Fast Exponentiation and Inversion

Introducing Computational Number Theory

Ananyapam De

Indian Institute of Science Education and Research, Kolkata

Exponentiation

Let a and n be integers with $n \geq 0$. Then the nth power of a, denoted by a^{n}, is defined as

$$
a^{n}=a \cdot a \cdots \cdots a
$$

where the n factors of a are multiplied together.

```
def power(a, n):
    ans = 1
    for i in range(n):
        ans *= a
    return ans
```

Time Complexity: $O(n)$
Space Complexity: $O(1)$

Motivating Example

Suppose we want to compute 2^{1000}. We can do this by multiplying 2 by itself 1000 times. Very slow!

How can we compute 2^{1000} faster?

The Idea

Suppose we know 2^{500}. Then we can compute 2^{1000} by squaring 2^{500} (in one step). This is much faster!

How can we compute 2^{500} ? We can compute 2^{250} by squaring 2^{125} (in one step). And so on.

$$
a^{n}= \begin{cases}1 & \text { if } n==0 \\ \left(a^{\frac{n}{2}}\right)^{2} & \text { if } n>0 \text { and } n \text { even } \\ \left(a^{\frac{n-1}{2}}\right)^{2} \cdot a & \text { if } n>0 \text { and } n \text { odd }\end{cases}
$$

Fast Exponentiation

```
def fastpower(a, n) {
    if (n = 0)
        return 1
    res = fastpower(a, n / 2)
    if (n % 2)
        ans = res * res * a
        return ans
    else
        ans = res * res
        return ans
}
```

Time Complexity: $O(\log n)$
Space Complexity: ??

Fast Exponentiation

```
def fastpower(a, n) {
    if (n = 0)
        return 1
    res = fastpower(a, n / 2)
    if (n % 2)
        ans = res * res * a
        return ans
    else
        ans = res * res
        return ans
}
```

Time Complexity: $O(\log n)$
Space Complexity: $O(\log n)$ (due to the recursive stack)

Iterative Implementation

Consider the binary representation of n.
Ex: $n=1000=2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{3}=(1111101000)_{2}$

```
def fastpower_iterative(a, n):
    ans=1
    while n > 0:
        if n & 1:
                ans *= a
        a *= a
        n \Longleftarrow
    return ans
```

Time Complexity: $O(\log n)$
Space Complexity: $O(1)$

Fibonacci Numbers!

Let F_{n} be the nth Fibonacci number. Then we have the following recurrence relation:

$$
F_{n}=F_{n-1}+F_{n-2}
$$

with $F_{0}=0$ and $F_{1}=1$.
How can we compute F_{n} ?

Naive Recursive Implementation

```
def fib(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    return fib(n-1) + fib(n-2)
```

Time Complexity: $O\left(2^{n}\right)$
Space Complexity: $O(n)$ (due to the recursive stack)

Memoization

We can use memoization to reduce the time complexity to $O(n)$.

```
def fib(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    if dp[n] \not= -1:
        return dp[n]
    dp[n] = fib(n-1) + fib(n-2)
    return dp[n]
```

Time Complexity: $O(n)$
Space Complexity: $O(n)$ (due to the memoization array)

Iterative Implementation

```
def fib_iterative(n):
    if \overline{n}=0:
        return 0
    if n = 1:
        return 1
    a = 0
    b = 1
    for i in range(2, n+1):
        c = a + b
        a=b
        b}=
    return b
```

Time Complexity: $O(n)$
Space Complexity: $O(1)$
Can we do even better?

Matrix Exponentiation

Idea: Computing all required Fibonacci numbers in one step. (This is a very general technique.)

$$
\begin{gathered}
\left(\begin{array}{ll}
F_{n-1} & F_{n}
\end{array}\right)=\left(\begin{array}{ll}
F_{n-2} & F_{n-1}
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
F_{n} & F_{n+1}
\end{array}\right)=\left(\begin{array}{ll}
F_{0} & F_{1}
\end{array}\right) \cdot P^{n}
\end{gathered}
$$

Time Complexity: $O(8 * \log n)$

Modular Exponentiation

$$
a^{n} \bmod m=(a \cdot a \cdot \cdots a) \bmod m
$$

where the n factors of a are multiplied together.
Assume that a and m are coprime integers.

```
def modularpower(a, n, m):
    ans = 1
    while n > 0:
        if n & 1:
            ans = (ans * a) % m
        a = (a* a) % m
        n \Longleftarrow
    return ans
```

Time Complexity: $O(\log n)$
Can we do even better?

Euler's Theorem

Let a and m be coprime integers. Then we have the following theorem:

$$
a^{\varphi(m)} \equiv 1 \quad(\bmod m)
$$

where $\varphi(m)$ is the Euler totient function.
$\varphi(m)$ counts the number of integers between 1 and m inclusive that are coprime to m.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8	8	16	6	18	8	12

How do we use this?

Problem: Compute $a^{n} \bmod m$.
Solution: Write $n=\varphi(m) \cdot k+r$, where k and r are integers and $0 \leq$ $r<\varphi(m)$.

Then we have the following:

$$
a^{n} \bmod m=a^{\varphi(m) \cdot k+r} \bmod m \equiv a^{r} \bmod m
$$

Time Complexity: $O(\log \varphi(m))$
Very very fast!

But how to compute $\varphi(m)$?

Properties of $\varphi(m)$

1. $\varphi(1)=1$
2. $\varphi(p)=p-1$ (where p is a prime)
3. $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$ (where p is a prime)
4. $\varphi(m n)=\varphi(m) \cdot \varphi(n)$ (where m and n are coprime)

Method 1: Naive Prime Factorization

Let $m=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots \cdot p_{k}^{a_{k}}$, where p_{i} are distinct primes and $a_{i} \geq 1$.
Then we have the following:

$$
\varphi(m)=m \cdot\left(1-\frac{1}{p_{1}}\right) \cdot\left(1-\frac{1}{p_{2}}\right) \cdots \cdot\left(1-\frac{1}{p_{k}}\right)
$$

Implementation

```
def eulerphi(m):
    ans = m
    for i in range(2, int(m**0.5) + 1):
        if m % i = 0:
            ans -= ans // i
            while m % i = 0:
                    m //= i
    if m > 1:
        ans -= ans // m
    return ans
```

Time Complexity: $O(\sqrt{m})$

Method 2: Gauss's Divisor Sum Formula

Let m be a positive integer. Then we have the following formula:

$$
\sum_{d \mid m} \varphi(d)=m
$$

where d are the distinct prime factors of n
Example: $\varphi(12)=4$. We have the following:

$$
\sum_{d \mid 12} \varphi(d)=\varphi(1)+\varphi(2)+\varphi(3)+\varphi(4)+\varphi(6)+\varphi(12)=12
$$

Implementation

```
def eulerphi(m):
    phi[0] = 0
    phi[1] = 1
    for i in range(2, m+1):
        phi[i] = i - 1
    for i in range(2, m+1):
        for j in range(2 * i, m+1, i):
                phi[j] -= phi[i]
    return phi[m]
```

Time Complexity: $O(m \log m)$

Modular Inverse

Let a and m be coprime integers. Then if a has a modular inverse modulo m, then there exists x such that:

$$
a \cdot x \equiv 1 \quad(\bmod m)
$$

x is called the modular inverse of a modulo m, denoted by a^{-1} $(\bmod m)$.

How do we compute a^{-1} ?

Method 1: Extended Euclidean Algorithm

If a and m be coprime integers, then we can find x and y such that:

$$
a x+m y=1
$$

using the extended Euclidean algorithm.
Take the modulo m of both sides:

$$
a x \equiv 1 \quad(\bmod m)
$$

Thus the modular inverse of a modulo m is x.
Time Complexity: $O(\log \min (a, m))$

Method 2: Fast Exponentiation (and Euler's

 Theorem)$$
a^{\varphi(m)-1} \equiv a^{-1} \quad(\bmod m)
$$

Time Complexity: $O(\log \varphi(m))$

Method 3: Euclidean Division

$$
m=k \cdot i+r
$$

where $k=\left\lfloor\frac{m}{i}\right\rfloor$ and $r=m(\bmod i)$
Then we have the following:

$$
\begin{aligned}
& 0 \equiv k \cdot i+r \quad(\bmod m) \\
& r \equiv-k \cdot i \quad(\bmod m) \\
& r \cdot i^{-1} \equiv-k \quad(\bmod m) \\
& i^{-1} \equiv-k \cdot r^{-1} \quad(\bmod m)
\end{aligned}
$$

Implementation

```
def modinv(a, m):
    if a \leqslant 1:
        return a
    else:
        return m - (m/a) * inv(m % a) % m
```

Time Complexity: $\sim O\left(\frac{\log m}{\log \log m}\right)$
Space Complexity: $O(\log \min (a, m))$

References

- https://cp-algorithms.com/algebra
- https://arxiv.org/abs/2211.08374 (On the length of Pierce expansions)
- https://artofproblemsolving.com/community/c90633h1291397
- https://www.cse.iitd.ac.in/~rjaiswal/2011/csl866/Notes/wcnt.pdf (Chapter 9), Prof Ragesh Jaiswal (IIT Delhi)

