configuration:

➢ N = 116
➢ D = 114
➢ Q = 11
➢ 3 factors

Correlation Heatmap

Our Model PLNmodelsCorrelation of Counts

Results: Oaks

Runtime Analysis
❖ Currently our software takes an

average of 40 seconds (30 seconds
more than PLNmodels) for inference
with N=1000 samples.

❖ Profiling shows us this is due to
repeated function calls to
torch.einsum which are not
optimized for some computations in
PyTorch.

❖ PLNmodels is written in R/C++, our
software is in Python and PyTorch

Conclusion
❖ Surpasses PLNmodels with unparalleled accuracy when tested on simulated datasets

at various parameter settings ranging from easy to hard.

❖ Helps us uncover subtle correlation structures not modelled accurately by
PLNmodels.

❖ We don’t yet have a methodology for modelling covariates as factors which are
present in real datasets.

❖ Computational time is more than PLNmodels by the order of seconds/few minutes
which is optimizable according to our time complexity.

Future Directions

Thank you!

❖ Investigate on more robust initializations and extending them
for other GLMM’s

❖ Improve speed of the software

❖ Develop a method for modelling factors

❖ Developing a Poisson PCA for automatically choosing K and
inferring sparse networks

Problems to be addressed
- Speed:

- Used caching to store intermediate results for faster computations
- Replaced einsum calls with matrix operations in torch
- NOT significant speedup
- Time complexity of our model: O(NDK^2)
- Time complexity of Chiquet’s model: O(NSDK), but their model is about 5 to 7 times faster in practice.

- Convergence:
- Three main methods to overcome convergence issues:

- Better initialization
- Slower learning rate
- Better suited algorithms

- Even PLNmodels suffers from convergence issues. Check this issue here.
- PLNmodels use two backends: torch and nlopt
- The default behaviour of nlopt is CCSA while torch is RPROP, apparently CCSA is much more robust.

Read more here.
- For the Poisson Log normal model, to the best of my testing, the current initialization WORKS (finally! :)

- Extensions to other models like Bernoulli, Binomial, Gamma, Gumbel have the outline ready, but need to be
carefully implemented, tested and improved.

https://github.com/PLN-team/PLNmodels/issues/101
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/

Software Design: Extensions to other mGLMM’s

GLMM

Bernoulli
GLMM

Poisson
GLMM

Binomial
GLMM

- Functions that need to be implemented for each class:
- init_model_params(): Initialization of model parameters
- init_var_params(): Initialization of variational parameters (in

case of neural networks, no need to implement this function)
- expCondLogProb(): This function computes this quantity below:
-
-
- Gauss-Hermite Quadrature comes here
- computeEtaLambda(): Using NN or the variational params, this

function computes these quantities:
- Next steps:

- Math stuff: Study possible robust initializations for each of these
models.

- Coding stuff:
- Discuss and possibly modify the design and the code to be

more efficient and roll out a package.
- Trying out other network architectures (layer normalization)

- Stat stuff: Derive and Implement
- Linear Discriminant Analysis
- Model Based Clustering
- Network Inference

Abstract class

Inherited Classes

