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❖ Model Parameters:

❖  Latent variables:

❖ Covariates:

❖ Response variable:

Quick Recap



Methodology: PLNmodels

❖ Two step procedure - E step and M step.
❖ E step requires p(Z|Y), which is intractable for the Poisson Lognormal model.
❖ Resort to variational approximation.
❖ Used a Gaussian with a diagonal covariance as the variational distribution learnt 

separately for each sample.
❖ We use amortization for this to learn a set of pan-sample parameters, drastically 

reducing the number of parameters to learn.



Quick Recap: Our Methodology

Amortization



Amortization

❖ Laplace Approximation

❖ Neural Network

We use a Shallow neural network with H = 6 and L = 2. 



No more stochasticity!



Properties of the Gaussian
❖ Entropy

❖ Cross Entropy



Extension to other GLMM’s

❖

❖



Speed Optimization and Time Complexity

❖ Woodbury identity

❖ Weinstein–Aronszajn identity

Final Time Complexity:



Problems with initialization and 
optimization

❖ Bad initial values can lead to local 
maximas of the ELBO and return 
ridiculous parameter estimates!

❖ These estimates can correspond to 
parameters running off to infinity or 
leading to singular covariance 
matrices

❖ L-BFGS is quite fast but can often 
cause convergence issues  



Problems with initialization and 
optimization: Fixes
❖ Make heuristic estimates of the parameters before starting the optimization. Use 

method of moments estimators.
❖ Optimize quantities by considering their constraints. (For example instead of 

optimizing D , we optimize eps + ln(D) which constrains D to only have positive 
values).

❖ Neural Network should have low weights and the phi’s should be initialized with 
reasonable values 

❖ Include a strong and decaying prior in the ELBO which would heavily penalize large 
values of the parameters.

❖ Use ADAM for optimization instead of L-BFGS.



Results: Sample Demonstration



Results: Sample Demonstration

Our Model PLNmodelsCorrelation of Counts



Results: Simulation Study

Our model brings down 
MAE drastically by 50% !



Real Datasets
❖ Barent’s Data - describes the assemblages and distributions of 30 fish species in the 

southwestern and central part of the Barents Sea with the covariates latitude, 
longitude, temperature and depth

❖ Oaks Data - includes information on the abundance of 114 taxa, comprising of 66 
bacterial OTUs (Operational Taxonomic Unit) and 48 fungal OTUs, across a total of 116 
samples.

❖ Problems: 
➢  Determining performance is difficult due to absence of true estimates.
➢  Choosing K can be a challenge. For now, we choose it by inspecting the dataset 

and coming up with a reasonable K. 



Barents Dataset
❖ Hyperparameters/ data set configuration:

➢ N = 89
➢ D = 30
➢ Q = 4
➢ K = 5



Results: Barents
Correlation Heatmap

Our Model PLNmodelsCorrelation of Counts



Barents: Network Structure

Our Model PLNmodels



Trichoptera Dataset
❖ Hyperparameters/ data set configuration:

➢ N = 49
➢ D = 17
➢ Q = 7
➢ 1 factor



Results: Trichoptera
Correlation Heatmap

Our Model PLNmodelsCorrelation of Counts



Results: Oaks
❖ Hyperparameters/ data set configuration:

➢ N = 116
➢ D = 114
➢ Q = 11
➢ 3 factors



Correlation Heatmap

Our Model PLNmodelsCorrelation of Counts

Results: Oaks



Runtime Analysis
❖ Currently our software takes an 

average of 40 seconds (30 seconds 
more than PLNmodels) for inference 
with N=1000 samples.

❖ Profiling shows us this is due to 
repeated function calls to 
torch.einsum which are not 
optimized for some computations in 
PyTorch.  

❖ PLNmodels is written in R/C++, our 
software is in Python and PyTorch



Conclusion
❖ Surpasses PLNmodels with unparalleled accuracy when tested on simulated datasets 

at various parameter settings ranging from easy to hard.

❖ Helps us uncover subtle correlation structures not modelled accurately by 
PLNmodels.

❖ We don’t yet have a methodology for modelling covariates as factors which are 
present in real datasets.

❖ Computational time is more than PLNmodels by the order of seconds/few minutes 
which is optimizable according to our time complexity.



Future Directions

Thank you!

❖ Investigate on more robust initializations and extending them 
for other GLMM’s

❖ Improve speed of the software

❖ Develop a method for modelling factors

❖ Developing a Poisson PCA for automatically choosing K and 
inferring sparse networks



Problems to be addressed
- Speed:

- Used caching to store intermediate results for faster computations
- Replaced einsum calls with matrix operations in torch
- NOT significant speedup
- Time complexity of our model: O(NDK^2)
- Time complexity of Chiquet’s model: O(NSDK), but their model is about 5 to 7 times faster in practice.

- Convergence:
- Three main methods to overcome convergence issues:

- Better initialization
- Slower learning rate
- Better suited algorithms

- Even PLNmodels suffers from convergence issues. Check this issue here.
- PLNmodels use two backends: torch and nlopt
- The default behaviour of nlopt is CCSA while torch is RPROP, apparently CCSA is much more robust. 

Read more here.
- For the Poisson Log normal model, to the best of my testing, the current initialization WORKS (finally! :)

- Extensions to other models like Bernoulli, Binomial, Gamma, Gumbel have the outline ready, but need to be 
carefully implemented, tested and improved.

https://github.com/PLN-team/PLNmodels/issues/101
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/


Software Design: Extensions to other mGLMM’s

GLMM

Bernoulli 
GLMM

Poisson 
GLMM

Binomial 
GLMM

- Functions that need to be implemented for each class:
- init_model_params(): Initialization of model parameters
- init_var_params(): Initialization of variational parameters (in 

case of neural networks, no need to implement this function)
- expCondLogProb(): This function computes this quantity below: 
-
-
- Gauss-Hermite Quadrature comes here
- computeEtaLambda(): Using NN or the variational params, this 

function computes these quantities: 
- Next steps:

- Math stuff: Study possible robust initializations for each of these 
models.

- Coding stuff: 
- Discuss and possibly modify the design and the code to be 

more efficient and roll out a package.
- Trying out other network architectures (layer normalization)

- Stat stuff: Derive and Implement 
- Linear Discriminant Analysis
- Model Based Clustering
- Network Inference

Abstract class

Inherited Classes


