Fast Exponentiation and Inversion

Introducing Computational Number Theory

Ananyapam De

Indian Institute of Science Education and Research, Kolkata

Exponentiation

Let a and n be integers with $n \geq 0$. Then the nth power of a, denoted by a^n , is defined as

$$a^n = a \cdot a \cdot \cdots \cdot a$$

where the n factors of a are multiplied together.

```
def power(a, n):
    ans = 1
    for i in range(n):
        ans *= a
        return ans
```

Time Complexity: O(n)

Space Complexity: O(1)

Motivating Example

Suppose we want to compute 2^{1000} . We can do this by multiplying 2 by itself 1000 times. Very slow!

How can we compute 2^{1000} faster?

The Idea

Suppose we know 2^{500} . Then we can compute 2^{1000} by squaring 2^{500} (in one step). This is much faster!

How can we compute 2^{500} ? We can compute 2^{250} by squaring 2^{125} (in one step). And so on.

$$a^n = \begin{cases} 1 & \text{if } n == 0\\ \left(a^{\frac{n}{2}}\right)^2 & \text{if } n > 0 \text{ and } n \text{ even} \\ \left(a^{\frac{n-1}{2}}\right)^2 \cdot a & \text{if } n > 0 \text{ and } n \text{ odd} \end{cases}$$

Fast Exponentiation

```
def fastpower(a, n) {
    if (n = 0)
        return 1
    res = fastpower(a, n / 2)
    if (n % 2)
        ans = res * res * a
        return ans
    else
        ans = res * res
        return ans
}
```

Time Complexity: $O(\log n)$

Space Complexity: ??

Fast Exponentiation

```
def fastpower(a, n) {
    if (n = 0)
        return 1
    res = fastpower(a, n / 2)
    if (n % 2)
        ans = res * res * a
        return ans
    else
        ans = res * res
        return ans
}
```

Time Complexity: $O(\log n)$

Space Complexity: $O(\log n)$ (due to the recursive stack)

Iterative Implementation

Consider the binary representation of n.

Ex: $n = 1000 = 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^3 = (1111101000)_2$

```
def fastpower_iterative(a, n):
    ans = 1
    while n > 0:
        if n & 1:
            ans *= a
            a *= a
            n >= 1
    return ans
```

Time Complexity: $O(\log n)$

Space Complexity: O(1)

Fibonacci Numbers!

Let F_n be the *n*th Fibonacci number. Then we have the following recurrence relation:

$$F_n = F_{n-1} + F_{n-2}$$

with $F_0 = 0$ and $F_1 = 1$.

How can we compute F_n ?

Naive Recursive Implementation

Time Complexity: $O(2^n)$

Space Complexity: O(n) (due to the recursive stack)

Memoization

We can use memoization to reduce the time complexity to O(n).

```
def fib(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    if dp[n] ≠ -1:
        return dp[n]
    dp[n] = fib(n-1) + fib(n-2)
    return dp[n]
```

Time Complexity: O(n)

Space Complexity: O(n) (due to the memoization array)

Iterative Implementation

```
def fib_iterative(n):
    if n = 0:
        return 0
    if n = 1:
        return 1
    a = 0
    b = 1
    for i in range(2, n+1):
        c = a + b
        a = b
        b = c
    return b
```

Time Complexity: O(n)Space Complexity: O(1)Can we do even better?

Matrix Exponentiation

Idea: Computing all required Fibonacci numbers in one step. (This is a very general technique.)

$$egin{pmatrix} F_{n-1} & F_n \end{pmatrix} = egin{pmatrix} F_{n-2} & F_{n-1} \end{pmatrix} \cdot egin{pmatrix} 0 & 1 \ 1 & 1 \end{pmatrix}$$

$$(F_n \quad F_{n+1}) = (F_0 \quad F_1) \cdot P^n$$

Time Complexity: $O(8 * \log n)$

Modular Exponentiation

 $a^n mod m = (a \cdot a \cdot \cdots \cdot a) mod m$

where the n factors of a are multiplied together.

Assume that a and m are coprime integers.

```
def modularpower(a, n, m):
    ans = 1
    while n > 0:
        if n & 1:
            ans = (ans * a) % m
            a = (a * a) % m
            n \gg 1
    return ans
```

Time Complexity: $O(\log n)$

Can we do even better?

Euler's Theorem

Let a and m be coprime integers. Then we have the following theorem:

$$a^{arphi(m)} \equiv 1 \pmod{m}$$

where $\varphi(m)$ is the Euler totient function.

 $\varphi(m)$ counts the number of integers between 1 and m inclusive that are coprime to m.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8	8	16	6	18	8	12

How do we use this?

Problem: Compute $a^n \mod m$.

Solution: Write n = $arphi(m) \cdot k + r$, where k and r are integers and $0 \leq r < arphi(m)$.

Then we have the following:

$$a^n mod m = a^{arphi(m) \cdot k + r} mod m \equiv a^r mod m$$

Time Complexity: $O(\log arphi(m))$

Very very fast!

But how to compute $\varphi(m)$?

Properties of $\varphi(m)$

1.
$$arphi(1)=1$$

2. $arphi(p)=p-1$ (where p is a prime)
3. $arphi(p^k)=p^k-p^{k-1}$ (where p is a prime)
4. $arphi(mn)=arphi(m)\cdotarphi(n)$ (where m and n are coprime)

Method 1: Naive Prime Factorization

Let $m=p_1^{a_1}\cdot p_2^{a_2}\cdot \cdots \cdot p_k^{a_k}$, where p_i are distinct primes and $a_i\geq 1.$ Then we have the following:

$$arphi(m) = m \cdot \left(1 - rac{1}{p_1}
ight) \cdot \left(1 - rac{1}{p_2}
ight) \cdot \dots \cdot \left(1 - rac{1}{p_k}
ight)$$

Implementation

```
def eulerphi(m):
    ans = m
    for i in range(2, int(m**0.5) + 1):
        if m % i = 0:
            ans -= ans // i
            while m % i = 0:
                m //= i
        if m > 1:
            ans -= ans // m
        return ans
```

Time Complexity: $O(\sqrt{m})$

Method 2: Gauss's Divisor Sum Formula

Let m be a positive integer. Then we have the following formula:

$$\sum_{d|m} arphi(d) = m$$

where d are the distinct prime factors of n

Example: $\varphi(12) = 4$. We have the following:

$$\sum_{d|12}arphi(d)=arphi(1)+arphi(2)+arphi(3)+arphi(4)+arphi(6)+arphi(12)=12$$

Implementation

```
def eulerphi(m):
    phi[0] = 0
    phi[1] = 1
    for i in range(2, m+1):
        phi[i] = i - 1
    for i in range(2, m+1):
        for j in range(2 * i, m+1, i):
            phi[j] -= phi[i]
    return phi[m]
```

Time Complexity: $O(m \log m)$

Modular Inverse

Let a and m be coprime integers. Then if a has a modular inverse modulo m, then there exists x such that:

 $a \cdot x \equiv 1 \pmod{m}$

x is called the modular inverse of a modulo m, denoted by a^{-1} (mod m).

How do we compute a^{-1} ?

Method 1: Extended Euclidean Algorithm

If a and m be coprime integers, then we can find x and y such that:

ax + my = 1

using the extended Euclidean algorithm.

Take the modulo m of both sides:

 $ax \equiv 1 \pmod{m}$

Thus the modular inverse of a modulo m is x.

Time Complexity: $O(\log min(a, m))$

Method 2: Fast Exponentiation (and Euler's Theorem)

$$a^{arphi(m)-1}\equiv a^{-1}\pmod{m}$$

Time Complexity: $O(\log arphi(m))$

Method 3: Euclidean Division

$$m = k \cdot i + r$$

where $k = \lfloor rac{m}{i}
floor$ and $r = m \pmod{i}$

Then we have the following:

$$egin{aligned} 0 &\equiv k \cdot i + r \pmod{m} \ r &\equiv -k \cdot i \pmod{m} \ r \cdot i^{-1} &\equiv -k \pmod{m} \ i^{-1} &\equiv -k \pmod{m} \ i^{-1} &\equiv -k \cdot r^{-1} \pmod{m} \end{aligned}$$

Implementation

Time Complexity: ~ $O(\frac{logm}{loglogm})$ Space Complexity: $O(\log min(a, m))$

References

- https://cp-algorithms.com/algebra
- https://arxiv.org/abs/2211.08374 (On the length of Pierce expansions)
- https://artofproblemsolving.com/community/c90633h1291397
- https://www.cse.iitd.ac.in/~rjaiswal/2011/csl866/Notes/wcnt.pdf (Chapter 9), Prof Ragesh Jaiswal (IIT Delhi)