Fast Exponentiation and Inversion

Introducing Computational Number Theory

Ananyapam De

Indian Institute of Science Education and Research, Kolkata

Exponentiation

Let a and n be integers with n > 0. Then the nth power of a, denoted by
a”, is defined as

where the n factors of a are multiplied together.

def power(JE
ans =
for i in (n):
ans *= a
return ans

Time Complexity: O(n)

Space Complexity: O(1)

Motivating Example

Suppose we want to compute 21°%, We can do this by multiplying 2 by it-
self 1000 times. Very slow!

How can we compute 21000 faster?

The Idea

Suppose we know 2°%°. Then we can compute 219 by squaring 2°% (in
one step). This is much faster!

How can we compute 25007 We can compute 2250 by squaring 2125 (in one
step). And so on.

1 ifn==2~0
n (tﬁ)i if n > 0 and n even

n—1 2
(a'T) -a ifn > 0and n odd

Fast Exponentiation

def fastpower(a, n) {

if (n = 0)
return 1

res = fastpower(a, n / 2)

if (n % 2)
ans = res * res * a
return ans

else
ans = res * res
return ans

Time Complexity: O(log n)

Space Complexity: 77

Fast Exponentiation

def fastpower(a, n) {

if (n = 0)
return 1

res = fastpower(a, n / 2)

if (n % 2)
ans = res * res * a
return ans

else
ans = res * res
return ans

Time Complexity: O(log n)

Space Complexity: O(log n) (due to the recursive stack)

Iterative Implementation

Consider the binary representation of n.

Ex:n = 1000 = 27 + 2% + 27 4 26 4- 2° 4 2% = (1111101000),

def fastpower_iterative():
ans =
while n >
if n &
ans *= a
a *= a

n >—

return ans

Time Complexity: O(logn)

Space Complexity: O(1)

Fibonacci Numbers!

Let F;, be the nth Fibonacci number. Then we have the following recur-
rence relation:

Fn:Fn—1+Fn—2

with Fy = 0 and F} = 1.

How can we compute F},?

Naive Recursive Implementation

def fib(n):
if n =
return
1f n =
return
return fib(n-1) + fib(n-2)

Time Complexity: O(2")

Space Complexity: O(n) (due to the recursive stack)

Memoization
We can use memoization to reduce the time complexity to O(n).

def fib(n):
1f n =
return
1f n =
return
if dp[n] %= -1:
return dp[n]
dp[n] = fib(n-1) + fib(n-2)
return dp[n]

Time Complexity: O(n)

Space Complexity: O(n) (due to the memoization array)

Iterative Implementation

def fib_iterative(n):

Time Complexity: O(n)
Space Complexity: O(1)

Can we do even better?

if n =

return

if n =

return

1
C:
a

b =
return b

10

Matrix Exponentiation

Idea: Computing all required Fibonacci numbers in one step. (This is a
very general technique.)

(Fn.—l Fnj — {Fn—i* Fn—l) . (I::l} 1)

(F, F,.,)=(Fy F)-P"

Time Complexity: O(8 * log n)

11

Modular Exponentiation

where the n factors of a are multiplied together.

Assume that @ and m are coprime integers.

def modularpower():
ans =
while n >
if n &
ans = (ans * a) % m
a=(a*xa)%m
n »=—

return ans

Time Complexity: O(logn)

Can we do even better?

12

Fuler's Theorem

Let a and m be coprime integers. Then we have the following theorem:

a?™m =1

where ¢(m) is the Euler totient function.

(mod m)

@(m) counts the number of integers between 1 and m inclusive that are

coprime to m.

12

13

14

15

16

17

18

19

20

21

12

16

18

12

13

How do we use this?

Problem: Compute a’ mod m.

Solution: Write n = ¢o(m) - k + r, where k and r are integers and 0 <
r < @(m).

Then we have the following:

k47

a” mod m = a®™ mod m = a” mod m

Time Complexity: O(log p(m))

Very very fast!

14

But how to compute ¢(m)?

Properties of p(m)
Le(l)=1
(p) = p — 1 (where p is a prime)
3. p(p*) = p* — p*~1 (where p is a prime)
4. p(mn) = p(m) - p(n) (where m and n are coprime)

15

Method 1: Naive Prime Factorization

Letm = p{' - py’ -+~ p}", where p; are distinct primes and a; > 1.

Then we have the following:

otm =m- (1= 0)- (15) - (1)

16

Implementation

def eulerphi(m):
ans = m
for i in range(2, int(m**0.5) + 1):
ifm%i1= 0:

ans -= ans // 1
while m % 1 = 0:
m /&~ 1
if m> 1:
ans -= ans // m

return ans

Time Complexity: O(4/m)

17

Method 2: Gauss's Divisor Sum Formula

Let m be a positive integer. Then we have the following formula:

> pld)=m

dm

where d are the distinct prime factors of n

Example: p(12) = 4. We have the following:

Y 0(d) = (1) + 0(2) + 9(3) + (4) + 9(6) + p(12) = 12
d|12

18

Implementation

def eulerphi(m):
phi[0] = 0
phi[1] = 1
for i in range(2, m+1):
phi[i] =1 - 1

for i in range(2, m+1):
for j in range(2 * i, m+1, 1i):

phi[j] -= phi[i]

return phil[m]

<

Time Complexity: O(m log m)

19

Modular Inverse

Let a and m be coprime integers. Then if a has a modular inverse modulo
m, then there exists x such that:

a-r=1 (mod m)

z is called the modular inverse of a modulo m, denoted by a*
(mod m).

20

How do we compute a1?

Method 1: Extended Euclidean Algorithm

If @ and m be coprime integers, then we can find x and y such that:

ar +my =1

using the extended Euclidean algorithm.

Take the modulo m of both sides:
ar =1 (mod m)

Thus the modular inverse of a modulo m is .

Time Complexity: O(log min(a, m))

21

Method 2: Fast Exponentiation (and Euler's
Theorem)

Time Complexity: O(log ¢(m))

22

Method 3: Euclidean Division

m=~k-i+r

where k = |7 | andr = m (mod ¢)

Then we have the following:

O=k-i+r (modm)
r=—k-i (mod m)

et =— (mod m)
il = k r— (mod m)

23

Implementation

def modinv():
1f a <
return a
else:

return m - (m/a) * inv(m % a) % m

Time Complexity: ~ (i%%@;)

Space Complexity: O(log min(a, m))

24

References

https://cp-algorithms.com/algebra

https://arxiv.org/abs/2211.08374 (On the length of
Pierce expansions)

https://artofproblemsolving.com/community/c90633h1291397

https://www.cse.iitd.ac.in/~rjaiswal/2011/csl|866/Notes/w-
cnt.pdf (Chapter 9), Prof Ragesh Jaiswal (IIT Delhi)

25

https://cp-algorithms.com/algebra
https://arxiv.org/abs/2211.08374
https://artofproblemsolving.com/community/c90633h1291397
https://www.cse.iitd.ac.in/~rjaiswal/2011/csl866/Notes/w-cnt.pdf

