
Ananyapam De

Fast Exponentiation and Inversion
Introducing Computational Number Theory

Indian Institute of Science Education and Research, Kolkata



Exponentiation

Let  and  be integers with . Then the th power of , denoted by
, is defined as

where the  factors of  are multiplied together.

def power(a, n)�
    ans = 1
    for i in range(n)�
        ans *= a
    return ans

Time Complexity: 

Space Complexity: 

a n n ≥ 0 n a

an

a =n a ⋅ a ⋅ ⋯ ⋅ a

n a

O(n)

O(1)

1



Motivating Example

Suppose we want to compute . We can do this by multiplying  by it-
self  times. Very slow!

How can we compute  faster?
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The Idea

Suppose we know . Then we can compute  by squaring  (in
one step). This is much faster!

How can we compute ? We can compute  by squaring  (in one
step). And so on.

2500 21000 2500
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Fast Exponentiation

def fastpower(a, n) {
    if (n �� 0)
        return 1
    res = fastpower(a, n / 2)
    if (n % 2)
        ans = res * res * a
        return ans
    else
        ans = res * res
        return ans
}

Time Complexity: 

Space Complexity: ??

O(logn)
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Fast Exponentiation

def fastpower(a, n) {
    if (n �� 0)
        return 1
    res = fastpower(a, n / 2)
    if (n % 2)
        ans = res * res * a
        return ans
    else
        ans = res * res
        return ans
}

Time Complexity: 

Space Complexity:  (due to the recursive stack)

O(logn)

O(logn)
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Iterative Implementation

Consider the binary representation of .

Ex: 

def fastpower_iterative(a, n)�
    ans = 1
    while n > 0�
        if n & 1�
            ans *= a
        a *= a
        n ��� 1
    return ans

Time Complexity: 

Space Complexity: 

n

n = 1000 = 2 +9 2 +8 2 +7 2 +6 2 +5 2 =3 (1111101000)  2

O(logn)

O(1)
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Fibonacci Numbers!

Let  be the th Fibonacci number. Then we have the following recur-
rence relation:

with  and .

How can we compute ?

F  n n

F  =n F  +n−1 F  n−2

F  =0 0 F  =1 1

F  n
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Naive Recursive Implementation

def f�b(n)�
    if n �� 0�
        return 0
    if n �� 1�
        return 1
    return f�b(n-1) + f�b(n-2)

Time Complexity: 

Space Complexity:  (due to the recursive stack)

O(2 )n

O(n)
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Memoization

We can use memoization to reduce the time complexity to .

def f�b(n)�
    if n �� 0�
        return 0
    if n �� 1�
        return 1
    if dp[n] �� -1�
        return dp[n]
    dp[n] = f�b(n-1) + f�b(n-2)
    return dp[n]

Time Complexity: 

Space Complexity:  (due to the memoization array)

O(n)

O(n)

O(n)
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Iterative Implementation

def f�b_iterative(n)�
    if n �� 0�
        return 0
    if n �� 1�
        return 1
    a = 0
    b = 1
    for i in range(2, n+1)�
        c = a + b
        a = b
        b = c
    return b

Time Complexity: 

Space Complexity: 

Can we do even better?

O(n)

O(1)
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Matrix Exponentiation

Idea: Computing all required Fibonacci numbers in one step. (This is a
very general technique.)

Time Complexity: O(8 ∗ logn)
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Modular Exponentiation

where the  factors of  are multiplied together.

Assume that  and  are coprime integers.

def modularpower(a, n, m)�
    ans = 1
    while n > 0�
        if n & 1�
            ans = (ans * a) % m
        a = (a * a) % m
        n ��� 1
    return ans

Time Complexity: 

Can we do even better?

a modn m = a ⋅ a ⋅ ⋯ ⋅ a mod( ) m

n a

a m

O(logn)
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Euler's Theorem

Let  and  be coprime integers. Then we have the following theorem:

where  is the Euler totient function.

 counts the number of integers between 1 and  inclusive that are
coprime to .

a m

a ≡φ(m) 1 (mod m)

φ(m)

φ(m) m

m
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How do we use this?

Problem: Compute .

Solution: Write  = , where  and  are integers and 
.

Then we have the following:

Time Complexity: 

Very very fast!

a modn m

n φ(m) ⋅ k + r k r 0 ≤
r < φ(m)

a modn m = a modφ(m)⋅k+r m ≡ a modr m

O(logφ(m))
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But how to compute ?

Properties of 

1. 
2.  (where  is a prime)
3.  (where  is a prime)
4.  (where  and  are coprime)

φ(m)

φ(m)

φ(1) = 1
φ(p) = p − 1 p

φ(p ) =k p −k pk−1 p

φ(mn) = φ(m) ⋅ φ(n) m n
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Method 1: Naive Prime Factorization

Let , where  are distinct primes and .

Then we have the following:

m = p  ⋅1
a  1 p  ⋅2

a  2 ⋯ ⋅ p  k
a  k p  i a  ≥i 1

φ(m) = m ⋅ 1 −  ⋅(
p  1

1
) 1 −  ⋅(

p  2

1
) ⋯ ⋅ 1 −  (

p  k

1
)
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Implementation

def eulerphi(m)�
    ans = m
    for i in range(2, int(m��0.5) + 1)�
        if m % i �� 0�
            ans -= ans �� i
            while m % i �� 0�
                m ��� i
    if m > 1�
        ans -= ans �� m
    return ans

Time Complexity: O(  )m
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Method 2: Gauss's Divisor Sum Formula

Let  be a positive integer. Then we have the following formula:

where  are the distinct prime factors of 

Example: . We have the following:

m

 φ(d) =
d∣m

∑ m

d n

φ(12) = 4

 φ(d) =
d∣12

∑ φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) = 12
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Implementation

def eulerphi(m)�
    phi[0] = 0
    phi[1] = 1
    for i in range(2, m+1)�
        phi[i] = i - 1

    for i in range(2, m+1)�
        for j in range(2 * i, m+1, i)�
              phi[j] -= phi[i]

    return phi[m]

Time Complexity: O(m logm)
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Modular Inverse

Let  and  be coprime integers. Then if  has a modular inverse modulo
, then there exists  such that:

 is called the modular inverse of  modulo , denoted by 
.

a m a

m x

a ⋅ x ≡ 1 (mod m)

x a m a−1

(mod m)
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How do we compute ?

Method 1: Extended Euclidean Algorithm

If  and  be coprime integers, then we can find  and  such that:

using the extended Euclidean algorithm.

Take the modulo  of both sides:

Thus the modular inverse of  modulo  is .

Time Complexity: 

a−1

a m x y

ax + my = 1

m

ax ≡ 1 (mod m)

a m x

O(logmin(a,m))

21



Method 2: Fast Exponentiation (and Euler's
Theorem)

Time Complexity: 

a ≡φ(m)−1 a−1 (mod m)

O(logφ(m))
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Method 3: Euclidean Division

where  and 

Then we have the following:

m = k ⋅ i + r

k = ⌊  ⌋
i
m r = m (mod i)

0 ≡ k ⋅ i + r (mod m)
r ≡ −k ⋅ i (mod m)
r ⋅ i ≡−1 −k (mod m)
i ≡−1 −k ⋅ r−1 (mod m)
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Implementation

def modinv(a, m)�
    if a �� 1�
        return a
    else:
        return m - (m/a) * inv(m % a) % m

Time Complexity: ~ 

Space Complexity: 

O(  )
loglogm
logm

O(logmin(a,m))
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