
Ananyapam De

Fast Exponentiation and Inversion
Introducing Computational Number Theory

Indian Institute of Science Education and Research, Kolkata

Exponentiation

Let and be integers with . Then the th power of , denoted by
, is defined as

where the factors of are multiplied together.

def power(a, n)�
 ans = 1
 for i in range(n)�
 ans *= a
 return ans

Time Complexity:

Space Complexity:

a n n ≥ 0 n a

an

a =n a ⋅ a ⋅ ⋯ ⋅ a

n a

O(n)

O(1)

1

Motivating Example

Suppose we want to compute . We can do this by multiplying by it-
self times. Very slow!

How can we compute faster?

21000 2
1000

21000

2

The Idea

Suppose we know . Then we can compute by squaring (in
one step). This is much faster!

How can we compute ? We can compute by squaring (in one
step). And so on.

2500 21000 2500

2500 2250 2125

3

Fast Exponentiation

def fastpower(a, n) {
 if (n �� 0)
 return 1
 res = fastpower(a, n / 2)
 if (n % 2)
 ans = res * res * a
 return ans
 else
 ans = res * res
 return ans
}

Time Complexity:

Space Complexity: ??

O(logn)

4

Fast Exponentiation

def fastpower(a, n) {
 if (n �� 0)
 return 1
 res = fastpower(a, n / 2)
 if (n % 2)
 ans = res * res * a
 return ans
 else
 ans = res * res
 return ans
}

Time Complexity:

Space Complexity: (due to the recursive stack)

O(logn)

O(logn)

5

Iterative Implementation

Consider the binary representation of .

Ex:

def fastpower_iterative(a, n)�
 ans = 1
 while n > 0�
 if n & 1�
 ans *= a
 a *= a
 n ��� 1
 return ans

Time Complexity:

Space Complexity:

n

n = 1000 = 2 +9 2 +8 2 +7 2 +6 2 +5 2 =3 (1111101000) 2

O(logn)

O(1)

6

Fibonacci Numbers!

Let be the th Fibonacci number. Then we have the following recur-
rence relation:

with and .

How can we compute ?

F n n

F =n F +n−1 F n−2

F =0 0 F =1 1

F n

7

Naive Recursive Implementation

def f�b(n)�
 if n �� 0�
 return 0
 if n �� 1�
 return 1
 return f�b(n-1) + f�b(n-2)

Time Complexity:

Space Complexity: (due to the recursive stack)

O(2)n

O(n)

8

Memoization

We can use memoization to reduce the time complexity to .

def f�b(n)�
 if n �� 0�
 return 0
 if n �� 1�
 return 1
 if dp[n] �� -1�
 return dp[n]
 dp[n] = f�b(n-1) + f�b(n-2)
 return dp[n]

Time Complexity:

Space Complexity: (due to the memoization array)

O(n)

O(n)

O(n)

9

Iterative Implementation

def f�b_iterative(n)�
 if n �� 0�
 return 0
 if n �� 1�
 return 1
 a = 0
 b = 1
 for i in range(2, n+1)�
 c = a + b
 a = b
 b = c
 return b

Time Complexity:

Space Complexity:

Can we do even better?

O(n)

O(1)

10

Matrix Exponentiation

Idea: Computing all required Fibonacci numbers in one step. (This is a
very general technique.)

Time Complexity: O(8 ∗ logn)

11

Modular Exponentiation

where the factors of are multiplied together.

Assume that and are coprime integers.

def modularpower(a, n, m)�
 ans = 1
 while n > 0�
 if n & 1�
 ans = (ans * a) % m
 a = (a * a) % m
 n ��� 1
 return ans

Time Complexity:

Can we do even better?

a modn m = a ⋅ a ⋅ ⋯ ⋅ a mod() m

n a

a m

O(logn)

12

Euler's Theorem

Let and be coprime integers. Then we have the following theorem:

where is the Euler totient function.

 counts the number of integers between 1 and inclusive that are
coprime to .

a m

a ≡φ(m) 1 (mod m)

φ(m)

φ(m) m

m

13

How do we use this?

Problem: Compute .

Solution: Write = , where and are integers and
.

Then we have the following:

Time Complexity:

Very very fast!

a modn m

n φ(m) ⋅ k + r k r 0 ≤
r < φ(m)

a modn m = a modφ(m)⋅k+r m ≡ a modr m

O(logφ(m))

14

But how to compute ?

Properties of

1.
2. (where is a prime)
3. (where is a prime)
4. (where and are coprime)

φ(m)

φ(m)

φ(1) = 1
φ(p) = p − 1 p

φ(p) =k p −k pk−1 p

φ(mn) = φ(m) ⋅ φ(n) m n

15

Method 1: Naive Prime Factorization

Let , where are distinct primes and .

Then we have the following:

m = p ⋅1
a 1 p ⋅2

a 2 ⋯ ⋅ p k
a k p i a ≥i 1

φ(m) = m ⋅ 1 − ⋅(
p 1

1
) 1 − ⋅(

p 2

1
) ⋯ ⋅ 1 − (

p k

1
)

16

Implementation

def eulerphi(m)�
 ans = m
 for i in range(2, int(m��0.5) + 1)�
 if m % i �� 0�
 ans -= ans �� i
 while m % i �� 0�
 m ��� i
 if m > 1�
 ans -= ans �� m
 return ans

Time Complexity: O()m

17

Method 2: Gauss's Divisor Sum Formula

Let be a positive integer. Then we have the following formula:

where are the distinct prime factors of

Example: . We have the following:

m

 φ(d) =
d∣m

∑ m

d n

φ(12) = 4

 φ(d) =
d∣12

∑ φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12) = 12

18

Implementation

def eulerphi(m)�
 phi[0] = 0
 phi[1] = 1
 for i in range(2, m+1)�
 phi[i] = i - 1

 for i in range(2, m+1)�
 for j in range(2 * i, m+1, i)�
 phi[j] -= phi[i]

 return phi[m]

Time Complexity: O(m logm)

19

Modular Inverse

Let and be coprime integers. Then if has a modular inverse modulo
, then there exists such that:

 is called the modular inverse of modulo , denoted by
.

a m a

m x

a ⋅ x ≡ 1 (mod m)

x a m a−1

(mod m)

20

How do we compute ?

Method 1: Extended Euclidean Algorithm

If and be coprime integers, then we can find and such that:

using the extended Euclidean algorithm.

Take the modulo of both sides:

Thus the modular inverse of modulo is .

Time Complexity:

a−1

a m x y

ax + my = 1

m

ax ≡ 1 (mod m)

a m x

O(logmin(a,m))

21

Method 2: Fast Exponentiation (and Euler's
Theorem)

Time Complexity:

a ≡φ(m)−1 a−1 (mod m)

O(logφ(m))

22

Method 3: Euclidean Division

where and

Then we have the following:

m = k ⋅ i + r

k = ⌊ ⌋
i
m r = m (mod i)

0 ≡ k ⋅ i + r (mod m)
r ≡ −k ⋅ i (mod m)
r ⋅ i ≡−1 −k (mod m)
i ≡−1 −k ⋅ r−1 (mod m)

23

Implementation

def modinv(a, m)�
 if a �� 1�
 return a
 else:
 return m - (m/a) * inv(m % a) % m

Time Complexity: ~

Space Complexity:

O()
loglogm
logm

O(logmin(a,m))

24

References

https://cp-algorithms.com/algebra

https://arxiv.org/abs/2211.08374 (On the length of
Pierce expansions)

https://artofproblemsolving.com/community/c90633h1291397

https://www.cse.iitd.ac.in/~rjaiswal/2011/csl866/Notes/w-
cnt.pdf (Chapter 9), Prof Ragesh Jaiswal (IIT Delhi)

25

https://cp-algorithms.com/algebra
https://arxiv.org/abs/2211.08374
https://artofproblemsolving.com/community/c90633h1291397
https://www.cse.iitd.ac.in/~rjaiswal/2011/csl866/Notes/w-cnt.pdf

